Dr. Yazid Khattabi

Communication Systems Course EE Department University of Jordan

- Originally described by Claude Shannon of Bell Laboratories in his classic 1948 paper 'A Mathematical Theory of Communication' [Shannon, 48]. [1]
- This representation applies to all types of communication systems (wireless or otherwise). [1]
- Noise: general term applied to any phenomenon that degrades or interferes with the txed information

The Transmitter:

- Converts the intelligence into electronic form suitable for transmission.
- 1st main stage is transducer: physical characteristics (sound, voice, temperature, pressure, light intensity) → → electrical signals.
- Transducers like: microphone, camera, computer keyboard.
- 2nd main stage modulator: transducer's electrical output usually modulates a higher-frequency carrier sine wave. Then amplified.

Architecture of a generic communication system The Communication Channel

- The medium by which the electronic signal is sent from one place to another.
- Media or channels include:
- Electric (wire) conductors

free space (called wireless or radio communication) (Intelligence signals ---> EM signal).

Other type of channels:

- Water in Sonar (Sound Navigation and Ranging): a technique that uses sound propagation (usually underwater, as in submarine navigation) to navigate, communicate with or detect objects on or under the surface of the water.
- The earth itself can be used as a communication medium, because it conducts electricity and can also carry low-frequency sound waves.
- Alternating-current (ac) power lines, the electrical conductors that carry the power to operate virtually all our electrical and electronic devices, can also be used as communication channels.

The Receiver

- It accepts the transmitted message from the channel and converts it back to a form understandable by humans.
- Core stage is the demodulator (detector).
- **Transceivers:** have both a transmitter and a receiver (e.g., cell phone, modems, telephones).

Attenuation & Distortion (by channels)

- Attenuation proportional to the square of the distance between the transmitter and receiver (inevitable no mater the channel type).
- channels are frequency-selective (as filters and distort out-of-band signal components).
- Amplification needed.

Noise (internal, external, multiplicative, interference) (its measure in SNR):

Architecture of a generic communication system Types of Communication Systems:

• Simplex (one way): TV broadcasting.

Half duplex (one way at a time): Radio transmission in military, fire, police, aircraft, marine.

• Full duplex (simultaneous, two-way): Telephone system.

The Analog Signal

- Is a smoothly and continuously varying voltage or current; examples:
- Voice voltage: analog baseband signal that vary in accordance with the sound.

• Video voltages: analog baseband signal that vary in accordance with the use in accordance with the use is a set at the set at the

• AM & FM signals: are analog bandpass (carrier) signals. Dr. Yazid Khattabi, The University of Jordan

The digital signal

- Does not vary continuously. Most use binary or two-state codes, examples:
- Early wire and radio comm. systems used a type of on/off digital code
- The telegraph used Morse code (system of short and long signals (dots and dashes) to designate letters and numbers):

• In radio telegraphy (continuous-wave transmission), a sine wave signal is turned off and on for short or long durations to represent the dots and dashes (*Marconi*).

 \circ https://www.youtube.com/watch?v=bNoOYeS0gs0

• The digital signal

Telegraph using Morse-code

Character	Morse Code	Character	Morse Code	Number	Morse Code
Α		N		4	
B		0		1	
С		P		2	
D		0		3	
F	- 12 - 14-	R		4	
F		s		5	
G		Ť	_	6	
н		U		7	
1		V		8	
J		W		9	
к		X		0	
L		Y			
M		z		and the second second	

Jordan

The digital signal

• Data in computers is binary digital (standard ASCII code converts letters, numbers ,.. to binary code)

+5 V----- 1 0 1 0 1 1 0 1 0 0 1 0 V------

• In digital comm. systems: analog intelligence is first converted into digital signal

Architecture of a generic communication system Baseband Transmission:

- Baseband information signals (like voice, video, or digital signals) are sent directly and unmodified over the medium.
- Ex1: in many telephone systems, the voice itself is placed on the wires and transmitted over some distance to the receiver.
- Ex2: In most computer networks, the digital signals are applied directly to coaxial or twisted-pair cables for transmission to another computer.

Broadband Transmission:

- Baseband voice, video, or digital signal modify another, higher-frequency signal, the carrier. The information or intelligence to be sent is said to be impressed upon the carrier.
- Over free space (radio transmission)

Broadband Transmission

Architecture of a generic communication system <u>Multiplexing</u>

- It is the process of allowing two or more signals to share the same medium or channel.
- It converts the individual baseband signals to a composite signal that modulates a carrier in the transmitter.
- The composite signal is recovered at the receiver by the demodulator, then to the demultiplexer where the individual baseband signals are regenerated.

Thank you