
B ASIC E NGINEERING '; ERIES AND OOLS

INTRODUCTION TO

~ATLAB 7 FOR ENGINEERS

WILLIAM J. PALM III
Rip By Computer Killer

Numbered Examples:
Chapters One to Five
Number and Topic

Chapter One

1.1- 1 Volume of a circular cylinder

1.6-1 Analysis of temperature data

1.6-2 Plotting with a for loop

1.6-3 SeIies calculation with a for loop

1.6-4 Series calculation with a while loop

1.6-5 Growth of a bank account

1.7-1 Piston motion

Chapter Two

2.3-1 Vectors and relative velocity

2.3-2
2.3-3
2.3-4
2.3-5

2.3-6

Vectors and displacement

Aortic pressure model

Transportation route analysis

Current and power dissipation in
resistors

A batch distillation process

2.3-7 Height versus velocity

2.4-1 Manufacturing cost analysis

2.4-2 Product co t analysis

2.5-1 Earthquake-resistant building design

2.6-1 An environmental database

2.7-1 A student database

Chapter Three

3.2-1 Using global variables

3.2-2 Optimization of an irrigation channel

Number and Topic

Chapter Four

4.3-1 Height and speed of a projectile

4.5-1 Data sorting

4.5-2 Flight of an instrumented rocket

4.5-3 Time to reach a specified height

4.6-1 Using the swi tch structure for
calendar calculations

4.8-1 A college enrollment model: Part I

4.8-2 A college enrollment model: Part II

Chapter Five

5.2-1
5.3-1

5.3-2
5.5-1
5.5-2
5.5-3
5.6-1
5.6-2
5.6-3

5.6-4

Load-line analysis of electrical circuits

Frequency-response plot of a low-pass
filter

Plotting orbits

A cantilever beam deflection model

Temperatme dynamics

Hydraulic resistance

Estimation of traffic flow

Modeling bacteria growth

Breaking strength and alloy
composition

Response of a biomedical instrument

Numbered Examples:
Chapters Six to Ten
Number and Topic

Chapter Six

6.1-1 Gauss eliminati on

6.2-1 Left-division method with three
unknowns

6.2-2 An electrica l-resistance network

6.2-3 Ethanol production

6.2-4 Calculation of cable ten ion

6.2-5 The matrix inverse method

6.4- 1 A set having a unique solution

6.4-2 An underdetermined set

6.4- 3 A statically indeterminate problem

6.4-4 A singular , et

6.4-5 Production planning

6.4-6 Traffic engineering

6.5- 1 The least squares method

6.5-2 An overdetermined set

Chapter Seven

7.1- 1 Breaking strength of thread

7.2-1 Mean and standard deviation of
heights

7.2- 2 Estimation of height distribution

7.3- 1 Optimal production quantity

7.3- 2 Statistical analysi and manufacturing
to lerances

7.4-1 Robot path control using three knot
points

Number and Topic

Chapter Eight

8.2-1 Velocity from an accelerometer

8.2-2 Evaluation o[Fre 'ne l's cosine integral

8.5-1 Response of an RC circuit

8.5-2 Decaying sine voltage applied to an
RCcircuit

8.5-3 Liquid height in a spherical tank

8.6-1 A nonlinear pendulum model

8.6-2 Trapezoidal profile for a dc motor

Chapter Nine

9.2-1
9.2-2
9.2-3
9.3-1
9.4-1

Simulink so lution of 5' = 10 sin 1

Exporting to the MATLAB work~pace

SiJl1ulink model [or y = -lOy + fU)
Simulink model of a tWO-Jl1a~s system

SiJl1ulink model of a rocket-propelled
sled

9.4-2 Model of a relay-controlled motor

9.5-1 Re!>ponse with a dead zone

9.6-1 Model of a nonlinear pendulum

Chapter Ten

10.2-1
10.2-2
10.3-1

Intersection of two circles

Positioning a robot arm

Topping the Green Monster

· EST (Best Engineering Series and
McGraw-Hili Continues to Brmg You the B Engineering Education

Tools) Approach to Introductory

;!'~1~~1:/95 ror Scientists and Engineers, 2/e
ISB 0072922389

Donaldson
The Engineering Student Survival Guide. 3/e
ISB 0073019259

EidelJenisonINorthup
Imroduction to Engineering Design and Problem

Solving,2/e
ISBN 0072402210

Eisenberg . .
A Beoinner Guide to Techn ical CommUJ1\CalIOn
ISBN" 0070920451

Finklestein
Pocket Book or Technical Writing for Engi neer and

Scientists. 2e
ISBN 0072976837

Gottfried
Spreadsheet Tools for Engineer LI ing Excel
ISB N 0072480688

Palm
Introduction to MATLAB 7 for Engineers
ISBN 0072922427

Pritchard .
Mathcad: A Tool for Engineering Problem SolvlOg
ISBN 0070121893

Schinzinger/Martin
Introduction to Engineering Ethics
[SBN 0072339594

Smith
Teamwork and Project Management, 2/e
ISBN 0072922303

TanID' Orazio
C Programming for Engineering and Computer

Science
ISBN 0079 J 36788

Additional Titles of Interest

Andersen
Just Enough Unix. 4/e
ISBN 0072463775

Eide/JenisonIMashaw/Northup
Engineering Fundamental and Problem Solving, 4/e
ISB 0072430273

Hoi tza pple/Reece
Foundati On> of Engi neeri ng. 2/e
ISBN 0072480823

Holtzapple/Reece
Concepts in Engineering
ISBN 0073011770

MartinlSchinzinger
Etilics in Engineering, 4/e
ISBN 0072831 154

Introduction to MATLAB 7
for Engineers

WiUiam J. Palm III
Un iversity of Rhode Island

ffI Higher Education

Boston Burr Ridge , IL Dubuque, IA Madison , WI New York San Francisco St. Louis

Ba ngkok Bogota Caracas Kuala Lumpur Lisbon Londo n Madrid Mexico City

Milan Montreal New Delhi Santiago Seoul Singapore Sydney Taipei Toronto

ABOUT THE AUTHOR

William J. Palm 11/ is Professor of Mechanical Engineering and Applied
Mechanics at the University of Rhode Island. In 1966 he received a B.S. from
Loyola CoJIege in Baltimore, and in 197 I a Ph.D. in Mechanical Engineering and
Astronautical Sciences from Northwestern University in Evanston, Illinois.

During his 33 years as a faculty member, he has taught 19 courses. One of
these is a fre hman MATLAB course, which he helped develop. He has authored
eight textbooks deaJ ing with modeling and simulation, system dynamics, control
systems, and MATLAB. These include System Dynamics (McGraw-Hill, 2005).
He wrote a chapter on control systems in the Mechanical Engineers' Handbook
(M. Kutz, ed., Wiley, 1999), and was a special contributor to the fifth editions of
Statics and Dynamics, both by J. L. Meriam and L. G. Kraige (Wi ley, 2002).

Professor Palm 's research and indu trial experience are in control systems,
robotics, vibrations , and system modeling. He was the Director of the Robotics
Research Center at the University of Rhode Island from 1985 to 1993, and is
the coholder of a patent fo r a robot hand. He served as Acting Department Chair
from 2002 to 2003. His industrial experience is in automated manufacturing;
modeling and simulation of naval systems, including underwater vehicles and
tracking systems; and design of control systems for underwater-vehicle engine­
test facilities.

CONTENTS

Preface ix

CHAPTER 1
An Overview of MATLAB

1.1 MATLAB Interactive Sessions
1.2 Menus and the Toolbar 17

1.3 Computing with MATLAB J 9

1.4 Script Files and the Editor/Debugger 29
1.5 The MATLAB Help System 38
1.6 Programming in MATLAB 43

1.7 Problem-Solving Methodologies 52
1.8 Summru·y 60
Problems 61

CHAPTER 2
Numeric, Cell, and Structure Arrays 69

2.1 Arrays 70

2.2 Multidimensional Arrays 81

2.3 Element-by-Element Operations 83
2.4 Matrix Operations 97

2.5 Polynomial Operations Using Arrays 107
2.6 Cell Arrays 112

2.7 Structure Arrays 117
2.8 Summary 123
Problems 125

CHAPTER3

Functions and Files 141

3.1 Elementary Mathematical Functions 141
3.2 User-Defined Functions 148

3.3 Advanced Function Programming 163
3.4 Working with Data Files 172

3.5 Summary 177
Problems J 78

CHAPTER4

Programming with MATLAB 183

4.1 Program Design and Development 184
4.2 Relational Operators and Logical

Variables 191
4.3 Logical Operators and Functions 194
4.4 Conditional Statements 201
4.5 Loops 210
4.6 The swi tch Structure 225
4.7 Debugging MATLAB Programs 228
4.8 Applications to Simulation 234
4.9 Summary 239
Problems 241

CHAPTER 5
Advanced Plotting and Model Building 259

5.1 xy Plotting Functions 260
5.2 Subplots and Overlay Plots 271
5.3 Special Plot Type!> 282
5.4 Interactive Plotting in MATLAB
5.5 Function Discovery 298
5.6 Regression 312
5.7 The Basic Fitting Interface 331

5.8 Three-Dimensional Plots 334
5.9 Summary 339
Problems 340

CHAPTER 6
Linear Algebraic Equations 359

6.1 Elementary Solution Method 361

292

6.2 Matrix Methods for Linear Equation 365

viii Contents

6.3 Cramer 's Method 377

6.4 Underdetermined Systems

6.5 Overdetenllined Systems

6.6 Summary 398

Problems 403

C HAPTER7

Probability, Statistics, and
Interpolation 417

380

394

9.4 Piecewise-Linear Models 550

9.5 Transfer-Functi on Models 557

9.6 Nonlinear State-Variable Models 56 1

9.7 Subsystems 563

9.8 Dead Time in Models 568

9.9 Simulation of a Vehicle Suspension 571
9.10 Summary 575

Problems 576

71 Stati tics, Histograms, and Probability 418 C HAP T E R 10 8
7:2 The Normal Distribution 427 Symbolic Processing with MATLAB 5 5

7.3 Random Number Generation 436 10.1 Symbolic Expressions and Algebra 587

7.4 Interpolation 444 10.2 Algebraic and Transcendental
7.5 Summary 457 Equations 596

Problem 458 10.3 Calculus 603

CHAPTERS

Numerical Calculus and Differential
Equations 465

8.1 Review of Integration and
Differentiation 466

8.2 Numerical Integration 471

8.3 Numerical Differentiation 478
8.4 Analytical Solutions to Differential

Equations 483

8.5 Numerical Methods for Differential
Equations 490

8.6 Extension to Higher-Order Equations

8.7 ODE Solvers in the Control System
Toolbox 518

8.8 Advanced Solver Syntax 527

8.9 Summary 531

Problems 532

CHAPTER9

Simulink 541

9.1 Simulation Diagrams 542

9.2 Introduction to Simulink 543

9.3 Linear State-Variable Models 548

508

10.4 Differential Equations 615
10.5 Laplace Transforms 622

10.6 Symbolic Linear Algebra 631
10.7 Summary 635

Problems 636

APPENDIXA

Guide to Commands and Functions in
This Text 649

APPENDIXB

Animation and Sound in MATLAB 661

APPENDIX C
Formatted Output in MATLAB 672

APPE DIX D
References 675

APPENDIXE

Some Project
Suggestions www.mhhe.com/palm

Answers to Selected Problems 676

Index 679

PREFACE

F ormerl y used mainly by speciali sts in signal processing and numerical
analys is, MATLAB* in recent years has achieved widespread and enthusi­
asti c acceptance throughout the engineering community. Many engineer­

ing schools now require a course based entil'ely or in part on MATLAB early in
the curriculum . M ATLAB is programmable and ha the ame logical, relational ,
conditional, and loop structures as other programming languages , such as Fortran,
C, BASIC, and Pascal. Thus it can be used to teach programming principles. In
most school s a MATLAB course has replaced the traditional Fortran course, and
MATLAB is the principal computational tool used throughout the curriculum. In
some techni cal specialties, such as signal processing and control systems, it is the
standard software package for analysis and design .

Tbe popularity of MATLAB is partly due to its long history, and thus it is
well developed and well tested . People trust its answers. Its popularity is also
due to its user interface, wbich provides an easy-to-use interactive environment
that includes extensive numerical computation and visualization capabilities. Its
compactness is a big advantage. For example, you can solve a set of many linear
algebraic equations with just three lines of code, a feat that is impossible witb
traditional programming languages. MATLAB is also extensible; currently more
than 20 " toolboxes" in various application areas can be used with MATLAB to
add new commands and capabilities.

MATLAB is available for MS Windows and Macintosb personal computers
and for otber operating systems. It is compatible across all tbese platfonllS, which
enables users to share their programs, insights, and ideas.

TEXT OBJECTIVES AND PREREQUISITES

This text is intended as a stand-alone introduction to MATLAB. It can be used in
an introductory course, as a self-study text, or as a supplementary text. The text's
material is based on the author's experience in teaching a required two-credit
semester course devoted to MATLAB for engineering freshmen . In addition,
the text can serve a a reference for later use. The text's many tables, and its
referencing system in an appendix and at the end of each chapter. bave been
designed witb this purpose in mind.

A secondary objective is to introduce and reinforce the use of problem-solving
methodology as practiced by the engineering profession in general and as applied
to the use of computers to solve problems in particular. This methodology is
introduced in Chapter I.

MATLAB is " registered trademark of The MathWorks. lnc.

Ix

Preface

The reader is assumed to have some knowledge of algebra and trigonometry ;
knowledge of calcul us is not req uired for the firs~ sev~n ch aprers . _~ome .~no.w l edge
of high school chemistry and physics, primanl y simple ele.ctl lcal ,C IICU lts, and
basic stati cs and dynamics is req uired to understand some of the eXdmples.

TEXT ORGANIZATION
This text is an update to the author's prev ious tex t. ' In addi tion to prov.iding new
materi al based on MATLAB 7, the text incorporates the many suggestIons made

by reviewer and other users. '. .
The tex t consists of 10 chapters. The fi rst chapter gIves an . ovel V I~W of

MATLAB features, including it windows and menu structures. It also 1I1tro­
duces the problem-solving methodology. Chapter 2 introduces the conc.ept of an
array, which is the fundamental data element in MATLAB , an~ descnbes ~ow
to use numeric arrays, cell arrays, and structure mTaYs fo r basIc mathematI cal

operations. .
Chapter 3 discusses the use of functions and fil es. MAT~AB has an e.xtenslVe

number of built-in math fu nctions, and users can define tbelr own functIons and
save them as a fi le for reuse.

Chapter 4 treats programming with MATLAB and covers relational and logi­
cal operators, conditional statements, for and whi Ie loops, and the switch structure.
A major application of the chapter's material is in simul ation, to which a section
is devoted.

Chapter 5 treats two- and th ree-dimensional plotting. It fi rst estab lishes stan­
dards for professional -looking, useful plots. In the author's experience beginning
students are not aware of these standards, so they are emphasized. The chapter
then covers MATLAB commands fo r producing different types of plots and fo r
controlling their appearance. Function di scovery, whi ch uses data plots to di scover
a mathemati cal description of the data, is a com mon application of plotting, and
a separate section is devoted to thi s topic. The chapter also treats polynomi al and
multiple linear regre sion as part of its modeling coverage.

Chapter 6 covers the solution of linear algebraic equati ons, which arise in
applications in all fie lds of engineering. "Hand" solution metbods are reviewed
fi rs t. This review has proved helpful to many students in the author's classes. T hi s
coverage also establishes the terminology and some important concepts that are
required to use the computer methods properl y. The chapter then shows how to use
MATLAB to solve systems of linear equations that have a unique solution. T he
use of MATLAB with underdetermined and overdetermined systems is covered
in two optional sections.

Chapter 7 reviews bas ic stati sti cs and probability and shows how to use
MATLAB to generate histograms, perform calcul ations with the normal di stribu­
ti on, and create random number simulations. The chapter concludes with linear

" nflvdllClion 10 MArViB 6 for Engineers, McGraw- Hili . New York. 2000.

Preface

and cubic-spline interpolation . This chapter can be skipped if necessary. None of
the foJl owing chapters depend on it.

Chapter 8 covers numerical methods for calculus and di fferentia l equati ons.
Analytical methods are reviewed to provide a fo undation for understanding and
interpreting the numeri cal methods. Numerical integration and differenti ation
methods are treated. Ordinary differential equation solvers in the core MATLAB
program are covered, as well as the linear-system solvers in the Control System
toolbox.

Chapter 9 introd uces Simulink: which is a graphical interface for build ing
simulations of dynamic systems. The coverage of Simulink has been expanded
to a separate chapter in light of its growing populari ty, as ev idenced by recent
workshops held by various profess ional organizations such as the ASEE. This
chapter need not be covered to read Chapter 10.

Chapter 10 covers sym bolic methods for manipulating algebraic expressions
and for solving a lgebraic and transcendental equations, calculus, d ifferenti al equa­
tions, and matrix algebra problems. T he calculus applications include integra­
tion and differentiation, optimization, Taylor seri es, series evaluation, and limits.
Laplace transform methods for solving differential equations are also introduced.
This chapter requires the use of the Symbolic Math toolbox or the Student Edition
of MAT LAB .

Appendix A contains a guide to the commands and functi ons introduced
in the text. Appendix B is an introducti on to producing animation and sound
with M ATLA£. While not essential to learning MATLAB , these features are
helpful for generating student interest. Appendi x C summarizes functions for
creating formatted outpu t. Appendix D is a list of references. Appendix E, which
is available on the text 's website, contains some suggestions for course projects
and is based on the author's experience in teaching a freshman MATLAB course.
Answers to selected problems and an index appear at the end of the text.

AU fi gures, tables, equations, and exerci ses have been numbered according
to their chapter and section. For example, Figure 3.4-2 is the second figure in
Chapter 3, Section 4 . This system is designed to help the reader locate these items.
The end-of-chapter problems are the exception to thi s numbering system. They
are numbered 1, 2, 3, and so on to avoid confusion with the in-chapter exercises.

The fi rs t four chapters constitute a course in the essentials of MAT LAB. The
remaining six chapters are independent of each other, and may be covered in any
order, or may be omitted if necessary. These chapters provide additional coverage
and examples of plotting and model bui lding, linear algebraic equations, proba­
bility and statistics, calculus and differential equations, Simulink, and symbolic
processing, respectively.

' Simulink is a registered trademark of The MathWorks.lnc.

xi

xii Preface

SPECIAL REFERENCE FEATURES

The text has the following special features, which have been designed to enhance

its usefulness as a reFerence.

• Throuahout each of the chapters, numerous tables summari ze the
comm~nds and functions a they are introduced.

• At the end of each chapter is a guide to tables in that chapter. These master
tables will help the reader find descriptions of specific MATLAB
commands.

• Appendix A is a complete summary of all the cOll1l~ ands and functions
described in the text, grouped by category, along with the number of tbe
page on wbich they are introduced.

• At the end of each chapter is a li st of the key terms introduced in tbe
chapter, with the page number referenced.

• Key terms have been placed in the margin or in section headings where they
are introduced.

• The index has four section : a Ii ting of symbols, an alphabetical li st of
MATLAB commands and functions , a li st of Simulink blocks, and an
alphabetical li st of topics.

PEDAGOGICAL AIDS

The following pedagogical aids have been included:

• Each chapter begins with an overview.
• Test Your Understanding exerci se appear throughout the chapters near

the relevant text. These relatively straightforward exercises allow readers to
a ess their gra p of the material as soon as it is covered. In most ca es the
answer to the exercise is given with the exercise. Students should work
these exercises as they are encountered .

• Each chapter ends with numerous problems, grouped according to the
relevant section.

• Each chapter contains numerous practical examples. The major examples
are numbered.

• Each chapter has a ummary section that reviews the chapter's objectives.
• Answer to many end-oF-chapter problems appear at the end of the text.

The e problems are denoted by an asteri k next to their number (for
example. 15*).

Two features have been included to motivate the student toward MATLAB
and the engineering profession:

• Mo t of the examples and the problem deal with engineering applications.
The~e ru:e drav:n from a variety of engineering fields and show realistic
~pphcatlOns 01 MATLAB. A guide to these example appears on the inside
tront cover.

Preface

• The fac ing page of each chapter contains a photograph of a recent
engineeri ng ac hievement that illustrates the cha llenging and interesting
opportunities that awai t engineers in the 21 st century. A description of the
achievemen t, its related engineering di sc iplines, and a di scuss ion of how
MATLAB can be applied in those di sc iplines accompanies each photo.

An Instructor's Manual is availabl e on line for instructors who have adopted
this text for a course. Thi s manual contains the complete soluti ons to all the Test
Your Understanding exercises and to all the chapter problems. The text website
(at http://www.mhhe.com/palm) also has downloadable files con taining the major
programs in the text, PowerPoint slides keyed to the text, and suggestions for
project .

ACKNOWLEDGMENTS

Many individuals are due credit for this text. Working with faculty at the Uni­
versity of Rhode Island in developing and teaching a freshman course based on
MATLAB has greatl y influenced thj s text. Email from many Llsers contained use­
ful suggestions. The following people, as well as several anonymou~ reviewers.
patiently reviewed the manuscript and sugges ted many helpful corrections and
additions.

Steven Ciccarelli, Rochester Institute of Technology

Dwight Davy, Case Western Reserve University

Yueh-Jaw Lin, The University of Akron

Armando Rodriquez, Arizona Stale University

Thomas Sullivan, Carnegie Mellon University

Daniel Valentine, Clarkson University

Elizabeth Wyler, Thomas Nelson Community College

The MathWorks, Inc. has always been very supportive of educational pub­
lishing. I especially want to thank Naomi Fernandes of The MathWorks, Inc. for
her help. Carli e Paulson, Michaela Graham, Michelle Flomenhoft, and Peggy
Lucas of McGraw-Hill efficiently handled the manuscript review!> and guided the
text through production.

My sisters, Linda and Chris, and my mother Lillian, have alway,- been there,
cheering my efforts. My father was always there for support before he passed
away. Finally. I want to thank my wife, Mary Louise. and my children. Aileene,
Bill , and Andy, for their understanding and !>upport of this project.

William J. Palm III
KingMon. Rhode Island

April,2004

xiii

Introduction to MATLAB 7 for Engineers

Engineering in the
21 st Century ...

Remote Exploration

I
t will be many years before humans ca~1 tra:el to o~her planets. In the mean­
time, unmanned probes have been rapidly ll1creasll1g our knowledge of the
universe. Their use wi ll increase in the future as our technology develops to

make them more reliable and more versatile. Better sensors are expected for imag­
ing and other data collection. Improved robotic devices will make these probes
more autonomous, and more capable of interacti ng with their environment, in ­
stead of just observing it.

NASA's planetary rover Sojourner landed on Mars on July 4, 1997, and ex­
cited people on Earth while they watched it successfully explore the Martian
surface to determine wheel-soil interactions, to analyze rocks and soil , and to
return images of the lander for damage assess ment. Then in early 2004, two im­
proved rovers, Spirit and Oppo rl unity, landed on opposite sides of the planet. In
one of the major di scoveries of the 21st century, they obtained strong evidence
that water once existed on Mar in signifi cant amounts.

About the size of a golf cart, the new rovers have six wheels, each with
its own motors. They have a top speed of 5 centimeters per second on flat hard
ground and can travel up to about 100 meters per day. Needing 100 watts to move,
th~y obtain power from solar arrays that generate 140 watts during a four-hour
Wll1dow each day. The sophisticated temperature control system must not only
protect against nighttime temperatures of -96°C, but must also prevent the rover
from overheating.

The robotic arm has th~ee joints (houlder, elbow, and wrist), driven by five
motors, and It has a reach of 90 centimeters. The arm calTies four tool s and instru­
ments for geo.log~cal studies. Nine cameras provide hazard avoidance, navigation ,
a~d panoramic views. The on-board computer has 128 MB of DRAM and coor­
dmate all the subsystems including communications.

All engineering di sciplines we.re involved with the rovers' design and launch.
Th~ MATLAB Neural Network, Signal Process ing, Image Process ing, PDE, and
vanous control s~stem.toolboxes are well suited to assist designers of probes and
autonomous vehIcles lIke the Mars rovers . •

An OvervielN
of MATLAB®*
OUTLINE

1.1 MATLAB Interactive Sessions

1.2 Menus and the Toolbar

1.3 Computing with MATLAB

1.4 Script Files and the EditorlDebugger

1.5 The MATLAB Help System

1.6 Programming in MATLAB

1.7 Problem-Solving Methodologies

1.8 Summary

Problems

CHAPTER

This is the most important chapter in the book. By the time you have finished this
chapter, you wi]] be able to use MATLAB to solve many kinds of engineering
problems. Section 1.1 provides a "quick-start" introduction to MATLAB as an
interactive calculator. Section 1.2 covers the main menus and tool bar. Section 1.3
gives an overview of MATLAB, and directs the reader to the appropriate chapter
where more detailed information is available. Section 1.4 discusses how to create
edit, and save MATLAB programs. Section 1.5 introduces the extensive MATLAS
Help System. Section 1.6 treats the use of conditional statements and loops.
Section 1.7 discusses methodologies for approaching engineering problems, with
particular emphasis on a methodology to use with computer software such as
MATLAB. A number of practice problems are given at the end of the chapter.

*MATLAB is a registered trademark of The MathWorks. Inc.

1

3

CHAPTER 1 An Overview of MATLAB

How to Use This Book
The book's chapter organization is fl exible enough to accommodate a var!ety of
users. However, it is impOitant to cover at l eas~ the. fir~ t fo ur ch~pters, 111 that
order. Chapter 2 covers arrays, which are th.e b~s l C butldll1g blocks 111 M~TLAB .
Chapter 3 covers fil e usage, funct ion~ butl~ lIl to MATLAB, a:~ u sel -d~fi n~d
functions. Chapter 4 covers programmll1g uSlI1g relatIOnal and 100lcal opel atol s,

conditional statements, and loops. .
Use Secti on 1.3 to determine those MATLAB fea tures fo r whl ~h you want

more detail ed information . This section will guide you to the appropnat~ chapter.
Chapters 5 through 10 are independent chapters :hat can be covered In any or­

der, or can be omitted. They contain in-depth discusslOns of how to use MATLAB
to solve several common types of engineering problems. Chapter 5 covers t~o­
and three-dimensional plots in more detail , and shows how to use plots to bUlld
mathematical models from data. Chapter 6 treats the solution of linear alge­
braic equations, including cases having nonunique solutions .. Chapter 7 covers
probability, stati stics, and interpolation applications. Chapter 8 lIltroduces numer­
ical methods for calculus and ordinary differential equations. Chapter 9 covers
Simulink®,* which is a graphical user intelface for solving differential equation
models. Chapter 10 covers symbolic processing in MATLAB, with applications
to algebra, calculus, differential equations, linear algebra, and transforms.

Reference and Learning Aids

The book has been designed as a reference as well as a learning tool. The special
features useful for these purposes are as fo llows.

• Throughout each chapter margin notes identify where new terms are
introduced.

• Throughout each chapter short Test Your Understandi ng exercises appear.
Where appropriate, answers immediately follow the exercise so you can
measure your mastery of the material.

• Homework exercises conclude each chapter. These usually requi re more
effort than the Test Your Understanding exercises.

• Each chapter contains tables summarizing the MATLAB commands
introduced in that chapter.

• At the end of each chapter is:
• A ummary guide to the commands covered in that chapter,
• A summary of what you should be able to do after completing that

chapter, and
• A list of key terms you should know.

• Appendix A con~ains tables of MATLAB commands, grouped by category,
WIth the approprIate page references.

· Simulink i, a registered trademark of The MathWorks. [nco

CHAPTER 1 An Overview of MATLAB

• Two indexes are included. The first is an index of MAT LAB commands and
symbols; the second is an index of topics.

Software Updates and Accuracy

Software publi shers can release software updates faster than book publi shers can
release new editions. This tex t documents the pre-release version of MATLAB 7
as of the spring of 2004. There will be additional updates, numbered 7.1 , 7.2,
and so fo rth , that will change some of the program's features. The best way to
protect yourself against obsolete information is to check the "What's New?" file
provided with the program, and to learn how to use the extensive MATLAB Help
System, which is covered in Section 1.5.

MATLAB and Related Software

MATLAB is both a computer programming language and a oftware environment
for using that language effectively. It is maintained and sold by The MathWorks,
Inc., of Natick, Massachusetts, and is availab le for MS Windows and other com­
puter systems. The MATLAB interactive environment al low you to manage
vari ables, import and export data, perform calculations , generate plots, and de­
velop and manage files for use with MATLAB. The language was originally
developed in the 1970s for applications involving matrice , linear algebra, and
numerical analysis (the name MATLAB stands for "Matrix Laboratory'·). Thus
the language's nLllnerical routines have been well-tested and improved through
many years of use, and its capabiJities have been greatl y expanded.

MATLAB has a number of add-on software modules, called toolboxes, that
perform more speciali zed computations. They can be purchased separately, but
all run under the core MATLAB program. Toolboxes deal with applications such
as image and signal processing, financial analysis , control systems design, and
fuzzy logic. An up-to-date li st can be fo und at The MathWorks webs ite, which
is discussed later in this chapter. Thi text uses material from the core MATLAB
program, from two of the toolboxes (the Control Systems toolbox. in Chapter 8,
and the Symbolic Math toolbox, in Chapter 10), and from SimuJink (in Chapter 9).
All of the examples and problems in the first seven chapters can be done with the
core MATLAB program.

On MS Windows systems MATLAB 7 requires Windows XP or Windows NT
to run. The Student Edition of MATLAB contains the core MATLAB program.
some commands from two toolboxes (the Signal Processing toolbox and the
Symbolic Math toolbox), and the Simulink program. The Simulink program is
based on MATLAB, and requires MATLAB to run.

This book does not explain how to install MATLAB. If you purcha<;ed it for
your own computer, the installation is easily done with the instructions that come
with the , oftware. If you will be u ing MATLAB in a computer lab, it will have
been installed for you.

In the next section we introduce MATLAB by means of some imple se ·sions
to illustrate its interactive nature. basic syntax, and features.

DESKTOP

CHAPTER 1 An Overview of MATLAB

1.1 MATLAB Interactive Sessions
We now show how to start MATLAB , how to make some basic ca lculations, and

how to exit MATLAB.

Conventions
In thi s text we use typewriter font to represent MATLAB ~ommands, ~ny
text that you type in the computer, and any MATLAB responses~hat appeal on.
the screen. for example, y = 6 *x. Variable in normal mathematI cs t~xt ap~ea I
in italics; for example, y = 6,1. We u e bold fa~e type for three plIlposes. to
represent vector and matrices in normal mathematIcs text (for example, Ax = b),
to represent a key on the keyboard (for example, Enter), and to represent the. name
of a screen menu or an item that appears in uch a menu (for example, File). It
is assumed that you press the Enter key after you type a command. We do not
show this action with a eparate symbol.

Starting MATLAB

To start MATLAB on a MS Windows system, double-cl ick on the MAT LAB icon .
You will then ee the MATLAB DesklOp. The Desktop manages the Command
window and a Help Browser, as well as other tools. The default appearance of
the De ktop i shown in Figure l.J - 1. Three windows appear. These are the

. ; ~ - ------ - - LJ(Q](8J
F1Ie Ed,t Debuo De<ktop Wmow Help

Shortcut ~How to"'dd
,---

GJC1ftJ ~8
.... FIIe.

....J b~n

....Jdemos

....Jeytern

....Jhelp

....J ja

File Type

Folder

Folder
Folder
Folder
Folder

'"r. Dorectory WOI~spece

x • (O:0.02: 6 J;

V • St'!Hn(x);

» x - (0: 0 . 02 : 8J ;

!
» y . S'einlxl;
» plot lx, vi

Figure 1.1-1 The default MATLA B Dc ktop.

1.1 MATLAB Inleraclivo Sessions

Command window, the Command Hi story window, and the Curren t Directory
wi ndow. Across the top of the Desktop are a row of menu names, 'Ind a row of
icons ca ll ed the too/bar. To thc right of the too l bar is a box showing the directory
where MATLAB looks for and saves files. We will describe the menu s, too lbar,
and directories later in thi s chapter.

You usc the Command window to communicate with the MATLAB rro­
gram, by typing instructions of v'lri ous types ca ll ed commands. jimetions, and
statements. Later we wi II discuss the di rferences between these tyres, but for
now. to simplify the discussion, we wi ll ca ll the instructions by the generic name
comll1ands. MATLAB displays the prompt (») to indicate that it is ready to re- COMMAND

ceive instruct ions. Before giving MATLAB instructions, make ure the cursor i ~ WINDOW

located just aftcr the prompt. If it is not, use the mouse to move the cur~or. The
prompt in the Student Edition looks li ke EDU». We wi ll use the normal prompt
symbol » to illustrate commands in thi s text.

Three other windows appear in the default Desktop. The Curren t Direl:tory
window is Illuch li ke a fil e manager wi ndow; you can use it to acce s tiles. Double­
click ing on a fil e name wi th the ex tension .m wi ll open that file in the MATLAB
Editor. The Editor is discussed in Section J.4.

Underneath the Current Directory window i ~ the Workspace window. To
activate it, cli ck on its tab at the bottom o f" the Current Directory window. The
Workspace window displays the variables created in the Command window.
Double-click on a vari abl e name to open the Array Editor, which is di scussed
in Chapter 2.

The fourth window in the def"ault De kLop is the Command Hi story window .
This wi ndow shows all the previous keystrokes you entered in the Command
wi ndow. Jt i useful for keeping track of what you typed. You can click on a
keystroke and drag it to the Command window or the Editor. Double-cl icking on
a keys troke executes it in the Command window.

You can alter the appe,mlIlce or the Desktop if you wish. For example, to

eliminate a window. just cli ck on it s Close-window button (x) in its upper right­
hand corner. To undock, or separate the window from the Desk top, click on the
button containing an arrow. You can manipul ate other window~ in the '>arne
way. To restore the default configuration, click on the View menu, then click on
Desktop Layout, and . elect Default.

Entering Commands and Expressions

To sec how simple it i. to use MATLAB, try entering a few commands on your
computer. If you make a typing mistake. just press the Enter key until you get
the prompt , and then retype the line. Or, because MATLAB retains your prev iou~
keystroke. in a command file, you can use the up-arrow key (t) to scroll back
through the commands. Press the key once to see the previous entry, twice to
see the entry before that , and so on. Usc the down-arrow key () to croll forward
through the command . When you find the line you want, you can edit it using
the left- and ri ght-arrow keys (<- and ~), and the Backspace key, and the

SESSION

VARIABLE

CHAPTER 1 An Overview of MATLAB

k ecute the command. This tech nique enables
Delete key. Press the Enter ey t~ ex

you to correct typing mi takes ~ul~kl'y' keystrokes displayed in the Command
ote that you can see YO Ul ~~ e~~~~l this window to the Command wi ndow

Hist?ry ~in~ow'hYOl~l can ~t~P~: n~l~use holdin a down the left mouse button, and
by hlghhghtmg t e me WI 1 . ' '"

draaai na the line to the Command Window. . ' .
"'Make sure the cursor is at the prompt in the Command wmdow. To dIvide

8 b 10 type 8/10 and press Enter (the symbol / is the MATLAB s~mbol for
divfs iOI;). Your entry and the MATLAB response looks like the fo llo': lllg on .the
screen (we call this interaction between you and MATLAB an II1teracll ve SeSSlOl1,

or simpl y a session).

» 8/10
ans =

0 . 800 0

MATLAB uses high precision for its computations, but by default it usually
displays its results using four decimal places. Thi s is called th~ s/~ort. format.
This default can be changed by using the forma t command, whlch IS dl sc:ls~ed
later in this section . MATLAB uses the notation e to represent exponentl a~lOn

to a power of 10; for example, MATLAB displays the number 5.316 x 10 as
5 . 316e+02 .

MATLAB has assianed the answer to a variable called ans, which is an
abbreviation for answel~ A variable in MATLAB is a symbol used to contain a
value. You can use the vari able ans for further calculations; for example, usi ng
the MATLAB symbol for multiplication (*):

» 5*ans
ans =

Note that the vari able ans now has the value 4.
You can use variables to write mathemati cal expressions. We will soon see

why this is an advantage. You can assign the result to a vari able of your own
choosing, say r, as follows:

» r=8/10

0 . 8000

Spaces in the line improve its readability ; for example, you can put a space before
and after the = sign if you want. MATLAB ignores these spaces when making
its calculations.

If you now type r at the prompt, you will see

0 . 8000

1.1 MATLAB Interactive Sessions

thus verifying that the variable r has the value 0.8 . You can use thj s variable in
further calculations. For example,

» s=20 *r

16

When we do not specify a variable name for a result, MATLAB uses the
symbol a n s as a temporary variable containing the most recent answer.

MATLAB has hundreds of functions available. One of these is the square
root function , sqrt. A pair of parentheses is used after the function's name to
enclose the value-called the functi on 's argument-th at is operated on by the ARGUMENT
function. For example, to compute the square root of 9, yo u type sqrt (9) .
We will see more MATLAB functions in thi s chapter; an ex tensive list of math-
ematical functions is given in Chapter 3. Other types of functions are covered
throughout the text.

Order of Precedence

A scalar is a single number. A scalar variable is a variable that contains a sin- SCALAR

9

gle number. MATLAB uses the symbol s + - * / A for addition, subtraction, ------­
multiplication, divi sion, and exponentiation (power) of scalars. These are li sted in
Table 1.1-]. For example, typing x = 8 + 3 * 5 returns the answer x = 23.
Typing 2 A 3 -1 0 returns the answer ans = - 2. The fan-liard slash (!) repre-
sents right division., which is the normal division operator familiar to you. Typing
15!3 returnstheresult ans = 5.

MATLAB has another divi sion operator, called left division, which is denoted
by the backslash (\). The left divi sion operator is useful for solving sets of linear
algebraic equations, as we will see in Section 1.3. A good way to remember the
difference between the right and left division operators is to note that the slash
slants toward the denominator. For example, 7/2 = 2 \ 7 = 3.5.

The mathematical operations represented by the symbols + - * / \ , and
A follow a set of rules called precedence. Mathematical expressions are evaluated PRECEDENCE
starting from the left, with the exponentiation operation having the highest order
of precedence, followed by multiplication and division with equal precedence,
followed by addition and subtraction with equal precedence. Parentheses can be

Table 1.1-1 Scalar arithmetic operations

Symbol Operation MATLAB form

exponentiation: ab a ~b
multiplication: ab a *b
right division : al b = ~ alb

left division: a \ b = ~ a \ b
addition: a + b a~b
subtraction: a - b a-b

10
CHAPTER 1 An OveNiew of MATLAS

Table 1.1 2 Order of precedence

Precedence

Fir t

Second
Third

Fourth

Operation

Parentheses, evaluated starting with the innermost pair.
Exponentiation, evaluated from left to rIght.
Multiplication and division with equal precedence,
evaluated from left to right.
Addit ion and subtraction with equal precedence, evaluated

fro m left to right.

d to alter thi s order. Evaluation begins with the innermost pair of parentheses,
~~~ proceeds outward. Table 1.\ -2 s ~1Il1mari ~es these rul es. For example, note 

the effect of precedence on the follow1l1g session. 

» 8 + 3 *5 
ans = 

23 
» 8 + (3*5) 

23 
»(8 + 3) *5 

55 
»4A2-12- 8/4 *2 

ans = 

»4A2 - 12 - 8/ (4 *2) 

ans = 

» 3 *4A2 + 5 

53 
»(3 *4)A2 + 5 

149 
»2r(1/3) ~ 32 A(O. 2 ) 

»2r (l/3) + 32 AO. 2 

»2r1/3 + 32 AO. 2 

11 

To avoid mistakes. you should feel free to insert parentheses wherever you are 
unsure of the effect precedence will have on the calculation. Use of parentheses 

1.1 MATLAS interactive Sessions 

also improves the readab il ity of your M ATLAB express ions. For example, paren­
theses are not needed in the expression 8 + (3 * 5) , but they make clear our 
intention to mu ltipl y 3 by 5 before adding 8 to the result. 

Test Your Understanding 

T1.1-1 Use MATLAB to compute the following express ions. 

a. 6~ + sm + 5(92
) 

b. 6(35 1
/
4

) + 1403 5 

(Answers:a. 410. 1297 b. 17 . 1123.) 

The Assignment Operator 

The = sign in MATLAB is the called the assignment or replacement operator. It 
works differentl y than the equals sign you know from mathematics. When you 
type x=3 , you tell MATLAB to ass ign the value 3 to the variable x. Thi s usage 
is no different than in mathematics. However, in MATLAB we can al 0 type 
something like this: x = x + 2. This teUs MATLAB to add 2 to the current 
value of x, and to replace the current value of x with this new value. If x originally 
had the value 3, its new value would be 5. Thi s usage of the = operator is different 
from its use in mathematics. For example, the mathematics equation x = x + 2 is 
invalid because it implies that 0 = 2 (subtract x from both sides of the equation 
to see this). 

It is important to understand this difference between the MATLAB opera­
tor = and the equal s sign of mathematics. The variable on the lefi-hand side of 
the = operator is replaced by the value generated by the right-hand side. There­
fore, one variable, and only one variable, must be on the left-hand side of the 
= operator. Thus in MATLAB you cannot type 6 = x. Another consequence of 
this restriction is that you cannot write in MATLAB expressions like the following: 

» x+ 2 =20 

The corresponding equation x + 2 = 20 is acceptable in algebra, and has the 
solution x = 18, but MATLAB cannot solve such an equation without additional 
commands (these commands are available in the Symbolic Math toolbox, which 
is described in Chapter 10). 

Another restriction is that the right-hand side of the = operator must have a 
computable value. For example, if the variable y has not been a signed a value. 
then the following will generate an error message in MATLAB. 

» x = 5 + Y 

In addition to assigning known values to variables. the assignment operator is 
very useful [or assigning values that are not known ahead of time. or for changing 
the value of a variable by using a prescribed procedure. The following example 
shows how this is done. 

11 



12 

eeeHi.FIF 

WORKSPACE 

CHAPTER 1 An Overview of MATLAB 

Volume of a Circul ar Cylinder 
.' . d . f heio ht h and radius r is given by V nr

2
h . A 

The volume at a .clrcular cylin ell ~a ll a1~d has a radius of 8 m. We want to construct 
particul ar cylindncal tank .IS 15 n ?O 'cent oreater bu t havi ng the same height. 
another cylindrical tank wnh a volume - pel 0 

How large mu t its rad ius be? 

• Solution . . 
First solve the cylinder equation fo r the radius /'. This gives 

r=[i; 
The session is shown below. First we assign values to the va riables r and h representing the 
radius and height. Then we compute the volume of t l~e original cylinde.r, and Increase the 
volume by 20 percent. Finally we solve for the required radius. For this problem we can 

use the MATLAB built-in constant pi. 

»r = 8 ; 
»h = 15 ; 
»V = pi*r A 2*h ; 
»V = V + O. 2*V ; 

= sqrt (VI (pi*h)) 

ans = 
r = 8 . 7636 

Thus the new cylinder must have a radius of 8.7636 m. Note that the original values of 
the vari ables r and V are replaced with the new va lues. Tlus i acceptab le as long as we 
do not wish to use the original values again . Note how precedence applies to the line V 

pi *rA2 *h ;. It is equivalent to V = pi * (rA2) *h ;. 

Variable Names 

The term workspace refers to the names and values of any variables in use in the 
current work sess ion. Variable names must begin with a letter and must contain less 
than 32 characters; the rest of the name can contain letters, digits, and underscore 
characters. MATLAB is case-sensitive. Thus the following names represent five 
different variables: speed. Speed. SPEED, Speed_ I , and Speed_ 2 . 

Managing the Work Session 

Table 1.1 -3 ummarizes some commands and special symbols for managing the 
work e sion. A semicolon at the end of a line suppresses printing the results 
to the screen. If a semicolon is not put at the end of a line, MATLAB displays 
the results of the line on the screen. Even if you suppress the di splay with the 
emicolon, MATLAB still retains the variable's value. 

You can put several commands on the same line if you separate them with a 
comma-if you want to see the results of the previous command-or semicolon 

1.1 MATLAB Interactive Sessions 

Table 1.1 -3 Commands for managing the work ses ion 

Command 

clc 
clear 
clear varl var2 
exist ( ' name ' ) 
quit 
who 
whos 

Description 

Clears the Command window. 
Removes all variables fro m memory. 
Removes the va ri ables varl and var2 from memory. 
Determines if a fil e or vari able ex ists having the name 'name'. 
Stops MATLAB. 
Lists the variables currently in memory. 
Li sts the current va ri ables and sizes, and indicates if' they have 
imaginary parts. 
Colon; generates an an'ay havi ng regul arly spaced e l e lllent~. 

Comma; separates elements of an array. 
Semicolon; suppresses creen printing; also denotes a new row 
in an array. 
Ellipsis; continues a line. 

if you want to suppress the di spJay. For example, 

»x=2 ; y=6+x , x=y+7 
y 

15 

Note that the first value of x was not di splayed. Note also that the va luc of x 
changed from 2 to IS . 

Jfyou need to type a long line, you can use an ellipsis, by typing three periods. 
to de lay execution. For example, 

»NumberOfApples = 10 ; NumberOfOranges = 25 ; 
»NumberOfPears = 12 ; 
»Frui t Purchased = NumberOfApples + NumberOfOranges 
+NumberOfPears 
FruitPurchased = 

47 

Use the arrow, tab, and control keys to recall , edit , and reuse functions and 
vari ables you typed earlier. For example, suppose you mistakenly enter the line 

»volume = 1 + sqr(5) 

MATLAB responds with the error message 

Undefined function or variable ' sqr '. 

because you misspe lled sqrt . Instead of retyping the entire line , press the up­
arrow key (t) once to di splay the previously typed line. Press the left-arrow key 
( ~) several times to move the cursor and add the mis ing l , then press Enter. 
Repeated use of the up-arrow key recalls lines typed earlier. 

13 



14 
C H AP TER 1 An Overview of MATLAB 

. . II feature to reca ll a previously typed function 
You can u e the S/1'lW r !eca ' fy For example after you have 

or variable who efirst few characters you spec~l'and pressina tile up-arrow key 
entered the line tarting wi th vO.lumhe .typl~sg : ith t~e function"'or variable whose 
(t) once recalls the last-typed line t ~t star . . 

. 1 TI ' feature IS case-sensiti ve. 
name begins with vo . liS ' I ' fea tu re to reduce the amount of typing. 

You can use the rab coml~ ~1I0!~he ~ ame of a function, vari able, or fi le if 
MATLAB auto.mati call y c~mpf ~he: name 'and press the Tab key. If the n am~ is 
you typ~ t ~le fil t f~~ leltels ~l leted For example, in the sess ion listed earli er, 
ul1lque, It IS auto,mdtlcally co I b MATLAB completes the name and displays 
if yo~ type FrUl t anpd presEs t

a ~o display the value of the variable, or continue 
Frultpurchased. ress n er . ' h d 
edi tina to create a new executable li ne that uses the van.ab le FrUl tPurc ase d' 

If'" there is more than one name that starts with the l ett~rs you ty p~ , 
MATLAB displays nothing. In this case press the Tab key agam to see a li st 

of the poss ibil ities. I ah 
The up-arrow (t) and down-arrow (t) ke.ys. move u p and ~~wn tlrou", 

the previously typed lines one line at a time. SIITIl I ~rly, the left-allow ( ~). and 
rightarrow (~) keys move left and right through a Ime o~le character at a tllne. 
To move through one word at. a time, press Ctrl and ~ Sll1lulta.neously to move 
to the righr; press Ctrl and ~ simultaneously to move to the left. Pr~ss Home to 
move to the beginning of a line; press End to move to the end of a lme. 

Press Del to delete the character at the cursor; press Backspace to delete the 
character before the cursor. Press Esc to clear the entire line; press Ctrl and k 
imul taneously to delete (kill) to the end of the line. . 

MATLAB retains the last value of a vari ab le until you qUIt MATLAB or clear 
its value. Overlook ing this fact commonly causes errors in MATLAR. For exam­
ple, you might prefer to use the variable x in a number of di fferent calcul ations. 
If you forget to enter the correct val ue for x, MATLAB uses the last value, and 
you get an incorrect result. You can use the clear function to remove the values 
of all vari ables from memory, or you can use the fo rm clear varl var2 to 
clear the variables named varl and var2 . The effect of the clc command is 
different; it clears the Command window of everything in the window di splay, 
but the values of the vari ables remain. 

You can type the name of a variable and press Enter to see its current value. 
If the variable does not have a va lue (i.e., if it does not exist), you see an error 
message. You can also use the exist function . Type exist ('x') to see if 
the vari able x is in use. If a I is returned, the vari able ex ists' a 0 indicates 
that it does not exi t. The who function li sts the names of all the variables in 
memory, but doe not give their values. The form who varl var2 restricts 
the display to the vari ables spec ified, The wildcard character * can be used to 
display variables that match a pattern . For instance, who A * finds all variables 
in the current workspace that start with A The whos function li sts the variable 
names and their sizes, and indicates whether or not they have nonzero imaginary 
parts. 

1.1 MATLAB Interactive Sessions 

Table 1.1-4 Special variables and constants 

Command Description 

Temporary variable containing the Illost recent 
answer. 

eps Speci fi es the accuracy of fl oating poin t preci ion. 
i ,j The illlagi nary unit R. 
I nf Infi nity. 
NaN Indicates an undefined numeri cal result. 
p i The number 1T. 

The di fference between a function and a command or a statement is that func­
tions have their arguments enclosed in parentheses. Commands, such as clear , 
need not have arguments, but if they do, they are not enclosed in parentheses; for 
example, clear x . Statements cannot have arguments; for example, clc and 
qui t are statements, 

You can quit MATLAB by typing quit, On MS Windows systems you can 
also cl ick on the File menu, and then cl ick on Exit MATLAB. 

Predefined Constants 

MATLAB has several predefin ed special constants, such as the built-in constant 
pi we used in Example 1,1- ] , Table Ll-4 lists them. The symbol Inf tands for 
00 , which in practice means a number so large that MATLAB cannot represenl it. 
For example, typing 5/0 generates the answer Inf. The symbol NaN stands for 
"not a number." It indicates an undefined numerical re ul t such as that obtained 
by typing 0/0 , The symbol eps is the smallest number which, when added to ] 
by the computer, creates a number greater than I. We use it as an indicator of the 
accuracy of computations. 

The symbols i and j denote the imaginary unit, where i = j = p , We 
use them to create and represent complex numbers, such a x = 5 + 8i . 

Try not to use the names of special constants as variable names. Although 
MATLAB allows you to assign a different va lue to these constants, it is not good 
practice to do so, 

Complex Number Operations 

MATLAB handles complex number algebra automatically. For example, the 
number CI = ] - 2i is entered as follows : c l = 1 - 2i. 

Caution: Note that an a terisk is not needed between i or j and a number. although 
it is required with a variable, such as c2 = 5 - i *cl. This convention can cause 
errors if you are not careful. For example. the expressions y = 7/2 * i and x 
7/2 i give two different results: y = (7/ 2)i = 3.5i and x = 7/ (2i) = -3.5i. 

15 



16 CHAPTER 1 An Overview of MATLAB 

Addition , subtraction, multiplication , and divi sion of complex numbers are 

eas ily done. For example, 

»w+s 

ans = 

3+7i ; w = 5-9i ; 

8.0000 - 2 . 0000i 

»w*s 

ans = 
78 . 0000 + 8. OOOOi 

»w/s 

ans = 
-0 . 8276 - 1 . 0690i 

Camp/ex conjugates have the same real part but imaginary parts of opposite sign; 
for example, -3 + 7i and -3 - 7i are complex co.nJug~tes . The product of two 
conjugates is the sum of the squares of the real and IInaglI1ary parts; for example, 

»(-3 + 7i)*(-3 - 7i) 

58 

because .)32 + 72 = S8. More complex number functions are discussed in 
Chapter 3. 

es Yo Under tanding 

T1.1-2 Given x =-S + 9i and y =6-2i, use MATLAB to show that 
x + y = I + 7 i, xy = -12 + 64i , and x / y = -1.2 + 1.1i. 

- ---- - -----------------
Formatting Commands 

The format command controls how numbers appear on the screen. Table 1.1-S 
gives the variants of thi s command. MATLAB uses many significant figures in its 

Table 1.1-5 Numeric di splay formats 

Command 

format short 
formac. long 
formal short e 
format long e 

format bank 
format + 
format 
format compact 
format ~oose 

Description and example 

Four decimal digi t (the default); 13.6745. 
16 digits: 17 .27484029463547. 
Five digits (four decimals) pillS exponent; 6.3792e+03. 
16 digits (15 decimals) plu exponent; 
6.37924378478 I 294e-04. 
Two decimal digits; 126.73. 
Po itive. negalive. or zero: +. 
Rat ional approximation; 4317. 
Suppresses some line feeds. 
Resets to less compact di splay mode. 

1.2 Menus and the Toolbar 

ca lculatio ns, but we rarely need to see all of them. The default MATLAB display 
fo rm at is the short format, which uses four decimal dig its. You can di splay 
more by typing format long, whi ch gives 16 digits. To return to the default 
mode, type format short . 

You can force the output to be in scientifi c notati on by typing format 
short e, or forma t long e, where e stands for the number 10. Thus 
the output 6 . 3792e+03 stands fo r the number 6.3792 x 103 . The output 
6 . 3792e-03 stands for the number 6.3792 x 10- 3. Note that in thi s context e 
does not represent the number e, which is the base of the natural logarithm . Here e 
stands for "exponent." It is a poor choice of notation, but MATLAB follows con­
ven tional computer programming standards that were estab li shed many years ago . 

Use format bank only for monetary calcul ation ; it does not recognize 
imagi nary parts. 

1.2 Menus and the Toolbar 
The Desktop manages the Command window and other MATLAB tools. The 
default appearance oftheDesktop is shown in Figure 1.1- ] . Besides the Command 
wi ndow, the default Desktop includes three other windows, the Command History, 
Current Directory, and Workspace windows, which we discussed in the previous 
section. Across the top of the Desktop are a row of menu names, and a row of icons 
called the too/bar. To the right of the tool bar is a box howing the current directory, CURRENT 
where MATLAB looks for files. We now describe the menus and the toolbar. DIRECTORY 

Other windows appear in a MATLAB ses ion , depending on what you do. 
For example, a graphics window containing a plot appears when you use the 
plotting functions; an ed itor window, called the EditorlDebugger, appears for use 
in creating program files. Each window type has its own menu bar, with one or 
more menus, at the top . Thus the menu bar will change as you change win.dows. 
To activate, or select, a menu, click on it. Each menu has several item . Click 
on an item to select it. Keep in mind that l'I1.enus are context- sensitive. Thus their 
contents change, depending on which features you are currently using. 

The Desktop Menus 

Most of your interaction will be in the Command window. When the Command 
window is active, the default MATLAB 7 Desktop (shown in Figure 1.1-1) has 
ix menu ; File, Edit, Debug, Desktop, Window, and Help. Note that these 

menus change depending on what window is active. Every item on a menu can 
be selected with the menu open either by clicking on the item or by typing its 
underlined letter. Some items can be selected without the menu being open by 
using the shortcut key li sted to the right of the item. Those items followed by 
three dots ( ... ) open a submenu or another window containing a dialog box. 

The three most useful menus are the File, Edit, and Help menus. The Help 
menu is described in Section I.S . The File menu in MATLAB 7 contains the 
following items, which perform the indicated action when you select them. 

17 



18 
CHAPTER 1 An Overview of MATLAB 

The File Menu in MATLAB 7 

o Jen a dialoo box that allows YOLl to create a new program fi Ie, .call.ed ~n 
New I . 0 . I' . lIed the Editor/Debuooer, or a new FlgUl e 01 

M-file, uSIng a text ec ltol ca . ' 0 0 

Model file (a file type used by SlInullnk). . ' . 
Open ... Opens a dialog box that allows you to sele~t a fil e tor ed ItIng. 

Close Command Window Closes the Command WIndow. . 
Import Data... Starts the lmport Wizard whi ch enables you to Import data 

eas ily. 
Save Workspace As ... Opens a dialog box that enables you save a file. 

Set Path. .. Opens a dialog box that enables you to set the MATLAB search 

path. 
Preferences. .. Opens a di alog box that enables you to set preferences for such 

items as fonts, colors, tab spacing, and so forth. 
Print... Opens a dialog box that enables you to print all of the Corrunand 

wi ndow. 
Print Selection... Opens a dialog box that enables you to print selected 

pOltions of the Command window. 
File List Contai ns a li st of previously used files, in order of most recently used. 

Exit MATLAB Closes MATLAB . 

The Edit menu contains the fo llowing items. 

The Edit Menu in MATLAB 7 

Undo Reverses the previous editing operation. 

Redo Reverses the previous Undo operation. 

Cut Removes the se lected text and stores it for pasting later. 

Copy Copies the selected text for pasting later, without removing it. 

Paste lnserts any text on the clipboard at the current location of the cursor. 

Paste Special... In erts the contents of the clipboard into the workspace as 
one or more variables. 

Select All Highlights all tex t in the Command wi ndow. 

Delete Clears the variable highlighted in the Workspace Browser. 

Find... Finds and replace ' phrases. 

Find F iles... Finds file . 

Clear Command Window Removes all text from the Command window. 

Clear Command History Removes all text from the Command History 
window. 

Clear Workspace Removes the values of all variables from the workspace. 

You can use the Copy and Paste elections to copy and paste commands appear­
Ing on {he Command window. However, an easier way is to use the up-arrow 

1.3 Computing with MATLAB 

key to scro ll through the previous commands, and press Enter when you see the 
command you want to retrieve. 

Use the Debug menu to access the Debugger, which is discussed in Chapter 4. 
Use the Desktop menu to cont.rol the confi guration of the Desktop and to di spl ay 
tool bars. The Window menu has one or more items, depending on what you have 
done thus far in your session. Click on the name of a window that appears on 
the menu to open it. For example, if you have created a plot and no t closed its 
window, the plot window will appear on this menu as Figure 1. However, there 
are otber ways to move between windows (such as pressing the Alt and Tab keys 
simultaneously). 

The tool bar, which is below the menu bar, provides buttons as shortcuts to 
some of the features on the menus . Clicking on the button is equi valent to click­
ing on the menu, then clicking on the menu item; thus the button eliminates one 
click of the mouse. The first seven buttons from the left co rrespond to the New 
M -F ile, Open File, Cut, Copy, Paste, Undo, and Redo. The e ighth button acti­
vates Simulink. The ninth button activates the GUIDE Quick Start, wh ich is used 
to create and edit graphical user interfaces (GUIs). The tenth button (the one with 
the question mark) accesses the Help System. 

1.3 Computing with MATLAB 

This section provides an overview of the computational capabilities of MATLAB , 
and points out where in the book these capabilities are discussed in more detail. 
The fo llowing chapters also provide numerous self-help exercises and examples 
of how these features can be used to solve engineering problems. 

Arrays (Chapter 2) 

MATLAB has hundreds of functions, which we will di scuss throughout the text. 
For example, to compute sin x, where x has a value in radians, you type s i n (x) . 
To compute cos x, type cos (x) . The exponential function eX is computed from 
e xp (x ). The natural logarithm, In x, is computed by typing log (x). (Note the 
spelling di fference between mathematics text, In , and MATLAB syn tax, l o g.) 
You compute the base 10 logarithm by typing 10g10 (x) . The inverse sine. or 
arcs ine, is obtained by typing asin (x) . It returns an answer in radians, not 
degrees. 

One of the strengths of MATLAB is its ability to handle collections of num­
bers. call ed arrays, as if they were a single variable. A numeri cal array i~ an 
ordered co llection of numbers (a set of numbers arranged in a specific order). 
An example of an array variable is one that contains the number 0, I. 3. and 
6, in that order. We can use square brackets to define the variable x to contain 
this collection by typing x = [0 , 1 , 3 , 6] . The elements of the array must 
be separated by commas or spaces . Note that the variable '.I defined as '.I = 

[ 6 , 3 , 1, 0] is not the same as x because the order is di fferent. 
We can add the two arrays x and y to produce another array z by typing the 

single line z = x + y. To compute z, MATLAB adds all the corresponding 

19 



20 

ARRAY INDEX 

CH APTER 1 An Overview of MATLAB 

. e z The resulting array z contains the. numbers 
numbers in x and y to pLOduc '. I aoes thi s operation reqUires more 
6 4, 4. 6. In most oLher progral.ll1~:ln g a~;i~tt~ i'~r handling arrays, MATLAB 
t1~an one command. Beca~l se O~s\I~~ c::~e eas ier to create, read , and document. 
programs can be very sholt. Th lbe;'s in the array if they are regularl'y s l~aced. 

You need not type all the nun. d the last number, with the spaclllg In Lhe 
lnstead, you type the first m;lbel an Ie the numbers 0, 0.1 , 0.2 , .. . , 10 can be 
middle, separated by colons. or ~:::p =' [0 : 0 . 1 : 10] . 
assigned to the vanable u. by typ 0_

0 
0 1 0.2, ... , 10, the sess ion is: 

To compute w = 5 Sin u for u - , . , 

»u = [0 : 0.1 : 10] ; 
»w = 5*sin (u) ; . 
. ' * . ( ) com uted the fo rmul a w = 5 sin u 101 tllnes, 

The slllgie 11Ile, w ~ 5 Sl.~ u, . Pduce an array z that has 101 values. This 
once for each value 1n the aJ~aYf uM' ~~r~ to perfo rm many calculations with just 
illustrate some of the powel 0 

a few commands. I" . I b e session 
Because you typed a semicolon at the end of each lIle 111 t le a ov .'. ' 

MATLAB does not display the results on the creen. The value are stOi ed ~n the 
variables u and w if you need them. You can see all the u values b~ t~plll g u 
after the prompt or for example, you can see the seventh value by tYpll1 0 ~ (7) . 
You can see the w ~~t1ues the same way. The number 7 is called an array tndex, 

because it points to a particular element in the array. 

»u (7) 

ans = 
0 .6000 

»w(7) 
ans = 

2 . 8232 
You can use the length function to determine how many va lues are in an 

array. For example, continue the prev ious session as follows: 

»m = length (w) 

101 

Array that display on the screen as a single row of numbers with more than 
one column are called row arrays. You can create column arrays, which have 
more than one row, by using a semicolon to separate the rows. 

Polynomial Roots 

We can describe a polynomial in MATLAB with an array whose elements are the 
polynomial's coefficients. starting lI'ich the coefficient of the highest power of x. 
For example, the polynomiaI4x'- 8x2 + 7x - 5 would be repre ented by the array 
[4 , - 8 , 7 , - 5) . The /"Oats of the polynomi al f(x) are the values of x such that 
!(x) = O. Polynomial roots can be found with the roots (a) function, where 

1.3 Computing with MATLAB 

a is the polynomial's coeffi cient array. The result is a column array that contains 
the polynomial 's roots. For example, to find the roots of x 3 - 7x 2 +40x - 34 = 0, 
the sess ion is 

» a = [1 , -7 , 40 , -34]; 
» roots(a) 

3 . 0000 + 5 . 000i 
3 . 0000 - 5 . 000i 
1 . 0000 

The roots are x = I and x = 3 ± 5i. The two commands could havc been com­
bined into the single command roots ( [l , -7 , 40 , -34] ). 

Roots of functions other than polynomials can be obtained with the f zero 
function , covered in Chapter 3. 

Useful applications of arrays are di scussed in more detail in Chapter 2. 

1i st Your Understanding 

T1 .3-1 Use MATLAB to determine how many elements <u'e in the array 
[cos(O) : 0 . 02 : log10(100)] . Use MATLAB to determine the 
25th element. (Answer: 51 elements and 1.48.) 

T1.3-2 Use MATLAB to fi nd the roots of the polynomial 290 - 11 x + 6x 2 +x3 . 

(Answer: x = - 10,2 ± 5i.) 

Built-in and User-Defined Functions (Chapter 3) 

We have seen several of the functions built in to MATLAB. such a~ the sqrt 
and the sin functions. Table 1.3-1 li sts some of the commonly used functions. 
Chapter 3 gives ex tensive coverage of the built-in functions. 

Table 1.3-1 Some commonly u ed mathematica l 
functions 

Function 

e' 
.,jX 
In x 
loglo x 
cos X 

sin x 
tan x 
COS - I x 

si n I x 
tan- I x 

MATLAB syntax 1 

exp(x) 
sqrt (x) 
log (x) 
10g10 (x) 
cos (x) 
sin (x) 
lan(x) 
acos (X) 

asin (x) 
alan (x) 

IThe MATLAB trig.onomclrk function .. u~e radian 

21 



22 

MAT-FlLES 

ASCII FILES 

DATA FILE 

CHAPTER 1 An Overview of MATLAB 

MATLAB users can create their own : uncti ons ~or their special needs. Cre­

ation of user-defined functions is covered 111 Chaptel 3. 

Working with Files 
, . I t es of fil es that enable you to save programs, data, 

MATLAB uses se\ ela yp . . S . 14 MATLAB function files and 
and session results. As we wIll see 10 . ectlon . , . 

ro!!ram files are saved with the extenSIOn . m, and thus are called M-files. 
p b MAT-files have the ex tension. mat and ~re L1 sed to save the names and values 

of variables created during a MATLAB seSSIOn. . 
ASCII fi les are files written in a specific form.at .deslgned to make t~~m usable 

to a wide variety of software. The ASCII abbreviation stands for Amell~an S.tan­
dard Code for Information Interchange. M-files are ASCII files that ar e wntten 
in the MATLAB language. Because they are ASCII files, M-files ~an be created 
using just about any word processor-genericall y ca lled a tex~ edlt~r-because 
the ASCII file format is the basic format that all word process1l1g pIOgram~ can 
recoani ze and create. M-files are machine independent. MAT-fi les are hl.nary 
files~nol ASCII files. Binary files are generally readable only by the software that 
created them, so you cannot read a MAT-file with a word processor. In g~neral , 
transferring binary files between machine types (M~ Window~ an~ Macmtosh, 
for example) is not easy. However, MAT-files conta1l1 a machJne Signature that 
allows them to be transferred . They can also be manipulated by programs external 
to MATLAB. Binary files provide more compact storage than ASCII files. 

The third type of file we will be using is a data file, specifically an ASCII 
data file, that is, one created according to the ASCII fOimat. You may need to use 
MATLAB to analyze data stored in such a file created by a spreadsheet program , 
a word processor, or a laboratory data acqu isition system or in a file you share 
with omeone else. 

Saving and Retrieving Your Workspace Variables 

If you want to stop using MATLAB but continue the sess ion at a later time, you 
must use the save and load commands. Typing save causes MATLAB to save 
the workspace variables, that is, the variable names, their sizes, and their values, 
in a binary file called matlab . mat . which MATLAB can read . To retrieve your 
workspace variables, type load. You can then continue your session as before. 
Of course, if you ex ited MATLAB after using the save command, you cannot 
recover your key trokes or the MATLAB responses. To save the workspace vari­
ables in another fil e named filename . mat, type save filename . To load 
the work. pace variables, type load filename ; thi s loads all the workspace 
variables from the file filename . mat . If the saved MAT-file filename con­
tains the variables A. E , and C, then loading the file f i 1 ename places these 
variable back into the workspace. If the variables already exist in the workspace, 
they are overwrillen with the values of the variables from the file filename. 

To load the workspace variables, the filename must have the extension . ma t 
or no extension at all. If the file name does not have an extension MATLAB 
assumes that it is . mat. ' 

1.3 Computing with MATLAB 23 

To save just some of your variables, say, var1 and var2, in the fi le 
filename . mat , type save filename var1 var2 . You need not type 
the variab le names to retrieve them ; just type load filename. 

You can save the variab les in ASCII single-precision (eight dig its) format 
by typing save filename -ASCII. To save the variables in ASCn double­
precision (16 digits) format, type save filename -double. ASCl1 fil es 
containing single-prec ision data are recognizable by their use of the E format 
to represent numbers. For example, the number 1.249 x 102 is represented as 
1 . 249E+002 . ASCII fi les contain ing double-precision data use the D format; 
for exampLe, 1 . 249D+002 . As an alternative to the save functi on, you can 
select Save Data from the File menu in the Command window. You can aL 0 save 
variables from the Workspace Browser. 

Directories and Search Path It is impoI1ant to know the location of the files 
you use with MATLAB. Fi le location frequent ly causes problems for beginners. 
Suppose you use MATLAB on your home computer and save a fil e to a removable 
disk, as discussed later in thi s section. If you bring that di sk to use with MATLAB 
on another computer, say, in a school's computer lab, yo u must make sure that 
MATLAB knows how to find your files. Files are stored in directories, call ed 
folders on some computer sys tems. Directories can have subdirectori es below 
them. For example, suppose MATLAB was install ed on drive c: in the directo ry 
c : \ matlab. Then the toolbox directory is a subdirectory under the directory 
c : \matlab, and symbolic is a subdirectory under the toolbox directory. 
The path tells us and MATLAB how to find a palticular file. For example, the PATH 

file sol ve . m is a fu nction in the Symbolic Math toolbox. The path to thi s file is ------­
c : \ matlab \ toolbox \ symbolic . The full name of a file consists of its path 
and its name, for example, c : \ matlab \ toolbox \ symbolic \ sol ve . m. 

Working with Removable Disks In Section LA you will learn how to create 
and save M-files . Suppose you have saved the file problem1 . m in the directory 
\ homework on a di sk, which you insert in drive a: . The path for this fil e i 
a : \ homework. As MATLAB is normally insta lled , when you type problem1 , 

1. MATLAB first checks to see if probl em1 is a variable and if so, displays 
its val ue. 

2. If not, MATLAB then checks to see if problem1 is one of its own 
commands, and executes it if it is. 

3. If not, MATLAB then looks in the current directory for a file named 
probleml . m and executes problem1 if it finds it. 

4. If not, MATLAB then searche the directories in its search path, in order. 
for probleml . m and then executes it if found . 

You can display the MATLAB search path by typing path. If probleml i on 
the disk only and if directory a: j not in the search path , MATLAB will not find 
the file and will generate an error message, unless you tell it where to look. You 
can do this by typing cd a : \homework, which stands for "change directory 
to a: \ homework." This will change the current directory to a : homework and 



24 CHAPTER 1 An OveNiew of MATLAB 

Table 1.3-2 Sy tem. directory. and fil e commands 

Command 

addpath dirname 
cd dirname 
dir 
dir dirname 
path 
pathtool 
pwd 
rmpath dirname 
what 

what dirname 

Description 

Adds the directory dirname to the search path . 
Chancres the current directory to dirname. 
Lists ~ II fil es in the current directory. 
Lists all the files in the directory dirname. 
Displays the MATLAB search path. 
Starts the Set Path too i. 
Displ ays the current directory. 
Removes the directory dirname from the search path. 
Lists the MATLAB-specific files found in the current 
working directory. Most data files and other non-MATLAB 
files are not li sted. U e dir to get a list of all fil es. 
Lists the MATLAB-specific fi les in directory dirname. 

force MATLAB to look in th at directory to find your file. The general syntax of 
this command is cd dirname, where dirname is the full path to the directory. 
The main directory on the di sk is a:, so if your fi le is in the main directory, be 
sure to include the colon, and type cd a : . 

An alternative to thi s procedure is to copy your fi le to a directory on the 
hard dri ve that i in the earch path. However, there are several pitfa ll s with this 
approach: (1) if you change the file during your session, you might fo rget to copy 
the revised fi le back to your di sk; (2) the hard drive becomes cluttered (this is a 
problem in public computer labs, and you might not be permitted to save your 
fi le on the hard drive); (3) the file might be deleted or overwritten ifMATLAB is 
reinstalled; and (4) someone else can access your work! 

You can determine the current directory (the one where MATLAB looks fo r 
your file) by typi ng pWd. To see a list of all the files in the cunent directory, type 
dir. To see the files in the directory dirname, type di r di r name. 

The what command di splays a li st of the MATLAB-specific files in the 
current directory. The what d i rname command does the same for the directory 
d i rname . 

You can add a directory to the search path by using the a ddpa th command. 
To remove a directory fro m the search path, use the rmpath command. The 
Set Path tool is a graphical intetface for worki ng with files and directories. Type 
path tool to start the browser. To save the path settin crs click on Save in the 
tool. To restore the default search path, click on Default in' the browser. 

The e commands are summarized in Table 1.3-2. 

Decision-Making Programs in MATLAB (Chapter 4) 

The .usefulne . s Of. ~ATLAB greatly increases with its ability to use decision­
makJDg fu nctIons In Its programs. These functions enable you to write programs 
whose operati on depend on the results of calculations made by the program. 
MATLAB a.lso can use .Ioops to perform calculations repeatedly, a specified 
number of tllnes. or untIl Some condition is satisfied. This allows us to solve 
problems of great complex ity or problems requiring numerous calculations. 

1.3 Computing with MATLAB 

Section 1.6 gives an introduction to these topics. Chapter 4 co vcrs thcm in 
greater detail . 

Plotting with MATLAB (Chapter 5) 

MATLAB contains many powerful functions for easi ly creati ng plots of several 
di fferent types, such as recti linear, logari thmi c, surface, and contour plots. As a 
simple example, let us plot the function y = sin 2x for 0 .:::: x .:::: 10. We choose 
to use an increment of 0.0 1 to generate a large IlLtmber of x va lues in order Lo 
produce a smooth curve. The function plot (x , y) generaLes a plot with the 
x values on the horizontal axis (the abscissa) and the y values on the vertica l axis 
(the ordinate) . The session is: 

»x = [0 : 0 . 02 : 8] ; 
»y = 5*sin(x) ; 
»plot (x , y) , xlabel ( ' x ' ) , ylabel ( ' y ' ) 

The plot appears on the screen in a graphics window, named Figure No.1, as GRAPHICS 
shown in Figure 1.3-1. The xlabel function places the tex t in single quotes as WINDOW 
a label on the horizontal axis. The ylabel function performs a similar fu nction 

Figure 1.3-1 A graphics window showing a plot. 

25 



26 

OVERLAY PLOT 

CHAPTER 1 An Overview of MATLAB 

for the vertical axis. When the plot command is s uccess[u ll y~xecute~ , a graphics 
wi ndow automatically appears. If a hard copy of the plot IS des ll ~d, tl~e plot 
can be printed by selecting Print from the File menu ~n the graphics w~nd~w. 
The window can be closed by selecting Close on the FIle menu 111 t!le gl aphl cs 
window. You will then be returned to the prompt in the Command wtn ~low. 

Other u eful plotting functions are title and gtext . ~hese functions pl a.ce 
text on the plot. Both accept text within .parentheses and single quote~, as Wlti~ 
the xlabel function. The title function places the text at the top of the pl o.t, 
the gtext function places the text at the point on the plot where the c ur or IS 

located when you click the left mouse button . ., 
You can create multiple plots-called overlay plots-by II1cludll1g ano.ther 

set or sets of values in the plot function. For example, to plot the functions 
y = 2.JX and z = 4 in 3x for 0 ~ x ~ 5 on the same plot, the session is 

»x = [0 : 0 . 01 : 5] ; 
»y = 2*sqrt (x) ; 
»z = 4*sin(3*x) ; 
»plot (x , y , x, z) , xlabel ('x ' ) , gtext ('y ' ) , gtext ( ' z ' ) 

After the plot appears on the screen, the program waits for you to position the 
cursor and click the mouse buttoll, once for each gtext function used. 

Although MATLAB displays different colors for each curve, if you are going 
to print the plot on a black-and-white printer, you should label each curve so 
that you know which curve represents y and which curve represents Z. One way 
of doing this i to use the gtext funct ion to place the labels y and z next to 
the appropriate cu rves, as shown in the above session. Another way is to li se the 
legend fu nction, wh ich is discussed in Chapter 5. 

The plotting functions xlabel , ylabel, title, and gtext must be 
placed after the plot function and separated by commas. 

You can also distingui sh curves from one another by using different line types 
for each curve. For example, to plot the z curve using a dashed line, replace the 
plot (x , y , x , z) fu nction in the above session with plot (x, y , x , z , ' -- ') . 
Other li ne types can be used. These are discussed in Chapter 5. 

In the above example, we had many values in the arrays to be plotted, and thus 
the curve plotted in Figure 1.3-1 is smooth. When plotting functions, you should 
always use mnys that have several hundred points so they will plot as continuous 
curves. This should be done because functions are de fined at an infinite number 
of points. You should never plot a function usin o data markers or a small number 
of point. b 

Sometimes it is useful or necessary to obtain the coordin ates of a point on a 
plotted curve. The function ginput can be used fo r thi s purpose. Place it at the 
end of all the plot and plot formatting statemen ts, so that the plot will be in its 
final form. Th~coll1n~and [x , y) = ginput (n) gets n points and returns tile 
x and y coordlllates 1Il the vectors x and y , which have a lenoth n. Pos ition the 
cu rsor uSlI1g a mouse, and press the mou e button. The returned coordinates have 
the same scale as the coordinates on the plot. 

1 .3 Computing with MATLAB 

Table 1.3-3 Some MATLAB plotting commands 

Command 

[x , y] = ginput (n) 

grid 
gtext ( ' text ' ) 
plot (x , y) 

title( ' text ' ) 
xlabel ( , text' ) 
ylabel ( ' text ' ) 

Descl"iption 

Enables the mouse to get n points from a plot, a nd 
returns the x and y coordina tes in the vec tors x and y, 
which have a length n. 
Puts grid lines on the plot. 
Enables place ment of tex t with the mouse. 
Generates a plot of the array y versus the array x 
on rectilinear axes. 
Puts text in a titl e at the top of the plot. 
Adds a text label to the horizontal ax is (the abscissa) . 
Adds a text label to the vertical axis (the ordinate). 

In cases where you are plotting data, as opposed to functions, you should use 
data markers to p lot each data point (un less there are very many data points). To DATA MARKER 

mark each point with a plus sign +, the required syntax for the plot function is 
plot (x , y , '+' ). You can con nect the data points with Jines if you wish. In 
that case, you must plot the data twice, once with a data marker, and once without 
a marker. 

Forexample, suppose the data for the independentvariabJe is x = [15 : 2 : 23) 
with units of seconds, and the dependent variable values are y = [20 , 50 , 
60 , 90 , 70) with units of volts. To plot the data with plus Si!l11S use the 
following session: b 

»x = [15 : 2 : 23); 
»y = [20 , 50 , 60 , 90 , 70) ; 

»plot(x , y , ' + ', x , y) , xlabel( ' x (seconds) ' ) , ylabel( ' y (volts) ' ) 

Never forget to label yo ur plots with the units of measurement! Other data mar-
kers are avai lable. These are discussed in Chapter 5. 

. ~ab le 1.3-3 summari zes these plotting commands. The grid command puts 
gnd llIles on the plot. We wil l di scuss oilier plotting functions, and the Plot Editor, 
In Chapter 5. T he chapter also discusses how to use plots to develop mailiematical 
models from data. This process is called junction discovery and regression. 

Test Your Understanding 

T1.3-3 Use MATLAB to plot the function s = 2 in(3! + 2) + .JSr+T over the 
interva l 0 ~ t ~ 5. Put a title on the plot, and properly label the axes. The 
va ri able s represents speed in feet per second; the variable t represents 
time in seconds. 

T1.3-4 Use MATLAB to plot the functions y = 4)6x + 1 and::: = Seo.)x - 2x 
over the interval 0 ~ x ~ 1.5. Properly label the plot and each curve. The 
variables y and ::: represent force in newtons; the variable x represents 
di stance in meters. 

27 



28 C HAPTER 1 An Overview of MATLAB 

Linear Algebraic Equations (Chapter 6) . 

You can use the left division operator (\ ) in MATLAB to solve sets of lInear 
algebraic equations. For example, consider the set 

6x + 12y + 4z = 70 

7x - 2y + 3z = 5 

2x + 8y - 9z = 64 

To solve such sets in MATLAB you must create two ~rrays; we will call them A 
and B The array A has as many rows as there are equatIons, an? as many columns 
as the're are variables. The rows of A must contain the coefficients of x, y, and z 
in that order. In thi s example, the first row of A must be 6, 12, 4; the secoJ~d row 
must be 7, -2,3, and the third row must be 2, 8, -9. The array B contall1s the 
constants on the right- hand side of the equation; it ha one column and a many 
rows as there are equations. In this example, the first r~w of B IS 70, the ~ec~nd 
is 5, and the th ird is 64. The solution is obta ined by typlllg A \ B. The sessIOn IS 

»A", [6 , 12 , 4 ; 7 , -2 , 3 ; 2 , 8 ,- 9) ; 
»B", [70 ; 5 ; 64) ; 

»Solution '" A \B 
Solution 

3 

- 2 

The soluti on is x = 3, Y = 5, and z = -2. 
Th is method works fi ne when the equati on set has a unique solution. To learn 

how to deal with problems having a nonunique solution (or perhaps no solution 
at all !) , see Chapter 6. 

s 

T1.3-5 Use MATLA B to solve the fo ll owing set of equations. 

6x - 4y + 8z = tl 2 

-5x - 3)' + 7z = 75 

14x + 9 y - 5z = -67 

(A nswer: x = 2, Y = - 5, z = 10.) 

Statistics (Chapter 7) 

MATLA B has a lIumber of u~eful functions for performing stati stical calcul ations 
and other types or ~ata manipulation. For example, you can compute the mean (the 
aveJ.·a~e) o.r a set ?l values stored in the array x by typing mean (x) . The standard 
devIatI on IS obtall1ed by typing s td (x) . Chapter 7 covers these topics, as well 

1.4 Script Files and the Edi tor/Debugger 

as methods for obtai ning several types of specia lized hi stogram plots used in 
stati stical analysis. The chapter also describes methods fordeveloping simu lations 
based on random number generation and methods for interpolating data. 

Numerical Calculus, Difl'erential Equations, 
and Simulink (Chapters 8 and 9) 

Given a set of x and y values, MATLAB can numericall y compute the derivative 
dyjdx and the in tegral I y dx. In addition , MATLAB can numerically solve 
differential eq uati ons, which are equation involving derivatives; for example, 

r}2 +5y2 = 3sin8x 
dx 

where the desired solution is y (x). Chapter 8 deals with these methods. 
Chapter 9 treats Simulink, which is a graphical user interface, bu il t on top of 

MATLAB, for solv ing differential eq uations. 

Symbolic Pl'ocessing (Chapter 10) 

Given a function y(x), MATLAB can be used to obtain the derivative dy j dx 
and the integral I y dx in symbolic form , that is, as a form ul a instead of as a 
set of numerical va lues . This can be done with the Symbolic Math too lbox. In 
addition, thi s toolbox can be used to symboli call y solve many types of algebraic, 
transcendenta l, and differential equations. Chapter 10 covers these methods. 

1.4 Script Files and the EditorlDebugger 

You can perfo rm operations in MATLAB in two ways: 

1. In the interacti ve mode, in whi ch all commands are entered directl y in the 
Command window, or 

2. By runn ing a MATLAB program stored in script fi le. This type of fi le 
conta ins MATLAB commands, so running it is equ ivalent to typing all the 
com mands-one at a time-at the Command window prompt. You can run 
the fi le by typing its Ilame at the Command window prompt. 

Us ing the in teracti ve mode is similar to using a calculator, but is convenient only 
fo r simpler problems. When the problem requires many commands, a repeated 
set of commands, or has arrays with many clements, the interactive mode is 
inconveni ent. Fortunately, MATLAB allows you to wri te your own programs to 
avo id this difficulty. You write and save MATLAB programs in M- til es, which 
have the ex tension. m; fo r example, program1 . m. 

MATLAB uses two types of M- fil es : script fil es and f unction fil es. You can 
use the Editor/Debugger built into MATLAB to create M-files. A script f ile con­
tains a sequence of MATLAB commands, and is useful when you need to use 
many commands or arrays with many elements. Because they contain commands, 
script fil es are sometimes called commund fil es . YOll execute a script ti le at the 
Command window prompt by typing its name without the extension . m. 

29 



30 

GLOBAL 
VARIABLE 

COMMENT 

CHAPTER 1 An Overview of MATLAB 

. . of M-fi le is a function file, which is useful when you neec~ to 
Anothel ty.pe. f t of commands. You can create your own function 

repeat the opel atlOn 0 a se 
fil We di scuss them in Chapter 3. . . 

es. . ' t' ny va lid MATLAB commands or functions , 111-

~cnpt files .. ma
y 

fcon t~1Il a Wh~n you tYIJe the name of a script fi le at the 
c1udlllg user-wlltten unc IOns. . 
Command wi ndow prompt, you get the same result ~s If you ~ad typed at the 
Command window prompt all the commands stored 111 the scnpt fi le, ,?ne ~t a 
time. When you type the name of the script fi le, ~e say that you are. ru~nlllg 
the file" or "executing the file." The values of vanables prod.uced by lllnnll1g a 
script fi le are available in the workspace; thus, we say the vanables created by a 
script file are global variab les. 

Creating and Using a Script File 

The symbol % designates a comment, which is not executed by MA~LA~ . CO~l1-
ments are not that useful for interactive sess ions. and are used mainly 111 scnpt 
files fo r the purpose of documenting the file. The comment symbol may be put 
anywhere in the line. MATLAB ignores everything to the right of the % symbol. 
For example, consider the fo llowing sess ion. 

»% This is a comment . 
2+3 % So is this . 

Note that the portion of the line before the % sign is executed to compute x. 
Here is a simple example that illustrates how to create, save, and run a script 

file, using the Editor/Debugger built into MATLAB. However, you may use an­
other text editor to create the file. The sample file is shown below. It computes the 
sine of the square foot of several numbers and displays the results on the screen. 

Program example1 . m 
% This program computes the sine of 
% . he square root and displays the result . 
x = sqrt ( [5 : 2 : 13 ) ) ; 
y = sin (x) 

To create this new M-file (in the MS Windows environment), in the Command 
window select New from the File menu, then select M-file. You will then see a 
new e?it window. This is the Editor/Debugger window as shown in Figure 1.4-1. 
Type 111 the file as hown above. You can u e the keyboard and the Edit menu 
in the EditorlDebugger as you would in most word processors to create and edit 
the file .. When finished, select Save from the File menu in the EditoriDebugger. 
I~ th~ dialog b~x that appears, replace the default name provided (usually named 
u~ tIt 1 ed)vllth the na.me exampl e 1 , and click on Save. The Edjtor/Debugger 
wIll automatically provide the extension . m and save the file in the MATLAB 
current directory. which for now we will ass ume to be on the hard drive. 

1.4 SCript Files and the Editor/Debugger 

File Edit Debug Desktop Window Help 

, r1 ~ Currerrt Directory: I c:lrnetlab7 

Shortcuts 1tJ How to Add 

» example 1 

0.7867 0.'1758 0.1'111 -0.17'11 -0.'1'175 

Steck' 

"'( Progralrl e;-:ample) . m 

'" Th13 pt:ogram cOIrlpute~ the 31.ne of 

t}jE square root sna dle.pla?s tbl!:: cesult. 

'1 - >: = sqrc ( [5 : 2 : 13 J ) ; 
5- y=sin(x) 

F igure 1.4-1 The MATLAB Commalld wi ndow with the Editor/Debugger open. 

Once the file has been saved, in the MATLAB Command window type the 
script file 's name examplel to execute the program. You should see the feult 
di splayed in the Command window. The session looks like the following. 

»example1 
y = 

0 . 7867 0 . 4758 0 . 1411 0 . 1741 -0 . 4475 

Figure 1.4-1 shows a MATLAB MS Windows screen containing the re. ulting 
Command window display and the Editor/Debugger opened to di splay the scri pt 
file. 

Effective Use of Script Files 

Create script files to avoid the need to retype commonly used procedures. The 
above file, example1, implements a very simple procedure, for which we 
ordinarily would not create a script file. However, it illustrates how a script file 
is Llseful. For example, to change the number evaluated from f 3 : 2 : ::.::.; to 
[2 : 5 : 27 J , simply edit the corresponding line and save the file again (a com­
mon oversight is to forget to resave the file after making changes to it). 

31 

8 



32 

LOCAL VARIABLE 

CHAPTER 1 An Overview of MATLAB 

. k in mind when using script files: 
Here are some other thlI1gs to eep ..' 

. . must follow the MATLAB conventIon for naI~I~1g 
1. The name of a SCrIpt file . b' 'th a lelter and may include dIgIts 

variables' that is the name must egll1 WI, , 
, , ' I ' ter up to 31 characters. 

and the underscore c laI aC , t the Command window prompt causes 
2. Recall that typing a variable's na~1~ a '·able Thus do not aive a script 

MATLAB to display the v~.lue 0 ittC~~l~~I~~S b~cause' MATL'\B wi ll n~t be 
file the ame name as a. val lable . h P 0 lCe unless you clear the van able. 
ab le to execute that SCrIpt file more t, an I 'd . 

. fil h same name as a MATLAB comman 0 1 
3. Do not give a SCrIpt ekt e , 'f command fu nction or file name already 

fUl:ction. Y~u can che~ to ~~~lllm:nd . For ex;mple, to see if a variable 
eXIsts by USIng the ex~st . st ( ' examplel ' ) ; this wi ll return 
examplel already eXIsts, type eXl . " . 'f an M-fi le 
a 0 if the variable does not exist, and a .1 d' It ~oes . To see I " ' f i le ' ) 
exam le1. malreadyexistS,type exlst ( example1. m " " 
be orePcreating the file; this will return a 0 if the file does not eXIst, ~d a 2 
'/t does Finally to see if a built-in function examplel already eXIsts,. 
~y~e exi st ( ' e~amp l el ' , ' ~uiltin ' ) before creatin? ~he fi le; th Is 
will return a 0 if the built-in func tI on does not eXIst, and a 5 Jf It does. 

4. As in interactive mode, all variables created by ~ scrip.t file are ~loba l 
variables, which means that their values are a~a Il ab le III the baSIC 
workspace. You can type who to see what van abIes are p.resent. . 

5. Variables created by a function file are local to that fu nctIon, whl:h mea.ns 
that their values are not available outside the function. All the vanables III 

a script file are global. Thus, if you do not nee~ to hav~ access to ~ 11 t1:e 
variables in a script file, consider using a functIon fil e Illstead .. ThIS WIll 
avoid "cluttering" the workspace with vari able names, and wIl.1 re?uce 
memory requirements. Creation of user-defined function files IS dI scussed 
in Chapter 3. 

6. You can use the type command to view an M-file without opening it with 
a text ed itor. For example, to view the file examplel, the command is 
type examplel. 

Note that not all functions supplied with MATLAB are "built-in" functions. 
For example. the function mean . m is supplied but is not a built-in function. The 
command exist ( ' mean. m', ' file ' ) wiJI return a 2, but the command 
exist ( ' mean ', ' builtin ' ) will return a O. You may think of built­
in functions as primitives that form the basis for other MATLAB functions. You 
callnot view the entire file of a built-in function in a text editor, only the comments. 

Effective Use of' the Command and EditorlDebugger Windows 

Here are ome tip on using the Command and Editor/Debugger windows 
effectively. 

1. You can use the mouse to resize and move windows so they can be viewed 
simultaneously. Or you can dock the EditorlDebugger window inside the 

1.4 Script Files and the Editor/Debugger 

Desktop by selecting Dock from the view menu of the Editor/Debugger. 
To activate a window, cl ick on it. 

2. If the Editor/Debugger is not docked, use the Alt-Tab key combi nation to 
switch back and forth quickly between the Editor/Debugger wi ndow and 
the Command window. In the Command window, use the up-arrow key to 
retri eve the previously typed script-file name, and press Enter to execute 
the scrip t file. This technique allows you to check and correct your program 
quickly. After making changes in the scri pt file, be sure to save it before 
switching to the Com mand window. 

3. You can use the EditorfDebugger as a basic word processor to write a short 
report that includes your script fi le, resu lts, and di scussion, perhaps to 
present your solution to one of the chapter problems. Fi rst use the mouse to 
highlight the results shown in the Command wi ndow, then copy and paste 
them to the Editor/Debugger wi ndow above or below your script file (use 
Copy and Paste on the Edit menu). Then, to save space, delete any ex tra 
blank lines, and perhaps the prompt symbol. Type your name and any other 
required information , add any di scuss ion you wish, and print the report 
from the EditorlDebugger wi ndow, or save it and import it into the word 
processor of your choice (change the file name or its extension if you intend 
to u e the script file again!). 

Debugging Script Files 

Debuggin.g a program is the process offinding and removing the "bugs," or error, 
in a program. Such errors usually fall into one of the following categories. 

1. Syntax errors such as omitting a parenthesis or comma, or spelling a 
command name incorrectly. MATLAB usually detects the more obvious 
errors and di spl ays a message describing the error and its location . 

2. Errors due to an incorrect mathematical procedure, called runtime errors. 
They do not necessaJily occur every time the program is executed: their 
occurrence often depends on the particular input data. A common example 
is division by zero. 

MATLAB error messages usually aJlow you to find syntax errors. However, run­
time errors are more difficult to locate. To locate such an eITor, try the following: 

1. Always test your program with a simple version of the problem, whose 
an. wers can be checked by hand calculations. 

2. Display any intermediate calculations by removing semicolons at the end 
of statements. 

3. Use the debugging features of the EditorlDebugger, which are covered 
in Chapter 4. However, one advantage of MATLAB is that it require 
relatively simple programs to accomplish many types of tasks. Thus you 
probably will not need to use the Debugger for many of the problems 
encountered in thi s text. 

33 



34 CHAPTER 1 An Overview of MATLAB 

Programming Style 

Comments may be put anywhere in the script file. However,. it is in~portant to note 
that the first comment line before any executable statement IS the IlI1e searched by 
the lookfor command, di scussed later in this chapter. Therefore, if you intend 
to use the cript file in the future, consider putting key words that describe the 
script file in this first line (called the HI line). . 

A sugge ted structure for a sClipt file is the followll1g. 

1. Commellts sectioll In this section put comment statements to give: 
The name of the program and any key words in the first line. 

b. The date created, and the creators' names in the second line. 
c. The definitions of the variable names for every input and output 

variable. Divide this section into at least two subsections, one fo r input 
data, and one for output data. A third , optional section may include 
definitions of variables used in the calculations. Be sure to include the 
units of measurementfor all input and aLI ou.tput variables! 

d. The name of every user-defined function called by the program. 
2. Input section In this section put the input data and/or the input functions 

that enable data to be entered. Include comments where appropriate for 
documentation. 

3. Calcltlation section Put the calculations in thi s section . Include comments 
where appropriate for documentation. 

4. Ou/put section In this section put the fu nctions necessary to deliver the 
output in whatever form required. For example, this section might contain 
function s for displaying the output on the screen. Include comments where 
appropriate for documentation. 

The programs in thi text usually omit the comments in order to save space. These 
comments are not necessary here because the tex t discussion associated with the 
program provides the required documentation, and because we all know who 
wrote these programs I 

Documenting Units of Measurement 

'!Ve empha ize again that you must document the units of measurement for all the 
Input and all the output variables. More than one dramatic fai lure of an en aineerin a 

system ha be~n traced to the misunderstanding of the units used for ~he inpL~ 
and output vanables o~ the program used to des ign the sys tem. Table 1.4- 1 lists 
~ommon units and theIr abbreviations. The foot-pound-second system (FPS) is 
also ~a ll ed the ~.S. Cust?mary. System and the Briti sh Engineering System. SI 
(Systeme Internatlonale) IS the International metric system. 

Using Script Files to Store Data 

You might have applications hi I . 
freq uently Ifso yo w C 1 ~eqUlre you to access the same set of data 

. . u can store thedatall1 an array within ascript file. An example is 

1.4 Script Files and the Editor/Debugger 

Table 1.4-1 S I and FPS unils 

Uni t name and abb.·eviation 

Quantity S[ unit FPS unit 

Time second (s) second (sec) 
Length meter (m) fOOL (fl) 
Force newton (N) pound (Ib) 
Mass kilogram (kg) slug 
Energy joule (1) fOOL-pound (fl- Ib), 

BlU (= 778 ft-Ib) 
Power watl(W) fl-Ib/sec, 

Temperalure 
horsepower (hp) 

degrees Celsius (oq , degrees Fahrenheil (' F) , 
kelvin (K) degrees Rankine (OR) 

a set of dai ly temperature measurements at a parti cular location , which are needed 
from time to time for calcul ations. As a short example, consider the following 
script fi le, whose name is mydata . m. The array temp_F contains temperatures 
in degrees Fahrenheit. 

File mydata . m: Stores temperature data . 
% Stores the array temp_ F , 
% which contains temperatures in degrees Fahrenheit . 
temp_F = [72 , 68 , 75 , 77 , 83 , 79] 

A session to access this data from the Command window, and convert the tem­
peratures to degrees Celsius, is 

»mydata 
temp_ F = 

72 68 75 77 83 79 
»temp_C = 5*(temp_ F - 32)/9 
temp_ C = 

22 . 2222 20 . 0000 23 . 8889 25 . 0000 28 . 3333 26 . 1111 

Thus 68° Fahrenheit corresponds to 20° Celsius. 

Te derst nding 

T1.4-1 Create, save, and run a script file that solves the foJlowing set of equations 
fo r given values of a, b, and c. Check your file for the case a = 112, 
b = 7S, and c = -67. The answers forthis case are x = 2,)' = -S, z = 10. 

6x - 4y + 8<; = a 

-Sx - 3)' + 7z = b 

14x+9y- Sz = c 
----------------

35 



36 CHAPTER 1 An Overview of MATLAB 

Table 1.4-2 Input/output command 

Conmland 

disp (A) 
disp ( ' tex t ' ) 
format 

fprintf 

Description 

Di splays the contents, but not the name, of the array A. 
Displays the tex t string enclosed within single qu otes. 
Controls the creen's output display format (see 
Table 1.1 - 5). 
Perfo rms fo rmatted writes to the screen or to a fi le 
(see Appendix C). 

input ( ' tex t ' ) Displays the tex t in quotes, waits fo r user input from the 
keyboard, and stores the va lue in x . 

input( ' tex t ', ' s ' ) 

k=menu( ' title ', ' optionl ', ' option2 ', 

Displays the tex t in quotes. wai ts fo r user input fro m the 
keyboard. and stores the input as a string in x. 
Displays a menu whose title is in the string vari able 
' ti tle ', and whose choices are' optionl ' , 
' option2 ' , and so on. 

Controlling Input and Output 

MATLAB provides several useful commands for obtaining input from the user 
and for formatting the output (the results obtained by executing the MATLAB 
commands). Table 1.4-2 summarizes these commands. The methods presented 
in this section are particularly useful with script files. 

You already know how to determine the current value of any variable by typing 
its name and pressing Enter at the command prompt. However, this method, 
which is useful in the interactive mode, is not useful for script files. The di sp 
function (short for "display") can be used instead. Its syntax is disp (A) , where 
A represents a MATLAB variable name. Thus typing di sp ( Speed) causes the 
value of the variable Speed to appear on the screen , but not the variable 's name. 

The disp function can also di splay text. You enclose the text within sin­
~le quotes. For example, the command disp ( ' The predicted speed 
IS : ' ) causes the message to appear on the screen . This command can be used 
with the first form of the disp fUnction in a script file as foUows (assumin o the 
value of Speed is 63): b 

disp( ' The predicted speed is :' ) 
disp (Speed) 

When the file is run , these lines produce the following on the screen: 

The predicted speed i s : 
63 

User Input 

The input function displays te t h . 
something from the ke board an x on t e scree~, wal.ts for the user to enter 
F ~ I y, d then stores the Input 111 the specified variable. 

or examp e, the command x = i nput ( ' Pl e ase e n t e r the v alue 

1.4 Script Files and the Editor/Debugger 

of x :' ) causes the message to appear on the screen . If you type 5 and press 
Enter, the variable x will have the value 5. 

37 

A siring variable is composed of tex t (alphanumeric characters). If you want 
to store a Lex t input as a string vari able, use the other form of the i np u t command . 
For example, the command Calendar = inpu t ( ' Enter the day of 
the week : ' , ' s ' ) prompts you to enter the day of the week. If you type 
Wednesday , thi s text will be stored in the string variable Calendar. STRlNG VARlABLE 

Use the menu function to generate a menu of choices for user input. Its yntax 
is 

= menu( ' title ' , ' option1 ', ' option2 ', . . . ) 

The function di spl ays the menu whose tiLle is in the string variable' tit le ' , 
and whose choices are string variables ' opt i on1 ', ' option2 ' , and so on . 
The returned value of k is I , 2, . .. depending on whether you click on the button 
for optionl , opt ion2, and so forth . For example, the following script Ll ses 
a menu to select the data marker for a graph , assuming that the vectors x and y 
already exist. 

k = menu (' Choose a data marker ', ' 0 ' , ' * ', ' x ' ) ; 
type = [ ' 0 ' , ' * , , 'x' 1 ; 
plot (x , y , x, y , type(k)) 

est You Under tanding 

T1.4-2 The urface area A of a sphere depends on its radius r as follows: A = 
4m-

2
. Write a script file that prompts the user to enter a radius, computes 

the surface area, and di splays the result. 

Example of a Script File 

The following is a simple example of a script file that shows the preferred program 
style. The speed u of a falling object dropped with no initial velocity is given a 
a function of time t by v = gr , where g is the acceleration due to gravity. In 
S1 units, g = 9.81 m/s2

. We want to compute and plot v as a function of r for 
Os I S I f , where t f is the final time entered by the user. The script file is the 
following . 

% Program Fal1ing_ Speed . m: Plots speed of a falling object . 
Created on March 1 , 2004 by W. Palm III 

Input Variable : 
tf = final time (in seconds) 

% Output Variables : 

t array of times at which speed is computed (second s ) 
% v = array of speeds (meters/second ) 



38 CHAPTER 1 An Overview of MATLAB 

Parameter Va l ue : 
g = 9 . 81 ; % Ac celeration in SI units 

% 
% Input sect i on : 
tf = input ( ' En t er the final time in seconds :' ) ; 

% 
% Calculation sect i on : 
dt = tf/SOO ; 

[O : dt : tf ] ; % Crea tes an array of 501 time values . 

v = g *t ; 
% 
% Ou tput section : 
p l ot (t , v) , xl abel ( ' Time (seconds ) ' ), ylabel ( ' Speed (meters I second ) , ) 

After creating thi s fil e, you save it with the Ilame Fa l l ing_ Speed . m. To 
run it, you type Falling_ Speed (without the. m) in the Command window at 
the prompt. You will then be asked to enter a value for t J. After you enter a va lue 
and pre s Enter, you will see the plot on the screen . 

1.5 The MATLAB Help System 

If all the MATLAB documentation were printed, it would fill a volume many 
times the size of thi s book. Therefore, it is imposs ible for us to de cribe all of 
the details of MATLAB. This book gives you in-depth coverage of the basic 
MATLAB language and an overview of the ava il ab le tools to alert you to their 
existence. It gives you all the material you need to do the homework problems. 
If you need information about a topic covered in thi s book, remember to use the 
following special features that were designed as reference aids. 

• Throughout each chapter margin notes identify where key terms are 
introduced. 

• Each chapter contains tables summarizing the MATLAB commands 
introduced in that chapter. 

• At the end of each chapter is a summary guide to the commands covered in 
that chapter. 

• A~pendix A con~ains table of MATLAB commands, grouped by category, 
wIth the appropnate page references. 

• Th~re are two indexes. The first lists MATLAB commands and symbols, 
while the second Ii ts topics. 

To expl~re the more advanced feature~ of MATLAB not covered in this 
book, you will need to know how to usc effectively the MATLAB Help System. 
MATLAB has these option~ to get help for using MathWork products. 

1.5 The MATLAB Help System 

1. Help Browser This graphical user interface helps you find information and 
view online documentation for your MathWorks products. 

2. Help Functions The functions h e l p , look fo r , and doc can be used to 
display syntax information for a specified funclion. 

3. Other Resources For addilional help, you can fun demos, contact techni cal 
support, search documentation for olher MathWorks produCls, view a Ii , t of 
other books, and participate in a newsgroup. 

The Help Browser 

The Help Browser enables you to search and view documentation for MATLAB 
and your olher Math Works products. To open the Help Browser, select MATLAB 
Help from the Help men u, or click the ques lion mark button in the toolbar. The 
Help Browser contai ns lwo window "panes": the Help Navigator pane on the left 
and the Di spl ay pane on the right (see Figure 1.5- 1). The Help Navigator conlains 
four tabs: 

• Contents: a contents li sting tab, 
• Index: a global index tab, 

• Search: a search tab having a find function and fuJI text search fealures, and 
• Demos: a bookmarking tab to start bui lt-in demonstrations. 

Use the tabs in the Help Navigator to find documentation. You view documentation 
in the Display pane. To adjust the relative width of the two panes, drag the separator 
bar between them. To close the Help Navigator pane, click the close box (x) in the 

File Edit View Go Favorites Desktop Wildow Help 

COI'iertslndOl( Search Demos 

~1I~2U II. HIl1!:1ll" 
UII.PQ.~11!H't yz 

N.",. 

'Ill j 
ijdlling 

~ rJloper1l es change<1 by 
1014·2 

plot box 
~IOI box al3 pecl ral loofax8s 

1~',~','~::~:~ 
plot cornmand Slmuhnk 
~Iol edit mode, sl .Hlrng dnrl emltng MATlAB 
iPlol ed,ll oolb.. MATlAS 
plol edllrng mode 

I oveM''' 11I121 
Piol dl~ 

Figure 1.5-J The MATLAB Help Browser. 

X ' +0 Ii It 
me pkIt (MATLABFf..O:Uons) 

plot 
Lm8ar 2-Dplot 

Syntax 

•• J 
plot,(Xl,Yl,Llne Spec, .. J 

plot( .. " 'Pr:opectyNcmre' ,Pro pert.VVc.lue 
plot(c.xe:5_he.ndl~, ... J 

hl1ne l!l -plot,('v6 ', ... ) 

plot(Y) plol s lhecolumns ofVvari us lhllrandeJ.lfy 

'e a rBal number t(Yls campl,x,Plot,Y} ', eqUIvalent 

39 



40 C HAPTER 1 An Overview of MATLAB 

, ,'u 'ner This is useful once you have found the docu~en~at i on 
pane s uppel noht co~ .. 'd ore screen space for the documentati on Itse lf. 

~~UO;:~l~~~ ~:~;~~:itg~lt~~ ~::e ~rom the displ ay pane, click on Help Navigator 

in the View menu . 

Viewing Documentation 

After finding documentation with the Help Navigator, v!ew the docu.mentati on in 
the Display pane. While viewing a page of documentatIOn, you can. 

• Scroll to see contents not cUlTently visible in the window. 
• View the prev ious or next page in the document by clicking the left or right 

arrow at the top of the page. 
• View the previous or next item in the index by clicking the left or right 

arrow at the bottom of the page. 
• Reload a page by clicking the Refresh button (circular alTows) in the Help 

Browser tool bar. 
• Find a phrase in the cun'ently di splayed page by clicking on the binoculars 

icon and typing it in the Find what: box in the Help Browser tool bar and 
pressing the Enter key. 

• Add that page to your list offavorite documents by clicking Add to 
Favorites in the Help Browser toolbar. 

The box above the Display pane contains the ti tle of the help page currently 
displayed in the Display pane. Click on the arrow to the right of tl1e box to see a 
li st of the help pages you previously accessed. Then cl ick on the name of a page, 
and it appears in the Display pane. 

Using the Contents Tab 

Click the Contents tab in the Help Navigator to list the ti tles and table of contents 
for all product documentati on. To expand the listing for an item, click the + to the 
left of the item. To collapse the li stings for an item, cl ick tl1e - to the left of the 
item, or double-cli ck the item. Click on an item to select it. The first page of that 
document appears in the Display pane. Double-clicking an item in the contents 
listing expands the li sting fo r that item and shows the first page of that document 
in the Display pane. 

The Contents pane is synchronized with the Displ ay pane. By default, the 
~ tem sel ~cted in the Contents pane always matches the documentation appearing 
In the Display pane. Thus, the contents tree is synchronized with the displayed 
document. This feature is useful if you access documentation with a method 
other th~n the Conte~ts pane, for example, using the back button in the Displ ay 
pane. WIth synchroni zation, you always know to what section the di splayed page 
belongs. 

1.5 The MATLAB Help System 

Using the Index Tab 

Click the Index tab in the Help Navigator pane to find specific index entries 
(keywords) from all of your MathWorks documentation. Type a word or words in 
the "Search index fo r" box . As you type, the index highlights the matching entries. 
Scroll down in the Help Navigator pane to see more match ing entries. Click on 
an entry to di spl ay the corresponding page. If you do not find a matching index 
entry or if the corresponding page does not contain the inform ation you seek, try 
a less specific top ic by using onl y part of the wording, or use the Search tab. 

Using the Search Tab 

Click the Search tab in the Help Navigator pane to fi nd all MATLAB documents 
containing a specified phrase. Type the phrase in the "Search for" box. Then click 
the Go button. The list of documents and the headi ng under which the phra e is 
fou nd in that document then appear in the Help Navigator pane. Select an entry 
from the list of results to view that document in the Display pane. 

Using the Favorites Menu 

Click on the Favorites menu to add a page to the Favorites li st, or to view a li st 
of documents you previously designated as favori tes. Select an entry and that 
document then appears in the Display pane. To remove a document fro m the li st 
of favorites, ri ght-click the document in the favo ri tes li st and select Delete from 
the pop-up menu . To designate a document page as a favorite, you can either: 

• Click Add to Favorites in the Help Browser toolbar while that document 
is open in the Displ ay pane, or 

• Right-c lick the document name listed under the Contents tab and click the 
Add to Favorites button, or 

• Right-click the document name in the Help Browser search resul ts li st and 
click the Add to Favorites button. 

Help Functions 

Three MATLAB functions can be used fo r accessing online information about 
MATLAB functi ons: 

• help funcname Displays in the Command window a description of the 
spec ified function funcname . 

• lookfor topic Di splays in the Command window a brief description 
fo r all functions whose description includes the specified key word topi c. 

• doc funcname Opens the Help Browser to the reference page for the 
specified function funcname, providing a description, additional remarks, 
and examples. 

41 



42 
CHAPTER 1 An Overview of MATLAB 

. el function is the most basic w.ay to det~rm ine 
The help FunctIol~ The h .ti~l1 ar functi on. Informati on is di splayed directl y 
the syntax and behav lOr of a pal . a help loglO in the Command 
. the Command window. For ex~mple, typlOo 
~~indow produces the following di splay: 

LOG10 Common (base 10) lOgarit~~~ of the elements of X. 
LOG10(X) is the base 10 logar~ 's not positive . 
Complex results are produced If X l 

See also LOG , LOG2 , EXP , LOGM . 

. .' what the function does, warns about any unex-
Note that the ~l spl ay descI~bes t lues are used, and directs the user to 
pected results If n?nstandald argumen va 

other related functlOnsfu nctions are organized into logical groups, upon which.the 
All the ~ATL~B . . b sed For instance, all elementary mathematical 

MATLAB dlrectOlY stlUctur.e l ~de\1 ~he elfun directory, and the polynomia l 
funct~on s su~h ~s \ og1 01 re;un directory. To list the names of all the functions 
functlonsres ldelO. t e p~ y . ' feach type help polyfun. Ifyouare 
in that directory, ~Ith a bltefdesc~~tJ o: ~elP t~ obtain a list of all the directories, 

:~~~lr: ~:s~l~a~~:~e~;~~ t~~e:r~~n ' c;fegory each represents. Through? ut thi s t~xt 
we point out ~he appropriate directory name so that you can get more Jl1formatlOn 

if you need it. 'fi d . ' 
T ing helpwin topic di splays the help textforthespeci. e tOP~C Jl1 -

side t:: Desktop Help Browser wi ndow. Links are created to functions r~fel enced 
in the "See Also" line of the help text. You can also ac~ess. the Help wl.ndow by 
selecting the Help option under the Help menu, or by chckmg the question mark 
button on the [oolbar. 

The lookfor Function The lookfor fun ction allows you to . search for 
functions on the ba is of a key word. It searches through the first line of he lp 
tex t, known as the HI line, for each MATLAB function , and returns all the Hl 
lines containing a specified key word. For example, MAT~AB does not have a 
function named sine. So the response from help s ine IS 

sine . m not found 

However, typing lookfor sine produces over a dozen matches, depending 
on which toolboxes you have installed. For example, you will see 

ACOS Inverse cosine . 
ACOSH Inverse hyperbolic cosine . 
ASIN Inverse sine . 
ASINH Inverse hyperbolic sine . 
COS Cosine . 
COSH Hyperbolic cosine . 
SIN Sine . 
SINH Hyperbolic sine . 

1.6 Programming in MATLAB 

Ta ble 1.5-1 MATLAB Help funclions 

Function Use 

doc Di spl ays the start page of the documentation in the Help 
Browser. 

doc funcLion Displ ays thc documentation for the MATLAB function 
function. 

doc toolbox/ [unction Displays the documentati on for the specifi ed toolbox 
function. 

doc toolbox Displ ays the documentation road map page for the specifi ed 
toolbox. 

help Displays a li st all the functi on directories, with a description 
of the functi on category each represents. 

help function Displ ays in the Command window a descripti on of the spec­
ified function function . 

helpwin topic Displays the help text for the specified top i c inside the 
desktop Help Browser window. 

lookfor topic Di spl ays in the Command window a brief descripli on for 
all fun ctions whose descri pt ion includes the specified key 
word topic . 

type filename Displays the M-file filename without open ing it with a 
tex t editor. 

From thi s li st you can find the correct name for the sine functi on. Note that all 
words contai ning sine are returned, such as cosine. Adding -all to the lookfor 
functi on searches the entire help entry, not just the HI line. 

The doc Function Typing doc displays the start page of the documentation in 
the Help Browser. Typing doc function displays the documentation for the 
MATLAB function function. Typing doc toolbox/function di splays 
the documentation for the specified toolbox function. Typing doc toolbox 
displays the documentation road map page for the specified toolbox. 

Table 1.5- 1 summarizes the MATLAB Help functions. 

The Math Works Website 

If your computer is connected to the Internet, you can access The MathWorks, 
Inc. , the home of MATLAB. You can use electronic mail to ask questions, make 
suggestions, and report poss ible bugs. You can also use a solution search engine 
at The MathWorks website to query an up-to-date database of technical support 
information. The website address is http ://www.mathworks .com. 

1.6 Programming in MATLAB 

MATLAB has relational operators, conditional statements, and loops. Relational 
operators are used to make comparisons. The conditional statements allow us 
to write programs that make deci ions . A loop is a structure for repeating a 
calculation a number of times. Conditional statements and loops are best used in 
a script fil e, rather than in an interactive session. 

43 



44 

LOGICAL 
VARIABLE 

CHAPTER 1 An Overview of MATLAB 

Table 1.6-1 Relational operators 

Relational operator Meaning 

Less than. 
Less than or equal to. 
Greater than. 
Greater than or equal to. 
Equal to. 
NOI equal to. 

In this section we will limit our applications of. relational operat~rs , con~i ­
tional statements, and loops to the use of scalar van abl ~s. In. Chaptel 4 we wIll 
show how to use arrays to make decisions and computatlOns 111 loops. 

Relational Operators 

MATLAB has six relational operators to make comparis~~ls betwe,~n an:ays . 
These operators are hown in Table 1.6-1. Note that the equal t.o ope[~tor 
consists of two = signs, not a single = sign as you might expect. Th~ s1l1gle.= sIgn 
is the assignment operator in MATLAB . The result of a c~mpaf1son uSI.ng t~e 
relational operators is a logical value, which is either a 0 (If the companso~ IS 
false) or a 1 (if the comparison is true), and the result can be used as a logIcal 
variable, which is a variable containing logical values. 

For example, if x = 2 and y = 5 , typing z = x < y returns the value 
z = 1, because x islessthan y .Typing u = x==y reLurns thevalue u = Obe­
cause x does not equal y . To make the statements more readable, we can group the 
operations using parentheses. For example, z = (x < y ) and u = (x==y) . 
For the operators consisting of two symbols, there cannot be a space between them. 

The relational operators compare arrays on an element-by-element basis. 
The arrays must have the same dimension. The on ly exception occurs when we 
compare an array to a scalar. In that case, all the elements of the alTay are compared 
to the scalar. For example, suppose that x = [6 , 3 , 9] and y = [ 14 , 2 , 9] . 
The following MATLAB session shows some examples. 

(x < y) 

1 ° 
» z = (x > y) 

° 1 ° »z = (x - y ) 

1 1 ° 
» z = (x == y) 

° ° 1 

1.6 Programming in MATLAB 

»z = (x > 8 ) 

° ° 1 

We can also use the relational operators to address arrays . For example, with 
x = [6 , 3 , 9 , 11] and y = [14 , 2 , 9 , 13 ]' typing z = x(x<y) finds all 
the e lements in x that are less than the corresponding elements in y. The result 
is the array z = [ 6 , 11] . 

The find Function We can use the f ind function to create decision-making 
programs, especi aJJy when we combine it with the relational operators. The 
function find (x) computes an array containing the indices of the non.zero 
elements of the numeric array x. For example, consider the session 

[-2 , 0 , 4 ]; 
»y = find (x ) 
y = 

1 

The resulting array y = [1 , 3 J indicates that the first and third elements of x 
are nonzero. Note that the find functi on returns the indices, not the values. In 
the following session, note the difference between the result obtained by x (x<y) 
and the result obta ined by find (x<y) . 

»x = [6 , 3 , 9 ,11] ; y = [1 4 , 2 , 9 , 13]; 
» v a lue s = x(x<y) 
values = 

»how_ many 
how_many = 

2 
» indices 
indices = 

11 
length (values) 

find (x<y ) 

Thus two values in the array x are less than the corresponding values in the 
array y . They are the first and fourth values, 6 and II. To find out how many, we 
could also have typed l e ng th ( i n d ices ). 

In the above example, there were only a few numbers in the alTays x and y , 
and thus we could have obtained the answers by visual inspection . However, 
these MATLAB methods are useful either where there is so much data that visual 
inspection would be time-consuming, or where the values are generated by a 
program. 

45 

Analysis of Temperature Data 'W"9".' 
The arrays temp_A and temp_B given in the table contain the water temperature in 
degrees Fahrenheit of two ponds measured at noon for 10 days. Determine how many 
days the temperature of pond A was above 60°. On what days did this occur? Determine 



46 CHAPTER 1 An Overview of MATLAB 

the temperature of pond A on the days when it was greater than or equal to the temperature 

of pond B. 

Day 

Temperature in pond A 

Temperature in pond B 

• Solution 
The session is 

55 62 60 61 63 65 62 59 58 

54 59 62 64 68 68 62 59 57 

»A = [55 , 62 , 60 , 61. 63 , 65 , 62 , 59 , 58 , 56] ; 
»B = [54 , 59 , 62 , 64 , 68 , 68 , 62 , 59 , 57 , 53] ; 
»when = find(A>60) 
when = 

2 4 5 6 7 
»how_manyl = length (when) 

»above = A (A>=B) 
above = 

55 62 62 59 58 56 
»how_many2 = length (above ) 

10 

56 

53 

The temperature of pond A was above 60° on five days: days 2, 4, 5, 6, and 7. The 
temperature of pond A was above the temperature of pond B on six days . On those days 
its temperature was 55. 62, 62, 59, 58, and 56° respectively. 

Tes Yo 

T1.6-1 Suppoethat x = [-9 ,- 6 , 0 , 2 , 5] and y = [ -1 0 , -6 , 2 , 4 , 6]. 
What i the result of the following operations? Determine the answers by 
hand. and then use MATLAB to check your answers. 

(x < y) 

b. z (x > y) 

(x -= y) 
d. z (x == y) 

(x > 2) 

T1.6-2 Suppose that x = [ - 4 , - 1 , 0 , 2 , 10] and y = [- 5 , _ 2 , 2 , 5 , 9] . 

Use MATLAB to find the value and the indices of the elements in x that 
are greater than the corresponding elements in y. 

--- --- --- -

1.6 Programming in MATLAB 

Conditional Statements 

Thc MATLAB cOl7dilional statements allow us to write programs that make deci­
sions. Conditional statements contain one or more of the if , else, and el se i f 
sta tement.s. The end statement denotes the end of a conditional statemcnt. These 
conditional statements read somewhat like thei r English languagc equivalents. 
For example, suppose that x is a scalar, and that we want to compute y = .jX 
onl y if x ::: O. In Eng li sh, we could specify thi s a : If x is greater than or equal to 
zero, compute y fro m y = .jX, otherwi se, do nothing. The if statement in the 
fol lowing script fil e accompli shes thi s in MATLAB, assuming that the va ri ablc x 
already has a scalar va lue. 

if x >= 0 
Y = sqrt (x) 

end 

If x is negative, the program takes no action . 
When more than one action must occur as a resul t of a decision, we can use 

the else and elsei f statements. The statements after the else are executed 
if all the precedi ng i f and e ls e i f expression are fal se. The genera l form of 
the if statement is 

if expression 
commands 

e lseif expression 
commands 

else 
commands 

end 

The e lse and elseif statements may be omitted if not req uired. 
Suppose that we want to compute y from y = .jX forx ::: 0, and y = _.j=X 

for x < O. The following statements will ca lculate y, assuming that the variab le x 
already has a sca l ~u' value. 

if x >= 0 
y = sqrt (x) 

else 
y -sqrt(-x) 

end 

As another example, suppose that we want to compute y such lhat 

{

J5 J4.\- + 10 

y = lOx + 10 

10 

if x ::: 9 

ifO ,:Sx< 9 

if x < 0 

47 



48 CHAPTER 1 An Overview of MATLAB 

The following tatements will compute y, assuming that the variable x already 

has a scalar value. 

if x >= 9 
y = 15*sqrt (4x) + 10 

elseif 0 
y = 10*x + 10 

else 
y = 10 

end 

Note that the el sei f statement does not require a separate end statement. 
When the variable being tested (x in the previous sess ion) is an array rather 

than a scalar, the if -elsei f-else-end structure can give unexpected results 
if not used carefu ll y. This is discussed in Chapter 4. 

Loops 

A loop is a structure for repeating a calculation a number of times. Each repetition 
of the loop is a pass. There are two types of explicit loops in MATLAB: the for 
loop, used when the number of passes is known ahead of time, and the whi 1 e 
loop. used when the looping process must terminate when a specified condition 
is satisfied, and thus the number of passes is not known in advance. 

A simple example of a for loop is 

m = 0 ; 
x(1) = 10 ; 
for k = 2 : 3 : 11 

m = m+l ; 
x(m+l) = x(m) + k"2 ; 

end 

The loop variable k is initially assigned the value 2. During each success ive 
pass through the loop k is incremented by 3, and x is calculated until k ex­
ceeds I I . Thus, k takes on the values 2, 5, 8, I I . The variable m indicates the 
index of the array x. The program then continues to execute any statements follow­
ing the end statement. When the loop is finished the alTay x will have the values 

~e~~\l:~~~ ~~ 2) =39 , x (3 ) =1 03, x (4) =2 24 . The name of the loop variable 

The wh~le loop .i~ uS~d in cases where the looping process must terminate 
:-vhen a speclfie~ condition IS satisfied. and thus the number of passes is not known 
1Il advance. A simple example of a whi I e loop is 
x = 5 ; 
k = 0 ; 
while x < 25 

k = k + 1 ; 

y(k ) = 3 *x; 
x = 2 *x-l ; 

end 

1.6 Programming in MATLAB 49 

The loop vari able x is initially ass igned the val ue 5, and it keeps this value until 
the statement x = 2 *x - 1 is encountered the first time. Its value then changes 
to 9. Before each pass through the loop, x is checked to see if its va lue is less 
than 25. If so, the pass is made. If not, the loop is skipped and the program 
continues to execute any statements following the end statement. The va ri ab le x 
takes on the values 9, 17, and 33 within the loop. The resulting array y contai ns 
the val ues y ( 1) = 15, Y ( 2) = 27, Y ( 3) = 51. 

Write a script fi le to plot the function: 

Plotting with a for Loop 'wilel .'" 

{

15.J4X + 10 x >=9 

y = lOx + J 0 0 :s x :s 9 

10 x < 0 

for - 5 :s x :s 30. 

• Solution 

We choose a spacing dx = 35/ 300 to obtain 30 1 points, which is suffi cient to obtain a 
smooth plot. T he script file is the fo ll owing: 

dx = 35/300 ; 
x = [- 5 : dx : 3 0 1 ; 
for k = 1 : length (x) 

if x (k) >= 9 
y(k) = 15*sqrt(4*x(k)) + 10 ; 

elseif x(k) >= 0 
y(k) 10*x(k) + 10 ; 

else 
y (k) 10 ; 

end 
end 
plot (x , y) , xlabel ( ' x ' ) , ylabel ( ' y ' ) 

Note that we must u e the index k to refer to x within the loop, as x (k) . 

Series Calculation with a for Loop ,",,,ee'M 
Write a sc ript file to compute the sum of the first 15 terms in the serie~ 5k2 - 2k. k = 
I. 2, 3 .... . 15. 



50 

'N'B'e,., 

''''''9'''. 

CHAPTER 1 An Overview of MATLAB 

• Solution . t evaluate the expression 5k2 
- 2k, we can use 

Because we know how many tIlnes we mu:. ' 
a for loop. The script file is the fo llow1l1",. 

total = 0 ; 

for ~o~a~ : :5 5*kA2 _ 2*k + total ; 

