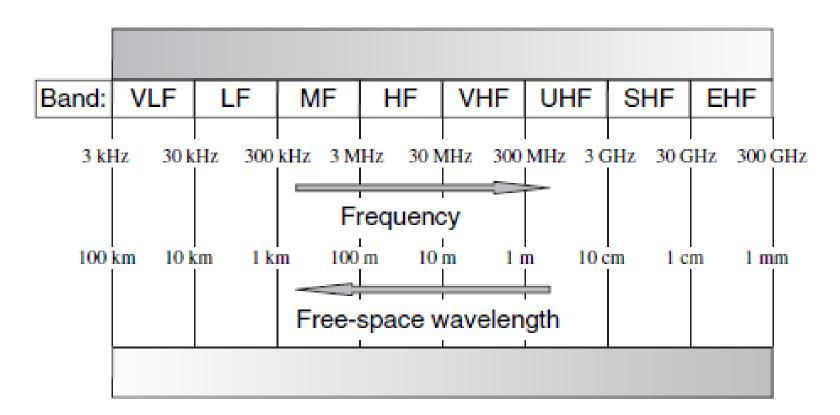

Lect3: The Electromagnetic (EM) Spectrum

Dr. Yazid Khattabi


Communication Systems Course EE Department University of Jordan

2018

- It is the basic resource in wireless communication systems.
- It is the range of electromagnetic signals encompassing all frequencies.
- EM, radio waves, and antennas basics will be discussed in Lect3.

Radio wave spectrum:

• Two conventional ways of dividing the spectrum into frequency bands:

Name	Frequency	Wavelength
Extremely low frequencies		
(ELFs)	30–300 Hz	10 ⁷ –10 ⁶ m
Voice frequencies (VFs)	300–3000 Hz	10 ⁶ —10 ⁵ m
Very low frequencies (VLFs)	3–30 kHz	10 ⁵ —10 ⁴ m
Low frequencies (LFs)	30–300 kHz	10 ⁴ —10 ³ m
Medium frequencies (MFs)	300 kHz–3 MHz	10 ³ —10 ² m
High frequencies (HFs)	3–30 MHz	10 ² -10 ¹ m
Very high frequencies (VHFs)	30–300 MHz	10 ¹ -1 m
Ultra high frequencies (UHFs)	300 MHz–3 GHz	1-10 ⁻¹ m
Super high frequencies (SHFs)	3–30 GHz	10 ⁻¹ -10 ⁻² m
Extremely high frequencies		
(EHFs)	30–300 GHz	10 ⁻² -10 ⁻³ m
Infrared	—	0.7—10 μm
The visible spectrum (light)	_	0.4–0.8 μm

4

Some Applications of EM- Spectrum:

- ELF (30-300 Hz): include ac power line frequencies (50 and 60 Hz are common) and the low end of the human audio range.
- VF (300-3000 Hz): human speech. Although human hearing extends from approximately 20 to 20,000 Hz, most intelligible (clear) sound occurs in the VF range.
- VLF (3-30 KHz): military communications (VLF radio transmission is used by the navy to communicate with submarines).
- LF (30-300K): aeronautical and marine navigation.
- MF (300K-3M): AM broadcasting (535 to 1605 kHz). Marine.
- **HF** (**3-30M**) (**called short waves**): simplex broadcasting and half duplex two-way radio communication. Aviation communication, weather stations, public safety (police and fire), diplomatic communication between embassies.

□ Some Applications of EM- Spectrum:

- VHF (30-300M) : FM radio broadcasting (88 to 108 MHz), and VHF TV.
- UHF (300M-3G): UHF TV, cellular telephones, radar.
- SHF (3-30G) *microwaves:* microwave ovens usually operate at 2.45 GHz, satellite communication, radar, WLANs, and many cellular telephone systems.
- EHF (30-300G): called *millimeter waves*. Complex and expensive equipments used for these waves. There is growing use of this range for satellite communication telephony, cellular networks, and some specialized radar.

Some Applications of EM- Spectrum:

- Between 300 GHz and the Optical Spectrum: virtually uninhabited. Lack of hardware and components limits its use.
- The Optical Spectrum:

>Infrared: associated with heat sources. TV remote-control. Fiber-optic

> The Visible Spectrum (light: red to violet): glass-optics, laser communications.

➤Ultraviolet light (UV): generated by the sun (causes sunburn), fluorescent lamps. not used for communication; its primary use is medical.

□Note:

- EM waves with frequencies less than 9KHz are not employed due to the following reasons:
- >Limited bandwidth resulting in low traffic capacity.
- ≻ Very large antennas because of long wavelengths.
- Also, frequency bands higher than 100GHz are not usually employed for the time being due to the following reasons:
- ≻High free space loss.
- ≻High atmospheric attenuation.
- >Limitations in RF component manufacturing.

□Spectrum is a valuable and finite natural resource.

□ *Spectrum-management* & *regulatory bodies* are needed nationally & internationally.

□Role: allocate spectrum space, issue licenses, set standards,....

- □In US: Federal Communications Commission (FCC) & National Telecommunications and Information Administration (NTIA).
- □International Telecommunications Union (ITU): brings countries together to discuss how the frequency spectrum is to be divided up and shared:
- Short distances spectrum: countries can use simultaneously.
- ≻Long distances spectrum: countries must negotiate to coordinate to prevent interference.

Standards:

- Set and followed so that when equipment is designed and built, compatibility is ensured.
- Interoperability : the ability of equipment from one manufacturer to work compatibly with that of another.
- Standards for: *long-distance telephone transmission, digital cell phones, LANs,* and *computer modems, ..*
- Telecommunication Standard organizations: ANSI, EIA, ETSI, IEEE, ITU, IETF, IF, TIA

Thank you