~~~p( 'The sum for 15 terms is :' ) 

disp (total)

The answer is 5960.

.' • 0 to use the variable sum, instead of total
Note that It ml~ht be temptJOe~er sum is a built-in MATLAB function, so

to represent the senes sum. How ld 'k with total replaced by sum, it is
although t1~i s particL:lar p.ro;raI~~ ~~~un~~~n names as variables. Before creat~ng
good practIce to avotd USlIl", bm t ~e if total is used by MATLAB by typll1g
the program, you can check tO

I
s . _ 0 which means that the variable

exist ('total '). The resu tIS ans - ,
total does not exist and the name is not used by MATLAB .

Series Calculation with a while Loop

Write a script file to determine how many terms are required for .the sum 0: th~ seri es
5k2 _ 2k , k = 1, 2, 3, ... to exceed 10.000. What i the sum for tl1l5 many tel ms .

• Solution . ' 5e _ ? k we
Because we do not know how many times we must evaluate the expresSIOn - ,
use a while loop. The script file is the following:

total = 0;
k = 0 ;
while total < 1e+4

k = k + 1 ;
total = 5*kA2 - 2 *k + total;

end
disp (' The number of terms is :')
disp(k)
disp('The sum is :')
disp (total)

The sum i 10,203 after 18 terms.

Growth of a Bank Account

Determine how long it will take (0 accumulate at least $10.000 in a bank account if you
deposit $500 initially and $500 at the end of each year, if the account pays 5 percent annual
interest.

1.6 Programming in MATLAB

• Solution

Because we do not know how many years it will take, a while loop should be used. The
script fil e is the fo ll ow ing.

amount = 500 ;
k=0 ;

while amount < 10000
k = k+1 ;

amount = amount*1.05 + 500 ;
end
amount

The final results are amount 1.078ge+004, or $ 10,789, and k 14, or
14 years.

The Editor/Debugger is capable of automatically indenting to improve the
readability of a file. For example, if, else, elseif, for, and while struc­
tures do not require indenting, but doing so enables the reader to identify the
structure more easily. The EditorlDebugger automatically indents the lines after
if, else, elsei f , for , and while statements when you press the Enter key.
It continues to indent until the corresponding end statement is reached. It also
uses syntax highlighting to identify key statements by di splaying them in different
colors .

Table 1.6-2 summarizes these statements. Chapter 4 covers these topics in
greater depth, and also introduces logical (Boolean) operators and string variables.
More information on script files, function files , and the Editor/Debugger is given
in Chapter 3.

Test Your Understanding

T1.6-3 Write a script file using conditional statements to evaluate the following
function, assuming that the scalar variable x has a value. The function
is y = .JX2+1 for x < 0, y = 3x + 1 for 0 S x < 10, and y =
9 sin(5x - 50) + 31 for x :::] O. Use your file to evaluate y for x = -5,
x = 5, and x = 15, and check the results by hand.

T1.6-4 Use a for loop to determine the sum of the first 20 terms in the series
3k2

, k = 1,2,3, . .. 20. (Answer: 8610.)

T1.6-5 Use a wh i le loop to determine how many terms in the series 3k2 , k = I,
2, 3, ' " are required for the sum of the terms to exceed 2000. What
is the sum for this number of terms? (Answer: 13 terms, with a sum
of 2457.)

51

52

MODEL

CHAPTER 1 An Overview of MATLAB

Table 1.6-2 Some MATLA B programming statements

Command

else
elseif
end
find(x)
for
if
while

Description

Delineates an alternate block of commands.
Conditionally executes an alternate block of commands.

Terminate for , whi\e~ a.n~ ~h~ ~~a~~~::I~t; ~he nonzero elements of the array x.

~~~:~~~:~~l~n~:~~ ~~~~:~;~;d number of times. 
Executes commands conditionally. 
Repeats commands an indefinite number of times. 

1.7 Problem-Solving Methodologies 

Designing new engineering devices and syste~ls re~uires a variety ?f prob.le~­
solving skill. (This variety is what keeps englIleenng f~'om becommg bOrIng.) 
When solving a problem, it is important to plan your actIOns ahead of time. You 
can waste many hours by plunging into the problem without a plan of attack. Here 
we pre ent a plan of attack, or methodology, for solving e.ngineering problem~ in 
general. Because solving engineering problem often reqUIres a computer solutlOn 
and because the examples and exercises in this text require you to develop a 
computer solution (using MATLAB), we also discuss a methodology for solving 
computer problems in particular. 

Steps in Engineering Problem Solving 

Table 1.7- 1 summarizes the methodology that has been tried and tested by the 
engineering profession for many years. These steps describe a general problem­
solving procedure. Simplifying the problem sufficiently and applying the appro­
priate fundamental principles is called modeling, and the resulting mathematical 
description is called a mathematical model, or just a model. When the modeling 
is finished, we need to solve the mathematical model to obtain the required an­
swer. If the model i highly detailed, we migbt need to solve it with a computer 
program. Most of the examples and exercises in this text require you to develop 
a computer olution (using MATLAB) to problems for whicb the model has al­
ready been developed. Thus we will not always need to use all the steps shown 
in Table 1.7-1. More discussion of enaineerina problem solvina can be found in 
[Eide, 1998]: 0 0 0 

Example of Problem Solving 

Consider the following simple example of the steps involved in problem solving. 
Suppose yo~ work fO.r a company that produces packaging. You are told that a 
new packagIng matenal can protect a package when dropped, provided that the 

' Reference, appear in Appendix C. 

1.7 Problem-Solving Methodologies 

Ta ble 1.7-1 Steps in engineering problem solving 

1. Understand the purpose of the problem. 

2. Collcct the known informati on. Rea lizc that some of it mj ghtlater be 
round unnecessary. 

3. Determine what informati on you must find . 

4. Simpli fy the problem onl y enough to obtain the required information . 
State any assumptions you make. 

5. Draw a sketch and label any necessary variables. 

6. Determine which fundamental principles are applicable. 

7. Thin k generally about your proposed soluti on approach and consider 
other approaches before proceeding with the detail s. 

8. Label each step in the solution process. 

9. If you solve the problem with a program, hand check the results using a 
simple version of the problem. Checking the dimension and units and 
printing the results of intermediate steps in the caJculation sequence can 
uncover mistakes. 

10. Perform a "reality check" on your answer. Does it make ense? Estimate 
the range of the expected result and compare it with your answer. Do not 
state the answer with greater precision than is justified by any of the 
foll owing: 
(a) The precision of the given information. 
(b) The simplifying assumptions. 
(c) The requirements of the problem. 

Inrerpret the mathematics. If the mathematics produces multiple answers, 
do not discard some of them without considering what they mean . The 
mathematics might be trying to tell you something, and you might mi ss 
an opportunity to discover more about the problem. 

package hits the grou nd at less than 25 ft/sec . The package's total weight is 20 Ib, 
and it is rectangular with dimensions of ] 2 by 12 by 8 in. You must determine 
whether the packaging material provides enough protection when the package i 
carried by delivery persons. 

The steps in the solution are as follows: 

1. Understand the pUlpose of the problem. The implication here is that the 
packagi ng is intended to protect against being dropped while the delivery 
person is carrying it. It is not intended to protect against the package falling 
off a moving delivery trllck. In practice, YOll should make slIre thai the 
person giving you this assignment is making the same assumption. Poor 
communication is the cause of many errors! 

2. Collect the known information. The known information is the package 's 
weight, dimensions, and maximum allowable impact speed. 

3. Determine what information you must find. Although not explicitly stated. 
you need to determine the maximum height from which the package can be 

53 



54 
CHAPTER 1 An Overview of MAT LAB 

. u You need to find a relationship between the speed 
dr~pped without da~:oe~t which the package is dropped. . 
of Impact and the heloht, h to obtain the required injOrJ1:.atlOl1. State 

4. Simplify the ~roblem only el1o~;~e following assumptions will sl1l1pl1fy 
any assumptIOnS you l71a~e. with the problem statement as we 
the problem and are consistent 

understand it: . t with no vertical or hori zontal 
a. The package is dropped from les 

velocity. ble (as it might when dropped from a .moving 
b. The package does ~ot tu~ . d' te that the package is not thm and 

truck) . The given dlmens.JOns 111 Ica 
thus will not "flutter" as It fa.II~. 

c. The effect of air drag is ne~ltglble. . could drop the package from is 
d. The greatest heigl:t the dehltvery pelsol~f a delivery person 8 ft tall !) . 

6 ft (and thus we lunare t e eXistence . 
e. The acceleration gOdue to gravity is constant (because the di stance 

dropped i only 6 ft). .' k t h 
. ketch and label any necessary variables. Figure 1.7-1 ~s as e c 

5. ~;~: ~i:uation , showi ng the height h of the package, its mass In, Its speed v, 

and the acceleration due to gravity g. . 
6 Determine whichjundal71ental principles are applicable. Becaus;thls 
. roblem involves a mass in motion, we can apply Newton's laws; rom 

Ph sic we know that the following relations resu.1t from Newt.on s l aws and 
ftl{ basic kinematics of an object falling a short distance undel the mfluence 
of gravity, with no ~ir drag. or initial velocllty: 2 

Heiuht versu tlme to lI11pact ti: h = 2 gt i · 

b. lmp:ct speed Vi versus time to impact: Vi = gti ' 

c. Conservation of mechanical energy: mgh = ~mvr 

Ground 

Figure 1.7-1 Skelch of Ihe 

dropped-package problem. 

1.7 Problem-Solving Methodologies 

7. Think generally aboul your proposed solution approach and consider olher 
approaches before proceeding wilh Ih e delails. We could solve the second 
equ ation ror I i and substitute the result into the first equation to obtain the 
relati on between h and Vi. This approach would also all ow us to find the 
time to drop I i· However, thi s method involves more work than necessary 
because we need not find the value of Ii . The most efficient approach is to 
solve the third relation for h. 

h=~~ 
2 g 

(1.7- 1) 

Notice that the mass m cancels out of the equation. The mathematics just 
told us something! It told us that the mass does not affect the relation 
between the impact speed and the height dropped. Thus we do not need the 
weight of the package to solve the problem. 

8. Label each step in I.he solution process. Thi s problem is so simple that 
there are on ly a few steps to label: 

Basic principle: conservation of mechanical energy 

I v2 

h= -~ 
2 g 

b. Determine the val ue of the constant g: g = 32.2 ft/sec2 . 

c. Use the given information to perform the calculation and round off the 
result consistent with the precision of the given information: 

1 252 

h = -- =9.7ft 
232.2 

Because this text is abollt MATLAB, we might as well use it to do this 
simple calculation. The session looks like this: 

»g=32 . 2 ; 
»vi=25 ; 
»h=vi "'2/ (2*g) 
h = 

9 . 7050 

9. Check the dimensions and units. This check proceeds as follows, using 
(1.7-1) , 

.. [1 J [ftlsec]2 [ft] 2 [sec]2 
[tt] = 2: [ft/sec2] = [secF [fi] = [ft] 

which is correct. 

10. Peljo/'m a real it}' check and precision check 011 the answer. If the 
computed height were negative, we would know that we did something 
wrong. If' it were very large, we might be suspiciolls. However, the 
computed height of 9.7 ft does not seem unreasonable. 

55 



56 CHAP T ER 1 An Overview of MATLAB 

Table 1.7- 2 Steps for developing a computer solution 

1. State the problem concisely. ., .,. " 
2. Specify the data to be used by the program. ThiS IS the Inp:It.. " " 
3. Specify the information to be generated by the program. ThiS IS the ~utput.. : 
4. Work through the solution steps by hand or with l! calcul ator; use a sllnplel set of 

data if nece sary. 
5. Write and run the program. 
6. Check the output of the program wi th your hand soluti on. 
7. Run the program with your input data and perform a reality c h~ck on theout~ut. 

8. If you will use the program as a general tool in t~e future, test It by running It for 
a range of reasonable data values; perform a reality check on the results. 

If we had used a more accurate value for g, say g = 32.17, the n we 
would be j ustified in rounding the result to h = 9.7 J. However, given the 
need to be conservative here, we probably should round the answer down to 
the nearest foot. 50 we probably should report that the package wi ll not be 
damaged if it is dropped from a height of less than 9 ft. 

The mathematics told us that the package mass does not affect the 
answer. The mathematics did not produce mU ltiple answers here. However, 
many problems involve the solu tion of polynomials with more than one 
root; in such cases we must carefuJly examine tbe significance of each. 

Steps for Obtaining a Computer Solution 

If you use a program such as MATLAB to solve a problem, follow the steps 
shown in Table 1.7-2. More di scussion of modeling and computer solutions can 
be found in [5tarfield, 1990J and [Jayaraman, 199 1). 

MATLAB is useful for doing numerous complicated calculations and then 
automatically generating a plot of tbe resul ts. The following example illustrates 
the procedure for developing and testing such a program. 

'NN"P' Piston Motion 

Figure 1.7-2a shows a piston . connecting rod, and crank for an internal combustion en­
gine. When combu tion occur . it pushe the piston down. Thi s motion causes the con­
necting rod to turn the crank. which cause the crankshaft to rotate. We want to develop a 
MATLAB program to compute and plot the di stance d traveled by the pi ston as a function 
of the angle A, for given values of the lengths L t and L

1
• Such a plot would help the 

engineers designing the engine to select appropriate values for the lengths L 1 and L
2

. 

We are told that typical values for these lengths are L 1 == I ft and L? == 0.5 ft. Because 
the mechanism's motion is symmetrical about A == 0, we need conside; only angles in the 
range 0 ::: A ~ 180'. Figure 1.7-2b shows the geometry of the motion. From thi s fi gure 
we can use tngonometry to write the fo llowing expre sian for d: 

d == L I cos B + L2 cos A ( 1.7-2) 

1.7 Problem-Solving Methodologies 

Piston 

Crank 

(a) (b) 

Figure 1.7-2 A piston, connecting rod, and crank for an 
in ternal combustion engine. 

Thus to compute d given the lengths L 1 and L2 and the angle A, we must first determine 
the angle B. We can do so using the law of sines, as fo ll ows: 

Solve this for B: 

sin A sin B 

L?s in A 
sinB ==----

LI 

. _I (L2sin A ) B= 5111 --
L I 

( 1.7-3) 

Equ ations (1.7-2) and (1.7- 3) form the basis of our calculations. Develop and test a 
MATLAB program to plot d versus A. 

• Solution 

Here are the steps in the solution, following those listed in Table 1.7-2. 

1. State the problem concisely. Use equation (1.7-2) and (1.7-3) to compute d; use 
enough values of A in the range 0 ::: A ::: 180' to generate an adequate (smooth) plot. 

2. Specify the input data to be used by the program. The lengths L J and L2 and the 
angle A are given. 

57 





60 CHAPTER 1 An Overview of MATLAB 

. . a a' instead of radians, a common mi stake in prograll1n~in.g 
Besl~es uSln" de"tees . .' mbol (*) between two variables. Thi s IS 

i forgettlIlg to put the muILIplI~atIOl~s~ writina xy in algebra, rather than x *y. 
easy to overlook because we ate use o . " . 2 is another 
Foraettina to enclose function arguments In parentheses, as S In , 

con~mon 711istake, instead of typing sin (2) . 

1.8 Summary 
You should now be fami li ar wi th basic operati ons in MATLAB . These include 

• Starting and exiting MATLAB, . 
• Computing simple mathematica l expressions, and 
• Managing variables. 

You should also be familiar with the MATLAB menu and toolbar system. 
The chapter gives an overview of the various types of problems MATLAB 

can solve. These include 

• Using arrays and polynomials, 
• Using relational operators, 
• Creating plots, 
• Solving linear algebraic equations, 
• Creating M-file programs, 
• Using conditional statements, and 
• Us ing loops. 

The following chapters give more deta il s on these topics. You can also obtain 
more information using the MATLAB Help System. 

You should be familiar with the methodology used for problem solving, and 
the specific methodology used for solving problems by computer, as di scussed in 
Section 1.7 . 

Table 1.8- 1 is a guide to the MATLAB command and features introduced 
in thi s chapter. 

Table 1.8-] Guide to commands and fea tures introduced in 
this chapter 

Scalar ari thmetic operations 
Order of precedence 
Commands for manag ing the work session 
Special variables and constants 
Some commonly used mathematical functions 
System. directory, and fi le command 
Some MATLAB plotting commands 
Input/output commands 
MATLAB Help functions 
Relational operators 
Some MATLAB programming statements 

Table 1.1 - 1 
Table 1.1 -2 
Table 1.1-3 
Table 1.1-4 
Table 1.3-1 
Table 1.3-2 
Table 1.3-3 
Table 1.4-2 
Table 1.5- 1 
Table 1.6- 1 
Table 1.6-2 

Key Terms with Page References 
Arguillent, 9 
Array, 19 
Array index, 20 
ASC II fil es, 22 

Ass ignillent operator, I J 

COlllllland window, 7 
COllllllent, 30 
Conditiona l stateillent, 47 
Current directory, 17 
Data file, 22 
Data marker, 27 
Debugging, 33 
Desktop, 6 
Editor/Debugger, 29 
Global va ri ab le, 30 
Graphics window, 25 

Problems 

Local variable, 32 

Logica l variable, 44 
Loop, 48 
MAT-fi les, 22 
Model, 52 
Overlay plot, 26 
Path , 23 

Precedence, 
Relational operator, 43 
Scalar, 9 
Script file, 29 
Search path, 23 
Sess ion, 8 
String variable, 37 
Variable, 8 
Workspace, 12 

Problems 

Answers to problems marked with an asterisk are given at the end of the text. 

Section 1.1 

1. Make sure you know how to start and quit a MATLAB session. Use 
MATLAB to make the following calculations, using the values : x = 10, 
Y = 3. Check the results usi ng a calculator. 
a. u = x + y b. v = xy c. w = xly 
d. z = sin x e. r = 8siny f s = 5sin(2y) 

2.* Suppose that x = 2 and y = 5. Use MATLAB to compute the following. 

yx3 3x 3 x5 
a. x _ y b. 2Y c. 2xy d. x

5 
_ I 

3. Suppose that x = 3 and y = 4. Use MATLAB to compute the following, 
and check the results with a calculator. 

a. ~ -x _15)-1 b. 3nx 2 c. ~ 
\: 4x - 8 

4(y - 5) 
d. --

3x - 6 
4. Evaluate the following expressions in MATLAB for the given value of x. 

Check your answers by hand. 

a. y = 6x 3 + ~, x = 2 
x 

(4xf 
c. y=~, x = 10 

x 
b. y = 43, 

d. y = 2
sinx 

5 . 

x =8 

x=2 

61 



62 C HA P TER 1 An Overview of MATLAB 

. l c d and f are scalars, write MATLAB 
5. Assu ming that the vanab les~ , 'J, 'th ~ fo llowina express ions. Test your 

statements to compute and d ls fl ~~ b _ 2 34 co= 0.72, d = 0.8 1, 
tatement fo r the values a = . , - . . 
f= 19.83. 

a C 

x= l +h+j2 
b-a 

s=~ 

I 

6. Use MATLAB to calculate 

I f2 
Y = ab-­

c 2 

3 ? 45 

4(6)(7-) + 73 _ 145 
48.2(55) - 93 

b. 53 + ]42 

272 + 319
4

/
5 + 60(14)-3 

4 5 

Check your answers with a calculator. . . 
7. The volume of a sphere is given by V = 4n r3 13, wh~re r IS the rad ius. 

Use MATLAB to compute the radi us of a sphere havlllg a volume 
30 percent greater than that of a sphere of radi us 5 ft . 

8.* Suppose that x = -7 - 5i and y = 4 + 3i . Use MATLAB to compute 
a. x +y b. xy c. xly 

9. Use MATLAB to com pute the fo llowi ng. Check your answers by hand. 

(3 + 6i)(-7 - 9i) b. 
5 +4i 

5 - 4i 
3 . 3 
~' d ~ 

10. Evaluate the fo ll owing expressions in MATLAB, for the values x = 5 + 8i , 
.r = -6 + 7 i. Check you r answers by hand. 

u = x + y b. v = x y c. w = xl )' 

d. ~ = e" e. r = fi 
11. Engineers often need to estimate the pressure exerted by a gas in a 

container. The ideal gas law provides one way of making the estimate. 
The law i. 

1/RT 
p= ­

V 

More accurate estimates can be made with the va1/ de,. Waals equation: 

Problems 

where the term JIb is a correc tion for the vo lume of the molecules, and 
the term ClJl

2 I V" is a correcti on for molecul ar allrac ri ons. The va lues of 
a and b depend on the type of gas. The gas constant is R, the absolule 
temperature is T , the gas volume is V, and the number of gas molecules i.~ 
ind icated by n. If 11 = I mol of an idea l gas were confined to a vo lume of 
V = 22.4 1 L at O°C (273.2 K). it would exert a pressure of I atmosphere. 
In these units , R = 0.08206. 

For chlorine (Cl2), a = 6.49 and b = 0. 0562. Compare the prcss ure 
estimates given by the ideal gas law and the van der Waals equation for 
I mol or CI2 in 22.4 1 L at 273.2 K. What is the main cause of the 
difference in the two pressure es timates: the molecular volume or the 
molecul ar attractions? 

12. The idea l gas law relates the pressure P, volume V, absolute 
temperature T , and amount of gas n. The law is 

nRT 
P =--

V 
where R is the gas constant. 

An engineer mLlst des ign a large natural gas storage tank to be 
expandable to maintain the pressure constant at 2.2 atmospheres. In 
December when the tempera ture is 4-F (- 15 C), the vol ume of gas in the 
ta nk is 28,500 1't3 . What wi ll the vo lume of the ame quantity of gas be in 
July when the temperature is 88-F (3 1 C) ? (Hint: Use the fact that 11 , R, 
and P are constan t in thi s problem. Note also that K = C + 273 .2.) 

Section 1.3 

13. Suppose x takes on the va lues x = I . 1.2, 1.4, ... , 5. Use MATLAB to 
compute the array y that resul ts fro m the function y = 7 sin(4x ). Usc 
MATLAB to determine how many elements are in the array y . and the 
value of the th ird element in the array y . 

14. Use MATLAB to determ ine how many elements are in the array 
[sin (-pi/2) : 0 . 05 : cos (0) J. Use MATLAB to determine the 10th 

elemcnt. 

15. Use MATLAB to calculate 

e(-2. 1)' + 3.47 10g( 14J + .1287 

b. (3.4)710g( 14) + .\Y287 

? (4.12n) cos- --
6 

(4. 12n) 2 
d. cos - 6-

Check your answers with a ca lculator. 

63 



6 4 CHAPTER 1 An Overview of MATLAB 

16. U e MATLAB to calculate 

a. 6JT tan- I ( 12.5) + 4 
b. 5 tan[3 sin - I ( 13/ 5)] 

d. 510g(7) c. 5 In(7) 

Check your answers with a calcu lator. 
17. The Richter scale is a measure of the intensity of an earthquake. !he 

energy E (in joules) released by the quake I related to the magnitude 

M on the Richter scale as follows. 

E = 104.4 1 01.5M 

How much more energy is released by a magnitude 7.3 quake than a 5 .5 

quake? 
18.* Use MATLAB to fi nd the roots of 13x3 + lS2~2 - IS;x + 2~03 = ,0 . 

19. Use MATLAB to fi nd the roots of the polynomial 36x + 12x - 5x + 10. 

20. Determine which search path MATLAB uses on your computer. If you use 
a lab computer as well as a home computer, compare the two search paths. 
Where will MATLAB look for a user-created M-file on each computer? 

21. U e MATLAB to plot the functi on T = 6 In t - 7eO.21 over the in terval 
I < t < 3. Put a title on the plot and properly label the axes. The vari able 
T ~epr;sen t temperature in degrees Celsius; the variable t represents time 
in minutes. 

22. Use MATLAB to plot the functi ons u =2 10g lO (60x+ I) and v=3 cos(6x) 
over the interval ° ::: x ::: 2. Properly label the plot and each curve. The 
vari ables u and v represent speed in miles per hour; the variable x 
represents di stance in miles. 

23. The Fouri er series is a series representati on of a peri odic function in terms 
of sines and co ines . The Fourier seri es representation of the functi on 

I(x) = {I ° < x < JT 
- 1 -JT < x < ° 

is 

4 (Sin x sin 3x sin 5x sinh .. . ) 
-;; '+-3-+-5-+-7-+ 

Plot on the same graph the function I(x) and its series representation 
using the four terms shown. 

24. A cycloid is the curve described by a point P on the circumference of a 
circular wheel of radius r rolling along the x axis. The curve is described 
in parametric form by the equations 

x =r(¢ -sin ¢) 

y =r(l -co ¢) 

U e these equations to plot the cycloid for r = 10 inches and ° S ¢ ::: 47l'. 

25. Use MATLAB to solve the following set of equations . 

7x + 14y - 6z = 95 

12x - 5y + 9z = - 50 

- 5x+ 7y+ J5z = 145 

Problems 

26. It is known that the function y = ax 3 + bx 2 + cx + d passes througb 
the following (x , y) points: (- I , S), (0 , 4) , (J, J 0) , and (2, 68). Use the 
MATLAB left divi sion operator / to compute the coefficients a , b, c, 
and d by writing and solving four linear equations in terms of the fo ur 
unknowns a, b, c, and d. 

Section 1.4 

27. Create, save, and run a scri pt fi le that olves the following set of equations 
for given values of a, b, and c. Check yo ur fi le for the case a = 95, 
b = -50, and c = 145 . 

7 x + 14 y - 6z = a 

12x - 5y + 9z = b 

-5x+7y+ 15z =c 

28. A fence around a fie ld is shaped as shown in Figure P2S . It consists of a 
rectangle of length L and width W, and a ri ght triangle that is symmetri cal 
about the central hori zontal axis of the rectang le. Suppose the width W is 
known (in meters), and the enclosed area A is known (in square meters). 
Write a M ATLA B script fil e in terms of the g iven variables W and A to 
determine the length L required so that the enclosed area is A. Al so 
determine the total length offence required. Test yo ur script for the values 
W = 6 m and A = SO m2. 

L 

wD 
Figure P28 

29. The four- sided fi gure shown in Figure P29 consists of two triangles having 
a common side a. The law of cosines fo r the top tri angle states that 

a2 
= bT + cT - 2bl CI casA l 

and a similar equation can be written for the bottom tri ang le. Develop a 
procedure for computing the length of side C2 if you are given the lengths 
of sides b l , b2 , and C I , and the angles A I and A2 in degrees. Write a cript 
file to imple ment thj s procedure. Test your cript using the following 
va lues: b l = ISO m. b2 = 165 m, CI = lIS m, AI = 1200 and A2 = 100 . 

65 



CHAPTER 1 An Overview of MATLAB 

C1 

8 1 

Figure P29 

30. A fenced enclosure consists of a rectangle of length L and widt~ 2 R , and a 
semicircle of radiu R, as shown in Figure P30. The enclosure IS to be 
bu il t to have an area A of 1600 ft2. The cost of the fence is $40 per foot for 
the curved porti on, and $30 per foot for the straight sides. Use a ~lo t to 
determine with a resolution of 0.01 ft the values of R and L reqUIred to 
minimize the total co t of the fence. Also compute the minimum cost, and 
use a plot of the cost versus R to analyze the sensitivi ty of the cost to a 
± 20 percent change in R from its optimum value. 

I---L--4 2RCD 
Figure P30 

Section 1.5 

31. Use the MATLAB help facilities to find information about the following 
topics and symbols: plot, label , cos, cosine, :, and * . . 

32. Use the MATLAB help facilities to determine what happens if you use the 
sqrt function with a negative argument. 

33. Use the MATLAB help facilities to determine what happens if you use the 
exp function with an imaginary argument. 

Section 1.6 

34. Suppose that x = [-15 , - 8 , 9 , 8 , 5] and y = [- 2 0 , 12 , - 4 , 8 , 9 ] . 
What is the result of the following operations? Determine the answers by 
hand. and then u e MATLAB to check your answers. 
a. z (x < y) 

b. z (x > y) 

c. z (x-= y) 

d. z = (x == y) 

z = (y > -4) 

Problems 

35. Sup posethatx = [-15 ,- 8 , 9 , 8 , 5] and y = [-20,12 ,- 4 , 8 , 9]. 
Use M ATLAB to find the values and the indices of the e lements in x that 
are greater than the corresponding e lements in y . 

36. Write a script fil e using conditional statements to evaluate the following 
fun cti on, ass umi ng that the scalar variable x has a value. The fun ction is 
y = eX+ I for x < - 1, y = 2 + cos (n x) for - 1 S x < 5, and 
y = 10(x - 5) + 1 for x :::: s. Use your fi le to evaluate y for x = - 5, 
x = 3, and x = J 5, and check the results by hand. 

37. Use a for loop to plot the functi on given in Problem 36 over the interval 
- 2 S x S 6. Properly label the plot. The variable y represents height in 
kilometers, and the variable x represents time in seconds. 

38. Plot the function y = 10(1 - e- x
/
4

) over the interval 0 S x S xlllax , using 
a while loop to determine the value of xlll ax such that y(xmax ) = 9.8. 
Properl y label the plot. The variable y represents force in newtons, and the 
variable x represents time in seconds. 

39. Use a for loop to determine the sum of the first 10 terms in the series sk 3, 

k = 1, 2,3 , ... 10. 

40. Use a while loop to determine how many terms in the series 2k, k = 1,2, 
3, . . . , are required for the sum of the terms to exceed 2000. What is the 
sum for this number of terms? 

41. One bank pays 5.5 percent annual interest, while a second bank pays 4.5 
percent annual interest. Determine how much longer it will take to 
accumulate at least $50 ,000 in the second bank account if you deposit 
$ 1000 initiall y, and $ 1000 at the end of each year. 

Section 1.7 

42. a. With what initial speed must you throw a ball vertically for it to reach 
a height of 20 ft? The ball weighs 1 lb. How does your answer change 
if the ball weighs 2 lb? 

b. Suppose you wanted to throw a steel bar vertically to a height of 20 ft. 
The bar weighs 2 lb. How much initial speed must the bar have to 
reach thi s height? Discuss how the length of the bar affects your 
answer. 

43. Consider the motion of the piston discussed in Example J .7-1 . The piston 
stroke is the total distance moved by the piston as the crank angle varies 
from 0° to 1800

• 

a. How does the piston stroke depend on L I and L2? 
b. Suppose L2 = 0.5 ft. Use MATLAB to plot the piston motion versus 

crank angle for two cases: L 1 = 0.6 ft and L 1 = 1.4 ft. Compare each 
plot with the plot shown in Figure 1.7-3. Discuss how the shape of the 
plot depends on the value of L I. 

67 



Pllmo ((ll/rI!'n oj StnUlllplll'ft: Corp(lrolW1L 

Engineering in the 21 st Century. · · 

Innovative Construction 

e tend to remember the great civi li zations. of the past in p.art by their 

W publ ic works, such as the Egyptian pyramIds and the medIeval c~the­
drals of Europe, which were technica ll ~ chall englI1g to create. Pel haps 

it is in our nature to "push the limits," and we admI re others .who dO.s.o. The chal­
lencre of innovati ve construction continues today. ~s space 1I1 our cltles .. becomes 
sc;ce, many urban planners prefer to build vertl c'~ ll.y rather than ~o l\ zon ta l~y. 
The newest tall buildings push the limits of our abIlltJes, not only 1I1 s t~uc tlll a l 
des ign but also in areas that we might I~O t think ~f, such as elevator deSIgn and 
operation, aerodynamics, and constructIon techl1lques. The pho~o ~bove s ho.~s 
the I I 49-ft-high Las Vegas Stratosphere Tower, the tallest ?b~el vatI on towel 111 

the United States . It requ ired many in novative techniques 111 Its assembly. The 
constructi on crane shown in use is 400 ft tall. 

Des igners of bui ldings, bridges, and other structures wi ll use new technolo­
cries and new materi als. some based on nature's designs. Pound for pound, splder 
~il k is stronger than steel, and structural engineers hope to use cables of synthetic 
spider silk fibers to build earthquake-resistant suspension bridges. Smart struc­
tures, which can detect impending fail ure from cracks and fa tigue, are now close 
to reality. as are aClive structures that incorporate powered devices to counteract 
wind and other fo rces. The MATLAB Financial toolbox is useful for financi al 
evaluation of large construction projects, and the MATLAB Partial Differenti al 
Equation toolbox can be used for structura l design .• 

CHAPTER 

Numeric, Cell, and 
Structure Arrays 
O UT L IN E 

2.1 Arrays 

2.2 Multidimensional Arrays 

2.3 Element-by-Element Operations 

2.4 Matri x Operations 

2.5 Polynomi al Operations Using Arrays 

2.6 Cell Arrays 

2.7 Structure Arrays 

2.8 Summary 

Problems 

The MATLAB sess ions in Chapter I used scalar arithmetic to acquain t you with 
the MATLAB Command window, its Figure window, and a tex t editor window. In 
this chapter we beg in to explore MATLAB commands in more depth. One of the 
strengths of MATLAB is the capability to handle collec tions of number , ca lled 
arrays, as if they were a single vari able. For example, when we add two arrays 
A and B by typing the si ngle command C = A + B, MATLAB automati ca lly 
adds all the corresponding numbers in A and B to produce C. In most other 
programming languages, thi s operation requires more than one command. The 
array-handling feature means that MATLAB programs can be very short. Thus 
they are easy to create. read, and document. 

The MATLAB array capabilit ies make it a natural choice for engineering 
problems that require a set of data analyzed. If you have been using a spreadsheet 
for da ta analysis, you may fi nd that MATLAB is an eas ier and more powerful 
tool fo r such work. 

2 

69 



I 
70 

CHAPTER 2 Numeric, Cell , and Structure Arrays 

' . . . d'na block in MATLAB. We explain h?w to cre-
The array I th~ ba~ l c but! Ih~W to use an important array operatl.o n~ ca!led 

ate, address, and ed it aIr~y ~ an~o erfonn addition, subtraction, mul tIplication, 
e/ement-by-e/ell1el/.t opel ~t lOn , I~e ractica l problems. We then introduce ma­
divi ion, and exponentl a:lOn :'~o:~led ~ifferentlY than element-by-element oper­
trix operatIOns, whl ~h ale pe . . ns You probably have performed algebra 
ations, and have their own appiI cat l ~ .. I to use arrays in MATLAB to do 
with polynomials by hand. We ~xp a1l1 lOW 

polynomial algebra and root fi nd1l1g. '1 bl 'n MATLAB 7: 
The fo llowing classes of arrays are now aVaI a e I 

numeric 

So far we have used only numeric arrays, which are arrays cont~i:ing ~nl.~ 
numeric values. Within the numeric class are the ~ubclas~es Single .(s1l1b le .pIecl 
sion), double (double precision), int8, in:J6, and 11:132 (s lgn~d 8-bl~, 16-blt, ~n? 
32-bit integers) , and uint8, uintl6, and utnt~2.(unSl~ned 8-blt, 16-blt, and 3~. bit 
integers) . A character array is an array conta1l1111g stnngs. The elements of 10b lcal 
arrays are "true" or "fa lse," which, although repre~ented by t?e symbol.s 1 and 
O. are not numeri c quantities . We will study the logical arrays 111 Chap.tel 4. Cell 
arrays and structure arrays are covered in Sections 2.6. and 2.7 of th.IS c~apter. 
Function handles are treated in Chapter 3. The Java class IS not covered 111 this text. 

We introduce two new data structures: cell ruTays and structure arrays. These 
data structures enable one array to store different types of data (for example, 
string data, real numbers, and complex numbers). With cell arrays you. can access 
such data by its location , but with structure arrays you can access It by name 
also. Thi feature enables you to create and use databases having different types 
of information (for example, a li st of people's names, their addresses, and their 
phone numbers) . We introduce these structures in Sections 2.6 and 2.7. 

2.1 Arrays 

We can represent the location of a point in three-dimensional space by three 
Cartesian coordinates x, y, and z. As shown in Figure 2.1-1, these three coordi­
nates specify the vector p. (In mathematical text we often use boldface type to 
indicate vectors.) The set of unit vectors i, j, k, whose lengths are 1 and whose 
directions coincide with the x ,)', and z axes, respectively, can be used to express 
the vector mathematically as follows: p = xi+ yj +z k. The unit vectors enable us 
to associate the vector components x, y, z with the proper coordinate axes; there­
fore, when we write p = 5i + 7j + 2k, we know that the x, y , and z coordinates 
of the vector are 5. 7, and 2, respectively. We can also write the components in a 
specific order, separate them with a space, and identify the group with brackets, as 
follows: [5 7 2]. As long as we agree that the vector components will be written 
in the order x , y, z, we can use thi s notation instead of the unit-vector notation. In 
fact, MATLAB uses this style for vector notation. MATLAB allows us to separate 

Figure 2.1-1 Specificati on 
of a positi on vector lI si ng 
Cartesian coordinate. 

2.1 Arrays 

the components with commas for improved readability if we desire so that the 
equivalent way of writing the preceding vector is [5 , 7, 2]. This expression is a 
row vector, whjch is a horizontal arrangement of the elements. 

We can also express the vector as a column vector, which has a vertical 
arrangement, as follows: 

A vector can have only one columJl, or only one row. Thus, a vector is a special 
case of an array. In general, alTays can have more than one column and more than 
one row. 

Creating Vectors in MATLAB 

Although a position vector cannot have more than three components, the concept 
of a vector can be generalized to any number of components. In MATLAB a vector 
is simply a list of scalars, whose order of apperu'ance in the list might be significant, 
as itis when specifyingxyz. coordinates. As another example, suppose we measure 
the temperature of an object once every hour. We can represent the measurements 
as a vector, and the 10th element in the list is the temperature measured at the 
10th hour. 

To create a row vector in MATLAB, you simply type the elements inside a 
pair of square brackets, separating the elements with a space or a comma. Brackets 
are required for ruTays in some cases, but not all. To improve readability, we will 
always use them. The choice between a space or comma is a matter of personal 

71 

ROW VECTOR 

COLUMN VECTOR 



72 

TRANSPOSE 

CHAPTER 2 Numeric , Cell, and Structure Arrays 

preference. although the chance of an error is I~ss if you use. ~ comma. (You can 
also use a comma followed by a space for maXIITIUm readabliltY')b . I . 

To create a column vector, you can separate the elements y seml.co ons, 
alternati vely, you can create a row vector and then use t~e Ir(U~spose ~otatJon (.'), 
which converts a row vector into a co lumn vector, or vice vel sa. FOI example. 

»g = [ 3 ; 7 ; 9] 

9 = 

»g = [ 3 , 7 , 9] , 

9 = 

The third way to create a column vector is to type a left bracket ( [) and the first 
element, press Enter, type the second element, press Enter, and so on until you 
type the las t element followed by a right bracket (J ) and Enter. On the screen 
thi s sequence looks like 

»g = [3 
7 
9] 

Note that MATLAB di splays row vectors horizontally and column vectors 
verti ca lly. 

You can create vectors by "appending" one vector to another. For exam­
ple, to create the row vector u whose first three columns contain the values of 
r = [2 , 4 , 20] and whose fourth , fifth , and sixth columns contain the val­
uesofw = [9 , -6 , 3], youtype u = [r , w] . The result is the vector u = 
[2 , 4,20 , 9,-6,3] . 

The colo~ operator (:) easily generates a large vector of regularly spaced 
elements. TYPll1g 

»x = [m : q : n) 

creat~s a vector x of values with a spacing q . The first value is ffi . The last value 
1 n If m - n is an integer multiple of q . If not, the las t value is less than n. 
For exampi<~, typing x = [0 : 2 : 8] creates the vector x = [0,2 , 4 , 6 , 8) , 
whereas tYPll1g x = . [ ? : 2 : 7] creates the Vector x = [0 , 2 , 4 , 6 ) . To create 
a r~w ve~tor z. conslstll1g .of the value~ from 5 to 8 in steps of 0.1 , you type 
z - [5 . O. . 8] . If the II1crement q IS omitted, it is presumed to be I. Thus 
y [ -

3 : 2] produces the vector y = [- 3 , - 2 , -1 , 0 , 1 , 2 ) . 

2.1 Arrays 

The increment q can be negative. In this case ffi should be greater than n. For 
example, U = [10 : -2 : 4) produces the vector [10 , 8 , 6 , 4). 

The 1 inspace command also creates a linearly spaced row vector, but 
instead you specify the number of values rather than the increment. The syntax is 
linspace (xl, x2 , n), where xl and x2 are the lower and upper limits and 
n is the number of points. For example, linspace (5 , 8 , 31) is equivalent to 
[5 : 0 . 1 : 8] . If n is omitted, the spacing is I . 

The logspace command creates an array of logarithmically spaced el­
ements. Its syn tax is logspace(a , b , n), where n is the number of points 
between lOa and lOb. For example, x = logspace (-1 ,1, 4) produces the 
vector x = [0 . 1000, 0 . 4642, 2 . 1544 , 10.000) .Ifnisomitted, the 
number of points defaults to 50. 

Two-Dimensional Arrays 

An array is a collection of scalars arranged in a logical structure. An array may 
have a single row; if so, it is called a row vector. A column vector has a single 
column . An array can have mUltiple rows, multiple columns, or both. Such a 
two-dimensional array is called a matrix . In mathematical text we often use bold- MATRIX 
face type to indicate vectors and matrices, for example, A. If possible, vectors 
are usually denoted by lowercase letters and matrices by uppercase letters. An 
example of a matri x having three rows and two columns is 

M = [-; ~l 
-7 1 

A matrix should not be confused with a determinant, which also has rows 
and columns but can be reduced to a single number. Two paraJlel lines usually 
denote a determinant; square brackets usually denote matrices. 

We refer to the size of an array by the number of rows and the number of ARRAY SIZE 
columns. For example, an lliTay with 3 rows and 2 columns is said to be a 3 x 2 
array. The number of rows is always stated first! A row vector has a size of 1 x n 
where n is the number of columns. A column vector has a size of n x I where n 
is the number of rows. 

We sometimes represent a matrix A as [ai)] to indicate its elements ai)' The 
subscripts i and j-called indices-indicate the row and column location of the 
element ai). The row number must always come first! For example, the element 
G32 is in row 3, column 2. Two matrices A and B are equal if they have the same 
size and if all their corresponding elements are equal; that is, ai) = bi) for every 
value of i and j. 

Creating Matrices 

The most direct way to create a matrix is to type the matrix row by row, separating 
the elements in a given row with spaces or commas and separating the rows with 
semicolons. For example, typing 

»A = [2 , 4, 10 ; 16 , 3 , 7] ; 

73 



74 CHAPTER 2 Numeric, Cell , and Structure Arrays 

create the fo llowing matrix: 

A = [ l ~ ~ l~] 
Remember, spaces or commas separate elements in different columns, whereas 

semicolons separate elements in different rows.. . Enter and continue typing 
If the matrix has many elements, you can pl ess . .' hen ou 

on the next line. MATLAB knows you are fi ni shed enterIng the matI IX w y 

type the closing bracket (] ). . . w vector r 
You can also create a matri x from row or column, vectols, A 10 

can be appended to a matri x A if r and A have the same J1L"ll~er of Co! u~lln ~. The 
d B - [A r] appends the row vector r to the matrix A , ThIs II1Cl eases 

~~;~l~:ber of columns in A. Use a semicolon to increase the numb~r of rows, 
The command B = [A ; r] appends the row vector r to the .matrlx A. Note 
the difference between the results given by [a b] and [a ; b] 111 the followlI1g 
session: 

[1, 3 , 5] 

3 5 
»b = [7 , 9 , 11] 
b = 

11 
[ a b] ; 

3 5 
»D = [a ; b] 

D = 

11 

11 

You need not use symbols to create a new array. For example, typing D 
[ [1 , 3 , 5] ; [7 , 9 , 11]] ; produces the same result as typing D = [a ; b] . 

Matrices and the Transpose Operation 

The transpose operation interchanges the rows and columns. In mathematics text 
we denote this operation by the superscript T. For an m x 17 matrix A with m 
rows and 17 columns. AT (read "A transpose") is an 17 x m matrix. For example, if 

then 

T [-2 -35] A = 6 

2.1 Arrays 

If AT = A, thc ma tri x A is symmelric. Onl y a square matri x can be symmetric, 
but not every sq uare matrix is symmetri c. 

If the array contains complex elements, the transpose operator (, ) produces 
the complex cO/~jugale lranspose; that is, the resulting elements are the complex 
conjugates of the ori ginal array's transposed clements. Alternatively, you can use 
the dOllranspose operator (. ,) to transpose the array without producing complex 
conjugate elements, for exampl e, A . ' . If allthe elements are real , the operators ' 
and. ' give the same result. 

AlTay Addressing 

Array indices are the row and column numbers of an element in an array and are 
used to keep track of the array 's elements. For example, the notation v (5) refers 
to the fifth element in the vector v, and A (2 , 3) refers to the element in row 2 , 

column 3 in the matrix A. The row number is always listed first! This notation 
enables you to correct entries in an array without retyping the entire array, For 
example, to change the element in row I, column 3 of a matrix D to 6, you can 
type D (1 , 3) = 6 . 

The colon operator selects individual elements, rows, columns, or" ubarrays" 
of arrays. Here are some examples: 

• v ( : ) represents all the row or column elements of the vector v . 

• v (2 : 5) represents the second through fifth elements; that is v (2 ) , v (3) , 
v (4), v (5) . 

• A ( : , 3) denotes all the elemen ts in the third column of the matrix A. 

• A ( : , 2 : 5 ) denotes all the elements in the second through fifth columns 
of A. 

• A (2 : 3 , 1 : 3 ) denotes all the elements in the second and third rows that 
are also in the first through third columns. 

You can use array indices to extract a smaller array from another array. For 
example, if you create the array B 

~ l~ ~~l 
4 9 25 

12 15 17 

(2. 1- 1) 

by typing 

»B = [2 , 4 , 10 , 13 ;1 6 , 3 , 7 , 18 ; 8 , 4 , 9 , 2 5 ; 3,12 , 15 , 17]; 

and then type 

» C = B(7. : 3 , 1:3) ; 

75 



76 

EMPTY ARRAY 

CHAPTER 2 Numeric, Cell , and Structure Arrays 

you can produce the following array: 

[
16 3 7] 

C = 8 4 9 

. I nts and is expressed as [], Rows 
The empty or null array contall1.s nOttee~l~~ec ted row or column equal to the 

and columns can be deleted by s~ttlng 1 ' ., e to a smaller one, For 
null array. This step causes the onglnal ~alll x t~ collaPrl A ( . 2 . 4) = [] 
example, A (3 , : ) = [) deletes the thll'd .row In .A, w 11 e " '. = [] 
deletes the second through fourth column III A. Fll1ally, A ( [1 4 ) , . ) 

deletes the first and fourth rows of A. f II ' t.· . 
Suppose we type A = [ 6 , 9 , 4 ; 1, 5 , 7) to define the 0 OWl11g rna IIX. 

A = [~ ; ~] 
Typing A (1 , 5 ) 3 changes the matrix to 

[
69403

0
] 

A= 1 5 7 0 

Because A did not have five column , its size is automatically expanded to a~c~pt 
the new element in column 5. MATLAB adds zeros to fill out the remal11l11g 

elements. . 
MATLAB does not accept negative or zero indices, but you can use negatIve 

increment with the colon operator. For example, typing B = A ( : , 5 : - 1 : 1 ) 
reverse the order of the columns in A and produces 

[
30496] 

B= 0 0 7 5 1 

Supposethat C = [-4 , 12 , 3 , 5 , 8) .Thentyping B(2 ,: ) 
2 of B with C. Thus B becomes 

[
30496] 

B = -4 12 3 5 8 

C replaces row 

Suppose that 0 = [ 3 , 8 , 5 ; 2 , - 6 , 9) . Then typing E = D ( [ 2 , 2 , 2 ] , : ) 
repeats row 2 of 0 three times to obtain 

Using clear to Avoid Errors 

You can use the clear command to protect yourself from accidentally reusing an 
array that has the wrong dimension. Even if you set new values for an array, some 
previou values might still remain. For example, suppose you had previously used 
the 2 x 2 array A = [2 , 5 ; 6 , 9 J , and you then create the 5 x I arrays x = 
[1 : 5) , and y = [2 : 6) , . Suppose you now redefine A so that its columns will 

2.1 Arrays 

be x and y . If you then type A ( : , 1) = x to create the first column, MATLAB 
displays an error message telling you that the number of rows in A and x must be 
the same. MATLAB thinks A should be a 2 x 2 matrix because A was previously 
defined to have only two rows and its values remain in memory. The clear 
command wipes A and all other variables from memory and avoids thi s error. To 
clear A only, type clear A before typing A ( : , 1 ) 

Some Useful Array Functions 

MATLAB has many functions for working with arrays (see Table 2.l-J). Here is 
a summary of some of the more common ly used functions. 

The max (A) function returns the algebraica lly greatest element in A if A is 
a vector having all real elements. It returns a row vector containing the greatest 
elements in each column if A is a matrix contai ning all real element. If any 
of the elements are complex, max (A) returns the element that has the largest 

Table 2.1-1 Array functions 

Command 

c a t(n , A , B , C , ... ) 

f i n d (x) 

[U , V , w ] find (A ) 

length ( A ) 

linspace (a , b , n) 

logspace (a , b , n) 

max (A ) 

[x , k] = max (A) 

min(A) 
[x , k] = min (A) 

size (A) 

sort (A) 

sum (A) 

Description 

Creates a new array by concatenating the arrays A, B, C, and 
so on along the dimension n . 
Compute an array contai ning the indices of the nonzero 
elements of the array x. 
Computes the arrays u and v, containi ng the row and 
column indices of the nonzero elements of the matrix A, and 
the array w, containing the values of the nonzero elements. 
The array w may be omitted. 
Computes e ither the number of elements of A if A is a 
vector or the largest va lue of In or n if A is an m x n matrix. 
Creates a row vector of 11 regularly spaced values between a 
and b. 
Creates a row vector of n logarithmically spaced values 
between a and b. 
Returns the algebraical ly larges t element in A if A is a 
vector. Returns a row vector containing the largest elements 
in each column if A is a matrix. If any of the elements are 
complex, max (A) returns the elements that have the largest 
magnitudes. 
Similar to max (A) but stores the maximum values in the 
row vector x and their indices in the row vector k . 
Same as max (A) but return minimum values. 
Same as [x , k] = max (A) but returns minimum 
values. 
Returns a row vector [m n] containing the sizes of the 
In x n array A. 
Sons each coluIlln of the array A in ascending order and 
retums an array the same size as A. 
Sums the eleIllents in each column of the array A and 
retums a row vector containing the sums. 

77 



78 CHAPTER 2 Numeric . Cell . and Structure Arrays 

_ (A) is similar to max (A ) , but it stores 
magn itu.de. The syn:a.x [x , .k ] - c:~: and their indices in the row vector k. 
the maxlmum.values lIl the lOW ve k ] = min (A) are the same as max (A) 

The funclions mln (A) and [ x , e return minimum values. . 
and [x, k] = max (A) except that t~ y ctor [m n] containing the sizes of 

The function s ize (A) rewrns; I~'~n~~ion computes either the number.of 
the m x n array A. The length () I of m or n if A is an In x n matri x. 
elements of A if A is a vector or the largest va ue 

For example, if 

A~ H -~] 
then max (A) returns the vector [6,2]; min(A) returns the vector [-10, 
-5] ' size(A) returns [3,2];and length(A) returns 3. IfAhasoneor.more 
com~lex elements, max (A) return the element that has the largest magnitude. 
For example, if 

A = [ - l~ -;] 
3 +4i 0 

then max (A) returns the vector [-10, -5] and min (A) returns the vector 
[3 +4 i , 0]. (The magnitude of 3 + 4i is 5.) 

The sum (A) function sums the elements in each coluInn of the array A 
and returns a row vector containing the sums. The sort (A) function sorts each 
column of the array A in ascendi ng order and returns an array the same size as A. 

The find (x) command computes an array containing the indices of the 
/'/onzelVelements of the vectorx. The syntax [u ,v,w] = find(A) computes 
the array u and v, containing the row and co lumn indices of the nonzero elements 
of the matrix A, and the aITay w, containing the va lues of the nonzero elements. 
The array w may be omitted. 

For example, if 

[
6 0 3] 

A = 0 4 0 
2 7 0 

then the ession 

»A = [ 6, 0 , 3 ; 0 , 4 , 0 ; 2 , 7 , 0] ; 
»[u , v , wJ = find (A) 

returns the vector 

2.1 Arrays 

The vectors u and v give the (row, column) indices of the nonzero values, 
which are li sted in w . For example, the second entries in u and v give the indices 
(3 , I ), which specifies the element in row 3, column 1 of A, whose va lue is 2. 

These functions are summari zed in Table 2. 1- /. 

Magnitude, Length, and Absolute Value of a Vector 

The terms magnitude, length, and absolute value are often loosely used in everyday 
language, but you must keep their precise meaning in mind when u ing MATLAB. 
The MATLAB length command gives the number of elements in the vector. 
The magnitude of a vector x having elements XI, X2, . . . ,x" is a scalar, given 

by Ix? + xi + ... + x,7, and is the same as the vector's geometric length. The 
absolute value of a vector x is a vector whose elements are the absolute values of 
the elements of x. For exam,ple, if x = [2, - 4 , 5] , its length is 3; its magnitude 
is / 2

2 + (_4)2 + 52 = 6.7082; and its absolute value is [2 , 4 , 5]. 

Test Your Understanding 

T2.1-1 For the matrix B, find the array that results from the operation [B i B' ]. 
Use MATLAB to determine what number is in row 5, column 3 of the 
result. 

r 

2 4 ]0 13J 
B _ 16 3 7 18 

- 8 4 9 25 
3 12 15 17 

T2.1-2 For the same matrix B, use MATLAB to (a) find the largest and smallest 
element in B and their indices and (b) sort each column in B to create a 
new matrix C. 

The Array Editor 

In Chapter 1 we saw some commands such as who, whos , and exist . that are 
useful for managing the workspace. The MATLAB Workspace Browser provides 
a graphical interface for managing the workspace. You can use the Workspace 
Browser to view, save, and clear workspace variables. It also includes the Array 
EditoJ; a graphical interface for working with arrays. To open the Workspace 
Browser, do one of the following: 

• From the Desktop menu in the MATLAB Desktop, elect Workspace; 
• Click the Workspace tab below the Current Directory window; or 
• Type workspace at the Command window prompt. 

79 



80 CHAPTER 2 Numeric, Cell, and Structure Arrays 

File Edit View Graphics Debug Desktop Window Help 

. ,- :! ~ c:lmatlab7\w ork 

ShOitcuts.tJ How toAdd 

tml!lmij~iiiii~ii:iiiiiiiiiiiiiiiiiiiiiiiiiif r >:- x = - (: :-:= ~ 
~. ____ I-::::va~lu-:::-e -:- _. __ J .. -:-cla~ss:--I » ... = (2,7,9;'1,2,5); 

EE A 1279;4 2 51 double I» 
EE x <1 x501 double> double I 

Figure 2.1-2 The Workspace Browser. 

The browser appears as sbown in Figure 2.1-2. Workspace operations you can 
peJform witb the Workspace Browser or with functions are: 

1. Viewing and editing the workspace variables. 
2. Clearing workspace variables. 
3. Plotting workspace variables. 
4. Saving the workspace. 
5. Loading a saved workspace. 

6. Viewing base and function workspaces by using the stack. 

Here we discuss the first three operations. The last three operations are di scussed 
in Chapters 3 and 4. 

Keep in mind that the Desktop menus are context-sensitive. Thus their con­
tents will change depending on which features of the Browser and Array Editor 
you are currently using. The Workspace Browser shows the name of each variable , 
its value, array size, 'ize in bytes, and class. The icon for eacb variable illustrates 
its class. To resize the columns of information, drag the column beader borders. 
To show or hide any of the columns, or to specify the sort order, use the View 
menu. 

From tbe Workspace Browser you can open the Array Editor to view and 
edit a visual representation of two-dimensional numeric arrays. with the rows 
and columns numbered. To open the Array Editor from the Workspace Browser, 
double-click on the variable you want to open. The Array Editor opens, display­
ing the values for the selected variable. The Array Editor appears as shown in 
Figure 2.1-3. 

To open a variable, you can also right-click it and use the Context menu. 
Repeat the steps to open additional variables into the Array Editor. In the Array 

2.2 Multidimensional Arrays 

--1' 
Edit Debug Desktop Window Help 

Sh0l1cuts ~ HowtoAdd 

~ ~-~-=I>l-' ~ : [08 Stack x I i» x = [0:0.01:5]; -

_ ---.l CI.~ I :: Po = [ 2 ,7,9;~,2,5]; 

El3A 1279;4 251 double 
EE x <1 x501 double> double 

Workspace Current Directory 

II' 

File Graph"s Debug Desktop Window Help 

=Iiii '$,Ill§~ ~ 
1 

1 c::=:1I 
4 

F igur-e 2.1-3 The Array Ed itor. 

Editor, access each variable via its tab at the bottom of the window, or use the 
Window menu . You can also open the Array Editor directly from the Command 
window by typing open ( ' var ' ) , where var is the name of the variable to ~e 
edited. Once an array is di splayed in the Array Editor, you can change. a value 111 

the array by clicking on its location, typing in the new value, and press lIlg Enter. 
Right-clicking on a variable brings up the Context menu , which can be .used 

to edit, save, or clear the selected variable, or to plot the rows of the variable 
versus its columns (this type of plot is di scussed in Chapter 5). '" 

You can also clear a variable from the Workspace Browser by first hlghhghtll1g 
it in the Browser, then clicking on Delete in the Edit menu. 

2.2 Multidimensional Arrays 

MATLAB support multidimensional arrays. Here we ~r~sent j~lst some of the 
MATLAB capabilities for such arrays; to obtain more II1tonnatlon. type help 
data types. . . 

A three-dimensional array has the dimension m x /I x q. A fou~-dlm~nslOnal 
array has the dimellsionl11 x /I x q x /', and so forth. The first two dimenSIOns are 
the row and column, as with a matrix. The higher dimensions are called pages. 
The elements of a matrix are specified by two indices; three indices are r~quired 
to specify an element of a three-dimensional array, and so on. You can thlllk of a 

81 

EE[D8 610 



82 CHAPTER 2 Numeric , Cell , and Structure Arrays 

.. . f natrices. The first layer is page I ; the second 
three-d imensIOnal array as layers 0 ~ 3 ? a -ray you can access the element 
layer is page 2, and so on. If A IS a. x

A 
(; -2 1

2
) 'To access all of page I , type 

in row 3, column 2 of page 2 by typI ng " . 
1) ~ ss all of paae 2 type A ( : , : , 2) . 

A ( : , : , '. 0 acce d retu~s r'he number of dimensions. For example, fo r 
The nd.lms com.man . 'n the value 3. 

the array AJust described, ndlms (A) [elUJ s . wo-dimensional 
You can create a n.lulti.dimensional array by fi rst crea~~~tat~ create a thre~­

an'ay and then ex tendIng It. For example, suppose you 
dimensional array whose firs t page IS 

and whose econd page is 

[
6 2 9] o 3 1 
4 7 5 

To do so, first create page I as a 3 x 3 matrix and then add page 2, as follows: 

»A =: [4 , 6 , 1; 5 , 8 , 0 ; 3 , 9 , 2] ; 
»A ( : , : , 2) =: [6 , 2 , 9 ; 0 , 3 , 1 ; 4 , 7 , 5] 

MATLAB display the fOllowing: 

A( : , : , 1) 

6 

3 
A( :, : , 2) 

6 2 

3 

Another way to produce such an array i, with the cat command. Typing 
ca t (n , A, B , C, ... ) creates a new array by concatenating the arrays A, B, 
C, and so on along the dimension n. Note that ca t (1 , A, B) is the same as 
[A ; B] and that cat (2 , A, B) is the same as [A, BJ . For example, suppose we 
have the 2 x 2 arrays A and B: 

T~en C =: ca t (3 , A, B) produces a three-dimensional array. We can think of 
thIs ar:

ay 
as com~osed of two layers; the first layer i the matrix A, and the second 

layer IS the matrix B. The element C (m , n , p) is located in row m, column 11, 

and layer p. Thu the element C (2 , 1 , 1) is 9, and the element C (2 2 2 ) is 
3. This function is summarized in Table 2. I -I. ' , 

2.3 Element-by-Element Operations 

Mul tidimensional arrays are useful fo r problems that involve several parame­
ters. For example, if we have data on the temperature di stribution in a rectangular 
object, we could represent the temperatures as an array T with three dimensions. 
Each temperature would correspond to the temperature of a rectangular block 
wi thin the object, and the array indices would correspond to x, y, z locations 
within the object. For example, T (2 , 4 , 3) would be the temperature in the 
bl ock located in row 2, column 4, page 3 and having the coordinates X2, Y4, Z3 . 

2.3 Element-by-Element Operations 

To increase the magnitude of a vector, mUltiply it by a scalar. For example, to 
double the magnitude of the vector r = [3 , 5 , 2 J , multiply each component by 
two to obtain [6 , 10 , 4 J . In MATLAB you type v =:2 * r . See Figure 2.3-1 
for the geometric interpretation of scalar multiplication of a vector in three­
dimensional space. 

Multiplying a matrix A by a scalar w produces a matrix whose elements are 
the elements of A multiplied by w. For example: 

3[; -;]=[1~ -;n 
This multiplication is performed in MATLAB as follows: 

»A =: [2 , 9 ; 5 , - 7 ]; 
»3 *A 
a ns = 

1 5 
27 

- 2 1 

I 
r I 2y I 

'- I 

::://~~' 
2x 

Figure 2.3-1 Geometric 
interpretation of scalar 

multiplication of a vector. 

83 



84 

ARRAY 
OPERATIONS 

MATRLX 
OPERATIONS 

CHAPTER 2 Numeric , Cell. and Structure Arrays 

. . . a scalar is easily defined and easily car-
Thus multiplIcatIOn of an array by . ot so straiahtforward. In fact, 

It' I'cation of two arrays IS n b . 
ried out. However, mu Ip ~ . I' I'cation ' (I) array multiplicatIon and 
MATLAB u es. t~o defiJ1lt~o~ ~ of mu t~p ~nentia'tion must also be carefully de­
(2) matrix multIplIcatIOn. DIVISIOn and e p b two arrays MATLAB has 
fined when you are dealing wit~ operatIons e~w~~I~s sectiol~ w~ introduce one 

f f ' tl metic operatIOns on arrays. n 
two orms 0 an 1 .' I ' h are also ca lled element-by-element opera­
form , called array opelat10n~ , w 11C .' erations Each form has its own 
tions . In the next section we 1J1troduce mati/x op . 
applications, which we illustrate by examples. 

Array Addition and Subtraction . 

Vector addition can be done either graphically (by using th~ parallelogram l a~ 111 

two dimensions (see Figure 2.3-2a), or analytically by addmg the correspondll1g 

(a) 

(b) 

Figure 2.3-2 Vector addi tion. (a) The parallelogram law. 
(b) Addil ion of vectors in three dimensions. 

2.3 Element-bY-Element Operations 

components . To add the vectors r = [3 , 5 , 2] and v = [2 , - 3 , 1] to cre­
ate w in MATLAB, you type w = r + v. The res ul t is w = [5 , 2 , 3]. Fig­
ure 2.3-2b illustrates vector addition in three dimensions. 

When two arrays have identical size, their sum or difference has the same 
size and is obtai ned by adding or subtracting their correspondi ng elements. Thus 
C = A + B implies that Cij = aij + b ij if the arrays are matrices. The array C 
has the same size as A and B. For example: 

[6 -2] [ 9 8] [ 15 6] 
10 3 + -12 14 = -2 17 (2.3-1) 

Array subtraction is performed in a simi lar way. 
The addition shown in equation 2.3-1 is performed in MATLAB as fo llows: 

»A = [6 , - 2 ; 1 0 , 3 ]; 
»B = [9 ,8;- 12 , 14] 
»A+B 

15 
-2 17 

Array addition and subtraction are associative and commutative. For addition 
these properties mean that 

(A + B) + C = A + (B + C) 

A+ B+ C=B + C+A=A+ C + B 

(2.3-2) 

(2.3-3) 

AlTay addition and subtraction require that both arrays have the same size. The 
only exception to thi s ru le in MATLAB occurs when we add or subtract a scalar 
to or from an array. In thi s case the scalar is added or subtracted from each element 
in the array. Table 2.3- 1 gives examples. 

Table 2.3-1 Element-by-element operations 

Symbol Operation Form Example 

Sca lar-array additi on A + b [6 , 3)+2=[8 , 5) 
Scalar-array subtraotion A - b [8 , 3)-5=[3 , -2) 
Array add ition A + B [6 , 5)+[4 , 8)=[10 , 13) 
Array subtraction A - B [6 , 5)-[4 , 8)=[2 , -3) 
Array mul tiplication A. *B [3 , 5) .* [4 , 8]=[12 , 40) 

. / Array righl division A . /B [2 , 5) . 1[4 , 8)=[2/4 , 5/8) 

. \ Array left division A . \ B [2 , 5) . \[4 , 8)=[2\4 , 5\8J 
Array exponentiati on A . "B [3 , 5) . "2=[3"2 , 5"2) 

2 . "[3 , 5)=[2"3 , 2"5) 
[3 , 5) . "[2 , 4)=[3"2 , 5"4J 

85 



86 CHAPTER 2 Numeric, Cell, and Structure Arrays 

'N'de,' Vectors and Re lative Velocity 

A trai n is heading east at 60 milhr. A car approaches the track crossing heading northeast 
at 45 mi/hr on a road that illakes a 55° angle with the track. See Figure 2.3-3. What is the 
velocity of the train relative to the car? What is the speed of the train re lative to the car? 

North 

~::X~~3'--\--;f--------- East 
Train 55° 

4~ 
Car 

Figure 2.3-3 

• Solution 

Velocity is a vector quantity consisting of speed and direction . Speed is the mao nitude of 
the. v~locity vector. The. train·s velocity VR reLative to the car is the difference b:rween the 
~~~ns velocity VT relatIve to the ground and the car' velocity Vc relative to the ground. 

VR = v ... - Vc

Choo~ing the x direction to be ea t, and the y direction north. we can write the foil .
veLocIty vector. : oWll1g

v ... = 60i + OJ

Vc = 45 cos(55)i + 45 in(550)j

In MATLAB we can write these vectors as follow (reme b .
and compute VR : m erlllg to convert 55" to radians)

»v_ T = [60 . 0) ;

::~=~ : ~~~ :~:~ (55*pi /180) . 45*sin (55*piIl80) J ;

v _ R =
34 . 1891 -36 . 8618

2.3 Element-by-Element Operations

Thus VI{ = 34.189 1 i - 36.86 18j Illi/hr. The velocity of the train rel ative to the car is
approximatel y 34 mi/hr to the east and 37 mi/hr to the south .

The relat ive speed SR is the magnitude of VR , whi ch can be found as

S/I = J (34. 189 J)2 + (-36.86 18)2 = 50.2761 mi/hr

Tn MATLAB the speed can be calculated as foll ows:

»s_R = sqrt (v_R(l) ~2+v_R(2) ~2)

We wi ll soon see an easier way to compute SR using array mul tiplication.

Array Multiplication

The data in Table 2.3-2 illustrates the difference between the two types of mul­
tipli cation that are defined in MATLAB. The table gives the speed of an aircraft
on each leg of a certain trip and the time spent on each leg.

We can define a row vector s containing the speeds and a row vec tor t
containing the timesfor eachleg. Thus s = [200 , 250 , 400, 300) and
t = [2 , 5 , 3 , 4) . To find the miles traveled on each leg, we multiply the
speed by the time. To do so, we use the MATLAB symbol . *, which specifies the
mul tiplication s . * t to produce the row vector whose elements are the products
of the corresponding elements in s and t:

s . *t = [200(2), 250(5), 400(3) , 300(4)J = [400, 1250, 1200, 1200J

With thi s notation the symbol . * signifies that each element in s is multiplied by
the corresponding element in t and that the resulting products are used to form a
row vector having the same number of elements as s and t . This vector contains
the miles traveled by the aircraft on each leg of the trip.

If we had wanted to find only the total miles traveled, we could have used an­
other definition of multiplication, denoted by s * t ' . In this definition the product
is the sum of the individual element products; that is

s * t ' = [200(2) + 250(5) + 400(3) + 300(4)J = 4050

These two examples illustrate the difference between array multiplication
s . *t-sometimes called element-by-element multiplication-and matrix
multiplication s * t ' . We examine matrix multiplication in more detail in
Section 2.4.

Table 2.3-2 Aircraft speeds and times per leg

Speed (mi/hr)
Time (hr)

Leg

200 250 400 300
2 5 3 4

87

88 C HAPTER 2 Numeric, Cell, and Structure Arrays

MATLAB defi nes element-by-element mu ltiplication only for arrays that
have the same size. The defi nition of the product x . *y, where x and y each have
n element , is

x .*y = [x(l)y(l) , x(2)y(2) , .. , , x(n)y(n)]

i r x and y are row vectors. For example, if

x = [2,4, -5J y=[-7, 3, -8] (2.3-4)

then z x . *y give.

z = [2(-7),4(3), -5(-8)] = [- 14, 12, 40]

If x and y are colu mn vectors, the result of x . *y is a column vector. For
example z = (x '). * (y') gives

[
2(-7)] [- 14]

z = 4(3) = 12
- 5(-8) 40

ote that x' i a column vector with size 3 x I and thus does not have the
same size as y , whose ize is J x 3. Thus fo r the vectors x and y the operations
x' . *y and y . *x ' are not defined in MATLAB and wi ll generate an error
message.

The generali zati on of array mul tiplication to arrays with more than one row
or column i. straight fo rward. Both arrays must have the same size. If they are ma­
tri ces, they must have the same number of rows and the same number of columns.
The array operation are performed between the elements in corresponding loca­
tions in the arrays. FOI' example, the array mu ltiplication operation A . *B res ul ts
in a matrix C that has the same size as A and B and has the elements Cij = aijbij .
For example. if

then CA . *B gives this result:

c= [11 (- 7) 5(8)] _ [-77 40]
- 9(6) 4(2) - -54 8

With element-by.-elemen.t mul tiplication, it is important to remember that the
dOL (.) and the ~s ten sk (,,) fo rm one symbol (. *). It might have been better to
have defi.ned a slllgie symbol for thi s operation, but the developers of MATLAB
were IIITIIted by the selection of symbols on the keyboard .

2 .3 Element-bY-Element Operations 89

Vectors and Displacement '.''P'''P
Suppose two divers start a t the surface and es tab lish the fo ll owin g coordinate sys tem: x
is to the west, y is to the north , and z is down. Diver I swims 55 ft west 36 ft north and

then dives 25 fl. D iver 2 di ves 15 ft, then swi ms east 20 ft and then nor;h 59 ft . (a) 'Fi nd

the di stance between diver I and the starting point. (b) How far in each direc tion must

d iver I sw im to reach diver 2? How far in a straight line must diver I swim to reach
diver 2?

• Solution

(a) Us ing the xyz coordinates selected, the position of diver 1 is r = 55i + 36j + 25k ,

and the pos ition of di ver 2 is r = -2Oi + 59j + 15k. (Note that di ver 2 swam eas t, which

is in the negative x direction.) The di stance from the origin of a point xyz is given by

J x 2 + y2 + Z2, that is, by the magnitude of the vector pointing from the origin to the
po int xyz. Thi s di s tance is computed in the fo llowing session .

»r = [55,36,25];w = [-20 , 59 , 15] ;
»dis t1 = sqrt (sum (r. *r))
dist1 =

70 . 3278

The di stance is approximately 70 ft.

(b) The location of diver 2 relative to diver J is given by the vector v poin ting from

diver I to diver 2. We can fi nd this vector using vector subtraction: v = w _ r . Continue
the above MATLAB session as fo ll ows:

-75 23 -10
»dist2 sqrt (sum(v . *v))
dist2 =

79.0822

Thus to reach diver2 by swi mming along the coordinate directions, diver I must wim 75 ft
east, 23 ft north, and 10ft up. The straight-li ne di stance between them is approximately
79 feet.

The built-in MATLAB functions such as sqrt (x) and exp (x) automat­
ically operate on array arguments to produce an array result the same size as
the array argument x. Thus these functions are said to be vectorized functions.
For example, in the following session the result y has the same size as the argu-
ment x .
»x
»y
y==

2

[4 , 16 , 25] ;
sqrt(x)

100

'NN'e.'

CHAPTER 2 Numeric, Cell , and Structure Arrays

Tes Your Understanding
T2.4-1 Use MATLAB to compute the dot product of the followin g vecto rs:

u = 6i - 8j + 3k

w = Si + 3j - 4k

Check your answer by hand. (Answer: - 6.)

T2,4-2 U e MATLAB to show that

H ~] [~ :] ~ m -H]
Manufacturing Cost Analysis

Table 2.11- 1 shows the hourl y cost of foul' types of manufacturing processes. It also

shows the number of hours required of each process to produce three different products.
Use matrices and MATLAB to solve the fol lowi ng. (a) Determine the cost of each process

to produce one unit of product I . (b) Determine the cost to make one unit of each product.

(c) Suppa e we produce 10 units of product 1, 5 units of product 2, and 7 units of product 3.
Compute rhe total cost.

Table 2.4-1 Cost and time data for manufacturing processes

Hours required to produce one unit

Process Hourly cost ($) Product 1 Product 2 Product 3

Lathe 10
Grinding 12
Milling 14
Welding 9

• Solution

(a) The basic principle we can use here is that cost equals the hourly cost times the number
of hours required . For example, the cost of using the lathe for product 1 is ($1 0/h)(6 h) =
560. and so fonh for the other three proce ses. ff we defi ne the row vector of hourly

co. ts to be hourly_costs and define the row vector of hours required for product
I to be hourS_ I , then we can compute the costs of each process for product 1 using
efement-by-efemel1l multiplication. In MATLAB the session is

»hollrly_ cost = [10 , 12 , 14 , 9J ;
»hours_ l = [6 , 2 , 3 , 4J ;

»process_cost_ l = hourly_cost . *hours 1
process_cost_ l =

60 24 42 36

The e are the co~ts of each of the four processes to produce one unit of product 1,

2.4 Matrix Operations

(b) To compute the total cost of one unit of product I , we can use the vectors

hourly_cos ts a.nd hours_ l but apply matrix mU ltip lication instead of e lement-by­
element multipli catIOn, because matri x multiplication sums the individual products. The
matri x multipli cation gives

[10 12 14 9] r~j ~ 10(6)+ 12(2)+ 14(3)+9(4) ~ 162

We can pelf orm simil ar mu ltipli cation for products 2 and 3, using the data in the table.
For product 2:

[10 12 14 9] r~j ~ 10(5)+ 12(2)+ 14(3) + 9(0) ~ 114

For product 3:

[10 12 14 91 r~j ~ 10(4) + 12(1)+ 14(5) + 9(3) ~ 149

The e three operations could have been accomplished in one operation by defin­

ing a matrix whose columns are formed by the data in the last three colulllns of the
table:

r~ ~ ~1 [60 + 24 + 42 + 36]
[1012 149] 32 5 = 50+36+28+ 0 =[162 114 149]

4 0 3 40 + 12 + 70 + 27

In MATLAB the session continues as follows. Remember that we Illust use the transpose
operation to convert the row vectors into column vectors .

»hours_ 2 = [5 , 3 , 2 , 0];
»hours_ 3 = [4 , 1 , 5, 3 J ;

»unit_ cost = hourly_cost * [hours_I' , hours_2', hou r s _3' J

un it_ cost =
162 114 1 49

Thu the costs to produce one unit each of products 1, 2, and 3 is $162, $1 14, and $149,
respectively.

(c) To find the total cost to produce 10,5, and 7 units, respectively, we can u e matrix
mUltiplication:

[

162]
[10 5 7] /14 = 1620 + 570 + 1043 = 3233

149

101

90 CHAPTER 2 Numeric, Cell , and Structure Arrays

However, when multiplying Of di viding these functio.ns, o~' when rai sing them
to a power, you must use element-by-elem,en.t operatIfl:s tf the arguments al~
arrays. For example, to compute z = Ce> SII1 x) cos x, ~ou must type z -
exp (y) . *sin (x) . * (cos (x)) . "2. Obviollsly, you wIll get an. error mes­
sage if the size of x is not the same as the size of y. The result Z wI ll have the
same size a x and y.

'S'M'dee Aortic Pressure Model

Biomedical engineers often design instrumentation to measure physiological processes,
such as blood pressure. To do this they must develop mathematical models of the pro­
cess. The following equation is a specific case of one model used to describe the blood
pressure in the aona during systole (the period following the closure of the heart's aortic
valve). The variable 1 represents time in seconds, and the dimensionless vari able y repre­
sents the pressure difference across the aortic va lve, normali zed by a constant reference
pressure.

Plot this function for 1 ~ O .

• Solution

yet) = e- 81 in (9.71 + ~)

Note that if t is a vector, the MATLAB functions exp (- 8 * t) and sin (9 . 7 * t +

pi/2) wi ll also be vectors the same size as t . Thus we must use element-by-element
multiplication to compu te y(l).

In addition, we must decide on the proper spacing to use for the vector t and its
upper limit. The sine function sin(9.71 + 7r / 2) osci llates with a frequency of 9.7 rad/sec,
which is 9.7/ (27r) = 1.5 Hz. Thu its period is 1/ 1.5 = 2/ 3 sec. The spacing of t

should be a smail fraction of the period in order to generate enough points to plot
the curve. Thus we elect a pacing of 0.003 to give approximately 200 points per
period.

The amplitude of ~he sine wave decays with time because the sine is multiplied by
the decaY ing exponential e-

81
. The exponential's initial value is eO = I, and it wi ll be

~ percent of It 101:lal value at 1 = 0.5 (because e-8(O.5) = 0.02). Thus we select the upper
11I11It of t to bl:; 0.). The ses ion is:

»t = [0 : 0 . 003 : 0 . 51 ;

»y = eXP (-8*t) . *sin(9.7*t+pi /2) ;
»plot(t , y) , xlabel(' t (sec) ') , ...

ylabel ('Normalized Pressure Difference y (t) ')

The plot is shown in Ficrure? 3-4 Note th I
the pre ence of a ine :'1IIe. Thi i~ becaus:\:e (o not ee much of an oscillation despite
time it take. for the ex pone t" I -81 b e period of the slOe wave is greater than the

n Ia e to ecome essentially zero.

~ 0.8

l!'

~ 0.6

~
l!' i 0.4

iij

§
Z 0.2

2.3 E)ement-by-Element Operations

-0.20~~-;;;;---;~--;~--;!-;;--~0.2=-5--:'-::---:-L:c---L-~--1
I (sec)

Figure 2.3-4 Aortic pressure response for Example 2.3-3.

Array Division

The definition of array division, also called element-by-element division, is si mi­
lar to the definition of array mUltiplication except, of COUfse, that the elements of
one array are divided by the elements of the other array. Both arrays mllst have
the same size. The symbol for array right division is . I . For example, if

x = [8 , 12, ISJ y = [-2, 6, 5]

then z x . I y gives

Also, if

z = [8 /C -2), 12/ 6, IS / SJ = [-4, 2, 3J

A = [24 20]
-9 4

then CA . IB gives

c = [24/C-4) 20/5] = [-6 4
2
]

-9/ 3 4/ 2 -3

The array left division operator (. \) is defined to perform element-by-element
division lIsing left division. Refer to Table 2.3-1 for examples. Note that A. \B is
not equivalent to A. lB .

91

92

'N'd""
CHAPTER 2 Numeric, Cell , and Structure Arrays

Transportation R oute Analysis

The followin <> table <> ives data for the distance traveled along five truck rou~es and. the
correspondin; time r: quired to traverse each route. Use the data to compute t le a~el age
speed required to drive each route. Find the route that has the highest average spee .

Di lance (mi) 560 440 490
Time (hr) 10.3 8.2 9. 1

• Solution

530
10.1

370
7.5

For example, the average speed on the first route is 560/ I 0.3 = 54.4 mi/hr. First we define
the row vectors d and t from the distance and time data. Then, to fi nd the average speed
on each route using MATLAB, we use array division. The session is

»d = [5 6 0 , 440 , 490 , 530 , 370 J
»t = [10.3, 8.2 , 9 . 1 , 10 . 1 , 7 . 5J
»speed = d. It
speed =

54 . 3689 53.6585 53.8462 52 . 4752 49 . 3333

The resul ts are in miles per hour. Note that MATLAB displays more significant figures
than is justi fied by the three-signi ficant-figure accuracy of the given data, so we should
round the results to three signi ficant figures before using them. Thus we shoul d report the
average speeds to be 54.4, 53.7, 53 .8, 52.5, and 49.0 mi/hr, respectively.

To find the highest speed and the corresponding route, continue the session as foll ows:

»[highest_ speed, route] = max (speed)
highest_speed =

54 . 3689
route =

The fir t roule ha the highe t speed.

If we did not need the speeds for every route, we could have solved this probl em by
combining two li nes as follows: [highest_speed , route) = max (d . It) . As

you become more familiar with MATLAB, you will appreciate its power to solve problems
with very few lines and keystrokes.

Array Exponentiation

MATLAB enables us not only to raise arrays to powers but a lso to ra ise scala rs
and. arrays to array powers. To perform ex ponentiation on an eleme nt-by-e le me nt
? aSIS, :e must use the. " symb~l. For example. if x = [3 , 5 , 8], the n typ­
mg x . 3 produce the array [3-. 53. 83]=[27, 125, 51 2]. lf x = [0:2 : 6],

2 .3 Element-bY-Element Operations

then typing x . " 2 returns the array [02 , 22 , 42 , 62] = [0, 4, 16, 36]. If

A = [~ -~J
then B A . " 3 gives th is result:

B = [43
(-WJ - [64 - 125J

23 33 - 8 27

We can ra ise a scalar to an an'ay power. For example, if p = [2 , 4 , 5 J ,
then typing 3 . "p produces the a rray [32 , 34 , 35] = [9, 81, 243]. This exampl e
illustrates a common situation in wh ich it helps to rem em ber th at . " is a single
symbol; the dot in 3 . "p is not a decimal point associated with the number 3.
The fo llowing operatio ns, w ith the value of p given here, are equivale nt and give
the correct answer:

3 . "p
3 . 0. "p
3 .. "p
(3) . "p
3 . " [2,4,5]

Test Your Understanding

T2.3-1 Given the m a tri ces

A = [-i~ 2~J _[-7 -3J B- 9 4

find the ir (a) array product, (b) array ri ght division (A divided by B), and
(c) B raised to the third power element by ele ment.

(Answ ers: a [-147, -81 ; -162, 32], b [-3 , -9 ; -2 , 2],
and c [-3 43 , - 27 ; 729, 64J.)

93

Current and Power Dissipation in Resi s tors +.'9'-
The current i passing through an electrical resistor having a voltage v across it is given by

Ohm's law: i = vi R , where R is the resistance. The power di ssipated in the resistori given

by v
2

/ R . The following table gives data for the resistance and voltage for five resistors.
Use the data to com.pute (a) the current in each resistor and (b) the power dissipated in
each res istor.

R (r2)
v (V)

104 2 X 104 3.5 X 104 105 2 X 105

120 80 110 200 350

102 CHAPTER 2 Numeric, Cell, and Structure Arrays

In MATLAB the session continues as follows. Note the use of the transpose operator on

the vector uni t _cost .

»units = [10 , 5 , 7] ;
»total_cost = units*unit_cost '

total_ cost =
3233

The total cost is $3233.

The General Matrix Multiplication Case

We can state the general result for matrix multiplication as follows: Suppose A
has dimension m x p and B has dimension p x q . If C is the product AB, then
C has dimension m x q and its elements are given by

p

cij = Laikbkj (2.4-5)
k=1

fo r all i = 1, 2, m and j = 1, 2, .. , q. For the product to be defined, the
matrices A and B must be conformable: that is, the number of rows in B must
equal the number of columns in A. The product has the same number of rows as
A and the same number of columns as B.

The algorithm defined by (2.4-5) is easy to remember. Each element in the
ith row of A i multiplied by the corresponding element in the jth column of B.
The sum of the products is the element cij' If we write the product AB in terms
of the dimensions. as (171 x p)(p X q) = 171 X q , we can easily determine the
dimensions of the product by "canceling" the inner dimensions (here p) , whkh
must be equal for the product to be defined.

Matrix multiplication does not have the commutative property; that is, in
general, AB =1= BA. A simple example will demonstrate this fact:

(2.4-6)

whereas

BA = [9 8] [6 -2] _ [134 6]
-12 14 10 3 - 68 66 (2.4-7)

Reversing the ~rd~r of matri.x n~ultiplication is a common and easily made mistake.
The a.ss~clatlve and dlstnbutive properties hold for matrix multiplication.

The associative property state. that

A(B + C) = AB + AC

The di stributive property states that

(AB)C = A(BC)

(2.4-8)

(2.4-9)

2.4 Matrix Operations

T2.4-3 Use MATLAB to verify the results of equations (2.4-6) and (2.4-7).

Applications to Cost Analysis

Data 0 11 costs of engineering projects are often recorded as tables . The data in
these tables must often be analyzed in several ways. The elements in MATLAB
matrices are similar to the cell s in a spreadsheet, and MATLAB can perform many
spreadsheet-type calculations for analyzing such tables .

103

Product Cost Analysis 'pt'UA'R.
Table 2.4-2 shows the costs associated with a certain product, and Table 2.4-3 shows
the production volume for the four quarters of the business year. Use MATLAB to find
the quarterly costs for materials, labor, and transportation ; the total material, labor, and
transportation costs for the year; and the total quarterly costs.

Table 2.4-2 Product cost

Unit costs ($ x 103)

Product Materials Labor Transportation

Table 2.4-3 Quarterly production volume

Product Quarter 1 Quarter 2 Quarter 3 Quarter 4

10 12 13 15
8 7 6 4

12 10 13 9
6 4 11 5

• Solution
The costs are the product of the unit cost times the production volume. Thus we define two
matrices: u contains the unit costs in Table 2.4-2 in thousands of dollar , and P contains
the quarterly production data in Table 2.4-3.

»u = [6 , 2 , 1 ; 2 , 5 , 4 ; 4, 3 , 2 ; 9 , 7 , 3] ;
»P = [10 , 12 , 13 , 15 ; 8 , 7 , 6 , 4 ; 12 , 10 , 13 , 9 ; 6 , 4 , 11 , 5);

Note that if we multiply the first column in u times the first column in P. we obtain
the total materials cost for the first quarter. Similarly, multiplying the fir t column in

94 C HAPTER 2 Numeric, Cell, and Structure Arrays

• Solution fi t ·s onecontainin" the resistance va lues and one containing
(a) Fir t wede lne two row vec 0 1 '. <> ' " TLAB we use arra division .
the voltage va lues. To find the cu rrent I = vi R uSln<> MA. Y
The 5es ion is

»R = [10000 , 20000 , 35000 , 100000 , 200000] ;
»v = [120 , 80 , 110 , 200 , 350] ;
»current = v . /R
current =

0 . 0120 0 . 0040 0 . 0031 0 . 0020 0 . 0018

The result are in amperes and should be rounded to three significant figures because the
voltage data contains only three significant figures.

(b) To find the power P = v2 I R, use array exponentiation and array division. The
ses ion continues as fo ll ow:

»power = v . ~2 . /R
power =

1.4400 0 . 3200 0 . 3457 0 . 4000 0 . 6125

These numbers are the power dissipation in each re istor in watts. Note that the statement
v . A 2 . / R is equivalent to (v . " 2) . /R. Although the rules of precedence are unambigu­
ous here, we can alway put paremheses around quantities if we are unsure how MATLAB
will interpret our cOIlUlland .

'N'd.. A Batch Distillation Process

Chemica l and cnvironmental engineers must someti mes design batch processes for
producing or puri fying li qui ds and gases. Appli cations of uch processes occur in food
ancimed icine production, and in waste processing and water purifi cation. An example of
uch a process is a y tem for heating a liquid benzeneltoluene solution to di still a pure

benzene vapor. A particu lar batch distillation uni t i charged in itia ll y with 100 mol of a
60 percent 11101 benzene140 percent mol tol uene mixture. Let L (mol) be the amount of
liquid remaining in the sti ll. and let x (mol B/mol) be the benzene mole fraction in the
remain ing liqu id. Con.ervation of mass for benzene and to luene can be applied to derive
the fo llowing relation [Felder. 1986].

L =.I00 ~ __ A
()

0.625 (I _ .) - 1.625

0.6 0.4

Determine. what mole frac tion of benzene remains when L = 70. Note tbat it is diffic ul t
to olvc thl ' equatIOn dlr ctly for x . Use a plot of x versus L to olve the problem.
• Solution

This equation involves both an'ay mult iplication and array exponentiation. Note that
~1ATLAB enables u. to lise decimal exponen t~ to evaluate L. It is clear that L mu t
e 111 the rangc 0 S L S I 00: howe\'er, we do not know the range of x, except that x :::: O.

2.3 Element-by-Element Operations

°O~--~--~--~--~---5~O--~--~--~--~--~

L (mol)

Figure 2.3- 5 Plot for Example 2.3-6.

Therefore, we must make a few guesses for the range of x, using a session li ke the
fo ll owi ng. We fi nd that L > IOOifx > 0.6, o we choose x = [0 : 0 . 001:0 . 6).
We use the ginput function to find the value of x corresponding to L = 70.

»x = [0 : 0 . 001 : 0 . 6];

»L = 100*(x/0.6). ~ (0 . 625) .* ((1-x)/0.4). ~ (-1.625) ;
»plot (L , x) , grid , xlabel (' L (mol) ,) ,ylabel (' x (mol B/mol) '), ..
[L , xJ = ginput (1)

The plot is shown in Figure 2.3-5. The answer is x = 0.52 if L = 70. The plot shows
that dle remain ing li quid becomes leaner in benzene as the liquid amount becomes smaller.
Just before the still is empty (L = 0), the liquid is pure toluene.

Using Array Operations to Evaluate Multivariable Functions

To evaluate a function of two variables, say, Z = f(x, y), using array operations,
for the va lues x = XI , X2 , .. . , x", and y = Yt , Y2 , ... , y"" define the m x n
matri ces:

x = y = [~: ~ ~:l
YI Y2 '" y"

95

96

"'§ldee

CHAPTER 2 Numeric, Cell , and Structure Arrays

. . is evaluated in MATLAB using array operations,
When the function z = f(x , y) _ f('" y) We can extend
the re ulting J1I x n matrix z has the elements}ibl~ by ~~in (JJ ~ultidimen s i ona l
thi technique to functions of more than two Val la b

arrays.

Height ver us Velocity

In introductory phys ics courses Newton 's laws of motion are used to derive the t:llowing

formula for the maximum height h achieved by an object thrown with a spee v at an

angle f) to the horizontal.

v2 sin f)
h=--

2g

Create a table showing the maximum height for the following values of v and f) :

v = 10, 12, 14,16,18, 20 m/s f) = 50°, 60°, 70° , 80°

The rows in the table should correspond to the speed values, and the col umns shou ld

correspond to the angles .

• Solution
We mu t first convert the angles to radians before using the sin function. In order to
use element-by-element operations, we must make sure that the arrays representing
speed v and angle f) are the same size (they must have the same number of rows and
columns). Because there are six speed values and four angles, and a given speed must
correspond to a row, we must create a 6 x 4 array of speeds, with the columns repeated .
Similarl y, we must create a 6 x 4 array of angles, with the rows repeated. The script is
shown below. Note the use of the empty array [] to provide an initial array to use in the
for loop.

% Input data .
g = 9 . 8 ;
v = [lO : 2 : 20];th = [50 : 10 : 80]
thr = th*(pi!180) ;
% Create the 6 x 4 array of speeds .
vel= [] ;
for k=l.:length(th)

vel = [vel , v '] ;
end

% Create the 6 x 4 array of angles .
theta= [] ;
for k=l : length(v)

theta = [theta ; thr] ;
end

% Compute the 6 x 4 array of he i ght values .
h = (vel . ~2 .* (sin (theta)) . "2)/(2 * g)

2.4 Matrix Operations

% Create the 6 x 5 array of speeds and heights.
H = [v ', h] ;

% Create the 7 x 5 array for the table .
table = [O , th ; H]

A number (in thi s case, 0) in the last line is required to match the number of columns
in H. The fo ll owing table shows the results, rounded to one decimal place. In Chapter 3
we will see how to control the number of decimal places di splayed, and how to format
a table with headings. From the table, we can see that the maximum height is 8.8 m if
v = 14 m/s and e = 70°.

50 60 70 80

10 3.0 3.8 4.5 4.9
12 4.3 5.5 6.5 7. 1
14 5.9 7.5 8.8 9.7
16 7.7 9.8 11.5 12.7
18 9.7 12.4 14.6 16.0
20 12.0 15 .3 18.0 19.8

2.4 Matrix Operations

Matrix addition and subtraction are identical to element-by-element addition and
subtraction. The corresponding matrix elements are summed or subtracted. How­
ever, matrix multiplication and division are not the same as element-by-element
multiplication and division.

Multiplication of Vectors

Recall that vectors are simply matrices with one row or one column. Thus matrix
multiplication and division procedures apply to vectors as well , and we will
introduce matrix multiplication by considering the vector case first.

The vector dOl product u . w of the vectors u and w is a scalar and can
be thought of as the perpendicular projection of u onto w. It can be computed
fro m lullwl cos e, where e is the angle between the two vectors and luI, Iwl are
the magnitude of the vectors. Thus if the vectors are parallel and in the same
direction, e = 0 and u· w = lullwl. If the vectors are perpendicular, e = 90° and
thus u . w = O. Because the LlIlit vectors i, j, and k have unit length:

j · j=j·j=k·k=l (2.4- 1)

Because the unit vectors are perpendicular:

j.j=j.k=j · k=O (2.4-2)

97

104 CHAPTER 2 Numeric, Cell , and Structure Arrays

u times the second column in P gives the total materials cost for t~e second quarter. Also,
mUltiplying the second column in U times the first column Ii1 P gives the total/abor ~ost
for the first quarter, and so on. Extending thi pattern, we can see .that we must multiply
the transpose of U times P. This multiplication gives the cost matrix C.

»C = U'*P

The result is

f178 162 24 1 179]
c= ll38 117 172 112

84 72 96 64

Each column in C represents one quarter. The total first-quarter cost is the sum of the
elements in the first column, the second-quarter cost is the sum of the second column, and
so on. Thus because the sum command sums the columns of a matrix, the quarterly costs
are obtained by typing:

»Quarterly_Costs = sum(C)

The resulting vector, containing the quarterly costs in thousands of dollars, i
[400 351 509 355]. Thus the total costs in each quarter are $400,000; $35 1,000; $509,000;
and $355,000.

The elements in the first row of C are the material costs for each quarter; the elements
in the second row are the labor costs, and tho e in the thi rd row are the transportation costs.
Thu to find the total material costs, we must sum across the first row of C. Similarly, the
total labor and total transportat ion costs are the sums across the second and third rows of
C. Because the sum command sums colul1Ins, we must use the transpose of C. Thus we
type the fo llowing:

»Category_Costs = sum(C ')

The resulting vector, contain ing the category costs in thousands of doll ar , is
[760 539 316]. Thus the total material cost for the year are $760,000; the labor costs
are $539,000; and the transportation costs are $3 16.000.

We display~d the matrix C only to interpret its structure. If we need not di splay C,
the entire analYSIS would consist of only four command lines.

»U = [6 , 2, 1 ; 2 , 5 , 4 ; 4 , 3 , 2 ; 9 , 7 , 3];

»P = [10 , 12, 13, 15 ; 8 , 7, 6 , 4 ; 12 , 10 , 13 , 9 ; 6, 4 , 11, 5] ;
»Quarterly_Costs = sum(U ' *P)
Quarterly_Costs =

400 351 509 355
»Category_Costs = sum ((U ' *P) ')
Category_Costs =

760 539 316

This example illustrates the compactne s of MATLAB commands.

2.4 Matrix Operations

Special Matrices

Two exc~ptio.n s to the ~oncom.mutative property are tbe null matrix, denoted by 0,
and the u;/entlty, or U/uty, matrix, denoted by 1. The null matrix contains all zeros
and i.s n.ot the sallle as t~le empty matri x [], which has no elements. The identity
matn.x .IS a square matrix whose diagonal elements are all equal to one, with the
rema1l11l1g elements equal to zero. For example, the 2 x 2 identity matrix is

1=[6 ~J
These matrices have the fo llowing properties:

OA = AO = 0

IA = AI = A

MATLAB has specific commands to create several special matrices. Type
help specmat to see the list of special matrix commands; also check
Table 2.4-4. The identity matrix I can be created with the eye (n) command,
where n is the desired dimension of the matrix . To create the 2 x 2 identity matri x,
you type eye (2) . Typing eye (s i ze (A)) creates an identity matrix having
the same dimension as the matrix A.

Sometimes we want to initialize a matrix to have all zero elements. The
zeros command creates a matrix of all zeros. Typing zeros (n) creates an
n x n matrix of zeros, whereas typing zeros (m , n) creates an In x n matri x of
zeros . Typing zeros (size (A)) creates a matrix of all zeros havin o the same
dimension as the matrix A. This type of matrix can be useful for applications in
which we do not know the required dimension ahead of time. The syntax of the
ones command is the same, except that it creates arrays filled with ones.

For example, to create and plot the function

{

lO O:SX:S2
f(x) = 0 2 < x < 5

-3 5:s x :s 7

Table 2.4-4 Special matrices

Command

eye (n)
eye(size(A))
ones (n)
ones(m , n)
ones(size(A))
zeros (n)
zeros (m, n)
zeros (size (A))

Description

Creates ann x n identity matrix .
Creates an identity matrix the same size as the matrix A.
Creates an n x n matrix of ones.
Creates an m x n array of ones.
Creates an array of ones the same size as the array A.
Creates an 11 x 1/ matrix of zeros.
Creates an m x n array of zeros.
Creates an array of zero the ame size as the array A.

105

NVLLMATRIX

IDENTITY MATRIX

98 CHAPTER 2 Numeric, Cell , and Structure Arrays

Thus the vector dot product can be ex pressed in terms of unit vectors as

U · W = (ul i + U2 ,i + U3k) · (wl i + W2j + W 3k)

Carrying out the multiplication algebraically and usi ng the properties given by
(2.4- 1) and (2.4-2), we obtain

U 'W=UIWI +U2 W 2 + U3W 3

The matrix product of a row vector U with a column vectoI: W is defined in
the same way as the vector dut product; the resul t is ~ scalar that IS the sum of the
products of the con'esponding vector elements; that IS,

[
WI]

lU I U2 U3] :~ =UIWI+U2 W2+ U3 W 3

if each vector has three elements. TIm the re ult of mUltiplying a I x 3 vector
times a 3 x 1 vector is a 1 x 1 array; that is, a scaJar. This definition applies to
vectors having any number of elements, as long as both vectors have the same
number of elements. Thus

r

Wl

l 1112

U,,] ~~ = UIWI + u2W2 + U3W3 + . . . + U"W"

w"

[UI U2 U3

if each vector has n elements. Thus the result of mUltiplying a 1 x n vector times
an n x 1 vector is a I x I array, that is, a scaJar.

Vector-Matrix Multiplication

Not all matrix products are scaJars. To generali ze the preceding multiplication to
a column vector multiplied by a matrix , think of the matri x as being composed
of row vectors. The scalar result of each row-column multiplication forms an
element in the result, which is a column vector:

[all aI2] [X I] = [C/IIXI +a12X2J
a21 C/22 X2 a21xI + a22x 2

For example:

-) 9 6(3) - 5(9) - -27 [6
2 ?] [3J = [2(3) + 7(9)J - [69J (2.4- 3)

Thu~ the result of multiplying a 2 x 2 matri x times a 2 x I vector is a 2 x I array;
that IS, a column vector. Note that the definition of multiplication requires that the
number of columns in the matrix be equal to the number of rows in the vector. In
general. the product A~, where A has p columns, is defined only if x has prows.
~ ~o~a~ In rows and x IS a column vector, the resu lt of Ax is a column vector with

2.4 Matrix Operations

Matrix-Matrix M ultiplication

We can expand this definition of multiplication to include the product of two
matrices AB. The number of columns in A must equal the number of rows in B.
The row-column multiplications fo rm column vectors, and these column vec tors
form the matrix result. The product AB has the same number of rows as A and
the same number of columns as B. For example,

10 3 _; 1 ~ = (10)(9) + (3)(-5) (10)(8) + (3)(12) [
6 -2] [J [(6)(9) +(-2)(-5) (6)(8)+(-2)(12)]

4 7 (4)(9) + (7)(-5) (4)(8) + (7)(J2)

[

64 24]
= 75 J J6

I 116
(2.4-4)

Use the operator * to perform matri x multiplication in MATLAB. The fol­
lowing MATLAB session shows how to perform the matrix multiplication shown
in (2.4-4).

» A =
»B =

»A*B

[6 , -2;10,3 ; 4,7] ;
[9, 8 ;-5,12] ;

64 24
75 116
1 116

Element-by-element multiplication is defined for the following product:

[317][465]=[12635]

However, this product is not defined for matrix multiplication, because the fir t
matrix has three columns, but the second matrix does not have three rows. Thus
if we were to type [3, 1 , 7 J * [4, 6 , 5 J in MATLAB, we would receive
an error message.

The following product is defined in matrix multiplication and gives the result
shown:

XlY2 XIY3]
X2Y2 X2)'3

X3Y2 X3)'3

The following product is also defined :

[10 6) [~ ~J = [10(7) + 6(5) 10(4) + 6(2)] = [100 52]

99

106 CHAPTER 2 Numeric, Cell, and Structure Arrays

the script fi le is

xl [0 : 0 , 01 : 2) ;
fl 10*ones(si ze(x1)) ;
x2 [2 , 01 : 0 . 01 : 4 . 99) ;
f2 zeros(size(x2)) ;
x3 [5 : 0,01 : 7) ;
f3 -3*ones(size(x3)) ;
f = [fl , f2 , f3);
x = [xl, x2 , x3) ;
plot (x , f) , xlabel (' x ') , ylabel (' y ')

(Consider what the plot would look like if the command plot (x , f) were
replaced with the command plot (xl , f1 , x2 , £,2 , x3 , f3) .)

Matrix Division

Matrix divi sion is a more chall enging topic than matrix multiplication. Matrix
division uses both the ri ght and left division operators, / and \, for various ap­
plications, a principal one being the so lution of sets of linear algebraic equations.
Chapter 6 covers matrix divi sion and a related topic, the matri x inverse,

Matrix Exponentiation

Raising a matrix to a power is equivalent to repeated1y multiplying the matrix by
itself, for exam ple, A2 = AA. This process requires the matrix to have the same
number of rows as columns; that is, it must be a square matrix, MATLAB uses
the symbol A for matri x exponentiation . To find A2, type A"' 2,

We can rai se a scalar n to a matrix power A, if A is square, by typing n A A, but
the applications for such a procedure are in advanced courses, However, raising a
matrix to a matrix power-that is, A B-is not defi ned , even if A and B are square.

Note that if n is a scalar and if Band C are not square matrices, then
the following operations are not defined and will generate an error message in
MATLAB:

Special Products

Many applications in physics and engineering use the cross product and dot
product- for ~xample, calculations to compute moments and force components
use these speCIal products. If A and B are vectors with three elements, the cross­
product command cross (A , B) computes the three-element vector that is the
cross-product A x B. If A and Bare 3 x n matrices, cross (A , B) returns a 3 x n

array whose columns are the cross products of the con'esponding columns in the
3 ~ n arrays A and B. For. ex~mple, the moment M with re pect to a reference
pomt 0 due to the force F IS gIVen by M = r x F, where r is the position vector

2.5 Polynomial Operations Using Arrays

Table 2.4-5 Specia l products

Command

cross (A , B)

do t (A , B)

Syntax

Compu tcs a 3 x n array whose columns are the cross products of the
corresponding columns in the 3 x n arrays A and B. Returns a
three-element cross-product vector if A and B are three-element vectors.
Computes a row vector of length /I whose elements are the dot products
of the corresponding columns of the m x n arrays A and B .

from the point 0 to the point where the force F is appli ed. To fi nd the moment in
MATLAB , youtype M = cros s (r, F).

The dot-product command dot (A, B) computes a row vector of length n
whose elements are the dot products of the corresponding co lumns of the In x 11
arrays A and B. To compute the component of the force F along the direction
given by the vector r , you type dot (F , r) . Table 2.4-5 summarizes the dot- and
cross-product commands.

2.5 Polynomial Operations Using Arrays

MATLAB has some convenien t vector-based tool s for working with polynomi als,
which are used in many advanced courses and applications in engineering. Type
help polyfun for more information on this category of commands. We wi ll
use the following notation to describe a polynomial:

fex) = alx" + a2Xn-1 + a3x"- 2 + .. . + GII _ IX2 + allx + all + I

Thi s polynomial is a function of x. Its degree or order is 11 , the highest power of x
that appears in the polynomial. The ai, i = 1,2, ... , n + I are the polynomial's
coefficients. We can describe a polynomial in MATLAB with a row vector whose
elements are the polynomial 's coefficients, starting with the coefficient of the
highest power of x. This vector is [0.1 ,0.2, 0.3, ... , (/n-I, all , all+l]. For example,
the vector [4, - 8 , 7 , - 5] represents the polynomial 4x3 - 8x2 + 7 x - 5.

Polynomial roots can be found with the roots (a) function, where (a) is
the array containing the polynomial coefficients. For example, to obtain the roots
of x J + 12x 2 +45x+50 =O, youtype y = roots([1,12 , 45 , 50]) .The
answer (y) is a column array containing the values -2, -5, -5.

The poly (r) function computes the coefficients of the polynomial whose
roots are specified by the array r . The result is a row array that contains the
polynomial's coefficients. (Note that the root s function returns a column array.)
For example, to find the polynomial whose roots are I and 3 ± 5i, the session is

»r = [1,3+5i , 3-5i] ;
»poly (r)
ans =

-7 40 -34

Thus the polynomial is x 3 - 7x 2 + 40x - 34. The two commands could have
been combined into the single command po ly ([1 , 3 + 5 i, 3 - 5 i]) .

107

108 CHAPTER 2 Numeric, Cell, and Structure Arrays

Polynomial Addition and Subtraction

To add two polynomials, add the arrays that describe thei r coeffi cients. If the
polynomial are of di fferent degrees, add zeros to the coeffic Ient array of the

lower-degree polynomial. For example, consider

f(x) = 9x 3 - Sx 2 + 3x + 7

whose coefficient array is f = [9 , - 5 , 3 , 7) and

g(x) = 6x 2
- X + 2

whose coefficient array is g = [6 , -1 , 2). The degree of g(x) is one less
that of f(x). Therefore, to add f (x) and g(x), we append one zero to g to
" fool" MATLAB into thinking g(x) is a third-degree polynomial. That is, we
type g = [0 g) to obtain [0,6 , -1 , 2) for g .This vectorrepresentsg(x) =
Ox3 + 6x2 - X + 2. To add the polynomials, type h = f+g. The result is h =
[9 , 1 , 2 , 9) , which corresponds to hex) = 9x 3 + x 2 + 2x + 9. Subtraction is
done in a similar way.

Polynomial Multiplication and Division

To multiply a polynomial by a scalar, simply multiply the coefficient array by that
sca lar. For example, Sh(x) is represented by [45 , 5 , 10 , 4,5) .

Multiplication of polynomials by hand can be tedious, and polynomial divi­
sion is even more so, but these operations are easily done with MATLAB. Use
the cony function (it stands for "convolve") to multiply polynomials and use the
deconv function (deconv stands for "deconvolve") to perform synthetic divi­
sion. Table 2.S-1 summari zes these functions , as well as the poly , polyval ,
and roo ts functions, which we saw in Chapter 1.

Table 2.5-1 Polynomial functions

Command

cony (a , b)

[q , r J =
deconv (n um , den)

po l y (r)

polyval (a , xl

r oots(a)

Description

Computes !he product of Ihe two polynomials described by the coefficient arrays a and b .
The two polynomials need not be the same degree. The result is the coefficient array of the
product polynomial.
Computes the result of' dividing a numerator polynomial, whose coefficient aJTay is num,
by a denomlI1ator polynomial represented by Ihe coefficient array den. The quotient '
iho~~~~I;I~ilel:t ~:r:~ ~ the coeffiCient array q , and the remainder polynomi al is given by

Computes ~he coefficients of the polynomial whose roots are specified by the vector r .

J~:c~~~~~so~;~r\>\~~~~~~~~at contalll the polynomiaL coefficients arranged in

EvaJ~ates a polynomial at specifie~ values of its independent variable x, which can be a

:~~~~~;~~:~~'t ~h~h~~~~~~i:~ ~sc~~fficlents of de cending powers are stored in the

Computes the roots of a ~olynomial specified by the coefficient array a. The result is a
column vector that contallls the polynomial's roots. .

2.5 Polynomial Operations Using Arrays

The product of the polynomials f(x) and g(x) is

f(x)g(x) = (9x 3
- 5x 2 + 3x + 7)(6x 2 - X + 2)

= 54x 5
- 39x 4 + 41x 3 + 29x 2 - X + 14

Divid ing f(x) by g(x) using syntheti c division gives a quotient of

f(x) 9x 3 - 5x 2 + 3x + 7
g(x) --6-x-=-2-_-

x
-+-2-- = 1.5x - 0.5833

with a remainder of - 0 .5833x + 8.1667. Here is theMATLAB session to perform
these operations.

»f = [9 , -5 , 3 , 7);
»g = [6 , -1 , 2) ;
»product = conv (f ,g)
product =

54 -39 4 1 29
»[quotient , r emainder)
quotien t =

1.5 - 0 . 58 3 3
rema i n der =

-0 . 5833

-1 14
deconv (f , g)

8 . 1667

The cony and deconv functions do not require that the polynomials have the
same degree, so we did not have to foo l MATLAB as we did when addin a the
polynomials. Table 2.S- 1 gives the general syntax for the cony and decbonv
functions.

Plotting Polynomials

The polyval (a , x) function evaluates a polynomial at specified values of its
independent variable x, which can be a matrix or a vector. The polynomial's
coefficient array is a . The result is the same size as x. For example, to evaluate
the polynomial f(x) = 9x 3 - 5x 2 + 3x + 7 at the points x = 0,2, 4 , .. . , 10,
type

[9 ,-5, 3 , 7 J ;
»x [0 : 2 : 10J;
»f polyval(a , x);

The resulting vector f contains six values thatcon-espond to f(O). f(2), f(4), . . . ,
f(10). These three commands can be combined into a single command:

»f = p olyva l([9 , -5,3 , 7]'[0 : 2 : 10J) ;

Personal preference determines whether to combine terms in this way; some peo­
ple think that the single, combined command is less readable than three separate
commands.

109

110 CHAPTER 2 Numeric, Cell, and Structure Arrays

The polyval function is very usefu l for plotting pol~nomia l s. To do t~is yo u

sho uld define an array that contains many values of the Independe nt. van.able x
in order to obtai n a smooth plot. For example, to plot the polynomIa l j (x) =

9x3 _ 5x2 + 3x + 7 for -2 ::: x ::: 5, you type

»a = [9 , - 5,3,7] ;

»x = [-2:0 . 01 : 5];
»f = polyval (a, xl;
»plot (x , f 1 , xlabel (' x ' 1 , ylabel (, f (xl ' 1 ,grid

"'Did.' EaJthquake-Resistant Building Design

Buildings designed to withstand earthquakes must have natura l frequencies of vibra­
tion that are not close to the osci llation frequency of the ground motion. A building's

natural frequencies are determined primarily by the masses of its floors and by the lat­

eral stiffness of its upporting coluillns (which act like horizontal springs). We can find
these frequencies by solving for the roots of a polynomial called the structure's char­

acterist ic polynomial (characteristic polynomials are discussed further in Chapter 8).
Figure 2.5-1 shows the exaggerated Illotion of the floors of a three-story building.

For such a building, if each floor has a mass 111 and the columns have stiffness k, the

Floor

Columns
Floor

Floor
ir-----------------J

Ground Motion

~;~~~ ~;!~~n~imple vibrat ion model of a building subjected to

2.5 Polynomial Operations Using Arrays

polynomia l is

where ~ ~ k ~4 1'11J[2 (m~de l s such as these are discussed in more deta il in [Palm 2005])
The ~lllldll:g s natural fTequencies in cycles per second are the positive root~ of thi~
equation. FlI1d the bu il ding 's natura l frequencie, in cycles per second for the case where
III = 1000 kg and k = 5 X 106 N/m.

• Solution

The characteri stic polynomi al consists of sums and products of lower-degree polynomi als

: : ~~: ~~;n~h I S fact to have MATLAB do the algebra for us. The characteri tic polyno mi ai

where

The MATLAB script fi le is

k = Se+6 ;m = 1000 '
alpha = k/ (4 *m*pi ~2) ;
pl = [-l ,O, alpha) ;
p2 = [-1,0,2*alpha);
p3 = [alpha~2,0,-2*alpha~3);

p4 = conv(p2 , p2)-(O , 0 , 0 , 0 , alpha~2) ;

pS = conv(pl , p4) ;
p6 = pS+[O, 0 , 0, 0 , p3) ;
r = roots (p6) ;
pos = r (r>O)

The resultingaJTayispos = [20 . 2789 ; 14 . 033S ; 5 . 0085] .Thus thefrequencie.
rounded to the neares t integer, are 20, 14, and 5 Hz.

Test Yo r Understanding

T2.5-1 Use MATLAB to obtain the roots of

x 3 + 13.1:2 +52x+6=0.

Use the poly function to confinn your answer.

T2.5-2 Use MATLAB to confirm that

(20x 3
- 7x 2 + 5x + 10)(4x2 + 12x - 3)

= 80x 5 + 212x4
- 124x3 + 121x2 + LOS.\" - 30

111

112

CELL I DEXING

CO TE T
L 'DEXING

CHAPTER 2 Numeric, Cell , and Structure Arrays

T2.5-3 U e MATLAB to confirm that

12,1'3 -+ 5x
2

- 2x + 3 = 4x + I I
3x2 - 7,1' + 4

with a remainder of 59x - 41.

T2.5-4 Use MATLAB to confirm that

6x
3

+ 4,1' 2 - 5 = O.7lO8
12,1'3 - 7,1'2 + 3x + 9

when x = 2.

T2.5-5 Plot the polynomial

y = x3 + 13,1' 2 + 52x + 6

over the range - 7 ::: x ::: I.

2.6 Cell Arrays

The cell array is an array in which each element is a bin, or cell, whjch can
contain an array. You can tore different classes of arrays in a cell array, and you
can group data ets that are related but have different dimensions. You access cell
array u ing the same indexing operations used with ordinary arrays.

Thi s i the only section ill the text that uses cell arrays. Coverage of this
section is therefore optional. Some more advanced MATLAB application, such
as those found in some of the toolboxes, do use cell arrays.

Creating CeU Arrays

You can create a cell array by using a signment statements or by using the cell
function (ee Table 2.6-1). YOli can assign data to the cells by using either
cell indexing or conrenr indexing. To lise cell indexing, enclose in parentheses

Table 2.6-1 Cell array functions

Function

C - cell (n)

C '= eel':' \n , m)
celld:sp(C)
ce:'lploc (C)

C '= :: '::12ce::':' (AJ
.X , Y, . .. J '= dea:'(A,B,
~x , Y, = dea::" (.;)
isce:"_ (C'

... J

De cription

Create an II x 1/ cell array C of empty matrices.
Create an n x 111 cell array C of empty matrice .
DI plays the contents of cell array c .
Displays a graphical repre entation of the cell array C.
Comen a numeric array A into a cell array C.
Ylatche up the ~nput and output Ii ts. Equivalent to X = A, Y
Match~. up the Input and output lists. Equivalent to X = A, Y
Returns a I If C IS a ceil array: otherwise, return a O.

= B,.
= A,

2.6 Cell Arrays

the cell subscripts on the left side of the assignment statement and use the stan­
danl array notation . Enclose the cell contents on the ri ght side of the as ignment
statement in braces {} .

An Environmental Database

Data collecti on is important for early detection of changes in our environment. In order
to detect such changes, we need to be able to analyze the databa e efficientl y, and thi
effort requires a database that is set up for easy access. As a simple example, suppose
you want to create a 2 x 2 cell array A, whose cells contain the location, the date, the
air temperature (measured at 8 A.M. , 12 noon , and 5 P.M.), and the water temperatures
measured at the same time in three different points in a pond. The cell array looks like
the fo llowing.

Walden Pond June 13, 1997

[

55 57 56]
160 72 65J 54 56 55

52 55 53

• Solution

You can create this array by typing the following either in interactive mode or in a script
file and running it.

A (1 , 1)

A (1 , 2)
A (2 , 1)

A(2 , 2)

{ ' Walden Pond ' } ;
{ ' June 13 , 1997 ' } ;
([60 , 72 , 65)} ;

([55 , 57 , 56 ; 54 , 56 , 55 ; 52 , 55 , 53) } ;

If you do not yet have contents for a particulaJ' cell. you can type a pair of empty
braces { } to denote an empty cell , juS! as a pair of empty brackets [) denotes an
empty numeric array. This notation creates the cell but does not store any contents
in it.

To use content indexing, enclose in braces the cell subscripts on the left side using the
standard array notation. Then pecify the cell contents on the right side of the a ignmcnl
operator. For example:

A{l , I}

A{l , 2)

A{2 , I}

A{2 , 2}

' Walden Pond ';
' June 13 , 1997 ';
[60 , 72 , 65J ;
[55 , 57 , 56 ; 54 , 56 , 55 ; 52 , 55 , 53) ;

Type A at the command line. You will see

A =

' Walden Pond ' ' June 13 , 1997 '
[lx3 double) [3 x 3 double)

113

"'!§iUE"

114 CHAPTER 2 Numeric, Cell, and Structure Arrays

You can use the celldisp fun ction to displ ay the fu ll contents. For example, typing

celldisp (A) displays

A{l, 1} =
Walden Pond

A{2 , l}

60 72 65

erc.

The cellplot function produces a graphi cal di splay 0: th~ cell array 's
contents in the form of a grid . Type cellplot (A) to see tillS display for the
cell array A. . .

Use commas or spaces with braces to Indicate columns of cell s and use
semicolons to indicate rows of cells Uust as with numeric arrays) . For example,
typing

B = {(2,4], [6,-9 ; 3 , 5) ; [7 ; 2), 10} ;

creates the fol lowing 2 x 2 cell array:

You can preallocate empty cell arrays of a specified size by using the cell
function . For example, type C = cell (3 , 5) to create the 3 x 5 cell array C
and fill it wit h empty matrices. Once the array has been defined in this way, you
can use assignment statements to enter the contents of the cells. For example,
type C (2 , 4) = {[6 , -3 , 7] } to put the I x 3 alTay in cell (2,4) and type
C (1 , 5) = {I : 10} to put tile numbers from I to 10 in cell (1,5). Type
C (3 , 4) = { ' 30 mph ' } to put the string in cell (3,4).

Do not name a cell anay wi th the same name as a previollsly used numeric
array without first using the clear command to clear the name. Otherwi se,
MATLAB will generate an en·or. In additi on, MATLAB does not clear a cell
array when YOll make a ingle assignment to it. You can determine if an array is
a cell anay by using the iscell fu nction. You can convert a numeric array to a
cell array by u ing the num2cell function.

Accessing Cell Arrays

.vou c~ acce s the content of a cell anay by using ei ther cell indexing or content
rndexrng. For example. to u e cell indexing to place the Contents of cell (3,4) of

2.6 Cell Arrays

the array C in the new variable Speed, type Speed = C (3 , 4) . To place the
contents of the cells in rows 1 to 3, columns 2 to 5 in the new cell array D, type
D = C (1 : 3 , 2 : 5) . The new cell array D wi ll have three rows, four columns,
and 12 arrays. To use content indexing to access some or all of the contents in
a single cell, enclose the cell index expression in braces to indicate that you are
ass igning the contents, not the cell s themselves, to a new variab le. For example,
typing Speed = C{3, 4) assigns the contents ' 30 mph ' in cell (3,4) to the
vari able Speed. You cannot use content indexing to retrieve the contents of
more than one cell at a time. For example, the statements G = C {I , : } and
C {I, :} = var, where var is some variable, are both invalid .

You can access subsets of a cell 's contents. For example, to obtain the second
element in the I x 3-row vector in the (2,4) cell of array C and assign it to the
variable r, youtype r = C{2 , 4} (1 , 2). Theresultis r = -3.

The deal function accesses elements of a range of cells in a cell array. For
example, with the preceding cell array B, x and y can be assigned to the elements
in row 2 of B as fo llows:

»[x , y] = deal (B{2 ,: })

y =
10

Using Cell Arrays

You can use cell arrays in comma-separated lists just as you would use ordinary
MATLAB variables. For example, suppose you create the 1 x 4 cell array H by
typing

H = {(2 , 4 , 8], [6 , -8 , 3], [2 : 6), [9 , 2 , 5)} ;

The expression H{2 : 4) is equivalent to a comma-separated li st of the second
through fourth cells in H. To create a numeric array J from the first, second , and
fourth cell s in the cell array H, you type

J = [H{I} ; H{2} ; H{4}]

The result is

J~ [~ -HJ
Typing H{2 : 3) displays the arrays in the second and third cells.

»H{2 : 3}
ans

-8

115

116 CHAPTER 2 Numeric, Cel l, and Structure Arrays

. h' llanner in function input and output li sts, You can also use cell arrays III t IS I . Ie
and you can store the results in another cell array, say, K. FOI examp ,

»[K{ 1 : 2}] = max(J)

K =
[lx3 double] [lx3 double]

Type K{l l to ee the maximum val ues; type K{2} to see the corresponding indices.

»K{l}

»K{2}

YOll can apply functions and operators to cell contents. For example, suppose
YOll create the 3 x 2 cell array L by typ ing

L = {[2 , 4 , 8]' [6 , -8 , 3]; [2 : 6], [9 , 2 , 5]; [1,4 , 5], [7 , 5 , 2] };

Then, fo r example:

»max (L { 3 , 2))

Nested cell arrays have cells that contain cell arrays, which may also contain
cell array , and so on. To create nested arrays, you can use nested braces, the
ce 11 function , or assignment statements. For example:

N(l ,l) = {[2 , 7 , 5]} ;

N (l , 2) = ({ [5 , 9 , 1 ; 4 , 8 , 0] , ' Case l '; {5 , 8} , [7, 3] } } ;

Typing N gives the resul t

N =

[lx3 double] {2x2 cell}

The following steps create the same array N using the ce 11 function. The
method as igns the output of cell to an existing cell.

% First create an empty lx2 cell array .
N = cell(1 , 2)

% Then create a 2x2 cell array inside N(l , 2) .
N(1 , 2) = {cell(2,2)}

% Then fill .' using assignment statements .
[1(1 , 1) = t[2 , 7 , 5]l;

N{1,2}(1 , l) ([5 , 9 , 1 ; 4 , 8 , O)}
N{l, 2} (1 , 2) = { ' Case::"}

N{ 1, 2}{2 , l } (1) = { 5}
N{ l , 2}{2 , 1}(2) = {8}
N{1, 2 }(2 , 2) = {[7 , 3]}

2.7 Struc ture Arrays

Note that braces are used for subscripts to access cell contents until the lowes t
"layer" of subscripts is reached. Then parentheses are used because the lowest
layer does not contain cell arrays.

As a fin al example, suppose you create the 3 x 2 cell array H by typing

H = {[2 , 4 , 8]' [6 , -8 , 3] ; [2 : 6], [9 , 2 , 5]; [1 , 4 , 5]' [7 , 5 , 2]} ;

You can create a numeric array J from the cell array H by typi ng

J = [H{1 , l }; H{l , 2} ; H{2 , 2}]

The res ul t is

J = 6 - 8 3 [
2 4 8]
9 2 5

Typi ng H{2 : 3 , :} displays the arrays in the second and third rows.

»H{2 : 3 , : }

Test Your Understanding

T2.6-1 Create the following cell array:

A = {[l : 4], [0 , 9 , 2], [2 : 5], [6 : 8]}

What is A { 1 : 2 }? What is [A { 2 } ; A { 4 } J ? What is min [A { 2 } ,
A{3 }?

2.7 Structure Arrays

Structure arravs are composed of structures. Thi s class of arrays enables you
to store di SS imi lar arrays together. The element. in structures are accessed using
namec/fie /ds. This feature di stinguishes them from cell arrays, which are accessed FIELD

117

llsing the standard array indexing operations. _____ _

11 8 CHAP TE R 2 Numeric. Cell . and Structure Arrays

Structure array "student"

Student(1)

t
Name John Smith

SSN 392-77-1786

Email smlthj @myschool.edu

Tests 67. 75. 84

Student(2)

Name: Mary Jones

SSN: 431-56-9832

Email : jonesm @myschool.edu

Tests: 84, 78, 93

Figure 2.7-1 Arrangement of data in the structure array student.

Structure arrays are used in this text onl y in thi s section and in Chapter 10.
Some MATLAB toolboxes do use structure arrays.

A specific example is the best way to introduce the terminology of structures .
Suppose you wan t to create a database of students in a course, and you want
to inc lude each student's name, Social Security number, email address, and test
scores. Figure 2.7-1 shows a di agram of this data structure. Each type of data
(name, Social Security number, and so on) is afield, and its name is thefield name.
Thus our database ha four fi elds. The fi rst three fie lds each contain a text string,
while the last fi eld (the test scores) contai ns a vector having numerical elements. A
struClure consists of all thi s information for a single student. A structure array is
an array of such structures for different students. The alTaY shown in Figure 2.7-1
has two tructures arranged in one row and two columns.

Creating Structures

You can create a structu re array by using assignment statements or by using the
struct function. The fo ll owing example uses assignment statements to build
a structure. Structure arrays use the dot notation (.) to specify and to access the
fie lds. You can type the commands either in the interactive mode or in a script file.

MEs"qee" A Student Database

Create a structure array to contain the following types of tudent data:

• Student name.

• Social Security number.

• Email address.

• Test Scores.

Enter the data shown in Figure 2.7-1 into the database.

2.7 Structure Arrays

• Solution

You can create the structure array by typing the following either in the interactive mode
or in a script fi le. Start with the data for the first student.

student . name = ' John Smith ';
student . SSN = ' 392-77-1786 ';
student . email ' smithj@myschool . edu ';
student . tests = [67 , 75 , 84];

If you then type

»student

at the command line, you will see the fo llowing response:

' John Smith '
SSN: = ' 392-77-1786 '
email : = ' smithj@myschool.edu '
tests : = [67 75 84]

To determine the size of the array, type size (student) . The resul t is ans = 1 1,
which indicates that it is a I x 1 structure array.

To add a second student to the database, use a subscript 2 enclosed in paren­
theses after the structure array's name and enter the new information. For example,
type

student (2) . name = ' Mary Jones ' ;
student (2) . SSN = ' 431-56 - 9832 ';
student (2) . email = ' jonesm@myschool . edu ' ;
student(2).tests = [84 , 78 , 93];

This process "expands" the an ay. Before we entered the data for the second student,
the dimension of the structure array was I x 1 (it was a single structure). Now it is
a j x 2 aJTay consisting of two structures, arranged in one row and two columns. You
can confirm thi s information by typing size (student), which returns ans = 1 2.
If you now type length (student) , you will get the result ans = 2, which indi­
cates that the array has two elements (two structures). When a structure array has more
than one structure, MATLAB does not display the individual fi eld contents when you
type the structure array' name. For example, if you now type student , MATLAB
displays

»student =

lx2 struct array with fields :

SSN
email
tests

119

120 CHAPTER 2 Numeric, Cell, and Structure Arrays

Table 2.7-1 Structure functions

Function

fieldnames (8)

F = getfield(8, ' field ')

isfield(8 , ' field ')

isstruct (8)

8 = rmfield (8 , ' field ')

8 = setfield(8 ,' field ', V)

8 = struct(' fl ',' vl ',' f2 ',' v2 ', .. .)

Description

Returns the fi eld names associated
with the structure array 8 as
names, a ce ll array of strings.
Returns the contents of the fie ld
, field ' in the structu re array s.
Equivalent to F = S . field .
Retu rns I if ' field' is the
name of a fie ld in the structure
array 8, and 0 otherw ise.
Returns I if the array S is a
structure array, and 0 otherwise.
Removes the fie ld ' field '
from the structure array S.
Sets the contents of the fi eld
' field ' to the va lue V in the
structure array 8.
Creates a structure array with the
fi elds ' fl ' , ' f2 ', ... having
the values' vI " ' v2 ' ,

You can also obtain information about the fi elds by using the f ieldname s function
(see Table 2.7- 1). For example:

» f ieldnames (student)

'name '
, 88N '

. email .
' tests '

As you fill in more student information, MATLAB as igns the same number of fi elds
and the same field names to each element. If you do not enter some information- fo r
example, suppo e you do not know someone's emai l address-MATLAB assions an
empty matrix to that fi eld for tbat tudent. 0

The field can have different size . For example, each name field can contai n a
di fferent number of characters, and the arrays con taining the test Scores can be different
sizes, as would be the ca e if a certain student did not take the second test.

In addition to the ass ignment statement, you can also build structures usin
a

the struct function, which lets you "prea llocate" a structure array. To build ~
structure array named sa_ I , the syntax is

sa_ l = struct (' fieldl ' , ' valuesl ', ' field2 ' , ' values2 ' , .. .)

where the arguments are the field names and their values. The values arrays
valuesl , values2, ' " must all be arrays of the same size, scalar cells, or

2 .7 Struc ture Arrays

single values. The elements of the values atTays are inserted into the corresponding
elements of the structure array. The resulting structure array has the same size as
the values arrays, or is I x 1 if none of the values arrays is a cell. For example,
to preallocate a 1 x 1 structure array for the student database, you type

student = struct(' name ' , ' John Smi th ' , 'SSN', .. .
' 392-77-1786 ' , . email ••• smi t hj@myschool . e du ' , .. .
' tests ', [67 , 75 , 84J)

Accessing Structure Arrays

To access the contents of a particular field, type a period after the structure array
name, followed by the field name. For example, typing s t uden t (2) . n a me
di splays the value ' Mary Jones '. Of course, we can assign the result to a
variable in the usual way. For example, typing name2 = student (2) . name
assigns the value' Mary Jones ' to the variable name2. To access elements
within a field, for example, John Smith 's second test score, type student (1) .
tests (2) . This entry returns the value 75. In genera!, if a field contains an array,
you use the array 's subscripts to access its elements. In this example the statement
stu d e n t (1) . tests (2) is equivalentto student (1 , 1) . tests (2) be­
cause student has one row.

To store all the information for a particular structure-say, all the infor­
mation about Mary Jones-in another structure array named M, you type M =
student (2).

You can also assign or change values of field elements. For example, typing
s t uden t (2) . t es t s (2) = 8 1 changes Mary Jones's second test score from
78 to 81. Direct indexing is usualJy the best way to create or access field values.
However, suppose you used the f i e l dnames till1ction in an M-file to obtain
a field name. You would know the field name only as a string. In thi s situation
you can use the set fie l d and ge t fie l d functions for assigning and retriev­
ing field values. For example, typing se t fie l d(M , ' name ', ' Mary Lee
Jones ') inserts the new name. Typing g et field (M , ' name ') returns the
resu lt ans = Mary Lee Jones .

The preceding syntax for the get fiel d and s et f ie l d functions works
on 1 x J arrays only. The alternate syntax, which works for an i x j array S, is

F = getfie1d (S , {i , j }, ' fi el d ' , {k})

which is equivalent to F = S (i , j) . f i eld (k). For example,

getfield(student , {1 , 1}, ' tests ' , {2})

returns the result a ns = 7 5 . Similarly,

S = setfield(S , {i , j} , ' f ie ld ', {k})

isequivalentto S(i ,j) . f ield(k) = S.

121

122 CHAPTER 2 Numeric, Cell, and Structure Arrays

Modifying Structures

t dd phone numbers to the database. You can do this by Suppose you want 0 a . '
typing the first student 's phone number as follows.

s t uden t (1) . phone = ' 555 -16 5 3 '

All the other structures in the array will now have a phone field , but these fields
will contain the empty array until you give them values. . .

To delete a field from every structure in the array, use the rmf leld fu nctIon.
Its basic syntax is

new_ struc = rmfield (array , ' field ') ;

where array is the structure array to be modified, ' f i e l d ' is the field to be
removed, and n ew_s t ruc is the name of the new structure arr~y so created by
the removal of the field. For example, to remove the Social SecurIty field and call
the new structure array new_ student, type

new_student = r mfield(studen t, ' SSW) ;

Using Operators and Functions with Structures

You can apply the MATLAB operators to structures in the usual way.
For example, to find the maximum test score of the second student, you type
max (student (2) . tests) . The answer is 93.

The is field function determines whether or not a structure array con­
tains a particu lar field . Its syntax is is field (S , ' field ') . It returns a value
of 1 (which means "true") if ' field ' is the name of a field in the structure
array S. For example, typing isfield(student , ' name ') returns the re­
sult ans = l.

The isstruct function determines whether or not an array is a structure
array. Its syntax i isstruct (S). It returns a valueof1 if s is a stmcture alTay,
and 0 otherwise. For example, typing isstruct (student) returns the result
ans = 1 , which is equivalent to "true."

Dynamic Field Names and New Structure Syntax

Prior to MATLAB 6.5, the elements of a structure could be referenced by using
fixed field names on ly. As of MATLAB 6.5 you can reference structures using
field names that express the field as a variable expression that is evaluated at
run time.

Structures can now be r~ferenced by using dynamic field names that express
the fields as varIable expresSIons that are computed at run time. Use the fol lowin o
parentheses syntax to specify which fields are to be dynamic: b

structure_name . (expression)

2.8 Summary

where expression is the dynamic field name. Use the standard indexi no
method to access the information in the structure. For example, typing b

struct_name . (expression) (5 , 1 : 10)

accesses the information in the field in row 5, columns J through 10.
The fo llowing table compares the various static and dynamic data types.

Data type Static example

Matrix. A(2 , 5)
Cell array C{5}
Structure s . name

Dynamic example

A(r , c)
C{k *2 }
S . (f i eld)

Because of the new dynamjc names feature, se t f ield and get field are
less useful than before. The set field and get field functions execute more
slowly because they are not built-in MATLAB functions.

In addition to increased execution speed, dynamic field names offer im­
proved readability over set field and getfield. For example, consider the
following:

1. Using s e t fie l d :

S = set fi eld (S, {m , n}, fie l dname , {k} , value)

2. Using a dynamic field name:

S (m, n) . (f ieldname) (k) value

Test Yo r Understanding

T2.7-1 Create the structure alTay student shown in Figure 2.7-1 and add the
following information about a third student: name: Alfred E. Newman;
SSN: 555- I 2-3456; e-mail: newmana@myschool.edu; tests: 55,45,58.

T2.7-2 Edit your structure alTay to change Mr. Newman's second test score from
45 to 53 .

T2.7-3 Edit your structure aITay to remove the SSN field.

2.8 Summary

You should now be able to perform basic operations and use arrays in MATLAB.
For example, you shou ld be able to

• Create, address, and edit aITays.
• Perform array operations including addition, subtraction, multiplication,

division, and exponentiation.

123

124 CHAPTER 2 Numeric, Cell, and Structure Arrays

Table 2.8-1 Guide to commands introduced in Chapter 2

Special
characters Use

Transposes a matrix, creating complex
conjugate elements. .
Transposes a matrix without creating complex
conj ugate element.
Suppresses screen printing; also denotes a new
row in an alray.
Represents an entire row or column of an array.

Tables

Array functions
Element-by-element operations
Special matrices
Special products
Polynomial functions
Cell array functions
Structure funct ions

Table 2.1-1
Table 2.3-1
Table 2.4-4
Table 2.4-5
Table 2.5-1
Table 2.6-1
Table 2.7-1

• Perform matrix operations including addition, subtraction , multiplication,
division, and exponenti ation .

• Perform polynomial algebra.
• Create databases using cell and structure arrays .

You should be careful to distinguish between array (element-by-element) opera­
tions and matrix operations. Each has its own applications.

Table 2.8-1 is a reference guide to all the MATLAB commands introduced
in this chapter.

Key Terms with Page References
Absolute value. 79
Anay addres ing, 75

Array operations, 84
Array size, 73
Cell array, 11 2

Cell indexing. 11 2

Column vector. 7 1

Content indexing. 112

Element-by-element operations, 83
Empty array. 76

Field, 117

Identity matri x, 105
Length , 79

MagnitUde, 79
Matrix, 73

Matrix operations, 84
Null matrix, 105
Row vector, 71

Structure array, I 17
Transpose, 72

Problems

Problems

You can fi nd the answers to problems marked wi th an asterisk at the end of the text.

Section 2.1

1. a. Use two methods to create the vector x having 100 regularly spaced
values starting at 5 and ending at 28.

b. Use two methods to create the vector x having a regular spacing of 0.2
starting at 2 and ending at 14.

c. Use two methods to create the vector x having 50 regul arly spaced
values starting at -2 and ending at 5 .

2. a. Create the vector x having 50 logarithmically spaced values starting at
10 and ending at 1000.

b. Create the vector x having 20 logarithmically spaced values starting at
10 and ending at 1000.

3. * Use MATLAB to create a vector x hav ing six values between 0 and 10
(i ncluding the endpoints 0 and 10). Create an array A whose first row
contains the values 3x and whose second row contains the values 5x - 20.

4. Repeat Problem 3 but make the first column of A contain the values 3x
and the second column contain the values 5x - 20.

5. Type this matri x in MATLAB and use MATLAB to answer the following
questions:

r
3 7 -4 12]

-5 9 10 2
A= 6 13 8 11

IS 5 4]

C/. Create a vector v consisting of the elements in the second column of A.
b. Create a vector w consisting of the elements in the second row of A.

6. Type this matrix in MATLAB and use MATLAB to answer the following
questions:

r
3 7 -4]2]

-5 9 10 2
A= . 6 13 8 11

IS 5 4 1

a. Create a 4 x 3 array B consisting of all elements in the second
through fourth columns of A.

b. Create a 3 x 4 array C consisting of all elements in the second
through fourth rows of A.

c. Create a 2 x 3 array D consisting of all elements in the first two rows
and dle las t three columns of A.

125

126 CHAPTER 2 Numeric, Cell , and Structure Arrays

7.* Compute the length and absolute value of the foll owing vectors:

a. x = [2,4, 7]
b. y = [2 , -4, 7]
c. z = [5 + 3i, -3 + 4i , 2 - 7i]

8. Given the matrix

A = r-~ l~ ~~ :~]
15 5 4 1

Find the max imum and minimum values in each column.
b. Find the maximum and minimum values in each row.

9. Given the matrix

r

3 7 -4 12]
-5 9 10 2

A = 6 13 8 11
15 5 4 1

a. Sort each column and store the result in an array B.
b. Sort each row and store the result in an array C.
c. Add each column and store the result in an array D.
d. Add each row and store the result in an alTay E.

10. Consider the fo llowing arrays .

A - r; : 1~0]
- 7 9 7

3 IT 42

B= In (A)

Write MATLAB expressions to do the fo llowing.
Select just the econd row of B.

b. Evaluate the sum of the second row of B.
Multiply the second column of B and the first column of A.

d. Evaluate the maximum value in the vector resulting from element­
by-element multiplication of the second column of B with the first
column of A.

e. Evaluate the sum of the first row of A divided element-by-element
by the first three elements of the third column of B.

Section 2.2

11.* a. Crea~e a three-dimensional array D whose three "layers" are these
malnces:

[
6 9 -4]

B = 7 5 3
-8 2 I [-7 -5 2]

C = 10 6 1
3 -9 8

Problems

b. Use MATLAB to find the largest element in each layer of D and the
largest element in D.

Section 2.3

12.* Gi ven the matrices

A = [-; l~J [6 -5J B = 12 -2 - [-3 -9J C - 6 8

Use MATLAB to:
Find A + B+C.

b. Find A - B + C.
c. Verify the associative law

(A + B) + C = A + (B + C)

d. Verify the commutative law

13.* Given the matrices

A = [64 32J
24 -16 B = [16 -4J

6 -2

Use MATLAB to:
a. Find the result of A times B using the array product.
b. Find the result of A divided by B using array right division.
c. Find B raised to the third power element-by-element.

14.* The mechanical work W done in using a force F to push a block through a
distance D is W = F D. The following table gives data on the amount of
force used to push a block through the given distance over five segments
of a certain path. The force varies because of the differing friction
properties of the surface.

Patb segment

Force (N) 400 550 700 500 600
Distance (m) 2 0.5 0.75 1.5 3

Use MATLAB to find (a) the work done on each segment of the path and
(b) the total work done over the entire path.

15. Plane A is heading southwest at 200 miihr, while plane B is heading west
at 150 milhr. What is the velocity and the speed of plane A relative to

. plane B?

16. The following table shows the hourly wages, hours worked, and output
(number of widgets produced) in one week for five widget makers.

127

128 CHAPTER 2 Numeric, Cell , and Structure Arrays

Hourly wage ($)
Hours worked
Output (widgets)

Worker

5 5.50 6.50
40 43 37

1000 t 100 1000

Use MATLAB to answer these questi ons: ,7

a. How much did each worker earn II: the ~eek .
b. What is the total sa lary amount paid out.

6 6.25
50 45

1200 11 00

c. How many widgets were made? . 7

d. What is the average cost to produce one widget.. a 7
e. How many hours does it take to produce one wIdget on ave:a",e . .
f Assumin o that the output of each worker has the sal~e qualIty, whIch

worker i "'the most efficient? Which is the least efficIent?

17. Two divers start at the surface and establi sh the following ~OOl'din at~
system: x is to the west, y is to the north , and z is down. DIve: 1 sw~ms
60 ft east, then 25 ft outh, and then dives 30 ft. At the same t11ne, diver 2
dive. 20 ft , wim east 30 ft, and then south 55 ft. . .
a. Compute the distance between diver I and the start1l1g pomt.
b. How far in each direction must diver] swi m to reach diver 2?
c. How far in a straight line mu t diver I swim to reach di ver 2?

18. The potentia l energy stored in a spring i kx2/ 2, where k is the.spring
con tant and x is the compression in the pring. The force reqUIred to
compress the spring i kx. The fo ll owing table gives the data for fi ve springs:

Spring

Force () I t 7 8 I 0 9
Spring constant k (N/1l1) 1000 800 900 1200 700

U. e MATLAB to find (a) the compress ion x in each spring and (b) the
potential energy stored in each spring.

19. A company must purchase five kinds of materi al. The following table
give the price the company pays per ton for each material , along with the
number of tons purcha ed in the months of May, June, and July:

Quantity purchased (tons)

Material Price (Iton) May June July

300
550
400
250
500

Problems

Use MATLAB to answer these questions:

Create a 5 x 3 matri x con taining the amounts spent on each item for
each month.

b. What is the total spent in May? in .June? in July?
c. What is the total spent on each materi al in the three-month peri od?
d. What is the total spent on all materi als in the three-month peri od?

20. A fenced enclosure consists of a rectangle of length L and width 2 R,
anel a semicircle of radius R, as shown in Figure P20. The enclosure is to
be bui I t to have an area A of 1600 ft2. The cos t of the fence is $40/ft for
the curved ponion , and $30/ft for the straight sides. Use the min function
to determine with a resoluti on of 0.0 I foot the va lues of R and L
required to minimize the total cost of the fence. Also compute the
minimum cost.

Figure P20

21. A geometric series is defi ned as the sequence I , x, x 2 , x 3 , ... , in which
the powers of x range over the integers from 0 to 00 . The sum of the terms
in a geometric seri es converges to the limiting value of I / (l - x) if
Ix I < 1; otherwise the terms diverge.
a. For x = 0.63, compute the sum of the first II terms in the series, and

compare the resul t with the limiting value. Repeat for 51 and 10J
terms. Do this by generating a vector of integers to use as the
exponent of x; then use the sum function .

b. Repeat pal1 (a) using x = - 0.63.

22. A water tank consists of a cylindrical part of radius r and height h, and a
hemispherical top. The tank is to be con tructed to hold 500 m3 of fluid
when filled. The surface area of the cylindrical part is 2lTrh, and its
volume is lTr2h. The urface area of the hemi spherical top is given by
2lT 1' 2, and its vo lume is given by 2lT,.3 /3 . The cost to construct the
cylindrica l part of the tank is $300/m2 of surface area; the hemispherical
part costs $400/m2 . Plot the cost versus I' for 2 :::: ,. :::: 10 m, and determine
the radius that results in the least cost. Compute the corresponding
height Iz .

23. Write a MATLAB assignment statement for each of the following
function s, assuming that 1'1', x,)', and ~ are vector quantities of equal

129

130 CHAPTER 2 Numeric, Cell , and Structure Arrays

length , and that c and d are scalars.

I
f- ­
- ~

V-X

e-c/ (2x)

A- --­
- (In y).Jdz

E= :: :~
x(2 . 15 + 0.35 yl 8

S = --z-(-I -- -x-:-'))-' -

24. In many engineering systems an electrical power source sup~lies current
or voltage to a device called the "load." A common e~ample I~ an
amplifier- peaker system. The load is the speaker, whIch requIres current
from the ampli fier to produce sound. Figure P24a shows the general
representation of a source and load. The resistance RL is that of the load.
Figure P24b shows the circuit representati on of the system. The source
suppli.es a vo ltage Us and a current is and has its own internal resistance
Rs. For optimum efficiency, we want to maximize the power supplied to
the speaker for given values of Vs and Rs. We can do so by properly
selecting the value of the load resistance RL .

Power source
(e.g., an amplifier)

Source
1-------------
I I
I
1

1

I
1 Vs
1

I
I
1

~--------- ___ I

Figure P24

(a)

(b)

Load
(e.g., a speaker)

Load r----------,
+ 1

1

1

1

RL vL i
1

1

1

I---------~- j

The ~ower consumed by the load is PL = i ~ RL = vI; RL. Using the
relatIOn between UL and Vs we can express PL in terms of Vs as

PL = __ R_L_u2
(Rs + RLf s

Problems

To max imize PL for a fi xed value of Vs, we must maximize the ratio

r = __ R_L __
(Rs + Rd 2

Consider the specific case where the Source resistance can be
Rs = 10, 15, 20, or 25 st and where the available load resistances are
RL = 10, 15,20, 25 , and 30 st . For a specific va lue of Rs, determine
which value of RL will maximize the power transfer.

25. Some current research in biomedical engineering deals with devices for
measuring the medication levels in the blood and automatically adjusting
the intravenous delivery rate to achieve the proper concentration (too high
a concentration will cause adverse reactions). To design such devices,
engineers must develop a model of the concentration as a function of the
dosage and of time.
a. After a dose, the concentration declines due to metabolic processes.

The haillife of a medication is the time req uired after an initi al
dosage for the concentration to be reduced by one-half. A common
model for this process is

C(I) = C(O)e- k l

where C(O) is the initial concentration , l is time (in hours), and k is
called the elimination rate constant, which varies among individuals.
For a particular bronchodilator, k has been estimated to be in the
range 0.047 S k S 0.107 per hour. Find an expression for the half-life
in terms of k, and obtain a plot of the half-life versus k for the
indicated range.

h. If the concentration is initi ally zero, and a constant delivery rate is
started and maintained, the concentration as a function of time is
described by:

where a is a constant that depends on the delivery rate. Plot the
concentration after one hour, C(1) , versus k for the case where a = 1
and k is in the range 0.047 S k S 0.107 per hour.

26. A cable of length Lc supports a beam of length Lb, so that it is horizontal
when the weight W is attached at the beam end. The principles of statics
can be used to show that the ten ion force T in the cable is given by

T = LbLcW

DJL~ - D2

where D i the distance of the cable attachment point to the beam pivot.
See Figure P26.

131

132 CHAPTER 2 Numeric, Cell , and Structure Arrays

o

Figure P26

For the case where W = 400 N, Lb = 3 m, and Lc = S m, use
element-by-element operations and the min function to compute the
value of D that minimizes the tension T. (Do not use a loop.)
Compute the minimum tension value.

b. Check the sensitivity of the solution by plotting T versus D. How
much can D vary from its optimal value before the tension T
increases 10 percent above its minimum value?

Section 2.4

27.* Use MATLAB to find the products AB and BA for the following matrices:

28.

A= [II
-9 -~] B = [-~ -~]

Given the matrices

A~ [l -2 1]
B ~ [~ -~l [-7 8 -S

C= l~
9 10 -8

Use MATLAB to:
Verify the associative property

A(B + C) = AB + AC

b. Verify the distributive property

(AB)C = A(BC)

-S !l 6
--9

29. The following t~bles show the costs associated with a certain roduct
and the productIOn volume for the four quarters of the busine! ear
Use MATLAB to find (a) the quarterly costs for materials, labo;' and

Problems

transportation; (b) the total material, labor, and transportation costs for
the year; and (c) the total quarterly costs.

Unit product costs ($ X 103)

Product Materials Labor Transportation

Quarterly production volume

Product Quarter 1 Quarter 2 Quarter 3 Quarter 4

16 14 10 12
12 15 11 13
8 9 7 II

14 13 15 17
13 16 12 18

30.* Aluminum alloys are made by adding other elements to aluminum to
improve its properties, such as hardness or tensile strength. The following
table shows the composition of five commonly used alloys, which are
known by their alloy numbers (2024, 6061 , and so on) [Kutz, 1986].
Obtain a matrix algorithm to compute the amounts of raw material s
needed to produce a given amount of each alloy. Use MATLAB to
determine how much raw material of each type is needed to produce
1000 tons of each alloy.

Composition of aluminum alloys

Alloy %Cu %Mg %Mn %Si %Zn

2024 4.4 1.5 0.6 0 0

6061 0 I 0 0.6 0

7005 0 1.4 0 0 4.5

7075 1.6 2.5 0 0 5.6

356.0 0 0.3 0 0

31. Redo Example 2.4-2 as a script file to allow the user to examine the
effects of labor costs. Allow the user to input the four labor costs in the
following table. When you run the file, it should display the quarterly costs
and the category costs. Run the file for the case where the unit labor costs
are $3000, $7000, $4000. and $8000. respectively.

133

134 CHAPTER 2 Numeric, Cell , and Structure Arrays

Product costs

Unit costs ($ X 103
)

Product Materials Labol' Transportation

Quarterly production volume

Product Quarter 1 Quarter 2 Quarter 3 Quarter 4

10 12 13 15
8 7 6 4

12 10 13 9
6 4 II 5

32. Vectors with three elements can represent position, velocity, and
acceleration. A mass of 5 kg, which is 3 m away from the x-axjs, starts
at x = 2 m and moves with a speed of 10 mls parallel to the y-ax js. Its
velocity i thus described by v = [0, 10, OJ, and its position is described
by r = [2, lOr + 3, OJ. Its angular momentum vector L is found fro m
L = mer x v), where In is the mass. Use MATLAB to:
a. Compute a matrix P whose 11 rows are the values of the position

vector r evaluated at the times I = 0, 0.5 , I , 1.5, . .. 5 s.
b. What is the locati on of the mass when t = 5 s?
c. Compute the angular momentum vector L. What is its direction?

33.* The scalar rriple produci computes the magnitude M of the moment of a
force vector F about a specified line. It is M = (r x F) . n, where r is the
po ition vector from the line to the point of app lication of the force and n
is a unit vector in the direction of the line.

Use MATLAB to compute the magnitude M for the case where
F = [10. -5, 4J N, r = [- 3,7, 2J m, and n = [6,8, -7J.

34. VeJify the identity

A x (B x C) = B(A . C) - CCA . B)

~r9~.e vectors A = 5i - 3j + 7k, B = -6i + 4j + 3k, and C = 2i + 8j

35. The area of a parallelogram can be computed from IA x BI. where A and
B define two Sides of the p~rallelogram (ee Figure P35). Compute the
area of a parallelogram defined by A = 7i and B = i + 3j.

Problems

Figure P35

36. The volume of a parallelepiped can be computed from IA . (B x c)1. where
A, n, and C define three sides of the parallelepiped (see Figure P36).
Compute the volume of a parallelepiped defined by A = 6i, B = 2i + 4j,
and C = 3i - 2k.

Figure P36

Section 2.5

I

I
I

I

I
I

I
I

I

A

37. Use MATLAB to plot the polynomials y = 3x 4 - 6x 3 + 8x 2 + 4x + 90
and z = 3x3 + 5x2 - 8x + 70 over the interval -3 ::::: x ::::: 3. Properly
label the plot and each curve. The variables y and z represent current in
milliamps; the variable x represents voltage in volts.

38. Use MATLAB to plot the polynomial y = 3x4 - 5x 3 - 28x 2 - 5x + 200
on the interval -1 ::::: x ::::: 1. Put a grid on the plot and use the ginput
function to determine the coordinates of the peak of the curve.

135

136 CHAPTER 2 Numeric, Cell, and Structure Arrays

39. Use MATLAB to fi nd the following product:

(lOx 3 - 9x2 - 6x + 12)(5x3
- 4x2

- 12x + 8)

40.* Use MATLAB to find the quotient and remainder of

14x3 - 6 __ 2 + 3x + 9

5x2 + 7x - 4

41.* Use MATLAB to evaluate

lOx3 + 5x2 - 3x - 7

atx = 5.

42. Refer to Example 2.5-1. The polynomial equation that must be solved to
find the natural freq uencies of a particul ar building is

(et - f2)[(2et - f2)2 - ct2] + ct2 f2 - 2et3

where et = k j4mn2. Suppose m = 5000 kg. Consider three cases:
(1) k = 4 X 106 N/m; (2) k = 5 x 106 N/m ; and (3) k = 6 x 106 N/m .
Write a MATLAB script fi le contain ing a for loop that does the algebra
to answer these questions:
a. Which case has the smallest natmal freq uency?
b. Which case has the largest natural freq uency?

Which case has the smallest spread between the natural frequencies?

43. Eng i~eers often need to estimate the pressures and volumes of a gas in a
contall1er. The idea! gas law provides one way of making the estimate.
The law is

RT
P = -.­

V

More accurate estimates can be made with the van der Waals equation:

p=-!!- -!!--,
V -b li2

w~ere th~?term b is a c.orrection for the volume of the molecules, and the
tellll a j V - IS a COITectlon for molecul ar attractions. The values of a and b
depend on the type of gas. The gas constant is R, the absolute temperature
IS T, and the gas specific volume is Ii. If J mol of an ideal (}as were
confined to a volume of 22.41 L at O°C (273.2 K), it wouldbexert a
pressure of I ~tmosphere. In these units, R = 0.08206.

For c:l~on ne (<;:12) . a = 6.49 and b = 0.0562. Compare the s ecific
volume esLImates V ~Iven by the ideal gas law and the van der W~al s
e~~atlOn fO.r I n~ol ot Cl2 at 300 K and a pressure of 0.95 atmosphere.

44. ~~~c;;;:h~ ~tfl('~i pe:t ~t 3~0 I~~hr. while aircraft B is flying south at
. . '. t e alfCla t are located as shown in Figure P44.

Problems

160 mi/h

410 mi

A 320 mi/h

800 mi

Figure P44

a. Obtain the expression for the di stance D between the aircraft as a
function of time. Plot D versus time until D reaches its minimum
value.

b. Use the roots function to compute the time when the aircraft are
first wi thin 30 rni of each otber.

45. The function

3x2
- 12x + 20

y = x 2 -7x + 10

approaches 00 as x ~ 2 and as x ~ 5. Plot this funcbon over the range
o :::: x :::: 7. Choose an appropriate range for the y-axis.

46. The following formulas are commonly used by engineers to predict the lift
and drag of an airfoil.

L = ~PCLSV2
2

D = ~PCDSV2
2

where Land D are the lift and drag forces , V is the airspeed, S is the wing
span, p is the air density, and CL and CD are the lift and drag coefficients.
Both CL and CD depend on 0:, the angle of attack, the angle between the
relative air velocity and the airfoil's chord line.

Wind tunnel experiments for a particular airfoil have resulted in the
following formulas (We will see in Chapter 5 how such formulas can be
obtained from data).

CL = 4.47 x 10- 5
0:

3 + 1.15 x 10- 3
0:

2 + 6.66 x 10- 2
0: + 1.02 X 10- 1

CD = 5.75 x 10- 6
0:

3 + 5.09 x 10- 4
0:

2 + 1.81 x 10- 4
0: + 1.25 X 10- 2

where 0: is in degrees.

137

138 CHAPTER 2 Numeric, Cell, and Structure Arrays

Plot the hft and drag of thi s airfoil versus V f~r 0 :s V :s 150 mi/hr
(you must convert V to ft/sec; t~ere are 5280 fthl1l). Usoe the val~es
p = 0.002378 slug/ft3 (air densIty at sea level), a = 10 , and S - 36 ft.
The resulting values of Land D will be in pounds.

47. The lift-to-drag ratio is an indication of the ~ffectiveness of an airfoil.
Referring to Problem 46, the equations for 11ft and drag are

L = ~pCLSV2
2

D = ~pCDSV2
2

where, for a particular airfoi l, the lift and drag coefficients versus angle of
attack a are given by

CL = 4.47 x 1O- 5a3 + 1.15 x 1O- Ja2 + 6.66 x 1O- 2a + 1.02 x 10- 1

CD = 5.75 x 1O- 6a 3 + 5.09 x 1O-4a2 + 1.81 x 1O- 4a + l.25 x 10- 2

Using the first two equations, we see that the lift-to-drag ratio is given
simply by the ratio CL I CD.

L ~pCLSV2 CL
D = ~pCDSV2 = Co

Plot LI D versus a for _2° :s a :s 22°. Determine the angle of attack that
maximizes LI D.

Section 2.6

48. a. Use both cell indexing and content indexing to create the following
2 x 2 cell alny:

Motor 28C Test ID 6

[~ ~] [6 5 I)

b. What are the contents of the (1,1) element in the (2,1) cell in this
alTaY?

49. The capacitance.of two pa.rall~1 ~onductors of length L and radius r,
separated by a dIstance d rn aIr, IS given by

C=~
In (~)

where E is thepermittitivity of ai r (E = 8.854 X 10- 12 F/m). Create a cell
array of capacrtance values versus d, L, and r for d = 0.003, 0.004, 0.005 ,

Problems

and 0.0 I m; L = 1, 2, 3 m; and r = 0.001 , 0.002, 0.003 m. Use MATLAB
to delermine the capaci tance value for d = 0.005 , L = 2, and r = 0.001.

Section 2.7

50. a. Create a structure array that contains the conversion facto rs for
converting units of mass, force, and di stance between the metric SI
system and the British Engineering System .

b. Use your array to compute the following:

• The number of meters in 24 ft.
• The number of feet in 65 m.

• The number of pounds equivalent to 18 N.

• The number of newtons equivalent to 5 lb.
• The number of kilograms in 6 sl ugs.
• The number of slugs in 15 kg.

51. Create a structure array that contains the fo llowing information fields
concerning the road bridges in a town: bridge location, maximum load
(tons) , year built, year due for maintenance. Then enter the following data
into the array:

Location Max load Year built Due maintenance

Smith St. 80 1928 1997
Hope Ave. 90 1950 1999
Clark St. 85 1933 1998
North Rd . 100 1960 1998

52. Edi t the structure array created in Problem 51 to change the maintenance
data for the Clark St. bridge from 1998 to 2000.

53. Add the followin g bridge to the structure array created in Problem 51.

Location Max load Year built Due maintenance

Shore Rei. 85 1997 2002

139

Engineering in the
21 st Century ...

Nanotechnology

W hile l arge~sca le techno.IOgy is attracting m:l~h public attention , .ma~y
of the engllleenng challenges and opportullltles III the 21st centul y wll l
involve the development of extremely small devices and even the ma­

nipulation of individual atoms. This technology i called nanotechnology because
it involves processing material s whose size is about I nanometer (nm), whi ch is
10- 9 m, or 1/ 1,000,000 of a ml. The distance between atoms in single-crystal
silicon is 0.5 nm.

Nanotechnology is in its infancy, although some working devices have been
created. The micromotor with gear train shown above has a dimension of ap­
proximately 10- 4 m. This device converts electrical input power into mechanica l
motion. It was constructed using the magnetic properties of electroplated metal
films .

While we are learning bow to make such devices, another challenge is to
develop innovative applications for them. Many of the applications proposed
thus far are med ical; small pUlllpS for drug deli very and surgical tool s are two
examples. Researchers at the Lawrence Livermore Laboratory have developed a
microgripper tool to treat brain aneurysms. It i about the size of a grain of sand
and was constructed from silicon cantil ever beams powered by a shape-me mory
alloy actuator. To design and apply these devices, engineers must fi rst model
the appropriate mechan ical and electrica l properties. The features of MATLAB
provide excellent support for such analyses . •

CHAPTER

Functions and Files
OUTLINE

3.1 Ele mentary Mathematical Functions

3.2 User-Defined F unctions

3.3 Advanced Function Programming

3.4 Working with D ata Files

3.5 Summary

Problems

MATLAB has many built-in functions , including trigonometric, logarithmic, and
hyperbolic functions, as well as functions for processing arrays. These functions
are sununari zed in Section 3.1. In addition, you can define your own functions
with a function file, and you can use them just as conveniently as the built-in
functions. We explain thi s technique in Section 3.2. Section 3.3 covers advanced
topics in function programming, including function handles, anonymous func­
tions, subfunctions, and nested functions. These topics are especially useful for
large programming projects. In addition to function files, another type of file that
is useful in MATLAB is the data fi Ie. Importing and exporting such files is covered
in Section 3.4.

3.1 Elementary Mathematical Functions
You can use the lookfor command to find functions that are relevant to your
application. For example, type lookfor imaginary to get a list of the func­
tions that deal with imaginary numbers. You will see listed:

imag Complex imag nary part
Imaginary un t
Imaginary un t

3

141

142 CH A P TER 3 Functions and Files

Note that imaginary is not a MATLAB function, but the w~rd is found i,n the
help descriptions of the MATLAB function ~mag and the speCIal symbols l and
j . Their name and brief descriptions are ~Isplayed when you typ~ look~or
imaginary. If you know the correct spellIng of. a MATL~~ func.tlOn-fol.ex­
ample, disp-you can type help disp to obtaIn a d.es~nptlon ot the functIOn.

Some of the functions, like sqrt and sin, are buIlt-ill , and are not M-.files.
They are part of the MATLAB core so they are v.ery ef~cient: but the c?mputatlOnal
details are not readily accessible. Other functIon, lIke slnh, are Implemented
in M-fi les. You can see the code and even modify it if you want.

Exponential and Logarithmic Functions

Tab le 3. 1- 1 summari zes some of the common elementary functions. An example
is the quare root function sqrt . To compute . .j9, you type sqrt (9) at the
command li ne. When you press E nter, you see the resul t ans = 3. You can use
functions with variables. For example, consider the session:

9 ;
»y = sqrt (x)

y =
3

MAT LAB automati call y handles the squ are roots of negative numbers and returns
a number with an imaginary part as the result. For example, typing sqrt (- 9)
givesthe result ans = 0 + 3 . 0000i, whi chi the positive root.

Similarly, we can type exp (2) to obtain e2 = 7.3891 , where e is the base
of the natural logarithms. Typing exp (1) gives 2.7 183, which is e. Note that in

Table 3.1-1 Some common mathemalical funclions

Exponential
exp(x) Exponenlial;e' .
sqrt (x) Square root; jX.
Loga rithmic
10g(x)
10g10 (x)

Complex
abs (x)
angle (x)
con) (x)

imag(x)
real (x)

Numeric
ceil (x)
fix (x)
floor (x)

r'o nd(x)
sign (x)

Natural logarithm; In x,
Common (base 10) loga ri thm; log x = 10glOx.

Absolu te va lue: x.
Angle of a complex number x.
Complex conjugate.
Imaginary parI of a complex number x.
Real parI of a complex number x .

Round to Ihe neare t in teger toward 00.

Round to the neare t inleger toward zero.
Round to the nearesl integer toward -00.

Round to.ward the neareSI integer.
Signum function:
+ I if x > 0; 0 if x = 0; - I if x < O.

3. 1 Elementary Mathematical Functions

mathematics text, In x denotes the natural logarithm, where x = eY implies that

In x = In(eY) = y In e = y

because In e = 1. However, this notation has not been carried over into MATLAB
which uses log (x) to represent In x. '

The common (base IO) logarithm is denoted in text by log x or 10gIO x. It is
defined by the relation x = IOY; that is,

logl o x = 10gIOIOY = y 10gIOIO = Y

because logIOIO = 1. The MATLAB common logarithm function is 10g10 (x).
A common mistake is to type log (x) , instead of 10g10 (x) .

Another common error is to fo rget to use the array multipli cation
operator . *. Note that in the MATLAB express ion y = exp (x) . *log (x),
w~ need to use the operator . * because both exp (x) and log (x) are arrays if
x IS an array.

Complex Number Functions

Chapter 1 explained how M ATLAB easily handles complex number arithmetic.
Several functions facilitate complex number operati ons. Figure 3. 1- 1 shows
a graphical representation of a complex number in terms of a ri ght triangle.
The number a + ib represents a point in the xy plane. In the rectangular repre­
sentation a + ib , the number 's real part a is the x coordinate of the point, and the
imaginary part b is the y coordinate.

The polar representation uses the distance M of the point from the ori gin,
which is the length of the hypotenuse, and the angle e the hypotenuse makes with

Imaginary
Axis

Complex
I--------::;>f Number

M

Real Axis

Figure 3.1- 1 The rectangular and polar repre entations of
the complex number a + ib.

143

144 C HA P TER 3 Functions and Files

the positive real axis. The pair (M, e) is simply the polar coordinates of the poi nt.
In the polar representati on the number is written as M Le. From the Pythagorean
theorem, the length of the hypotenuse is given by

M = Ja2 + b2

which is called the magnitude of the number. The angle e can be found fro m the
trigonometry of the ri ght triangle. It is

e = arctan(bl a)

Adding and subtracting complex numbers by hand is easy when they are
in the rectangular representation. However, the polar representation facilitates
mult iplication and division of complex nu mbers by hand. We must enter com­
plex numbers in MATLAB using the rectangul ar form, and its answers wi ll be
given in that form . We can obtain the rectangular representation from the polar
representation as fo llows :

a = M cose b = M sin e

The MATLAB abs (x) and angle (x) functions calculate the magnitude M
and angle e of the complex number x . The functions real (x) and imag (x)
return the real and imaginary parts of x. The complex conjugate of the number
a + ib is a - i b. It can be shown that the complex conjugate of M Le is M L(- 8) .
The function conj (x) computes the complex conj ugate of x.

Note that when x is a vector, abs (x) gives a vector of absolute values. It
does not give the magnitude Ixl of the vector. The magnitude of x is a scalar and
is given by sqrt (x ' * x) if x is a column vector, and by sqrt (x * x ') if x is
a row vector. Thus abs (x) does not give Ixl.

The magnitude of the product z of two complex numbers x and y is equal to

the product of their magnitudes: Iz l = Ix lly l. The angle of the product is equal
to the sum of the angles: Lz = Lx + Ly. These facts are demonstrated below.

»x = -3 + 4i ;
»y = 6 - 8i ;
»mag_ x = abs (x)
mag_ x =

5 . 0000
»mag-y = abs (y)

mag-y =

10. 0000
»magJ)roduct = abs (x*y)

50 . 0000
»angle_ x = angle (x)
angle_ x =

2 . 2143
»angle-y angle (y)

angle-y =
-0 . 9273

»sum_ angles angle_ x + angle-y

sum_ angles =
1 . 2870

»angleJ)roduct
angleJ)roduct =

1. 2870

angle (x*y)

3. 1 Elementary Mathematical Functions

Simil arl y, fo r di vision, jf z = xly, then Izl = Ixi/lyl and Lz = Lx - Ly.

Numeric Functions

Recall that one of the strengths of MATLAB is that it has been optimi zed to deal
with arrays, and it wi ll treat a variable as an array automatically. For example, to
compute the square roots of 5, 7 , and 15, type

[5 , 7 , 15) i

»y = sqrt (x)
y =

2 . 2361 2 . 6358 3 . 8730

The square root function operates on every element in the array x .
The round function rounds to the nearest integer. Typing round (y) fo l­

lowing the preceding sess ion gives the results 2, 3,4. The fix function truncates
to the nearest in teger toward zero. Typing fix (y) following the above sess ion
gives the resul ts 2, 2, 3. T he cei 1 functi on (whk h stands for "ceiling") rounds
to the nearest integer toward 00. Typing cei 1 (y) produces the answers 3, 3, 4.

Suppose z = [- 2 . 6 , - 2 . 3 , 5 . 7) . The floor fun ction rounds to the
nearest integer toward -00. Typing floor (z) produces the result - 3, - 3, 5.
Typing fix (z) produces the answer -2, - 2, 5. The abs function computes the
absolute va lue. Thus abs (z) produces 2.6, 2.3, 5.7 .

Te Your Under tanding

T3.1-1 For several values of x and y , confirm that In(xy) = In x + In y .

T3 .1-2 Find the magnitude, angle, real part, and imaginary part of the number
J2+6i .

Trigonometric Functions

When writing mathemati cs in text, we use parentheses (), brackets [], and braces
{ } to improve the readability of ex pres ions, and we have much latitude over their
use. For example, we can write sin 2 in text, but MATLAB requires parentheses
surrounding the 2 (which is called the function argument or parameter). Thus FUNCTION
to eva luate sin 2 in MATLAB, we type sin (2) . The MATLAB function name ARGUMENT
must be fo llowed by a pair of parentheses that surround the argument. To expre s
in tex t the s ine of the second element of the array x , we would type s i n [x (2) J.

145

146 CHAPTER 3 Functions and Files

However, in MATLAB you cannot use brackets or braces in thi s way, and yo u
musttype s in (x(2)) . .

You can include ex pressions and other fun cti ons as argument~ . For exampl e,
to evaluate sin(x2 + 5), you type sin (x . "2 + 5) . To eva luate SIl1(.Ji+ 1), ~ou
type sin (sq r t (x) +1) . Using a functi on as an argument of another functi on
is calledjimcliol1 composition. Be sure to check the order of precedence and the
number and placement of parentheses when typing such expressions. Every lef t­
facing parenthesis requires a right-facing mate. However, thi s conditi on does not
guarantee that the expression is correct!

Another common mistake invol ves ex pressions like sin2 x , which means
(sinx)2. In MATLAB we write thi s express ion as (sin (x)) "2 , not as
sin" 2 (x) , sin"2x, sin (x"2), or s i n (x) "2 1

Other commonly used functions are cos (x), tan (x), sec (x), and
esc (x), which return cos x, tan x, sec x, and csc x, respectively. Table 3.1- 2
li sts the MATLAB trigonometric functions.

The MATLAB trigonometric functions operate in radian mode. Thus
sin (5) computes the sine of 5 rad, not the sine of SO. To convert between
degrees and radians, use the relation Bradi"n, = (n / 180)8dw ees. Similarly, the in­
verse trigonometric functions retull1 an answer in radians. The inverse sine, arcsin
x = sin-I x, is the value y that satisfies sin y = x . To compute the inverse sine,
type as in (x) . For example, as in (0 . 5) retull1S the answer: 0.5236 rad. Thus
sin(0.5236) = 0.5.

MATLAB has two inverse tangent functions. The function atan (x) com­
putes arctan x-the arctangent or inverse tangent-and returns an angle between
-n / 2 and n / 2. Another correct answer is the angle that lies in the opposite quad­
rant. The user IllU t be able to choose the correct answer. For example, atan (1)
returns the answer 0.7854 rad, which corresponds to 45°. Thus tan 45° = 1.
However, tan(45° + 180°) = tan 225° = I also. Thus arctan(1) = 225° is also
correct.

Table 3.1-2 Trigonometric funclion s

Trigonometric
cos (x)
cot (x)
esc (x)

sec (xl
sin (xl
tan(x)

Inverse trigonometric
acos (x)
aco:: (xl
acsc(xl
asec (xl
asin (x)

a::an (xl
atan2 (y , x)

Co inc; cos x.
Cotangent: cot x.
Cosecant; esc x .
Secant ; sec x.
Sine: sin x.
Tangent; tan x .

Inverse cosine: arccos x = COS- I x.
Inver e cotangent ; arccot x = cot- I x .
Inverse cosecant; aI'CCSC x = csc- I x.
Inverse secant; arcsec x = sec- I x.

:~~'~~~~ ~~::~~~~~:ill~;:lI~r s: ~~I~\~ J x.
Four-quadrant inverse tangent.

3.1 Elementary Mathematical Functions

M~TLAB provides the atan 2 (y , x) function to determine the arctangent
unambiguously, where x and y are the coordinates of a point. The angle computed
by atan2 (y , x) is the angle between the positive real axis and line from the ori­
gin (0,0) to the point (x, y). For example, the point x = 1, y = -1 corresponds
to - 45° or - 0.7854 rad, and the point x = - 1, y = I con'esponds to 1350
or 2.3562 racl. Typing a tan2 (-1 , 1) returns -0.7854, while typing atan2
(1 , - 1) returns 2.3562. The atan2 (y , x) function is an example of a func­
tion that has two arguments. The order of the arguments is important for such
functions. For example, we have seen that a tan2 (-1 , 1) is not the same as
atan2 (1 , - 1) .

Test Your Understanding

T3.1-3 For several val ues of x, con firm that ei x = cos x + i sin x.

T3.1-4 For several values of x in the range 0 S x S 2n, confirm that sin - 1 x +
COS - I X = n / 2.

T3.1-5 For several values of x in the range 0 S x S 2n, confirm that tan(2x) =
2 tanx / (J - tan2 x).

Hyperbolic Functions

The hyperbolic functions are the solutions of some common problems in engi­
neering analysis . For example, the catenary curve, which describes the shape of a
hanging cable supported at both ends, can be expressed in terms of the hyperbolic
cosine, cosh x, which is defined as

eX + e- X
cosh x = ---

2
The hyperbolic sine, sinh x, is defined as

eX _ e- x

sinhx=---
2

The inverse hyperbolic sine, sinh- I x , is the value y that satisfies sinh y = x. It
can be expressed in tenns of the natural logarithm as follows:

sinh- J x = In (x + Jx2+1) - <Xl < X < <Xl

Several other hyperbolic functions have been defined. Table 3.1-3 lists these
hyperbolic functions and the MATLAB commands to obtain them.

Test Your Understanding

T3.1-6 For several values of x in the range 0 S x S 5, confirm that sinCix) =
i sinh x.

147

148 CHAPTER 3 Functions and Fi les

Table 3.1-3 Hyperbolic functions

Hyperbolic
cosh(x)
coth (x)
csch(x)
sech(x)
sinh (x)
tanh (x)

Inverse hyperbolic
acosh (x)

acoth (x)

acsch (x)

asech (x)

asinh (x)

atanh (x)

Hyperbolic cosine; cosh x = (e': + e- X)/2.
Hyperbol ic cotangent; eosh x ISll1h x.
Hyperbolic cosecant; 1/51nh x.
Hyperbolic secant; Il cosh x.
Hyperbolic sine; sinh x = (eX - e-X)/ 2.
Hyperbolic tangent; sinh x leash x.

Inverse hyperbolic cos ine;

COSh- I x = In(x + .JX2=I), x::: 1.

Inverse hyperbolic cotangent;

coth- I x = ~ In (~),x > I or x <-1.

Inverse hyperbolic cosecant;

c eh- Ix =In (~+ ~),x -to.
Inverse hyperbolic secant;

sech-I x = In (+ + ~).O < x:::: I .

Inverse hyperbolic sine;

sinh- I x = In (x + R+1), -co < x < co.

Inverse hyperbolic tangent;

tan h - Ix=t ln(~),- I < x < 1.

3.2 User-Defined Functions

FUNCTIO FILE Another type of M-fi le is a function file. Unlike a script fi le, all the variables in
a function fi le are local, which means their values are available only within the
function. Function fi les are useful when you need to repeat a set of commands
several ti mes. Function fi les are like functions in C, subroutines in FORTRAN and
BASIC, and procedure in Pascal. They are the building blocks oflarger programs.

FUNCTION The fi rst line in a functi on fi le must begin with af unction definition lin.e that
DEFINTTION LINE has a list of inputs and outputs. This line di stingui shes a function M-fil e fro m a

script M-fi le. Its syntax is a fo ll ows:

function [output variables) = function_ name (input variables)

Note that the output variable: are enclosed in square brackets, while the input
vanab les must be enclosed with parentheses. The function name should be
the same as the ~le name in which it is saved (with the . m exte--;;sion). That is, if
we name a functIOn drop, It should be saved in the file drop . m. The functi on is
"ca ll ed". by t~p i ng it name (for example, drop) at the command line. The word
func t lon 111 the func~ ion definit ion line must be lowercase. Note also that
even thou.gh MATL~B IS cas~~sen s i.t i ve by default, your computer's operating
system might not be case-sensItive with regard to file names. For example, while

3.2 User-Defined Functions

MATLAB would recognize Drop and drop as two differen t variables, your
operating system might treat Drop . m and drop . m as the same fi le.

Some Simple Function Examples

Now let us look at some simple user-defined functions. Remember that the name
of the function M-file should be the same as the name of the function . Before
naming a function, you can use the exist function to see if another funct ion
has the same name. Functions operate on variables within their own workspace
(called local variables), which is separate fro m the workspace you access at the
MATLAB command prompt.

Consider the following user-defined function fun .

function z = fun(x , y)
u = 3*X i
Z = U + 6*y . A2 i

Note the use of a semicolon at the end of the lines. This prevents the values
of u and z from being displayed. Note also the use of the an ay exponentiation
operator (. A). This enables the function to accept y as an array.

Now consider what happens when you call thi s fu nction in various ways in
the Command window. Call the function wi th its output argument:

»z = fun (3 , 7)

303

The function uses x = 3 and y = 7 to compute z .
Call the fu nction without its outpu t argument and try to access its value. You

see an error message.

»fun (3,7)

303

??? Undefined function or variable 'z ' .

Assign the output argument to another variable:

»q = fun(3 , 7)
q =

303

You can suppress the output by putting a semicolon after the function call. For
example, if you type q = fun (3 , 7) ; the value of q will be computed but not
displayed.

The vari ables x and y are local to the function fun , so unless you pass their
values by naming them x and y, their values will not be available in the workspace
outside the function. The vaJiabJe u is also local to the function. For example,

149

150 CHAPTER 3 Functions and Files

3;y = 7 ;
»q fun(x,y) ;

»y

y =
7

??? Undefined function or variable ' u '.

Compare this to

»q = fun (3, 7) ;

??? Undefined function or variable ' x' .
»y
??? Undefined function or variable ' y' .

Only the order of the arguments is important, not the names of the arguments:

7 ; y = 3;
»2 = fun (y , x) % This is equivalent to 2 = fun (3 , 7)

303

You can use arrays as input arguments:

»r = fun ([2 : 4] , [7 : 9])

300 393 498

A function may have more than one output. These are enclosed in square
~rackets. For ex~mple, the function circle computes the area A and circum­
ference C of a circle, given its radius as an input argument.

function [A , C] = circle (r)

C = 2*pi*r ;

The function is called as follows, if r = 4.

»[A , C] = circle (4)
A =

50 . 2655
C =

25 . l327

If you omit. an output argument, for example, and t e _.
MATLABdlsplaysthevalue(50.2655) fth fi yp [~l-clr~le. (4) ,
but names it C. 0 e rsf output vanable (which IS A),

3.2 User-Defined Functions

~ function may have no input arguments and no output li st. For example, the
function show_date computes and stores the date in the variable today, and
displays the value of today.

function show_ date
today = date

Variations in the Function Line

The fo llowing examples show permiss ible variations in the format of the function
line. The differences depend on whether there is no output, a single output, or
multiple outputs.

Function definition line

I. function [area_square) = square(side);
2. function area_square = square (side) ;
3. function [volume_box] = box (height, width , length) ;
4. function [area_circle, circumf] = circle (radius) ;
S. function sqplot (side) ;

File name

square.rn
square . m
box .m
circle .m
sqplot .m

Example 1 is a function with one input and one output. The square brackets
are optional when there is only one output (see example 2). Example 3 has one
output and three inputs. Example 4 has two outputs and one input. Example 5 has
no output variable (for example, a function that generates a plot). In such cases
the equal sign may be omitted.

Comment lines starting with the % sign can be placed anywhere in the function
file. However, if you use he lp to obtain information about the function, MATLAB
displays all comment lines immediately following the function definition line up
to the first blank line or first executable line. The first comment line can be
accessed by the lookfor conunand.

We can call both built-in and user-defined functions either with the out­
put variables explicitl y specified, as in examples I through 4, or without any
ou tput vari ables specified. For example, we can call the function square as
square (side) if we are not interested in its output variable area_ square .
(The function mjght pelform some other operation that we want to occur, such
as toggling diary on or off.) Note that if we omit the semicolon at the end of
the function call statement, the first variable in the output variable li st will be
di splayed 1I ing the defa ult variable name ans .

Variations in Function Calls

The following function, called drop, computes a falling object's velocity and
di stance dropped. The input variables are the acceleration g, the initial velocity va,
and the elapsed time I. Note that we must lise the element-by-element operations
for any operations involving function inputs that are arrays. Here we anticipate
that t will be an array, so we use the element-by-element operator (. ").

151

152 CHAPTER 3 Functions and Files

function [dist , vel] = drop(g , vO , t) ;
% Computes the distance travelled and th~
% velocity of a dropped object , as functlo~s
% of g , the initial velocity vO , and the tlme t .

vel = g *t + vO ;
dist = 0 . 5*g*t . A 2 + vo*t;

The following exam ples show various ways to call the funct ion drop :

1. The variable names used in the function definition may, but need not, be
used when the function is called:

a = 32 . 2 ;
i ni t ial_ speed = 10 ;
time = 5 ;
[feet _dropped , speed] = drop (a , initial_ speed , time)

2. The input variables need not be ass igned values outside the function prior to
the function call:

[f ee t _dropped , speed] = drop (32 . 2 , 10 , 5)

3. The inputs and outputs may be arrays:

[feet _dropped , speed] =drop (32 . 2 , 10 , [0 : 1 : 5])

This function call produces the anays fe e t _dr opp ed and speed , each with
six values corresponding to the six values of time in the array time.

Function Arguments

When invoking, or "calling" a function , the caller (either an entry from the key­
board or a running file) mu t provide the function with any input data it needs by
passing the data in the argument li st. Data that needs to be returned to the caller is
pa sed back in a Ii t of output or return values. MATLAB u es two ways to pass
argument data. It passes it by value (for example, as an array) or by an internal
pointer to the data. If the function does not modify the value of the input data, it
uses a more efficient pointer mechanism. If, however, the function modifies the
value of the input data, MATLAB passes the argu ment by value.

If the fun.ction changes the value of an input variab le, its value in the calling
workspace might need be updated. This can be done by havi ng the function return
the u?dated ~alue as an OlltpUt argument. For example, consider the following
functIOn, which computes the radiu of a circle whose area is a specified factor f
of the original area.

function [r, A]
A = f*A;
r = sqrt (A / pi) ;

a rea_change (A, f)

If, on the other hand: we want to u. e the value of the new area but also preserve
the value of the prevIOus area, we could call the function as follows.

3.2 User-Def ined Functions

»[rnew , Anew] = area_ change (A , f)

After the function is ca lled , the original value of A remains in the workspace.

Local Variables

The names of the input variables given in the function definition line are local to
that function. This means that other variable names can be used when you call
the function. All variables inside a function are erased after the function finishes
executing, except when the same variable names appear in the output variable li st
used in the function call.

For example, when using the d r op function in a program, we can assign a
value to the variable d i st before the fu nction call, and its value will be unchanged
after the call because its name was not used in the output li st of the call statement
(the variable feet _dr o pped was used in the place of dist). This is what
is meant by the function's variables being "local" to the function . Thi s feature
allows us to write generally useful functions using variables of our choice, without
being concerned that the calling program uses the same variable names for other
calcul ations. This means that our function files are "portable," and need not be
rewritten every time they are used in a different program.

You might find the M-file Debugger to be useful for locating errors in function
files. Runtime errors in functions are more difficul t to locate because the function 's
local workspace is lost when the error forces a return to the MATLAB base
workspace. The Debugger provides access to the function workspace, and allows
YOLl to change values. It also enables you to execute lines one at a time and to set
breakpoints, which are specific locations in the file where execution is temporarily
halted. The applications in this text will probably not require LIse of the Debugger,
which is L1seful mainly for very large programs, or programs containing nested
functions (that is, functions that call other functions). For more information, see
Section 4.7 in Chapter 4.

Global Variables

The global command declares certain variables global, and therefore their
values are available to the basic workspace and to other functions that declare
these variables global. The syntax to declare the variables a, x , and q is global
a x q . Any assignment to those variables, in any function or in the base
workspace, is available to all the other functions declaring them global. If the
global variable doesn't exist the first time you issue the global statement, it
will be initialized to the empty matrix. If a variable with the same name as the
global variable already exists in the CUITent workspace, MATLAB issues a warn­
ing and changes the value of that variable to match the global. In a user-defined
function, make the global command the first executable line.

The decision whether or not to declare a variable global is not always clear
cut. Often there is more than one effective way to solve a given problem. The
following example illustrates this.

153

154

'.'§ld'.'
CHAPTER 3 Functions and Files

Using Global Variables

Enoineers often need to e timate the pre sures and volumes of a gas in a container. The
ide~ 1 gas law provides one way of making the e timate. The law IS

RT
p= "

V

More accurate estimate can be made with the vall del' Waals equation:

RT a
P=(;-b-Vi

where the term b is a correction for the volume of the molecules, and the term a / (; 2 is a
correcti on for molecular attractions. The gas con ·tant is R, the absolute temperature is T ,
and the gas specific vol Lime is (;. The val ue of R is the same ill both eq uations and for al l
gases; it is R = 0.08206 L atmosphere/mol K. The val ues of a and b depend 0 11 the type
of gas. For example. for ch lorine (Ch). a = 6.49 and b = 0.0562 in these units.

Write two user-defined functions, one to compute the pressure using the ideal gas
law, and one using the van der Waals equation. Develop a solution witilOlIt lIsing global
variable . and one using global variab les.

• Solution

We can write the fo llowi ng function for the ideal gas law:

function P = ideal_ 1 (T , Vhat , R)
P = R*T . / Vhat ;

Note that we hould use array division because the user might cal l the function usi ng Vh at
as a vector. However, we need not use array multiplication between R and T because R
will always be a scalar. This function is independent of the units used for T , V, and R, as
long a they are consistent with each other.

The difficulty with thi s function is that we I11U t always enter the value of R when we
call the function. To avoid this. we can rewrite the fu nction as follows:

function P = ideal_ 2 (T , Vhat)

% This requires liter , atmosphere , and mole unit s !
R = 0 . 08206 ;
P = R*T . Vhat ;

Now the value of R is "hard-wircd" into the function. However, the danger with this
approach is that the va lue of R depends on the units being used for (; and T. For example,
in Sll11etric units, R = 8.3 14 l /mol-K. So if the u erenter value for Vhat and T in SI
unit, the computed \ alue of P will be incorrect. Thus it is a good idea to put a comment
to that effect within the function. However, it is not necessary to read the file ill order to
call the function. andu~ers will not see the COlUment unle s they read the file!

Olution to thi problem is to declare R a global variable. Then the function file
would be:

:unction p ~ ideal_ 3 (T , Vhat)
globa_ R

? = R* T . /Vra:: ;

3.2 User-Defined Functions

With thi s approach, you must then declare R global wherever you call the [unction, either
from the base workspace or from another function. For example, the following session
computes the gas press ures in gases having 11 = 20, at two temperatures: T = 300 K and
330 K, respecti vely.

»global R
»R = 0 . 08206 ;
»ideaC3 ([300 , 3301 , 20)

1.2309 1. 3540

The pressures are approximately 1.23 and 1.35 atmospheres. With thi s approach, you
must always enter the value of R, but this might force you to think about what units are
being used for Vhat , T, and P. If you are sure that you wi ll always use the same units,
then the simp lest approach is to hard-wire the va lue of R into the function, as was done
with ideal _2.

In the van cler Waals equation, the constants a and b depend on the particular gas . A
funct ion that is independent of the units u ed and the particular gas is

function P = vdwaals_ 1(T , Vhat , R, a , b)
P = R*T. / (Vhat-b)-a . /Vhat . ~2 ;

The difficulty with this function is that youl11ust always enter the values of R, C/ , and b. If
you use the eq uation to analyze chlorine only, then you can hard-wire the constants into
the function along with the value of R, as follows, but if you do so be sure you always use
the proper units in the function's arguments!

function P = vdwaals_ 2(T , Vhat)

% For chlorine only , and liter , atmosphere , and mole units !
R = 0 . 08206 ;
a = 6 . 49 ; b = 0 . 0562 ;
P = R*T . / (Vhat-b)-a . /Vhat . ~2 ;

Note that the variable P is local to all the e functions, and is available only if you
assign it a va lue when calling the function. For example, consider the following session.

»vdwaals_ 3 (300 , 20)

1. 3416
»P

?? Undefined function or variable ' P '.
»P = vdwaals_ 3 (300 , 20)
P =

1 . 3416

In addition to using the g l oba l command to make values acces ible within func­
tions, we can al 0 use it to make global variables that would otherwise be local. For
example, suppo e we want to make the chlorine values of a ancl h available to other func­
tions. Then we could modify the vdwaal s _2 function by adding the statement gl ob a :'
a b. Then aJly other function declaring a and b global would have acces& to those
values.

155

156 CHAPTER 3 Functions and Files

Applications

Some MATLAB commands act on functions. If the function of interes t is not a
simple fu nction , it is more convenient to define the function in an M-file when
using one of these commands.

Finding the Zeros of a Function The roots function finds the. zeros of poly­
nomial functions only. Otherwise, you can use the fzero functlOn to find the
zero of a funct ion of a single variable, which is denoted by x. One form of its
syntax is

fzero(' function ', xO)

where fu n ction is a string containing the name of the function , and xO is
a user-supplied guess for the zero. The fzero funct ion returns a va lue of x
that is near x O. It identifies only points where the function crosses the x-axis, not
points where the function just touches the ax is. For example, fzero (, cos ' , 2)
returns the value x = 1.5708.

The function fzero (, f unct i on ' , xO) tri es to find a zero of fun ction
near x O, if xO i a scalar. The value returned by f zero is near a point where
f u nc t ion changes sign, or Na N if the search fa il s. In thi s case, the search
terminates when the search interval is expanded until an Inf, NaN, or a complex
value is found (fzero ca nnot find complex zeros). If xO is a vectoroflength two,
fzero assumes that xO is an interval where the sign of function (xO (I))
differs from the sign of func t ion (xO (2)) . An error occurs if this is not true.
Calling fzero with such an interval guarantees that fzero will return a value
near a point where function changes sign. Plotting the function first is a good
way to get a va lue for the vector xO.

An alternate syntax is

[x,fvaI) = f zero('function ', xO)

This returns the value of function at the olution x . The syntax

[x,fva I , exi t flag) = fzero('function ', xo)

retL~n.ls a value of exitflag that describes the exit condition of fzero. A
posItive value of ex. i t flag indicates that the function found a zero, which is
the val~e x . A negatIve value of exi tflag indicates that no interval was found
wIth aS lgn change: orthata NaN oran Inf function value was encountered durin a
the search for an Interval containing a sign change, or th at a complex functio~
value was encountereddunng the sea rch for an interval containing a sign change.

~he fzer~ function . fi~ds a point where the function changes sign. If the
functIon IS c~ntll1~Ous: thiS IS also a point where the function has a value near
~~ro. I~ the func.tlOn .IS not continuous, fzero might return values that are

I scontll1u~u s POll1t II1s te~d of zeros. For example, x = fzero (' tan ' , I)
returns x-I . 5708, a dl sContll1110US point in tan(x) .

Furthermore. the fzero comma d d f
tion crosses the x-axis Points w , n e lI1es a zero as a point where the func-

. , here the function touches, but does not cross, the

3.2 User-Defined Functions

2.5r---,---r-----, ___ ,--__ -.-__ ---,

1.5

-0.5

-1

Figure 3.2-1 Plot of the function y = x + 2e- x - 3.

x -ax is are not valid zeros. For example, y = x 2 is a parabola that touches the
x -axis at x = O. Because the function never crosses the x -axis, however, no zero
is found. For functions with no valid zeros, fzero executes until Inf, NaN, or
a complex value is detected.

To use this function to find the zeros of more complicated functions, it is
more convenient to define the function in a function file. For example, if y =
x + 2e-x

- 3, define the following function file:

function y = f1 (x)
y = x + 2*exp(-x) - 3 ;

Functions can have more than one zero, so it helps to plot the function first
and then lise fzero to obtain an answer that is more accurate than the answer
read off the plot. Figure 3.2-1 shows the plot of this function, which has two
zeros, one near x = -0.5 and one near x = 3. To find the zero near x = -0.5,
type x = fzero ('f l ' , -0.5). The answer is x = -0.5831. To find the zero
near x = 3, type x = fzero (, fl ' , 3). The answer is x = 2.8887.

Minimizing a Function of One Variable The fminbnd function tinds the
minimum of a function of a single variable, which is denoted by x. One form of
its syntax is

fminbnd (, function ', xl , x2)

157

158 CHAPTER 3 Functions and Files

where function is a string containing the name of the flln~ti on . ~he fminbnd
function returns a value of x that minimizes the function 111 the lJ1 terval xl ~
x ~ x2. For example, fminbnd (, cos ' , 0 , 4) .re.turns the value x = 3 .. 14 16.

However, to u e this function to find the mll1lmum. of more-.compltca led
functions it is more convenient to define the function lJ1 a function fi Ie. For
example. 'if y = I - xe- x , define the foll owing function fil e:

function y = f2 (x)
y = 1-x . *exp(-x);

To find the value of x that gives a minimum of y for 0 ~ x ~ 5, type x =
fminbnd (, f2 ' , 0 , 5) . The answer is x = I. To findlhe minimum va lue of y,
typey = f2(x) . Theresulti y = 0 . 6321.

The alternate syntax

[x,fval) = fminbnd(' function ' , xl , x2)

returns the value of function at the solu tion x. The syntax

[x,fval , exitflag) = fminbnd(' function ' , xl , x2)

returns a value of exi t flag, which de cribes the exi t condition of fminbnd.
The value exi t flag = 1 indicates that the function converged to a solution x ;
a value other than exi t flag = 1 indicates that the fu nction did not converge
to a sol ution .

To find the maximum of a fUBction , use the fminbnd function with the
negative of the function of interest. For example, to find the maximum of y =
x e- '\ over the interval 0 ~ x ~ 5, you must define the fu nction file as follows:

function y = f3 (x)
y = -x . *exp(-x);

Typing fminbnd (, f3 ' , 0 , 5) gives the result x = I. The function y = xe- x

has a maximum at x = I.

Whenever we use a minimization technique, we should check to make sure
that the oluLi on is a true minimum. For example, consider the following
polynomial:

)' = 0.025.\'5 - 0.0625x4 - 0.333x3 + x 2

!ts plot is shown in Figure 3.2-2. The function has two minimum points in the
II1terval - I < x < 4. The minimum near x = 3 is called a relative or local
minimum becau e it forms a valley who e lowest point is higher than the mini­
mum at x = O. The mll1lmUm atx = 0 i the true minimum and is also called the
global minimum. If we specify the interval - I ~ x ~ 4 by typing

»x = f:ninbnd('o . 025*x . ~5-0 . 0625 *x ' ''4_0 . 333*x ' ''3+x . ''2 ' , -1 , 4)

MATLAB give t.he answer x = 2 . 0438e-006 , which is essentially O. the
true mll1UllUm POlJ1!. If \\ e specify the interval 0.1 .:5 x ~ 2.5, MATLAB gives
the answer x = 0 . 1001. which corresponds to the minimum value of y on the

3.2 User-Defined Functions

4.5

3.5

2.5

1.5

0.5

a
- 1 -0.5 0.5 1.5 2.5 3.5

Figure 3.2-2 Plot of the fUllctioll Y = 0.025..1'5 - 0.0625x4 _ 0.333x 3 + x2 .

interval 0.1 ~ x ~ 2.5. Thus we will miss the true min imum point if our specifi ed
interval does not include it.

Also, fminbnd can give incorrect answers. In earlier versions of MAT LAB ,
if we specified the interval 1 ~ x ~ 4, MATLAB gave the answer x = 2 . 8236,
which corresponds to the "valley" shown in the plot, but which is not the mini­
mum point on the interval I ~ x ~ 4. On thi s interva l the minimum point is at the
boundary x = 1, and MATLAB 7 correctl y computes thi s answer. The frninbnd
procedure now looks for a minimum point corresponding to a zero slope, and it
looks at the function values at the boundaries of the speci fied interval for x . In this
example, MATLAB 7 identified the true minimum at the boundary, but in other
problems it might incorrectly identify a local minimum as the true minimum.

No one has yet developed a Ilumerical minimization method that works for
every possible function. Therefore, we must use any such method with care. In
practice, the best use of the fminbnd function is to determine precisely the
location of a minimum point whose approximate location was found by other
means, such as by plotting the function .

Minimizing a Function of Several Variables To find the minimum of a func­
tion of more than one variable, use the fminsearch function. One form of its
syntax is

fminsearch (' function ' , xO)

159

160 CHAPTER 3 Functions and Files

where function is a string containing the name of the function .. The .vector
xO is a " ue s that must be suppli ed by the user. For ex~mp l e, to m!l1l!Tll ze the
function" f = xe- x2 -/, we fi rst define it in an M-file, uS!l1g the vector x whose

elements are x (1) = x and x (2) = y .

function f = f4 (x)
f = x(l) .*exp(-x(l) . "2-x(2) . "2);

Suppose we gues that the minimum is near x = y = O. The session is

»fminsearch(' f4 ', [0 , 0))
ans =

-0.7071 0 . 000

Thus the minimum occurs at x = - 0.7071 , Y = O.
The alternate syntax

[x, fvaI) = fminsearch ('function' , xO)

returns the value of funct ion at the solution x. The syntax

[x , fval, exitflag) = fminsearch('function' , xl,x2)

returns a value of exi t flag, which describes the exit condition of
fminsearch. The value exi t flag = 1 indicates that the function converged
to a solution x; a value other than exi t flag = 1 indicates that the function
did not converge to a solution.

The fminsearch function can often handle di scontinuities, particularly if
they do not occur near the solution. The fminsearch function might give local
solutions only, and it ffiiflimizes over the real numbers only; that is, x must consist
of real variables only and the funct ion must return real numbers only. When
x has complex variables, they must be split into real and imaginary parts.

Table 3.2-1 summarizes the fminbnd, fminsearch, and fzera
commands.

Table 3.2-1 Minimization and root-finding function

Function

fminbnd (, function ' , xl, x2)

::minsearch (, function ' ,xO)

fzero (, function ' ,xO)

Description

Returns a value of x in the interval xl < x
S x2 that corresponds to a minimum of the
single-variable function described by the
string ' funct ion ' .
Use the tarting vector xO to find a
minimum of the multivariable function
de cribed by the string' function ' .
Uses the tarting value xO to find a zero
of the single-variable function described
by the string' funct ion ' .

3.2 User-Defined Functions

Design Optimization

One way to improve engineering des igns is by formul ating the eq uations de­
scribing the design in the form of a minimization or maximization problem. This
approach is called design optimization. Examples of quantities we wou ld like to
minimize are energy consumption and construction material s. Items we would
like to maximize are usefu l life and capacity (such as the vehicle weight that
can be supported by a bridge) . The following example illustrates the cOflcept of
design optimization.

161

Optimization of an Irrigation Channel ""MP,ep'
Figure 3.2-3 shows the cross section of an irrigation channel. A preliminary analysis has
shown that the cross-sectional area of the chan nel should be LOO ft2 to carry the desired
water-flow rate. To minimize the cost of concrete used to line the channel, we want to
minimize the length of the chalmel's perimeter. Find the values of d , b, and e that minimize
thi s lenglh .

• Solution
The perimeter length L can be written in terms of the ba e b, depth d, and ang le e as
follows:

2d
L=b+­

sin e

The area of the trapezoidal cross section is

d2

100=db+­
tan e

The vari ables to be selected are b, d , and e. We can reduce the number of variables by
solving the latter equation for b to obtain

b= - 100--1 (d
2

)
d tan e

Substitute thi s expression into the equation for L. The result is

100 d 2d
L = d - tan e + sin e

We must now find the values of d and e to minimize L.

Figure 3.2-3 Cross section of an irrigation channel.

162 CHAPTER 3 Functions and Files

First define the function fi le for the perimeter length. Let the vector x be [d IJ I·

~u~c~~~~/~(~)c~a:7~~~7~an(X(2)) + 2*x(l) . /sin(x(2)) ;

Then u e the fmi nsearch function. Using a guess of d = 20 and IJ = I rad , the

session is

»x = fmins(' channel ', [20 , 1])

x =
7 . 5984 1. 0472

Thus the minimum perimeter length is obtained with d = 7.5984 ft andlJ = 1.0472 rad,
or IJ = 60°. Using a difTerent guess, d = I, IJ = 0.1 , produces the same answer. The value
of the base b corresponding to these values is b = 8.7738.

However, u ing the guess d = 20, e = 0.1 produces the physically meaningless result
d = -781, e = 3.l416. The guess d = I, e = 1.5 produces the physically meaningless

resu lt d = 3.6058. e = -3. l416.
The equation fo r L i a function of the two va riables d and e, and it forms a

surface when L is plotted versus d and e on a three-dimensional coordinate system.
Thi urface might have multiple peaks, multipl e valleys, and "mountai n passes" called
add le points that can fool a minimization technique. Different initial guesses fo r the

solution vector can cause the minimization technique to find different va lleys and thus
report different results. We can use the surface-plotting functions covered in Chapter 5 to
look for multiple va lleys. or we can use a large number of initial va lues for d and e, say,
over the physically realistic ranges 0 < d < 30 and 0 < e < IT /2. If all the physically
meaningful an wers are identical, then we can be rea anably Ufe that we have found
the minimum.

The f zero . fminbnd, and f mi n s earch functions have alternative forms
not described here. With the e forms you can specify the accuracy required for
the solution , a well as the number of steps to use before stopping. Use the help
facility to find out more about these functions.

Test Your Und st n ing

T3.2-1 The equation e- 02
, sin (x + 2) = 0.1 ha three solutions in the interval

o < x < 10. Find these three solutions.

T3.2-2 !he function y = I +.e-O
.
2x in(x + 2) has two minimum points in the

mterval 0 < x < 10. Fmd the values of x and y at each minimum.

T3.2-3 Find the depth ~I a~d angle e to minimize the perimeter length of the
channel show~ 111 Ftgure 3.2-3 to provide an area of 200 ft2. (Answer:
d = 10.7457 ft. e = 60 .)

-------~- -.- --------~-----

3.3 Advanced Function Programming

3.3 Advanced Function Programming

Since the introduction off unction handles in MATLAB 6.0, their use has become
quite widespread in the MAT LAB documentation and elsewhere, and so it is a
good idea to become fami liar with the concept. In addition, anonymous functions,
sub fun ctions, and nestedfunctions are also now seen more often in documentation
and examples . This section covers the basic features offunction handles and these
new types offunctions. The topics covered in this section are most useful for large
programming projects. An understanding of these topics is not necessary to master
the remaini ng top ics in this text. Therefore, thi s section may be omitted, if desired.

Function Handles

You can create a function handle to any function by usi ng the at sign, @, before
the function name. You can then name the handle if you wish, and use the handle
to reference the function . For example, to create a handle to the s ine function ,
you type

»sine_ handle = @sin ;

where s i n e _handle is a user-selected name for the handle.
A common use of a function handle is to pass the function a an argument to

another fu nction. For example, we can plot sin x over 0 S x S 6 as follows :

»plot ([0 : 0 . 01 : 6] , sine_ handle , [0: 0 . 01 : 6])

where we have used the feval function to evaluate the function at the given
argument [0 : 0 . 01 : 6] . This is a rather cumbersome way to plot the sine func­
tion , but tile concept can be extended to create a general purpose plotting function
that accepts a function as an input. For example,

f un ction x = gen-plot (fun_handle , interval)
p l o t (interval , fun_ handle , interval)

You may call this function to plot the sinx over 0 S x S 6 as follows:

» gen_plot (sine_handle , [0 : 0 . 01 : 6 J)

or

» gen-plot (@sin , [0 : 0 . 01 : 6])

There are several advantages to using function handles ; these are described
in the MATLAB documentation. Two advantages that we will discuss later are
speed of execution and providing access to subfunctions, which are nonnally not
visible outside of their defining M-file. Another advantage is that function handles
are a standard MATLAB data type, and thus they can be used in the same manner
as other data types. For example, you can create arrays, cell arrays, or slructures
of function handles. You can access individual function handles just as you access
elements of a numeric array or structure.

163

164 CHAPTER 3 Functions and Flies

. 1 t may be used as fo llows with a function For example, the funct ion gen_p a . ne for the cosine
handle array, to create two subplots, one for the SIne and 0 .

fh(l) @sin ;
fh(2) @cos ;
for k 1 : 2

subplot (2 , 1 , k)
gen-plot(fh(k) , [0 : 0 . 01 : 8])

end

Methods for Calling Functions

There are four ways to invoke, or "call ," a function into action. These are:

1. As a character tring identifying the appropriate function M-file,
2. As a function handle,
3. As an "in line" function object, or
4. As a tring expression.

Examples of the e ways fo ll ow for the fzero function used with the user-defined
function fun1 , which computes y = x 2 - 4.

1. As a character tring identifying the appropriate function M-file, which is

function y = funl (x)
y = x . "2-4 ;

The function may be ca lled as follows, to compute the zero over the range
0 ::::: x::::: 3:

»[x , value] = fzero(' fun1 ', [0 , 3])

2. As a fu nction handle to an existing function M-file:

»[x , value] = fzero(@funl , [0 , 3])

3. As an "inline" function object:

»funl = ' x . "2-4' ;
»fun_i nl ine = inl ine (funl) ;

»[x , value} = fzero(ft.;n_ inline , [0 , 3])

4. As a tring expre sion:

»fu:1:' = 'x . "2 -4' ;

»[x, va2.ue] = !'zero (;:unl , [0 , 3])

or a

»[X , value] = fz e ro(' x."2-4', [0 , 3])

. The third method. which uses an inline object, is not discussed in the text and
wlil not be covered here because it i a lower method than the first two. The third

3.3 Advanced Function Programming

and fourth methods are eq ui valent beca use they both utili ze the i nl ine function ;
the only difference is that with the fourth method MATLAB determines that the
first argument of fzero is a string va ri able and ca ll s inl ine to convert the string
variab le to an inline function object. The function handle method (method 2) is
the fa stest method, followed by method I .

In addition to speed improvement, another advantage of using a function
handle is that it provides access to subfunctions, whieh are normally not visibl e
outside or their defin ing M-file. This is di scussed later in thi s section .

Types of Functions

Atthi s point it is helpful to review the types offunctions provided for in MATLAB.
MATLAB provides built-in functions, such as clear, sin, and plot , which
are not M-fi les, and also some functions that are M-files, slich as the function
mean. In add iti on, the following types of user-defined function s can be created
in MATLAB.

• The primary function is the first function in an M-file and typically contains PRIMARY

165

the main program. Foll owing the primary function in the same file can be FUNCTIO
any number of subfunctions, which can serve as subroutines to the primary _____ _
function. Usuall y the primary functi on is the onl y function in an M-f'ile that
you can call from the MATLAB command line or from another M-fi le
function. You invoke this functi on using the name of the M-file in which it
is defined. We normally use the same name for the function and its file, but
if the function name differs from the file name, you must use the file name
to invoke the function .

• Anonymous functions enable you to create a simple function without
needing to create an M-file for it. You can construct an anonymous fun ction
either at the MATLAB command line or from wi thin another function or
script. Thus, anonymous functions provide a qui ck way of making a
function from any MATLAB expression without the need to create, name,
and save a file.

• Sub functions are placed in the primary function and are called by the
primary function . You can use mUltip le functions within a single primary
function M-file.

• Nested functions are functions defined within another function . They can
help to improve the readability of your program and also give you more
fl exib le access to variabJes in the M-file. The difference between ne~ted
functi on and ubfunctions is that subfunctions normally cannot be
accessed out ide of their primary function file.

• Overloaded functions are functions that respond differently to different
types of input arguments. They are si milar to overloaded functions in any
object-oriented language. For example, an overloaded function can be
created to treat integer inputs differently than inputs of class double.

• Private functions enable you to restrict access to a function. They can be
ca lled only from an M-file function in the parent directory.

PRIVATE
n J, 'CTlO .

166 CHAPTER 3 Functions and Files

The term function function is not a sep~rate fu nction type but refers to ~ny
function that accepts another fu nction as an I n put . argu~ent, such ~s the function
f zero. You can pass a function to another fu nctIOn uS1l1g a functlOn handle.

Anonymous Functions

Anonymous functions enable you to create a simple function wi~out. needing to
create an M-fi le for it. You can construct an anonymous functlOn eIther at the
MATLAB command line or fro m within another function or scrip t. The syntax
for creating an anonymous function from an expression is

fhandle = @(arglist) expr

where arglist is a comma-separated li st of input arguments to be passed to
the function, and expr is any single, valid MATLAB expression . This syntax
creates the function handle fhandle, which enables you to invoke the function.
Note that this yntax is different from that used to create other function han­
dles, fhandle = @functionnarne. The handle is also useful for passing the
anonymous function in a call to some other function in the same way as any other
function handle.

For example, to create a simple function called sq to calculate the square of
a number, type

sq = @(x) x . "2 ;

To improve readability, you may enclose the expression in parentheses, as sq
@ (x) (x . " 2) ; . To execute the function, type the name of the function handle,
followed by any input arguments enclosed in parentheses. For example,
»sq (5)

25
»sq([5 , 7])

ans =

25 49

You might think that this particular anonymous function will not save you any
work because typing sq ([5 , 7)) requires nine keystrokes , one more than is
required to type [5 , 7) . "2 . Here, however, the anonymous function protects
you from forgettl1~g to type the period (.) required for array exponentiation.
Anonymous functIons are useful, however, for more complicated functions
involving numerous keystrOkes.

You can pass the handle of an anonymous function to other functions . For
example, to find the minimnm of the polynomial 4x2 - 50x + 5 over the interval
[-10, 10], you type

»poly1 = @(x) 4*x . "2 - 50*x + 5;
»fminbnd(polyl, -10 , 10)
ans

6 . 2500

3.3 Advanced Function Programming

If you are not going to use that polynomi al again , you can omit the handle defi­
nition line and type instead

»frninbnd (@(x) 4*x."2 - 50*x + 5 , -10 , 10)

Multiple Input Arguments You can create anonymous functions having more
than one input. For example, to defi ne the functionJx2 + y2, type

» sqr t surn = @(x,y) sqrt(x . "2 + y . "2) ;

Then

»sqrtsurn(3 , 4)
ans =

As another example, consider the function defining a plane, z = Ax + By.
The scalar vari ables A and B must be assigned values before you create the
function handle. For example,

»A = 6 ; B = 4 :
»plane = @(x , y) A*x + B*y ;

plane (2,8)

44

No Input Arguments To construct a handle for an anonymous function that
has no input arguments, use empty parentheses for the input argument list, as
shown by the following: d = @ () date ;.

Use empty parentheses when invoking the function , as follows :

»d()
ans =

01-Mar-2004

You must include the parentheses. If you do not, MATLAB just identifies the
handle; it does not execute the function .

Calling One Function within Another One anonymous function can call an­
other to implement function composition. Consider the function 5 sin(x3). It is
composed of the functions g(y) = 5 sin(y) and f(x) = x 3. In the following
session the function whose handle is h calls the functions whose handles are f
and g.

»f @(x) x . "3 ;
»g = @(x) 5*sin(x) ;
»h = @(x) g(f(x)) ;
»h (2)
ans

4 . 9468

167

168 CHAPTER 3 Functions and Files

.. function from one MATLAB sess ion to lh.e next,
To pre e[vc an anonymous F pie to save the functIon as-

ave the function handle to a MAT-fil e. or exam t . h. To' recover it in a laler
sociated with the handle h , type save anon . ma
session, type load anon . mat h.

Variables and Anonymous Functions Variables can appear in anonymous
func ti ons in two ways:

• As variables specified in the argument list, as forexamp le f = @ (x) x . "3 ; ,

and . .
. bl 'fi d' the body of the express ion as for example WIth the

• ~~:'i:l~;I:s::n~e~\~lep ~l~ne = @(x , y)'A*X + ' B*y . rnthi s~ase, wh en
the function is created MATLAB captures the va lues of these va.nables and
retain. those va lues for the lifetime of the function handle. In thI s. exam ple,
if the va lues of A or B are changed after the handle is created, their va lues
a sociated with the handle do not change. This feature has both advantages
and di sadvantage, 0 you must keep it in mind.

Subfunctions

A function M-file may contain more than one user-defined function. The first de­
fined functi on in the file is called theprimwyjunclion, whose name is the same as
the M-file name. All other functions in the file are called sub fun ctions. Sllbfunc­
ti on are normally "visible" onl y to the primary fu nction and other subfunction
in the same file ; that is, they normally cannot be ca ll ed by programs or functions
out ide the file. However, this limitation can be removed with the use of function
handle. as we wi ll see later in this section.

Create the primary function first with a function defini tion line and its defin­
ing code, and name the fi le with this function name as usual. Then create each
subfunction with its own function definition line and defi ning code. The order of
the subfunctions does not matter, but function name must be unique within the
M-file.

The order in whi ch MATLAB checks for functions is very important. When
a fu nction is called from within an M-file, MATLABfirst checks to see if the
function is a built-in function such a sin. If not, it checks to see if it is a
subfunctio/l in the file, then checks to see if it i a private function (which is a
fu nction M-tll residing in the pri vate , ubdirectory of the calling function).
Then MATL B checks for a tandard M-file on you r earch path. Thus. because
MATLAB check for a ubfunction before checking fo r private and standard
M-file function. you may u e ubful1ction with the same name as another ex ist­
ing M-file. Thi fea ture allows you to name . ubfunction without being concerned
about whether another func tion exi ts with the ame name, so you need not choose
long func tion name to avoid conflict. Thi featu re also protects you from using
another func ti on unintentionally.

' ote tl~at you may e\'en supercede a MATLAB M-function in this way.
The followll1g example ho\\ s how the MATLAB M-function mean can be

3.3 Advanced Function Programming

superceded by our own defin ition of the mean, one which gives the root-mean­
square va lue. The function mean is a subfunction. The function subfun_demo
is the primary function.

function y = subfun_demo(a)
y = a - mean (a) ;
%

function w = mean (x)
w = sqrt (sum(x . "2)) Ilength(x) ;

A sample sess ion fo llows .

»y = subfn_demo ([4 , -4])
y

1.1716 -6 . 8284

If we had used the MATLAB M-function mean, we would have obtai ned a
different answer; that is,

»a= [4 , -4] ;
»b = mean (a)
b

-4

Thus the use of sllbfunctions enables you to reduce the number of files that
define your fu nctions. For example, if it were not for the subfunction mean in the
previous example, we would have had to define a separate M-file for our mean
function and give it a different name so as not to confuse it with the MATLAB
fu nction of the same name.

Subfunctions are normally visible only to the primary function and other
subfunctions in the same file. However, we can use a function handle to allow
access to the subfunction from outside the M-file, as the following example shows.
Create the following M-file with the primary function fn_demol (range) and
the subfullction test fun (x) to compute the zeros oftbe function (x 2 - 4) cos x
over the range specified in the input variable range. Note the use of a function
hancl1e in the econdline.

function yzero = fn_demol (range)
fun = @testfun ;
[yzero , value] = fzero(fun , range) ;

function y = test fun (x)
y = (x."2-4) . *cos(x) ;

A test session gives the following results.

»yzero = fn_ demol([3 , 6])
yzero =

4.7124

169

170 CHAPTER 3 Functions and Files

So the zero of (x 2 - 4) cosx over 3 ::: x ::: 6 occurs a: x = 4.7 I 24.
Suppose we had not used the function hand le, as In

function yzero = fn_demo2 (range)
[yzero , value) = fzero(testfun , range) ;

%
function y = testfun (x)
y = (x . "2-4) .* cos(x) ;

Then the following ession produces an error message.

»yzero = fn_demo2 ([3 , 6])
? ? ? Input argument ' x ' is undefined .

We get an error because the MATLAB functi on fze r o must call . the fun.c~ion
testfun repeatedly, but without the function handle, test fun IS not VISIble
to f z ero.

Nested Functions

With MATLAB 7 you can now place the definitions of one or more functions
within another function. Functions so defined are said to be nested within the
main function. You can also nest functions within other nested functions. Like
any M-file function , a nested function contains the usual components of an M-file
function . You mll t, however, always terminate a nested function with an end
tatement. In fact. if an M-file contains at least one nested function, you must

terminate all functions , including subfunction , in the file with an end statement,
whether or not they contain nested functions.

The fo llowi ng exanlple constructs a function handle for a nested function and
then passe the handle to the MATLAB function fminbnd to find the minimum
point on the parabo la. The parabola function constructs and returns a function
handle f for the nested function p. Thi handle gets passed to fminbnd .

function f = parabola (a , b , c)
= @p ;

function y = p (x)
y = a *x"2 ~ b*x + c ;

end
end

In the Command window type

»f = parabola(4 , -50, 5) ;
»fmi:-:bnd (f, -10, 10)
ans =

6 . 2500

Note than the function p (x) can ee the variables a , b , and c in the calling
fUllction's work, pace. - ~

3.3 Advanced Function Programming

Nested l.:unct!ons might seem. to be the same as subfuncti ons, but they are
nol. Nested lunctlons have two ulllque properties:

1. A nested function can access the works paces of all functions inside of
whi ch it ~ s nested. S~ for example, a variable that has a value assigned to it
by the pnmary function can be read or overwritten by a function nested at
any level wi thin the main functi on. In addition , a variable assiO'ned in a
nes ted function can be read or overwritten by any of the functions
containing that function.

2. If you co n~truct a ~unction handle for a nested fun ction , the handle not only
stores the IIlformatIon needed to access the nested function ; it also stores
the values of all variables shared between the nested function and those
function that contain il. Thi s means that these vari ables persist in memory
between call s made by means of the function handle.

Consider the fo ll owing representation of some function s named A, B, ... , E.

function A (x , y) % The primary func ti on
B (x , y) ;

D (y) ;

end

f unction B (x , y) Ne sted in A
C (x) ;
D(y) ;

func t ion C(x) % Nested i n B
D(x) ;

end This terminates C
end This terminates B

function D (x)
E(x) ;

function E

% Nested in A

% Nested in D

end % This terminates E
end This terminates D

% This terminates A

You call a nes ted function in several way.

1. You can call it from the level immediately above it. (In the previous code,
function A can call B OJ D, but not C or E.)

2. You can call it from a function nested at the same level within the same
parent function . (Function B can call D, and 0 can call B.)

3. You can call it from a function at any lower level. (Function C can call B or
D. but not E.)

171

172 CHAPTER 3 Functions and Files

4. If you construct a function handle for a nested function, you can call the
nested function fro m any MATLAB function that has access to the handle.

You can call a subfunction from any nested function in the same M-fi le.

Private Functions

Private functions reside in subdirectories with the special name private, and
they are visi ble only to functions in the parent di re~ tory. Assume th~ directory
rsmi th is on the MATLAB search path . A subdirectory of rsml th ca lled
pri vate may contain functi ons that only the functi ons in rsmi th can call.
Because priva te functions are invisible outside the parent directory rsmi th,
they can use the same names as functions in other directories. This is useful if the
main directory used by several individuals including R. Smith, but R. Smith wants
to create a personal version of a particul ar function while retaining the original in
the main directory. Because MAT LAB looks for private functions before standard
M-fil e functions, it will find a private function named, say cylinder . m, before
a nonprivate M-fil e named cylinder. m.

Primary functions and subfunctions can be implemented as private functions.
Create a private directory by creating a subdirectory called pri vate using the
standard procedure for creating a directory or a folder on your computer, but do
not place the private directory on your path.

3.4 Working with Data Files

A typical ASCII data file has one or more lines of text at the beginning. These
might be comments that desclibe what the data represents, the date it was created,
and who created the data, for example. These lines are called the header. One or
more line of data, ananged in rows and columns, follow the header. The numbers
in each row might be separated by spaces or by commas.

. If it i inconvenie~t to edit the data file, the MATLAB environment pro­
Vides many ways to bnng data created by other applications into the MATLAB
workspace, a process called importing data, and to package workspace vari­
~bles so that uley ~an be us.ed by other applications, a process called export­
IIlg data . Your C~OIC~ of W~l1Ch mechanjsm to use depends on which operation
you are performll1g, llnportll1g or exporting, and whether you are working with
ASCU da t~ or bmary data . To make importing data easier, both ASCII and binary,
MATLAB lI1cl u~es a graphical user interface, called the Import Wizard, that leads
you through the Import process.

Importing Data from Externally Generated Files

Yo~ can enter data into MATLAB by typing it into an array or you can enter and
stole the dat.a 111 an M-file. However, either method i inconvenient when you
have a lot of data. Such ~ata is often generated by Some other application. For
example. you might be given a data file generated by a spreadsheet program, or

3.4 Working with Data Files

you might have to analyze data collected by a laboratory instrumentation sys tem.
Many app lications support the ASCII fi le format, so you are likely to receive a
data fi le stored in this format. If the fi le has a header or the data is separated by
commas, MATLAB wi ll produce an error message. To correct this situation, first
load the da ta fi le in to a text editor, remove the header, and replace the commas
with spaces (the number of spaces does not matter as long as there is at least one).
To retrieve thi s data into MATLAB, type load filename . If the fil e has m
lines with n values in each line, the data will be assigned to an In x n matrix
having the same name as the fi le with the ex tension stripped off. For example, if
your data fi le conta ins 10 lines and 3 columns of data and is named force. dat,
typing load force . dat creates the 10 x 3 matri x force, which you can use
in your MATLAB session just as you would use any other variable. Your data file
can have any extension except. mat, so that MATLAB will not try to load the
file as a workspace file .

Importing Spreadsheet Files

Some spreadsheet programs store data in the . wkl format. You can use the
command M == wklread (' filename ') to import this data into MATLAB
and store it in the matrix M.

The command A == xlsread (' filename ') imports the Microsoft
Excel workbook file filename . xIs into the array A. The command [A , BJ ==

xlsread (, filename ') imports all numeJic data into the array A and all text
data into the cell array B.

The Import Wizard

To import ASCII data, you must know how the data in the file is formatted. For
example, many ASCII data files use a fixed (or uniform) format of rows and
columns. For these files, you should know the following.

• How many data items are in each row?

• Are the data items numeric, text strings, or a mixture of both types?

• Does each row or column have a descriptive text header?

• What character is used as the delimiter; that is, the character used to
separate the data items in each row? The delimiter is also called the
column separator.

To find out how your ASCII data file is formatted, view it in a text editor. The
data format will usually fall into one of the following categories:

1. Space-delimited ASCII data files,

2. Mixed text and numeric ASCII data files ,

3. ASCII data files with text headers (the only text is at the head of each data
column), or

4. ASCII data files with 110nspace delimiter (usually semicolons).

173

174 CHAPTER 3 Functions and Files

You can use the Import Wizard to import many types of ASClI data ~orJ11ats,
including data on the clipboard. Note that when you u.se the]m~ol:t Wlza~'d to
create a variable in the MATLAB workspace, it overwntes any eXlstll1g vanable
in the workspace with the same name without issuing a warning. The Import
Wizard presents a series of dialog boxes in which you :

1. Specify the name of the file you want to import,

2. Specify the delimiter used in the file, and
3. Select the vm'iables that you want to import.

The following provides a step-by-step procedure for using the Import Wizard to
import this sample tab-delimited, ASCII data fi le, testdata . txt .

17 12
4

15
5 ;
25 ;

1. Activate the Import Wizm'd by selecting the Import Data option on the
MATLAB Desktop File menu. The Import Wizard displays a dialog box
that asks you to specify the name of the file you want to import. You can
enter the fi le name in the text entry field or click the browse button to fi nd
the file you want to import. When the Import Wizard opens the fi le, it
displays a preview of the data in the file. You can use the preview to verify
that you have specified the correct file . To continue with the import process,
click Next.

2. The Import Wizard processes the contents of the file and di splays tabs
identifying the vari ab les it recognizes in the file, and di splays a portion of
the data in a grid, imilm' to a spreadsheet (see Figure 3.4--1). The Import
Wizard uses the space character as the default delimiter. If your file uses
another chm'acter as a delimiter, the Import Wizard attempts to identify the
delimiter. Make sure the correct delimiter button is highlighted ; if not, then

. .1 Import WIzard - - ------ - - --- --- -------l;](QJLRl
Select Column Separator(s)

o Comma ') Sp8ce ('I Semicolon

PreVIew of C ""stJ8b7\work~estdat8 txt

'- Tab

5

25
testdata

I
10

170
2.0

120
30
80

Number of text header lines' 0:

4.0 50
150 25 .0

Figure 3.4-1 The fir t 'creen in Ihe Import Wizard.

3.4 Working with Data Files

~Iick on the correct one. In this example, the Import Wizard correctl y
II1terprets the contents of the tab-delimited sample file. If the delimiter is
not li sted, check the Other button and type the character in the text field .
Click Next to continue the import operation.

3. In the next dialog box, the Import Wizard displays a li st of the variables it
found in the file. It also displays the contents of the first variable in the
li st. To view the contents of a variable, click on its name. (The vari ab le
displayed in the dialog box is highlighted in the list.) In this example there
is only one variable, named t e s tda tao

4. Choose the variables you want to import by clicking the check box next
to their names. By default, all variables are checked for import. After
selecting the variables you want to import, click the Finish button to import
the data into the MATLAB workspace. This button dismisses the Import
Wizard .

To import data fro m the clipboard, select Paste Special from the Edit menu. The
proceed with step 2. The default variable name is A_pastespecial .

Importing ASCII Data Files with Text Headers

Follow the same procedure to use the Import Wizard to import an ASCII data file
that contains text headers. You will see a tab for the numeric data, a tab for all
the text in the file, and a tab for the text headers. For example, the following file,
temperature . dat, contains space-delimited numeJic data with a one-line
text header.

Temp1
78.8
99 . 5
89.5

Temp2 Temp3
55.9 45 . 9
66.8 78 . 0
77 . 0 56 . 7

The default name given to the text headers by the Import Wizm"d is colheaders,
and that given to the numeric data is data . In the Import Wizard screen that asks
YO ll to select variables to load, if you select "Create variables matching preview,"
when you click Finish you will have the variables colheaders and data in the
workspace. The variable data is a numeric array containing the temperatures,
and the variable colheaders is a cell array containing the headers. On the other
hand, if YOll select "Create vectors from each column using column names," when
you click Finish you will have the variables Templ, Temp2, and Temp3 in the
workspace. These m'e numeric arrays . The appropJiate choice depends on what
you want to do with the data.

Importing Binary Data Files

YOll can use the Import Wizard to import many type of binary data format .
including MAT-files in which you saved previou sessions. The procedure is the

175

176 CHAPTER 3 Functions and Files

same as for loading ASCII data fil es . You will see a text tab if your file contai ns
tex t data, and a data tab if it contains numeric data.

Exporting Delimited ASCII Data Files

You mi crht want to export a MATLAB matrix as an ASCII data file where the
rows and column are represented as space-delimited, numeric values. To export
an array as a delimited ASCII data fil e, you can use either th~ save co.mmand,
specifying the -ASCII qualifier, or you can use th~ dlmwr~te fun~tlon . The
save command is easy to use; however, the dlmwrl te function provIdes more
flexibility, allowing you to specify any character as a delimiter and to export
subsets of an array by specifying a range of values.

Suppose you have created the array A = [1 2 3 4 ; 5 6 7 8] in
MATLAB. To export the array using the save command, type the foll owing
in the Command window.

»save my_data . out A - ASCII

If you view the created file in a text editor, it looks like thi s

1 . 0000000e+000 2 . OOOOOOO e+ OOO 3 . OOOOOOOe+O OO 4 . OOOOOOOe+OOO
5 . 0000000e+000 6 . OOOOOOOe +OOO 7 . OOOOOOOe+OOO 8 . OOOOOOOe+OOO

By default, save u esspaces as delimiter, but you can use tabs instead of spaces
by pecifying the - tab quali fi er.

To export an array in ASCII format and specify the delimiter used in the fi Ie,
use the d lmwri t e function . For example, to export the array A as an ASCII data
file that use semicolons as a delimiter, type the following.

»dlmwri te(' my_data . ou t , , A, ';')

If you view the created file in a text editor, it looks like this:

1 ; 2 ; 3 ; 4 5 ; 6 ; 7 ; 8

Note that d l mwri te doe not insert delimiter at the end of rows. By default, if
you do not specify a delimiter, dlmwr i te Llses commas as a delimiter. YOLl can
sp~cify ~ pace (' ') as a delimiter or you can specify no delimiter by using a
paIr of SIngle quotes (' ').

3.5 Summary

MATLAB supplie very many function. In Section 3.1 we introduced just ome
of the mo t commonly used mathematical functions. You hould now be able to
u e the MATLAB help to find other function YOLl need. If necessary, you can
create you.r own funcLJon , USIng the method of Section 3.2.

FunctIon hal:dle , anonymou functions , subfunctions. and nested functions
ex.tend th~ capabIlJlle o~ MATLAB and are especially useful for large progralll­
nung project . The e tOPICS were tTeated in Section 3.3.

Ta ble 3.5-J Guide to MATLAB comillands introduced in
Chapter 3

Some common mathematical function s
Trigonometric function s
Hyperbolic fun ctions
Minimization and roo t-finding funct ions

Table 3. 1- 1
Table 3.1- 2
Table 3. 1- 3
Table 3.2- 1

Problems

In addition to function files, data fil es are also useful for many applications.
Section 3.4 shows how to import and export such fil es in MATLAB .

Table 3.5- [is a guide to all the commands introduced in this chapter.

Key Terms with Page References
Anonymous function s, 166
Function argument, 14S
Function defi nition line, 148
Function file , 148
Function handles, 163
Globa l va ri abl es, I S3

Jmpon Wizard, 173
Local variables, I S3
Nested function s, 170
Primary function , J 6S
Private function , 16S
Subfunctions, 168

Problems

You can find the answers to problems marked with an asteri sk at the end of the
text.

Section 3.1

1.* Suppose that y = -3 + ix. For x = 0, I, and 2, use MATLAB to compute
the following expressions. Hand check the an wers.

/y/
h. ..jY
c. (--;:5-7i)y

d. 6':'3i

2.* Let x = -5 - 8i and y = 10 - 5i. Use MATLAB to compute the
following expressions. Hand check the answers.

a. The magnitude and angle of xy.
h. The magnitude and angle of ~ .

3.* U e MATLAB to find the angle correponding to the following
coordinates. Hand check the an wers.

a. (x , y) = (5, 8)
h. (x, y) = (-5, 8)

(x, y) = (5. -8)
d. (x, y) = (-5. -8)

177

178 C HAPTER 3 Functions and Files

4. For everal values of x, use MATLAB to confi rm that sinh x =
(eX - e-X)/ 2.

5. For several va lues of x , use MATLAB to confirm that si nh-
t
x =

In (x +)x2 + 1) , -00 < x < 00.

6. The capacitance of two parallel conductors of length L and radi us }" ,
separated by a di stance d in air, is given by

nE L
c= In (~)

where E is the permitti vity of ail" (E = 8.854 X 10- 12 F/m).
Write a script file that accepts user input for d , L , and r , and computes

and di plays C. Test the fi le with the values: L = 1 m, r = 0.001 m, and
d = 0.004 m.

7.* When a belt is wrapped arou nd a cylinder, the relation between the belt
forces on each side of the cylinder is

FI = F2e J.l.f3

where (3 is the angle of wrap of the belt and /-L is the friction coefficient.
Write a script fi le that first prompts a user to specify (3, /1" and F2 and then
computes the force Fl . Test your program with the values (3 = 130°,
/-L = 0.3, and F2 = 100 N. (Hi nt: Be careful with (3!)

Section 3.2

8. The MATLAB trigonometri c function expect theu argument to be in
radians. Write a function called sind that accepts an angle x in degrees
and computes sin x . Test your function.

9. Write a function that accepts temperature in degrees F and computes the
corresponding value in degrees C. The relati on between the two is

Be sure to test your function.

10.* An object th rown verti cally with a speed Va reaches a height h at time t ,
where

h = Val - ~gt2
2

Wri te,and t~s t a fu ncti on that computes the time t required to reach a
specified height h. for a given value of Va. The function's inputs should
be h, Va· and g. Test your function for the case where h = 100 m
Va = 50 mis, and g = 9.8 1 m/s2. Interpret both answers. '

11. A w~ter t a ~k consists of a cylindrical part of radius r and height h, and a
hemlsphencal ,top. The ta~k is to be constructed to hold 500 m3 when
fil ~~d . The urtace area of the cylindrical part is 2n rh, and its volume is
n J h. The surface area of the hemispheri cal top is given by 2n}"2, and its

Problems

vo llll:le is given by 2lf r 3 / 3. The cost to construct the cylindrical part of the
ta nk IS $300 per square meter of surface area; the hemispherical part costs
$400 per sq.uare meter. Use the fminbnd function to compute the radius
that resul ts In the least cost. Compute the correspondi ng height h. .

12. A fence arou nd a field is shaped as shown in Figure P I 2. It consists of a
rectangle of length L and width W , and a right tri angle that is symmetrical
about the central hori zontal ax is of the rectangle. Suppose the width W is
known (i n meters), and the enclosed area A is known (in square meters).
Wri te a user-defined fu nction file with W and A as inputs. The outpu ts are
the length L required so that the enclosed area is A , and the total length of
fence required. Test your function fo r the values W = 6 m and A = 80 m2•

Figure P12

13. A fe nced enclosure consists of a rectangle of length L and width 2R, and a
semicircle of radius R, as shown in Figure P1 3. The enclosure is to be
buil t to have an area A of 1600 ft2. The cost of the fence is $40 per foo t
for the curved portion , and $30 per foot for tbe straight sides. Use the
f minbnd function to determjne with a resolution of 0.01 ft the values of
R and L requi red to minimize the tota l cost of the fence. Also compute the
mini mum cost.

I---L---+j

2RC]
Figure P13

14. Using es timates ofrainfall , evaporation, and water consumption, the town
engineer developed the following model of the water volume in the
reservo ir as a function of time.

Vet) =]09 + 108(1 - e- l
/

l OO) - rt

where V is the water volume in liters, I is time in days, and r is the town 's
consumption rate in liters/day. Write two user-defined functions. The first
fun ctj on should define the function V(t) for u e with the fzero function.

179

180 CHAPTER 3 Functions and Files

The second function should use fzero to compute.h?:-" long it w.i11 t; ke
for the water volume to decrease to x percent of its IIlltlal value.of I? L.
The inputs to the second function should be x 7and r. Test your functi ons
for the ca e where x = 50 percent and r = 10 L/day. .

15. The volume V and paper surface area A of a conical paper cup are gIven by

A =rrr J r2+h2

where r is the radius of the base of the cone and h is the height of the cone.

a. By eliminati ng h, obtain the expression for A as a function of r and V.
b. Create a user-defined function that accepts R as the on ly argumen.t .

and computes A for a given value of V. Declare V to be global wlthlll
the function.

e. For V =] 0 in.3
, use the fu nction with the fminbnd fU I~ ction to

compute the val ue of r that minimizes the area A. What I.s.t~e

cOITesponding value of the height h? Investigate the sensltlvlt~ of the
olution by plotting \I versus r. How much can R vary a~out l.tS .

optimal value before the area increases 10 percent above Its mInimum
value?

16. A tOfUS is a shaped like a doughnut. If its inner radius is a and its outer
radi us is b, its volume and surface area are given by

Create a user-defined function that computes V and A from the
arguments a and b.

b. Suppose that the outer radius i constrained to be 2 in . greater than the
inner radiu . Write a script file that uses your function to plot A and \I
versus a for 0.25 S a S 4 in.

17. Suppose it is known that the graph of the function y = ax 3 + bx2 + ex + d
passes through four given points (Xi. Yi), i = 1,2,3,4. Write a user-defi.ned
function that accepts these four points as input and computes the
coefficients a, b, c, and d. The function should solve four linear equations
in terms of the four unknowns a, b, c, and d. Test your function for the
case where (Xi, Yi) = (-2. -20), (0,4), (2. 68), and (4, 508), whose
answer is a = 7. b = 5, e = -6. and d = 4.

Section 3.3

18. U e the gen-p l ot function described in Section 3.3 to obtain two
ubplot . one plot of the function lOe - 2r over the ranae 0 < x < 2 and

the other a plot of 5 sin(2rr xj3) over the range 0 S x "'s 6.- - ,

19. Create an anonymous function for I Oe- cr and use it to plot the function
over the range 0 S x S 2.

Problems

20. Create an anonymous function for 20x 2 - 200x + 3 and use it

to plot the function to determine the approximate location of its
minimum, and

b. with the fminbnd function to precisely determine the location of the
minimum.

21. Create four anonymous functions to represent the function 6e3co>x2 , which
is composed of the functions h(z) = 6ez, g(y) = 3 cos y, and f(x) = x 2 .

Use the anonymous functions to plot 6e3cosx2 over the range 0 S x S 4.

22. Use a primary function with a subfunction to compute the zeros of the
function 3x3

- 12x2
- 33x + 90 over the range - 10 S x S 10.

23. Create a primary function that uses a function handle with a nested
function to compute the minimum of the function 20x 2 - 200x + 3 over
the range 0 S x S 10.

Section 3.4

24. Use a text editor to create a file containing the foJlowing data. Then use
the load function to load the file into MATLAB, and use the mean
function to compute the mean value of each column.

55 42 98
51 39 95
63 43 94

58 45 90

25. Enter and save the data given in Problem 24 in a spreadsheet. Then import
the spreadsheet file into the MATLAB variable A. Use MATLAB to
compute the sum of each column.

26. Use a text editor to create a file from the data given in Problem 24, but
separate each number with a semicolon. Then lise the Import Wizard to
load and save the data in the MATLAB variable A.

27. Use a text editor to create a file temperature . dat containing the
temperature data given on page 175. Then use the Import Wizard to load
and save the data in the MATLAB variable temperature. Compute the
meaJl value of each column.

181

Engineering in the
21st Century ...

Robot-Assisted Microsurgery

y ou need not be a medica l doctor to participate in the exciting develop­
ments now taking pl ace in the health field . Many advances in medicine
and surgery are reall y engineering achievements, and many eng ineers

are contributing their talents in this area. Recent achievements include

• Laparoscopic surgery in whi ch a fiber-optic scope guides a small surgical
device. This technology eliminates the need for large incis ions and the
resulting long recuperati on.

• Computeri zed axial tomography (CAT) scans and magnetic resonance
imag ing (MRI), whi ch provide noninvas ive too ls for diagnosing medical
problems.

• Medical instrumentation, such as a fingeI1ip sensor for continuously
measuring oxygen in the blood and automatic blood pressure sensors.

As we mov~ into the 2 1st.century, an exciting chall enge will be the development
of r?bot-ass I s.t~d surgel? III which a robot, supervised by a human , performs op­
eratIons reqUI.nng precIse, steady moti ons. Robots have already assisted in hip
surgery on a.mmal , but Im~ch m?re development is needed. Another developing
technology IS telesurgery In whIch a surgeon uses a television intelface to re­
mot~ly guide a surgical robot. This technology would allow delivery of medical
serVIces to remote areas.

. Rob~t-assisted microsurgelJ: which uses a robot capable of very small , pre­
CI se motIons, shows great promIse. One appli cation is in eye suraery and the
P?oto abo,:,e shows a te.s t of such a device on a dummy head. Desig~ina' such de­
VIces requIres geometnc an al y~ i s, control system design, and image p~ocessing.
The .MAT.LAB Image Proces. IIlg toolbox and the several MATLAB toolboxes
deallllg WIth control system design are useful for such applications .•

CHAPTER

Programming
lNith MATLAB
OUTLINE

4.1 Program Design and Development

4.2 Relational Operators and Logical Variables

4.3 Logical Operators and Functions

4.4 Conditional Statements

4.5 Loops

4.6 The switch Structure

4.7 Debugging MATLAB Programs

4.8 Applications to Simulation

4.9 Summary

Problems

The MATLAB interactive mode is very useful for simple problems, but more
complex problems require a script file. Such a file can be called a computer
program, and writing such a file is called programming. Section 4 .1 presents a
general and efficient approach to the design and development of programs.

The usefulness of MATLAB is greatly increased by the use of decision­
making functions in its programs. These funct ions enable you to write programs
whose operations depend on the results of calculations made by the program.
Sections 4.2, 4.3 , and 4.4 deal with these decision-making functions.

MATLAB can also repeat calculations a specified number of times or until
ome condition is satisfied. This feature enables engineers to solve problems of

great complexity or requiring numerous calculations. These "loop" structures are
covered in Section 4.5.

4:

184 CHAPTER 4 Programming with MATLAB

The swi tch structure enhances theMATLAB dec ision-maki ng capabi lities.
This topic is covered in Section 4.6. Use of the MATLAB Editor/Debugger fo r
debuooin o proorams is covered in Section 4.7.

S:cti~n 4.8 discusses "simulation," a major applicati on of MATLAB pro­
grams lhat enables us to study the operation of complicated sys ten~ s, processe.s ,
and organization . Tables summari zing the MATLAB commands lI1 troduced 1n
this chapter appear throughout the chapter, and Table 4.9-1 will help you locate
the info rmation you need.

4.1 Program Design and Development
In Chapter I we introduced relational operators, such as > and ==, and the two
types of loops used in MATLAB , the for loop and the while loop. These
feature, plus MATLAB functions and the logical operators to be introduced in
Section 4. 3, form the basi for constructing MATLAB programs to sol ve complex
problems. Design of computer programs to solve complex problems needs to
be done in a systematic manner frol11 the tart to avoid time-consuming and
frustrating difficulties later in the process. In thi s section we show how to structure
and manage the design process.

Algorithms and Control Structures

An algoriThm is an ordered sequence of precisely defined instructions that per­
forms some task in a finite amount of time. An ordered sequence means that the
instructions can be numbered, but an algorithm must have the ability to alter the
order of its instructions u ing what is called a control structure. There are three
categories of algorithmic operation :

SequenTial operations. These are instructions that are executed in order.
Conditional operations. These are control structures that first ask a
que tion to be answered with a true/false answer and then select the next
instruction based on the answer.

Iierati~e operaTions (lo~ps) . These are control structures that repeat the
executIOn of a block of lI1structions.

Not e.very problem can be olved with an algorithm and some potential algorithmic
soluttons can fail because they take too long to find a solution.

Structured Programming

STructured progra~nming is a technique for designing programs in wh.ich a hier­
~rchy. of module~ tS used. each having a single entry and a single exit point, and
1I1 whlch control lS pa sed downward through the structure without unconditional
br~nc!le . to htgher levels of the structure. In MATLAB these modules can be
bUlIt-lI1 or u 'er-defined function s.

Contro~ of the. program flow uses the same three types of control struc­
tures use~ III algonthms: eq~ential. conditional, and iterative. In oeneral an
computet program can be wntten with these three structures. Thi; realiz~tio;'

4.1 Prog ram Design and Development

led to the deve l o~ment of structured programming. Languages suitable fo r struc­
tured programmlllg, such as MATLAB, thus do not have an equiva lent to the
goto statement that you might have seen in the BASIC and FORTRAN lan­
guages. ~n unfortunate result of the goto statement was confusing code, called
spaghetl l code, composed of a complex tangle of branches.

S.tructured programming, if used properl y, resul ts in programs that are easy
to wnte, understand , and modify. The advantages of structured programming are
as fo llows.

1. Structured programs are eas ier to wri te because the programmer can study
the overall problem fi rst and then deal with the detail s tater.

2. Modules (functions) written for one application can be used fo r other
applications (this is called reusable code) .

3. Structured programs are easier to debug because each module is desioned to
perform just one task and thus it can be tested separately from the other
modules.

4. Structured programming is effective in a teamwork environment because
several people can work on a common program, each person developing
one or more modules.

5. Structured programs are easier to understand and modify, especially if
meaningful names are chosen for the modules and if the documentation
clearly identifies the module 's task.

Top-down Design and Program Documentation

A method for creating structured programs is top-down design, which aims
to describe a program 's intended purpose at a very high level initially, and
then partition the problem repeatedly into more detailed levels, one level at a
time, until enough is understood about the program structure to enable it to be
coded . Table 4.1-1 , which is repeated from Chapter 1, summarizes the process of
top-down design. In step 4 you create the algolithms used to obtain the solu­
tion. Note that step 5, Write and Run the Program, is only part of the top-down
design process. In this step you create the necessary modules and test them
separately.

Table 4.1-1 Steps for developing a computer solution

1. State the problem concisely.

2. Specify the data to be used by the program. Thi is the " input: '

3. Specify the information to be generated by the program. Thi i ' the "output."

4. Work through the solution steps by hand or with a calculator; use a impler set of
data if necessary.

5. Write and run the program.

6. Check the output of the program with your hand solution .

7. Run the program with your input data and perform a reality check on the output.

8. If you will use the program as a general tool in the future, test it by running it for
a range of reasonable data values: perform a reality check on the re ults .

185

186

STRUCTURE
CHART

FLOWCHART

CHAPTER 4 Programming with MATLAB

Two types of charts aid in developing structured programs and in .document.ing
them. These are structure charts andjlowcharts. A structure chart IS a graphIcal
description showing how the different parts of the pr?~r~m are connected to­
gether. This type of diagram is particularly useful in the Il1ItIal stages of top-down

design. . .
A structure chart displays the organi zation of a program wIthout showll1g the

detail of the ca lculations and decision processes. For example, we can create
program modules using function files lhat do specific, readily identifiable tasks.
Larger programs are usually composed of a main program that cal ls on the m?d­
ules to do their speciali zed tasks as needed. A structure chart shows the connectIon
between the main program and the modules.

For example, suppose you want to write a program that plays a game, say
Tic-Tac-Toe. You would need a module to allow the human player to input a
move, a module to update and di splay the game grid, and a module that contains
the computer's strategy for selecting its moves. Figure 4.1- 1 shows the structure
chart of such a program.

Flowcharts are useful for developing and documenting programs that con­
tain conditional statement, because they can display the various paths (called
"branches") that a program can take, depending on how the conditional state­
ments are executed. The flowchart representation of the if statement is shown
in Figure 4. 1-2. Flowcharts use the diamond symbol to indicate decision points.

The usefulness of structure charts and flowcharts is limi ted by their size. For
large, more complicated programs, it might be impractical to draw such charts.
Nevertheless, for smaller projects, sketching a flowchart and/or a structure chart
might help you organize your thoughts before beginning to write the specific
MATLAB code. Because of the space required for such charts we do not use them
in thi s text. You are encouraged, however, to use them when solving problems.

Documenting programs properly is very important, even if you never give
your programs to other people. If you need to modify one of your programs, you

Figure 4.1-1 Slructure chart of a game program.

4.1 Program Design and Development

Start

Logical False
Expression

End

Figure 4.1-2 Flowchart
representation of the if
statement.

wilJ find that it is often very difficult to recall how it operates if you have not Llsed
it for some time. Effective documentation can be accomplished with the use of

1. Proper selection of variable names to reflect the quantities they represent.
2. Use of comments within the program.
3. Use of structure charts.

4. Use of flowcharts.

5. A verbal description of the program, often in pseudocode.

The advantage of using suitable variable names and comments is that they reside
with the program; anyone who gets a copy of the program will see such doc­
umentation. However, they often do not provide enough of an overview of the
program. The latter three elements can provide such an overview.

Pseudocode

Use of natural language, such as English, to describe algorithms often results in a
description that is too verbose and is subject to misinterpretation. To avoid dealing
immediately with the possibly complicated syntax of the programming language,

187

188 C HAPTER 4 Programming with MATLAB

we can instead use pseudocode, in which natu ral language and mathematical
expressions are used to construct statements that look like computer statements
but without detai led syntax. Pseudocode may also use some simple MATLAB
syntax to explain the operation of the program.

As its name implies, pseudocode is an imi tat ion of the actual computer code.
The pseudocode can provide the basis fo r comments within the program. In
addi tion to providing documentation, pseudocode is useful for outlining a program
before writing the detail ed code, which takes longer to write because it must
conform to the strict rules of MATLAB.

Each pseudocode instruction may be numbered, bu t should be unambiguous
and computable. Note that MATLAB does not use line numbers except in the
Debugger. Each of the fo llowing examples illustrates how pseudocode can docu­
ment each of the control structures used in algorithms: sequenti al, conditional,
and iterative operations.

Example 1. Sequential Operations Compute the perimeter p and the area A
of a triangle whose sides are G , b, and c. The formulas are:

p=a + b +c s = I!... A = vs(s - a)(s - b)(s - c)
2

1. Enter the side lengths a, b, and c.

2. Compute the perimeter p.

p=a + b +c

3. Compute the semiperimeter s.

s = p/ 2

4. Compute the area A .

A = v s(s - a)(s - b)(s - c)

5. Display the results p and A .

6. Stop

The program is

input (, Enter the va]ue of
b input (, Enter the value of

input (, Enter the value of
p a + b + C ;

p/2 ;

A = sqrt(s*(s-a)*(s-b)*(s_c)) ;
disp (' The perimeter is :')
p

disp(' The area is :')
A

side a: ') ;
side b : ') ;

side ') ;

4.1 Program Design and Development

Example. 2. C onditional Operations Given the (x, y) coordinates of a poi nt,
compute Its polar coordinates (r , 8), where

1. Enter the coordinates x and y.

2. Compute the hypoteneuse r .

r = sqrt (x"2+y"2)

3. Compute the angle 8.
3.1 If x:::: 0

theta = atan (y Ix)

3.2 Else

theta = atan(y/x) + pi

4. Convert the angle to degrees .

theta = theta * (180 /pi)

5. Display the resul ts r and theta.

6. Stop

8 = tan-
J (~)

Note the use of the numbering scheme 3.1 and 3.2 to indicate subordinate clauses.
Note also that M ATLAB syntax may be used for clarity where needed. The
program is

input(' Enter the value of ') ;
y = input (, Enter the value of y : ') ;
r = sqrt(x"2+y"2) ;
if x >= 0

theta atan (y Ix) ;
else

theta atan (y I x) + pi ;
end

disp (' The hypoteneuse is : ')
disp(r)

theta = theta * (180/pi) ;
disp (' The angle is degrees is : ')
disp (theta)

Example 3. Iterative Operations Determine how many terms are required for
the sum of the seri es 10k2

- 4k + 2, k = 1, 2, 3, . .. to exceed 20,000. What is
the sum for thi s many terms?

Because we do not know how many times we must evaluate the expression
IOk2

- 4k + 2, we use a whil e loop.

189

190 CHAPTER 4 Programming with MATLAB

L. Init iali ze the total 10 zero.
2. Initi ali ze the counter to zero.
3. While the tot al is less than 20,000 compute the total.

3. 1 Increment the counter by I.

k - k + 1

3.2 Update Ule total.

total = 10*k"' 2 - 4 *k + 2 + total

4. Display the current value of the counter.
5. Display the va lue of the total.
6. Stop

The program i

total = 0 ;
k = 0 ;
whi le total < 2e+4

k = k+l ;
total = lO*k"'2 - 4 *k + 2 + total ;

end
disp (' The number of terms is :')
disp(k)
disp(' The sum is :')
disp (total)

Finding Bugs

Debugging a program is the process of findi ng and removing the "bugs," or elTors,
in a program. Such error usually fall into one of the following categories.

1. Syntax errors such as omitting a parenthe is or comma, or spelling a
command name incorrectly. MATLAB usually detect the more obvious
errors and displays a message describing the error and its location .

2. Errors due to an incorrect mathematical procedure. These are called runtime
errors. They do not necessarily Occur every time the program is executed;
their occurrence often depend on the particular input data. A common
example i. divi ion by zero.

The MATL B error messages usually enable you to find syntax errors. How­
ever, runtime errors are more difficult to locate. To locate such an error, try the
following:

1. Always te t your program with a imple version of the problem, whose
answers can be checked by hand calculations.

2. Display any interm~diate calculations by removing semicolons at the end of
statements.

4.2 Relational Operators and Logical Variables

3. To tes t user-defined functions, try commenting out the function line and
running the fil e as a script.

4. Use the debugging features of the Ed itor/Debugger, which is di scussed in
Section 4.7.

Development of Large Programs

Large programs and software, including commercial software such as MATLAB ,
undergo a ri gorous process of development and testing before finally being re­
leased and approved for general use. The stages in thi s process are typically the
following.

1. Writing and testing of individual modules (the unit-testi ng phase).
2. Writing of the top-level program that uses the modules (the build phase).

Not all modules are included in the initial testing. As the build proceeds,
more modules are included.

3. Testing of the first complete program (the alpha release phase). This is
usually done only in-house by technical people closely invol ved with the
program developmenl. There might be several alpha releases as bugs are
di scovered and removed.

4. Testing of the final alpha release by in-house personnel and by familiar and
trusted outside users, who often must sign a confidentiality agreement. Thi s
is the beta release phase, and there might be several beta releases.

Thi s process can take quite a while, depending on the complexity of the pro­
gram and the company's dedication to producing quality software. In the case of
MATLAB 7, there were approximately nine months between the first beta release
and the final release of the completed software.

4.2 Relational Operators and Logical Variables

MATLAB has six relational operators to make comparisons between arrays.
These operators are shown in Table 4.2-1 and were introduced in Section 1.3.
Recall that the equal to operator consists of two = signs, not a ingle = sign as
you might expect. The single = sign is the assignment, or replacement. operator
in MATLAB.

Table 4.2-1 Relationaloperalors

Relational operator Meaning

Less than.
Less than or equal 10.

Grealer than.
Greater than or equal 10.
EquallO.
NOI equal 10.

191

192 CHAPTER 4 Programming with MATLAB

. . I . al operators is either 0 (if the
The result of a comparison uSll1g th~ Ie ~tJO~l ') and the result can be u ed

compari.son isfalse), or 1 (i:the ~ompan~onl~ 1'~/,et~l~ing z = x < y returns
as a van ab le. For example, If x - 2 an y h I _ ° To make the

d . (J U = x==y returns t eva ue u - .
the val ue z = 1 an tyPIl1", the logical operations using parentheses.
statements more readable, we can group

For example, z = (x < y) and u = (x~=y). . . com are the arra s
When used to compare arrays, the relatIOnal opelatOls p y

on an element-by-element basis. The arrays being compared must have thels~l~e
dimension. The onl y exception occurs when we compare an arra~ to ~ sca a!. n
that case all the elements of the array are compared to the fsclallal.. FOl~~~~~~
suppose that x = [6,3,9] and y [14,2 , 9] . The 0 OWlllg
sess ion shows some examples.

(x < y)

(x -= y)

o
(x > 8)

The relational operators can be used for array addressi ng. For example, with
x = [6 , 3 , 9] and y = [14 , 2 , 9], typing z = x(x<y) findsalltheele­
ments in x that are less than the corresponding elements in y . The result is z = 6.

The arithmetic operators + , -, *, /, and \ have precedence over the rel ational
operators. Thus the statement z = 5 > 2 + 7 is equivalent to z = 5 > (2 + 7)
and retums the result z = 0. We can use parentheses to change the order of
precedence; for example, z = (5 > 2) + 7 evaluates to z = 8.

The relati onal operators have equal precedence among themselves , and
MATLAB eva luates them in order from left to right. Thus the statement

z = 5 > 3 -=

is equivalent to

z = (5)3) -=

Both statements return the result z = 0.

With relational operators that consist of more than one character, such as ==
or >= , be careful not to put a space between the characters.

The logical Class

When the relational operators are used, such as x = (5 > 2) , they create
a logical variable, in thi s case, x . Prior to MATLAB 6.5 logical was an

4.2 Relational Operators and Logical Variables

attribute of any numeric data type. Now logical is a first-class data type and a
MATLAB class, and so logical is now equivalent to other first-class types
such as character and cell arrays. Logical vari ables may have only the values I
(true) and 0 (fa lse).

Just because an array contains only Os and 1 s, however, it is not necessarily
a logical array. For example, in the fo llowing sess ion k and w appear the same,
but k is a logical array and w is a numeric array, and thus an error message is
issued.

[-2 : 2]

-2 -1
»k = (abs(x»l)
k =

x(k)

-2 2
[1 , 0,0 , 0 , 1] ;

»v = x(w)

??? Subscript indices must either be real positive ...
integers or logicals .

The logical Function

Logical arrays can be created with the relational and logical operators and with
the logical function. The logical function returns an array that can be used
for logical indexing and logical tests. Typing B = logical (A), where A is a
numeric array, returns the logical array B. SO to correct the error in the previous
session, you may type instead w = logical ([1 , 0 , 0 , 0 , 1]) before typing
v = x(w).

When a finite, real value other than I or 0 is assigned to a logical variable, the
value is converted to logical 1 and a warning message is issued. For example, when
you type y = logical (9),y will be assigned the value logicall anda warning
will be issued. You may use the double function to convert a logical array to
an array of class double. For example, x = (5)3) ; y = double (x) ;.
Some arithmetic operations convert a logical array to a double array. For example,
if we add zero to each element of B by typing B = B + 0, B will be converted
to a numeric (double) array. However, not all mathematical operations are defined
for logical variables. For example, typing

»x = ([2 , 3] > [1 , 6]) ;
»y = sin (x)

will generate an error message.

193

194 C HAPTER 4 Programming with MATLAB

Accessing Arrays Using Logical Arrays

When a loaical array is used to address another array, it extracts from. that array
the eleme; ts in the locations where the logical array has Is. So ty.pll1

g A (B) ,
where B is a logical array of the same size as A. returns the values of A at the

indices where B is I . .
G' A-[5 6 7 · 8 9 10 · 11 12 , 13) and B=loglcal(eye(3)),

we ca~V~~trac~ th: di ~g~na; e l ~me~ts of A by ty~ing C = A (B) to obtai n C =
[5 ; 9 ; 13) . Specifying array subscrip ts with l ogl~a l arrays extracts the elements
that correspond to the true (1) elements in the logIcal array.

Note, however, that using the nurneric array eye (3) , as C = A (eye (3)) ,
results in an error message because the elements of eye (3). do not.correspond to
locations in A. If the numeric array values correspond to valId locatI ons, y?U may
use a numeric array to extract the elements. For example, to extract the diagonal
elements of A with a numeric array, type C = A ([1 , 5 , 9)) .

MATLAB data types are preserved when indexed assignment is used. So now
that logical is a MATLAB data type, if A is a logical array, for example A =
logical (eye (4)) , then typi ng A (3,4) = 1 does not ch~nge A to a double
array. However, typing A (3,4) = 5 will set A (3 , 4) to logIcal I and cause a
wa111ing to be issued.

4.3 Logical Operators and Functions
MATLAB has five logical operators, which are sometimes called Boolean oper­
ators (see Table 4.3- 1). These operators perform element-by-element operations.
With the exception of the NOT operator (-), they have a lower precedence than
the arithmetic and relational operators (see Table 4.3-2) . The NOT symbol is
cal led the tilde.

The NOT operation -A returns an array of the same dimension as A; the
new array has ones where A is zero and zeros where A is nonzero. If A is
logical, then -A replaces ones with zeros and zeros with ones. For example,

Table 4.3-1 Logical operator

Operator Name

NOT

AN D

OR

&& Short-Circuit A D

I I Short-Circuit OR

Definition

-A returns an an"ay the same dimension as A; the new array has ones where A is
zero and zeros where A is nonzero.
A & B returns an array the same dimension as A and B; the new array has ones
where both A and B have nonzcro elements and zeros where either A or B is zero.
A I B retu rns an array the ame di mension as A and B; the new array has ones
where at least one element in J>.. or B is nonzero and zeros where A and B are
both zero.
Operator for scalar logical expressions. A && B returns true if both A and B
evaluate to true, and false if they do not.
Operator for scalar logical express ions. A I I B returns true if either A or B or
both evaluate to true. and fa lse if they do not.

4.3 Logical Operators and Functions

Table 4.3-2 Order of precedence fo r operator types

Precedence Operator type

Fi rst Parentheses; evaluated starting with the innermost pair.
Second Arithmetic operators and logical NOT (-); evaluated from left to right.
Third Relational operators; evaluated from left to right.
Fourth Logical AND.
Fi fth Logical OR.

if x = [0 , 3 , 9) and y = [14 , -2 , 9), then z = -x returns the alTay
z = [1 , 0,0) andthe statement u = -x > y returns theresult u = [0 , 1 , 0) .
This expression is equivalent to u = (-x) > y , whereas v = - (x > y)
gives theresultv = [1, O, l). This expression isequivalentto v = (x <= y) .

The & and I operators compare two arrays of the same dimension. The only
exception, as with the relational operators, is that an array can be compared
to a scalar. The AND operation A&B returns ones where both A and B have
nonzero elements and zeros where any element of A or B is zero. The expression
z = 0&3 returns z = 0; z = 2&3 returns z = 1; z = 0&0 returns z =
O, and z = [5 , -3 , 0 , 0)&[2 , 4 , 0 , 5) retu rns z = [l , l , O, O) . Because
of operator precedence, z = 1&2+3 is equivalent to z = 1& (2 +3), which
returns z = l. Similarly, z = 5<6&l is equivalentto z = (5<6)&1 , which
returns z = 1.

Let x = [6 , 3 , 9) and y = [14 , 2 , 9) and let a = [4 , 3 , 12) . The
expression

z = (x>y) & a

gives z = [° , 1 , ° 1 , and

z = (x>y) & (x >a)

returns the result z = [° , ° , 0) . This is equivalent to

z = x>y&x>a

which is much less readable.
Be careful when using the logical operators with inequalities. For example,

notethat - (x > y) is equivalentto x <= y . ltis notequivalentto x < y . As
another example, the relation 5 < x < 10 must be written as

(5 < x) & (x < 10)

in MATLAB.
The OR operation A I B retu111s ones where at least one of A and B has nonzero

elements and zeros where both A and B are zero. The expression z = ° 13 retu111s
1 ; the expression z = ° 1 ° returns z = 0; and

[5 ,- 3 , 0 , 0)1 [2 , 4 , 0 , 5)

returns z = [1 , 1 , ° , 1) . Because of operator precedence,

195

196

TRUTH TABLE

CHAPTER 4 Programming with MATLAB

z = 3<514==7

is equivalent to

z =(3<5) I (4==7)

which returns z = 1. Similarly, z = 110&1 is equivalent to z = (110) &1,
which returns z = 1, while z = 110&0 returns z = 0, and z = 0&011 re-

turns z = l.
Because of the precedence of the NOT operator, the statement

z = -3==714==6

returns the result z = 0, which is equivalent to

z = ((-3) ==7) I (4==6)

The exclusive OR function xor (A , B) returns zeros where A and B are either
both nonzero or both zero, and ones where either A or B is nonzero, but not both.
The function is defined in terms of the AND, OR, and NOT operators as follows.

function z = xor (A, B)
z = (AlB) & -(A&B) ;

The expression

z = xor([3,0,6],[5,0 , 0))

returns z = [0, ° , 1] . whereas

z = [3 , 0 , 6)1 [5 , 0 , 0)

return. z = [1 , ° , 1) .
Table 4.3- 3 is a so-called (ruth table that defines the operations of the logical

operators and the function xor. Until you acquire more experience with the
logical operators. you hould use this table to check your statements. Remember
that (rue is equivalent to logical I, and false is equivalent to logical O. We can
test the truth table by building its numerical equivalent as follows . Let x and y
represent the first two columns of the truth table in terms of ones and zeros.

Table 4.3-3 Truth table

y xly X&y xor(x,y)

true true false true true false
true fal se fal se true fal se true
fal e true fal e true
false fal se false

4.3 Logical Operators and Functions

The [ollowing MATLAB sess ion generates the truth table in terms of ones
and zeros.

»x = [1 , 1 , 0 , 0) , ;

»y = [1, ° , 1 , 0) , ;
»Truth_Table = [x ,y, -x ,xly,x&y,xor(x,y))
Truth_Table =

110110

° 1 °

Starting with MATLAB 6, the AND operator (&) was given a higher prece­
dence than the OR operator (I). This was not true in earli er versions of
MATLAB, so if you are using code created in an earlier vel' ion, you should
make the necessary changes before using it in MATLAB 6 or higher. For exam­
ple, now the statementy = 115&0 is evaluated as y = 11 (5&0), yielding the
result y = 1, whereas in MATLAB 5.3 and earlier, the statement would have
been eval uated as y = (115) &0, yieldi ng the result y = O. To avoid poten­
tial problems due to precedence, it is important to use parentheses in statements
containing arithmetic, relational, or logical operators, even where parentheses
are optional. MATLAB now provides a feature to enable the system to produce
either an error message or a warning for any expression containing & and 1
that would be evaluated differently than in earlier versions. If you do not use
thi s feature , MATLAB will issue a warning as the default. To activate the er­
ror feature, type feature (' OrAndError ' , 1) . To reinstate the default, type
feature (' OrAndError' , 0).

Short-Circuit Operators

The following operators pelform AND and OR operations on logical expres ions
containing scalar values only. They are called short-circuit operators because they
evaluate their second operand only when the result is not fully determined by the
first operand. They are defined as follows in terms of the two logical variables A
and B.

A&&B Returns true (logical 1) if both A and B evaluate to true, and false
(logical 0) if they do not.
All B Returns true (logical I) if either A or B, or both, evaluate to true,
and false (logical 0) if they do not.

Thus in the statement A&&B, if A equals logical zero, then the entire
expression will evaluate to false, regardle s of the value of B, and therefore there
is no need to evaluate B.

For All B, if A is true, regardless of the value of B, the statement will evaluate
to true.

197

198 CHAPTER 4 Programming with MATLAB

Table 4.3-4 Logical functions

Logical function

all (xl

all (Al

any (xl

any(Al

find(Al

(u , v , w] find(Al

finite (Al

i schar (Al
isempty (Al
isinf (Al

isnan (Al

isnumeric (Al
isreal (Al

logical (Al
xor (A , Bl

Definition

RelLlrns a scalar, which is I if all the elements in the vector x
are nonzero and 0 otherwise.
Returns a row vector having the same number of colum ns as
the matrix A and containing ones and zeros, depending on
whether or not the cOiTesponding column of A has all nonzero

~:~;~~:s~ scalar, which i I if any of the elements in the
vector x is nonzero and 0 otherwise.
Returns a row vector having the same number of columns as
A and containing ones and zeros, dependl~lg on whether or
not the corresponding column of the matn x A contams any
nonzero elements. .
Computes an array contain ing the indices of the nonzero
elements of the array A.
Computes the arrays u and v cont~ining the row and column
indices of the nonzero elements ot the array A and computes
the an'ay w containing the va lue of the nonzero elements.
The alTay w may be omitted. . .
Returns an alTay of the sa me dimenSIOn as A With ones where
the elements of A are finite and zeros elsewhere.
Returns a I if A is a character array and 0 otherwise.
Returns a I if A is an empty matrix and 0 otherwise.
Returns an array of the same dimension as A, with ones where
A has ' inf' and zeros elsewhere.
Returns an array of the same dimension as A with ones where
A has' aN' and zeros elsewhere. ('NaN' stands for "not a
number," whieh means an undefined resu lt.)
Return a I if A i a numeric array and 0 otherwise.
Return a I if A has no elements with imaginary parts and
o otherwise.
Convert the elements of the array A in to logical va lues.
Returns an array the same dimension as A and B; the new
array has ones where either A or B is nonzero, but not both,
and zeros where A and B are ei ther both nonzero or both zero.

Table 4.3--4 li sts several usefullogica i func ti ons. Yo u learned abo ut the find
function in C hapter I .

Logical Operators and the find Function

T he find func ti on i very useful fo r c reating decis io n-maki ng progra m s, es­

peciall y w he n combined with the re latio nal o r logical opera to rs. The fun c tio n
find (x) computes an a rray conta ining the ind ices of the no nzero e le m e nts o f

the array x . We saw examp les o f its use w ith relati onal ope ra to rs in Chapte r I . It
is a lso useful w hen combined w ith the logical operators. For example, cons ide r
the ses, ioll

»x [5 , -3 , 0 , 0 , 8]; Y
find (X&y)

4.3 Logical Operators and Functions

[2 , 4 , 0 , 5 , 7 J ;

The res ulting array z = [1 , 2 , 5] indicates that the first, second, and fifth

ele me nts of x a nd y are both nonzero . Note th at the f ind function return s the

indices, and not the values. In the fo ll owing sess ion, note the difference between
the res ult obtained by y (X&y) and the resul t o b tai ned by find (X&y) above.

»x = [5 , -3 , 0 , 0 , 8 J ; y = [2 , 4 , 0 , 5 , 7] ;
»values y (x&y)

values =
2

» h ow_ many

h ow_ many =
3

leng th (val u es l

T hus there are three nonzero values in the array y that correspond to no nzero

values in the array x. T hey a re the first, second , and fifth values, w hj c h are 2, 4,
and 7.

In the a bove example, the re were o nl y a few numbers in the arrays x and y ,

and thu s we could h ave o b ta ined the answers by v isua l inspecti o n . Ho wever, these

M ATLAB m ethods a re very useful e ither w he re there is so much da ta tha t visual

ins pectio n would be very time-consumj ng , o r w he re the values are gene ra ted
in terna ll y in a progra m .

Test Your Understanding

T4.3-1 If x = [5 , -3 , 18 , 4] and y = [-9 , 13 , 7 , 4), wha t w ill be the

resul t of the fo llowing opera ti o n ? Use MATLA B to check your answer.
-y > x

b. z x&y

c. z x iy
d. z xor(x , y)

199

Height and Speed of a Projectile +.'9"P'
The height and speed of a projectile (uch as a thrown ball) launched with a speed of Vo
at an ang le A to the hori zontal are given by

h(l) = VO l sin A - 0.5g12

v(t) = J v6 - 2vOgl sin A + g212

200 C HAPTER 4 Programming with MATLAB

where g is the acceleration due to gravity. The projectil ~ wi ll strike the groun~ wheon
h(l) = 0, which givcs the time to hit , Ihil = 2(volg)s ln A . . Suppose that A - 40,
Va = 20 mis, and g = 9.8 1 m/s2 Use thc MATLAB relatIOnal and loglca lopera­
tors to find the times when the height is no less than 6 m and the speed IS s~multa­
neollsly no greater than 16 m/s. In add ition. di sc lls another approach to obta ll1l11g a

solution.

• Solution
The key to solving this problem with relati onal and logical operators is to use the find
conunand to determine the times at which the logical ex pression (h >= 6) & (v < = 16)
is true. Fir t we must generate the vectors h and vcorresponding to times II and 12 between
o :::: I :::: Ihil , using a spacing for time I that is small enough to achieve sufficient accuracy
for our purpose. We will choose a spacing of Ihil1 I 00, which provides 101 values of time.
The program follows. When computing the times II and 12, we must subtract l from u (1)
and from length (u) because the first element in the array t cOlTesponds to I = 0
(that i , t (1) is 0).

% Set the values for initial speed, gravity, and angle.
vO = 20 ; g = 9.81; A = 40*pi/180;
% Compute the time to hit.
t _hit = 2*vO*sin (A) /g ;
% Compute the arrays containing time , height , and speed .
t = (O : t _h it/100 : t _hitJ ;
h = vO*t*sin(A) - 0.5*g*t . ~2 ;

v = sqrt(vO~2 - 2*vO*g*sin(A)*t + g~2*t . ~2) ;

% Determine when the height: is no less than 6 ,
% and the speed is no greater than 16 .
u = find(h>=6&v<=16) ;
% Compute t:he corresponding times .
t _ 1 (u (1) -1) * (t_hit/lOO)
t_2 = u(1ength(u)-l)*(t_hit/lOO)

The results are 11 = 0.8649 and 12 = 1.7560. Between these two times h ~ 6 m and
v :::: 16 m/s.

We could have so lved th i problem by plotti ng h(!) and v(t), but the accuracy of the
result would be limited by OUT abi lity to pick points off the graph; in add ition, if we had
to solve many uch problems. the graphical method would be more time-consuming.

TestYou Un!Der~ldnc~r"

T4 .3-2 Consider the problem given in Example 4.3- 1. Use relationaJ and logical
operator to fi nd the t~mes fo r which either the projectil e's height is less
than 4 m or the speed IS greater than 17 m/s. Plot h(t) and vet) to confirm
your an wcr.

4.4 Conditional Statements

4.4 Conditional Statements

In everyday language we describe our decision making by using condi tional
phrases such as, If I get a raise, I will buy a new car. If the statement, I get a raise,
is true, the action indicated (buy a new car) wil l be executed. Here is another
example: If I get at least a $100 per week raise, I wi ll buy a new car; else, I will
put the rai se into savings. A slightly more involved example is: If I get at least a
$100 per week raise, I will buy a new car; else, if the raise is greater than $50, I
will buy a new stereo; otherwise, I will put the ra ise into savings .

We can illustrate the logic of the first example as fo llows:

If I get a raise ,
I will buy a new car

. (period)

Note how the period marks the end of the statement.
The second example can be illustrated as fo llows:

If I get at least a $100 per week raise ,
I will buy a new car ;

else ,

I will put the raise into savings
(period)

The third example follows.

If I get at least a $100 per week raise ,
I will buy a new car ;

else , if the raise is greater than $50 ,
I will buy a new stereo ;

otherwise ,

I will put the raise into savings
. (period)

The MATLAB conditional statements enable us to write programs that make
decisions. Conditional statements contain one or more of the if, else, and
elseif statements. The end statement denotes the end of a conditional state­
ment, just as the peri od was used in the preceding examples. These conditional
statements have a form simil ar to the examples, and they read somewhat like their
Engli sh-language equivalents.

The if Statement

The if statement's basic form is

if logical expression
statements

end

201

202 CHAPTER 4 Programming with MATLAB

Every if statement must have an accompanying end s tatemen~. The en? state­
ment marks the end of the statements that are to be executed If the logIcal ex­
pression is true. A space is required between the if and the logical expression,
which may be a scalar, a vector, or a matri x.

For example. suppose that x is a scalar and that we want to compute y = .jX
only if.\' ::: O. In English, we could specify th is procedure as fo llows: If x is greater
than or equal to zero, compu te y from y = .jX. The fo llowing if statement
implements this procedure in MATLAB assuming x already has a scalar value.

if x >= 0
y = sqrt (x)

end

If x is negative, the program takes no action. The logical expression here is
x >= 0, and the statement is the single line y = sqrt (xl .

The if tructure may be written on a single line; for example:

if x >= 0 , Y = sqrt(x) , end

However, thi form is less readable than the previous form. The usual practice
is to indent the statements to clarify which statements belong to the if and its
corresponding end and thereby improve readabili ty.

The logical expression may be a compound expression; the statements may
be a ingle command or a series of commands separated by commas or semicolons
or on separate lines. For example if x and y have scalar values:

z = O;w = 0 ;
if (x >= O)&(y >= 0)

sqrt(x) + sqrt(y)
w = log(x) - 3*log(y)

end

T~1e values of Z aI:d ware computed onl y if both x and y are nonnegative. Other­
WIse . .: and \V retalJ1 theIr values of zero. The fl owchart is shown in Fi D'ure 4.4- 1.

We may "ne t" if statements, as shown by the following example.

if logical expression I
statement group J
if logical expression 2

statemell t group 2
end

end

ote that each if tatement has an accompanying end statement.

The else Statement

When more than one ac tion can OCcur as a result of a dec' . h
else and elseif statements along with the if s tat~mel:t l~~~~ ~:s~~I~t~~~~t~r~

X , Y

x ~ O? False

True

Y ~ O? False

Figure 4.4-1 Flowchart corresponding
to the pseudocode example.

for the use of the else statement is

if logical expression
statement group J

else
statement group 2

end

Figure 4.4-2 shows the flowchart of this structure.

4 .4 Conditional Statements

For example, suppose that y = ..jX for x ::: 0 and that y = eX - 1 for x < O.
The following statements will calculate y, assuming that x already has a scalar
value.

if x >= 0
Y sqrt (x)

else
y exp (x) - 1

end

203

204 CHAPTER 4 Programming with MATLAB

Start

Logical
Expression

End

False

Figure 4.4-2 Flowchart of the else structure.

When the test, if logical expression, is performed, where the logical expres­
sion may be an array, the test returns a value of true only if all the elements of
the logical expression are true! For example, if we fai l to recognize how the test
works, the fo llowing statements do not perform the way we might expect.

x = [4 ,- 9,25);
if x < 0

disp (' Some of the elements of x are negative .')
else

y = sqrt (x)

end

When this program is run it gives the result

y =
2 0 + 3 . 000i

The program does not test each element in x in sequence. Instead it tests the
truth of the vector relation x < O. The test if x < 0 returns a false value
because it .generates the vector [0, 1 , 0 J. Compare the preceding program with
the fo Uow1I1g program.

x = [4 , -9 , 25J ;
if x >= 0

y = sqrt (x)
else

4.4 Conditional Statements

end
disp (' Some of t he el ements of x are negative .')

When executed, it produces the following result: Some of the elements
o f x are negative. The test if x < o is false, and the test if x >= 0
also returns a false value because x >= 0 returns the vector [1, 0 , 1 J .

We sometimes must choose between a program that is concise, but perhaps
more difficult to understand, and one that uses more statements than is necessary.
For example, the statements

if logical expression 1
if logical expression 2

statements
end

end

can be replaced with the more concise program

if logical expression 1 & logical expression 2
statements

end

The elseif Statement

The general form of the if statement is

if logical expression 1
statement group 1

elseif logical expression 2
statement group 2

else
statement group 3

end

The e 1 s e and e 1 s e if statements may be omitted if not required. However, if
both are used, the else statement must come after the elsei f statement to take
care of all conditions that might be unaccounted for. Figure 4.4-3 i the flowchart
for the general if structure.

For example, suppose that y = ln x if x 2: 5 and that y = .JX if 0 S x < 5.
The following statements will compute y if x has a scalar value.

if x >= 5
y = log (x)

205

206 CHAPTER 4 Programming with MATLAB

Start

Logical
Expression 1

True

Statement
Group 1

End

False

Logical
Expression 2

F igure .tA-3 FlowchaJ1 for the general if structure.

else
if x >= 0

Y = sqrt (x)
end

end

False

If.\' = -2. for exampl . no a lion will be taken . If we use an elsei f, we need
fewer tatem nts. For example:

:. f x >= 5
y = log (x)

elseif x >= 0

Y = sqr:: (xl
e::d

~Ole that the e 1 sei:: statement do not require a separate end statement.
The e::'se tatement can be u d with elsei: to create detailed decision­

making pro",rams. For example. uppo e that y = In x for x > 10. y = .JX for

4.4 Conclltlonal StAlernefll~

0 .::: x .::: 10, and y = e' - I for x < O. Thl: following ~latell1l:nl, wil l cOl1lpule
y if x already has a sca lar va lue.

if x ;> 10
Y log (x)

eJseif x > 0
y sqrt (x l

else
exp (x) - 1

end

Decision structures may be nested; that is, one structure can con tain anotlJer
structure, which in turn can contain another, and so On. The flowchart in Fig­
ure 4.4-4 describes the following code, which conlain~ an example of 11 Ci> ted ; f
statements and assumes that x already has a scalar va lue.

No
x> 10?

No No
Y <'- 2.5?

y . z

Figure 4.4--4 Flowchart illustrating ne,tcd J. f latement~ .

207

208 CHAPTER 4 Programming with MATLAB

if x > 10
y = log (x)
if y >= 3

z = 4 *y
elseif y >= 2 . 5

z 2*y
else

= 0
end

else
y = 5*x
z 7*x

end

ote how the indentations emphasize the statement groups ass~ciate.d with each
end statement. The flowchart required to represent this code IS qUl.te large. In
practice, flowcharts often must be condensed by omitting some detaIl s to effec­
tively describe the overall program.

Test Your Understanding

T4.4-1 Enter the script file whose flowchart is shown in Figure 4.4-4. Run the
fil e for the following values of x. Check the program results by hand:
x =II , 2S, 2, 13.

T4.4-2 Given a number x and the quadrant q (q = 1, 2, 3, 4), write a program
to compute sin- lex) in degrees, taking into account the quadrant. The
program should di splay an error message if Ix I > 1.

Checking the Number of Input and Output Arguments

Sometimes you will want to have a function act differently depending on how
many input it has. You can use the function nargin, which stands for "number
of input arguments." Within the function you can use conditional statements to
direct the flow of the computation depending on how many input arguments there
are. For example, suppose you want to compute the square root of the the input
if there i only one, but compute the square root of the average if there are two
inputs. The following function does this.

function z = sqrtfun (x , y)
if (nargin == 1)

z = sqrt(x) ;
elseif (nargin == 2)

z sqrt ((x + y)!2) ;
end

4.4 Conditional Statements

T he nargout function can be used to determine the number of output
arguments.

Strings and Conditional Statements

A string is a variable that contains characters. Strings are useful for creating input
prompts and messages and for storing and operating on data such as names and
addresses. To create a string variable, enclose the characters in single quotes. For
example, the string variable name is created as follows:

»name = ' Leslie Student'
name =

Leslie Student

The followin g string, number

»number = ' 123 '
number =

123

is not the same as the variable number created by typing number = 123 .
Strings are stored as row vectors in which each column represents a character.

For example, the variable name has 1 row and 14 columns (each bJank space
occupies one column). Thus

»size (name)

1 14

We can access any column the way we access any other vector. For example,
the letter S in the name Leslie Student occupies the eighth column in the vector
name. It can be accessed as follows:

»name (8)

The colon operator can be used with string variables as well. For example:

»first_ name = name(1 : 6)
first _ name =

Leslie

We can manipulate the columns of string variables just as we do vectors. For
example, to insert a middle initial, we type

»full_ name = [name(1 : 6) ,' C.', name(7 : 14))
full _ name =

Leslie C . Student
»full_ name (8) = ' F '
full _ name =

Leslie F . Student

209

210 CHAPTER 4 Programming with MATLAB

The find s t r function (which stands for find string) is useful for finding

the location of certain characters. For exam ple:

» fi ndstr(full_ name , ' e ')

2 6 15

This session tells u that the letter e occurs in the 2nd , 6th, and l : th colu mns:
Two string variables are equal if and only if every character IS the same, 111-

eluding blank spaces . Note that uppercase and lowercase letters are nO.t the same.
Thus the strinas ' Hello ' and ' hello ' are not equal, and the ~tnngs ' c a n
not ' and ' c~nnot ' are not equal. The functi on strcmp (for string ~ompare)
determine whether two strings are equal. Typing strcmp (' strlngl ' ,
' string2 ') returns a I if the strings ' stringl ' and ' string2 ' ar~equal
and 0 otherwi e. The functions lower (, s t ring ') and upper (, s t r l ng ')
convert ' s t ring ' to all lowercase or all uppercase letters. These. f~ncti~ns are
useful for accepting keyboard input without forcing the user to dl stll1gUl sh be­
tween lowercase and uppercase.

One of the most important applications for strings is to create input prompts
and output messages. The following prompt program uses the .i sempty (x)
function , which returns a I if the array x is empty and 0 otherWise. It also uses
the i npu t function , whose syntax is

x = i nput (' prompt' , , string')

This function di splays the string prompt on the screen, waits for input from the
keyboard, and returns the entered value in the string variable x. The function
returns an empty matrix if you press the Enter key without typing anything.

The following prompt program is a script file that allows the user to answer
Yes by typing either Y or y or by pressing the Enter key. Any other response is
treated as a No an weI'.

response = input (' Do you wan t t o continue ? YIN [Y] : ', ' s ') ;
if (isemp ty(r esponse)) I (r esponse == ' Y ') I (response == ' y ')

r e s pons e ' Y '

el s e
response ' N '

end

Many more string functions are avail able in MATLAB. Type help s trfun
to obtain information on these.

4.5 Loops

A loop is a tructure for repeating a calculation a number of times. Each repetition
of the loop is a pass. MATLAB uses two types of explicit loops: the for loop,
when the number of passes is known ahead of time, and the whi 1 e loop, when

4.5 Loops

the looping process must terminate when a specifi ed condition is sati sfi ed, and
th us the number of passes is not known in advance.

for Loops

A simple example of a f o r loop is

for k = 5 : 10 : 35
x = k " 2

end

The loop variable k is initially ass igned the value 5, and x is calculated from x =
k " 2. Each successive pass through the loop increments k by 10 and cal culates
x until k exceeds 35. Thus k takes on the values 5, 15, 25, and 35, and x takes
on the va lues 25, 225, 625, and 1225. The program then continues to execute any
statements following the end statement.

The typical structure of a f o r loop is

for loop variable = m:s:n
statements

end

The expression m: s : n assigns an initial value of m to the loop variable, which
is incremented by the value s --called the step value or incremental value. The
statements are executed once during each pass, using the current value of the loop
variable. The looping continues until the loop variable exceeds the terminating
value n . For example, in the expression for k = 5 : 10 : 36, the final value of
k is 35. Note that we need not place a semicolon after the for m: s : n statement
to suppress printing k. Figure 4.5-1 shows the flowchart of a for loop.

Note that a for statement needs an accompanying end statement. The end
statement marks the end of the statements that are to be executed. A space is
required between the for and the loop variable, which may be a scalar, a vector,
or a matrix, although the scalar case is by far the most common.

The for loop may be written on a single line; for example:

fo r x = 0 : 2 : 1 0 , y = sqrt(x) , end

However, this form is less readable than the previous form . The u ual practice
is to indent the statements to clarify which statements belong to the for and its
corresponding end and thereby improve readability.

We may nest loops and conditional statements, as shown by the following NESTED LOOPS
example. (Note that each for and if statement needs an accompanying end
statement.)

Suppose we want to create a special square matrix that has ones in the first
row and first column, and whose remaining elements are the sum of two elements,
the element above and the element to the left, if the sum is less than 20. Otherwise.
the element is the maximum of those two element values. The following function

211

212 CHAPTER 4 Programming with MATLAB

k > n?
True

Figure 4.5-1 Flowchart of a for loop.

creates this matrix. The row index is r ; the column index is c . Note how indenting
improves the readability.

function A = specmat (n)
A = ones(n) ;
for r = 1 : n

for c = 1: n
if (01)&(c>1)

s = A(r - 1 , c) + A(r , c-1) ;
if s<20

A(r , c) s ;

else
A(r , c)

end
max (A (r - 1 , c) , A (r , c -1)) ;

end
end

end

Typing specmat (5) produces the fo ll owing matri x

[I;
; ; ~ 4 ~j

3 6 10 IS
4 10 10 15

15 IS 15

Test Your Understanding

T4.5-1 Write a program to produce the following matrix:

A = 10 14 18

r
4 8 121

16 20 24
22 26 30

4.5 Loops

Note the following rules when using for loops with the loop variable
expression k = m: s : n :

• The step value s may be negative. For example, k = 10 : - 2 : 4 produces
k = 10, 8, 6, 4.

• If s is omitted, the step value defaults to one.

• If s is positive, the loop will not be executed if m is greater than n .
• If s is negative, the loop will not be executed if m is less than n .

• If m equals n, the loop will be executed only once.

• If the s tep value s is not an integer, round-off errors can cause the loop to
execute a different number of passes than intended.

When the loop is completed, k retains its last value. You should not alter the value
of the loop variable k within the statements. Doing so can cause unpredictable
results.

A common practice in traditional programming languages like BASIC and
FORTRAN is to use the symbols i and j as loop variables. However, this conven­
tion is not good practicein MATLAB, which uses these symbols for the imaginary
unit..J=T. For example, what do you think is the resu lt of the following program?
Try it and see!

1 ;
Y = 1 ;

for i = 1 : 5

end

6i
Y = Y + 5 / i

213

214 CHAPTER 4 Programming with MATLAB

The break and continue Statements

. ",,, out of the loop before the loop
It is permi ssible t.o use aJ~ l f. statement to Jump mmand which terminates
variable reaches Its tenrunatmg value. The break co '.
tbe loop but does not stop the entire program, can be used for thIs purpose. For
example:

for k == 1 : 10

end

x == 50 - k"2 ;
if x < 0

break
end
y == sqrt (x)

% The program execution jumps to here
% if the break command is executed .

However, it is usually possible to write the code to avoid us!ng t?e break
command. This can often be done with a while loop as explaJJ1ed JJ1 the next
section.

The break statement stops the execution of the loop. There can be appli­
cations where we want to not execute the case producing an error but continue
executing the loop for the remaining passes. We can use the cont i nue state­
ment to do thi s. The continue statement passes control to the next iteration of
the f or or whi 1 e loop in which it appears, skipping any remaining statements
in the body of the loop. In nested loops, continue passes control to the next
iteration of the for or while loop enclosing it.

For example, the following code uses a continue statement to avoid com­
puting the logarithm of a negative number.

x == [10 , 1000 , -10 , 100] ;
y == NaN*x ;
for k == 1 : length (x)

if x(k) < 0
continue

end
y (k) == log 1 0 (x (k)) ;

end
y

The result is y == 1 , 3 , NaN , 2.

Using an Array as a Loop Index

It .is permi sible to u~e a I~latrix expression to specify the number of passes. In
thIS case the loop vanable IS a vector that is set equal to the successive columns

of the matrix expression during each pass . For example,

A == [1 , 2 , 3 ; 4,5,6];
for v == A

disp (v)

end

is equi valent to

A == [1 , 2 , 3 ; 4 , 5 , 6];
n == 3 ;
for k == 1 : n

v == A(:, k)
end

4.5 Loops

The common expression k == m: s : n is a special case of a matrix expression in
which the columns of the expression are scalars, not vectors.

For example, suppose we want to compute the distance from the origin to a
set of three points specified by their x y coordinates (3,7), (6,6), and (2,8). We can
arrange the coordinates in the array coord as follows.

[
3 6 2]
7 6 8

Then coord == [3 , 6 , 2 ; 7 , 6 , 8] . The following program computes the dis­
tance and determines which point is farthest from the origin. The first time through
the loop the index coord is [3 , 7] '. The second time the index is [6 , 6] ',
and during the final pass it is [2 , 8] '.

k == 0 ;
for coord == [3 , 6 , 2 ; 7 , 6 , 8]

k == k + 1 ;

distance (k) == sqrt (coord ' *coord)
end

[max_ distance , fart hest] == max(d i stance)

The previous program illustrates the use of an array index but the problem
can be solved more concisely with the following program, which uses the diag
function to extract the diagonal elements of an array.

coord == [3 , 6 , 2 ; 7 , 6 , 8] ;
distance == sqrt(diag (coord'* coord))
[max_ distance , fart h est] == max (distance)

215

216 CHAPTER 4 Programming with MATLAB

Implied Loops
Many MATLAB commands contain impl ied loops. For example, consider these

statements.

x = [0:5 : 100) ;
y = cos (x) ;

To achieve the same result using a for loop, we must type

for k = 1 : 21
x = (k-1)*5 ;
y(k) = cos (x) ;

end

The find command is another example of an implied loop. The statement y
find (x>O) is equivalent to

rn=O ;
for k=l : length (x)

if x (k) >0
1 ;

y (rn) =k ;

end
end

If you are familiar with a trad itional programming language such as FORTRAN or
BASIC, you might be inclined to solve problems in MATLAB using loops, instead
of using the powerfu 1 MATLAB commands uch as find. To use these conunands
and to maximize the power of MAT LAB, you might need to adopt a new approach
to problem olving. As the preceding example show , you often can save many
lines of code by using MATLAB commands, instead of using loops. Your pro­
gram will also run fa ter becau e MATLAB was designed for high-speed vector
computations.

Test Your Understanding

T4.5-2 Write a for loop that is equivalent to the command sum (A) , where A
i a matrix.

'h8'P".' Data Sorting

A \ector x ha been obtained from measurements. Suppo e we want to con ider any data
\ al ue in [he range -0.1 < x < 0.1 as being erroneou . We want to remove all such

element and replace [hem \\ ith zero a[the end of the array. Develop two ways of doing
this. An example i given in the fo llowing table .

4.5 Loops

Before After

x (1) 1.92 1.92
x (2) 0.05 -2.43
x (3) -2.43 0.85
x (4) - 0.02 0
x (5) 0.09 0
x(6) 0.85 0
x(7) -0.06 0

• Solution
The fol lowing script fi le uses a for loop with conditional statements. Note how the null
array [1 is used.

x = (1.92,0.05 , -2.43,-0.02 , 0.09 , 0.85 , -0 . 06];
y = [];z = [];

for k = l:length(x)
if abs(x(k)) >= 0.1

y (y,x(k)];

else
(z, x(k)] ;

end
end

(y, zeros (si ze (z)) 1

The next script file uses the find function .

(1.92, 0 . 05, - 2 . 43, -0. 02 , 0.09, 0 . 85, -0.06] ;
y = x(find(abs(x) >= 0.1)) ;
z = zeros(size(find(abs(x)<O.l))) ;
xnew = (y , z]

Use of Logical Arrays as Masks

Consider the an'ay A.

A = 9 -14 25 [
0 -I 4]

-34 49 64

The following program computes the array B by computing the square foots of
all the element of A whose value is no less than 0, and adding 50 to each element
that is negative.

A = [0, -1, 4; 9 , -14, 25 ; -34 , 49 , 64) ;
for rn = l : size(A,l)

for n = 1 : size(A , 2)
if A(rn , n) >= 0

217

218 CHAPTER 4 Programming with MATLAB

e nd
B

e nd

B(m , n)

else
B(m , n)

end

T he resul t is

sqr t (A (m , n)) ;

A(m , n) + 50 ;

[
0 49 2]

B = 3 36 5
16 7 8

W hen a logical alTay is used to address ano ther array, it extrac ts fro m th at
array the e lem ents in the locations w he re the logical way has Is. We can often

avoid the use of loops and branching and thus create simpler and fas ter p rogram s
by u si ng a logical alTay as a mask that selects elem ents of another array. A ny
elem ents no t selected will rem ai n unchanged.

The fo llowing session creates the logical alTay C from the numeric array A
g iven previou sly.

»A = [0 , -1, 4 ; 9 , - 14 , 25 ; -34 , 49 , 64) ;
»C = (A >= 0) ;

The result is

[
1 0 I]

C = 1 0 I
o I 1

We can use this technique to compute the square root of only those e lements
of A g iven in the previo us program that are no less than 0 and add 50 to those
eleme nts that are negative. The program is

A = [0 , - 1 , 4 ; 9 , - 14 , 2 5; - 34 , 49 , 64) ;
C = (A >= 0) ;

A(C) = sqrt (A(C))

A(-C) = A(-C) + 50

The result after the third line is executed is

A = [~ -~! 2;]
-34 49 64

The result after the last line is executed is

A~ [IPH]

4.5 Loops 219

Flight of an Instrumented Rocket "!'§lyeMLf'
All rockets lose weight as they burn fu el; thus the mass of the sys tem is variable. The

foll ow ing equati ons describe the speed v and hc ight h of a rocket launched vcrtica lly,
neglec ti ng air res istance. They can be deri ved from Newton's law.

V(I) = u In ~ _ g l
117 0 - ql

h(t) = ~(117 0 - q l) I n (117 0 - qt)
q

+ u(J n mo + 1.)/ _!ii!.. _ motl ln mo
2 q

(4.5- 1)

(4.5- 2)

where 117 0 is the rocket's initia l mass, q is the rate at whjch the rocket burns fuel mass u is

the exhaust ve locity of the burned fu el relative to the rocket, and g js the accelera ti o,; due
to grav ity. Let b be the burn lime, after which all the fuel is consumed. Thu the rocket's
mass without fu el is me = 111 0 - qb .

For I > b the rocket engine no longer produces thrust, and the speed and height are
given by

v(l) = v(b) - get - b)

her) = h(b) + v(b)(1 _ b) _ ge, - W
2

(4.5- 3)

(4.5-4)

The time I " to reach the peak height is fo und by setting v(l) = O. The resul t is I" =
b + v (b) /g. Substituting th is expression into the expression (4.5-4) for h(l) give the

fo llowing expression fo r the peak height: 17 " = h(b) + v2(b) / (2g). The time at whi ch the
rocket hits the ground is Ihi t = I" + "j2h;Ji.

Suppose the rocket is carryi ng instruments to study the upper atmosphere, and we
need to determjne the amount of time spent above 50,000 fee t as a function of the bum

Table 4.5-1 Pseudocode fo r Example 4.5-2

Enter data.

Increment burn time from 0 to 100. For each burn-time va lue:

Compute Ino, Vb, h.b , h " .
If h" ::: h dc'ired .

Computet", thlt .

Increment time fro m 0 to thlt.

Compute height as a function of time, u ing
the appropriate equat ion, depending on whether
burnout has occurred.

Compute the duration above desired height.
End of the time loop.

If h" < h de>lrcd, set duration equal to zero.
End of the burn-time loop.
Pl ot the re. ults.

220 CHAPTER 4 Programming with MATLAB

time b (and lhu as a function of the fue l mass qb). Assume that we are given the fo;lo,:,in g

values: lIl e = 100 slug, q = I slug/sec, U = 8000 ftlsec, and g = 32.2 ft/sec . If the
rocket's maximum fuel load is 100 slugs, the maximum value of b is 100/q = 100. Write

a MATLAB program to solve thi problem .

• Solution
Pseudocode for developing the program appears in Table 4.5-1. A for loop is a logical
choice to solve this problem because we know the burn time band Ihi' , the time it takes
to hit the ground. A MATLAB program to solve this problem appears in Table 4.5-2.
It has two nested for loop . The inner loop i over ti me and evaluates the eq uations of

Table 4.5-2 MATLAB program for Example 4.5-2

% Script file rocketl .m
% Computes flight duration as a function of burn time .
% Basic data values .
m_e = 100; q = 1; u = 8000; g = 32 . 2 ;
dt = 0 . 1 ; h _desired = 50000;
for b = 1 : 100 % Loop over burn time .

burn_time (b) = b ;
% The following lines implement the formulas in the text.
m_O = m_e + q*b ; v_b = u*log(m_ O/m_e) - g*b;
h _b = «u*m_e)/q)*log(m_e/(m_e+q*b))+u*b - 0.5*g*b~2;
h _p = h _b + v_b~2/ (2*g) ;
if h _p >= h _desired
% Calculate only if peak height> desired height.

t_p = b + v _big ; % Compute peak time.
t-hit = t _p + sqrt (2*h_p/g) ; % Compute time to hit .
for p = 0 : t _hit/dt

% Use a loop to compute the height vector .
k = p + 1 ; t = p*dt; time(k) = t ;
if t <= b

% Burnout has not yet occurred .
h(k) = (u/q) * (m _ O - q*t)*log(m_O - q*t) ...

'" u* (log (m_ O) ... 1) *t - O. 5*g*t~2
- (m _ O*u/q) *log (m_ O) ;

else
% Burnout has occurred.
h(k) = h_b - O. S*g*(t - b)~2 + v-b*(t - b) ;

end
e:1d
% Compute the duration .
duration (b) = length (find (h>=h_desired)) *dt ;

e::'se
% Rocket did nO L reach the desired height .
duraLion (t) = 0 ;

e:-:d
er..d % ?lot t!1e resul ts.
plot (burn_ time , duration) ,xlabel ('Burn Time (sec) ') , . . .
y:i.abel('::lur tlon (sec) '),title ('Duration Above 50,000 Feet ')

4.5 Loops

Duration Above 50,000 ft
180r---r---~--'---'---'-__ ~ __ -' __ -' __ -r __ -.

u
OJ

160

140

120

~100
c
o

~ 80
o

60

40

20

~~~1~0---2~0~~30~~40~~5~0 --~6~0---7LO---8LO---9~0--~100 
Burn Time (sec) 

Figure 4.5-2 Duration above 50,000 ft as a function of the burn time. 

motion at times spaced 1/ 10 of a second apart. Thi s loop calcul ates the durati on above 
50,000 fee t fo r a speei fi c value of the burn time b. We can obtain more accuracy by using 
a smaller va lue of the time increment d I . The outer loop varies the burn time in integer 

value from b = I to b = 100. The fin al result i the vector of durations for the vari ous 
burn times. Figure 4.5-2 gives the resulting plot. 

while Loops 

The whi 1 e loop is used when the looping process termjnates because a specified 
condition is sati ti ed, and thus the number of passes is not known in advance. A 
simple example of a whi 1 e loop is 

x == 5; 
while x < 25 

disp (x) 
x == 2*x - 1; 

end 

The results di splayed by the di sp statement are 5, 9, and 17. The loop variable 
x is initially a signed the value 5, and it has this value until the statement x == 

2 *x - 1 is encountered the first time. The value then changes to 9. Before each 
pass through the loop, x is checked to see whether its value is less than 25. If 0, 

221 



222 CHAPTER 4 Programming with MATLAB 

the pass is made. If not, the loop is skipped and the program con tinues to execute 

any statements fo llowing the end statement. . 
A principal application of whi Ie loops is when we want th~ loop to continue 

as long as a certain tatement is true. Such a task is often more difficult to do with 

a for loop. For example: 

x = 1 ; 
while x -= 

disp (x) 

1; 

end 

The statements between the while and the end are executed once during each 
pass, using the ClIn'ent value of the loop vari able x . The looping continues until 
the condition x-=5 i false. The results displayed by the disp statement are 1, 

2,3, and 4. 
The typical structure of a while loop fo llows. 

while logical expression 
statements 

end 

MATLAB first te t the truth of the logical expression . A loop variable must be 
included in the logical expression. For example, x i the loop variable in the 
tatement whi Ie x -= 5 . If the logical expression is true, the statements are 

executed. For the wh i 1 e loop to function properly, the following two conditions 
must occur: 

1. The loop variable must have a value before the whi Ie statement is 
executed. 

2. The loop variable must be changed somehow by the statements. 

The statemellts are executed once during each pass, using the cutTent value of 
the loop variable. The looping continues until the logical expression is false. 
Figure 4.5-3 how the flowchart of the while loop. 

Each whi 1 e statement must be matched by an accompanying end. As wi th 
for loop, the statements hould be indented to improve readability. You may 
ne t whi 1 e loop . and you may ne t them with f or loops and if tatements . 

Alway make sure that the loop variable has a value assigned to it before the 
start of the loop. For example, the fo llowing loop can give unintended result if 
x has an overlooked previous value. 

while x < .i.0 
x + 1 ; 

y = 2*x ; 

e"d 

If x ha not been a signed a value prior to the loop. an error mes age will occur. 
If we intend x to tart at zero. then we should place the tatement x = 0 ; before 
the ,·;hi::'e tatement. 

Start 

Logical 
Expression 

True 

Statements 
(which increment 
the loop variable) 

False 

Figure 4.5-3 Aowchart of the whi 1 e loop. 

4.5 Loops 

It is possible to create an infinite loop, which is a loop that never ends. For 
example: 

x = 8 ; 
while x 

x 3 ; 
end 

Within the loop the variable x takes on the values 5, 2, -1, -4, .... and the 
condition x 0 is always satisfied, so the loop never stops. 

223 

Time to Reach a Specified Height 'U'''''. 
Consider the variable-mass rocket treated in Example 4.5-2. Write a program to 
determine how long it takes for the rocket to reach 40.000 ft if the burn time is 50 sec. 



224 CHAPTER 4 Programming with MATLAB 

• Solution 
The pseudocode appears in Table 4.5-3. Because we do not know the time required, a 
whi 1 e loop is convenient to use. The program in Table 4.5-4 performs the task and 

Table 4.5-3 Pseudocode for Example 4.5- 3 

Enter data. 

Compute mo, Vb, li b, h p. 

If hI' ~ li d•Slred , 

Use a while loop to increment time and compute height until desired height 
is reached. 

Compute height as a function of time, using the appropri ate equation, 
depending on whether burnout has occurred. 

End of the time loop. 
Display the results. 

If h p < li desired , rocket cannot reach desired height. 

Table 4.5-4 MATLAB program for Example 4.5-3 

% Script file rocket2 .m 
% Computes time to reach desired height. 
% Set the data values . 
h _desired = 40000 ; m_e = 100 ; q = 1 ; 
u = BODO ; 9 = 32 . 2 ; dt = 0 . 1 ; b = 50 ; 
% Compute values at burnout , peak time , and height . 
m_ O = m_e + q*b ; v-b = u*log (m _ O/m_e) - g*b ; 
h_b = ((u*m_e)/q)*log(m_e/(m_e+q*b))+u*b - 0 . 5*g*b"2 ; 
t _p = b + v _big ; 
h _p = h-b + v _b"21 (2*g) ; 
% If h_p > h_desired, compute time to reached h _desired . 
if h _p > h _desired 

h = 0 ; k = 0 ; 
while h < h _desired % Compute h until h = h _desired . 

t = k*dt ; k = k + 1 ; 
if t <= b 

% Burnout has not yet occurred. 
h = (u/q) * (m_ O - q *t) *log (m_ O - q *t) .. . 

+ u * (log(m_ O) + l) *t - 0 . 5*g*t"2 .. . 
- (m_ O*u/q)*log(m_ O) ; 

else 
% Burnout has occurred . 

endh = h_b - 0 . 5 *g * (t - b)"2 + v_b * ( t - b) ; 

end 
% Display the results . 

~t:~~~~he time to reach the desired he ight i s : ' ) 

else 

enddisp ( ' Rocket cannot achieve t he de s ired he i ght. ' ) 

4 .6 The 8wi tch Structure 

is a mocl ificat ion of the program in Table 4.5-2. Note that the new program allows for 
the possibil ity that the rocket mi ght not reach 40,000 ft. It is important to write your 
programs to handle all such fo reseeable c ircumstances . The answer given by the program 
is 53 sec. 

Test Your Understanding 

T4. 5-3 Rewrite the following code Llsing a while loop to avo id using the break 
command. 

for k = 1:10 
x = 50 - k " 2 ; 
if x < 0 

break 
end 
y = sqrt (x) 

end 

T4.5-4 Find to two decimal pl aces the largest value of x before the error in the 
seri es approximation eX ~ 1 + x + x 2/2 + x 3/6 exceeds 1 percent. 
(Answer: x = 0.83 .) 

4.6 The swi tch Structure 

The switch st.ructure provides an alternative to using the if , elseif , and 
else commands. Anything programmed using swi tch can al so be programmed 
using if structures. However, for some applicati ons the swi tch structure is 
more readable than code using the if structure. The syntax is 

swi tch input expression (scalar or string) 
case value} 

statement group 1 
case value2 

statement group 2 

otherwise 
statement group n 

end 

The input expression is compared to each case value. If they are the same, 
then the statements following that case statement are executed and proces ing 
continues with any statements after the end statement. If the input expression is a 
string, then it is equal to the case value if s t rcmp returns a value of I (true). 
Only the first matching case is executed. If no match occurs. the statements 

225 



226 CHAPTER 4 Programming with MATLAB 

followincr the otherwise statement are executed. However, the otherwise 
stateJl1en~ is optional. If it i absent, execution continues with the statements 
following the end statement if no match exists. Each case value statement must 

be on a single line. 
For example, suppose the variable ang I e has an integer value that represents 

an ancrle measured in decrrees from North . The following swi tch block di splays 
the p;int on the compas~ that corresponds to that angle. 

switch angle 

end 

case 45 
disp ( ' Northeast' ) 

case 135 
disp ( ' Southeast' 1 

case 225 
disp ( ' Southwest ' ) 

case 315 
di sp ( 'Northwes t ' 1 

otherwise 
disp ( ' Direction Unknown ' ) 

The use of a string variable for the input expression can result in very readable 
program . For example, in the following code the numeric vector x has values, and 
the user enters the value of the string variable response; its intended values are 
min, max, or sum. The code then either finds the minimum or maximum value 
of x or sums the elements of x, a directed by the user. 

t = [0 : 100]; x = exp(-t) . *sin(t); 
response = input( 'Type min, max , or sum .',' s ' ) 
response = lower ( , response ' ) ; 
switch response 

end 

case min 
minimum min (xl 

maximum max (x) 
case sum 

total = sum(x) 
otherwise 

disp ( ' You have not entered a proper choice . ' ) 

The swi tch ~tatement can handle mUltiple conditions in a single case 
stat~ment by enc~osmg the case value in a cell array. For example, the following 
sw l t ch block displays the corresponding point on the compass, given the integer 
angle measured from North. 

switch angle 
case {0 ,360} 

disp ( 'North ' ) 

end 

case {-lS0 ,lS0} 
disp ( ' South ' ) 

case {-270 , 90} 
disp( ' East ' ) 

case {-90 , 270} 
disp( ' West ' ) 

otherwise 
disp ( ' Direction Unknown ' ) 

Test Your Understanding 

4.6 The 8wi tch Structure 

T4.6-1 Write a program usi ng the swi tch structure to input one angle, whose 
value may be 45, -45, 135, or -135°, and display the quadrant (1 , 2,3, 
or 4) containing the angle. 

227 

Using the swi tch Structure for Calendar Calculations "I'MY'I!,I 
Use the swi tch structure to compute the total elapsed days in a year, given the number 
(1 - 12) of the month, the day, and an indication of whether or not the year is a leap year. 

• Solution 
Note that February has an extra day if the year is a leap year. The following function 
computes the total elapsed number of days in a year, given the month , the day of the 
month, and the value of extra_day, which is 1 for a leap year, and 0 otherwise. 

function total_days = total (month , day , extra_day) 
total_days = day ; 
for k = 1 : month - 1 

end 

switch k 

end 

case {I, 3 , 5 , 7,8,10 , 12} 
total_ days = total_days + 31 ; 

case {4 , 6 , 9 , 11} 
total_days total_days + 30 ; 

case 2 
tota l _days total_days + 28 + extra_day ; 

The function can be used as shown in the following program. 

month = input ( ' Enter month (1 - 12) : ' ) ; 
day = input ( ' Enter day (1 - 31) : ' ) ; 
extra_day = input ( ' Enter 1 for leap year ; ° otherwise : ' ) ; 
total_days = total (month, day , extra_day) 

One of the chapter problems for Section 4.4 (Problem 18) asks you to write 
a program to determine whether or not a given year is a leap year. 



228 C HAPTER 4 Programming with MATLAB 

4.7 Debugging MATLAB Programs 
Use of the MATLAB Editor/Debugger as an M-file editor was di s~u ssed in Sec­
tion 1.4 of Chapter I. Figure 1.4- 1 (in Chapter I) shows the Editor/Debugger 
screen . Figure 4.7-1 shows the Debugger containing two programs to be ana­
lyzed. Here we discuss its use as a debugger. The Editor/Debugger menu bar 
contains the following items: File, Edit, Text, Cell, Tools, Debug, Desktop, 
Window, and Help. 

The File, Edit, Desktop, Window, and Help menus are simi lar to those 
in the Desktop, with a few exceptions. For example, the File menu in the 
Editor/Debugger contains the item Source Control, a file management system 
for integrating fi les from different sources. This system is used by developers of 
very large programs. Another example is the item Go to Line on the Edit menu. 
Click on it and enter a line nu mber in the dialog box, then click OK. This feature 
is useful for nav igating through fi les with many lines. An additional example 
is the Help menu in the Editor/Debugger, which contains the specific help item 
Using the M-file Editor. 

The Cell and Tools menus involve advanced topics that will not be treated in 
thi s text. The Desktop menu is simi lar to that in the Command wi ndow. It enables 
you to dock and undock wi ndows, arrange the Editor window, and turn the Editor 
toolbar on and off. 

Below the menu bar is the EditoriDebugger tool bar. It enables you to access 
several of the items in the menus with one click of the mouse. Hold the mouse 
cursor over a button on the tool bar to see its fu nction. For example, cli cking the 
button with the binoculars icon is equi valent to selecti ng Find and Replace from 
the Edit menu. One item on the toolbar that i ' not in the menus is the function 
button wi th the script f icon (f). Use thi button to go to a particular function 
in the M-fl le. The list of functions that you will see includes on ly those func­
tions whose function statements are in the program. The list does not include 
functions that are called from the M-fi le. 

tunct1ony-tunl(X) 

aVQ - ~urn(l() / l~nQth(x); 

y - .!un2 (avg ,x); 

tUnctlon Move:· tun2(x,avg) 
above:·lenQth(hnd(x>avQ); 

Figure 4.7-1 The Editor/Debugger contai ning Iwo program~ 10 be analY7ed. 

4.7 Debugging MATLAB Programs 

At the far right of the tool bar is the Stack menu . Here we di scuss the Text, 
Debug, and Stack menus of the Editor/Debugger. 

To create a new M-file in the MS Windows environment, in the Command 
window select New from the File menu, then select M-file. You will then see 
the Editor/Debugger wi ndow. You can use the keyboard and the Edit menu in 
the Editor/Debugger as you would in most word processors to create and edit the 
file. Note that each line in the fi le is numbered on the left. When fi ni shed, select 
Save from the File menu in the Ed itor/Debugger. In the dialog box that appear , 
rep lace the defau lt name provided (usually named Unti t led) with the name 
examplel, and cli ck on Save. The Ed itor/Debugger wi ll automatica ll y provide 
the extension . m and save the fi le in the MATLAB current directory, wh ich for 
now we will assume is on the hard dri ve. 

To open an existing fi le, in the Command window select Open from the 
File menu. Type in the name of the fi le or use the browser to select it. The 
Edito r/Debugger wi ndow then opens. Once in the Editor/Debugger you can open 
more than one fi le. If you do, each fi le has a tab at the bottom of the window. 
Click on a tab to make that fi le the active one for editing and debugging. 

The Text Menu 

The Text menu supplements the Edi t menu for creating M-fi les. With the Text 
menu you can insert or remove comments, increase or decrease the amount of 
indenting, turn on smart indenting, and evaluate and display the values of selected 
variables in the Command wi ndow. Click anywhere in a prev iously typed line, 
and then click Comment in the Text menu. This makes the entire line a comment. 
To turn a commented line in to an executable line, click anywhere in the line, and 
then click Uncomment in the Text menu. 

The Increase Indent and Decrease Indent items on the Text menu work 
in a simil ar way. Just click anywhere in a previously typed line, and then cl ick 
Increase Indent or Decrease Indent to change the indentation of the line. 

The EditorlDebugger automati ca lly indents any lines typed after a conditional 
statement, a for statement, or a whi le statement, up to where you type the cor­
responding end statement. Use the Smart Indent item on the Text menu to start 
automatic indent ing in a previously typed line and in any lines typed thereafter. 
Click anywhere in the line, and then cli ck Smart Indent in the Text menu . 

Use the Evaluate Selection item in the Text menu to display the values of 
selected variab les in the Command window. Highlight the variable in the fi le, and 
cl ick on Evaluate Selection. The vari able name and its va lue appear in the Com­
mand wi ndow. After highlighti ng the variab le, you can also ri ght-c lick and the 
Context menu wi ll appear. Then select Evaluate Selection on this menu. A third 
way to evaluate the va lue of a variable is to go to the Command window and type 
its name; however, this process req uires you to leave the EditoriDebugger window. 

After the fi le has been executed you can view a vari able's value in Datatips, 
a window that appears when you position the cursor to the left of a variable. The 
variable's va lue stays in view unt il you move the cursor. Datatips are always on 
in debug mode, but are ofl by default in edit mode. You can turn them on by 

229 



230 

BREAKPOINT 

CHAPTER 4 Programming with MATLAB 

using the Preferences choice under the File menu . You can al so vicw values in 
the Array Editor. In the fo ll owing di scu sion , when we say you should "evaluate 
the vari able," you can use any of these methods. 

The Debug Menu 

Breakpoints are points in the fi le where execution SLOpS temporarily so that you 
can examine the values of the variables up to that poin t. You set breakpoints with 
the Set/Clear Breakpoint item on the Debug menu . Use the Step, Step In, and 
Step Out items on the Debug menu to step through your fi le after you have set 
breakpoints and run the fil e. Click Step to watch the script execute one step at a 
time. Click Step In to step into the fi rst executable line in a function being ca lled . 
Click Step Out in a call ed fun ction to run the rest of the functi on and then return 
to the calling program. 

The solid green arrow to the left of the line tex t indicates the next line to be 
executed. When thi s arrow changes to a hollow green arrow, MATLAB control 
is now in a function being ca lled. Execution returns to the line with the solid 
green arrow after the function completes its operati on. The arrow turns yellow 
at a hne where execution pauses or where a fun cti on completes its operation. 
When the program pauses you can ass ign new values to a vari able, using either 
the Command window or the Array Editor. 

Click on the Go Until Cursor item to run the fil e until it reaches the line 
where the cursor is ; thi s process sets a temporary breakpoint at the cursor. You 
c~n ~ve and execute your program directl y from the Debug menu if you want, by 
clIcking on Run (or Save and Run if you have made changes) . You need not set 
any breakpoint beforehand. Click Exit Debug Mode to return to normal editing. 
To save any changes you have made to the program, first exit the debug mode, 
and then save the file. 

Using Breakpoints 

Most ~ebugging ses~ions ~tart by setting a breakpoint. A breakpoint stops M-file 
execution at a speCIfied Ime and allows you to view or chancre values in the 
function's ~orkspace before resuming execution. To set a bre:kpoint, position 
the cursor m the Ime of text and click on the breakpoint icon in the tool bar or 
sele~t SeU~le~r Breakpoints from the Debug menu. You can also set a breakpoint 
by nght-chckmg on the Ime of text to bring up the Context menu and choose 
SeUClear ~reakpoin.t. A red circle next to a line indicates that a breakpoint is 
set at that hne. If the IlIle selected for a breakpoint is not an executable line then 
the breakpoint is set at the next executable line. The Debug menu enable~ you 
to clear all the breakpoints (select Clear Breakpoints in All Files). The Debu 
menu also lets you h~lt M-file execution if your code generates a warning, a~ 
error, or a NaN or In L value (select Stop if Errors/Warnings). 

The Stack Menu 

MATLAB assi~ns . each M-file function its own workspace, called the function 
workspace, which IS eparatc from the MATLAB ba. e work pace. You can access 

4.7 Debugging MATLAB Programs 231 

the base and function works paces when debugg ing M-files by using the Stack 
men u in the Editor/Debugger. The Stack menu is onl y available in debug mode; 
otherwise it is grayed out. The base workspace is the workspace used by the 
Command window. 

Unless exp li citly declared to be aglobal variable wilh the g l obal command, 
all vari ables created in a functi on are loca l to that fun cti on. We think of the base 
workspace and the functi on workspaces as a "stack" of objects. Going up and STACK 
down the stack means go ing into and out of the vari ous workspaces. ------

Setting Preferences 

To set preferences for the Editor/Debugger, select Preferences from the File 
menu . This opens a di alog box with several items. Here we mention two useful 
items to keep in mind. Under the Display preferences item, you can choose to 
display or not display line numbers and Datatips. 

Under Keyboard you can choose to have the Editor match parentheses while 
editing. 

Finding Bugs 

The Edi tor/Debugger is useful for correcting runtime errors because it enables you 
to access function workspaces and examine or change the values they contain . 
We will now step you through an example debugging session. Although the 
example M-files are simpler than most MATLAB code, the debugging concepts 
demonstrated here apply in general. First create an M-file called funl . m that 
accepts an input vector and returns the number ofvalues in the vectorthat are above 
its average (mean) value. This file calls another M-file, fun2 . In, that computes 
the number of values above the average, given the vector and its average. 

function y = funl (x) 
avg = sum (x) /length (x) ; 
y = fun2 (avg , x) ; 

Create the funl . In file exactly as it is shown above, complete with a planted 
bug. Then create the file fun2 . m, which is shown below. 

function above = fun2 (x , avg) 
above = length (find (x>avg) ) ; 

Use a simple test case that can be calculated by hand. For example, use the 
vector v = [1 , 2 , 3 , 4 , 10 J . Its average is 4, and it contains one value 
(10) above the average. Now call the function funl to test it. 

»above = funl([1,2 , 3 , 4 , lO)) 
above = 

3 

The answer should be I , and therefore at least one of the functions, fun 1 . In 

or fun2 . In, is working incorrectly. We will use the EditorlDebugger graphical 
interface to isolate the error. You could also use the debugging functions from the 



232 CHAPTER 4 Programming with MATLAB 

Command window prompt. For information about these functions, u e the Search 
tab in the Help Navigator to search for the phrase " functions for debugging." 

If you have just created the M-files using the Editor/Debugger window, you 
can continue from this point. If you've created the M-files using an external text 
ed itor, start the Editor/Debugger and then open both M-files . You wi ll see two tabs 
at the bottom of the screen, named funl . m and fun2 . m. Use these to switch 
between the two files . See Figure 4.7-1. 

At this point you might find it convenient to close all windows on the Desktop 
except for the Command window, and then dock the Debugger windows for both 
funl . m and fun2 . m in the Desktop (to do this, select Dock from the Debugger's 
Desktop menu, once for each file). Then click on one of the tiling icons on the 
far right of the menu bar. Select the tiling pattern you want. Figure 4.7-1 shows 
the two functions split top to bottom . This displays the Command window and 
the two Editor/Debugger windows, one for funl . m and one for fun2 . m. This 
enables you to easily see the computation results in the Command window. Be 
sure to reduce the width of the Command window so that you can see the Stack 
menu in the EditoriDebugger. If the EditorfDebugger is not docked, then you will 
have to switch back and forth between the three windows (by clicking on the 
desired window, or by pressing AIt and Tab simu ltaneously, for example). 

Setting Breakpoints 

At the beginning of the debugging session, you are not sure where the error is. 
A logical place to insel1 a breakpoint is after the computation of the average in 
funl . m. Go to the EditoriDebugger window for funl . m and set a breakpoint 
at line 3 (y = fun2 (avg , x) by using the Set Breakpoint button on the 
tool bar. The line number is indicated at the left. Note that to evaluate the value of 
the variable avg, we must set a breakpoint in any linefollowing the line in which 
avg is computed. 

Examining Variables 

To get to the breakpoint and check the values of interest, first execute the function 
from the Command window by typing funl ( [1 , 2 , 3 , 4 , 101). When 
execution of an M-file pauses at a breakpoint, the green arrow to the left of the 
text indicate the ne~t line to be executed. Check the value of avg by highlighting 
the name of the v,mable, then right-clicking to bring up the Context menu, and 
choo ing Ev~luate Selection. You should now see avg = 4 displayed in the 
Command wlJldow. Because the value of avg is correct, the error must lie either 
in the function call to fun2 in line 3 in funl . m, or in the fun2 . m file. 

. Note that the prompt has changed to K» , which stands for "keyboard." With 
thIs prompt you can enter commands in the Command window without disturbin a 

~he execution of t~e program .. Suppose you find that the output of a function i~ 
IJlcorrect. To contlllue debuggll1g, you can enter the correct value for the variable 
at the K» prompt. 

4.7 Debugging MATLAB Programs 

Changing Workspaces 

Use the Stack pull-down menu in the upper-right corner of the Debugger win­
dow to change workspaces. To see the base workspace contents, select Base 
Workspace from the Stack menu . Check the workspace contents using whos 
or the graphical Workspace Browser. Any variables you may have created in the 
current session will show up in the li sting. Note that the variables avg and x 
do not show up because they are local to the function funl. Similarly, to see 
the contents of the workspace of funl . m, select fun! from the Stack menu and 
type whos in the Command window. You will see the local variables avg and x 
displayed. 

Stepping through Code and Continuing Execution 

Clear the breakpoint at line 3 in funl . m by placing the cursor on the ljne and 
clicking on the Clear Breakpoints button . (Or right-click on the line to bring 
up the Context menu and choose Set/Clear Breakpoint). Continue executing 
the M-file by clicking the Continue button on the Debugger's toolbar. Open the 
fun2 . m file and set a breakpoint at line 2 to see if the correct values of x and 
avg are being passed to the function . In the Command window, type above = 
funl ( [1, 2 , 3 , 4 , lO 1 ) . Highlight the variable x in the expression above = 
length ( find (x>avg) ) ; in line 2, right-click on it, and select Evaluate 
Selection from the Context menu . You should see x = 4 in the Command win­
dow. Tlus value is incon-ect because x should be [l, 2 , 3 , 4 , lO 1 . Now evaluate 
the variable avg in line 2 the same way. You should see avg = [l , 2 , 3 , 4 , lO 1 
in the Command window. This is incorrect because avg should be 4. 

So the values of x and avg have been reversed in the function call in line 3 of 
funl . m. This line should be y = fun2 (x , avg). Clear all breakpoints, exit 
the debug mode by selecting Exit Debug Mode on the Debug menu. Edit the 
line to COlTect the error, save the file, and run the test case again. You should get 
the correct answer. 

Debugging a Loop 

Loops such as for and while loops that do not execute the proper number of 
times are a common source of errors. The following function file i nves t . m, 
which ha a planted bug, is intended to calculate how much money will be accu­
mulated in a savings account that draws interest at the rate r percent compounded 
annually, if an amount x(k), k = 1,2,3, ... is deposited at the end of year k (thjs 
amount is not included in the interest calculation for that year). 

function z = invest (x , r) 
0 ; 

y = 1 + O. Ol *r ; 
for k = l : length (y) 

z z*y + x (k) ; 

end 

233 



234 

OPERATIONS 
RESEARCH 

'W"P'ifj+ 

CHAPTER 4 Programming with MATLAB 

To check the function, use the following test case, which is easily computed 
by hand . Suppose we deposit $ lOOO, $1500, and $2000 over three years, in a bank 
paying 10 percent interest. At the end of the first year the amount will be $ 1000; 
at the end of the second year it wi ll be $1 OOO( 1. I) + $ 1500 = $2600, and at the 
end of the third year it will be $2600(l . l) + $2000 = $4860. After creating and 
saving the function inves t . m, ca ll it in the Command window as follows: 

»total = invest ( [1000 , 1500 , 2000] ,10) 

total = 
1000 

which i incorrect (the answer should be4860). To find the error, set a breakpoint at 
line 5 (the line containing the text z = z *y + x (k) ;). Run the function from 
the Command window by typing total = invest ([1000 , 1500,2000] , 
10) ) . Execution stops at the breakpoint. Check the values of z , y, and k . These 
are z = 0, y = 1 . 1, and k = 1, which are correct. Next, select Step on 
the Debug menu . The green arrow moves to the line containing the end state­
ment. Check the values. They are z = 1000 and k = 1, which are correct. 
Select Step one more time, and again check the values of z and k . They are still 
z = 1000 and k = 1 , which are correct. Fi nall y, select Step again, and check 
the values. You should see the following in the Command window. 

K» z??? Undefined function or variable ' z '. 
K» k??? Undefined function or variable ' k '. 

Therefore, the program has gone through the loop only once, instead of three 
time. The error is in the upper limi t of k, which should be length (x) , not 
length (y). 

4.8 Applications to Simulation 
Sill7ulation is the process of building and analyzing the output of computer pro­
grams that describe the operations of an organization, process, or physical system. 
Such a program i called a computer model. Simulation is often used in operations 
research. which is the quantitative study of an organization in action, to find ways 
to improve the functioning of the organization. Simulation enables engineers to 
study the past, present, and future actions of the organization for this purpose. 
Operations research techniques are useful in all engineering fields. Common ex­
amples include airline scheduling, traffic-flow studies, and production lines. The 
MATLAB logical operators and loops are excellent tools for building simulation 
programs. 

A College Enrollment Model: Part I 

A an example of how si mulation can be used for operations research, con ider 

the fo llowi ng college enrollment model. A certain college wants to analyze the effect 
of adm is ion and freshman retention rate on the college's enrollment so that it can 

4.8 Applications to Simulation 

predict the future need for instructors and other resources. Assume that the co ll ege 

has estimates of the percentages of students repeating a grade or leavi ng school before 

graduating. Develop a matrix equation on which to base a simulation model that can help 
in thi s analys is. 

• Solution 
Suppose that the current freshman enrollment is 500 students and the coll ege decides 

to admit 1000 freshmen per year from now on. The college estimates that 10 percent 
of the freshman class wi ll repeat the year. The number of freshmen in the following 

year will be 0 . 1(500) + 1000 = 1050, then it will be 0.1(1050) + 1000 = 11 05 , and 
so on. Let XI (k) be the number of freshmen in year k , where k = 1,2, 3, 4, 5, 6, .. 
Then in year k + I, the number of freshmen is given by 

X I (k + I) = 10 percent of previous freshman class 
repeating freshman year 

+ 1000 new freshmen 

= O.lxl(k)+ 1000 (4.8- 1) 

Becau e we know the number of fres hmen in the first year of our analysis (which i 

500) , we can solve this equation step by step to predict the number of freshmen in the 
future. 

Let x2(k) be the number of sophomores in year k. Suppose that 15 percent of the 
freshmen do not return and that 10 percent repeat freshman year. Thus 75 percent of 

the freshman c lass returns as sophomores. Suppose also 5 percent of the ophol11ores 

repeat the sophomore year and that 200 sophomores each year transfer from other schools. 

Then in year k + 1, the number of sophomores is given by 

x2(k + I) = 0.75xl (k) + 0.05x2(k) + 200 

To solve thi s eq uatio n we need to so lve the "freshman" equ at ion (4.8- 1) at the same 

time, wh ich is easy to do with MATLAB . Before we solve these equations, let us develop 

the rest of the model. 

Let x3(k) and x4(k) be the number o f juniors and seniors in year k. Suppose 
that 5 percent of the sophomores and juniors leave school and that 5 percent of the 

sophomores, junior. and seniors repeat the grade. Thus 90 percent of the ophomores 

and juniors return and advance in grade. The models for the juniors and seniors are 

x3(k + 1) = 0.9X2(k) + 0.OSx3(k) 

x4(k + I ) = 0.9X3(k) + 0.OSx4(k) 

These four equations can be written in the following matri x form: 

[

XI (k + 1)1 ro.
1 

0 0 0] rXI 

(k)1 r
lOOO

] x2(k + I) = 0.75 0.05 0 0 x2(k) + 200 
x3(k + I) 0 0.9 0.05 0 x3(k) 0 
x4(k + I) 0 0 0.9 0.05 x4(k) 0 

In Example 4.8-2 we will see how to use MATLAB to solve such equations. 

235 



236 CHAPTER 4 Prog ramming with MATLAB 

Test Your Understanding 

T4.8-1 Suppose that 70 percent of the freshmen, instead of7S percent, re turn for 
the sophomore year. How does the prev ious equation change? 

----

'M'9"'. A College Enrollment ModeJ: Part II 

STATE 
TRANSITION 
DIAGRAM 

To study the effects of admi ssions and transfer policies, generali ze the enro ll ment mode l 

in Example 4.8- 1 to allow fo r varying admissions andlransfers. 

• Solution 
Let a (k ) be the number of new freshmen admitted in the spri ng of year k for the fo ll owing 

year k + 1 and let d(k) be the number of transfers in to the fo ll owi ng year's sophomore 

class . Then the model becomes 

x l (k + 1) = cllxl(k) + a(k) 

x2(k + 1) = C2 IXI(k) + cn x2(k ) + d(k) 

x3(k + I ) = C32X2(k) + C33X3(k) 

x4(k + I ) = C43X3(k) + C44X4(k) 

where we have written dle coeffici ents C2 1, C22 , and . 0 on in ymboli c, rather than numer­
ical, form so that we can change their values if des ired. 

This model can be represented graphically by a stale transition diagram, like the one 

shown in Figure 4.8- 1. Such diagrams are widely used to represent time-dependent and 
probabilistic processes. The alTOWS indicate how the model's calcul ations are updated for 

each new year. The enrollment at year k is described completely by the values of X I (k ), 

x2(k), x3 (k ), and x4(k); that is, by the vector x(k), which is called the srate vectOJ: The 
elements of the tate vector are the state variables. The state transition diagram shows how 

the new value of the state variables depend on both the previous values and the inputs 
a(k) and d(k) . 

Sophomore Transfers 

a(k) 

NewAd~ 
xl(k) 

Freshmen 

ell 

d(k) 

Figure 4.8-1 The Slate transition diagram for the college enrollment model. 

4.8 Applications to Simulation 

The four equations can be written in the fo llowing matri x fo rm : 

l;~~~ : ·~ ~1 = l~~ : C~2 ~ ~ 1 [;~ ~~~1 + l~~~~1 
x3(k + I) 0 C32 C33 0 x3 (k) 0 
x4(k + I ) 0 0 C43 C44 x4 (k ) 0 

or more compactly as 

x(k + I) = Cx(k) + bCk) 

where 

la
Ck)1 

b(k) = dr 

and 

c ~ l:~: :~ ::: Il 
Suppose that the initial total enrollment of 1480 consi sts of 500 freshmen 

400 sophomores, 300 juniors, and 280 seniors. The college wants to study, over a 1O~ 
year period, the effects of increasing admissions by 100 each year and transfers by 50 
each year until the total enrollment reaches 4000; then admissions and transfers will be 

held constant. Thus the admissions and transfers for the next 10 years are given by 

a(k) = 900 + lOOk 

d(k) = 150 + 50k 

for k = 1,2, 3, ' " until the college's total enrollment reaches 4000; then admissions and 

transfers are held constant at the previous year's levels. We cannot determine when thi 

event will occur without doing a simulation. Table 4.8-1 gives the pseudocode for solving 

this problem. The enrollment matrix E is a 4 x 10 matrix whose columns represent the 
enrollment in each year. 

Table 4.8-1 Pseudocode for Example 4.8-2 

Enter the coefficient matrix C and the initial enrollment vector x. 
Enter the initial admissions and transfers, a(l) and d(I) . 
Set the first column of the enrollment matrix E equal to x. 
Loop over years 2 to 10. 

If the lotal enrollment is ::": 4000, increase admi sions by 100 and transfers 
by 50 each year. 
If the total enrollment is > 4000, hold admissions and transfers constant. 
Update the vector x, using x = Cx + b. 
Update the enrollment matrix E by adding another column composed of x. 

End of the loop over years 2 to 10. 
Plot the results . 

237 

~7~~"m<"1"" ,,,. , 
~ ... , • I .. " 



238 CHAPTER 4 Programming with MATLAB 

Because we know the length of the study ( 10 years). a for loop is a natural 

choice. We use an if statement to determine when to switch from the increas in g 

admissions <Indtransfer schedule ro rhe constant schedul e. A MATLAB script fil e to pre­

dic t the enrollment for the next 10 years appears in Table 4.8-2. Figure 4.8-2 shows 

the resulting plol. o te that after year 4 there are more sophomores than freshmen. 

The rea on is th at the increas ing transfer rate eventually overcomes the e ffec t of the 

increas ing admi ss ion rate. 
In actua l practice thi s program would be run many times to analyze the effects 

of diffe rent admiss ions and transfer policies and to examine what happens if different 

values are used for the coefficient in the matri x C (indicating different dropout and 

repeat rate ). 

Table 4.8-2 College enrollment model 

% Script file enrolll.m. Computes college enrollment . 

% Model's coefficients. 

C = 10 . 1,0,0,0;0 . 75,0 . 05,0,0;0,0 . 9,0 . 05,0 ; 0,0,0.9,0.05]; 

% Initial enrollment vector. 

x = [500 ; 400 ; 300 ; 280]; 

% Initial admissions and transfers . 

a(l) = 1000; d(l) = 200; 

% E is the 4 x 10 enrollment matrix. 

E( :, l) = x; 
% Loop over years 2 to 10 . 

for k = 2 : 10 

% The follO'.ving describes the admissions 

% and transfer policies . 

if sum(x) <= 4000 

% Increase admissions and transfers . 
a(k) = 900+100"k ; 

d(k) = 150+50 *k; 

else 

end 

% Hold admissions and transfers constant . 
a (k) = a (k-l ) ; 

d(J<) = d(k-.) ; 

% Update enrollment matrix . 
b = [a(k' ; d(k) ; O; O] ; 

x = C'x·b ; 

E( : , i<) = X ; 

er.d 

% ?;ot ehe ~-esults. 

::::::' ~~;; 'fr:~~t :;;;:[:;i :~r i~:; ;;:~~:: ;:::: ::;!;; ~ ; : · , , , .. 

4.9 Summary 

1600,--.----,---E, n-ro-lIm-e-n..,-t A_s_a_F,un,-c_tio_n_O..,-f T_im_e_.---_.--_---, 

1400 

Frosh 

400 

200~1-~~-~-~--7-~6~-~-~-~-~10 

Year 

Figure 4.8-2 Class enroll ments versus time. 

Test Your Understanding 

T4. 8-2 In the program in Table 4.8-2, lines 16 and 17 compute the values of 
a ( k) and d ( k) . These lines are repeated here: 

a(k) = 900+100*k 
d (k) = 150+50*k ; 

Why does the program contain the line a (1) = 1000 ; d ( 1) = 200 ; ? 

4.9 Summary 
Now that you have fini shed this chapter, you should be able to write program that 
can perform deci ion-making procedures; that is, the program 's operations depend 
on results of the program 's calculations or on input from the user. Sections 4.2, 
4.3, and 4.4 covered the necessary functions: the relational operator, the logical 
operators and functions, and the conditional statements. 

You shou ld also be able to use MATLAB loop structures to write programs 
that repeat ca lculations a specified number of times or until some condition is 
satisfied. This feature enables engineers to solve problems of great complexi ty or 
requiring numerous calculations. The for loop and whi le loop structures were 
covered in Section 4.5. Section 4.6 covered the swi~ch tructure. 

239 



240 CHAPTER 4 Programming with MATLAB 

Table 4.9-1 Guide to MATLAB commands introduced in Chapter 4 

Relational operators 
Logical operators 
Order of precedence for opcrator types 
TlUth table 

Table 4.2- 1 
Table 4.3- 1 
Table 4.3-2 
Table 4.3-3 
Table 4.3--4 

Command 

break 
case 
continue 
double 
else 
elseif 
end 

Logical functions 

findstr (' s1 ' , ' s2' ) 

for 
if 
input( ' sl ', ' s ' ) 
logical 
lower ( ' s ' ) 
nargin 
nargout 
strcmp( ' sl ', ' s2 ' ) 
switch 

upper ( ' s ' ) 
while 

Miscellaneous commands 

Description 

Terminates the execution of a for or a while loop. 
Used with switch to direct program execution. 
Passes control to the next iteration of a for or whi Ie loop. 
Converts a logica l array to class double. 
Delineate an alternate block of statements. 
Conditionally execu tes statements. 
Terminates for , while, and if statements. 
For character strings sl and s2 . finds the starting ind ices of any 
occurrence of the shorter string within the longer string of the pair. 
Repeats statements a specific number of time. 
Executes statements conditionally. 
Display the prompt string sl and stores user input as a string. 
Convert numeric va lues to logical va lues . 
Converts the tri ng s to all lowercase. 
Det.ermines the number of input arguments of a fu nction . 
Determ ines the number of outpu t arguments of a fu nction . 
Compares trings sl and s2 . 
Directs program execution by comparing the input expression with 
the a ociated case expressions. 
Converts the st ring s to all uppercase. 
Repeats ·tatements an indefinite number of time . 
Exclusive OR function . 

Section 

4.5 
4.6 
4.5 
4.2 
4.4 
4.4 
4.4, 4.5 

4.4 
4.5 
4.4 
4.4 
4.2 
4.4 
4.4 
4.4 
4.4 

4.6 
4.4 
4.5 
4.3 

Section 4.7 gave an overview and an example of how to debug programs 
using the Edi torfDebugger. Section 4.8 presented an application of these methods 
to simulation, which enables engineers to study the operation of complicated 
systems, processe , and organizations. 

Tables summari zing the MATLAB commands introduced in this chapter are 
located throughout the chapter. Table 4.9- 1 will help you locate these tables. It 
also summari zes those commands not found in the other tables. 

Key Terms with Page References 
Breakpoint. 230 Masks. 217 
Conditional statement. 20 I 
Flowchart, 186 
f or loop. 211 
Implied loop, 216 
Logical operator. 194 

Nested loops, 21 I 
Operations research. 234 
Pseudocode, 188 
Relational operator. 191 
Simulation. 234 

Problems 

Stack, 23 1 switch structure, 225 
State transiti on diagram, 236 Top-down design , 185 
Structure charl, 186 Truth table, J 96 
StruclUred programming, 184 while loop, 22 1 

Problems 

You can find answers to problems marked with an asterisk at the end of the text. 

Section 4.1 

1. The vo lume V and surface area A of a sphere of radius r are given by 

a. Develop a pseudocode description of a program to compute V and 
A fo r 0 :::: r :::: 3 m, and to plot V versus A. 

b. Write and run the program described in part a. 

2. The roots of the quadratic equation ax2 + bx + c = 0 are given by 

-b±~ 
x= 

2a 

Develop a pseudocode description of a program to compute both 
roots given the values of a, b, and c. Be sure to identify the reaJ and 
imaginary parts . 

b. Write the program descri bed in part a and test it for the fo llowing 
cases: 
1. a = 2, b = J 0, c = 12 
2. a = 3, b = 24, c = 48 
3. a = 4, b = 24, c = 100 

3. It is desired to compute the sum of the first ten terms of the series 
14k3 - 20k2 + 5k , k = 1,2,3, .... 
a. Develop a pseudocode description of the required program . 
b. Write and run the program described in part a. 

Section 4.2 

4.* Suppose that x = 6. Find the results of the following operation:. by hand 
and use MATLAB to check your results. 

(x<10) 
b. z (x==10) 
c. z (x>=4) 
d. z (x- =7) 

241 



242 CHAPTER 4 Programming with MATLAB 

5. * Find the results of the foll owing operati ons by hand and use MATLAB to 
eheck your results. 
Cl. z 6>3 +8 
b. z 6+3>8 
c. z 4>(2+9) 
d. z (4<7) +3 
e. z 4<7+3 

f z (4<7 )* 5 
g. z 4«7 *5 ) 
h. z 2/ 5 >=5 

6.* Suppose that x = [ 1 0 , -2 , 6 , 5 , -3] and y = [9 , -3 , 2 , 
5 , -1] . Find the results of the following operations by hand and use 
MATLAB to check your results. 
C/ . z (x< 6) 
b. z (x<=y) 
c. z (x==y) 
d. z (x-=y ) 

7. For the arrays x and y given below, use MATLAB to find all the elements 
in x that are greater than the corresponding elements in y . 

x = [-3 , 0 , 0 , 2 , 6 , 8 ] y = [-5 , - 2 , 0 , 3 , 4 , 10] 

8. The array price given below contains the price in dollars of a certain 
stock over 10 days . Use MATLAB to determine how many days the plice 
was above $20. 

price = [19 , 18 , 22 , 21 , 2 5 , 19 , 17 , 21. 27 , 29 ] 

9. The arrays price_ A and price_ B given below contai n the price in 
dollars of two stocks over 10 days. Use MATLAB to determine how many 
days the price of stock A was above the price of stock B. 

price_ A [19 , 18 , 22 , 21 , 2 5 , 19 , 1 7 , 2 1 , 27 , 29] 

price_ B = [22 , 17 , 20 , 19 , 24 , 18 , 1 6 , 25 , 28 , 27] 

10. The arrays pr i ce_ A, price_ B. ancl price_ C given below contain the 
price in dollars of three stocks over 10 clays. 

Use MATLAB to determine how many clays the price of stock A was 
above both the price of stock B and the price of stock C. 

b. Use MATLAB to determine how many day the price of stock A was 
above either the price of tock B or the price of stock C. 

c. Use MATLAB to determine how many day the price of stock A was 
above either the price of s lock B or the price of stock C, but not both. 

p r ice _A [19 , 18 , 22 , 21 , 25 , 19 , 17 , 21 , 27 , 29] 

[22 , 17 , 20 , 19 , 24 , 18 , 16 , 25 , 28 , 27] 

[17 , 13 , 22 , 23 , 19 , 17 , 20 , 21 , 24 , 28] 

Problems 

Section 4.3 

11.* Suppose that x = [ - 3 , 0 , 0 , 2 , 5 , 8 ] and y = [- 5 , - 2 , 
0 , 3 , 4 , 10]. Find the results of the following operations by hand 
and use MATLAB to check your results. 

C/ . y<-x 
b. z x&y 
c. x /y 
d. z xor (x , y) 

12. The height and speed of a projectile (such as a thrown ball) launched with 
a speed of Va at an angle A to the hori zontal are given by 

h(t) = Vol sin A - 0.5g(2 

vet) = J v5 - 2vagt si n A + g2[2 

where g is the acceleration due to gravity. The projectile will strike the 
ground when hCt) = 0, which gives the time to hit thi! = 2(va/g) sin A . 

Suppose that A = 30°, Va = 40 mis, and g = 9.8Im/s2. Use the 
MATLAB relational and logical operators to find the times when 

The height is no less than 15 m. 
b. The height is no less than 15 m and the speed is simultaneously no 

greater than 36 mls. 
c. The height is less than 5 m or the speed is greater than 35 m/s. 

13.* The price, in dollars, of a certain stock over a lO-day period is given in the 
following array. 

price = [19 , 18 , 22 , 21. 25 , 19 , 17 , 21 , 27 , 29] 

Suppose you owned 1000 shares at the start of the 10-day period, and you 
bought 100 shares every day the price was below $20 and sold 100 shares 
every day the price was above $25. Use MATLAB to compute (a) the 
amount you spent in buying shares, (b) the amount you received from the 
sale of shares, (c) the total number of shares you own after the 10th day, 
and (d) the net increase in the worth of your portfolio. 

14. Let e l and e2 be logical expressions. DeMorgan's laws for logical 
expressions state that 

NOT(el AND e2) implies that (NOT el) OR (NOT e2) 

and 

NOT(el OR e2) implies that (NOT el) AND (NOT e2) 

Use these laws to find an equivalent expression for each of the following 
expressions and use MATLAB to verify the equivalence. 

Cl. -((x < 10)&(x>=6)) 
b. - ( (x = = 2) / (x > 5) ) 

243 



244 CHAP TER 4 Programming with MATLAB 

15. Are these following express ions equi valent? Use MATLAB to check your 
answer for specific va lues of a, b, c, and d. 

a. I. (a==b)&((b==c) [ (a==c)) 

2. (a==b) [ ( (b==c) & (a==c) ) 

b. l. (a<b)&((a>c) [ (a>d)) 
2. (a<b) & (a>c) [ ( (a<b) & (a>d)) 

Section 4.4 

16. Rewrite the following statements to use only one if statement. 

if x < y 

end 

if z < 10 
x *y *z 

end 

17. Write a program that accepts a numerical value x from 0 to l OO as input 
and computes and displays the corresponding letter grade given by the 
fo ll o\ov ing table. 
A x :::: 90 
B 80 S x S 89 
C 70 S x S 79 
D 60 S x S 69 
F x < 60 

Use nested if statements in your program (do not use elseif). 
h. Use on ly elseif clauses in your program. 

18. Write a program that accepts a year and determines whether or not the year 
is a leap year. Use the mod function. The output should be the variable 
extra_day, which should be 1 if the year is a leap year and 0 otherwise. 
The rules for determining leap years in the Gregorian calendar are: 

I. All years evenl y divisible by 400 are leap years. 
2. Years evenly divisible by 100 but not by 400 are not leap years. 
3. Year divisible by 4 but not by 100 are leap years. 
4. All other year are not leap years. 

For example, the years 1800, 1900. 2100. 2300. and 2500 are not leap 
years. but 2400 is a leap year. 

19. Figure P 19a shows a mas -spring model of the type used to design 
packaging ystems and vehicle suspensions. for example. The springs 
exert a force that is proportional to their compression. and the 
proportionality constant is the spring constant k. The two side springs 
provide additional resistance if the weight HI is too heavy for the center 
spring. When the weight HI is gently placed. it moves through a distance x 

Problems 

before coming to rest. From statics, the weight fo rce must balance the 
spring forces at this new position . Thus 

HI =k)x 

HI = k)x + 2k2(x - d ) 

if x < d 

if x:::: d 

These relations can be used to generate the plot of HI versus x, shown in 
Figure P 19b. 

a. Create a function fil e that computes the distance x, using the input 
parameters HI , Ie) , k2 , and d. Test yo ur function for the fo ll owing two 
cases, using the values k) = 104 N/m ; k2 = 1.5 X 104 N/m ; d = 0.1 m. 

HI = 500 N 

HI = 2000 N 

b. Use your function to plot x versus HI for 0 S HI S 3000 N for the 
values of k ), k2 , and d given in part a. 

(a) 

~------------~-----------------. W 

(b) 

Figure P19 

245 



246 CHAPTER 4 Programming with MATLAB 

Section 4.5 

20. The (X , y) coordinates of a certain object as a function of time' are given by 

x(t) = Sf - 10 y (t) = 2S, 2 - 1201 + 144 

for 0 :=: , :=: 4 . Write a program to determine the time at which the object 
is the close t to the origin at (0, 0) . Determine also the minimum distance. 
Do this two ways : 
a. By using a for loop. 
b. By not using a for loop. 

21. Consider the array A. 

A = [ -~ -~ ~11 
- 17 6-9 

Write a program that computes the array B by computing the natural 
logarithm of all the elements of A whose value is no Jess than J, and add ing 
20 to each element that is equal to or greater than I. Do this two ways: 
a. By using a for loop with conditional statements. 
b. By using a logical array as a mask. 

22. We want to ana lyze the mass-spring system di scussed in Problem 19 fo r 
the case in wh ich the weight W is dropped onto the platform attached to 
the center spring. If the weight is dropped from a height h above the 
platform , we can fi nd the maximum spring compression x by equati ng 
the weight 's gravitational potential energy W(h + x) with the potential 
energy stored in the springs. Thus 

if x < d W(h + x) = ~ k1 X2 
which can be solved fo r x as 

W±JW2+2kIWh 

kl 
if x < d 

and 

if x::: d 

which give the following quadratic equation to solve for x: 

(k l + 2k2 )X
2 

- (4k2d + 2W)x + 2k2d 2 - 2 Wh = 0 if x ::: d 

a. Create a function file that computes the max imum compress ion x due 
to the falling weight. The function's input parameters are kl' k

2
, d , W , 

and h . Test your function for the following two cases. using the values 
kl = 10

4 
N/m; k 2 = I.S x 104 N/m; and d = 0.1 m. 

W = 100 N, h = 0.5 m 

W = 2000 N, h = O.S rn 

~ -

' .. , :-r "~)+': .!( l~; Y',",' ":'¥f " ~<1f~' , 

Problems 

b. Use your fu nction file to generate a plot of x versus h for 0 :=: h :=: 2 m. 
Use W = 100 N and the preceding values for kl' k2, and d . 

23. Electrical resistors are said to be connected "in series" if the same current 
passes through each and "in parall el" if the same voltage is applied across 
each. If in seri es, they are equivalent to a si ngle res istor whose resistance 
is given by 

If in parallel , their equivalent resistance is given by 

I 1 I I 1 
-=-+-+-+ ... +­
R RI R2 RJ Rn 

Write an M-file that prompts the user for the type of connection (seri es or 
paralle l) and the number of resistors n and then computes the equivalent 
res istance. 

24. a. An ideal diode blocks the flow of current in the direction oppo ite that 
of the diode's anow symbol. It can be used to make a hallwCtve 
rectifier as shown in Figure P24a. For the ideal diode, the voltage VL 

across the load RL is given by 

{
VS 

VL = 0 

Suppose the supply voltage is 

if Vs > 0 
ifvs :=: 0 

VS(/) = 3e- 1jJ sin(n t) volts 

where time t is in seconds. Write a MATLAB program to plot the 
voltage VL versus f for 0 :=: I :=: J O. 

b. A more accurate model of the diode's behav ior is given by the offset 
diode model, which accounts for the offset voltage inherent in 
semiconductor diodes. The offset model contains an ideal diode 
and a battery whose voltage equal the offset voltage (which is 
approxi mately 0.6 V for sili con diodes) [Rizzoni, J 996]. The 
half-wave rectifier ll sing this model is shown in Figure P24b. For 
thi s circuit, 

_ { vs- 0.6 ifvs > 0.6 
VL - 0 ifvs :=: 0.6 

Using the same supply voltage given in part Ct , plot the voltage 
v L versus 1 for 0 :=: t :=: 10; then compare the results with the plot 
obtained in part a. 

247 



248 CHAPTER 4 Programming with MATLAB 

(a) 

0 .6 V 

(b) 

Figure P24 

25.* Engineers in industry must continually look for ways to make their 
designs and operations more efficient. One tool for doing so is 
optimization, which u es a mathematical description of the design or 
operation to select the best values of certain variables. Many sophisticated 
mathematical tools have been developed for this purpose, and some are 
in the MATLAB Optimization toolbox. However, problems that have a 
limited number of possible variable values can use MATLAB loop 
structures to search for the optimum so lution . This problem and the next 
two are examples of multivariable optimization that can be done with the 
basic MATLAB program. 

A company wants to locate a di stribution center that will serve s ix of 
its major customers in a 30 x 30 mi area. The locations of the customers 
relative to the southwest comer of the area are given in the following 
table in term of (x , y) coordinates (the x direction is east; the)' direction 
is north) (see Figure P2S). Also given is the volume in tons pel: week that 
must be deljvered from the distribution center to each customer. The 
weekJy delivery cost Ci for customer i depend on the volume Vi and the 
distance di from the distribution center. For simplicity we will assume 
that this distance is the straight-line distance. (This assumes that 

y 
(miles) 

North 

30 

20 

10 

Figure P25 

Problems 

2 

\ 
5 • • 

East 
10 20 30 

x (miles) 

the road network is dense.) The weekly cost is given by Ci = O.Sdi Vi; 

i = 1, ... , 6. Find the location of the distribution center (to the nearest 
mile) that minimizes the total weekly cost to service all six 
customers. 

x location y location Volume 
Customer (miles) (miles) (tons/week) 

I 28 
7 18 
8 16 

17 2 
22 10 
27 8 

26. A company has the choice of producing up to four different products with 
its machinery, which consists of lathes, grinders, and milling machines. 
The number of hours on each machine required to produce a product is 
given in the following table, along with the number of hours available 
per week on each type of machine. Assume that the company can sell 
everything it produces . The profit per item for each product appear in the 
last line of the table. 

249 



250 CHAPTER 4 Programming with MATLAB 

Hours required 
Lathe 
Grinder 
Milling 

Unit profit ($) 

Product 

I 2 0.5 
o 2 4 
3 I 5 

100 150 90 120 

Hours available 

40 
30 
45 

a. Determine how many uni ts of each product the company shou ld make 
to maxi mi ze its total profi t and then compute thi s profi t. Remember, 
the company cannot make frac tional units, so your answer must be 
in integers. (Hin t: First estimate the upper li n~ ts on the n.umber of 
products that can be produced without exceed tng the aVai lable 
capacity.) . 

h. How sensitive is your answer? How much does the profit decrease If 
you make one more or one less item than the optimum ? 

27. A certain company makes televisions, stereo units, and speakers. Its ~aJ"ts 
inventory includes chassis, picture tubes, speaker cones, power supph es, 
and electronics. The inventory, required components, and profit for each 
product appeal' in the following table. Determine how many of each 
product to make in order to max imize the profit. 

Product 

Television Stereo unit Speaker unit Inventory 

Requirement 
Cha is 0 450 
Picrure Tube 0 250 
Speaker Cone 2 I 800 
Power Supply I I 0 450 
Electronics 2 2 I 600 

Unit profit (5) 80 50 40 

28.* Use a loop in MATLAB to determine how long it will take to accumulate 
$ 1,000,000 in a bank account if you deposit $ 10,000 initially and $10,000 
at the end of each year; the account pays 6 percent annual interest. 

29. A weight W is supported by two cables anchored a distance D apart (see 
Figure P29). The cable length LAB is given, but the length LAC is to be 
selected. Each cable can support a maximum tension force equal to W. For 
the weight to remain stationary, the total horizontal force and total vertical 
force must each be zero. This principle gives the equations 

-TrlB cose + TAC cos¢ = 0 

TABsine+TACsin¢= W 

Problems 

o 

A 

Figure P29 

We can so lve these equations fo r the tension forces TAB and TAC if we 
know the angles e and ¢. From the law of cos ines 

e - I (D2 + L~B - L~c ) = cos 
2DL AB 

F rom the law of sines 

¢ = SJJ1 ---. -I (L AB Sin e) 
LAC 

For the given values D = 6 f t, L AB = 3 f t, and W = 2000 Ib, use a loop in 
MATLAB to find LACmin, the shortest length L AC we can use without TAB 
or TAC exceeding 2000 lb. Note that the largest LAC can be is 6.7 ft (which 
corresponds to e = 90°). Plot the tension forces TAB and TAC on the same 
graph versus LAC for L AC min ::; LAC::; 6.7. 

30.* In the structure in Figure P30a, six wires support three beams. Wires 1 and 
2 can suppOli no more than 1200 N each, wires 3 and 4 can ~upport no 
more than 400 N each, and wires 5 and 6 no more than 200 N each. Three 
equal weights Ware attached at the points hown. Assuming that the 
structure is sta tionary and that the weights of the wires and the beams are 
very small compared to W, the principles of statics applied to a particular 
beam state that the sum of vertical forces is zero and that the sum of 
moments about any point is also zero. Applying these principles to each 
beam using the free-body diagrams shown in Figure P30b, we obtain the 
following equations. Let the tension force in wire i be h For beam J 

TI +T2 =T., +T4 + W+T6 

-T3 - 4T~ - 5W - 6T6 + 7T2 = 0 

251 



252 CHAPTER 4 Programming with MATLAB 

(b) 

Figure P30 

For beam 2 

For beam 3 

W 

T, I ' 

73 

11 
}' 1 ' 

T5 
W 

11 

T3 + T4 = W + Ts 

- W - 2T.'i + 3T4 = 0 

7s + T6 =W 

- W +3Tr, =0 

1'},l'r 
74 w 76 

76 

t 

w 

Find the maximum value of the weight W the structure can support. 
Remember that the wires cannot support compression , so 7'; must be 
nonnegative. 

Problems 

31. The equati ons describing the circuit shown in Figure P31 are : 

- VI + Rli l + R4i4 = 0 

o. 

b. 

- R4i4 + R2i2 + Rsis = 0 

- Rsis + R3i3 + V2 = 0 

i l = i2+ i4 

The given values of the resistances and the voltage VI are RI = 5, 
R2 = 100, R3 = 200, R4 = ISO, Rs = 250 k[2 , and VI = 100 V. 
(Note that 1 k[2 = 1000 [2 .) Suppose that each resistance is rated to 
carry a current of no more than 1 mA (= 0.001 A). Determine the 
allowable range of positive values for the voltage V2. 
Suppose we want to investigate how the resistance R3 limits the 
all owable range for V2. Obtain a plot of the allowable limit on V2 as a 
functi on of R3 for ISO ::s R3 ::s 250 k[2 . 

Figure P31 

32. Many applications require us to know the temperature distribution in an 
object. For example, this information is important for controlling the 
material properties, such as hardness, when cooling an object formed from 
molten metal. In a heat transfer course, the following description of the 
temperature dish'ibution in a flat, rectangular metal plate is often derived. 
The temperature is held constant at TI on three sides. and at T2 on the 
fourth side (see Figure P32). The temperature T(x , y ) as a function of the 
x y coordinates shown is given by 

where 

2 co 2 . (nrrx) sinh(nrry / L) 
w(x, y) =;. L -;; Sill L sinh(nrrW/L) 

"odd 

253 



254 CHAPTER 4 Programming with MATLAB 

w t------- ----, 

T(x ,y) 

Figure P32 

Use the fo llowing data: TI = 70°F, Tz = 200°F, and W = L = 2 ft. 
The term in the preceding series become smaller in magnitude as n 
increase. Write a MATLAB program to verify thi s fact for 
n = I , ... , 19 for the center of the plate (x = y = 1). 

b. Usi ng x = y = I , write a MATLAB program to determine how many 
terms are required in the series to produce a temperature calculation 
that is accurate to within I percent. (That is, fo r what va lue of n wi ll 
the addition of the nex t term in the eries produce a change in T of 
less than I percent.) Use your physical insight to determine whether 
thi answer gives the correct temperature at the center of the plate. 

c. Modify the program from part b to compute the temperatures in the 
pl ate: u e a spacing of 0.2 fo r both x and y. 

33. Consider the following script fi le. Fill in the lines of the following table 
with the value that would be displayed immediately after the while 
statement if you ran the script fil e. Write in the values the variables have 
each time the whi 1 e statement is executed. You might need more or fewer 
line in the table. Then type in the fil e, and run it to check your answers. 

k = l ; b = -2;x = -l;y = -2; 
while k <= 3 

end 

k , b , x, y 

y = x"2 - 3 ; 
:"f y < b 

b = y ; 
end 

1 · 
= k .,. 1 ; 

- ~"""'"""""""''''~~~-.l~'''''''~'' ~ 

. -

Problems 

Pass k b x y 

First 

Second 

Third 

Fourth 

Fifth 

34. Assume Lhat the human player makes the fi rst move agai nst the computer 
in a game or Tic-Tac-Toe, which has a 3 x 3 grid. Write a MATLAB 
function [hat lets the computer respond to lhalmove. The fu nction 's inpul 
argument should be the cell location of the human player's move. The 
function 's output shou ld be the cell location of the computer's first move. 
Label the cells as I , 2, 3 across the lOp row; 4, 5, 6 across the middle row, 
and 7, 8, 9 across the bottom row. 

Section 4.6 

35. The fo llowing table gives the approx imate va lues of the static coeffic ient 
of fr iction I)' for various materia ls. 

Materials J1. 

M eta l on metal 0.20 
Wood on wood 0.35 
Metal on wood OAO 
Rubber on concrete 0.70 

To start a weight W moving on a hori zontal surface, you musl push with 
a fo rce F, where F = fJ, W. Write a MATLAB program that uses the 
switch structure lo compute the force F . The program should accept 
a input the va lue of W and the type of materi als. 

36. The height and speed of a projecti le (such as a lhrown ball) launched wi th 
a speed of Vo at an angle A to the hori zontal are given by 

h(t) = Vo l sin A - 0.5g1Z 

v(t) = JV6 - 2vog{ si n A + g2{ 2 

where g is the acceleration due to grav ity. The projectile will strike the 
ground when h(/ ) = O. which givcs the time to hi t Ihit = 2(vu!!?) l>i n A. 

Use the swi tch structure to write a MATLAB program to compute 
either the maxi mum height reached by the projectile. the total horizontal 
di stance trave led, or the time to hi t. The program should accept as input 

255 



256 CHAPTER 4 Programming with MATLAB 

the user's choice of which quantity to compute and the values of Vo, A, 
and g. Test the program for the case where Vo = 40 mis, A = 30°, and 

g = 9.81 m/s2
. 

37. Use the swi tch structure to write a MATLAB program to compute how 
much money accumulates in a savings account in one year. The prog~am 
should accept the following input: the initial amount of money deposited 
in the account; the frequency of interest compounding (monthly, quarterly, 
semiannually, or annually); and the interest rate. Run your program for a 
$1000 initial deposit for each case; use a 5 percent interest rate. Compare 
the amounts of money that accumulate for each case. 

38. Enaineer often need to estimate the pressures and volumes of a gas in a 
cOI~tainer. The van der Waals equation is often used for this purpose. It is 

RT a 
P= Y-b-0 

where the term b is a correction for the volume of the molecules, and the 
term a / y2 is a correction for molecular attractions. The gas c?nstant is R, 
the absolute temperature is T , and the gas specific volume is V. The value 
of R is the same for all gases; it is R = 0.08206 L-atm/mol-K. The values 
of a and b depend on the type of gas. Some values are given in the 
following table. Write a user-defined function using the swi tch structure 
that computes the pressure P on the basis of the van der Waals equation. 
The function's input arguments should be T, Y, and a string variable 
containing the name of a gas listed in the table. Test your function for 
chlorine (Ch) for T = 300 K and Y = 20 Llmol. 

Gas 

Helium, He 
Hydrogen, Hz 
Oxygen , O2 
Chlorine, Clz 
Carbon clioxide, COz 

0.0341 
0.244 
1.36 
6.49 
3.59 

0.0237 
0.0266 
0.0318 
0.0562 
0.0427 

39. Using the program developed in Problem 18, write a program that uses the 
swi tch structure to compute the number of days in a year up to a given 
date, given the year, the month, and the day of the month. 

Section 4.8 

40. Consider the college enrollment model discussed in Example 4.8-2. 
Suppose the college wants to limit freshmen admissions to 120 percent 
of the current sophomore class and limit sophomore transfers to 
10 percent of the current freshman class. Rewrite and run the program 
given in the example to examine the effects of these policies over a 
I O-year period. Plot the results . 

Problems 

41. Suppose ~ou proje~t that yo u will be abl e to deposit the following monthly 
~I~~unts Into a savll1gs account for a period of five years. The acco unt 
InitIally has no money in it. 

Year I 2 3 4 5 
Monthl y deposit ($) 300 350 350 350 400 

At the .end of each year in which the account balance is at least $3000, 
you wlthd.raw $2000 to buy a certificate of deposit (CD), which pays 
6 percent II1terest compounded annually. 

Write a MATLAB program to compute how much money will 
accumulate in five years in the account and in any CDs you buy. Run the 
program for two different savings interest rates: 4 percent and 5 percent. 

42.* A certain company manufactures and sells golf carts. At the end of each 
,,:eek, the company transfers the carts produced that week into storage 
(mventory). All carts that are sold are taken from the inventory. A simple 
model of thi s process is 

J(k + 1) = P(k) + J(k) - S(k) 

where 

P(") = the number of carts produced in week k 

1 (k) = the number of carts in inventory in week k 

S(k) = the number of carts so ld in week k 

The projected weekly sales for 10 weeks are 

Week 3 4 5 6 7 8 9 I 0 
Sales 50 55 60 70 70 75 80 80 90 55 

Suppose the weekly production is based on the previous week's sales so 
that P(k) = S(k - 1). Assume that the first week's production is 50 carts; 
that is, pel) = 50. Write a MATLAB program to compute and plot the 
number of carts in inventory for each of the 10 weeks or until the 
inventory drops below zero. Run the program for two cases: a. an initial 
inventory of 50 carts so that 1(1) = 50, and b. an initial inventory of 
30 carts so that [ (1) = 30. 

43. Redo Problem 42 with the restriction that the next week's production is set 
to zero if the inventory exceeds 40 carts. 

257 



Cmllt('\\/ijArlll \'irW/IIl/'lIt, /m 

Engineering in the 
21 st Century ... 

Low-Speed Aeronautics 

S ome~il:l~S ju~ t . '."'hen we t.hink a c~rtain . technical area is I~l a ture and the 
possibility 01 further development IS unlikely, we are surpn sed by a novel 
design . Recent developments inlow-speed aeronautics are examples of thi s 

phenomenon . Even lhough engi neers have known for years that a human could 
generate enough power to propel an aircraft, the feat remained impossible until 
the availabi lity of lightweight materials that enabled the Gossamer Challenger to 
flyacro s the English Channel. Solar-powered aircraft that can stay aloft for over 
a day are other examples. 

Another example is the recent appearance of wing-in-ground effect (WIG) 
vehicles. WIG vehicle make use of an air cu hion to create lift. They are a hybrid 
between an 'lircraft and a hovercraft and most are intended for over-water flight 
only. A hovercraft rides on an air cushion crea ted by fans, but the air cushion of 
a WIG vehicle is due to the ai r that is captured under its stubby wings. 

Small ai rcraft with cameras will be useful for search and reconnaissance. An 
example of such a "micro air vehicle" (MAY) is the 6-inch long Black Widow 
shown in the photo. It carries a 2-gram video camera the size of a sugar cube, 
and flie at about 65 km/h with a range of 10 km. Proper design of such vehicles 
require a 'y tematic methodology to find the optimum combination of airfo il 
hape. Illotor t, pe. baltery type. and most importantly. the propeller hape. 

The M TLAB advanced graphics capabi lities make it useful for visuali z­
ing flo\ patterns. and the Optimization toolbox is u eful for designing such 
vehicle . • 

Advanced Plotting 
and Model Building 
OUTLINE 

5.1 xy Plotting Functions 

5.2 Subplots and Overlay Plots 

5.3 Special Plot Types 

5.4 Interactive Plotting in MATLAB 

5.5 Function Discovery 

5.6 Regres ion 

5.7 The Basic Fitting Interface 

5.8 Three-Dimensional Plots 

5.9 Summary 

Problems 

The popular phrase "A picture is worth a thousand word s" emphasize!> the im­
portance of graphical representation in communicating information. It i<, ea~ier 
to identify patterns in a plot than in a table of number . Engineer!> frequently use 
plots both to gai n insight and to communicate their findings and idea~ to others. 
Plotting, like any language, has a set of rules, standards, and practice~ that the 
engi neer hould follow to produce effective plots. Failure to do so wil l diminish 
one's reputation with colleagues, at least, and at war t, could lead others to draw 
incorrect conclusions about the data pre ented. 

MATLAB has many functions that are useful for creating plots. In thi chapter 
you wi ll learn how to use them to create two-dimensional plot!>, which are also 
called .-1.}' plo,s, and three-dimensional plots called .t)'z pio,s, or surface plot~. 
The e plotting function, are described in the g r apn2d and grapi".3c help 

258 



260 

ABSCISSA 

ORDINATE 

SCALE 

TICK MA RK 

AXIS LABEL 

DATA SYMBOL 

CHAPTER 5 Advanced Plott ing and Model Building 

categories, so typing help graph2d or help graph3d will di spl ay a li st of 
the relevant plotting functions. . 

This chapter also discusses the elements of a con'ecl ~raph. and. ho~ to use 
MATLAB to create effecti ve graphs that convey the desIred. Jl1fOl matl.on. An 
important app l ication of plotting isfunction discovelY, t~l e techl1lq~l,e for USI ng .?ata 
plots to obtain a mathematical function or "mathematIcal model that d~sc II ?es 
the process that generated the data. This feature is very useful f~r eng1l1eenng 
application becau e engineers frequently need to use n:athematI cal .mod~l s. to 
predict how their proposed des igns wi ll work. A systematIc method for obta ll11ng 
models is regression, which is also covered in thi s chapter. 

5.1 xy Plotting Functions 
The most common plot is the xy plot. Its name assumes that we are plotting a 
function y = f(x) , although, of course, other ymbols may be used. We.plot tl~ e 
x values on the hori zontal axis (the abscissa), and the y values on the vertIcal aXIs 
(the ordina te). U uall y we plot the independent variable, which is the one more 
easi ly vari ed, on the abscissa, and the dependent variable on the o.rdinate. . 

MATLAB has many functions and commands to produce vanous plots WIth 
special features . In thi s section we intI'oduce the commands that are useful for 
making xy plots. In Section 5.8 we treat three-dimensional plots. 

The Anatomy of a Plot 

The "anatomy" and nomenclature of a typical xy plot is shown in Figure 5.1- 1, 
in which the plot of a data set and a curve generated from an equation appear. The 
scale on each axis refers to the range and spacing ofthe numbers. Both axes in thi s 
plot are said to be "recti linear"-often shortened to linear-because the spacing 
of the numbers is regular; for example, the di stance between the numbers 2 and 
3 is the same as the distance between the numbers 4 and 5. Another type of scale 
is the logarithmic, which we explain later in thi chapter. Tick marks are placed 
on the ax is to help visuali ze the numbers being plotted. The tick-mark labels are 
the numbers that cOITespond to the tick-mark locations. (Some plots will have 
tick-mark labels that are not numbers; for example, if we plot temperature versus 
time of year, the tick-mark labels on the hori zontal axis could be the names of 
months.) The spacing of the tick mark and their labels is important. We cover 
thi topic later in the chapter. 

Each axi must have an axis label-also called an axis title. This label gives 
the name and units of the quantity plotted on that axis. An exception occurs when 
plotting a mathematical expression that has no physical interpretation; in that case 
the variable have no units. In addi tion , the plot often must have a plot title as 
well. The plot title is placed above the plot. 

A plot can be made from measured data or from an equation. When data is 
plotted, each data point is plotted with a data symbol, or point markel; such as the 

5.1 xy Plotting Funclions 

PLOTTITLE~ 

~ Height of a Falling Object Versus Time 

160 

_Q..... ..... ~ _ DA:j)MBOL 
1400 ~ _ U 

'0, 
1200 

LEGEND 

600 

400 

TICK MARK 
200 

D 
°0~--~--~--~--~4--~5--~6---J--~8--~--~10 

Tim~OndS) fr 
U TICK· MARK LABEL 

AXIS LABEL 

Figure 5.1-1 Nomenclature for a typical xy plol. 

small circle shown in Figure 5.1- 1. A rare exception to thi s rule would be when 
there are so many data points that the symbols wou ld be too densely packed. In 
that case, the data points should be plotted with a dot. However, when the plot is 
generated fro m a function , data symbols must never be used! Lines are always 
used to plot a function . 

Sometimes data symbols are connected by lines to help the viewer visual­
ize the data, especia lly if there are few data points. However, connecting the 
data points-especially with a solid line- might imply knowledge of what oc­
curs between the data points , and thus you should be careful to prevent such 
misinterpretation. 

When multiple curves or data set. are plotted, they must be di . tinguished 
from each other. One way of doing so i with a legend, which relates the data set LEGEND 
symbol or the curve 's line type to the quantity being plotted. Another method is 
to place a description (either text or an equation) near the curve or data symbols. 
We show examples of both methods later in the chapter. 

261 



262 CHAPTER 5 Advanced Plotting and Model Building 

Requirements for a Correct Plot 

The fo llowing li st describes the essential fea tu res of any plot: 

1. Each ax is must be labeled wi th the name of the quantity being plotted and 
its units! If two or more quantiti es hav ing different urilts are plotted (such as 
when plotting both speed and distance versus time), indicate the units in the 
ax is label if there is room, or in the legend or labels for each curve. 

2. Each axi should have regularly spaced tick marks at convenient 
intervals-not too sparse, but not too dense-with a spacing that is easy to 
interpret and interpolate. For example, use 0.1, 0.2, and so on, rather than 
0.13, 0.26, and so on . 

3. If you are plotting more than one curve or data set, label each on its plot or 
use a legend to distingui sh them. 

4. If you are preparing multiple plots of a similar type or if the axes' labels 
cannot convey enough information, use a title. 

5. If you are plotting measured data, plot each data point with a symbol such 
as a circle, quare, or cross (use the same symbol for every point in the same 
data et). If there are many data points, plot them using the dot symbol. 

6. Sometimes data symbols are connected by lines to help the viewer vi sualize 
the data, especially if there are few data points. However, connecting the 
data points, especially with a solid line, might be interpreted to imply 
knowledge of what occurs between the data points. Thus you should be 
careful to prevent such misinterpretation. 

7. If you are plotting points generated by evaluating a function (as opposed 
to measured data) , do not use a symbol to plot the points. Instead, be sure 
to generate many points, and connect the points with solid lines. 

Plot, Label, and Title Commands 

The MATLAB basic xy plotting function is plot (x , y) . Ifx and y are vectors, 
a single curve is plotted with the x values on the abscissa and the y values on the 
ordinate. The xlabel and ylabel commands put labels on the abscissa and 
the ordinate, respectively. The syntax is xl abel ( , t e xt ' ) , where text is the 
text of the label. Note that you must enclose the label's text in single quotes. The 
syntax for ylabel is the same. The title command puts a title at the top of 
the plot. Its syntax is tit Ie ( , t e xt ' ) , where tex t is the title's text. 

The following MATLAB session plots y = OA.Jl]X for 0 ::::: x ::::: 52, where 
y represents the height of a rocket after launch, in miles, and x is the horizontal 
(downrange) distance in miles. 

»x = [0 : 0 . 1 : 52) ; 
»y = O. 4 *sqrt(1.8 *x ) ; 
»plot (x , y) 
»xlabel ( ' Distance (miles) ' ) 

5.1 xy Plotting Functions 

Rocket Height as a Function of Downrange Distance 

3.5 

2.5 

'E 
i 2 
'iii 
J: 

1.5 

0.5 

~~----~1~0 ----~20~----~30~----~40------5~0----~60 
Distance (miles) 

Figure 5.1-2 The autoscaling feature in MATLAB selects tick-mark spacing. 

»ylabel ( 'Height (miles) ' ) 

»title (' Rocket Height as a Function of Downrange Distance ' ) 

Figure 5. 1- 2 shows the plot. A spacing of 0.1 was selected for the x val­
ues to generate several hundred plotting points to produce a smooth curve. The 
plot (~ , y) function in MATLAB automatically selects a tick-mark spacing for 
each aX1 S and places appropriate tick labels. This feature is called autoscaling. 

!"1ATLAB also chose an upper limit for the x-axis, which is beyond the 
maxllnum value of 52 in the x value. , to obtain a convenient spacing of 10 for 
the tic~ labels. A tick-label spacing of two would generate 27 labels, which gives 
a spaclllg so dense that the labels would overlap one another. A spacing of 13 
would work, but is not as convenient as a spacing of 10. Later you will learn to 
override the values selected by MATLAB. 

The axis labels and plot title are produced by the xlabel , ylabel , and 
ti tIe commands. The order of the xlabel , ylabel , and title commands 
does not matter, but we must place them after the plot command, either on 
separate lines using ellipses or on the same line separated by commas, as 

»x = [0 : 0 . 1 : 52) ; 
»y = O. 4*sqrt(1.8*x) ; 
»pIot (x , y) , xlabel ( ' Distance (miles) ' ) , ylabel ( ' Height (niles) ' ) , ... 
ti tIe ( ' Rocket Height as a Function of Downrange Distance ' ) 

263 



264 

AXIS LIMlTS 

CHAPTER 5 Advanced Plotting and Model Building 

The plot will appear in the Figure window. You can obtain a hard copy of the 

plot in one of several way: 

1. Use the menu sy tem. Select P rint on the F ile menu in the Figure window. 
Answer OK when yo u are prompted to continue the printing process. 

2. Type print at the command line. This command sends the current plot 
direc tly to the printer. 

3. Save the plot to a fi le to be printed later or imported into another appl ication 
such as a word processor. You need to know something about graphics fi le 
fo rmats to use thi s fil e properl y. See the subsecti on Exporting F igures later 
in thi s section. 

Type help print to obtain more info rmation. 
MATLAB assigns the output of the plot command to fig ure window 

number 1. When another plot command is executed, MATLAB overwrites the 
contents of the existing fi gure window with the new plot. Although yo u can keep 
more than one fi gure window active, we do not use thi s fea ture in thi s text. 

When you have fini shed with the plot, close the fi gure window by selecting 
Close from the File menu in the fi gure window. Note that using the AIt-Tab key 
combination in Windows-based systems will return you to the Command window 
without closing the fi gure window. If you do not close the window, it wi ll not 
reappear when a new plot command is executed. However, the fi gure will still 
be updated . 

grid and axis Commands 

The grid command di splays gridJines at the tick marks corresponding to the 
tick label. Type grid on to add gridlines; type grid off to stop plotting 
gridlines. When u ed by itself, grid toggles thi s feature on or off, but you might 
want to use grid on and grid off to be sure. 

You can use the axis command to override the MATLAB elections for the 
axi limits. The basic syntax is axis ([xmin xmax ymin ymaxl ). This 
command sets the scaling for the x- and )I-axes to the minimum and maximum 
values indicated . Note that, unlike an arra·y. this command does not use commas 
to separate the values. 

The axis command has the following variants: 

• axis square, which selectstheaxe 'Iimitssothattheplotwillbe square. 

• axis equal , which selects the scale factors and tick spacing to be the 
ameoneachaxis. Thisvariationmakesplot(sin(x) , cos(x)) look 

like a circle, instead of an oval. 

• ~xis. auto. which re~ur.ns the axis scaling to its default autoscaling mode 
111 whtch the best axes llllllts are computed automatically. 

For example, to add a grid and to change the axes ' limits on the previous plot 
to 0 .:::: x .:::: 52 and 0 .:::: y .:::: 5. the session would look like 

[0 : 0 . 1 : 52J ; 
»y = 0 . 4*sqrt(1.8*x) ; 

5.1 xy Plotting Functions 

4.5 

3.5 

~ 3 
'E 
~2.5 

'w 
I 2 

1.5 

0.5 

Rocket Height as a Function of Downrange Distance 

O~--~~~--L-__ L-__ L-__ L-__ L-__ L-__ ~ __ ~ 

o 10 15 20 25 30 35 40 45 50 
Distance (miles) 

Figure 5.1-3 The effects of the axis and grid commands. 

»plot (x, y) ,xlabel ( ' Distance (miles) ' ) , ylabel ( ' Height (miles) ' ) , ... 
title( ' Rocket Height as a Function of Downrange Distance ' ) , .. . 
grid on, axis([O 52 0 5J) 

Figure 5.1-3 shows this plot. Notice how MATLAB chose a tick-label spacing of 
5, not 13 , for the x -axis. 

This example illustrates how the printed plot can look different [rom the plot 
on the computer screen. MATLAB determines the number of tick-mark labels 
that can reasonably fit on the axis without being too densely spaced. A reasonable 
number for the computer screen is often different from the number for the printed 
output. In the preceding example, the screen plot showed labels on the x-axis at 
0, 10, 20, .. " whereas the printed plot had labels at the intervals 0, 5, 10, 15, 
20, . . .. You can eliminate this effect by using the tick-mark commands discussed 
later in the chapter. 

Plots of Complex Numbers 

With only one argument. say, plot (y) ,the plot function will plot the values in 
the vector y versu their indices 1, 2, 3, ... , and so on. Ify is complex, plot (y) 

plots the imaginary parts versus the real parts. Thus plot (y) in this ca e is 
equivalentto plot (real (y) , imag (y) ). This situation is the only time when 
the plot function handles the imaginary parts; in aU other variants o[ the pI at 

265 



266 CHAPTER 5 Advanced Plotting and Model Building 

0.8 

0.6 

0.4 

~ 0.2 

'0, 

~ 

-0.2 

-0.4 

- 0.6 

-0.8_1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 
Real 

Figure 5.1-4 Application of the plot (y) function. 

function , it ignores the imaginary parts. For example, the script file 

z = 0 . 1 + 0 . 9i ; 
n = [0 : 0 . 01 : 10); 
plot (z . An ) , xlabel ( ' Real ' ) , ylabel ( ' Imaginary ' ) 

generates the spiral shown in Figure 5.1-4. As you become more familiar with 
MATLAB, you will feel comfortable combining these commands as follows: 

plot ((0 . 1+0 . 9i) . A [0 : 0.01 : 10)) , xlabel ( ' Real ' ) , ylabel ( ' Imaginary ' ) 

The Function Plot Command fpl o t 

MATLAB has a" mart" command for plotting functions. The fplot command 
automatically analyzes the function to be plotted and decides how many plotting 
points to use 0 that the plot will show all the features of the function. Its syntax 
is fplot ( ' string ', [xmin xmax]), where' string' is a text string 
that describes the function to be plotted and [xmin xmax ] specifies the mini­
mum and maximum values of the independent variable. The range of the depen­
dent variable can also be specified. In this case the syntax is fp l o t ( , string ' , 
[xmin xmax ymin ymax]) . 

5.1 xy Plotting Functions 

-0.51--,---.----,--"""""'7'.----,-----r~-.___;;_-.__-_.__ 

- 1 

- 1.5 

- 2 

-2.5 

-31~~1~. 1--1~.2~~1.~3--1~.4--1~.5-~1.6--1.L7--1~.8--1~.9-~ 

FigUl'e 5.1-5 A plot generated with the fplot cOlllmand. 

For example, the session 

»f = ' cos(tan(x)) - tan(sin(x)) '; 
»fplot (f, [1 2]) 

produces the plot shown in Figure 5.1-5 . You may combine the two 
commands into a single command as follows: fplot ( ' cos (tan (x)) -
tan (s in (x) ) , , [1 2]) . Always remember to enclose the function in single 
quotes. 

Contrast thi s plot with the Olle shown in Figure 5.1-6, which is produced by 
the plot command using 10 I plottillg points. 

»x = [1: 0 . 01 : 2] ; 
»y = cos(tan(x)) - tan(sin(x)) ; 
»plot (x,y) 

We can see that the fplot command automatically chose enough plotting points 
to display all the variations in the function. We can achieve the same plot using 
the plot command, but we need to know how many values to use in specifying 
the x vector. 

Another form is [x , y] = fplot( ' string ', limits) . where 
limits may be either [xmin xmax] or [xmi n x max ymin ymaxl. With 
this form the command returns the abscissa and ordinate values in the column 

267 



268 CHAPTER 5 Advanced Plotting and Model Building 

-2 

-2.5 

-3 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 

Figure 5.1-6 The function in Figure 5.1-5 generated with the plot command. 

vectors x and y , but no plot is produced. The returned values can then be used 
for other purposes, such as plotting multiple curves, which is the topic of the next 
section . 

Other commands can be used with the fplot command to enhance a plot's 
appearance, for example, the title, xlabel, and ylabel commands and the 
line type commands to be introduced in the next section. 

Plotting Polynomials 

We can plot polynomials more easily by using the polyval function, intro­
duced in Chapter 2. This function evaluates the polynomial at specified values of 
the independent variable. It requires only the polynomial's coefficients and thus 
eliminates the need to type in the polynomial's expression. For example, to plot 
the polynomial 3x5 + 2X4 - 100x3 + 2x2 - 7 x + 90 over the range -6 :s x :s 6 
with a spacing of 0.01 , you type 

»x = [-6 : 0 . 01 : 6]; 
»p = [3 , 2 , -100,2 , -7 , 90] ; 
»plot (x , polyval (p,x)) , xlabel ( ' x ') ,ylabel ( ' p ' ) 

Table 5.1-1 summarizes the xy plotting commands introduced in this 
ection. 

~1""1;1'''!!'~~'~~''',?;~~ 

-~~ 

5.1 xy Plotting Functions 269 

Table 5.1-1 Basic xy plotting commands 

Command Description 

Sets the minimum and max imum limits of the x- and y-axes. axis ([xmin xmax ymin ymax] ) 
fplot( ' string ', [xmin xmax] ) 

grid 
pl o t (x, y ) 
plot (y) 

Performs intelligent plotting of functions, where' string ' is a text 
string that describes the function to be pJotted and [xmin xmax] 
speci fi es the minimum and maximum va lues of the independent variable. 
The range of the dependent variable can also be specified. In this case the 
syntax is fp l ot ( ' string ', [xmin xmax ymin ymax]). 
Displays gridlines at the tick marks corresponding to the tick labels. 
Generates a plOl of the array y versu the array x on rectilinear axes. 

pr int 
title('t e x t ') 
xl abel ( 'text' ) 
yl abel ( 'text' ) 

Test Your Understanding 

Plots the values of y versus their indices if y is a vector. Plots the imagi nary 
parts of y versus the real parts if y is a vector having complex va lues. 
Prints the plot in the Figure window. 
Puts tex t in a title at the top of a plot. 
Adds a tex t label to the x-axis (the abscissa). 
Adds a tex t label to the y-axis (the ordinate). 

T5.1-1 Redo the plot of the equation y = OA..Jf]X shown in Figure 5.1-2 for 
o :s x :s 35 and 0 :s y :s 3.5. 

T5.1-2 Use the fplot command to investigate the function tan(cos x)-s in(tanx) 
for 0 :s x :s 2n. How many values of x are needed to obtain the same 
plot using the plot command? (Answer: 292 values.) 

T5.1-3 Plot the imaginary part versus the real part of the function (0.2 + O.Si)" 
for 0 :s n :s 20. Choose enough points to obtain a smooth curve. Label 
each axi s and put a title on the plot. Use the axi s command to change 
the tick-label spacing. 

Saving Figures 

When you create a plot, the Figure window appear (see Figure 5.1-7). This 
window has eight menus, which are discussed in detail in Section SA. The File 
menu is used for saving and printing the figure. You can save your figure in a 
format that can be opened during another MATLAB session or in a format that 
can be used by other applications. 

To save a figure that can be opened in subsequent MATLAB sessions, save it 
in a figure file with the .fig file name extension. To do this, select Save from the 
Figure window File menu or click the Save button (the disk icon) on the toolbar. 
If this is the first time you are saving the file, the Save As dialog box appears. 
Make sure that the type is MATLAB Figure (*.fig). Specify the name you want 
assigned to the figure file. Click OK. You can also use the saveas command. 



270 CHAPTER 5 Advanced Plotting and Model Bui lding 

::;-Fig-u'-e-1-----· -- . --- ---.-----.~]QJ~ 

Edit View Insert Tools Desktop Window Help 

-3 

Figtll-e 5.1-7 An example of a Figure window. 

To open a figure file. select Open from the File menu or click the Open 
button (the opened folder icon) on the toolbru·. Select the figure file you want to 
open and click OK. The figure file appears in a new figure window_ YOll can also 
use the open command. 

Exporting Figures 

If you wa nt to ave the fi gure in a format that can be used by another application, 
such as the standard graphics file formats TIFF or EPS. pelfonn these steps. 

1. Select Export Setup from the File menu . This di alog provides options you 
can specify for thc output fil e. such as the figure size, fonts, line size and 
sty le. and output forma t. 

2. Select Export from the Export Setup dialog. A standard Save As di alog 
appear. 

3. Select thc format from the list of format s in the Save As type menu. This 
selects the format of the exported file and adds the standard file name 
exten ion given to files of that type. 

4. Enter the name you want to give the fil e. less the extension. 
5. Click Save. 

5.2 Subplots and Overlay Plots 

You can also ex port the fi gure from the command line, by using th e print 
com mand. Sec MATLAB help for more inform ati on about ex porting fi gurcs in 
different formats. 

On Windows systems, yo u can also copy a fi gure to the clipboard and th en 
paste it into another application: 

1. Select Copy Options from the E dit menu . The Copying Options page 
of the Preferences di alog box appears. 

2. Complete the fi e lds on the Copying Options page and cli ck OK. 
3. Select Copy Figure from the Edit menu. 

The fig ure is copied to the Windows clipbo,u'd and can be pasted into another 
appli cati on. 

M ATLAB al so enables you to save fi gures in formats compatibl e with 
PowerPo int and MSWord. See the MATLAB help for more information . 

The graphjcs functions covered in thi s section and in Sections 5.2 and 5.3 
are suffi cient to create deta il ed , professional-looking plots in MATLAB . These 
fun ctions can be p laced in script fi les that can reused to create similar plots. 
Thi s fea ture gives them an advantage over the interactive plotting tool s that are 
di scussed in Section 5.4 

5.2 Subplots and Overlay Plots 

MATLAB can create figures that contain an array of plots, ca lled subplots. Thesc 
are useful when you want to compare the same data plotted wi th different axis 
types, for example. The MATLAB subplot command creates such fi gures. 

We frequen tl y need to plot more than one curve or data set on a s ingle plOL 
Such a plot is call ed an overlay plot. This secti on describes several MATLAB 
command for creating overlay plots. 

Subplots 

You can use the subplot command to obtain several small er " ubplots" in 
the same figure_ The syntax is subplot (m , n , p) . This command divides the 
Figure window into an array of rectangul ar panes with m row. and n columns. The 
variab le p tells MATLAB to place the output of the plot command fol lowing 
the subplot com mand into the pth pane. For example, suoplot (3 , 2 , 5) 
creates an array of six panes, three panes deep and two panes across. and directs 
the next plot to appear in the fifth pane (in the bottom-left comer). The fo ll owing 
script file created Figure 5.2- 1, which hows the plots of the functions y 
e -l.2x sin(l Ox + 5) for 0 S x S 5 and y = Ix 3 - lOOI for -6 S x S 6_ 

x = (0 : 0 . 01 : 5) ; 
y = exp(-1.2 *x) .* sin(10 *x+5) ; 
subplot (1 , 2 , 1) 
plot(x , y) , xlabel( ' x ' ) , ylabel( ' y ' ) , axis((O ~ k 

x = (-6 : 0 _01 : 6) ; 

271 



272 CHAPTER 5 Advanced Plotting and Model Building 

350 

O.S 
300 

0.6 

0.4 

0.2 

150 
-0.2 

-0.4 100 

-0.6 

50 

-O.S 

-1 
0 -5 

F igure 5.2-1 Application of the subplot command. 

y = abs (x . "3 - 100) ; 
subplot (1 , 2 , 2 ) 
plot(x,y) , xlabel( ' x ' ) , ylabel( ' y ' ) , axis([-6 6 0 350)) 

Test Your Understanding 

T5.2-1 Pick a suitable pacing for ( and v, and use the subplot command to 
plot the fun ction z = e- 0.5r cos(20t - 6) for 0 .:s f .:s 8 and the function 
u = 610g lO (V

2 + 20) for -8 .:s v .:s 8. Label each axis. 

Overlay Plots 

You can use the following vari ants of the MATLAB basic plotting functions 
plot( x , y) and plot(y) to create overlay plots: 

• plot (A) plots the columns of A versu. their indices and generates 
11 curves where A is a matrix with m rows and n columns. 

• plot (x , A) plots the matrix A versus the vector x, where x is either a row 
vector or column vector and A is a matrix with 111 rows and n columns. If the 
length of x is 111. then each colllmn of A is plotted versus the vector x. There 
will be as many curves as there are columns of A. If x has length n, then 

-~.*~~~t . 

. ~ 

5 .2 Subplots and Overlay Plots 

each row of A is plotted versus the vector x. There will be as many curves 
as there are rows of A. 

• plot (A , x ) pl ots the vector x versus the matri x A. If the length of x is m , 
then x is pl otted versus the columns of A. There will be as many curves as 
there are co lumns of A. If the length of x is n , then x is plotted versus the 
rO lvs of A. There wi ll be as many curves as there are rows of A. 

• plot ( A , B ) plots the co lumns of the matri x B versus the colum ns of the 
matri x A. 

Data Markers and Line Types 

To plot the vectory versus the vector x and mark each point with a data marker, en­
close the symbol fo r the marker in single quotes in the plot function . Tab le 5.2-1 
shows the symbol s for some of the avail able data markers. For exam ple, to use a 
small circle, which is represented by the lowercase letter 0 , type plot (x , y , 
'0 ') . Thi s notation results in a plot like the one on the left in Figure 5.2- 2. To 
connect each data marker with a straight line, we must plot the data twice, by 
typing plot (x , y , x, y, ' 0 ' ) . See the plot on the ri ght in Figure 5.2-2. 

Suppose we have two curves or data sets stored in the vectors x, y, u, and v . 
To plat y versus x and v versusu on the same plot, type plot (x , y , u , v). Both 
sets wi ll be plotted with a solid line, which is the default line sty le. To di stingu ish 
the sets, we can plot them with different line types . To plot y vers us x with a 
so li d line and u versus v with a dashed line, type plot (x , y , u , v , ' - - , ) , 
where the symbols ' -- ' represent a dashed line. Table 5.2- 1 gives the symbols 
for other line types . To plot y versus x with asterisks (*) connected with a dotted 
line, you must plot the data twice by typing plot (x , y , ' * ' , x , y , ' : ' ) . See 
Figure 5.2-3 . 

You can obtain symbols and lines of different co lors by using the color 
symbols shown in Table 5.2-1. The color symbol can be combi ned with the 
data- marker symbol and the line-type symbol. For example, to plot y vers us x 
with green as teri sks (*) connected with a red dashed line, YO Li must plot the data 
twi ce by typing plot (x , y , ' g* ' , x , y , ' r-- ' ) . (Do not use colors if you 
are go ing to print the plot on a black-and-white printer.) 

Table 5.2-1 Specifiers fo r data markers. line types. and colors 

Data markerst 

Dot (.) Solid line 
A teri sk (*) Dashed line 
Cross ( x ) x Dash-dotted line -
Circle (0 ) a Dotted line 
Plus sign(+ ) + 
Square (D) 

Diamond (0 ) 
Five-pointed star (* ) p 

Colors 

Black 
Blue 
Cyan 
Green 
Magenta m 
Red 
Whi te 
Yellow 

t Other uata markers are avai lable. Search for "markers" in MATLAB help. 

273 



274 CHAPTER 5 Advanced Plotting and Model Building 

3.5.------,------ 3.5.------,-----, 

2.5 2.5 

1.5 1.5 

1 0 

0.5 

10 10 

Figure 5.2-2 Use of data markers. 

0.9 

0.8 

>-0.7 

lIE •• 

0.6 

0.5 ')11 

10 

Figure 5.2-3 Data plotted using asterisks connected with a dotted line. 

5.2 Subplots and Overlay Plots 

Labeling Curves and Data 

When more than one curve or data set is plotted on a graph, we must di stingui sh 
bel ween them. If we use different data symbols or different line types, then we 
must eilher provide a legend or place a label nexl to each curve. To create a leg­
end, use the legend command. The basic form of th is command is legend 
( ' stringl ' , ' string2 ' ), where stringl and string2 are text strings 
of your choice. The legend command automatica ll y obtains fro m the plot 
the line type used for each data set and di spl ays a sample of thi s line type in the 
legend box next to the string you selected. The fO llowing script fil e produced the 
plot in Figure 5.2--4. 

x [0 : 0 . 01 : 2] ; 
y == sinh(x) ; 
z == tanh (x) ; 
plot (x , y , x , z , ' - - ' ) , x 1 abe 1 ( ' x ' ) , 
ylabel ( ' Hyperbolic Sine and Tangent ' ) , 
legend ( ' sinh (x) , , ' tanh (x) , ) 

The leg end command must be placed somewhere after the plo t command. 
When the plot appears in the Figure window, use the mouse to position the legend 
box. (Hold down the left button on a two-button mouse to move the box.) 

3.5 

i 
~ 2.5 
'0 

'" ~ 2 
U5 

0.5 

°0~-OL.2--0~.4--0~.6~~0.~8-~-~1~.2-~1~.4-~1~.6~~1~.8~~ 

Figure 5.2-4 Application of the legend command. 

275 



276 CHAPTER 5 Advanced Plotting and Model Building 

Gridlines can obscure the legend box. To prevent thi s situation , instead of 
placing the legend command as shown in the preceding sess!on, typ~ the 
following lines in the Command window, after the plot appears 111 the Figure 
window but before printing the plot: 

»axes (legend ( ' string1 ' , ' string2') ) 
»refresh 

The first line makes the legend box act as the current set of drawing axes. The 
refresh command forces the plot to be redrawn in the Figure window. You 
can then print the plot. The axes command, not to be confused with the axis 
command, is a powerful command wi th many features for manipulati ng figures 
in MATLAB. However, this advanced topic is not covered in thi s text. 

Another way to di stinguish curves is to place a label next to each. The label can 
be generated with either the gt ext command, which lets you place the label using 
the mouse, or with the text command, which requires you to specify the coordi­
nates of the label. The syntax of the gtext command is gtext ( ' string'), 
where s tr ing is a text string that specifies the label of your choice. When this 
command is executed, MATLAB waits for a mouse button or a key to be pressed 
while the mouse pointer is within the Figure wi ndow; the label is placed at that 
position of the mouse pointer. You may use more than one gtext command for 
a given plot. 

The text command, text (x , y , ' s tring ' ) , adds a text string to the 
plot at the location pecified by the coordinates x , y. These coordinates are in 
the same units as the plot's data. The fo llowing script file illustrates the uses 
of the gtext and text conunands and was used to create the plot shown in 
Figure 5.2-5. 

[O : O. Ol : lJ ; 
y = tan (x) ; 
z = sec (x) ; 
plot (x , y , x , z) , xlabe 1 ( ' x ' ) , 
ylabel ( ' Tangent and Secant ' ) , gtext ( ' tan (x) , ) , 
text(0 . 3 ,1. 2 , ' sec( x) ' ) 

Of course, finding the proper coordinates to use with the text command usually 
requires some trial and error. 

GrapbicaJ Solution of Equations 

When we need to solve two equations in two unknown variables, we can plot 
the equations. The solution corresponds to the intersection of the two lines. If 
they do not intersect, there is no solution. If they intersect more than once, there 
are multiple solutions. A limitation of this approach is that we must know the 
approximate ranges of the two variables so that we can generate the plot. Another 
limitation is that the accuracy of the solution is limited by the accuracy with which 
we can read the plot. Of course, we can always expand the plot to increase the 
accuracy. 

5.2 Subplots and Overlay Plots 

1.8 

1.6 

1.4 

~ 
~ 1.2 sec(x) 

"0 
~ 11------

Q) !0.8 
0.6 

0.4 
lan(x) 

0.2 

°0~~0~. 1--~0~.2~-0~.3~~0.4~~0.~5--~0.~6--~0~.7--~OL.8---0~. 9--~ 

Figure 5.2-5 Application of the gtext and text com mands. 

Load-Line Analysis of Electrical Circuits 

Figu re 5.2-6 is a representation of an electrical system with a power supply and a load . 

The power supply produces the fi xed voltage VI and supplies the current i I required by 
the load, whose voltage drop is V2. The current-voltage relation hip for a specific load is 
found from experiments to be 

i l = 0.16(eO.12ul - I ) (5.2-1) 

Suppose that the su pply resistance is RI = 30 r2 and the supply voltage i V I = 15 V. To 

select or des ign an adequate power supply, we need to determine how much current will be 

drawn from the power supply when thi s load is attached. Find the voltage drop V2 as weI!. 

Source r--------------I 

I 
I 
I 
I 
I 
I Vl 

I 
I 
I 
I 
I I I _______ __ _____ J 

Figure 5.2-6 Circuit representation of a power supply and a load. 

277 

""'de' 



278 CHAPTER 5 Advanced Plotting and Model Building 

• Solution 
Using Kirchhoff' vo ltage law, we obtain 

VI - i l R I - V2 =0 

Solve this for i I . 

(5.2-2) 

The plot of thi s equation is a straight line ca lled thc load lill e. The load line is so 

Darned because it shows how the current drawn by the load changes as the load 's vo ltage 

changes . To find i I and V2, we need to solve equations (5.2- 1) and (5.2-2). Because o f thc 

term eO.12v" it is not possible to obtain a so lution using algebra. However, we call plo t the 

curves corresponding to these eq uati ons and find their intersection . The MATLAB script 

file to do so follows, and Figure 5.2- 7 shows the resulting plot. 

v _ 2 = [0 : 0 .01 : 20] ; 
i _ ll= . 16* (exp(0 . 12*v_2) -1) ; 
i _ 12=- (1/30) *v_2+0. 5 ; 
plot (v_ 2 , i _ ll , v_ 2 , i _ 12) , grid , xlabel ( , v_2 (volts)'), 
y l abel( ' i _ 1 (amperes) ' ),axis([O 20 0 1]), .. 
gtext ( , Load Line ' ) , gtext ( , Device Curve ' ) 

From the figure we can see that the curves intersect at approximately i I = 0.25 A, 

V2 = 7 .5 V. For a more accurate answer, change the axi s statement to axi s ([ 7 8 

o . 2 o. 3] ) and obtain a new plot. 

0.9 

0.8 

0.7 

0.6 

~ 
~ 0.5 

1 
. .: 0.4 

Load Line 
Device CUNe 

0.3 

0.2 

0.1 

~~--~--~--~--~--~10--~12--~14~~16--~18--~20 
v2 (volts) 

Figure 5.2-7 Plot of the load line and the device curve for Example 5.2-1. 

5.2 Subplots and Ove rlay Plots 

The hold Command 

The hold command creates a plot that needs two or more plot commands. 
Suppose we wanted to plot Y2 = 4 + e-x cos 6x versus YI = 3 + e- x sin 6x, 
- I S x S I on the same plot with z = (0.1 + 0.9i)", where 0 S n S 10. Th is 
plot requires two plot commands. The script fi le to create thi s plot using the hold 
command fo ll ows. 

x = (-1:0.01 : 1) ; 
y1 = 3+exp(-x). *sin(6*x) ; 
y2 = 4+exp(-x) . *cos(6*x) ; 
plot( (0 . 1+0 . 9i) . /',(0 : 0 . 01 : 10)) , hold , plot(y1 , y2) , 
gtext( ' y2 versus y1 ' ) , gtext('Imag(z) versus Real(z) ' ) 

Figure 5.2-8 shows the resu lt. 
Although it is not needed to generate multiple plots with the 

plot (x , y , u , v) type command, the hold command is especially useful with 
some of the advanced MATLAB toolbox commands that generate speciali zed 
plots . Some of these commands do not allow for more than one curve to be gener­
ated at a time, and so they must be executed more than once to generate multiple 
curves . The hold command is used to do thi s. 

When more than one plot command is used, do not place any of the gtext 
commands before any p l ot command. Because the scaling changes as each 
p l o t com mand is executed, the label placed by the g t e xt command might 

y2 versus y1 

~ 1m" (,) """' R", (,) 

_1L-____ L-____ ~ ____ ~----~----~----~--~ 
- 1 

Figure 5.2-8 Application of the hold command. 

279 



I 

280 CHAPTER 5 Advanced Plotting and Model Building 

Table 5.2-2 Plot enhancement commands 

Command 

axes 
gtext ( 'text' ) 

hold 

Description 

Creates axes objects. 
Places the string text in the Figure window at a point specified by the 
mouse. 
Freezes the current plot for subsequent graphi cs commands. 

legend ( ' leg1' , ' leg2' , . . . ) Creates a legend using the strings leg1 , leg2, and so on and spec ifies 
its placement with the mouse. 

plot(x , y,u,V) 
plot(x,y , 'type') 

plot (A) 

plot(P , Q) 

refresh 
subplot(m , n , p) 

text (x , y , ' text ' ) 

---........,.. -...-- -....--... --;=- • -.. -.: •• ~ • 

Plots, on rectilinear axes, four arrays: y versus x and v versus u. 
Plots the 31Tay y versu the array x on rectilinear axes, using the line type, 
data marker, and colors pecified in the string type. See Table 5.2- 1. 
Plots the columns of the /11 x 11 array A versus their indices and generates 
11 curves. 
Plots an'ay Q versus array P. See the text for a description of the poss ible 
variants invol ving vectors and/or matrices: plot (x, A), plot (A , x) , 
and plot (A , B). 
Redraws the current Figure window. 
Splits the Figure window into an array of subwindows with 111 rows and 11 

column and directs the subsequent plotting commands to the pth 
subwi ndow. 
Place the Iring text in the Figure window at a point specified by 
coordi nates x, y . 

end up in the wrong position. Table 5.2-2 summarizes the plot enhancement 
introduced in this section . 

es Yo r Understanding 

T5.2-2 Plot the following two data sets on the same plot. For each set, x = 
0, 1, 2,3,4,5. Use a different data marker for each set. Connect the 
markers for the first set wi th solid Ijnes. Connect the markers for the 
second set with dashed lines. Use a legend, and label the plot axes ap­
propriately. The first set is y = 11 , 13,8,7 , 5,9. The second set is y = 2, 
4,5,3,2,4. 

T5.2-3 Plot y = cosh x and y = O.Sex on the same plot for 0 :::: x :::: 2. Use 
different line types and a legend to distinguish the curves. Label the plot 
axes appropriately. 

T5.2-4 Plot y = si nh x and y = O.Sex on the same plot for 0 :::: x :::: 2. Use a 
solid line type for each, the gtext command to label the sinh x curve, 
and the text command to label the O.Sex curve. Label the plot axes 
appropriately. 

T5.2-5 U e the hold :ommand and the plot command twice to plot y = sin x 
and y = x - x~ /3 on the same plot for 0 :::: x :::: I. Use a solid line type 
for each and use the gtext command to label each curve. Label the plot 
axes appropriately. 

5.2 Subplots and Overlay Plots 

Annotating Plots 

You can create text, titles, and labels that contain mathematical symbols, Greek 
letters, and other effects such as italics. The features are based on the TEX type­
setting language. Here we give a summary of these features. For more informa­
tion , including a li st of the avai lab le characters, search the on line help for " text 
properties." 

The text, gtext, title, xlabel , and ylabel commands all require 
a string as their argument. For example, typing 

»title (' A*exp (-t/tau) sin (omega t) ') 

produces a titl e that looks like A*exp (-t/tau) sin (omega t) but is sup­
posed to represent the function Ae- r

/
r sin (wt). You can create a title that looks 

like the mathematical function by typing 

»title( ' Ae"{- t/\tau}sin(\omega t) ' ) 

The backslash character \ precedes all TEX character sequences. Thus the strings 
\tau and \omega represent the Greek letters rand w. Superscripts are created 
by typing " ; subscripts are created by typing _. To set multiple characters as 
superscripts or subscripts, enclose them in braces. For example, type x_f 13 } to 
produce X13 . 

In mathematica l text variables are usually set in italic, and functi ons, like sin , 
are set in roman type. To set a character, say, x, in italic usi ng the TEX commands, 
you type {\ i t x}. To set the t i tl e fUllctio n usi ng these conventions, you 
would type 

»title( ' {\it Ae}"{-{\it t/\tau}}\sin({\it \omega t}) ' ) 

Hints for Improving Plots 

The following act ions, while not required, can nevertheless improve the appear­
ance of your plots: 

1. Start sca les from zero whenever poss ible. This technique prevents a false 
impress ion of the magnitudes of any variations shown on the plot. 

2. Use sensible tick-mark spacing. For example, if the quantiti es are months, 
choose a spacing of 12 because 1/ I 0 of a year is not a convenient division . 
Space tick marks as close as is useful , but no closer. For example, if the data 
is g iven monthly over a range of 24 months, 48 tick marks would be too 
dense. and al so unnecessary. 

3. Minimize the number of zeros in the data being plotted. For example. use a 
scale in millions of dollars when appropriate, instead of a scale in dollars 
with six zeros after every number. 

4. Determine the minimum and maximum data values for each axis before 
plotting the data. Then set the axis limjts to cover the entire data range plus 
an additional amount to allow convenient tick-mark spacing to be selected. 

281 



282 

.---;-", i""~~'--';~ ~-. _ ""C..~~ 

CHAPT ER 5 Advanced Plotting and Model Building 

For example, if the data on the x-ax is ranges from 1.2 to 9.6, a good choice 
for axis limits is 0 to 10. This choice allows you to use a tick spac ing of 
l or 2. 

5. Use a different line type for each curve when several are plotted on a single 
plot and they cross each other; for exampl e, use a so lid line, a dashed 
line, and combinations of lines and symbols. Beware of using colors to 
distingui sh plots if you are going to make black-and-white printouts and 
photocopie . 

6. Do not put many curves on one plot, particularly if they wi ll be close to 
each other or cross one another at severa l points. 

7. Use the same scale lim its and tick spacing on each plot if you need to 
compare information on more than one plot. 

5.3 Special Plot Types 

In this section we how how to obtain logarithmic axes; how to change the default 
tick-mark spacing and labels; and how to produce other specialized plots. 

Logarithmic Plots 

Thus far we have used only rectilinear scales. However, logarithmic scales are 
also widely used. (We often refer to them with the shorter term, log scale.) Two 
com mon reasons for choosi ng a log . ca le are ( I) to represent a data set that 
covers a wide range of va lues and (2) to identify certa in trends in data. As you 
will see, certain types of functional relationships appear as straight lines when 
plotted using a log scale. This method makes it eas ier to identify the function . A 
log- log plot has log scales on both axes. A semilog plot has a log scale on on ly 
one axis . 

For example, Figure 5.3-1 and 5.3-2 show plots of the function: 

Y= 
I OOC I - 0.0 I x 2)2 + 0.02x2 

(1 -x2 )2 +0. 1..1'2 

The first plot uses rectilinear scales, and the. econd is a log-log plot. Because of 
the wide range in values on both the abscissa and ordinate, rectilinear scales do 
not reveal the important features. 

It is important to remember the following points when using log scales: 

1. You cannot plot negative numbers on a log scale, because the logarithm 
of a negative number is not defined as a real number. 

2. You cannot plot the number 0 on a log scale, because log,o 0 = In 0 = -00. 

You must choose an appropriately small number as the lower limit on 
the plot. 

_ A 

5.3 Special Pial Types 283 

30 

25 

20 

15 

10 

o \. 
o 10 20 

Figure 5.3-1 Rectilinear scales can not properly di splay va ri ations over wiele ranges. 

10' 1--__ -

10 ' 

Figure 5.3-2 A log- log plot can dhplay wide variations in data value~ . 



284 CHAPTER 5 Advanced Plotting and Model Building 

3. The tick-mark labels on a log sca le are the actual values being plotted; they 
are not the logarithms of the numbers. For example, the range of x values in 
the plot in Figure 5.3-2 is from J 0- 1 = 0.1 to 102 = J 00. 

4. Equal di stances on a log scale correspond to multiplication by the same 
constant (as opposed to addition of the same constant on a recti linear sca le). 
For example, all numbers that differ by a factor of 10 m'e separated by the 
same distance on a log scale. That is. the distance between 0.3 and 3 is the 
same as the di stance between 30 and 300. This separation is referred to as 
a decade or cycle. The plot shown in Figure 5.3-2 covers three decades 
in x (from 0.1 to 100) and four decades in y and is th us ca lled a 
four-by-three-cycle plot. 

5. Gridlines and tick marks within a decade are unevenl y spaced. If 8 gridlines 
or tick marks occur within the decade, they correspond to va lues equal to 
2 , 3,4, ... , 8,9 times the value represented by the fi rst gridline or ti ck mark 
of the decade. 

MATLAB has three commands for generating plots having log scales. The 
appropriate command depends on which ax is must have a log scale. Follow these 
rules : 

1. Use the loglog (x, y) command to have both sca les logarithmic. 

2. Use the semi logx (x, y) command to have the x sca le logarithmic and 
the y scale rectilinem·. 

3. Use the semilogy (x , y) command to have the y scale logm'ithmic and 
the x scale rectilinear. 

Table 5.3-1 summarizes these functions. For other 2D plot types, type help 
specgraph. 

We can plot multiple curves with these commands just as with the plot 
command. In addition, we can use the other commands, such as grid, xlabel, 
and axis, in the same manner. 

Table 5.3-1 Specialized plot commands 

Command 

bar (x,y) 
loglog(x,y) 
plotyy (xl , yl , x2, y2) 

polar (theta, r, ' type ' ) 

semilogx (x , y) 

semilogy (x, y) 

stairs (x,y) 
stem(x , y) 

Description 

Creates a bar chart of y vel' us x . 
Produccs a log- log plot of y versus x. 
Produces a plot with two y·axes, yl on the left and y2 
on the right. . 
Produce; a pol ar plot from the polar coordi nates 
theta and r. using the line type. data marker. and 
colors pecified in the string type. 
Produces a semi log plot or y versus x with logarithmic 
ab cissa calc. 
Produce a semilog plot of y versus x with logarithmic 
ordinate scale. 
Produces a . tairs plot of y versus x. 
Produces a stem plot of y versus x. 

10.-----------, 

o~---------~ 
1 

10.-----------, 

>- 5 

o~-------~ 
10° 10' 

5.3 Special Plot Types 

10'.----------. 

10 ',r:----------

100~---------, 
10° 

Figure 5.3-3 Two data sets plotted on four types of plots. 

Figure 5.3-3 shows plots made with the plot command and the three log­
arithmic plot commands. The same two data sets were used for each plot. The 
session follows. 

»x = [1 , 1 . 5 , 2 , 2 . 5,3 , 3 . 5 , 4) ; 
»y1 = [4 , 3 . 16 , 2 . 67 , 2 . 34,2.1,1.92 , 1.78) ; 
»y2 = [8.83,7 . 02,5 . 57 , 4 . 43 ,3. 52 , 2 . 8 , 2 . 22] ; 
»subplot (2 , 2 , 1) 
»plot (x , y1 , x , yl, ' 0 ' , x,y2 , x , y2 , ' x ' ) ,xlabel ( ' x ' ) , ylabel ('y ' ) 
axi s ( [1 4 0 10)) 
»subplot (2,2,2) 
»semilogy(x , y1,x , yl, '0' , x , y2 , x , y2 , ' x ' ) , xlabel ( ' x') , ylabel ( ' y ' ) 
»subplot (2 , 2,3) 
»semilogx(x , yl,x , yl, ' 0 ' , x , y2,x,y2, ' x ' ) , xlabel ('x') , ylabel ( ' y ' ) 
»subplot (2,2 , 4) 
»10glog(x , y1 , x , yl, ' 0' ,x , y2 , x , y2 , ' x ' ) ,xlabel ( ' x ' ) , y abel ( ' y ' ) , 

axi s ( [1 4 1 10)) 

Note that the first data set lies close to a straight line only when plotted with both 
scales logarithmic, and the second data set nearly forms a straight tine only on 
the semilog plot where the vertical axis is logarithmic. In Section 5.5 we explain 
how to use these observations to derive a mathematical model for the data. 

285 



286 CHAPTER 5 Advanced Plotting and Model Building 

Frequency-Response Plots and Filter Circuits 

Many electrical applications use speciali zed circuits cal led Jillers to remove sig­
nals hav ing certain frequencies. Filters work by responding only to signals that 
have the desired frequencies. These signals are sa id to "pass through" the circuit. 
The signal that do not pass through are said to be "filtered out." For exam­
ple, a particular circuit in a radio is des igned to respond only to signal having 
the broadca t frequency of the desired radio station. Other circuits, such as 
those constituting the graphic equalizer, enable the user to seleet certain musical 
frequencie such as bass or treb le to be pa sed through to the speakers. 

The mathematics required to design filter circuits is covered in upper-level 
engineering courses. However, a simple plot often describes the characteristics 
of filter circuits. Sueh a plot, called ajrequency-response plOI, is often provided 
when you buy a speaker-amplifier sys tem. 

''''9'.'' Frequency-Response Plot of a Low-Pass Filter 

The circuit hown in Figure 5.3-4 can ists of a resi tor and a capacitor and is thus ca lled 
an RC circuit. If we apply a sinusoidal vo ltage v,, called the input vol tage, to the circuit 
a shown, then evenlUally the output vo ltage Va wi ll be sinusoidal also, with the same 
frequency but wi th a different amplitude and hifted in time relative to the input voltage. 
Specifically. if V, = Ai si n wI , then Va = AD si n (wI + 1;). The frequency-response plot is 
a plot of A,,/ A, versus frequency w. It is usually ploued on logari thmic axes. Upper- leve l 
engineering courses explain that for the RC circuit shown , this ratio depends on wand RC 
as fo llow: 

(5.3-1) 

where s = wi. For RC = 0. 1 second, obtain the log-log plot of IAo/ A i I versus wand use 
it (0 find the range offrequencie for which the output amplitude AD is less than 70 percent 
of the input amplilUde A" 

• Solution 
As with many graphical procedure, . you mu t gue s a range for the para meters in question. 
Here we Il1U t gue a range to use for the frequency w. If we use 1 ::::: w ::::: 100 rad/s, we 

GR 

v, C 
vD 

Figure 5.3-4 An RC .:ircuit. 

..... ~-

,~:\;~~ . 
~iJ a 

5.3 Special Plot Types 

1 00 r-~=Fr=eq:::::u==en:::!CY=-R_e,.sp_on-,-s....,e o_f ,-a ,.LO,.w--,-p_as_s _RC_C_ir-,-cu_it_(R....,C_=_0.,.1 _S)-,-....,---,--,-,-, 

o 
iii 
a: 

10-' '-::---~~_~~~~.L.-__ ~~_~~~~ 
10° 10' 

Frequency (rad/s) 

Figure 5.3-5 Frequency-response plot of a low-pass RC circuit. 

wi ll see the part of the curve that is of intere t. The MATLAB script fil e is as foll ows: 

RC = 0 . 1 ; 
s = [1 : 100)*i; 
M = abs(l . /(RC*s+l)) ; 
10glog (imag (s) , M) , grid , xl abel ( 'Frequency (rad/s) , ) , .. 
ylabel ( ' Outputiinput Ratio ' ) , .. 
title( ' Frequency Response of a LOv/-Pass RC Circuit (RC = 0 . : s) ' ) 

Figure 5.3-5 shows the plot. We can ee that the output/i nput rat io Ao/ A, decrcase~ as the 
frequency w increase. The ratio is approx imately 0.7 at w = 10 rad/s. The amplitude of 
any input signal havi ng a frequency grea ter than thi freq uency will decrease by at lea t 
30 percent. Thu this circuit is called a low-pass filter because it passe<, low-frcqucncy 
signal better than it passes high-frequency s ignal~. Such a circuit is often u ed to fi lter 
out noi e from nearby electrical machinery. 

Controlling Tick-Mark Spacing and Labels 

The MATLAB set command is a powerful command for changing the properties 
of MATLAB "objects," such as plots. We will not cover this command in depth, 
but will show how to use it to specify the pacing and labels of the tick marh. To 

287 



288 CHAPTER 5 Advanced Plotting and Model Building 

explore thi s command further, type help set and help axes . Many of the 
properti es that affect the appearance of pl ot axes are desc ribed under the axes 
command which should not be confused with the axis command . 

Up to' now we changed the ti ck-mark spacing by using the axi s command 
and hoped that the MATLAB autoscaling fea ture cho e a proper ti ck-mark spac­
ing. We can also use the following command to specify thi s spacing. 

set (gca, ' XTick ' , [xmin : dx: xmax] , ' YTick ' , [ymin : dy :ymax] ) 

Here xmin and xmax are the x va lues that specify the placement of the fi rst 
and the last tick marks on the x-ax is, and dx specifies the spacing between ti ck 
marks. You would normally use the ame va lues for xmin and xmax in both the 
set and axis commands. Similar definitions apply to the y-axis values ymin, 
ymax, and dy. The term gca stands for "get current axes." It tell s MATLAB 
to apply the new values to the axes currently used for plotting. For example, to 
plot y = 0.25x2 for 0 .:::: x .:::: 2, with tick marks spaced at intervals of 0.2 on the 
x-axis and 0.1 on the y-axis. you would type: 

[0 : 0 . 01 : 2] ; 
»y =0 . 25*x . "2 ; 
»plot(x , y) , set(gca , ' XTick ' , [0 : 0 . 2 : 2] , ' YTick ' , [0 : 0 . 1:1]) , 
xlabel ( ' x ' ) , ylabel ( ' y ' ) 

You can also u, e tJle Plot Editor to change the tick spacing. This is discussed in 
Section 5.4. 

The set command can also be used to change the tick-mark label s, for 
example. from numbers to text. Suppose we sell printers, and we want to plot 
the monthly ales in thousands of doll ars from January to June. We can use the 
set command to label the x-axis with the names of the months, as shown in 
the following es ion. The vector x contains the number of the month, and the 
vector y contains the monthly sales in thousands of dollars. 

[1 : 6] ; 

»y = [13 , 5 , 7 , 14 , 10 , 12]; 
»plot(x , y , ' 0 ' , x , y) , ... 

set (gca , ' XTicklabel ', [ ' Jan '; ' Feb '; ' Mar '; ' Apr '; ' May '; ' Jun ' ]) , ... 
set(gca , ' xTick ', [1 : 6]) , axis( [1 6 0 15]) , xlabel ( ' M~nth ' ) , 
ylabel ( ' Monthly Sales (51000) ' ) , ... 
title( ' Printer Sales for January to June , 1997 ' ) 

The plot appeaL in Figure 5.3-6. You can also use the Plot Editor to change 
labels. 

Note the labels in the set command must be enclosed in single quotes and 
are specified as a column vector; thus they m'e separated by semicolons. Another 
requirement is that all the labels must have the same number of characters (here, 
three characters). Table 5.3-2 summarizes the set command. 

~;~-?-

,~. 1:10 

5.3 Special Plot Types 

Prin ter Sales for January to June, 1997 
15 ,-------,-------~-------,------_.------_. 

o~----~~------~------~------~------~ 
Jan Feb Mar Apr May Jun 

Month 

FigUl'e 5.3-6 An example of controll ing the ti ck-mark labels with the set 
command. 

Table 5.3-2 The set command 

The set command specifies properties of objects such as axes. For example, 

set (gca, ' XTick ' , [xmin : dx : xmaxl , ' YTick ' , [ymin : dy :ymaxI ) 

pecifies the axi s limits xmin, xmax, ymin, and ymax and the tick spacing dx and dy . 
The command 

set (gca , ' XTick1abe1 ' , [ ' text ' J) 

specifies the tick labels on the x-axis, where the string text is a colu mn vector that &pecifies 
the tick labels. Each label must be enclosed in single quote, and all label mu~t have the 
same number of characters. For more informat ion , type help axes . 

Stem, Stairs, and Bar Plots 

MATLAB has several other plot types that are related to xy plots. These include 
the stem, stairs, and bar plots. Their syntax is very simple; namely, sterr (x , Y I , 
stairs (x , y), and bar (x , y) . See Table 5.3-\. 

289 



290 CHAPTER 5 Advanced Plotting and Model Building 

Separate y-Axes 

The plotyy function generates a graph with two y-axes. The syntax plotyy 
(xl, yl, x 2 , y2) plots yl versus xl with y-ax is labeling on the left, and plots 
y2 versus x2 with y-ax is labeling on the ri ght. Thesyntax plotyy (xl , yl , x~ , 
y2 , 'typel' , 'type2 ' ) generates a ' typel ' plot of yl versus xl with 
y-ax is labeling on the left, and generates a ' type2 ' plot of y2 versus x2 with 
y-axis labeling on the ri ght. For example, plotyy (xl , yl , x2 , y2 , ' plot ', 
' stem') uses plot (xl,yl) to generate a plot for the left ax is, and stem 
(x2 , y2) to generate a plot for the right ax is. 

Polar Plots 

Polar plots are two-dimensional plots made using polar coordinate. If the 
polar coordinates are (e, r) , where e is the angular coordi nate and r is the 
radial coordinate of a point, then the command polar (theta , r) will 
produce the polar plot. A grid is automatica ll y overl aid on a po lar plot. This 
glid consists of concentlic circles and radia l lines every 30°. The title and 
g text commands can be used to place a tille and text. The variant command 
p o l ar (theta , r , ' type ' ) can be used to specify the line type or data marker, 
just a with the plot command. 

'N'9"'. Plotting Orbits 

The equation 

p 
r=-- -

I - E cose 

describes the polar coordinates of an orbit measured from one of the orbit's two fo­

cal points. For objects in orbit around the sun. the un is at one of the foca l points. 
Thus r is the distance of the object from the sun. The parameters p and E determine 

the size of the orbit and its eccentricity. reo pecti vely. A circul ar orbit ha an eccentricity 

of 0 ; if 0 < E < I , the orbit is elliptical; and if E > I, the orbit is hyperbolic. Ob­
tain the polar plot that represents an orbit having E = 0.5 and p = 2 AU (AU stands 

for "a tronomical uni!" '; I AU is the mean di stance from the sun to Earth). How far 

away does the orbiting object get from the sun? How close does it approach Earth 's 
orbit? 

• Solution 

Figure 5.3-7 shows the polar plot of the orbit. The plot wa generated by the following 
e sion . 

» t heta = [0 : pi/90 : 2 *pi] ; 
»r = 2 . /(l-O . 5*cos(cheta)) ; 

»polar(theta , r) , title( ' Orbital Eccentricity 0 . 5 ' ) 

Orbital Eccentricity = 0.5 
90

4 
120 60 

5.3 Special Plot Types 

180 r----t--r----t-t---::::l~--t--+-_+_--f 

270 

Figure 5.3-7 A polar plot showing an orbit having an 
eccentricity of 0.5. 

The sun is at the origin , and the pl ot's concentri c circul ar grid enable us to deter­

mine that the closest and farthest di stances the object is from the sun are approximately 

1.3 and 4 AU. Earth 's orbit, which is nearly circular, is represented by the innermost 
circle. Thus the closes t the object gets to Earth 's orbit is approximately 0.3 AU. The 
radial gridlines allow us to determine that when e = 90° and 270°, the object is 2 AU 
from the sun. 

Test Your Understanding 

15.3-1 Obtain the plots shown in Figure 5.3-8. The power function is y = 2x - O.5, 
and the exponential function is y = 101 -x. 

15.3-2 Plot the function y = 8x 3 for -1 ~ x ~ 1 with a tick spacing of 0.25 on 
the x -axis and 2 on the y-axis. 

15.3-3 The spiral of Archimedes is described by the polar coordinates (e, r), 
where r = ae. Obtain a polar plot of this spiral for 0 ~ e ~ 4n, with the 
parameter a = 2. 

291 



292 C HAPTER 5 Advanced Plotting and Model Building 

20,--------------, 

10' 
15 

> 10 
Power 

" Exponential 

Exponential 
Power 

0.5 1.5 0.5 

10 ' _ Exponential 

Power 

> 
10° \ 

\ 

10- ' 
10- 2 10- ' 10° 

Figure 5.3-8 The power function .\' = 2x - O.5 and the exponential fUllction 
:v = 10 1

- , . 

5.4 Interactive Plotting in MATLAB 

1.5 

Thi s is an opti onal secti on that may be omitted without affecting your under­
standi ng of the materi al in subsequent secti ons and chapters. The graphics func­
tions covered in Sections 5.1 th rough 5.3 are powerful enough to create detail ed, 
professional-looking plots in MATLAB, and they can be placed in reusable script 
fi les to create imilar plots. This fea ture g ive them an advantage over the interac­
tive plotting inteJi'ace di scussed in th is secti on. This interface can, however, can 
be advantageous in situations where: 

• You need to create a large number of different types of plots, 

• You must construct plots involving many data sets, 

• You want to add annotations such as rectangles and ellipses, or 

• You want to change plot characteri stics such as tick spacing, fonts, bolding, 
ital ics, and colors. 

The interacti ve plotting environment in MATLAB is a set of tool s for : 

• Creating di fferent types of graphs, 

• Selecting variables to plot directly from the Workspace Browser, 

• Creating and editing subplots. 

5.4 Interactive Plotting In MATLAB 

• Add ing annota ti ons such as lines, arrows, tex t, rectangles, and ell ipses, and 

• Edi ting properties of graphi cs objects, such as their co lor, line weight, and 
fo nt. 

The Pl ot Tools interface inc ludes the fo llowing three panels associated with 
a given fi gure. 

• The F igure Palette : Use this to create and arrange subplots, to view and 
plot wo rkspace vari ables, and to add annotati ons. 

• T he P lot Browser: Use thi s to select and contro l the visibi lity of the axes 
or graphics objects plotted in the fi gure, and to add data fo r plotti ng. 

• T he P roperty E ditor: Use this to set basic properti es of the selected 
object and to obtain access to all properti es through the Property [nspector. 

Space limitati ons prevent us from di scussing in detai l all the fea tures of the 
MATLAB interactive plotting environment. The fo ll owing overview, however, 
should be suffi cient to get you started. It is recommended that as you read this 
section you foJlow along and perform the steps in MATLAB . Note that selecti ng 
Help from the F igure window enables you to go directly to graphics-specific 
sections of the MATLAB help. 

T he F igure Window 

When you create a plot, the F igure window appears wi th the F igure tool bar visible 
(see Figure 5.4- 1). Thi s window has eight menus. 

The F ile M enu The File menu is used fo r saving and printing the fi gure. 
This menu was di scussed in Secti on 5.1 under Saving F igures and Exporting 
F igures. 

T he E dit Menu You can use the Edit menu to cut, copy, and paste items, such 
as legend or titl e text, that appear in the fi gure. Click on Figure Properties to open 
the Property Editor- Figure di alog box to change certain properti es of the figure. 

Three items on the Edit menu are very useful fo r editing the fi gure. C lick­
ing the Axes Properties item brings up the Property Editor-Axes dialog box. 
Double-cli cking on any axis also brings up thi s box. You can change the sca le 
type (l inea r, log, etc .), the labe ls, and the tick marks by selecting the tab for the 
desired ax is or the fo nt to be edited. 

The Current Object Properties item enables you to change the properties 
of an object in the fi gure. To do thi s, fi rst cli ck on the object, such as a plotted 
line, then click on Current Object Properties in the Edit menu . You will ee 
the Property Editor- Lineseri es di alog box that lets you change properties such 
as line weight and color, data-marker type, and plot type. 

Click ing on any text, such as that placed with the ti tIe. xIabel. ylaDel. 
legend, or gtext commands, then selecting Current Object Properties in 
the Edit menu brings up the Property Editor-Tex t dialog box, which enables 
you to edit the tex t. 

293 

~-~~ •• ~"";''''~'''~l'V~'t---r--f''"'-- .. " 

'" 



294 CHAPTER 5 Advanced Plotting and Model Building 

Insert Tools Desktop Window Help 

D~riII~ ~ ~e. f'I~ \tC D g] o 

;0., 0 

-2 

-3 

Figure 5.4--1 The Figure window with the Figure toolbar displayed. 

The View Menu The items on the View menu are the three toolbars (Figure 
toolbar, Plot Edit toolbar, and Camera toolbar), the Figure Palette, the Plot 
Browser, and the Property Editor. These will be discussed later in this section. 

The Insert Menu The Insert menu enables you to insert labels, legends, titles, 
text, and drawing objects, rather than using the relevant commands from the 
Command window. To insert a label on the y-axis, for example, click on the 
Y Label item on the menu; a box will appear on the y-ax is. Type the label in thi s 
box, and then click oLltside the box to finish. 

The Insert menu also enables you to insert arrows, lines, text, rectangles, 
and ellipses in the figure. To insert an arrow, click on the Arrow item; the mouse 
cursor changes to a crosshair style. Then click the mouse button, and move the 
cursor to create the arrow. The arrowhead will appear at the point where you 
release the mouse button. Be sure to add arrows, lines, and other annotations only 
after you are finished moving or resizing your axes, because these objects are 
not anchored to the axes. (They can be anchored to the plot by pinning; see the 
MATLAB help.) 

To delete or move a line or aITOW, click on it. then press the Delete key to 
delete it, or press the mouse button and move it to the desired location. The Axes 
item lets you use the mouse to place a new set of axes within the existing plot. 

5.4 Interactive Plotting in MATLAB 

Click on the new axes, and a box will surround them. Any further plot commands 
issued fro m the Command wi ndow will direct the output to these axes. 

The Light item appli es to 3D plots. 

The Tools Menu The Tools menu includes items for adjusting the view (by 
zooming and panning) and the ali gnment of objects on the plot. The Edit Plot 
item starts the plot ed iting mode, which can also be started by clicking on the 
northwest-facing arrow on the Figure toolbar. The Tools menu also gives access to 
the Data Cursor, which is di scussed later in thi s section. The las t two items, Basic 
Fitting and Data Statistics, will be di scussed in Sections 5.7 and 7. 1 respectively. 

Other Menus The Desktop menu enables you to dock the Figure window 
within the desktop. The Window menu lets you switch between the Command 
wi ndow and any other Figure windows. The Help menu accesses the general 
MATLAB Help System, as well as help features specific to plotting. 

There are three tool bars available in the Figure window: the Figure toolbar, 
the Plot Edit toolbar, and the Camera tool bar. The View menu lets you select 
which ones you want to appear. We will discLlss the Figure toolbar and the Plot 
Edit tool bar in thi s section. The Camera tool bar is useful for 3D plots, which are 
di scussed at the end of this chapter. 

The Figure Toolbar 

To activate the Figure toolbar, select it from the View menu (see Figure 5.4-1). 
The four left-most buttons are for opening, saving, and printing the figure . Clicking 
on the northwest-facing arrow button toggles the plot edit mode on and off. 

The Zoom-in and Zoom-out buttons let you obtain a close-up or faraway 
view of the figure. The Pan and Rotate 3D buttons are used for 3D plots. 

The Data Cursor button enables you to read data directly from a graph by dis­
playing the values of points you select on plotted lines, slIIfaces, images, and so on. 

The Insert Colorbar button inserts a color map strip in the graph and is 
useful for 3D surface plots. The Insert Legend button enables you to insert a 
legend in the plot. 

The Plot Edit Toolbar 

Once a plot is in the window you can enable plot editing by clicking on the 
northwest-facing arrow on the Figure tool bar. Then double-click on an axis, a 
plotted line, or a label to activate the appropri ate property editor. Select Plot Edit 
toolbar from the View menu (see Figure 5.4--2). To add text that is not a label , title. 
or legend, cli ck the button labeled T, move the cursor to the desired location for 
the text, click the mouse button, and type the text. When finished. click outside the 
text box and note that the nine left-most buttons become highJighted and available. 
These enable you to modify the color, font, and other attributes of the text. 

To insert ,111'OWS, lines. rectangles, and ellipses, click on the appropriate 
button and follow the instructions given previously for the Insert menu. 

295 



296 CHAPTER 5 Advanced Plotting and Model Building 

-' fIgure 1.-
File Edit View Insert Tools Desktop Window Help 

D ~ \;I ~ ~ <±t6. {'f:§) \t: DC! 0 
~4. f!..A ,,~ ,,{ T D O -{;:) $ 

;>, 0 

-2 

-3 

-4 

Figure 5.4-2 The Figure window with the Figure and Plot Edit toolbars displ ayed. 

The Plot Tools 

Once a figure has been created you can display any or all of the three Plot Tools 
(Figure Palette, Plot Browser, and Property Editor) by selecting them from the 
View menu . You can also start the environment by first creating a plot and then 
clicking on the Show Plot Tools icon in the Figure tool bar (see Figure 5.4-3), 
or by creating a figure with the plotting tools attached by using the plot tools 
command. Remove the tool s by clicking on the Hide Tools icon. 

Figure 5.4---3 shows the result of clicking on the plotted line before clicking the 
Show Plot Tools icon. The plotting interface then di splay the Property Editor­
Lineseries. 

The Figure Palette 

The Figure Palette contains three panels, which are selected and expanded by 
clicking the appropriate button. Click on the grid icon in the New Subplots panel 
to display the selector grid that enables you to specify the layout of the subplots. In 
the Variables panel you can select a graphics function to plot the variable by select­
ing the variable and right-clicking to display the context menu. This menu contains 
a list of possible plot types based on the type of variable you select. You can also 
drag the variable into an axes set and MATLAB will select an appropriate plot type. 

5.4 Interactive Plotting in MATLAB 

FIe Eck VIew Insert Tools Oesiotop wtldow Help 

D~ ~ a l.!iJI itl.El. f1:!) +~ O ~ eJ 

~ ~D-A Of " " " 'l:TDO -J:loll 
lifiMiIiSl1§i ' '9fij .; . 
I. New SUbpIo!, 

f7\ 
0 ...... ("'''''') 

~§E 
~§E 

r· y ,,-, 

I ; ~ 

[ . ........ ""'" 

1\ Double Arrow 

RrextArrow 

IT TexlBox 

I° Elpse 

"; \~ ·3 

·4 

.50;--;---!;---::3--4~~-7---:----! 

~ 
XOIlt8Source.f!tjo v ~!"""hO." I 

---- v ~~ 

Figure 5.4-3 The Figure window with the Pl ot Tools activated. 

Selecting More Plots from the context menu activates the Plot Catalog tool, 
which provides access to most of the plotting functions. After selecting a plot 
category, and a plot type from that category, you will see its description in the 
right-most display. Type the name of a one or more variables in the Plotted 
Variables field, separated by commas, and they will be passed to the selected 
plotting function as arguments. You can also type a MATLAB expression that 
uses any workspace variables shown in the Figure Palette. 

Click on the Annotations panel to display a menu of objects such as lines , 
arrows, etc. Click on the desired object and use the mouse to position and size it. 

The Plot Browser 

The Plot Browser provides a legend of all the graphs in the figure. For example, 
if you plot an array with multiple rows and columns, the Browser lists each axis 
and the objects (lines, surfaces, etc .) used to create the graph. To set the properties 
of an individual line, double-click on the line. Its properties are displayed in the 
Property Editor-Lineseries box, which opens on the bottom of the figure . 

If you select a line in the graph, the corresponding entry in the Plot Browser 
is highlighted, indicating which column in the variable produced the line. The 
check box next to each item in the Browser controls the object's visibility. For 

297 



298 CHAPTER 5 Advanced Plotting and Model Building 

example. if you want to plot only certain co lumns of data, you can uncheck the 
columns not wanted. The graph updates as you uncheck each box and resca les 
the axes as required. 

The Property Editor 

The Property Editor enables you to access a subset of the selected object's prop­
ertie . When no object is selected, the Property Editor displays the figure's prop­
erti es. There are several ways to di splay the Property Editor. 

1. Double-click an object when plot edit mode is enabled. 

2. Select an object and ri ght-click to di splay its context menu , then select 
Properties. 

3. Select Property Editor from the View menu. 

4. Use the propertyedi tor command. 

The Property Editor enables you to change the most commonly used object 
properties. If you want to access all object properti es, use the Property Inspector. 
To di splay the Property Inspector, click the Inspector button on any Property 
Editor panel. Use of thi s feature requires detailed knowledge of object properties 
and handle graphics, and thus will not be covered here. 

Recreating Graphs from M-Files 

Once your graph i. finished, you can generate MATLAB code to reproduce the 
graph by selecting Generate M-File from the File menu . MATLAB creates a 
function that recreates the graph and opens the generated M-File in the editor. 
This feature is particularly useful for capturing property settings and other mod­
ifications made in the plot editor. You can al so use the makemcode function. 

Adding Data to Axes 

The Plot Browser provides the mechani m by which you add data to axes. The 
procedure is as follows: 

1. Select a 20 or 3D axis from the New Subplots subpanel. 

2. After creating the axis. select it in the Plot Browser panel to enable the Add 
Data button at the bottom of the panel. 

3. Click the Add Data button to display the Add Data to Axes dialog box. The 
Add Data to Axes dialog enables you to select a plot type and specify the 
workspace variables to pass to the plotting function . You can also specify 
a MATLAB expression, which is evaluated to produce the data to plot. 

5.5 Function Discovery 

Function discovery is the process of finding, or "discovering," a function that 
can describe a particular set of data. The following three function types can 
often describe physical phenomena. For example, the linear function describes 

5.5 Function Discovery 

the vo ltage-current relation fo r a resistor (v = i R). The linear relation al so de­
scribes the velocity versus time relati on fo r an object with constant acceleration 
a (v = at + vo). A power functi on describes the di stance d traveled by a fallin g 
object versus time (d = 0 .5g12

). An exponential function can describe the rela­
tive temperature !:::. T of a cooling object (!:::. T = !:::.Toe-C1 ) . The general forms of 
these fu nctions are: 

1. The linear function: 

y(x) = mx + b (5.5- 1) 

Note that yeO) = b. 

2. The power functi on: 

y(x) = b XIfl (5.5-2) 

Note that yeO) = a if In ::: 0, and yeO) = 00 if In < O. 
3. The exponential function: 

y(x) = b(lO)tnX (5 .5-3) 

or its equivalent form: 

y = be"l X 
(5 .5-4) 

where e is the base of the natural logarithm (In e = I) . Note that yeO) = b 
for both forms. 

Each function gives a straight line when plotted using a specific set of axes : 

1. The linear function y = In X + b gives a straight line when plotted on 
rectilinear axes. Its slope is 111 and its intercept is b. 

2. The power function y = bx '" gives a straight line when plotted on log-log 
axes. 

3. The exponential function y = b(10)"''\" and its equivalent form y = betnx 

give a straight line when plotted on a semi log plot whose y-axis is 
logarithmic. 

These properties were illustrated in Figure 5.3-8, which shows the power function 
y = 2x - O

.
5 and the exponential function y = Wi - x. 

We look for a straight line on the plot because it is relatively easy to recognize, 
and therefore we can easily tell whether the function will fit the data well. Using 
the following properties of base 10 logarithms, which are shared with natural 
logarithms, we have 

[oglO(ab) = loglo a + loglo b 

10glO(a"') = m loglo a 

Take the logarithm of both sides of the power equation y = bxm to obtain 

loglo Y = 10glO(bx
lll

) = loglo b + m 10gIOx 

299 



300 CHAP T ER 5 Advanced Plotting and Model Building 

This has the form 

Y = B + 117 X 

if we let Y = logl o y, X = logl o x, and B = loglo b. Thus if we ~Iot Y versus X 
on rectilinear cales, we will obtain a straight line whose slope IS /'11 and whose 
intercept is B. This is the same as plotting loglo y versus logl o x on. rectiline~r 
scales, so we will obtain a straight line whose slope is m and whose Intercept IS 
loglo b. This is equivalent to plotting y versu x on log-log. axes: Thus if the data 
can be described by the power function , it wi ll form a straIght lIne when plotted 
on log-log axes. 

Taking the logarith m of both sides of the exponential equation y = b( LO)"IX 
we obtain 

loglo y = IOgI0[b(10)IIIX] = loglo b + mx loglo 10 = Log lo b + mx 

because loglo LO = I . This has the form 

Y = B +mx 

if we let Y = loglo y and B = loglo b. Thus if we plot Y versus x on rectil inear 
scales, we wi ll obtain a straight line whose slope is m and whose intercept is B . 
This is the same as plotting loglo y versus x on rectilinear scales, so we will obtain 
a straight line whose slope is m and whose intercept is log lo b. This is equiva lent 
to plotting y on a log ax is and x on a rectilinear ax is (that is, semilog axes). Thus 
if the data can be described by the exponential function, it will fo rm a straight 
line when plotted on semi log axes (with the log axis used for the ordinate). 

Taking the logarithm of both sides of the equivalent exponential form 
y = be lllx gives 

This has the form 

Y = B + Mx 

if we let Y = loglo y, B = log lo b, and M = m log lo e. Thus if we plot Y versus 
x on rectilinear scales, we will obtain a straight line whose slope is M and whose 
intercept is B . This is the same as plotting log lo y versus x on rectilinear scaJ es, 
so we will obtain a straight line whose slope is /'11 log lo e and whose intercept is 
loglo b. This is equivalent to plotting y on a log ax is and x on a rectilinear ax is. 
Thus both equivalent exponential forms (5.5-3) and (5.5-4) will plot as a straight 
line on semi log axes. 

Steps for Function Discovery 

Here is a summary of the procedure to find a function that describes a given set 
of data. We assume that one of the function types (linear, exponential , or power) 

5.5 Function Discovery 

can describe the data. Fortunately, many applications generate data that these 
functions can describe. We assume that there is enough data and that it is accurate 
enough to identify the function . 

1. Examine the data near the origin. The exponential function can never 
pass th.rough the origin (unless of course b = 0, which is a trivial case). 
(See Figure 5.?-:1 for e~amples with b = I .) The linear function can pass 
throu~h. the ongll1 ~nly If b = O. The power function can pass through 
the origin but only If m > O. (See Figure 5.5-2 for examples with 
b = I .) 

2. Plot the data usi ng rectilinear scales. If it forms a straight line, then it can be 
represented by the linear function and you are fini shed. Otherwise, if you 
have data at x = 0, then 
a. If yeO) = 0, try the power function. 
b. If yeO) =j:. 0, try the exponential function. 
If data is not given for x = 0, proceed to step 3. 

3. If you suspect a power function, plot the data using log-log scales. 
Only a power function will form a straight line on a log-log plot. If you 
suspect an exponential function, plot the data using the semilog scales. 
Only an exponential function will form a straight line on a semilog 
plot. 

The Exponential Function y = lOmx 

3.5 m=1 

2.5 

1.5 

m = O 

0.5 
m=-1 

m = -2 

°0~~OL.1---0~.2~-0~.3~~0.-4--~0.~5===OC.6===0~.7===0~.8=--0~.9--~ 

Figure 5.5-1 Examples of exponential functions . 

301 



302 CHAPTER 5 Advanced Plotting and Model Building 

The Power Function y = xm 

m= 2 
m = 1 

m =0.5 
'" 2 

1.5 

0.5 
m= -0.5 

°0~~-0~.5----L----1~.5~--~---2~.5~--~--~3.~5--~ 

Figure 5.5-2 Examples of power functions. 

4. In function discovery applications, we use the log-log and semi[og plots 
only to identify the function type, but not to find the coefficients band m. 
The rea on is that it is difficult to interpolate on log scales. 

We can find the values of band m with the MATLAB polyf i t function . 
This function finds the coefficients of a polynomial of specified degree 17 that best 
fits the data, in the so-called least squares sense. You will see what this means in 
Section 5.6. The syntax appears in Table 5.5-1. 

Because we are assuming that our data will form a straight line on either a 
rectilinear, semilog, or log-log plot, we are interested only in a polynomial that 
cOITesponds to a straight line; that is, a first-degree polynomial , which we will 
denote as w = PI Z + P2. Thus, referring to Table 5.5-1, we see that the vector 
p will be [PI, P2] if n is 1. This polynomial has a different interpretation in each 
of the three cases: 

• The linear function: y = mx + b. In this case the variables HI and Z in the 
polynomial w = PI Z + P2 are the original data variables x and y, and we can 
find the linear function that fits the data by typing p = p o ly f i t (x, y , 1 ) . 
The first element PI of the vector p will be m , and the second element P2 
will beb. 

IL. 

5.5 Function Discovery 

Table 5.5- ] T he poly fit functi on 

Command 

p = polyfit(x , y , n) 

Description 

Fits a polynomial of degree It to data described by 
the vec tors x and y, where x is the independent 
vari able. Returns a row vector p of length n + I 
that contains the polynomial coe ffi cients in order of 
descending powers. 

• The power function: y = b XIll . In thi s case 

(5 .5-5) 

which has the form 

W =PIZ+ P2 

where the polynomial variables wand Z are related to the original data 
variables x and y by w = 10gl oY and Z = 10glOx. Thus we can find the 
power function that fits the data by typing p = polyf it (logl 0 (x) , 
loglO (y) , 1) . The first element PI of the vector p will be 111, and the 
second element P2 will be logl ob. We can find b from b = lOP' . 

• The exponential function: )' = b( 1 O)'"X. In this case 

(5.5-6) 

which has the form 

W=PI Z+P2 

where the polynomial variables HI and z are related to the original data 
variables x and)' by w = logl o)' and z = x. Thus we can find the 
exponential function that fits the data by typing p = polyf i t (x , 
loglO (y ) , 1) . The first element PI of the vector p wiJI be m, and the 
second element P2 will be 10g lob. We can find b from b = IOp2. 

Applications 

Function discovery is useful in all branches of engineering. Here we give 
three examples of applications in structural vibration. heat transfer, and fluid 
mechanics. 

Civil, mechanical, and aerospace engineers frequently deal with structures or 
machines that bend and vibrate. For such applications they need a model of the 
vibration. The following example illustrates a common problem-the estimation 
of the deflection characteristics of a cantilever support beam. 

303 

t 
t 
) 



304 

'+h'QF,ijl 

CHAPTER 5 Advanced Plotting and Model Building 

A Cantilever Beam Deflection Model 

The deflection of a cantilever beam is the distance its end moves in response to a force 
applied at the end (Figure 5.5-3). The following table gives the deflection x that w~s pro­
duced in a particular beam by the given applied force f. Is there a set of axes (rectilinear, 

semi log, or log-log) with which the data plot is a straight line? If so, use that plot to find 

a functional relation between f and x. 

Force f (Ib) Deflection x (in.) 

• Solution 

o 
100 
200 
300 
400 
500 
600 
700 
800 

o 
0.09 
0.18 
0.28 
0.37 
0.46 
0.55 
0.65 
0.74 

The following MATLAB script file generates two plots on rectilinear axes. T he data is 

entered in the arrays deflection and force. 

% Enter the data . 
deflection = [0 , 0.09 , 0.18 , 0 . 28,0 . 37 , 0 . 46 , 0 . 55,0.65,074); 
force = [0 : 100 : 800); 
% 
% Plot the data on rectilinear scales . 
subplot (2 , 1, 1) 
plot (force, deflection , '0' ) , . . . 

x1abel ( , Appl ied Force (lb) ' ) , ylabel ( 'Deflection (in .)'), ... 

axis([O 800 ° 0 . 8)) 

Weight f 

Beam 

Figure 5.5-3 An experiment to measure force and deflection in a cantilever beam. 

5.5 Function Discovery 

~:~8 ! i°.4 
00.2 

o----1~0~0--~20~0--~30~0----4~00----5~00----6~00----7~0-0----800 
Applied Force (Ib) 

j~ 
o 100 200 300 400 500 600 700 800 

Applied Force (Ib) 

Figure 5.5-4 Plots for the cantilever beam example. 

The plot appears in the fiTSt subplot in Fi gure 5.5-4. The data points appear to lie on a 
straight line that can be described by the relation f = kx, where k is called the beam 's 

spring constant. We can find the value of k by u ing the polyfit command a shown 
in the fO llowing script file which is a continuation of the preceding script file . 

% Fit a straight line to the data . 
p = polyfit(force , deflection , l); 
k = lip (1) 

% Plot the fitted line and the data . 
f = [0 : 2 : 800); 
x = Uk ; 
subplot (2 , 1 , 2) 
plot(f , x , force , deflection , '0'), . .. 

xlabel ( ' Applied Force (lb) ' ) , ylabel ( ' Deflection (in . ) ' ) , ... 
axis([O 800 ° 0 . 8)) 

This fil e computes the value of the spring constant to be k = 1079 lb/in. Thus the force 

is related to the deflection by f = 1079x . The second subplot in Figure 5.5-4 shows the 
clata and the line x = fI k, which fits the data well. 

Heat Transfer 

Civil, mechanical , and chemical engineers are often required to predict the temper­
atures that will occur in buildings and various industrial processes. Bio-engineers 

305 



30 6 C HAPTER 5 Advanced Plotting and Model Building 

and e nviro nmenta l e ngi neers m ust develop mode ls of temperature d istribu lion 
a nd heat loss in livi ng lhings and the environme nt. T h is area of s tudy is ca ll ed 
heall ra/,I.~fe r. T he nex t exa mple illustrates how we can use function d iscovery to 

predi ct the temperature dynam ics of a coo li ng object. 

'ef,UdiS' Temperature Dynamics 

The temperature of coffee cooli ng in a porcelain mug at room temperature (68°F) was 

measured at va ri ou times. The data foll ows. 

Time I (sec) Temperature T (OF) 

o 145 
620 130 

2266 103 
3482 90 

Develop a model of the co ffee's temperatu re as a fun cti on of time and use the model to 
estimate how long it will take the temperature to reach 120°F. 

• Solution 
Because 1' (0) is fi nite but nonzero, the power fun cti on cannot describe this data, so we do 
not bother to plot the data on log- log axes. 

Common sense tells us that the co ffee wi ll cool and its temperatu re wi ll eventuall y 
equal the room temperature. So we subtract the room temperature from the data and plot 
the relative temperature. T - 68, ver us time. Tf the relative temperature is a linear fu ncti on 
of time, the model is 

T - 68 = ml + b 

If the relati ve temperature is an exponentia l function of ti me, the model is 

l' - 68 = b( IO)"1I 

Figure 5.5- 5 shows the plot used to solve the problem. The fo ll owing MATLAB script 
fi le generate' the top two plots. The time data is entered in the array time, and the 
temperature data is entered in temp. 

% Enter the data. 
time = [0,620,2266,3482] ; 
temp = [liJ 5 , 13 0 , 103 , 9 ° 1 ; 
%Subtract the room temperature. 
temp = temp - 68 ; 
% Plot Lhe oata on rectilinear scales. 
subplot (2,2, 1 ) 
plot (time , temp , lime, temp , ' 0 ' ) , xlabel ( ' Time (sec) ' ) , ... 

~70 

'"' ~ 60 

iii 
ill. 50 
E 

~ 40 

~30 

200~-~-2-00-0 -~~-1 

Time (sec) 

l2 

~ 
~ 
iii 
ill. 
E 
~ 

." n; 

£ 

102r--~_~_~_~ 

1010:---~-2~00-0 -~_--.J 
Time (sec) 

l2 

I 
i!! 

~ 
~ 
~ 
.~ 
n; 

£ 

5.5 Function Discovery 

1010~~~-20-00------.l 
Time (sec) 

l2 
iil' 130 

'"' ~ 120 

iii 11 0 
ill. 
E 100 
~ 

90 

800:---~-2-00-0 _~_-.J 

Time (sec) 

Figure 5.5-5 Temperature of a cooling cup of coffee, pl otted on various 
coordinates. 

ylabel ('Relative Temperature (deg F)') 
% 

% Plot the data on semilog scales . 
subplot (2,2,2) 

semilogy (time , temp , time , temp , ' 0' ) , xlabel ( ' Time (sec) ' ) , . . . 
ylabel ( ' Relative Temperature (deg F) ' ) 

The data fo rms a straight line on the semil og plot only (the top right plot). Thus it can 
be described with the exponential function T = 68 + be l 0)"". Using the poly fit 
co mmand, the fo llowing lines can be added to the script fil e. 

% Fit a straight line to the transformed data . 
p = polyfit (time , 10g10 (temp) , 1) ; 

m = p(l) 
b = lO"p(2) 

The computed values are m = - 1.5557 x 10- 4 and b = 77.4469. Thus our derived model 
is T = 68 + b( I 0)"11 . To estimate how long it w ill take for the coffee to cool to 120 F, we 
must solve the equation 120 = 68 + b( lO)mr for t. The solution is I = [(IoglQ(1 20 - 68)­
log 10 b )] / m . The MATLAB command for this calculation is shown in the fo llowing script 
fil e, whi ch is a continuation of the previous script and produces the bottom two ubplots 
shown in Figure 5.5- 5. 

307 



308 CHAPTER 5 Advanced Plotl lng and Model Building 

% CompuL' Lhl' l iml' LO lP,lCh 120 c!eqiCP!; . 

L 12 0 ( loq 1 0 ( 1 20 68) 1 oq 1 0 (b) ) / m 
% show lh,' dL'livpci curve dnd esLlm,L cd poinL on sE'miJoq scule!;. 

[0 : 10 : '1000] ; 

8.b'10.A(m'l) ; 

subplol(2 , 2,1) 
semilogy(t , 'l' 68,Lime , em ,' 0 ', l_17.0 , 120-68 , '. ' ), 

xlabel ("rime (sc'e) ' ) , . . 

ylabel( ' R121aLive 'rpmpPldLu10 (dl'q I') ') 

% Show Lhe cil'rived CU1V·' and eSlimaLcd point on 1 CLiJinecu sCclles . 

subploL(2 , 2 , 4) 
ploL. (t , T , L.ime , mp' 68 , ' 0 ', l_120 , 120 ,' . ' ) , xlabel ( ' Time (sec) ' ) , . . . 

ylabel('rpmp'ldL.Ul' (de F) ' ) 

The computed value of L_120 b 1112. Thu, the tillle to reach 120 F is 111 2 ~ec . The 

plot of the model. along with the data and the e timated point ( 1112, 120) marked with 

a + ~ign . i. sho\ n in the boltom two subplots in Figure 5.5- 5. Because the graph 01 

our mc:dd lies ncar th~ data points. we can tre:!t its prediction o f 111 2 sec with some 

conlidence . 

Interpolation Clnd Extrapolation 

fter \ e discover a f"ullcticmal relation that de cribe. the data, we can use it to 
preelict conditions that lie 1I'i1hill the range of the original data. This process is 
calleel illlcrpO/lIlioll . For C\al1lple, we can use the coffee cup model to estimate 
how long it takes for the colTee to cool to 120 F because we have data below 
::md abo\~e 120 F. We can be fairly confident of this prediction beeau e Ollr model 
d 'scribe ' the temperature data very \\ cll. 

Erll"llpo/(1{ioll is the proce,'s of u ing the model to predict conditions that 
lie 0111. ide the original data r:1llge. Extrapolation might be u. ed in the beam 
example to predi 't hO\\ mllch force would be required to bend the beam 1.2 in. 
lTh ' predi ·ted valli' is found froll1 the model to be f = I 079( 1.2) = 1295 lb. ) 
\\'e must be careful when using ).,trapolation because we often have no rea on to 
belie\ that the math matical model i, valid beyond the range of the original data. 
For e'"lInpie, if we continu to bend the beam. e\ ntually the force i no longer 
pmponional t) the deflection and become. much greater than that predicted by 
tIl' lint'ar mod 'I r = J" r. 

E\trapc latio;) has a u~e in making tentati\'e pr diction. which I1lU t be baek d 
up b~ Ie . ting. The E\ample 5.5-3 de crib~ - an application of extrapolation. 

Hydraulic Engineering 

En£in 'cr~ in lllan\ Ii 'Ids. inclueling ci\ il. mechanical. bio. nuclear. chemical. 
and at'lw,pa e engin' r~. L)ften ne;d modeb to pr diet the flO\~ rate of fluid 

Figure 5.5-6 An ex penmentlo 
veril y Torricelli \ prinCiple. 

5.5 I, IrlCl lorJ Dl flCQVQ(Y 

under pressure. Torrice lli"s principle {~t hydraulic re.li,I/aI7Ce ~ta l e~ thal the vol­
~I/n e now I.·a te.r of a liquid through a restricliOIl- Ml<;h as an opening or a va lve­
IS pr.oportlonal to the ~quare root of the prc~ ~ure drop {J acros~ the restriction: 
that IS. 

I = c.JP (5 .5 -7) 

where c i~ a cOlmant. In many appli<;ations the weight of liquid in a tank cau~e,> the 
pre ure drop (see Figure 5.5- 6) . In ~uch 5 ituation~ Torricelli\ principle ~talcs that 
the now rale is proportional to the ~quare root of thc volume V of liquid in the 
tank. Thu 

f=rJV 

where r is a constant. 
Tonicelli\ principle is widely u ed to design vah'c'> and piping y<,lem<, for 

many app li cations, including water-wpply engineering, hydraulically pcJ\\,ered 
machinery. and chemical-procesing sy\lem,. I [ere we apply it to a familiar ilem, 
a coffee pot. 

Hydraulic RC.,j.,lancc 

A IS-cup coffee pot (, ee Figure 5.5- 6) ~\a., placed under a v.ater faucet and hlled to the 

15-cllp line. \\'Ith Ihe outlet vah e open. the faucet'" f10v. rate wa .. adju\led unllithe water 

le\ eI remained constant at 15 cup" and tht: time for one cup 10 flov. out of the pot \US 

mea ured. Thi, experiment wa ... repeated \\ ith the pot tilled to the \ariuus JC\cJ ~n in 

309 

'Wilg'.' 



310 CHAPTER 5 Advanced Plotting and Model Building 

the followin g table: 

Liquid volume V (cups) Time to fill one cup t (sec) 

IS 
12 
9 
6 

(a) Use the preceding data to verify TOITicelli's principle for the coffee pot and 
to obtai n a relation between the flow rate and the number of cups in the pot. (b) The 
manufacturer wants to make a 36-cup pot using the same outlet valve but is concerned 
that a cup wi ll fill too quickly, causing spill s. Extrapolate the re l atio~ developed in part (a) 
and predict how long it wi ll take to fill one cup when the pot contams 36 cups . 

• Solution 
(a) Torricelli's principle in equation form is f = rVI /2, where f is the fI.ow rate through 
the outlet valve in cups per second, V is the volume of liquid in the pot In cups, and r IS 
a constant whose value is to be found. We see that this relation is a power function where 
the exponent is 0.5. Thus if we plot 10glQ(f) versus 10glQ(V), we should obtain a straig.ht 
line. The values fo r f are obtained from the reciprocals of the given data for t. That IS, 

f = 1f t cups per second. 
The MATLAB script file follows. The resulting plots appear in Figure 5.5-7 . The 

volume data is entered in the array cups, and the time data is entered in me as_ t ime s . 

% Data for the problem . 

cups = [6 , 9 , 12 , 15]; 

meas_ times = [9 , 8 , 7 , 6] ; 

meas_ flow = 1 . / meas_ times ; 

% Fit a straight line to the transformed data . 
p = polyfit(10g10(cups) , 10g 10(meas_ flow ) , 1 ); 

coeffs = [p(1) , 10~p(2) ]; 

coeffs (1) 

b = coeffs(2) 

% 

% Plot the data and the fitted lin e on a l ogl o g plot t o see 
% how well the line fits the data . 

x = [6 : 0 . 01 : 40] ; 
y = b * x . ~m ; 

subplot (2 , 1 , 1) 

loglog (x , y , cups , meas_ flow , ' 0 ' ) ,grid, x labe l ( ' Volume (cups) ' ) , . . . 

ylabel( ' Flow Rate (cups/se c) ' ) , axis ([ 5 1 5 0 . 1 0.3]) 

The computed values are m = 0.433 and b = 0.0499, and our derived relation is f = 
0.0499 V 0.43] . Because the exponent is 0.433, not 0.5, our model does not agree exactly 

5.5 Function Discovery 

1 
g I 
t, ~ 

101 

Volume (cups) 

j it .. ... j 
5 1 0 15 20 25 30 35 

Volume (cups) 

Figure 5.5-7 Flow rate and fill time for a coffee pot. 

with Torri cell i's principle, but it is close. Note that the first plot in Figure 5.5- 7 shows 
that the data points do not lie exactly on the fitted straight line. In this application it 
is difficult to measure the time to fill one cup with an accuracy greater than an integer 
second, so this in accuracy could have caused OLLr result to disagree with that predicted by 
Torricell i. 

(b) Note that the fi ll time is I/f, the reciprocal of the flow rate. The remainder of 
the MATLAB script uses the derived flow rate relation f = 0.0499V 0.433 to plot the 
extrapolated fi ll -time curve 1/ f versus t . 

% Plot the fill time c urve e x trap o l ated t o 3 6 cups. 
subplot (2 , 1 , 2) 

plot (x , 1 . /y , cups , meas_ times , ' 0 ' ) ,grid, x1 a be1 ( ' Volume (cups ) ' ) , ... 
ylabel( ' Fill Time per Cup (sec) ' ) , a xi s([5 36 0 10]) 
% 

% Compute the fill time for V = 36 cups . 
V = 36 ; 

f _ 36 = b*V~m 

The pred icted fi ll time fo r one CLI p is 4.2 sec. The manufac turer must now decide 
if th is time is sufficient for the user to avoid overfilling. (In fact, the manu facturer did 
construct n 36-C llP pot, and the fi ll time is approximately 4 sec, which agrees wi th OLLr 
pred ict ion.) 

311 



312 

RESIDUALS 

C HAPTER 5 Advanced Plotting and Model Building 

5.6 Regression 
We can distinguish between two types of analysis in experiments involving two 
variables, say, x and y. In the first type, called correlation analysis, both vari­
ables are random, and we are interested in finding the relation between them. An 
example is the analysis of the relation , if any, between the chemistry grades x 
and physics grades y of a group of students. We will not deal with correlation 
analysis in this text, because it is an advanced topic in statistics. 

With the second type of analysis, called regression, one of the variables, 
say, x , is regarded as an ordinary variable because we can measure it without 
error or assign it whatever values we want. The variable x is the independent 
or controlled variable. The variable y is a random variab le. Regression analysis 
deal s with the relationship between y and x. An example is the dependence of 
the outdoor temperature y on the time of day x. 

In the previous ection we used the MATLAB function polyfi t to perform 
regression analysis with functions that are linear or cou ld be converted to linear 
form by a logarithmic or other transformation. The p o l y f i t functio n is based 
on the least squares method, which we now di scuss. We also show how to use 
this function to develop polynomial and other types of functions. 

The Least Squares Method 

Suppose we have the three data points given in the following table, and we need 
to determine the coeffic ients of the straight line y = /11,X + b that best fit the 
following data in the least squares sense. 

o 
5 

10 II 

According to the least squares criterion, the line that gives the best fit is the one that 
minimizes J , the sum of the squares of the vertical differences between the line 
and the data points (see Figure 5.6- 1). These differences are called the residuals. 
Here there are three data points, and J is given by 

3 

J = L (mx; + b - y;)2 

Substituting the data values (x;, y;) given in the table, we obtain 

J = (Om + b - 2)2 + (Sm + b - 6)2 + (10m + b - 11)2 

• Data Point 

I,mx1+b- Y11 

(Xl'Yl) 

Y= mx+b 

I mx",-y" 
(X3'Y3) 

Figure 5.6-1 Illustration of tbe least squares criterion. 

5.6 Regression 

. .If ~ou are familiar with calculus, you know that the values of 111. and b that 
~l1~~~I.ze J are found by setting the partial derivatives aJ lam and aJ jab equal 

aJ 
am = 2(5111. + b - 6)(5) + 2(lOm + b - 11)(10) = 250m + 30b - 280 = 0 

aJ 
at; = 2(b - 2) + 2(Sm + b - 6) + 2(10111. + b - 11) = 30m + 6b - 38 = 0 

These conditions give the following equations that must be solved for the two 
unknowns m and b. 

250m + 30b = 280 

30m + 6b = 38 

The s~lution is m = 0.9 and b = 11/6. The best straight line in the least squares 
sense IS y = 0.9x + 11 / 6. If we evaluate this equation at the data values x = 0 5 
and 1 0, we obtain the values y = 1.833,6.333, 10.8333. These values are differ~n~ 
from the given data values y = 2, 6, and II because the line is not a perfect fit to 
the data. The value of J is J = (1 .833 - 2)2 + (6.333 - 6)2 + (10.8333 _ 11)2 = 
~ . 16?56689. No other straight line will give a lower value of J for this data. This 
hne IS shown in Figure 5.6-2. 

313 



3 14 
C H A PTER 5 Advanced Plotting and Model Building 

10 
y = 0.9x + 1.8333 

:>.,6 

10 

Figu re 5.6-2 The least squares lit for the example data. 

OW suppo ~e we \ ant to tit a quadratic function y = a I x" + C12X + a3 to a 

se t of IN data point . Then the expression for J is 

J = t (OtX,2 + (/~X, + C/3 _ .1',)2 
;=1 

U ina calculu. (find the uerinltive aJ l al1l. aJ l aa2, and aJ 13a3 and. et them 
equalto 0). we can obtain the fo llowing equation. that must be solved for al· C/2, 
and i7 .,: 

m III 111 m 

(/1 LX; +(/2L ·\;'+ {l :l LX; = Lxh, 
,=t I= t 1=1 ,= t 

'" m 111 IN 

(/t LX;'+(/2 L rf+C/3 Lx; = LX'Y' 
,~t ,=1 ;=1 ,=t 

Th . (' thr" linear equations are in term. of the three unkno\\nl> a t . a~. and (/3 · 

and the~ can t ' ~ohed ea~il:- in \1ATLAB. 

5.6 RegreSSion 315 

Ta hle 5.6- 1 FUIll;tion, for polynomial regrc,; ion 

Command Descriplion 

polyf i L (x , y , 11) Fil , a pol ynomial ()ftkgrce n to data de,cribed by Ihc vector, z alld y, 
where x i; the independent variable. RelLil n, a row vec tor r, oj lcngth 
n,l that contai n, the pol ynomi al cOeffICI(;Ill, in order of dc,cending 
power,. 

[p , s , mu J po 1 y [ i L (x , y , n) 

[y , del d] polyviJl(p , x , s , mu) 

Fit., a pol Yllolllwl nfdegrce n to data dc,>cribed by Ihe vector, z and y, 
where x i, thc indepcndent va ri able. Return , a row vector fJ of length 
n, 1 that contain ., Ihe pol ynomial coeJ licieJlt , in ordcr of de.,cending 
power, alld a ,tn.lctun: Ie, lor u'>c wi th p0l Y -Jd 1 10 ()btaill crror 
e; lilllate; for predi ction.,. The optiomd output vari ablc rr I i, a 
two-clcment vector cont aini llg the mcan alld , tandard dev iation f)f /. . 
U;c; the op ti onal outpul htructurc f gC llerated by r r" " f1l) 

po 1 y fit (x , y , n) to ge llerate crror c, ti,natc.,. If the crr"r~ in thc 
data u,cd With pol y lit arc ilJdcpendent and normall y dj ~tributcd 

with con, lant variancc, al lci.l ~ t 50 percelll or the data will lie within the 
band y ± ckltd. 

In general, for the polynom ial (/IX" + C/2X" I + ... + CI"X + {/" t I. the !,um 
of the squares of the residuals for m data points i" 

J=L (Cllx" + a2X" 1+ ... + a"x+ a" 11-yd 2 

1=1 

The va lues of the n + I coefficients Cl j that minimi7.e J can be found by ~ ()I v ing a 
et of n + I linear equations. The poly f ~ t function providc~ thi ~ ~olution . It<. 
yntax is p = polyfi t (x , y , n) . The function fits a polynomial of degree /I 

to data described by the vec(or~ x and y . where x is the indepl:ndent variable. The 
resul t p is the row vector of length 11 + I that contain,> the pol ynomial coeffi­
cients in order of descending power~ . Table 5.6- 1 ~umJl1ari7.cs the po ;/; . , and 
polyval f unctions. 

To illustrate the use of the po I yf i L function. con,>ider the data '>et whl:rc 
x = 1.2.3 .... , 9 and \' = 5.6, 10.20.28.33,34.36,42. The following '>cript 
fil e find,> and plot. the first- through fourth-degree polynomiah for thi., data and 
evaluate J for each polynomial. 

x = [1. : 9 J ; 

Y = [5 , 6 , lO , 2G , 28 , 33 , 34 , 36 , 42]; 

xp = [1 : 0 . 01 : 9: ; 
for k = 1 : L; 

er:d 

coef: - polyfi'C.(z , y , :':, 
;/p(;': ,: ) = po_yva:lcoe:f,xDI ; 
':(k) = s2«po:yva.(ccefr ,:;.:)·Y . ~21 ; 

5 b!->~o::.f2 , 2 , ::,) 

p:o:.'xp , yp(., : , x , ).' , ' c ', , ax:" 



316 

....,..-......,.,....~~~~,....r .. ~"' ....... '~- ~ ,-,c-

CHAPTER 5 Advanced Plotting and Model Building 

subplot (2 , 2 , 2) 
plot(xp , yp(2 ,: ) , x , y ,' o ' ) , axis([0 10 50]) 
subplot (2,2 , 3) 
plot(xp , yp(3 ,: ),x , y ,' o ' ) , axis([0 10 50]) 
subplot (2 , 2 , 4) 
plot(xp , yp(4 ,: ) , x , y, ' o') , axis([0 10 50]) 
disp (J) 

The plots are hown in Figure 5.6-3, and the J va lues are, to two signific~nt 
figures, 72, 57 , 42, and 4.7. Thus the value of J decreases as the polynomial 
degree is increased, as we would expect. The figure shows why th~ fourth-degre.e 
polynomial can fit the data better than the lower-~egree polynoml~,ls . Be~~~lse It 
has more coefficient, the fourth-degree polynomJaI can follow the bends I.n the 
data more easi ly than the other polynomials can. The first-degree polynonual ~a 
straight line) cannot bend at all, the quadratic polynomial has one bend, the cubic 
has two bends, and the quartic has three bends. . . 

The polynomi al coefficients in the preceding script file are contamed III the 
vector poly fit (x, y , k) . If you need the polynomial coefficients, say, for the 
cubic polynomial , type polyfit(x , y , 3) after the program has been run . 

First Degree Second Degree 
50 50 

40 

/ 
40 

/ 30 30 

20 20 

10 10 

0 
10 

0 
0 10 0 

Third Degree Fourth Degree 
50 50 

40 0 
40 

/ 30 / 30 

20 20 

10 10 

0 
10 

0 
0 10 0 

Figure 5.6--3 Regression u~ ing polynomials of fir t through fourth degree . 

~ 1" ,'-4 '~ 

.. 

5.6 Regression 

60 

40 

'" 20 

- 20 

~00~~0~.5--~--~1.5~~----2~.5--~---3~.5--~--~4.-5--~ 

Figure 5.6--4 An example of a fifth-degree polynomial that pa ses through all six 
data points but exhibits large excursion between point . 

The result is -0.] 019, 1.3081 , 0.7433, and 1.5556. These values correspond to 
the polynomial -0. 1 0]9x 3 + 1.308l x 2 + 0.7433x + 1.5556. 

It is tempting to use a high-degree polynomial to obtain the best po sible fit. 
However, there are two dangers in using high-degree polynomials. Figure 5.6-4 
illustrates one of these dangers. The data value are x = 0, I, ... , 5, and y = 0, 
1,60,40, 41 , and 47. Because there are six data points, a fifth-degree polynomial 
(which has six coefficients) can be found that passes through all six points and thus 
its J value will be O. This polynomial , which can be found using the polyfit 
function, is plotted in Figure 5.6-4 along with the data. Note how the polynomial 
makes large excursions between the fir t and the last pairs of data points. Thus 
we could get large errors if we were to use this polynomial to e timate y values 
for 0 < x < I and for 4 < x < 5. High-degree polynomials often exhibit large 
excursion between the data points and thus should be avoided if po ible. 

The second danger with using high-degree polynomials is that they can pro­
duce large errors if their coefficients are not represented with a large number of 
ignificant figures. We examine this issue later in thi section. 

In some cases it might not be po sible La fit the data with a low-degree 
polynomial. In such cases we might be able to use several cubic polynomials. 
This method, called cubic splines, is covered in Chapter 7. 

317 



318 CHAPTER 5 Advanced Plotting and Model Building 

Test Your Understanding 

T5.6-1 Obtain and plot the fi rst-through fourth-degree polynomials fo r t.he fo l­
lowing data: x = 0, I, ... , 5 and Y = 0, J, 60,40, 4 J, and 47. F lOd the 
coeffi cients and the J va lues. 
(Answer: The polynomials are 9.57 14x + 7.57 14; -3.6964x2 + 
28 .0536x - 4. 7500; 0.324 Ix' - 6.1 270x 2 + 32 .4934x - 5.7222; and 
2. 5208x 4 - 24.8843.\3 + 7 1.2986x 2 - 39.5304x - 1.4008. The corre­
sponding J va lues are 1534, 1024, 10 17, and 495 , respecti vely.) 

Fitting Other Functions 

In the previous secti on we used the po1yfit fu ncti on to fi t power and expo­
nentia l function . We found the power function y = bx lll that fits the data by 
typing p = po1yfit(log10(x) , log10(y),1) . Thefi rst element plof 
the vector p will be 111 , and the second element P2 will be log lo b. We can fi nd b 
from b = 10 1'2. We can fi nd the exponential functi on y = b(JO)IIlX that fits the 
data by typing p = po1yfit(x , log10(y) , 1) . Thefirst element PI of the 
vector p will be 111 , and the second element P2 will be log lo b. We can fi nd b from 
b = lO P'. 

Any function is a candidate for fitting data. However, it might be diffic ult to 
obtain and sol ve equations for the functi on's coeffi cients. Polynomial are used 
because their curves can take on many shapes and because they resul t in a set of 
linear equations that can be eas ily so lved fo r the coeffi cients. As we have just seen, 
the power and exponential functi ons can be converted to first-degree polynomi als 
by logarithmic tran formati ons. Other function. can be converted to polynomi als 
by suitable transformat ions. 

Given the data (y. ~), the logarithmic functi on 

y = min :: + b 

can be converredto a first-degree polynomi al by transformin g the z values into x 
va lue by the transform ation x = In ::. The resulting function is y = mx + b. 

Given the data (y , z). the function 

y = b(l O)IIl /: 

can be converted to an exponential function by transforming the z values by the 
tran formation x = 1/":: . In MATLAB we can type p = po1yfit (1 . /z , 
10g10 (y) , 1) . The first element PI of the vector p will be In , and the econd 
element Pl will be loglo b. We can find b from b = 10 "' . 

Given the data (v, x) . the function 

I 
V = --

IIIX + b 

~['J'~~~~~!,,~ ..... 

5.6 Reg ression 

c~n be conver~cd to ~ first-degree polynomia l by transforming the v data va lues 
with the transformation y = ] Iv. The resul ti ng function is y = mx + b. 

The Quality of a Curve Fit 

In gener~ l , if the ,u'bitrary function y = f (x ) is used to represen t the data, then 
the error 10 the representation is given by ei = f(Xi) - Yi, for i = 1, 2, 3, . .. , m . 
The errOl: (or r~s idual ) ei is the difference between the data value Yi and the value 
of y obtained from the fu nction, that is, f(Xi). The least squares criterion used to 
fit a fun cti on f(x) is the sum of the squares of the residuals J . It is defin ed as 

III 

J = I )fCXi ) - Yif (5 .6- 1) 
i= 1 

We can use thi s cri terion to compare the quality of the curve fil for two or morc 
functions used to describe the same data. The function that gives the smallest J 
value gives the bes t fit. 

We denote the sum of the squares of the deviati on of the y values fro m lheir 
mean y by S, which can be computed from 

(5.6- 2) 
i = 1 

Thi s formul a can be used to compute another measure ofthe qualily of the curve fit , 
the coefficient of determination, also known as the r-squared value. It is defi ned as 

(5.6-3) 

For a perfect fit , J = 0 and thus r 2 = 1. Thus the closer r 2 is to I, the better 
the fi t. The largest r 2 can be is 1. The value of S indicates how much the data 
is spread around the mean, and the value of J indicates how much of the data 
spread is unaccounted for by the model. Thus the ratio J / S indicate the fractional 
vari ation unaccounted for by the model. It is possible for J to be larger than S, 
and thus it is possible for r 2 to be negative. Such cases, however, are indicati ve of 
a very poor model that should not be used. As a rule of thumb, a good fit accounts 
for at leas t 99 percent of the data variation . This value corresponds to r 2 ::: 0.99. 

For example, the following table gives the values of J , S, and r 2 for the first­
th rough fourth-degree polynomials used to fit the data x = 1.2, 3, . . . , 9 and 
y = 5, 6, 10, 20, 28, 33 , 34, 36, 42. 

Degreen J ,:1 

72 1562 0.9542 
57 1562 0.9637 
42 1562 0.9732 
4.7 1562 0.9970 

319 

COEFFICIENT OF 
DETERMI. ATION 



320 C HAPTER 5 Advanced Plotting and Model Building 

Because the fourth -degree polynomial has the largest r 2 value, it represents. the 
data better than the representation from first- through third-degree polyno mi als, 
according to the ,.2 criteri on. 

To ca lcul ate the values of Sand ,.2, add the following lines to the end of the 
script file shown on pages 315 to 316. 

mu = mean (y) ; 
for k=1 : 4 

end 

r2 

S(k) = sum( (y-mu) . A2) ; 

r2 (k) = 1 - J(k) /S(k) ; 

Regression and Numerical Accuracy 

We mentioned that there are two dangers in using high-degree polynomials. The 
first danger is that high-degree polynomials often exhibit large excursions between 
the data points, and thus we could get large errors if we were to use a high-degree 
polynomial to estimate y values between the data poi nts. 

The second danger with using high-degree polynomials is that their coeffi ­
cients often require a large number of significant figures to be represented accu­
rately. Thus if you ca lculate these coefficients using the polyf i t function and 
you intend to include these coefficients in a repolt, for example, then you should 
display them with the format long or format long e commands. As an 
example, consider the data: 

0.1 14 2.022 28 0.4308 
2 1.884 16 1.65 30 0.203 
4 2.732 18 1.5838 32 0. 1652 
6 3.388 20 1.35 34 -0.073 
8 3.346 22 1.0082 36 - 0.002 

10 3 24 0.718 38 - 0.1122 
12 2.644 26 0.689 40 0.106 

Using the format long command, a sixth-degree polynomial fit , 
poly f i t (x , y , 6) , gives the result 

y = -6.33551 X 1O- 9x 6 + 2.09690135 X 1O- 6x5 

- 1.9208956532 X 10- 4 x4 + 7.77770991616 X 10- 3 x 3 

- 0.15 I 78006527153x 2 + 1.20369642390774x 

+0.0577394277217 (5.6-4) 

It is plotted along with the data in the top graph in Figure 5.6-5. The J and ,.2 

va lues are J = O. I 859 and ,. 2 = 0.9935. 

,) 

5.6 Regression 

o 5 10 15 20 25 30 35 40 
x 

Figure 5.6-5 Effect of coeffic ient accuracy on a sixth-degree polynomial. The top 
graph shows the effect of 14 decimal-place accuracy. The bottom graph shows the 
effect of 8 decimal-place accuracy. 

Now suppose we keep only the first eight decimal places of the coefficients. 
T he resulting polynomial is 

y = Ox6 + 2. 1 x 1O- 6x 5 
- 1.9209 X 1O- 4x 4 

+ 7.7777 X 1O- 3x3 
- 0.15178007x 2 

+ 1.20369642x + 0.05773943 (5.6-5) 

This polynomial is plotted in the bottom graph of Figure 5.6-5. Obviously, the 
polynomial deviates greatly from the data for the larger values of x. The fit is so 
poor as to be useless for val ues of x greater than 26 approximately. Polynomials 
whose coeffic ients have not been specified accurately enough are prone to large 
elTors at large values of x . 

High-degree polynomials have coefficients that not only must be di splayed 
and stored wi th great accuracy but also are harder to compute accurately. As the 
polynomial degree increases, the number of linear equations to be solved also 
increases, and inaccuracies in the numerical solution of these equations become 
more s ignifi cant. 

An altemative to using a high-degree polynomial is to fit two or more func­
ti ons to the data. To illustrate this approach. we will fit two cubics because a 
cubic has greater fl exibility than a quadratic but is less susceptible to numerical 
inaccurac ies than hi gher-degree polynomials. Examining the data plot in 

321 



322 C HAPTER 5 Advanced Plotting and Model Building 

Figure 5.6-5 , we see that the data has a bend near x = 5 and another bend 
near x = 38. The transition between the convex and concave parts of the data 
appears to be around x = 15 . Thus we wi ll fit one cubic over 0 :::: x :::: 15 and 
another over 15 < x :::: 40. The necessary script fi le follows. 

xl [0 : 2 : 14] ;x2 = [16:2 : 40]; 
y1 [0.1, 1.884, 2 . 732, 3.388, 3 . 346, 3 , 2.644 , 2 . 022] 
y2 [1.65, 1.5838, 1.35 , 1.0082, 0 . 718, 0.689, 0.4308, 
0 . 203 , 0 . 1652 , -0.073, -0 . 002 , -0 . 1122, 0 . 106] ; 
x = [xI,x2] ; 
y = [y1 , y2] ; 
% Create variables zl and z2 to generate the curve . 
zl = [0 : 0 . 01 : 15]; z2=[15 : 0 . 01 : 40]; 
% Fi t two cubics . 
w1 = polyfit(x1 , y1,3) ; 
w2 = polyfit(x2 , y2,3) ; 
% Plot the results . 
plot(zI,polyval(w1 , zl) , z2 , polyval(w2 ,z 2) ,x, y , ' 0 ' ) , ... 

xlabel ( ' x' ) , ylabel ( ' y ' ) 
% Compute the coefficient of determination . 
mu1 = mean (y1) ; 
mu2 = mean (y2) ; 
S = sum ( (y1-mu1) . "2) + sum ( (y2-mu2) . "2) 
J = sum ( (polyval (wI, xl) -y1) . "2) + sum ( (polyval (w2 , x2) - y2) . "2) 

r2 = 1 - J / S 

The values are S = 12.8618, J = 0.0868, and r 2 = 0.9932, which indicates a 
very good fit. The plot is shown in Figure 5.6-6. The curves are not tangent, but 
they need not be for thi s example. However, some applications require the curves 
to be tangent, and in Section 7.4 we develop a method for fitting cubics that are 
tangent. Here we estimated the transition point x = 15 at which to separate the 
two cubics. You can experiment with other values to improve the fit, although the 
fit we achieved is very good. 

If we want to estimate a value of y for 0 :::: x :::: 15, we use the first cubic, 
which is found from w1 and is 

y = 0.00249494949495x3 
- 0.09924512987013x 2 

+ 1.03759920634921x + 0.1] 742424242424 

To estimate a value of y for 15 < x :::: 40, we use the second cubic, which is 
fo und from w2 and is 

y = 0.000203642191 14x3 
- 0.01381168831169x2 

+ 0. l9723598068598x + 1.24452447552445 

Note that MATLAB reports the coefficients to 14 decimal places. 
To demonstrate the robustness of the cubic polynomials, their coefficients 

were rounded off to eight decimal places. For these rounded coefficients, 

"'r"'"7"~~~~~~~ '.-c."",'-'" 

. ' ",: .,:..-: .. : ;:'::~"".:!~;~';: '.:"." 
, & 

5.6 Regression 

3.5 I--,--;::--.,-------r---,---r-----r---~-_ 

2.5 

>. 1.5 

o 0 

0.5 

-0.5 0:;------:;---;-,.1 0:----:':15:----:!20:-------2'--5 --3.L
0
--

3
-"-5-.--J

40 

Figure 5.6- 6 Use of two cubics to fit data. 

S = 12.8618, J = 0.0868, and r 2 = 0.9932; these values are identical to 
the results obtained with the more accurate coefficients. 

Scaling the Data 

The effect of ~omputational errors in computing the coefficients can be lessened by 
?ro~erl~ scalmg the x values. When thefunction polyf i t (x , y , n) is executed, 
It wIll Issue a warning message if the polynomial degree n is greater than or 
equal to the number of data points (because there will not be enough equations 
for MATLAB to solve for the coefficients), or if the vector x has repeated, or 
nearly repeated, points, or if the vector x needs centering and/or scaling. The 
alternate syntax [p , s , mul = polyfit (x , y ,n ) finds the coefficients 
p of a polynomial of degree n in terms of the vaJiable 

,Y = (x - /.Lx) / ax 
The output vari able mu is a two-element vector, [/.Lx , ax], where /.Lx is the mean 
of x, and ax is the standard deviation of x (the standard deviation is discussed in 
Chapter 7). 

You can scale the data yourself before using polyfit. Some common 
scaling methods are 

x = x - Xmin or ,y = x - /.Lx 
if the range of x is small, or 

x , x 
,1'=- or X =--

if the range of x is large. 
Xmax X mean 

323 



324 

,s'Hip,e,-
C HAP TER 5 Advanced Plotting and Model Building 

Estimation of Traffic Flow 

Civ il and transportation engineers must often estimate the future traffic flo,,:, on roads and 

bridges to pl an for mai ntenance or pos ible future expansion. The fo ll owing d.ata g l v~s 
the number of vehicles (i n millions) crossi ng a bridge each year for 10 years. Fit a cubic 

polynomial to the data and use the fit to estimate the flow in the year 2000. 

Year ]990 1991 1992 1993 1994 1995 1996 1997 1998 1999 

Vehicle fl ow 2.1 3.4 4.5 5.3 6.2 6.6 6.8 7.4 7.8 

(milli ons) 

• Solution 
If we atte mpt to fit a cubic to this data, as in the fo llowing session, we get a warning 

message. 

»Year = [1990 : 1999] ; 
»Veh Flow = [2 .1.3 . 4 , 4.5,5.3,6.2,6.6,6.8,7,7.4,7.8]; 

»p =-polyfit(Year , Veh_Flow,3) 
warning : polynomial is badly condi tioned . 

The problem is cau ed by the large values of the independen t variable Year. Because 

their range is small, we can imply subtract 1990 from each va lue. Continue the session 

as fo llows. 

»X = Year-1990 ; 
»p = polyfit(x , Veh_ Flow , 3) 

p = 
0 . 0087 -0 . 1851 1 . 5991 

»J = sum((polyval(p3 , x)-y).A2) ; 
»5 = sum((y-mean(y» . A2) ; 

»r2 = 1 - J/5 
r2 = 

o . 9972 

2 . 0362 

TIm the polynomi al fi t is good because the coeffic ient of determination is 0.9972. The 

corresponding polynomi al is 

f = 0.0087(1 - 1990l- 0. 185 1 (I - ] 990)2 

+ 1.599 1 (t - 1990) + 2.0362 

where f is the traffi c fl ow in millions of vehicles, and 1 is the time in years measured from 

O. We can use thi equation to es timate the fl ow at the year 2000 by substituting 1 = 2000, 
or by typing in MATLAB polyval (p , 10) . Rounded to one decimal pl ace, the answer 

is 8.2 million vehicle . 

5.6 Regression 

Using Residuals 

In some previous examples we used the value of the coeffic ient of determination, 
r2, as an indication of the success of the fit. Here we wi ll show how to use the 
residuals as a guide to choos ing an appropri ate function to describe the data. In 
general, if you see a pattern in the plot of the residual s, it indicates that another 
function can be fo und to describe the data better. 

325 

Modeling Bacteria Growth ".0'9"i. 
Bacteria have be ne fi c ial uses, such as in the production offoods, beverages, and medic ines. 

On the other hand, some bacteria are important indicators of poor environmenta l qu ality. 

Engineers in the food, environ menta l, and chemical industries often must understand an~ 

be able to mode l the growth of bacteria. The fo llowi ng tab le gives data on the growth of 

a certain bac teri a populati on with time. Fit an equation to this data . 

Time (min) Bacteria (ppm) Time (min) Bacteria (ppm) 

6 10 350 
13 I I 440 
23 12 557 
33 13 685 
54 14 8 15 
83 15 990 

11 8 16 1170 
156 17 J350 
2 10 18 1575 
282 19 1830 

• Solution 
There is no simple equati on that describes bacte ri a l growth under a varie ty of conditions, 

so we do not have a predetermined mathematical function to use. The exponential growth 

law, y = bellll or its equivalent fo rm y = be l 0)111 1, sometimes fits the data, and we will 

see if it works here. There are other functions that could be tried, but fo r brevity, here we 

will try three po lynomia l fi ts (l inear, quadratic, and cubic), and an exponential fit. We will 

examine the ir res iduals to determine which bes t fi ts the data. The script fil e i g iven below. 

Note that we can write the expone nti al form as y = b(lO)"'1 = 101II1+a
, where b = 10". 

The coeffic ients a and 1"/1 w ill be obtained with the po ly fit function. 

% Time data 
x = [0 : 19] ; 
% Population data 
y = [6 , 13 , 23 , 33 , 54 , 83 , 118 , 156 , 210 , 282 , . .. 
350 , 440 , 557 , 685 , 815 , 990 , 11 70 , 13 50 , 1575 , 1830 1 ; 
% Linear fit 
p 1 = po 1 y fit (x , y , 1) ; 
% Quadratic fit 
p2 = polyfit(x , y , 2) ; 
% Cubic fit 



326 CH APTER 5 Advanced Plotting and Model Building 

p3 = polyfit(x,y,3); 
% Exponential fit 
p4 = polyfit(x,loglO(y),l); 
% Residuals 
resl = polyval (pl , x) -y ; 
res2 = polyval (p2 , x) -y; 
res3 = polyval (p3, x) -y; 
res4 = lO."polyval(p4,x)-y; 

You can then plot the residuals as hown in Figure 5.6- 7. Note that there is a definite pallern 
in the residuals of the linear fit. This indicates lhatthe linear function cannot m~tch .the 
curvature of the data. The residuals of the quadratic fit are much smaller, but there IS slill a 
pattern , with a random component. This indicates lhat the quadratic function also c.a nnot 
match the curvature of the data. The residuals of the cubic fit are even small er, with no 
strong pattern and a large random component. This indicates that a polynomial degr~e 
hiaher than three will not be able to match the data curvature any better than the cubic. 
The residuals for the exponential are the largest of all , and indicate a poor fit. NOle also 
how the residual systematically increase with I , indicating that the ex ponential cannot 
describe the data 's behavior after a certain time. 

Thus the cubic is the best fit of the four model considered. Its coefficient of deter­
mination is ,.2 = 0.9999. The model is 

y = 0. 19161 3 + 1.20821 2 + 3.6071 + 7.7307 

where y is the bacteria population in ppm and 1 is time in minutes. 

'[ 
S 0 

~ 
~-200 

-400 

-<l00 -<l0 
0 10 0 10 

t(min) t(min) 

E _1000 

~ 0 i 
~ Exponentlsl 

~ 
-5 

-10 

-15 
0 10 

-500 
0 10 

t (mln) t(m,n) 

Figure 5.6-7 Residual plots fo r the four models. 

5.6 Regression 

Constmining Models to Pass through a Given Point 

Many app li cations require a model whose form is dictated by physical principles . 
For example, the force-extension model of a spring must pass through the origin 
(0, 0) because the spring exerts no force when it is unstretched. Thus a linear 
spring model f = (fIX + a2 must have a zero value for a2. However, in general 
the poly fit function wi II give a nonzero value for (/2 because of the scalter or 
measurement error that is usually present in the data. 

Linear Model To obtain a zero-interceptl11odel of the form Y = alX , we must 
derive the equation for al from basic principles. The sum of the squared residuals 
in this case is 

III 

J = 2:)alx; - y;)2 
;= 1 

Computing the derivative aJ laal and setti ng it equal to 0 gives the result 
In III 

al L X; = L X;Y; (5.6-6) 
;=1 ;=1 

which can be easily solved for al. 

Quadratic Model For the quadratic model , y = alx2 + a2X + a3, the co­
efficient (f3 must be 0 for the curve to pas through the origin. The sum of the 
squared residuals in this case is 

J = t (alx; + a2 X; - y;)2 
;=1 

Computing the derivatives aJ laal and aJ laa2 and setting them equal to 0 gives 
the equations: 

til III m 

al L xi+ a2L x; = L Y;x; (5 .6-7) 
;=1 ;=1 ;=1 
m III m 

al L X; + Cl2 L X; = L Yix; (5.6-8) 
;=1 ;=1 ;=1 

These can be solved for al and a2. 
If the model is required to pass through a point not at the origi n, say the point 

(xo, Yo), subtract Xo from all the x values, subtract Yo from al l the y value, and 
then use the above equations to find the coefficients. The resulting equations wi ll 
be of the form 

(5 .6-9) 
and 

y = (f1(X - xO)2 + Cl2(X - xo) + Yo (5 .6-10) 

You can derive equations for other functions in a similar manner. 

327 



328 

"#'P'W. 

CHAPTER 5 Advanced Plotting and Model Building 

Multiple Linear Regression 

Suppose that y is a linear function of two or more variables, XI , X2, . . .. For 

example, 

(5 .6- 11) 

To find the coefficient values Qo , (I I , and a 2 to fit a set of data (y, X I , X2) in the 
least squares sense, we can make use of the fact that the left-di vision met~od 
for solving linear equations uses the least squares method w~en the equation 
set is overdetermined (see Chapter 6, Section 6.5). To use thi s method, let It 

be the number of data points and write the linear equation in matrix fo rm as 

follow . 

Xa = y (5 .6- 12) 

where 

(5 .6-13) 

I

I X II X2 1] 1 X I2 X22 

X = 1 ~ ~ ~ X23 

I XI " X2" 

(5.6-14) 

y = l~·] 
y" 

(5.6-15) 

where Xl i , X2i , and Yi are the data, i = 1, . . . , 11. The solution for the coefficients 
is given by a = X \ y . 

Breaking Strength and Alloy Composition 

Chemical, civil. mechanical, aerospace, and biomedical engineers need to predict the 
trength of metal part a a function of their alloy composition. The tension force y 

required to break a steel bar is a function of the percentage XI and X2 of each of two 
alloying elements pre ent in the metal. The following table gives some pertinent data. 

Obtain a linear model y = ao + alxl + (/ 2X 2 to describe the relationship. 

5.6 Regression 

Breaking strength (kN) % of element 1 % of element 2 
y Xl X2 

7.1 5 
19.2 7 
3 1 8 
45 11 

• Solution 
The script file is as follows: 

xl = [0 : 3) , ; x2 = [5 , 7 , 8 , 11) , ; 
Y = [7 . 1 , 19 . 2 , 31 , 45) ' ; 
x = [ones(size(x1)) , xl , x2); 
a = X\y 

yp = X*a ; 
Max_ Percent_ Error = 100*max (abs ( (yp - y) . /y) ) 

The vector yp is the vector of breaking-strength val ues predicted by the model. The 
scalar Max_Percent_ Er r or is the maximum percent error in the four predictions. The 
results are a = [0 . 80 0 0 , 10 . 2 42 9 , 1. 21 43] ' and Max_Percent_ Error = 
3 . 2193 . Thus the model is y = 0.8 + 10.2429x I + l.2l43x2. The maximum percent 
error of the model's predictions, as compared to the given data, is 3.2193 percent. 

Linear-in-the-Parameters Regression 

Sometimes we want to fit an expression that is neither a polynomial nor a function 
that can be converted to linear form by a logari thntic or other transformation. In 
some cases we can still do a least squares fit if the function is a linear expression 
in terms of its parameters. The following example illustrates the method. 

Response of a Biomedical Instrument 

Biomedical instrumentati on is an important engineering fie ld . These devices are used to 
measure many qu antities, such as body temperature, blood oxygen level, heart rate, and 
so forth. Engineers developing such devices often need to obtain a response curve that 
describes how fast the instrument can make measurements. The theory of instrumentation 
shows that often the response can be described by one of the following equations, where 
v is the voltage output, and t is time. In both models, the voltage reaches a steady-state 
constant value as t ~ 00, and T is the time required for the voltage to equal 95 percent 

of the steady-state value. 

v(r) = aJ + a2e-311T (First-order model) 

vet ) = al + a2e - 311T + a3te-311T (Second-order model) 

329 

'.'P,we 



330 C HAP TER 5 Advanced Plotting and Model Building 

The fo llowing data gives the output voltage of a certain device as a function of time. 

Obtain a function that describes this data. 

t (s) 0.3 0.8 l.l 1.6 2.3 

v (V) 0 0.6 1.28 1.5 1.7 1.75 1.8 

• Solution 
Plotting the data we estimate that it takes approximately 3 seconds fo r the vol tage to 
become constant. Thus we estimate that T = 3. The fi rst-order model wntten for each of 

the n data points resul ts in n equations, which can be expressed as fo llows: 

or, in matrix form , 

1.8 

1.6 

1.4 

1.2 

2: 1 
~ 

0.8 

0.6 

0.4 

0.2 

0 
0 

9 

/ 

0.5 

Xa=y' 

1.5 
t Is) 

' - 6 -

Figure 5.6-8 Compari son of firs t- and second-order model fi ts. 

2.5 

5 .7 The Basic Fitting Interface 

which can be solved for the coefficient vector a using leftdivision. The fo llowing MATLAB 
script solves the problem. 

[0,0.3,0 . 8,1.1,1.6 , 2 . 3 , 3]; 
y = [0,0 . 6,1.28 , 1.5,1.7 , 1.75 , 1.8]; 

[ones (size (t) ) ; exp (-t)] , ; 

X\ y' 

The answer is al = 2.0258 and a2 = -1.9307. 
A simil ar procedure can be followed fo r the second-order model. 

Continue the previous script as fo llows. 

X = [ones(size(t));exp(-t) ; t .*exp(-t)] '; 

a = X\y ' 

The answer is al = 1.7496, a2 = - 1.7682, and a3 = 0.8885 . The two models are plotted 
with the data in Figure 5.6- 8. Clearly the econd-order model gives the better fi t. 

5.7 The Basic Fitting Interface 
MATLAB suppor ts curve fitting through the Basic Fitting interface. Using thi s 
interface , you can quickly perform basic curve fitt ing tasks within the same easy­
to-use environment. The interface is designed so that you can: 

• Fi t data using a cubic spline or a polynomial up to degree 10. 

• Plot multiple fits simultaneously for a given data set. 

• Plot the residuals. 

• Examine the numerical results of a fit. 

• Interpolate or extrapolate a fit. 
• Annotate the plot with the numerical fit results and the norm of residuals. 

• Save the fit and evaluated results to the MATLAB workspace. 

Depending on your specific curve fitting application. you can use the Basic Fitting 
interface, the command line functions, or both. Note: you can use the Basic Fitting 
interface onl y with two-dimensional data. However, jf you plot multiple data sets 
as a subplot, and at least one data set is two-dimensional, then the interface is 
enabled. 

Two panes of the Basic Fitting interface are shown in Figure 5.7-\. To re­
produce thi s state: 

1. Plot some data. 

2. Select Basic Fitting from the Tools menu. 

3. Click the right arrow button once. 

331 



332 CHAPTER 5 Advanced Plotting and Model Building 

Select data: I data 1 v I 
o Center and scale X data 

Plotfits------­

Check to display fits on figure 

o spline interpolant 

o shape-preserving interpolant 
iii.\§.! 

o quadratic 

o cubic 

o 4th degree polynomial 

o 5th degree polynomial 

o 6th degree polynomial 

o 7th degree polynomial 

o 8th degree polynomial 

o 9th degree polynomial 

o 10th degree polynomial 

~ Show equations 

Significant digits: E3 
~ Plot residuals 

o Show norm of residuals 

Numer ice I resu~s 

Fit: L0:1:..:e~er ______ v_J 
Coefficients and norm of resrduals 

'I = pl"x A 1 + p2 

Coefficients: 

pI = 0.77727 

p2 = 1. 4091 

Jorm. of ~esidua1s = 
1. 345 

Save to workspace .. 

Figure 5.7-1 The Basic Fitting interface. 

The third pane is used for interpolating or ex trapolating a fit. It appears when you 
click the right arrow button a second lime. 

At the top of the first pane is the Select data window which contains the 
names of all the data sets you di splay in the Figure window associated with the 
Basic Fitling interface. Use this menu to select the data set to be fit. YOli can 
perform multiple fits for the cutTenl dala et. Use the Plot Editor to change the 
name of a data set. The remaining items on the first pane are used as follows. 

• Center and scale X data. If checked, the data is centered at zero mean 
and scaled to unit standard deviation . You may need to cenler and sca le 
your data to improve the accuracy of the subsequent numerical 
computations. As described in the previous section , a warning is re turned to 
the Command window if a fit produces results that may be inaccurate. 

• Plot fits. This panel allows you to vi sually explore one or more fil S to the 
current data set. 

5.7 The Basic Fitting Interface 

• Check to display fits on figure. Select the fits you want to di spl ay for the 
current data set. You can choose as many fits for a given data set as yo u 
want. However, if your data set has n points, then you should use 
polynomials with , at most, n coefficients. If you fit using polynomials with 
more than n. coefficients, the interface wi ll automaticall y set a sufficient 
number of coefficients to 0 during the calculation so that a solution can be 
obta ined. 

• Show equations. If checked, the fit equation is displayed on the plot. 

• Significant digits. Select the significant digits associated wi th the fit 
coefficient di sp lay. 

• Plot residuals. If checked, the residuals are displayed. You can display 
the residual s as a bar plot, a scatter plot, a line plot using either the same 
figure wi ndow as the data or using a separate figure window. If you pl ot 
multiple data sets as a subplot, then residuals can be plotted on ly in a 
separate figure window. See Figure 5.7-2. 

• Show norm of residuals. If checked, the norm of residuals is displayed. 
The norm of residuals is a measure of the goodness of fit, where a small er 
value indicates a better fit. The norm is the square root of the sum of the 
squares of the residuals. 

.I Figure 1 GJ[Q)[RJ 
File Edit View ln~rt Tools Desktop Window Help 

~ .• ~ ~ ~ I ~ r±l. ~ ('/ ~ ~ 0 ~I • !QI 

20r-~--o---~~--~--~~--~ __ o--, 

15 y=O.7S'x +1 .4 _~ 

. " ~ 
51r"~-
OrO~--~2---4~~--~--~10--~12~-1~4--~16~-1~8~~ 

resi~uals 

Figure 5.7-2 A figure produced by the Ba ic Fitting interface. 

333 



334 CHAPTER 5 Advanced Plotting and Model Build ing 

The second pane of the Basic Fitting Interface is labeled Numerical Results. This 
pane enables you to explore the numerical results of a single fit to the current data 
set without plotting the fit. It contains three items. 

• Fit. Use this menu to select an equation to fit to the CUlTent data set. The 
fit results are displayed in the box below the menu . Note that selecting an 
equation in this menu does not affect the state of the Plot fits selection. 
Therefore, if you want to display the fit in the data plot, you may need to 
check the relevant check box in Plot fits . 

• Coefficients and norm of residuals. Displays the numerical results for 
the equation selected in Fit. Note that when you first open the Numerical 
Results panel , the res ults of the last fit you selected in Plot fits are 
displayed. 

• Save to workspace. Launches a dialog box that allows you to save the fit 
results to workspace valiab les. 

The third pane of the Basic Fitting inteli"ace contains three items. 

• Find Y = f( X) . Use this to interpolate or extrapolate the CUlTent fit. 
Enter a scalar or a vector of values corresponding to the independent 
vari able (X). The current fit is evaluated after you click on the Evaluate 
button, and the results are displayed in the associated window. The current 
fit is di spl ayed in the Fit window. 

• Save to workspace. Launches a dialog box that allows you to save the 
eva luated results to workspace vari ab les. 

• Plot evaluated results. If checked, the evaluated results are displayed on 
the data plot. 

5.8 Three-Dimensional Plots 

Functions of two variables are sometime difficult to visualize with a two­
dimensional plot. Fortunately, MATLAB provides many functions for creating 
three-dimensional plots. Here we will summarize the basic functions to create 
three types of plots: line plots, surface plots, and contour plots. Information 
about the related functions is available in MATLAB help (category graph 3d). 

Three-Dimensional Line Plots 

Lines in three-dimensional space can be plotted with the pIot3 function. Its 
syntax i pIot3 (x , y , z). For example, the following equations generate a 
three-dimensional curve as the parameter I is varied over some range: 

x = e- O.05r sin I 

y = e- O.05r cos I 

Z = f 

~~~-:-!~~-;!!F{,:;;~~-~J - ~'.-

, -' ~ . . ,:" < ~ ~--. -' ~

5.8 Three-Dimensional Plots

35

30

25

20

15

10

0.5 . 1
0.5

-0.5
-0.5

-1 -1

Figure 5.8-1 The cu rve x = e- O.05r sint, y = e- O.05r cos I, Z = t plotted with the
plot3 fu nction.

If we let t vary from t = 0 to t = IOn, the sin and cos functions will vary
through five cycles, while the absolute values of x and y become smaller as I

increases. This process results in the spiral curve shown in Figure 5.8-1 , which
was produced with the following session.

»t = [O : pi/SO : 10*pi] ;
»pIot3(exp(-O . OS*t) . *sin(t) , exp(-O . OS*t) . *cos(t) , t), . . .
xIabel ('x') , ylabel ('y') , zlabel (' z ') , grid

Note that the grid and label functions work with the pIot3 function, and that
we can label the z-axis by using the z I abe 1 function , which we have seen for the
first time. Similarly, we can use the other plot-enhancement functions discussed
in Sections 5.1 and 5.2 to add a title and text and to specify line type and color.

Surface Mesh Plots

The function z = f(x, y) represents a surface when plotted on xyz axes, and the
mesh function provides the means to generate a surface plot. Before you can use
thi s function, you must generate a grid of points in the xy plane, and then evaluate
the function f(x, y) at these points. The meshgrid function generates the grid.
Its syntax is [X , Y] = meshgrid (x , y). Ifx = [xmin : xspacing: xmax]
and y = [ymin : yspacing : ymax] , then this function will generate the co­
ordinates of a rectangular grid with one corner at (xmin. ymin) and the opposite

335

336 CHAPTER 5 Advanced Plotting and Model Building

corner at (xmax, ymax). Each rectangular panel in the grid will have a width
equal to xspacing and a depth equal to yspacing. The resulting matrices X and Y
contain the coordinate pairs of every point in the grid . These pail'S are then used
to evaluate the function .

The function [X, Y) = meshgrid (x) is eq uivalent to [X, Y) =
meshgrid(x,x) and can be used if x and y have the same minimum val­
ues, the sanle maximum values, and the same spacing. Using this form, you can
type [X , Y) = meshgrid (min : spacing : max), where min and max
specify the minimum and maximum values of both x and y and spacing is
the desired spacing of the x and y values.

After the grid is computed, you create the surface plot with the mesh function.
Its syntax is mesh (x , y , z) . The grid, label, and text functions can be used with
the mesh function . The following session shows how to generate the surface plot
of the function z = xe-lCx-y2)'+Y'l, for -2 S x S 2 and -2 S y S 2, with a
spacing of 0.1. This plot appears in Figure 5.8-2.

»[X , Y) = meshgrid(-2 : 0 . 1 : 2) ;
> > Z = X. * exp (- ((X - Y . "2) . " 2 + Y . "2)) ;
»mesh (X , Y, Z) ,xlabel ('x') ,ylabel ('y ') , zlabel (' z ')

Be careful not to elect too small a spacing for the x and y values for two reasons:
(1) Small spacing creates small grid panels, which make the surface difficult to
visualize, and (2) the matrices X and Y can become too large.

The surf and surfc functions are similar to mesh and meshc except that
the former create a shaded surface plot. You can use the Camera tool bar and some
menu items in the Figure window to change the view and lighting of the figure.

0.5

N 0

-0.5
2

-2 -2

Figure 5.8-2 A plOI of the surface z = xe-I('-")'+)" I created with the mesh function .

5.8 Three-Dimensional Plots

Contour Plots

Topographic plots show the contours of the land by means of constant elevation
lines. These lines are also called contour lines, and such a plot is called a contour
plot. If you walk along a con toW" line, you remain at the same elevation. Contour
plots can help you visualize the shape of a function. They can be created with the
contour function, whose syntax is contour (X , Y, Z) . You use this function
the same way yo u use the mesh function; that is, first use the meshgrid func­
tion to generate the grid and then generate the function values. The following
session generates the contour plot of the function who e surface plot is shown in
Figure 5.8-2; namely, z = xe-lCx-Y')'+Y'l, for -2 S x S 2 and -2 S y S 2,
with a spacing of 0.1. This plot appears in Figure 5.8-3.

»[X,Y) = meshgrid(-2 : 0.1 : 2) ;
»Z = X . *exp(-((X- Y . "2) . "2+Y."2)) ;
»contour (X , Y, Z) ,xl abel ('x') , ylabel ('y')

Contour plots and surface plots can be used together to clarify the function.
For example, unless the elevations are labeled on contour lines, you cannot tell
whether there is a minimum or a maximum point. However, a glance at the surface
plot will make thi s easy to determine. On the other hand, accurate measurements
are not possible on a surface plot; these can be done on the contour plot because no

1.5

0.5

~ -0.5

-1

- 1.5

-2
-2 -1.5 -1 -0.5 0.5 1.5

Figure 5.8-3 A contour plot of the surface z = xe-I('\'-)'J'+)" I created wirh the

contour function .

337

338 CHAPTER 5 Advanced Plotting and Model Build ing

distortion is involved. Thus a useful function is meshc, which shows the contour
lines beneath the surface plot. The meshz function draws a series of verti ca.11 ines
under the surface plot, while the waterfall functi on draws mesh IlI1es 111 one
direction only. The results of these functions are shown in Figure 5.8-4 for the
function z = xe-(x'+/) .

Table 5.8-1 summarizes the functions introduced in this section. For other
3D plot types, type help spec graph.

0.5 0.5

N 0

-0.5 -0.5
2 2

Y -2 -2 Y -2 -2

(a) (b)

0.5
0.5]

N 0 N 0 ~
-0.5 -0.5~ 2 2 2

o 0

y -2 -2 Y -2 -2

(c) (d)

Figure 5.8-4 Plots of the surface z = xe-(T'+\" > created with the mesh function

and its variant form: meshc, meshz. and vJaterfall. a) mesh, b) meshc.
c) meshz, d) waterfall .

Table 5.8-1 Three-djmensional plotting functions

Function

contour(x,y,z)
mesh(x,y, z)
meshc (x,y , z)

meshz(x , y , z)

Description

Creates a contour plot.
Creates a three-dimcnsionalmesh slIIface plot.
Same as mesh but draws a contour plot under
the surface.
Same a mesh but draws a series of vertica l reference
line under the ~u rface.

sur f (x , y , z) Create a shaded three-di mensional mesh surface plot.
sur f c (x , y , z) Same as su r f but draws a contour plot under

the surface.
lX , Y] = meshgr id (x , y) Creates the matrices X and Y from the vectors x and y

to define a rectangular grid.
lX , Y] = meshgrid(x) Same as lX , YJ = meshgrid (x , x) .
waterfall (x, y , z) Same as mesh but draws mesh lines in one direction only.

5.9 Summary

Test Your Understanding

T5.8-1 Create a surface plot and a contour plot of the function z = (x _ 2)2 +
2xy + y2 .

5.9 Summary

This chapter explained how to use the powerful MATLAB commands to create
effective and pleasing two-dimensional and three-dimensional plots. You learned
an important app lication of plotting- function discovery-which is the technique
for using data plots to obtain a mathematical function that describes the data.
Regression can be used to develop a model for cases where there is considerable
scatter in the data. These techniques are widely used in engineering applications
because engi neers frequently need to use mathematical models to predict how
their proposed designs will work.

The following guidelines will help you create plots that effectively convey
the desired information:

• Label each axis with the name of the quantity being plotted and its units!

• Use regularly spaced tick marks at convenient intervals along each axis.
• If you are plotting more than one curve or data set, label each on its plot or

use a legend to distinguish them.

• If you are preparing multiple plots of a similar type or if the axes ' label s
cannot convey enough information, use a title.

• If you are plotting measured data, plot each data point in a given set with
the same symbol, such as a circle, square, or cross.

• If you are plotting points generated by evaluating a function (as opposed to
measured data), do not use a symbol to plot the points. Instead, connect the
points with solid lines.

Table 5.9- 1 is a guide to the MATLAB commands introduced in thi s chapter.

Table 5.9-1 Guide to MATLAB command introduced in Chapter 5

Basic xy plotting commands
Specifiers for data marker , line lypes, and color
Plot enhancement commands
Specialized plot command,
The set command
The po ly fit function
Functions for polynomial regressjon
Three-dimens ional plotting functions

Table 5.1-1
Table 5.2-1
Table 5.2-2
Table 5.3-1
Table 5.3-2
Table 5.5-1
Table 5.6-1
Table 5.8-1

339

340

--~ -', ~

C HAPTER 5 Advanced Plotting and Model Building

Key Terms with Page References
Abscissa, 260
Axis label, 260
Axis limit , 264
Coefficient of determination, 319
Contour plot, 337
Data symbol, 260
Extrapolalion, 308
Interpolation, 308
Legend, 261
Linear-in-parameters, 329

Problems

Mu ltiple linear regression,

Ordinate, 260
Overlay plot, 27 1
Polar plot, 290
Regression , 3 12
Residuals, 3 12
Scale, 260
Subpl ot, 27 1
Surface mesh plot, 335
Ti ck mark, 260

328

You can find the answers to problems marked wi th an asteri sk at the end of the t~x t.
Be sure to label and format properly any plots required by th~ foll ow~ng

prob lems. Label each axis properly. Use a legend ~ data markers~ or dlfferen.t lllle
types as needed . Choose proper axis scaling and tIck-mark spaclllg. Use a tItle, a
grid, or both if they help to in terpret the plot.

Section 5.1

1.* Breakeven analysis determi nes the production volume at which t~e total
production cost is equal to the total revenue. At the breakeven POlllt, there
is nei ther profit nor loss. In general, production costs consist of fi xed costs
and vaJiabl e costs. Fixed costs include salaries of those not di rectly
involved wi th producti on, fac tory mai ntenance costs, insurance costs, and
so on. VaJiable costs depend on production volume and include matelial
co ts, labor costs, and energy costs. In the fo llowing analysis, assume that
we produce onl y what we can sell ; thus the production quantity equals the
sales. Let the production quantity be Q, in gallons per year.

Consider the following costs for a certain chemical product:
F ixed cost: $3 million per year.
Variable cost: 2.5 cents per gallon of product.
The selling price is 5.5 cents per gallon.

Use thi s data to plot the total cost and the revenue versus Q, and
graphi cally determine the breakeven point. Fully label the plot and mark
the breakeven point. For what range of Q is production profitable? For
what value of Q is the profit a max imum?

2. Consider the fo llowing costs for a certain chemical product:
Fixed cost: $2.045 million/year.
Vari able costs:

Materi al cost: 62 cents per gallon of product.
Energy cost: 24 cents per gallon of product.
Labor cost: 16 cents per gallon of product.

, . 1.

Problems

Assume that we produce only what we sell. Let P be the selling price in
doll ars per gallon. Suppose that the sell ing price and the sales quantity Q
are in terrelated as fo llows: Q = 6 X 106 - 1.1 X 106 P. Accord ingly, if we
raise the price, the product becomes less competitive and sales drop.

Use thi s informati on to plot the fixed and total variable costs versus
Q, and graphically determ ine the breakeven point(s). Fully label the plot
and mark the breakeven points. For what range of Q is the production
profi table? For what value of Q is the profit a maximum?

3.* Roots of polynomi als appear in many engineeri ng applications, such as
electrical circuit design and structural vibrations. Find the real roots of the
polynomial equation

4x
5 + 3x

4
- 95x 3 + 5x2

- lOx + 80 = 0

in the range - 10 :::: x :::: 10 by plotting the polynomial.

4. To compute the forces in structures, engineers sometimes must solve
equations similar to the followi ng. Use the fplot fu nction to fi nd al l the
positive roots of thi s equation:

x tan x = 7

5. * Cables are used to suspend bridge decks and other structures. If a heavy
uniform cable hangs suspended from its two endpoints, it takes the shape
of a catenalY curve whose equation is

y = a cosh (~)
where a is the height of the lowest poi nt on the chain above some
horizontal reference line, x is the horizontal coordinate measured to the
right from the lowest point, and y is the vertical coordinate measured up
fro m the reference line.

Let a = 10 m. Plot the catenary curve for - 20 :::: x :::: 30 m. How
high is each endpoint?

6. Using estimates of rainfall, evaporation, and water consumption , the town
engineer developed the following model of the water volume in the
reservoir as a function of time.

VCr) = 109 + 108(1 - e- t
/

100) - 107{

where V is the water volume in liters, and t is time in days. Plot V(t)
versus t. Use the plot to estimate how many days it will take before the
water volume in the reservoir is 50 percent of its initial volume of 109 L.

7. It is known that the following Leibniz series converges to the value rr /4 as
n --+ 00.

II k 1
Sen) = "'(-I) --

~ 2k+l

341

342 C HAPTER 5 Advanced Plotting and Model Building

Plot the difference between n /4 and the sum Sen) versus n for 0 ::::
n ::::200.

8. A certai n fis hing vessel is initially located in a horizontal plane at x = 0
and y = 10 mi. It moves on a path for 10 hr sllch that x = t and y =
0.St2 + 10, where t is in hours. An international fishing boundary is
described by the line y = 2x + 6.
a. Plot and label the path of the vessel and the boundary.
b. The perpendicular distance of the point (XI, YI) from the line Ax +

B y + C = 0 is given by

d _ AXI + 8 YI + C
- ±,JA2 + 8 2

where the sign is chosen to make d 2: O. Use this result to plot the
di stance of the fishing vessel from the fis hing boundary as a functi on
of time for 0 :::: t :::: 10 hr.

Sections 5.2 and 5.4

9. Plot columns 2 and 3 of the following matrix A versus column 1. The
data in column I is time (seconds). The data in columns 2 and 3 is force
(newton).

b [j =i J]
10.* Many engineering applications use the follow ing "small angle"

approximation for the sine to obtain a simpler model that is easy to
understand and analyze. This approx imation states that sin x ~ x, where x
must be in radi ans. Investigate the accuracy of this approximation by
creati ng three plots. For the first, plot sin x and x versus x for 0 :::: x :::: I .
For the second, plot the approximation error sin x - x versus x fo r
0 :::: x :::: 1. For the third, plot the relative error [si n(x) -x]/ sin(x) versus x
for 0 :::: x :::: 1. How small must x be for the approxi mation to be accurate
within S percent?

11. You can use trigonometric identi ties to simplify the equations that appear
in many engineering applications. Confirm the identity tan(2x) =
2 tan x / (l - tan2 x) by plotti ng both the left and the right sides versus x
over the range 0 :::: x :::: 2n.

12. The complex number identity e i x = cos x + i sin x is often used to convert
the solutions of engineering de ign equations into a fo rm that is relati vely
easy to visuali ze. Con finn thi s identity by plotting the imag inary part
versus the real part fo r both the left and right sides over the range 0 ::::
x :::: 2n.

Problems

13. Use a plot over the range 0 :::: x :::: S to confirm that sin(ix) = i sinh x.

14.* The. func.tion y (t) =] - e- bl
, where I is time and b > 0, describes many

engilleenng processes, such as the height of liquid in a tank as it is being
fil led and the temperature of an object being heated. Investigate the effect
of the parameter bon Y(/). To do thi s, plot y versus t for several values of
b on the same plot. How long will it take for y(t) to reach 98 percent of its
steady-state value?

15. The fol lowing functions describe the osci llations in electri cal circuits and
the vi brations of machines and structures. Plot these functions on the same
plot. Because they are similar, dec ide how best to plot and label them to
avoid confusion.

x(1) = lOe-O.51 sin (3 t + 2)

yet) = 7e- OAI cos(St - 3)

16. The data for.a t~ns ion test on a steel bar appears in the fo ll owing table.
The eiongatLOn IS the change in the bar's length . The bar was stretched
beyond its elastic limit so that a permanent elongation remained after the
tension force was removed. Plot the tension force versus the elongation.
Be sure to label the parts of the curve that correspond to increasing and
decreasing tension.

Increasing Decreasing
Elongation tension force tension force
(in. x 10- 3) (Ib) (Ib)

0 0
I 3500 0
2 6300 3000
3 9200 6000
4 11,500 8800
5 13,000 11, 100
6 13,500 12,300
7 13,900 13,500
8 14, 100 14,000
9 14,300 14,300

10 14,500 14,500

17. In certain kinds of structural vibrations, a periodic force acting on the
structure wi ll cause the vibration amplitude to repeatedl y increase and
decrease with time. This phenomenon, called bealing, also occur in
I11l1 ical sounds. A particular structure's di splacement is described by

I
yet) = i? _ i f [cos(12 t) - cos(fj t)]

where y is the displacement in inches and t is the time in seconds. Plot y
verslIs l over the range 0 :::: I :::: 20 for il = 8 rad/sec and 12 = J rad/sec.
Be slIre to choose enough points to obtain an accurate plot.

34 3

344 CHAPTER 5 Advanced Plotting and Model Building

18.* The height h(!) and horizontal di tance x(t) traveled by a ball thrown at an
angle A with a speed v aTe given by

I 2
h(t) = vr sinA - "2 g1

X(I) = vI cos A

At Earth ' surface the acceleration due to gravity is g = 9.81 m/s
2

.

a. Suppa e the ball is thrown with a velocity v = 10 n:/s at an angle ~f
35°. Use MATLAB to compute how hi gh the ball wIll go, how far It
will go, and how long it will take to hit the ground.

b. Use the values of v and A given in part a to plot the ball 's Irajectory;

that is, plot h versus x for positive values of h.
c. Plot the trajectories for v = 10 mls corresponding to five va lues of the

angle A: 20°, 30°, 45°, 60°, and 70°.
d. Plot the trajectories for A = 45° corresponding to five values of the

initi al velocity v: 10, 12, 14. 16, and 18 m/s.

19. The perfect gas law relates the pressure p, absolute temperature T , mass
In , and volume V of a gas. It states that

pV = mRT

The constant R is the gas conslant . The value of R for air is 286.7
N . m/kg . K. Suppose air is contained in a chamber at room temperature
(20°C = 293 K). Create a plot having three curves of the gas pressure in
N/m2 versus the container volume V in m3 for 20 :s V :s 100. The three
curves carre pond to the following masses of air in the contai ner: m = 1
kg; In = 3 kg; and In = 7 kg.

20. 0 cillations in mechanical structures and electric ci rcuits can often be
described by the function

y(t) = e- I
/

r sin(wt + ¢)

where t is time and w is the oscillation frequency in radians per unit time.
The oscillation have a period of 2IT I w. and their amplitudes decay in time
at a rate determined by r. which is called the lime constan t. The smaller r
is, the fa ter the oscillations die oul.

a. U e the e facts to develop a criterion for choosing the spacing of
the t values and the upper limit on f to obtain an accurate plot of y(l).
(Hint: Consider two cases: 4r > 2IT Iw and 4r < 2IT Iw .)

b. Apply your criterion, and plot y(l) for r = 10. w = IT , and ¢ = 2.
c. Apply your criterion. and plot .1'(1) for r = 0.1. w = 8IT, and ¢ = 2.

21. When a constant voltage was applied to a certain motor initially at rest, its
rotational peed S(I) versus time was measured. The data appears in the

Problems

following tab le:

Time (sec) 10

Speed (rpm) 12 10 1866 230 I 2564 2724 288 1 2879 29 15 30 I 0

Determine whether the following function can describe the data. If so, find
the va lues of the constan ts band c.

Section 5.3

22. The following table shows the average temperature for each year in a.
certain city. Pl ot the data as a stem plot, a bar plot, and a stairs plol.

Year 199 1 1992 1993 1994

Temperature (0C) 19 2 1 17 20

23. $ 10,000 invested at 5 percent intere t compounded annually will grow
according to the formula

where k is the number of years (k = 0, I , 2 ...). Plot the amount of money
in the account for a lO-year period. Do this problem with foul' types of
plots: the xy plot, the stem plot, the stairs plot, and the bar plot.

24. The volume II and surface area A of a phere of radius r are given by

a. Plot II and A versus r in two subplots, for O. J :s r :s 100 m. Choose
axes that will result in straight-line graph for both II and A.

b. Plot II and r versus A in two subplots, for I :s A :s J04 m2, Choo e
axes that will result in straight- line graphs for both II and r.

25. The current amount A of a principal P invested in a savings account
paying an annual interest rate r is given by

(r)"1
A = P 1+;;-

where n is the number of times per year the interest is compounded. For
continuous compounding, A = Pert. Suppose $10,000 is initially invested
at 3.5 percent (r = 0.035).

a. Plot A versus I for 0 :s 1 :s 20 years for four cases: continuous
compounding, annual compounding (n = 1), quarterly compounding
n = 4), and monthly compounding (n = 12). Show all four cases on

345

3 4 6 C HA P T ER 5 Advanced Plotting and Model Bui lding

the same subplot and label each curve. On a second subplot, plot
the difference between the amount obtained fro m continuous
compound ing and the other three cases. .

h. Redo part a but plot A versus t on log-log and semi log pl ots. Whlch
plot gives a straight line?

26. The grades of 80 students were di stributed as fo llows.

Letter grade Number

A 23
B 32
C 19
0 6

Total 80

Use the pie chart function pie to plot the grade distri bu tion. Add the
title "Grade Distribution" to the chart. Use the gtext function or the Plot
Editor to add the letter grades to the sections of the pie chart.

27. If we apply a sinusoidal voltage Vi to the circui t shown in Figure P27, then
eventuall y the output voltage Vo will be sinusoidal also, with the same
frequency, but with a different amplitude and shifted in time relative to the
input voltage. Specifically, if Vi = Ai sin WI , then Va = Ao sin(wt + ¢) .
The frequency-response plot is a plot of Aa/ Ai versus frequency w. Tills
rati o depends on w as follows:

Ao I RCs I
A; = RCs + I

where s = wi . For RC = 0. 1 s, obtain the log- log plot of IAo / A i I versus
w over the range of frequencies I :s w :s 1000 rad/s. Compare the plot
with Figure 5.3- 5, which is for a simi lar circuit.

c

R

Figure P27

28. If we apply a sin usoidal voltage Vi to the circuit shown in F igure P28, then
eventuall y the output vo ltage Vo will be sinusoidal also, with the same
frequency. but with a di fferent amplitude and shi fted in time relati ve to the

Problems

input vo ltage. Specifi call y, if Vi = Ai sin wt , then Vo = Ao sin(wt + ¢) .
The frequency-response plot is a plot of Ao/ Ai versus frequency W . This
ratio depends on w as foll ows:

Ao I 1 I
A; = LCS2 + RCs + 1

where s = wi. For R = 6 Q , L = 3.6 X 10- 3 H, and C = 10- 6 F, plot
IAo/ Ai I veI:sus w

3
0n rectilinear axes and on log-log axes over the range

of frequencIes 10 :s w :s] 06 rad/s. Is there an advantage to using
log-log axes?

R

Figure P28

Section 5.5

29. The distance a spring stretches fro m its "free length" is a function of how
much tension force is applied to it. The following table gives the spring
length y that the given applied force f produced in a particular spring. The
spring's free length is 4.7 in. Find a fu nctional relation between f and x,
the ex tension from the free length (x = y - 4 .7).

Force f (Ib) Spring length y (in.)

o
0.47
1.1 5
1.64

4.7
7.2

10.6
12.9

30.* In each of the following problems, determine the best function y(x) (l inear,
exponential, or power functi on) to describe the data. Plot the function on
the same plot with the data . Label and format the plots appropriately.

a.

25 30 35 40 45

260 480 745 1100

3 47

348 CHAPTER 5 Advanced Plotting and Model Building

b.

2.5 3.5 4.5 5.5 10

1500 1220 1050 915 8 10 745 690 620 520 480 4 10 390

550 600 650 700 750

4 1.2 18.62 8.62 3.92 1.86

31. The population data for a certain country is

Year 1990 199 1 I 992 1993 1994 1995

Population (mill ions) 10 10.8 11.7 12.7 13.8 14.9

Obtain a function that describes thi s data. Plot the function and the data on
the same plot. Estimate when the population will be double its 1990 size.

32.* The half-life of a radioactive substance is the time it takes to decay by half.
The half-life of carbon 14, which is used for dating previously living
things , is 5500 years . When an organism dies, it stops accumul~tin~
carbon 14. The carbon 14 present at the time of death decays with time.
Let Cet) / ceO) be the fraction of carbon 14 remaining at time t. In
radioactive carbon dating, scientists usually assume that the remaining
fraction decays exponentially according to the following formula:

c(t) = e- bt

CeO)

o. Use the balf-life of carbon 14 to find the value of the parameter b, and
plot tbe function.

b. If 90 percent of the original carbon 14 remains, estimate how long ago
the organism died.

c. Suppose our estimate of b is off by ± 1 percent. How does tbis error
affect the age estimate in b?

33. Quenching is the process of immersing a hot metal object in a bath for a
specified time to obtain certain properties such as hardness. A copper
sphere 25 mm in diameter, initially at 300°C, is immersed in a bath at O°C.
The following table gives measurements of the sphere's temperature
versus time. Find a functional description of this data. Plot the function
and the data on the same plot.

Time(s) 5 6

Temperature (Oe) 300 150 75 35 12 5 2

Problems

34. The useful life of a machine bearing depends on its operating temperature,
as the following data shows. Obtain a functi onal de.scription of this data.
Plot the fun ction and the data on the same pl ot. Estimate a bearing's li fe if
it operates at 150°F.

Temperature (OF) lOO 120 140 l 60 180 200 220

Bearing life (hours x 103) 28 2 1 15 I I

35. A certain electric circuit has a resistor and a capacitor. The capacitor is
in itiall y charged to 100 V. When the power supply is detached, the
capacitor vo ltage decays with time, as the fo llowing data table shows. F ind
a functional description of the capacitor voltage v as a functi on of time I .

Plot the function and the data on the same plot.

Time (s) 0.5 1.5 2.5 3 3.5 4

Voltage (V) 100 62 38 21 l3

Sections 5.6 and 5.7

36.* The distance a spring stretches from its "free length" is a function of how
much tension force is applied to it. The following table gives the spring
length y that was produced in a particular spring by the given applied
force f. The spring's free length is 4 .7 in. Find a functional relation
between f and x , the extension from the free length ex = y - 4.7) . The
[-unction must pass through the origin (x = 0, f = 0).

Force! (Ib) Spring lengthy (in.)

o 4.7
0.47 7.2
1.15 10.6
1.64 l2.9

37. The following data gives the drying time T of a certain paint as a function
of the amoLlnt of a certain additive A.

o. Find the first-, second-, third-, and fourth-degree polynomials that fit
the data and plot each polynomial with the data. Determine the quality
of the curve fit for each by computing J, S, and ,.2.

b. Use the polynomial giving the best fit to estimate the amount of
additive that minimizes the drying time.

A (oz)

T(min) 130 115 l10 90 89 89 95 100 110 125

349

350 CHAPTER 5 Advanced Plotting and Model Building

38.* The following data gives the stopping distance d as a function of initial
speed v, for a certain car model. Find a quadratic polynomial that fit~ the
data. Determine the quality of the curve fit by computll1g J , S, and r .

v (mi/hr) 20 30 40 50 60 70

d (ft) 45 80 130 185 250 330

39. If the acceleration C/ is constant, Newton's law predicts that the distance
travelled versus time is a quadratic function: d = %/2 + bl. The fol lowing
data was taken for a cyclist. Use the data to estimate the cyclist's
acceleration C/.

I (sec) 0 1.5 2.5 3.5

d (ft) 0 4 10 II 26 38 51 65

40.* The number of twists y required to break a certain rod is a function of the
percentage x) and X2 of each of two alloying elements present in the rod.
The following table gives some pertinent data. Use linear mult~ple .
regression to obtain a model y = C/o + C/)X) + C/2X2 of the relat) .o ~ shlp
between the number of twists and the alloy percentages. In addition, find
the maximum percent error in the predictions.

Number of twists Percentage of element 1 Percentage of element 2
y XI X2

40
51
65
72
38
46
53
67
31
39
4
56

41. The following repre ents pres ure amples, in pounds per square inch
(psi), taken in a fuel line once every econd for J 0 sec.

Time (sec) Time (sec) Pressure (psi)

26.1 6 30.6
27.0 7 31.1
28.2 8 31.3
29.0 9 31.0
29.8 10 30.5

Problems

C/ . Fit a first-degree polynomial, a second-degree polynomial, and a
third-degree polynomia l to thi s data. Plot the curve fits along with the
data points.

b. Use the results from part a to predict the pressure at I = I I sec.
Explain which curve fit gives the most reliable prediction . Consider
the coefficients of determination and the residuals for each fit in
making your dec ision .

42. A liquid boils when its vapor pressure equals the external pressure acting
on the surface of the liquid . This is the reason why water boils at a lower
temperature at higher altitudes. This informati on is important for chemical,
nuclear, and other engineers who must design processes utilizing boiling
liquids. Data on the vapor pressure P of water as a function of temperature
T is given in the following table. From theory we know that In P is
proportional to I j T. Obtain a curve fit for peT) from thi s data. Use the
fit to estimate the vapor pressure at 285 K and at 300 K.

T (degrees K) P (torr)

273 4.579
278 6.543
283 9.209
288 12.788
293 17.535
298 23.756

43. The salt content of water in the environment affects living organisms and
causes corrosion. Environmental and ocean engineers must be aware of
these effects. The solubility of salt in water is a function of the water
temperature. Let S represent the solubi lity of aCl (wd ium chloride)
as grams of salt in 100 g of water. Let T be temperature in C. U~e the
following data to obtain a curve fit for S as a function of T . Use the lit to
estimate S when T = 25°C.

T (0) C S (g NaCI/100 g HzO)

10
20
30
40
50
60
70
80
90

35
35.6
36.25
36.9
37.5
38.1
38.8
39.4
40

44. The amount of dissolved oxygen in water affects living organi~m" and
chemical processes. Environmental and chemical engineer mu. t be aware

351

352 CHAPTER 5 Advanced Plotting and Model Building

of these effects. The solubility of oxygen in water is a function of the
water temperature. Let S represent the solubility of O2 as millimoles of
O2 per liter of water. Let T be temperature in 0C. Use the following data
to obtain a curve fit for S as a function of T. Use the fit to estimate S
when T = 8°C and T = 50°C.

5
10
15
20
25
30
35
40
45

1.95
1.7
1.55
lAO
1.30
1.15
1.05
1.00
0.95

45. The following function is linear in the parameters a, and a2·

y(x) = a, +a2lnx

Use least squares regression wi th the following data to estimate the values
of Cil and a2. Use the curve fit to estimate the values of y at x = 1.5 and at
x = 11.

10

10 14 I 6 I 8 19 20 2 I 22 23 23

46. Chemical, environmental, and nuclear engineers must be able to predict
the changes in chemical concentration in a reaction. A model used for
many single reactant processes is:

Rate of change of concentration = -kC"

where C is the chemical concen tration and k is the rate constant. The order
of the reaction i the val ue of the exponent n. Solution methods for
differential equations (which are discussed in Chapter 8) can show that the
solution for a fir t-order reaction (n = 1) is

CCI) = CCO)e-kr

The followi ng data describes the reaction

Use thi data to obtain a least squares fit to estimate the value of k .

Problems

Time t (h) C (mol of(CH3)3 CBr/L)

o 0.1039
3.15 0.0896
6.20 0.0776
10.0 0.0639
18.3 0.0353
30.8 0.0207
43.8 0.0 101

47. Chemical, environmental , and nuclear engineers must be able to predict
the changes in chemical concentration in a reaction. A model used for
many si ngle reactant processes is :

Rate of change of concentration = -kC'

where C is the chem ical concentration and k is the rate constant. The order
of the reaction is the value of the exponent n. Solution methods for
di fferential equations (which are di scussed in Chapter 8) can show that the
solution for a first-order reaction (n = 1) is

C(t) = CCO)e- kr

and the solution for a second-order reaction (n = 2) is

1 1
C(t) = C(O) + kt

The following data from [Brown, 1994] describes the gas-phase
decomposition of nitrogen dioxide at 300°C.

Time t (s) C (mol NOz/L)

o 0.0 100
50 0.0079

100 0.0065
200 0.0048
300 0.0038

Determine whether this is a first-order or second-order reaction, and
estimate the value of the rate constant k.

48. Chemica l, environmental, and nuclear engineers must be able to predict
the changes in chemical concentration in a reaction. A model used for
many single reactant processes is:

Rate of change of concentration = -kcn

where C is the chemical concentration and k is the rate constant. The
order of the reaction is the value of the exponent n. Solution methods for

353

354 CHAPTER 5 Advanced Plotting and Model Building

differential equations (w hich are di scussed in Chapter 8) can show that the
solution for a fir t-order reaction (n = 1) is

C(I) = C(O)e-kl

The olution for a second-order reaction (/7 = 2) is

---'- = _ 1_ + kl
C(I) C(O)

and the solution for a third-order reaction (/1 = 3) is

_ l_ = _ l_+ kl
2C2(1) 2C2(0)

The following data desclibes a certain reaction . By examining the
re iduals, determine whether this is a first-order, second-order, or
third-order reaction, and estimate the value of the rate constant k .

Time / (min) C (mol of reactant/ L)

5 0.3575
10 0.3010
15 0.2505
20 0.2095
25 0.1800
30 0.1500
35 0.1245
40 0. 1070
45 0.0865

Section 5.8

49. The popular amusement ride known a the corkscrew has a helical shape.
The parametric equation for a circular helix are

x = a cos/

y = a sint

z = bl

where a i the radius of the helical path and b is a constant that determines
the "tightne s .. of the path. In addition, if b > O. the helix ha the shape of
a right-handed crew: if b < 0, the helix i left-handed.

Obtain the three-dimensional plot of the helix for the following three
ca e and compare their appearance with one another. Use 0 ::: I ::: lOn
and a = I.
a. b = 0.1
b. b = 0.2
c. b = -0. 1

Problems

50. A robot rotates about its base at two revolutions per minute while lowering
its arm and ex tending its hand . It lowers its arm at the rate of 12(Y pcr
minute and extends its hand at the rate of 5 m/min . The arm is 0.5 m long.
The xyz coordinates of the hand arc given by

x = (0.5 + 51) sin (~I) cos(4nl)

y = (0.5 + 51) sin (~/) si n(4nt)

z = (0.5 + 50 cos (~I)
where I is time in minutes.

Obtain the three-dimensional plot of the path of the hand for 0 :::: l :::
0.2 min.

51. Obtain the surface and contour plots for the function z = x 2 - 2xy + 4y2 ,
showing the minimum at x = y = O.

52. Obtain the surface and contour plots for the function z =
- x 2 + 2xy + 3y2. This surface has the shape of a saddle. At its
saddlepoint at x = y = 0, the urface has zero slope, but thi s point does not
correspond to either a minimum or a maximum. What type of contour
lines correspond to a saddlepoint?

53. Obtain the surface and contour plots for the function z = (x - y2)(X - 3/).
This surface has a si ngular point at x = y = 0, where the surface has zero
slope, but this point does not correspond to either a minimum or a
maximum. What type of contour lines correspond to a singu lar point?

54. A quare metal plate is heated to 80°C at the corner corresponding to x =
y = J. The temperature di stribution in the plate is described by

T = 80e -(X-I)2 e - 3(y- I)2

Obtain the surface and contour plots for the temperature. Label each axi~ .
What is the temperature at the corner corresponding to x = y = 07

55. The folJowing function describes oscillations in some mechanical
tructures and electric circuits:

Z(/) = e- I
/

r sin(w/ + </»

In thi function t is time. and OJ is the oscillation frequency in radian,> per
unit time. The oscillation have a period of 2n Iw. and their amplitudes
decay in time at a rate determined by r. which is called the lime COnllanl.

The smal ler r is, the faster the oscillations die out.
Suppose that </> = 0, w = 2, and r can have values in the range 0.5 :::::

r ::: 10 sec. Then the preceding equation become&

z(t) = e-r/ r sin(2!)

355

356 CHAPTER 5 Advanced Plotting and Model Building

Obtain a ulface plot and a contour plot of this ~unction ~o help vi sualize
the effect of r for 0 :::: t :::: 15 sec. Let the x vanable be tlIne t and the

y variable be r.
56. Many applications require us to know the temperature distribuyon in an

object. For example, this information is importa~t for co~trolltng the .
material properties such as hardness, when coollI1g an obJ~ct .formed flam
molten metal. In a heat transfer course the following des~nptLOn of ~he
temperature distribution in a flat rectangular metal plate IS often denved.
The temperature on three sides is held constant at TI , and at T2 ~n the
fourth side (see Figure P56). The temperature T(x , y) as a function of the
xy coordinates shown is given by

where

T(x, y) = (T2 - TI)W(X, y) + TI

2 ~ 2 . (nrr x) sinh(nrryjL)
w(x, y) = -; 0 -;:; S111 L sinh(nrrWjL)

11 odd

The given data for this problem are: TI = 70°F, T2 = 200°F, and W =

L = 2 ft.
Using a spacing of 0.2 for both x and y, generate a surface mesh plot

and a contour plot of the temperature distribution.

Wl------------,

T(x ,y)

Figure P56

57. The electric potential field V at a point, due to two charged particles, is
given by

where ql and q2 are the charges of the particles in Coulombs (C), rl and r2
are the distances of the charges from the point (in meters), and Eo is the

Problems

permittivity offree space, whose value is

Eo = 8.854 X 10- 12 c2/N . 1112

Suppose the charges are ql = 2 X 10- 10 C and q2 = 4 X 10- 10 C. Their
respective locations in the xy plane are (0.3, 0) and (-0.3 , 0) m. Plot the
electric potential field on a 3D surface plot with V plotted on the z-axis
over the ranges -0.25 :::: x :::: 0.25 and - 0.25 :::: y :::: 0.25. Create the plot
two ways: Q . by using the surf function and h. by using the meshc
function.

58. The grades of 80 students were di stributed as foJJows.

Letter grade Number

A 23
B 32
C 19
D 6

Total 80

Use the 3D pie chart function pie3 to plot the grade distribution .
Add the title "Grade Distribution" to the chart. Use the Plot Ed itor to add
the letter grades to the sections of the pie chart.

59. Refer to Problem 22 of Chapter 4. U. e the function file created for that
problem to generate a surface mesh plot and a contour pial of x vers us h
and W for 0:::: W :::: 500 N and for 0:::: h :::: 2 m. Use the values: kl =
104 N/m; k2 = 1.5 X 104 N/m; and d = 0.1 m.

60. Refer to Problem 25 of Chapter 4. To see how sensitive the cost is to
location of the distribution center, obtain a sUlface plot and a contour pial
of the total cost as a function of the x and y coordinates of the di stribution
center location. How much would the cost increase if we located the
center 1 mi in any direction from the optimal location?

61. Refer to Example 3.2-2 of Chapter 3. Use a surface plot and a contour plot
of the perimeter length L as a function of d and e over the ranges
I :::: d :::: 30 ft and 0.1 :::: e :::: 1.5 racl. Are there valleys other than the one
corresponding to d = 7.5984 and e = 1.0472? Are there any saddle
points?

357

Engineering in the
21 st Century ...

Virtual Prototyping

T
o many people, computer-aided design (CAD) or computer-aided engi­
neering (CAE) means creating engineering drawings. However, it means
much more. Engineers can use computers to determine the forces, volt­

ages. currents, and so on that might occu r in a proposed design . Then they can use
this informati on to make sure the hardware can withstand the predicted fo rces or
supply the requi red voltages or currents. Engineers are just beginning to use the

fu ll potential of CAE.
The normal tages in the development of a new vehjcle, such as an aircraft,

formerly cons isted of aerodynamic testing a scale model ; building a full-size
wooden mock-up to check for pipe, cable, and structural intelferences; and finally
building and testing a prototype, the fir t complete vehicle. CAE is changing the
traditional development cycle. The new Boeing 777 shown above is the first air­
craft to be de igned and built using CAE, without the extra time and expense of
building a mock-up. The des ign teams responsi ble for the various subsystems,
such as aerodynamics . structures, hydraulic , and electrical systems, all had ac­
cess to the same computer database that descri bed the aircraft. Thus when one
team made a design change. the database was updated, allowing the other teams
to see whether the change affected their subsystem. This process of designing
and tes ting with a computer model has been called virtual prototyping. Virtual
prototyping reduced engineeJing change, errors, and rework by 50 percent, and
greatl y enhanced the manufacturability of the airplane. When production began,
the part went together easil y.

MATLAB is a powerful tool for many CAE applications. It complements
geometric modeling packages because it can do advanced calculations that such
packages cannot do . •

CHAPTER

Linear Algebraic
Equations
OUTLINE

6.1 E lementary Solution Methods

6.2 Matrix Methods for Linear Equations

6.3 Cramer's Method

6.4 Underdetermined Systems

6.5 Overdetermined Systems

6.6 Summary

Problems

Linear algebraic equations such as

5x - 2y = 13

7x + 3y = 24

Occur in many engineering applications. For example, electrical engineers use
them to predict the power requirements for circuits; civil, mechanical , and
aerospace engineers use them to design structures and machines; chemical engi­
n~ers u s~ them to compute material balances in chemical processe ; and indus­
trial engllleers apply them to design schedules and operations. The examples and
homework problems in thi s chapter explore some of the e application.

Linear algebraic equations can be solved "by hand" using pencil and paper,
b~ calculator. or with software such as MATLAB. The choice depends on the
cIrcumstances. For equations with only two unknown variables, hand solution is
easy and adequate. Some calculators can solve equation sets that have many vari­
ables. However, the greatest power and flexibility is obtained by using software.

6

359

360 CHAPTER 6 Linear Algebraic Equations

For example, M ATLAB can obtain and plot equat ion solutions as we vary one or

more parameters.
Wi thout giv ing a forma l definition of the term linear algebraic equations, let

us simpl y say that their unknown variables never appear raised to a power other
than unity and never appear as products, ratios, or in transcendental functions
such as In (x) , eX, and cosx . The simplest linear equation is ax = b, which has

the solution x = b/ a if a -=1= O.
In contrast, the fo llowing equations are nonl inear:

which has the solutions x = ±,J3, and

sin x =O.S

which bas the solutions x = 30° , lSO°, 390° , SlO°, In contras t to most non­
linear equations, these particular nonlinear equations are easy to solve. For ex­
ample, we cannot solve the equation x + 2e- x

- 3 = 0 in "closed fOlm"; that is,
we cannot express the solution as a function . We must obtain thjs solution numer­
ically, as explained in Section 3.2. The equation has two solutions: x = - 0.S831
and x = 2.8887 to four decimal places.

Sets of equations are linear if all the equations are linear. They are nonlinear
if at least one of the equations is nonlinear. For example, the set

8x - 3y = I
6x + 4y = 32

is linear because both equations are linear, whereas the set

6xy - 2x = 44

Sx - 3)' =-2

is nonlinear because of the product term xy .
Systematic solution methods have been developed for sets oflinear equations.

However, no systematic methods are available for nonlinear equations because
the nonlinear category covers such a wide range of equations. In thi s chapter
we first review methods for solving linear equations by hand, and we use these
methods to develop an understanding of the potential pitfalls that can occur when
solving linear equations . Then we introduce some matrix notation that is required
for use with MATLAB and that is also useful for expressing solution methods
in a compact way. The conditions for the existence and uniqueness of solutions
are then introduced . Methods using MATLAB are then treated in four sections:
Section 6.2 covers equation sets that have unique solutions; Section 6.3 covers
Cramer's method; Sections 6.4 and 6.S explain how to determine whether a set
has a unique solution, multiple solutions, or no solution at all.

6.1 Elementary Solution Methods

6.1 Elementary Solution Methods

You are sure to encounter si tuations in which MATLAB is not avai lable (such as
on a test!) , and thus you should become fa mili ar with the hand-solution methods.
In addition, understanding these methods will help you understand the MATLAB
r~sponses and the pitfall s that can occur when obtai ning a computer soluti on.
FlI1a lly, ha nd so lutLO ns are sometimes needed when the numerical values of one
or more coefficients are unspecified. In this section we cover hand-solution meth­
ods; I.ater in the chapter we introduce the MATLAB methods for solving linear
equatlOns.

Several methods are available for solving linear algebraic equati ons by hand .
The appropri ate choice depends on user preference, on the number of equations,
and on the structure of the equations to be solved. We demonstrate two methods:
(I) successive elimination of variables and (2) Cramer's method (in Section 6.3).
The M ATLAB method is based on the success ive elimination technique, but
Cran:er's met~od gives us some insight into the existence and uniqueness of
solutI ons and II1tO the effects of numerical inaccuracy.

Successive Elimination of Variables

A n effi cient way to elimjnate variables is to multiply one equation by a suitable
factor and then add or subtract the resulting equation from another equation in
the set. If the factor is chosen properly, the new equation so obtained will contain
fewer variables. This process is continued with the remaining equations ulllil
only one unknown and one equation remain. A systematic method of doing this
is Gauss elimination. With this method you multiply the first equation (called the
pivot equation) by a suitable factor and add the result to one of the other equations
in the et to cancel one variable. Repeat the process with the other equations in the
set, using the same pivot equation. Tills step generates a new set of equations, with
one less variable. Select the new pivot to be the first equation in this new set and
repeat the process until only one variable and one equation remain. Thi s method is
suitable for computer implementation, and it forms the basis for many computer
methods for solving linear equations. (It is the method used by MATLAB .)

So lve the following set using Gauss elimination:

• Solution
The solution proceeds as follows:

- x + y + 2z = 2

3x - y + z = 6

-x+3y+4z=4

Gauss Elimination

(6.1- 1)

(6.1- 2)

(6.1- 3)

1. Equation (6.1- 1) i the pivot equation. Multiply it by -1 and add the resull to

(6.1-3) to obtain 2y + 2z = 2, which is equivalent to y + z = I. Next multiply

GAUSS
ELIMINATION

361

'.'P'8,,'

362 CHAPTER 6 Linear Algebraic Equations

(6.1-1) by 3 and add the result to (6. 1-2) to obtain 2y + 7z = 12. Thus we have a

new set of two equations in two unknowns:

y+z=1

2y+ 7z = 12

(6. 1-4)

(6.1-5)

2. Equation (6.1-4) is the new pivot equation. Multiply it by -2 and add the resu lt to

(6.1-5) to obtain 5z = 10, or z = 2. Substitute this value into (6. 1-4) to obtain
y + 2 = 1, or y = - 1. Then substitute the values of y and z into (6.1-1) to obtain

-x - 1 + 4 = 2, or x = 1.

Test Your Understanding

T6.1-1 Solve the following equations using Gauss elimination:

6x - 3y + 4z = 41

12x + 5 y - 7 z = -26

-5x + 2y + 6z = 14

(Answer: x = 2, y = -3, Z = 5.)

Singular and Ill·Conditioned Problems

Figure 6.1-1 shows the graphs of the fo llowing equations:

3x - 4y = 5

6x - lOy = 2

Note that the two lines intersect, and therefore the equations have a solution ,
which is given by the intersection point x = 7, y = 4. A singular problem refers
to a set of equations having either no unique solution or no solution at all. For
example, the set

3x - 4y = 5

6x - 8y = 10

is singular and has no unique solution because the second equation is identical to
the first equation, multiplied by 2. The graphs of these two equations are identical.
All we can say is that the solution must sati sfy y = (3x - 5)/4, which describes
an infinite number of solutions.

On the other hand, the set

3x - 4y = 5

6x - 8y = 3

(6.1-6)

(6.1-7)

is singular but has no solution. The graphs of these two equations are distinct but
parallel (see Figure 6.1-2). Because they do not intersect, no solution exists.

6.1 Elementary Solution Methods 363

x=7, y=4

Y= (6x-2) /10

- 1 Y= (3x-S)/4

Figure 6.1-1 The graphs of two equations intersect at the solution .

:>., 3
Y= (6x-3)/8

Y= (3x-S)/4

- 1

Figure 6.1-2 Parallel graph, indicate that no solution exists.

364 CHAPTER 6 Linear Algebraic Equations

Homogeneous Equations

As another exampl e, consider the following set of homogeneous equations (which
means that their right sides are all zero)

6x + oy = 0

2x +4y = 0

(6. 1-8)

(6 .1- 9)

where C/ is a parameter. Multiply the second equation by 3 and subtract the result
from the fir t equation to obtain

(a - 12)y = 0 (6.1-10)

The solution is y = 0 only if a i= 12; substituting y = 0 into either (6.1-8) or
(6. 1-9) shows that x = O. However, if a = 12, (6.1-10) implies that Oy = 0,
which is sati sfied for any finite value of y; in this case both (6. 1-8) and (6.1-9)
give x = -2y. Thus if C/ = 12, there are an infinite number of solutions for x
and y , where x = -2y.

Ill-Conditioned Equations

An ill-conditioned set of equations is a set that is close to being singular (for
example, two equations whose graphs are close to being parallel). The following
set would be considered an ill-conditioned set if we carry only two significant
figures in our calculations:

3x - 4y = 5

6x - 8.002y = 3

To see why, solve the first equation for y to obtain

3x - 5
y=--

4
and solve the second equation to obtain

6x - 3 3x - 1.5
V=--=---
. 8.002 4.001

(6.1-11)

(6.1-12)

The slope of (6.1-11) i 3/4, whereas the slope of (6.1-12) is 3/4.001. If we had
carried only two ignificant figures, we would have rounded the denominator of
the latter expression to 4.0, and thus the two expressions for y would have the
ame slope and their graphs would be parallel. Thus we see that the ill-conditioned

status depends on the accuracy with which the solution calculations are made.
Of course, MATLAB uses more than two significant figures in its calculations.
However. no computer can represent a number with infinitely many significant
figures, and so a given set of equations can appear to be singular if the accuracy
required to olve them is greater than the number of significant figures used by
the software.]f we C~UTy four significant figures in our calculations, we would
find that the solution is x = 4668 and y = 3500.

6.2 Matri x Methods for Linear Equations

&s Your Underc; anding

T6.1-2 Show that the following set has no solution.

-4x+ Sy=1O

12x-lSy=8

T6.1-3 For what value of b will the following set have a solution in which both
x and y are nonzero? Find the relation between x and y.

4x - by = 0

-3x + 6y = 0

(Answer: If b = 8, x = 2y. If b i= 8, x = y = 0.)

6.2 Matrix Methods for Linear Equations

Sets of linear algebraic equations can be expressed in matrix notation, a standard
and compact .me~hod t~at is useful for expressing solutions and for developing
software app licatIons With an arbitrary number of variables. This section describes
the use of matrix notation.

As you saw in Chapter 2, a matrix is an ordered array of rows and columns
containing numbers, variables, or expressions. A vector is a special case of a
matrix that has either one row or one column. A row vector has one row. A column
vector has one column. In thi s chapter a vector is taken to be a column vector
unless otherwise specified. Usually, when printed in text, lowercase boldface
letters denote a vector, and uppercase boldface letters denote a matrix.

Matrix notation enables us to represent mUltiple equations as a single matrix
equation. For example, consider the following set:

2xI + 9X2 = 5

3xI - 4X2 = 7

This set can be expressed in vector-matrix form as

which can be represented in the following compact form

Ax = b

where we have defined the following matrices and vectors:

A = [2 9]
3 -4 x = [;~]

(6.2-1)

(6.2-2)

(6.2-3)

The matrix A corresponds in an ordered fashion to the coefficients of XI and X2

in (6.2-1) and (6.2-2). Note that the first row in A consists of the coefficients of

365

366 CHAPTER 6 Linear Algebraic Equations

X I and X2 on the left side of (6.2- 1), and the second row contains the coeffi c ients
on the left side of (6.2- 2) . The vector x contai ns the variab les X I and X2, and the
vector b contains the right sides of (6.2- 1) and (6.2-2).

In general, the set of m equations in n un knowns

ClII X I + ClI 2X2 + ... + (l1" X" = b l

(l21X I + ClnX2 + .. . + a 2" X" = b 2

(6.2-4)

can be written in the form (6.2-3), where

A = [~~: ~~~ . . . ~~:: 1
ClIII I alii 2 (1':111

(6.2-5)

[

XI] X = X2

X"

(6.2- 6)

[

b

l

]
b 2

b=

b~"
(6.2- 7)

The matrix A has In rows and n columns, so it dimension is expressed as m x n .

Determinants

Dererminanrs are useful for finding out whether a set of equations has a solution.
A determinant is a special square array that, unlike a matrix, can be reduced to
a single number. Vertical bars are used to denote a determinant, whereas square
brackets denote a matrix. A determinant having two rows and two columns is a
2 x 2 determinant. The rule for reducing a 2 x 2 determinant to a single number
i hown below

(6.2-8)

Rules exist to evaluate 11 x n determinants by hand, but we can use MATLAB
to do this. Fir t enter the determinant as an array. Then use the det function
to evaluate the determinant. For example. a MATLAB session to compute the

6.2 Matrix Methods for Linear Equations

determi nant

would look li ke:

»A = [3 , -4 , 1 ; 6 , 10 , 2 ; 9 , -7,8] ;
»det (A)

As we have seen, a determinant is not the same as a matri x, but a determinant
can be fo und from a matri x. In the prev ious MATLAB sess ion, MATLAB can treat
the array A as matri x. When it executes the function det (A) , MATLAB obtains
a determinant from the matrix A. The determinant obtained from the matri x A is
ex pressed as IAI .

Determinants and Singular Problems

We saw in Section 6.] that a singular problem refers to a set of equations that
has e ither no unique solution or no solution at all . We can use the matri x A in the
equation set Ax = b to determine whether or not the set is singular. For example,
in Section 6.1, we saw that the set

3x - 4y = 5

6x - 8y = 10

has no unique solution, because the second equation is identical to the first equa­
tion , multiplied by 2. The matrix A and the vector b for thi s set are

[3 -4]
A = 6 -8

The determinant of A is

1
3 -41 IA I = 6 -8 = 3(-8) - (-4)(6) = 0

The fact that IA I = 0 indicates that the equation et is singular. We have not
proved thi s statement, but it can be proved.

Consider another example from Section 6.1.

3x - 4y = 5

6x - 8y = 3

This set has no solution. The matrix A is the same as for the previous set. but the
vector b is different.

367

368 CHAPTER 6 Linear Algebraic Equations

Because IAI = 0, this equation set is also singular. These two examples show that
if IAI = 0, the set has either no unique solution or no solution at all.

Now consider another example from Section 6.1 , a set of homogeneous equa­
tions (the right-hand sides are all zero):

6x + ay = °
2x +4y = °

where a is a parameter. As we saw in Section 6.1, this set has the so lution x =
y = ° unless a = 12, in which case there are an infinite number of solutions of
the form x = -2y. The matrix A and the vector b for this set are

A= [~ ~] b = [~]
The determinant of A is

IAI = I~ ~ I = 6(4) - 2a = 24 - 2a

Thus if a = 12, IAI = ° and the equation set is singular.
These examples indicate that for the equation set Ax = b , if IAI = 0, then

there is no unique solution. Depending on the values in the vector b , there may
be no solution at all, or an infinite number of solutions.

The Left-Division Method

MATLAB provides the left-division method for solving the equation set Ax = b .
The left-division method is based on Gauss elimination. To use the left-division
method to solve for x, type x = A \ b . This method also works in some cases
where the number of unknowns does not equal the number of equations. However,
this section focuses on problems in which the number of equations equals the
number of unknowns. In Sections 6.4 and 6.5, we examine other cases.

If the number of equations equals the number of unknowns and if IAI =j: 0,
then the equation set has a solution and it is unique. If IAI = ° or if the number of
equations does not equal the number of unknowns, then you must use the methods
presented in Section 6.4.

"D'P"P' Left-Division Method with Three Unknowns

Use the left-division method to solve the following set:

3x + 2y - 9z = -65

-9x - 5y + 2z = 16

6x + 7)' + 3z = 5

• Solution
The matri x A is

6.2 Matrix Methods for Li near Equations

[
3 2 -9]

A = -9 - 5 2
6 7 3

We can u.se MATLAB to check the determinant of A to see whether the problem is si ngular
The seSSIOn looks like thi s: .

»A = [3 , 2 , -9 ; -9 , -5 , 2 ; 6 , 7 , 3);
»det (A)

288

Because IAI =f. 0, a unique soluti on exi sts . It is obtai ned as fo ll ows:

»b = [-65 ; 16 ; 5] ;
»A\b

2 . 0000
-4 . 0000
7 . 0000

This answer gives the vector x, which corresponds to the solution x = 2, Y = -4, Z = 7.
It can be checked by determining whether Ax gives the vector b, by typing

»A*ans

- 65 . 0000
16 . 0000
5 . 0000

which is the vector b. Thus the answer i correct.

The backward slash (\) is used for left division. Be careful to distinguish
b~t~~en the ba~kward slas.h (\) and the forward slash (I) which is used for right
dlvlslon. SometImes equatIOn sets are written as xC = d, where x and d are row
vectors. In that case you can use right division to solve the set xC = d for x
by typing x = d i e, or you can convert the equations to the form Ax = b. For
example, the matrix equation

corresponds to the equations

6xI + 3X2 = 3

2xI +5x2 = -19

369

370 C HAPTER 6 Linear Algebraic Equations

These equations can be written as

which is in the fo rm Ax = b .
Linear equati on are useful in many engineering fie lds. Electrical circuits are

a common ource of linear equati on models. The circuit designer must be able to
solve them to predict the currents that will ex ist in the circuit. This information is
often needed to determine the power supply requirements, among other things.

An E lectrical-Resistance Network

The circuit shown in Figure 6.2-1 has fi ve resistances and two applied voltages. Assum­

ing that the pos itive directions of current fl ow are in the directions shown in the fi gure,

Kirchhoff's voltage law applied to each loop in the circuit gives

-V I + Rl i l + R4i4 = 0

- R. i4 + R2i2 + Rsis = 0

-Rsis + R3i3 + V2 = 0

Conservation o f charge applied at each node in the circuit gives

i l =i2+ i4

i2 = i3 + i5

You can use these two equations to eli mi nate i4 and is fro m the first three equations. The

result is:
(R I + R4)i l - R4i2 = VI

- R4i l + (R2 + R4 + Rs)i2 - Rsi3 = 0

Rsi2 - (R3 + Rs)i3 = V2

T hu we have th ree equation in three unknow ns: i i, i2, and i3'

Figure 6.2-1 An electrical-resistance network .

6.2 Matrix Methods for Linear Equations

Write a MATLAB script fi le that uses given va lues of the app lied voltages VI and
V2 and given va lues of the fi ve resistances to solve for the currents i i, i2, and i3' Use the

program to fi nd the currents fo r the case R I = 5, R2 = 100, R3 = 200, R4 = 150,
Rs = 250 kr2 , VI = 100, and V2 = 50 V. (Note that I kr2 = 1000 r2 .)

• Solution

Because there ~ r~ as many un knowns as equati ons, there wil l be a uniq ue soluti on if
IA I =I 0; In. addltlOn, the left-division method will generate an elTor message if IA I = O.
The foll owlllg scnpt fil e, named resist . m, uses the le ft-d ivision method to solve the
three equations fo r i i, i2, and i3.

% File resist . m

% Solves for the currents i 1 i _ 2 , i _ 3
R = [5 , 100 , 200 , 150 , 250] * 1000;'
v1 100 ; v2 = 50 ;
A1 = [R (1) + R (4) , - R (4) , 0] ;
A2 = [-R (4) , R (2) + R (4) + R (5) , - R (5)] ;
A3 = [0 , R (5) , - (R (3) + R (5))] ;

A = [A1 ; A2 ; A3] ;
b=[v1 ; 0 ; v2] ;
current = A\b ;
disp(' The current s a re : ')
disp (curren t)

T I:e row vec tors A1 , A2 , and A3 were defined to avoid typing the lengthy express ion for
A 1Il one line. T his script is executed from the command prompt as foJl ows:

»resist
The curren ts

1 . Oe- 003 *
0 . 9544
0 . 319 5
0 . 066 4

Because MATLAB did not generate an error message, the solution is unique. The

currents are i l = 0 .9544, i 2 = 0.3 195, and i3 = 0 .0664 rnA, where I mA = I milli ­
ampere = 0.001 A.

Ethanol Production

Engineers in the food and chemical indu trie u e fermentation in many proce e. The
following equation describes Baker's yeast fe rmentation.

a (C6H I2 0 6) + b(0 2) + c(NH3)

-+ C6 H ION03 + d(H20) + e(C02) + f(C2H60)

The vari ables a , b, ... , f represent the masses of the products involved in the reaction.

In this formula C6H I2 0 6 repre ents glucose, C6H IO N03 represents yeast. and C2~O

371

'mi"' •• '

372 CHAPTER 6 Linear Algebraic Equations

represents ethanol. Thi s reaction produces ethanol , in addit ion to water and carbon dioxide.

We want to determine the amount of ethanol 1 produced. The number of C, 0 , N, and

H atoms on the left must balance those on the ri ght side of the equation. This gives four

equ ations:

6a = 6 +e + 21

6a + 2b = 3 + d + 2e + 1
c = 1

12a + 3c = 10 + 2ci + 61

The fennentor i equipped with an oxygen sensor and a carbon dioxide sensor. These

enable us to compute the respiratory quotient R:

co, e
R =---=-=-

O2 b

Thus the fifth equation i Rb - e = O. The yeast yield Y (grams of yeast produced per

gram of glucose consumed) is related to a as follows .

144
Y= ­

I S0a

where 144 is the molecular weight of yeast and I SO is the molecular weight of glucose.

By measuring the yeast yield Y we can compute a as fo llows: a = 144/ 1S0Y . This is the

six th equation .
Write a u er-defi ned function that computes I , the amount of ethanol produced, with

R and Y a the function 's arguments. Test your function for two cases where Y is measured

to be 0.5: (a) R = 1.1 and (b) R = 1.05.

• Solution
First note that there are only four unknowns because the third equation directly gives
c = I, and the sixth equation directly gives a = 144/ ISOY. To write these equations in

matrix form , let XI = b, X2 = d, X 3 = e, and X4 = I. Then the equations can be written as

-X3 - 2X4 = 6 - 6(144/ 1S0Y)

2xI - X2 - 2X3 - X4 = 3 - 6(144/ ISOY)

-2X2 - 6X4 = 7 - 12(144/ ISOy)

In matrix fo rm these become

[R~O - I =~ =~l [::~l- [~= ~g::~: ~~~~ 1
-2 -6 X3 - 7 - 12(144/ 180Y)

o -I 0 X4 0

6.2 Matri x Methods for Linear Equations

The fun ction fi le is shown below.

function E = ethanol (R, Y)

% Computes ethanol produced from yeast reaction .
A = [0,0 , -1 , -2 ; 2 , -1,-2,-1 ; . ..
0 , -2 , 0 , -6 ; R, 0 , -1 , 0] ;

b = [6-6*(144 . /(180 *Y)) ; 3-6*(144 . /(180*Y)) ; . . .
7-12* (144 . 1 (180 *Y)) ; 0];
x = A\b ;
E = x (4) ;

The session is as follows:

»ethano1 (1 . 1 , ° . 5)

0.0654
»ethano1 (1 . 05 , 0 . 5)

-0 . 0717

The negative value for E in the second case indicates that ethanol is being consumed rather
than produced.

Matrix Inverse

The solution of the scalar equation ax = b is x = bl a if a =I O. The division
operation of scalar algebra has an analogous operation in matrix algebra. For
example, to solve the matrix equation

Ax= b (6.2-9)

for x, we must somehow "divide" b by A. This procedure is developed from the
concept of a matrix inverse. The inverse of a matrix A is defined only if A is
square and nonsingular. It is denoted by A - I and has the property that

A- I A = AA- I = I (6.2-10)

where I is the identity matrix. Using this property, we mUltiply both sides of
(6.2-9) from the left by A - I to obtain

A- lAx = A - Ib

Because A-I Ax = Ix = x, we obtain

x = A - Ib (6.2-11)

The solution form (6.2-11), x = A- I b , is rarely applied in practice to obtain
numerical solutions, because calculation of the matrix inverse is subject to numer­
ical inaccuracy, especially for large matrices. However, the equation x = A - I b
is a concise representation of the solution and therefore is useful for developing
symbolic solutions to problems (for example, such problems are encountered in
the solutions of differential equations: see Chapters 8 and 10).

373

374 CHAPTER 6 Linear Algebraic Equations

Linearity

The matrix equation Ax = b possesses the linearity property. The so lution x is
x = A - I b, and thus x is proportional to the vector b . We can use thi s fact to
obtai n a more generally useful algebraic solution in cases where the ri ght sides
are all multiplied by the same scalar. For example, suppose the matrix equation
is Ay = be, where e is a scalar. The solution is y = A - I be = xc. Thus if we
obtain the solu tion to Ax = b , the solution to Ay = be is given by y = xc. We
demonstrate the usefulness of this fact in Example 6.2-4.

When designing structures, engineers must be able to predict how much
force will be exerted on each part of the structure so that they can properly select
the part 's size and material to make it strong enough. The engi neers often must
solve linear equations to determine these forces . These equati ons are obtained by
applying the principles of statics, which state that the vector sums of forces and
moments must be zero if the structure does not move.

'NN"e' Calculation of Cable Tension

A mass m is suspended by three cables attached at the three points B, C, and D, as shown
in Figure 6.2-2. Let T1 , h and T3 be the tensions in the three cables AB, AC, and AD,
respecti vely. If the mass m i stationary, the sum of the tension components in the x, in the
y, and in the z directi ons mu st each be zero. This requirement gives the fo llowing three

3m

Figure 6.2-2 A mass suspended by three cables.

6.2 Matrix Methods for Linear Equations

equati ons:

TI 3T2 T3
~- .jJ4+ .,142=0

3TJ 4T3
~-.,I42=O

5TJ 5T2 5T3
~ + .jJ4 + .,142 - mg = 0

Use MATLAB to fi nd T1 , T2, and T3 in terms of an unspecifi ed value of the weight mg.

• Solution

If we set mg = 1, the equati ons have the fo rm Ax = b where

We can use the fo llowi ng MATLAB script fil e to solve this system for x and then mul tiply
the resul t by mg to obtain the des ired result.

% File cable . m
% Computes the tensions in three cables .
A1 = [1/sqrt(35) , -3/sqrt(34) , 1/sqrt(42)) ;
A2 = [3/sqrt(35) , 0 , -4/sqrt(42));
A3 = [5/sqrt (35) , 5/sqrt (34) , 5/sqrt (42)) ;
A = [A1 ; A2 ; A3) ;
b = [0 ; 0 ; 1) ;

x = A\b ;
disp (' The tension T_ 1 is :')
disp(x(l))
disp (' The tension T_2 is : ')
disp(x(2))
disp (' The tension T_ 3 is :')
disp(x(3))

When this fil e is executed by typing cable, the result is stored in the array x, which
gives the values TI = 0.5071 , T2 = 0.2915 , and T3 = 0.4166. Because MATLAB does
not generate an error message when the fil e is executed, the solution is unique. Using the
linearity property, we multiply these results by mg and obtain the foll owing solution to
the set Ay = bmg: TI = 0.507l mg, T2 = 0.2915 mg, and T3 = 0.4166 mg.

Calculating a matrix inverse by hand is tedious. The inverse of a 3 x 3 matrix
requires us to evaluate nine 2 x 2 determinants. We do not give the general
procedure here because we will soon explain how to use MATLAB to compute a
matrix inverse. The details of computing a matrix inverse can be found in many
texts; for example, see [Kreyzig, 1998]. However, the inverse of a 2 x 2 matrix

375

376

'US'98e•

C HAPTER 6 Linear Algebraic Equations

is easy to fi nd. If A is given by

its inver e is given by

A= [all
a21

(6.2-12)

Calcul ation of A - I can be checked by determining whether A - I A = 1. Note that
the preceding fo rmula shows that A - I does not ex ist if IA I = 0 (that is, if A is
singul ar).

The Matrix Inverse Method

Solve the follow ing equal ions using the matrix inverse:

2x +9y = 5

• Solution
The malrix A is

3x - 4y = 7

A = [2 9]
3 -4

I ts determinant is IAI = 2(- 4) - 9(3) = -35, and its inver e is

A - I _ ~ [-4 -9] _ ~ [4 9]
- -35 - 3 2 - 35 3 -2

The olution is

x = A - Ib = ~ [~ _;] [~] = ~ [8~]
or x = 83/35 = 2.3714 and y = 1/ 35 = 0.0286.

The Matrix Inverse in MATLAB

The MATLAB command inv (Al computes the inverse of the matrix A. The
fo llowing MATLAB session solves the equations given in Example 6.2-5 using
MATLAB.

»A [2 , 9 ; 3 , -4] ;
»b :5 ; 7]

inv(A) *b

2.3714
0 . 0286

Ifyou attempt to solve a singular problem using the inv command. MATLAB
displ ays an error message.

6.3 Cramer's Method

Test Your Understanding

T6. 2-1 Use the matrix inverse method to solve the following set by hand and by
usi ng MATLAB:

(Answer: x = 7, y = 4.)

3x - 4y = 5

6x- IOy=2

T6 .2- 2 Use the matri x inverse method to solve the fo llowing set by hand and by
using MATLAB: .

3x - 4y = 5

6x - 8y = 2

(Answer: no solution.)

6.3 Cramer 's Method

Cramer 's method is a systematic method for . olving equations, bu t it is not
used as a basis for computer packages because it can be slow and very sensitive
to numerical round-off error, especiall y for a large number of equati ons. We
in troduce it here to gain insight into the requirements for a et of eq uations
to have a solution. In additi on, Cramer's method provides a systematic method
for obtaining solutions of linear equati ons in symboli c form . This has u efu]
applications in the solution of differential equation (see Chapters 8 and 10). We
wi ll use the following set of two equations to illustrate Cramer's method:

all x + al 2Y = bl

a21x + a22Y = b2

(6 .3- 1)

(6.3- 2)

To solve these equations, we can multiply the fir t equation by a22 and the second
equation by -a1 2 to obtain

a22(a ll x + a12 Y) = a22 b l

-aI 2(a2Ix + a22Y) = -a1 2b2

When these two equations are added, the Y terms cancel and we obtain the solution
for x:

bla22 - b2a l2

a22all - a l 2a 21
(6.3-3)

We can cancel the x terms in a similar way and obtain the following 5.olution
for y:

(6.3-4)

377

378 C HAPTER 6 Linear Algebraic Equations

Note that both solutions have the same denominator, which we denote by
D = a22 al' - (/' 2a2'. If this denominator is zero, the above solutions are not
valid because we cannot divide by zero. In that case all we can say is that

Ox = b,a22 - b2a'2

Oy = all b2 - a2,b,

So if D = 0, but b,a22 - b2a'2 :f:. O, x is undefined. If D = Oandb 'C/22 - b2C/' 2 =
0, there are infinitely many solutions for x (because any finite value of x will
satisfy the equation Ox = 0).

Similarly, if D = 0, but allb2 - a2,b, :f:. 0, y is undefined, and if
allb2 - a2 ,b , = 0, there are infinitely many solutions for y.

Cramer' method expresses the above solutions in terms of determinants.
The determinant D (cal led Cramer's determinant) formed from the coefficients
of equations (6.3-1) and (6.3-2) is as follows :

(6.3- 5)

Note that this expression is iden tical to the denominator of the solutions fo r x and
y given by (6.3- 3) and (6.3-4).

If we form a determinant D , by replaci ng the fi rst column of D with the
coeffic ients on the right side of the equation set (6.3- 1) and (6.3-2), we obtain

This expression is identical to the numerator of the solu tion (6.3-3) . Thus the
solution can be expressed as the ratio of the two determinants x = D, I D.

Next form the determinant D2 by replaci ng the second column of D with the
coefficients on the right side of the equation set. Thus

This express ion is identical to the numerator of the solution (6.3-4). Thus
y = D2I D.

Cramer's method expresses the solutions as ratios of determinants, and thus it
can be ex tended to equations with more than two vari ables by using determinants
having the appropriate dimension. Before using Cramer's method, be sure the
variable are lined up in a consistent order (for example, x , y , z) in each equation
and move all constants to the right side. Equations (6./-1) through (6.1- 3) from
Example 6. 1- 1 illustrate this process.

-x + y + 22 = 2

3x - y + 2 = 6

- x + 3)' +42 = 4

6.3 Cramer's Method

Cramer's determinant for thi s set is

D = 1-~ -i ;1 = 10
- I 3 4

One advantage of Cramer's method is that you can fi nd only one of the
un knowns di rectly if that is all you want. For example, the first unknown is
fo und fro m x = D,/ D, where D, is the determinant formed by replacing the
first column in the determinant D with the coeffi cients on the right side of the
equation set:

D, = I ~ -i ~ I
434

This determinant has the value D, = 10, and th us x = D, I D = 10110 = 1.
Similarly, y = Dz/ D = - 10/ 10 = - 1 and z = D31 D = 20/ 10 = 2, where

D2 = 1 -~ ~;I D3 = 1 -~ -i ~ I
- I 4 4 - 1 3 4

Cramer's Determinant and Singular Problems

When the n um ber of variables eq uals the number of eq uati ons, a singul ar problem
can be identified by computing Cramer's determinant D . If the determinant is zero,
the equations are singular because D appears in the denominator of the solutions.
For example, for the set

Cramer's determinant is

3x - 4y = 5

6x - 8y = 3

D = I ~ =:1 = 3(-8) - 6(-4) = 0

Thus the equation set is singular.
Another example is given by the following homogeneous set:

6x + ay = 0

2x + 4y = 0

We saw earlier that any finite values of x and y, such that x = -2y, are solutions
of thi s set if a = 12. If a :f:. 12, the only solution is x = y = O. Cramer's determi­
nant is

1
6 al D = 2 4 = 6(4) - 2a = 24 - 2a

and D = 0 if a = 12. Thus the set is singular if a = 12.

379

380 CHAPTER 6 Linear Algebraic Equations

In general, for a set of homogeneous linear algebraic equations that contains
the same number of equations as unknowns, a nonzero so lution exists on ly if the
set is singular; that is, if Cramer's determinant is zero; furthermore, the solution
is not unique. If Cramer's determinant is not zero, the homogeneous set has a
zero solution; that is, all the unknowns are zero.

Cramer's determinant gives some insight into ill-conditioned problems, which
are close to being singular. A Cramer's determinant close to zero indicates an ill­

conditioned problem.

Test Your Understanding

T6.3-1 Use Cramer's method to solve for x and y in terms of the parameter b.
For what value of b is the set singul ar?

4x - by = 5

-3x + 6y = 3

(Answer: x = (10 + b) /(8 - b), y = 9/(8 - b) unless b = 8.)

T6.3-2 Use Cramer's method to solve for y. Use MATLAB to evaluate the
determinants.

(Answer: y = 1.)

2x + y + 2z = 17

3y + z = 6

2x - 3y + 4z = 19

6.4 U nderdetermined Systems
You have seen how to use the matrix inverse method x = A - \ b to solve the
equation set Ax = b . However, thi s method works only if the matrix A is square;
that is, if the number of unknowns equal s the number of equations. Even if A is
square, the method will not work if IAI = 0 because the matrix inverse A - \ does
not exist. The same limitation applies to Cramer' method; it cannot solve equation
sets where the number of unknowns doe not equal the number of equations.

This section explains how to use MATLAB to solve problems in which the
matrix A is square but IAI = 0, and problems in which A is not square. The
left-division method works for square and nonsquare A matrices. However, as
you will see, if A is not quare, the left-division method can give answers that
might be misinterpreted. We explain how to interpret MATLAB results correctly.

An ullderdeterm;lled system does not contain enough information to solve
for all of the unknown variables. usually because it has fewer equations than
unknowns. Thus an infinite number of olutions can exist, with one or more

6.4 Underdetermined Systems

of th.e ~nknowns dependent on the remaining unknowns. For such systems the
matrIX IJ1verse method and Cramer's method wi ll not work. When there are more
equations than unknowns, the left-division method will give a solution with some
of the unknowns set equal to zero. A simple example is given by the eq uation
x + 3y = 6. All we can do is solve for one of the unknowns in terms of the other'
for example, x = 6 - 3y. An infinite number of soluti ons sati sfy thi equati on:
The left-division method gives one of these so lu tions, the one with x set equal to
zero: x = 0, y = 2.

»A (1, 3] ;

»b 6 ;
A\b

An infinite number of soluti ons might exist even when the number of equa­
ti ons equals the number of unknowns. This situation can occur when IAI = O. For
such systems the matrix inverse method and Cramer's method will not work and
the left-division method generates an error message warning us that the mat;ix A
is si ngular. In such cases the jJseudoinverse method x = pinv (A) *b gives
one solution, the minimum norm solution. In cases that have an infinite number
of solutions, some of the unknowns can be expressed in terms of the remaining
unknowns, whose values are arbitrary. We can use the rref command to find
these relations. We introduce these commands in this section and give examples
showing how to interpret their results.

An equation set can be underdetermined even though it has as many equations
as unknowns. For example, the set

2x - 4y + 5z = -4

-4x - 2y + 3z = 4

2x + 6y - 8z = 0

has three unknowns and three equations, but it is underdetermined and has in­
finitely many solutions. This condition occurs because the set has only two inde­
pendent equations; the third equation can be obtained from the first two. To obtain
the third equation, add the first and second equations to obtain - 2x - 6y + 8z = 0,
which is equivalent to the third equation.

Determining whether all the equations are independent might not be easy.
especially if the set has many equations. For this reason we now introduce a
method that enables us to determine easily whether or not an equation set has a
solution and whether or not it is unique. The method require an understanding
of the concept of the rank of a matrix.

381

PSEUDOfNVERSE
METHOD

MINIMUM NORM
SOLUTIO

382

SUBDETERMINANT

AliGl\lE:-.iTED
MATRIX

CHAPTER 6 Linear Algebraic Equations

Matrix Rank

Consider the following 3 x 3 determinanL:

Ii ~~ ~ I
If we eliminate one row and one column in the determinant, we are left with
a 2 x 2 determinant. Depending on which row and column we eliminate, we
can obtain any of nine possible 2 x 2 determinants. These elements are ca!led
subdeterminants. For example, if we eliminate row I and column I , we obtam

I ~~ ;1 = 10(3) - 2(- 7) = 44

If we eliminate row 2 and column 3, we obtain

1
3 -41 = 3(-7) - 9(-4) = 15
9 -7

Subdeterminants can be used to defi ne the rank of a matrix, which provides
useful information concerning the existence and nature of solutions. The definition
of matrix rank is as follows:

Matrix rank. An 111 x /I matrix A has a rank r 2: 1 if and only if IAI contai ns a
non zero r x r determinant and every quare subdetenninant with r + I or more rows

i zero.

For example, the rank of

[3 -4 1]
A = 6 10 2

9 -7 3
(6.4-1)

is 2 becau e IAI = 0 whereas A contains at least one nonzero 2 x2 subdeterminant.
For example, the subdeterminant obtained by eliminating row 1 and column 1 is
nonzero and has the value 44.

MATLAB provide an easy way to determine the rank of amatrix. First define
the manix A as an array in the usual way. Then type rank (A) . For example, the
following MATLAB session determines the rank of the matrix given by (6.4-1) .

»A = [3 ,- 4 , 1;6 , 10 , 2 ; 9 , -7 , 3J ;
»rank (A)

ans

Existence and Uniqueness of Solutions

The following test determines whether a solution exists and whether or not it
is unique. The test requires that we first form the so-called augmented matrix
lA b] . The fir t /I columns of the augmented matrix are the columns of A. The

'.;.4 Underdetermined Systems

last column of the augmented matrix is the column vector b. For example, if

A= [_ ; ~ -~] b = [_ I~]
then the augmented matrix is

[A b] = [_ ; ~ -~ _ I~]
The solution test can be stated as follow IKreyzig, 1998J:

Existence and uniqueness of solutions. The sel Ax = b with ,./'1 equations and 11

unknowns has solutions if and only ifrank[AJ = rank[A b] (I). Lelr = rank[A] . If
condilion (I) is sati sfi ed and if r = 11 , then the solution is unique. If cohdilion (I) is
sati s fi ed but r < 11 , an infinite number of soluti ons exists and r unknown va ri ables
can be expressed as linear combinati on of the other 11 - r unknown variables, whose
va lues are arbitrary.

Homogeneous case. The homogeneous set Ax = 0 is a special case in which b = O.
For this case rallk[A] = rank[A b] always, and thus the set always has the trivial
so lution x = O. A nonzero solution, in which at least one unknown is nonzero, exi sts if
and on ly ifrank[A] < n. lfm < 11 , the homogeneous set always ha a nonzero solulion.

Recall that if IAI = 0, the equation set is singular.lfyou try Lo so lve a ingular
set using MATLAB, it prints a message warning that the matrix is si ngular and
does not try to solve the problem. An ill-conditioned set of equations is a set that
is close to being singular. The ill-conditioned status depends on the accuracy with
which the solution calculations are made. When the internal numerical accuracy
used by MATLAB is insufficient to obtain a solution, MATLAB prints a message
to warn you that the matrix is close to si ngular and that the re ults might be
inaccurate.

383

A Set Having a Unique Solution 'W"Y"'"
Determjne whether the following set has a unique solution, and if so, find it:

3x - 2y + 8z = 48

- 6x+Sy+ z=- 12

9x + 4y + 2z = 24

• Solution
The matrices A , b, and x are

A+: -~ II
The following MATLAB session checks the ranks of A and [A bJ and finds the olution.

»A = [3 , -2,8 ; -6 , 5 , 1 ; 9 , 4 , 2] ;
»b = [48 ;- 12 ; 24] ;
»rank (A)

384

'NiNHM,.

CHAPTER 6 Linear Algebraic Equations

»rank ([A b])

= A\b

- 1

5

Becall, e A and [A b] have the same rank , a solution ex ists. Because thi s rank eq uals the
number of unknowns (wh ich is three), the solution is unique. The left-division method

gives thi s olution , wh ich is x = 2, Y = - 1, z = 5.

Test Your nderstanding

T6.4-1 Use MATLAB to show that the following set has a unique solution and
then find the solution:

3x + 12y - 7z = S

Sx - 6y - Sz = -8

-2x + 7y + 9z = 5

(Answer: The unique solution i x = -1.0204, Y = 0.S940, z = - 0.1332.)

An Underdetermined Set

Show that the following set does not have a unique solution. How many of the unknowns
will be undetermined? Interpret the results given by the left-division method.

2x - 4y + 5z = -4

-4x - 2y + 3z = 4

2x + 6y - 8z = 0

• Solution
A MATLAS se sion to check the ranks look like

>'>.1\ = [2 , -Q , 5 ; -4 , -2 , 3 ; 2,6 , -8];
»b - [-4 ; 4 ; OJ ;
»rank(A)

»rank (fA bj)

~""1"T~f"~~"':"~~~~':;;~'W,,--:: .. <~.~~~ -

'-

6.4 Underdetermined Systems

Because thc ranks of A and IA bJ are equal , a soluti on ex ists. However, because the
number of' unk nowns is three, and is one greater than the rank of A, one of the unknown&
will be undetermined. An infinite number of so lutions exists, and we can solve for only
two of the unknowns in terms of' the third un known. We wi ll obtain these solutions in
Example 6.4.-4.

Note that even though the number of eq uati ons equals the number of unknowns here,
the matri x A is singul ar. (We know thi s because its rank is less than three.) Thus we cannot
usc the matri x inver e method or Cramer's method for this problem .

1f we use the left-di vision method , MATLAS returns a message warn ing th at the
problem is sin gul ar, rather than producing an answer.

The pinY Command and the Euclidean Norm

The piny command can obtain a solution of an underdetermined set. To solve
the eq uation set Ax = b using the pinY command, type x = piny (A) ·kb.
Underdetermined sets have an infinite number of solutions, and the piny com­
mand produces a solution that gives the minimum value of the Euclidean norm,
which is the magnitude of the solution vector x. The magnitude of a vector v in
three-dimensional space, having components x, y, z, is J x2 + y2 + Z2 . It can be
computed using matrix multiplication and the transpose as follows :

./Tv ~ [x y ,V m ~ Jx' + y' +,'

The generalization of thi s formula to an n-dimensional vector v gives the magni­
tude of the vector and is the Euclidean norm N. Thus

(6.4-2)

Example 6.4-3 shows how to apply the piny command.

A Statically Indeterminate Problem

Determine the forces in the three equally . paced ' upport that hold up a light fixture. The
support are 5 ft apart. The fixture weigh ' 400 lb, and its mass center is 4 ft from the
right end. (a) Solve the problem by hand. (b) Obtain the olution using the MATLAS
left-division method and the p eudoinver e method .

• Solution
(a) Figure 6.4-1 shows the fixture and the free-body diagram, where TI , T2, and T3 are the
tension forces in the support. For the fixture to be in equilibrium. the vertical forces must
cancel , and the total moment about an arbitrary fixed point-~ay. the right endpoint­
IllU t be zero. These condition give the two equation~:

TI + T2 + 73 - 400 = 0

400(4) - JOTI - 5T~ = 0

385

'."9"1"

386 CHAPTER 6 Linear Algebraic Equations

5ft 5 ft

• 40J Ib

(a) I 4ft

40J
(b)

Figure 6.4-1 A light fixture and its
free-body diagram.

T) + T2 + T3 = 400

lOT) + 5T2 + OT3 = 1600

(6.4-3)

(6.4-4)

Because there are more unknowns than equations, the set is underdetermined. These

equations can be written in the matrix form Ax = b as follows:

[l~ : ;] [;:] = [,::1
where

Because we can find a nonzero 2 x 2 determinant in both A and [A b], the ranks of A and
[A b) are both 2; thus a solution exists . Because the number of unknowns is three, and is
one greater than the rank of A, an infinite number of solutions exists and we can solve for
only two of the forces in term of the third force. Equation (6.4-4) gives

1600 - lOT)
T2 = --5- - = 320 - 2T)

6.4 Underdetermined Systems

Su bsti tute this expression into (6.4-3) and solve for T) to find that T) = T3 - 80. Thus
the solution in terms of T3 is

T) = T3 - 80

T2 = 320 - 2T) = 320 - 2(T3 - 80) = 480 - 2T3

We cannot determine numerical values for any of the forces. Such a problem, in which
the equations of statics do not give enough equations to find all of the unknowns, is caIJed
statically indeterminate. STATICALLY

387

(b) A MATLAB session to check the ranks and to solve this problem using left divi- INDETERMINATE
sion looks like

»A = [1,1,1;10,5,0];
»b= [400;1600];
»rank (A)

»rank ([A b])

»A\b

160 . 0000
o
240 . 0000

The answer conesponds to T) = 160, T2 = 0, and T3 = 240 lb. This example illustrates
how the MATLAB left-division operator produces a solution with one or more variables
set to zero, for underdetennined sets having more unknowns than equations.

To use the pseudoinverse operator, type the command piny (A) * b . The result is
T) = 93 .3333, T2 = 133.3333, and T3 = 173.3333 lb. This answer is the minimum norm
solution for real values of the variables. The minimum norm solution consists of the real
values of T) , T2 , and T3 that minimize

N = /T?+Tl +Tl

= /(T3 - 80)2 + (480 - 2T3)2 + T?

= /6Tl - 2080T3 + 236,800

The smallest value N can have is zero. This result occurs when T3 = 173 ± 97i , which
con'esponds to T) = 93 ± 97i and T2 = 827 ± 194i . This result is a valid olution of
the original equations, but is not the minimum norm solution where T), T2, and T., are
restricted to real values (we know that the forces cannot be complex).

We can find the real value of T3 that minimizes N by plotting N versus T3 or by using
calculus. The answer is T3 = 173.3333, which gives T) = 93.3333 and T2 = 133.3333.
These values are the minimum norm solution given by the pseudoinverse method.

388 CHAPTER 6 Linear Algebraic Equations

We must decide whether or not the solutions given by the left-division and the
pseudoinverse methods are useful for applications that have an infinite number
of so lutions, and we must do so in the context of the specific application. For
example, in the light-fixture application discussed in Example 6.4-3, only two
supports are requi red, and the left-division solution (the solution with T2 = 0)
shows that if the middle support is eliminated, the forces in the end supports will
be T, = 160 and T3 = 240 lb. Suppose we want to use three supports to reduce
the load carried by each support. The pseudoinverse solution (T, = 93 , T2 = 133,
T3 = 173) is the ol ution that minimizes the sum of the squares of the support

forces.
Many problems are statically indeterminate because the engineer has included

more supports than necessary, usually for safety in case one support fails. In prac­
tice, when engineers are confronted with a statically indeterminate problem, they
supplement the equations of statics with equations that describe the deformations
of the supports as functions of the applied forces and moments . These additional
equations allow the forces and moments within the structure to be determined

unambiguously.

Test Your Understanding

T6.4-2 Use MATLAB to find two solutions to the following set:

x + 3y + 2z = 2

x+y+ z =4

(An wer: Minimum norm solution : x = 4.33, y = -1.67, z = 1.34.
Left-divi ion solution: x = 5, y = - 1, z = 0.)

The Reduced Row Echelon Form

We can express some of the unknowns in an underdetermined set as functions
of the remaining unknowns. For example, in the statically indeterminate case of
Example 6.4-3, we wrote the solutions for two of the forces in terms of the third:

T, = T3 - 80

T2 = 480 - 2T3

These two equations are equivalent to

In matri x form these are

[~

T, - T3 = -80

T2 + 2T3 = 480

-I] [T'l [-80]
2 ~~ = 480

The augmented matrix for the preceding set is

[
1 0 - I - 80]
o I 2 480

6.4 Underdetermined Systems

Note that t.he first t~o columns form a 2 x 2 identity matrix . Therefore, the
correspondmg equations can be solved directly for T, and T2 in terms of T3.

W; can a l ~ays redu~e an underdetermi ned set to such a form by mUltiplying
~he set s equations by. sllltable factors and adding the resulting equati ons to elim­
mate an unknown ~anable. Th~ MATLAB rre f command provides a procedure
to reduce an equatIOn set to thiS form, which is called the reduced row echelon
form. Its syntax is rref ([A b]). Its output is the augmented matrix [C d)
that corresponds to the equation set Cx = d . This set is in reduced row echelon
form.

A Singular Set

The following underdetermined equation set was analyzed in Example 6.4-2. There it was
shown that an infinite number of solutions exists. U e the pinv and the rref command
to obtain solutions.

• Solution

2x -4y+5z =-4

-4x - 2y + 3z = 4

2x + 6y - 8z = 0

First use the pinv command. The MATLAB session follows .

»A = [2 , -4,5 ; -4,-2,3;2,6,-8);
»b = [-4; 4 ; 0 I ;
»x = pinY (A) *b

-1.2148
0 . 2074
-0 . 1481

Thus the p eudoinverse method gives the olution: x = -1.2148, y = 0.2074, z =
-0.148 1. This solution is va lid, but it i not the general solution .

To obtain the general solution, wecan use the rref command. The current MATLAB
session continues as follows.

»rref ([A b])

- 0 . 1
-l. 3

-l. 2000
0 . 4000

o

389

'mMpe'I"

390

.I"'9"N*

CHAPTER 6 Linear Algebraic Equations

The answer corresponds to the augmented matrix [C dl , where

[

I 0 -0.1 - 1.2]
[C dl = 0 I - 1.3 0.4

o 0 0 0

This matrix corre ponds to the matrix equation Cx = d, or

x + Oy - O. l z = -1.2

Ox + y - 1.3z = 0.4

Ox + Oy + Oz = 0

We can eas il y olve these expressions for x and y in terms of z as follows: x = O. l z - 1.2
and y = 1.3z + 0.4. This result is the general solution to the problem, where z is taken to

be the arbitrary variable.

Supplementing Underdetermined Systems

Often the li near equations describing the application are underdetennined because
not enough infonnation has been specified to determine unique values of the
unknown . In such cases we might be able to include additional information,
objectives, or constraints to find a unique solution. We can use the rref command
to reduce the number of unknown variables in the problem, as illustrated in the
next two examples.

Production Planning

The following table shows how many hours reactors A and B need to produce 1 ton each of
the chemical products 1, 2, and 3. The two reactors are available for 40 hours and 30 hours
per week, respectively. Determine how many tons of each product can be produced each
week.

• Solution

Hours Product 1 Product 2 Product 3

Reactor A
Reactor B

Letx . y, and z be the number of tons each of products I, 2, and 3 that can be produced in
one week. Using the data for reactor A, the equation for its usage in one week is

5x + 3 y + 3z = 40

The data for reactor B gives

3x + 3 y + 4z = 30

.~W~

'''>(-.'
, ... '
'I' it.

6.4 Underdetermined Systems

Thi s system is underdetermined. The matrices for the equation Ax = bare

A = [5 3 3]
3 3 4

Here the rank(A) = rank([A bJ) = 2, which is less than the number of unknowns. Thus
an infinite number of solutions exists, and we can determine two of the variables in tenns
of the third .

Using the rref command rref([A b]), where A = [5,3,3 ; 3,3, 4] and
b = [40 ; 30] , we obtain the fOllowing reduced echelon augmented matrix:

[0

1 0 - 0.5 5]
I 1.8333 5

This matrix gives the reduced system

x - 0.5z = 5

y + 1.8333z = 5

which can be easily solved as follows:

x = 5 + 0.5z

y = 5 - 1.8333z

(6 .4--5)

(6.4--6)

where z is arbitra ry. However, z cannot be completely arbitrary if the solution is to be
meaningful. For example, negative values of the variables have no meaning here; thus we
require that x ::: 0, y ::: 0, and z ::: O. Equation (6.4-5) shows that x ::: 0 if z ::: - 10.
From (6.4--6), y ::: 0 implies that z .:::: 5/ 1.8333 = 2.727. Thus valid solutions are those
given by (6.4--5) and (6.4--6), where 0 .:::: z .:::: 2.737 tons. The choice of z within this range
must be made on some other basis, such as profit.

For example, suppose we make a profit of $400, $600, and $100 per ton for product
1, 2, and 3, respectively. Then our total profit P is

P = 400x + 600y + 100z

= 400(5 + 0.5z) + 600(5 - 1.8333z) + 100z

= 5000 - 800z

Thus to maximize profit, we should choose z to be the smalle t possible value; namely,

z = O. This choice gives x = y = 5 tons.
However, if the profits for each product were $3000, $600, and $100, the total profit

would be P = 18 .000 + 500z. Thus we should choose z to be its maximum; namely,
z = 2.727 tons . From (6.4--5) and (6.4--6), we obtain x = 6.36 and y = 0 tons.

391

392 CHAPTER 6 Linear Algebraic Equations

'R'P,e". Traffic Engineering

A traffic engineer wants to know whether measurements of traffic flow entering and leaving
a road network are sufficient to predict the traffic flow on each street in the network. For
example, consider the network of one-way streets shown in Figure 6.4-2. The numbers
in the figure give the measured traffic flows in vehicles per hour. Assume that no vehicles
park anywhere within the network. If possible, calculate the traffic flows 11, 12 , 13, and

14. If this is not possible, suggest how to obtain the necessary information .

• Solution
The flow into intersection 1 must equal the flow out of the intersection, which gives us

100 + 200 = 11 + 14

Similarly, for the other three intersections, we have

11 + 12 = 300 + 200

600 + 400 = 12 + 13
13 + 14 = 300 + 500

Putting these expressions in the matrix fo rm Ax = b , we obtain

[
1 0 0 I]
1 I 0 0

A = 0 1 I 0

o 0 1 1
[

300] 500
b = 1000

800

First check the ranks of A and [A b] using the MATLAB rank command. Both have a
rank of three, which is less than the number of unknowns, so we can detennine three of the
unknowns in terms of the fourth. Thus we cannot determine the traffi c flows based on the
given measurements. This example shows that it is not always possible to find a unique,
exact solution even when the number of equations equals the number of unknowns .

200 300

100 200

'4 '2

300 400

'3

500 600

Figure 6.4-2 A network of one-way streets.

r"...----n-~I~...- ~ ~ --~~ ... ~-.... - -:: '"

~

6.4 Underdetermined Systems

Using the rref ([A b)) command prod uces the reduced augmented matrix

[

I 0 0 1 3001 o 1 0 - 1 200
o 0 I 1 800
o 0 0 0 0

which corresponds to the fo llowing reduced system:

11 + 14 = 300

12 - 14 = 200

13 + 14 = 800

We can easily solve this system as fo llows: II = 300 - 14, 12 = 200 + f. and f =
800 _ k 4, 3

If we could measure the flow on one of the internal roads, say, 14, then we could com­
pute the other fl ows. So we recommend that the engineer arrange to make this additional
measurement.

Test Your Understanding

T6.4-3 Use the rre f and piny commands and the left-division method to solve
the following set:

3x + 5y + 6z = 6

8x - y + 2z = 1

5x - 6y - 4z = -5

(Answer: The set has an infinite number of solutions. The result obtained
with the rref command isx = 0.2558 -0.3721 z, y = 1.0465 -0.9767z,
z arbitrary. The p i ny command gives x = 0.0571, Y = 0.5249, Z =
0.5340. The left-division method generates an error message.)

T6.4-4 Use the rref and piny commands and the left-division method to solve
the following set:

3x + 5y + 6z = 4

x-2y -3z =10

(Answer: The set has an infinite number of solutions. The result obtained
with the rref command is x = 0.2727z + 5.2727, y = -1.3636z -
2.3636, z arbitrary. The solution obtained with left division is x = 4.8000,
y = 0, z = -1.7333. The pseudoinverse method gives x = 4.8394,
Y = -0.1972, z = -1.5887.)

393

394 C H APT E R 6 Linear Algebraic Equalions

6.5 Overdetermined Systems
An overde termined system is a sel of equations that has more independent equa­
tions than un knowns. For sueh a system the matri x inverse method and Cramer's
method will not work because the A matri x is not sqmlre. However, some overde­
termined sys tems have exact so lutions, and they can be obtained with the left­
di vision method x = A \ b. For other overdeterm ined systems, no exact solution
ex ists. In some of these cases, the left-div ision method does not yield an an­
swer, while in other cases the left-di vision method gives an answer that satisfies
the equation set only in a "least squares" sense, as expl ained in Example 6.5- 1.
When MATLAB gives an answer to an overdetermined set, it does not tell us
whether the answer is the exact so lu tion. We must determine this information
our elves, as shown in Example 6.5-2.

1"5§19"U' The Leas t Sqmu'es Method

Suppose we have the fo ll ow ing three data points, and we want to fi nd the straight line
y = II1 X + b that be. t fi ts the data in some sense.

o
5

10 I I

(a) Find the coefficients /'/'1 and b by using the least squares criterion. (b) Find the
coeffi cients by using MATLAB to solve the three equation (one for each data point) for
the two unknowns m and b. Compare the answer from (a) and (b).

• Solution
(a) Because two point. define a straight line, un less we are extremely lucky, our data points
wil l not lie on the same -trai ght li ne. A coml1lon cri terion for obtaining the straight line
that be, t fits the data is the least quw'es criterion. According to this cri terion, the li ne that
minimizes 1 , the UI1l of the. quares of' the verti cal differences between the line and the
data points. i, the "best" fi t (see Figure 6.5- 1). Here 1 is

i_ J

1 = L(III X,+ b -)',)2

Substituting the data values (x , . .\',). this ex pre~ ion become

1 ::= (0111 + h - 2)2 + (5 111 + b - 6)2 + (10m + b - 11)2

You can u ~.: the fminsear ch command to find the values of m and b that minimize
1 . On the other ha nd. if you are fa mili ar with ca lc ulus, you know that the values of m
and b that mini llli /e 1 are found by setti ng the part ial derivatives D1 1Dm and a1 l ab

----v- J T-1~~7·~t· ~) . .: ~

~

6.5 Overdetermined Systems

• Data Point

] 1 mX1 + b -Yl 1

(Xl, Yl)

Y= mx + b

Figure 6.5-1 Illustra tion of the least squares criterion.

equal to zero:

D1 a; = 2(5m + b - 6)(5) + 2(IOm + b - 11)(10)

= 250m + 30b - 280 = 0

a1
8b = 2(b - 2) + 2(5m + b - 6) + 2(IOm + b - II)

= 30m + 6b - 38 = 0

These give the fo ll owing equ ations for the two un knowns m and b:

250m + 30b ::= 280

30m + 6b = 38

The solution is m = 0.9 and b = 11 / 6. The be t straight line in the least quares ~ense
is y = 0.9x + 11 / 6 = 0.9x + 1. 8333. It appear in Figure 6.5-2, along with the data
points.

(b) Evaluating the equation y = mx + b at each data point give the fo llowing three
equ ati ons:

Om +b = 2

5111 + b::= 6

10m +b::= II

(6.5- 1)

(6.5- 2)

(6.5- 3)

395

396 CHAPTER 6 Linear Algebraic Equations

12 __ --~--~--~--.---.---,---,---,---.---1

10
y = 0.9x + 1.8333

""6

10

Figure 6.5-2 The least squares fit for the example data.

Thi s set is overdetermined because it has more equations than unknowns. These equations

can be written in the matrix form Ax = b as follows:

U :] l.l~ U]
where

A~ p :]
101

x = [:] b~ U]
[0 I l~] [A b] = 5 I

10 I

Because we can find a nonzero 2 x 2 determinant in A, its rank is two. However IA bl =
-5 =I- 0, so its rank is three. Thus no exact solution exists for m and b. The following

MATLAB session uses left division.

»A = (0,1 ; 5 , 1; 10 , 1] ;
»b = (2 ; 6;11];

»rank(A)

»rank ((A b])

»A\ b

0 . 9000
1 . 8333

6.5 Overdetermined Systems

This result agrees wi th the least squares solution obtained previously: In = 0.9, b =
11 / 6 = 1.8333.

If we now type A *ans, MATLAB yields this result:

1. 833
6 . 333
10 . 8333

These values are the y values generated by the line y = 0.9x + 1.8333 at the x data values

x = 0,5 , 10. These values are different from the right sides of the original three equations

(6.5- 1) through (6.5-3). This result is not unexpected because the least squares solution

is not an exact solution of the equations.

Some overdetermined systems have an exact solution. The left-division
method sometimes gives an answer for overdetermined systems, but it does not
indicate whether the answer is the exact solution. We need to check the ranks of
A and [A b) to know whether the answer is the exact solution. The next example
illustrates this situation.

An Overdetermined Set

(a) Solve the following equations by hand and (b) solve them using MATLAB. Discuss

the solution for two cases: c = 9 and c = 10.

• Solution

x+y=1

x + 2y = 3

x + 5y = c

(a) To solve these equations by hand, subtract the first equation from the second to obtain

y = 2. Substitute this va lue into the first equation to obtain x = -I. Substituting these

values into the third equation gives -I + 10 = c, which is satisfied only if c = 9. Thus a

solution exists if and only if c = 9.
(b) The coefficient matrix and the augmented matrix for this problem are

[I 1 I]
[A b] = I 2 3

1 5 c

397

'.'9,e.

398 CHAPTER 6 linear Algebraic Equations

In MATLAB, enter the array A = [1 , 1 ; 1 , 2 ; 1 , 5] . For c = 9, type b = [1 ; 3 ; 9] ;

the rank (A) and rank ([A b]) commands give the result that rank(A) =
rank(lA b]) = 2. Thus the system has a solution and , beca.use the number of un.know~s
(two) equals the rank of A, the solution is unique. The left-divI SIOn method A \ b give thi s

solution, which is x = - I and y = 2.
Fore = 10, type b = [1 ; 3 ; 10] ; the rank (A) and rank ([A \ b]) commands

oive the result that rank(A) = 2, but rank(IA b]) = 3. Because rank(A) ~ rank ([A bJ) ,
~o solution exi t . However. the left-division method A \b gives x = - 1.3846and Y =
2.2692. which is 1101 a solution! This conclusion can be verified by SUbStll~ltlll g t1:ese
values into the ori gi nal equation set. This answer is the solution to the eq~l alio.n set III a
least squares sense. That is, these values are the va lues of x and y th~t ml~lml ze J , the
sum of the square of the differences between the equations' left and nght Sides.

J = (x + y - 1)" + (x + 2)' - 3i + (x + 5 Y - loi
The MATLAB left-division operator ometimes gives the least squares solution when

we use the operator to solve problems for which there is no exact.solutlOn. A solUli on
ex ists when c = 9, but no solution exists when c = 10. The left-divIsIOn method gives
the exact olution when c = 9 but gives the least squares solution when c = 10.

To interpret MATLAB answers correctl y for an overdet.ermin~d s~stem , first
check the ranks of A and [A b] to see whether an exact olutlOn ex tsts; If one ~oes
not exist, then you know that the left-division an wer i a least squares solution.

es Your U derstanding

T6.5-1 Use MATLAB to solve the following set:
x - 3y = 2

3x + 5)' = 7

70x - 28 y = 153

(A nswer: The unique solution , x = 2.2 J43 , y = 0.0714, is given by tbe
left-division method.)

T6.5-2 U 'e MATLAB to solve the following et:

x - 3y = 2

3x + 5y = 7

5 .. - 2} = -4

(Answer: 0 exact solutio_l1_.) _____________ _

6.6 Summary
Once you have fini , hed thi chapter, you houlct be able to solve by hand systems
of linear algebraic equation that have few variable' and use MATLAB to solve
s)"tem ' that have many variables. If the number of equations in the set equals

6.6 Summary

the number or unknown vari ab les, the malri x A is square and MATLAB provides
two ways or solving the eq uation set Ax = b:

1. The matri x inverse melhod; solve for x by typing x = i nv (A) *b.

2. The matrix left-divi sion method; solve for x by typing Y. = A b .

If A is. square and if MATLAB does not generate an error message when you u ~e
one 0.1 ~hese methods, then the set has a unique solution, which is given by the
left-diVISion method. You can always check the solution for x by lyping A" Y. to
see if the result is the same as b . [f so, the so lu tion is correct. If you receive an
error message, the set is underdetermined, and either it does not have a solution
or il has more than one solution . [n such a case, if you need more information ,
you must use the following procedures.

For underdetermined and overdetermined sets, MATLAB provides three ways
of dealing with the equation set Ax = b. (Nole that the matrix inverse method
will never work wilh such sets.)

1. The matrix left-divi sion method; solve for x by typing x = A b.

2. The pseudoinverse method ; solve for x by typi ng x = pinv (A) *b.

3. The reduced row echelon form (RREF) method . This methocluses the
MATLAB command rref to ob tain a solulion .

Table 6.6-1 summarizes the appropriate commands. You should be ab le lo deter­
mine whether a unique solution , an infinite number of solutions, or no ~olution
exi ts . You can get this information by testi ng for existence and uniCJueness or
soluti ons using the following test.

Existence and uniqueness of solutions. The sct Ax = b with In cquat i on~ and n
unknown has solutions if and only if rank[AJ = rank[A bl (I). Lct r = ranklA I. [f
condition (I) is atisfied and if,. = 1'1 , then the solution j ~ unique. If condition (J) 1\

sati fied but r < 1'1 , an infinite number of ~olu ti ons exiqs and r unknown variables
can be expre sed as linear comb inations of the other 1'1 - r unknown variable~. who~c
value are arbi trary.

Homogeneous case. The homogeneou sct Ax = 0 i, a ; reci al ca\c in which b = O.
For thi s case rank[AJ = rank[A b I always. and thus the ~ct always ha\ the trivial
olution x = O. A nonzero solution , in which at least one unknown i~ nonzero. cx i ~ts

Table 6.6-1 Matrix commands for solving linear equation<;

Command

det (A)
inv (P.)

pinvU·.l
rank (A)
rref ([A b])

x = inv(A)*b
x = A b
x = die

Description

Compute the determinant of the array A.
Computes the inver,e of the matrix A.
Computes the p eudoinver e of the rnatri>. A.
Compute; Ihe rank of the matnx A.
Computes the reduced row echelon form corre,pondlllg to
the augmented matrix lA bJ .
Solve<; the matrix equation Ax = b. u~jng the matrix inver<.e.
Sol ves the matri\ equation Ax = b. u\ing left di\i,ion.
Solves the matrix equation xC = d. u,ing right di\ i"on.

399

400 CHAPTER 6 Linear Algebraic Equations

if a nd o nl y if rank[A) < 11 . If /1/ < n , the homogeneo us set always has a nonzero

solu tio n.

Underdetermined Systems

In an underdetennined system not enough information is given to determine the

values of all the unk nown vari ab les.

• An in fi nite number of solutions might ex ist in whi ch one or more of the
unknown are dependent on the remaining unknowns.

• For such systems Cramer's method and the matrix inverse method wi II not
work because either A is not square or because [A[= O.

• The left-div ision method will give a solution with some of the unknowns
arbitrarily set equal to zero, but thi s solution is not the general solution.

• An infinite number of solutions might ex ist even when the number of
equation equal s the number of unknowns. The left-division method fa ils

to give a solution in such cases.
• In cases that have an infinite number of solutions, some of the unknowns

can be expressed in term of the remaining unknowns, whose values are
arbitrary. The rref command can be used to find these relations.

Overdetermined Systems

An overdetermined system is a set of equations that has more independent equa­

tions than unknowns.

• For such a system Cramer's method and the matri x inverse method will not
work because the A matrix is not square.

• Some overdetermined systems have exact solutions, which can be obtained
with the left-division method A \b.

• For overdetermined systems that have no exact solution, the answer given
by the left-division method satisfies the equation set only in a least squares

sense.
• When we use MATLAB to solve an overdetermined set, the program does

not te ll us whether the solution is exact. We must determine this
information ourselves. The first step is to check the ranks of A and [A b]
to see whether a solution exists ; if no solution exists, then we know that the
left-division olution is a least square answer.

Programming Application

In thi s chapter you saw that the set of linear algebraic equations Ax = b with m
equation and II unknowns has solution if and only if (I) rank[A] = rank[A b].
Let r = rank[A]. If condition (I) is satisfied and if r = n , then the solution is
unique. If condition (I) is satisfied but r < n, an infinite number of solutions
exi sts; in addition. r unknown variables can be expressed as linear combinations

6.6 Summary

of the other n - r unknown vari ables, whose values are arbitrar In thi s case
we c~n use t?e rref command to find the relations between the ~~lri a ble~ The

b
Psef u oco~~ 111 .Table 6.6-2 can be used to outline an equation solver prog' ram

e ore wnt1l1g It.

A condensed fl owchart appears in Figure 6.6- 1. From thi s chart or the seu­
docode, we can develop the scrip t fil e shown in Table 6.6-3. The progra:uses

Table 6.6-2 Pseudocode fo r the linear equation solver

If the rank of A equals the rank of [A b j, then

?etermine whether the rank of A equals the number of unknowns If so there

~~sau~~~ I;~I~ :~;.ti on , which can be computed using left di vision . 'Di spl~y the

Otherwise, there is ~n in ~ nite number of solutions, which can be found from
the augmented matrix. Display the results and stop.

Otherwi.se (if t~e rank of A does not equal the rank of [A b]), then there are
no solutions. Display this message and stop.

No

A, b

rank(A) = rank([A bl)
?

Yes

rank(A) = # of unknowns
?

Figure 6.6-1 Flowchart illu trating a program to solve linear equations.

No

401

402 CHAPTER 6 Linear Algebraic Equations

Table 6.6-3 MATLAB program to solve linear equations

% Script file lineq . m
% Solves the set Ax = b, given A and b.
% Check the ranks of A and [.Z\. b].
if rank (A) == rank ([A b])

% The ranks are equal .
size_A = size (A) ;
% Does the rank of A equal the number of unknowns?
if rank(A) == size_A(2)

% Yes. Rank of A equals the number of unknowns .
disp ('There is a unique solution , which is : ')
X = A\b % Solve using left division .

else
% Rank of A does not equal the number of unknowns .
disp(' There is an infinite number of solutions .')
disp ('The augmented matrix of the reduced system is : ')
rref ([A b]) % Compute the augmented matrix.

end
else

% The ranks of A and [A b] are not equal .
disp(' There are no solutions . ')

end

the given arrays A and b to check the rank conditions, the left-division method
to obtain the solution, if one exists, and the rref method if there is an infinite
number of solutions. Note that the number of unknowns equals the number of
columns in A, which is given by s i z e_A (2) , the second element in s i z e_A.
Note also that the rank of A cannot exceed the number of columns in A.

Test Your Understanding

T6.6-1 Type in the script file lineq . m given in Table 6.6-3 and run it for the
following cases. Hand check the answers.
a. A [1 , - 1 ; 1 , 1 J , b = [3 ; 5 J
h. A [1 , - 1 ; 2 , - 2 J , b [3 ; 6)
c. A [1 , -1 ; 2 , - 2 1 , b = [3 ; 5)

Key Terms with Page References
Augmented matrix, 382
Cramer"s determinant. 379
Cramer' method. 377
Determinant, 366
Euclidean norm. 385

Gauss elimination, 361
Homogeneous equations. 364
Ill-conditioned equation, 364
Least squares method . 394
Left-division method, 368

Problems

Matrix inverse. 373
Matrix rank, 382 Reduced row echelon form 388

Singular problem, 362 '
Minimum norm solution 38 1
Overdetermined system,' 394

Pseudoinverse method, 381

Problems

Statically indeterminate 387
Subdetenninant, 382 '

Underdetermined system, 380

t
YOLt' can find the answers to problems marked with an asteri sk at the end of the
ex.

Section 6.1

1. Solve the f?llowing problems by hand. For each of the following problems
find th~ ul1Jque solution if one exists. If a unique solution does not exist '
determme whether no solution exists or a nonunique solution exists. '
a. -5x + y =-6

x+y=6
h. -2x + y =-5

-2x + y = 3
-2x + y = 3

-8x +4y = 12
d. -2x + y =-5

-2x + y = -5.00001

2. Use elimination of variables to solve the fol lowing problem by hand:

12x - 5y = 11

- 3x + 4 y + 7z = - 3

6x + 2y + 3z = 22

3.* Use elimination of variables to solve the following problem by hand:

6x-3y+4z=4l

12x + 5y - 7z = -26

-5x + 2y + 6z = 14

4. a. Solve the following problem by hand for x. y, and z in terms of the
parameter r.

h. For what value of r will a solution not exist?

3x + 2y - rz = 1

-x + 3y +2z = 1

x-y-z=1

403

404 CHAPTER 6 Linear Algebraic Equations

Section 6.2

S. Use the left-division method to solve the following problems. Cheek your
olutions by computing Ax.

2x+y=5

3.\' - 9y = 2
b. -8'\ - 5."=4

-2'\ + 7 y = 10
6. Use the left-divi ion method to solve the following problems. Check your

solutions by computing Ax.
12x - 5y = II

- 3x+ 4y+7z=-3

6x + 2)1 + 3z = 22
b. 6x - 3y+ 4z =41

12x + 5 Y - 7 Z = - 26

- 5x + 2y + 6z = 14
7. U e MATLAB to solve the following problems:

a. -2'\ +)' = - 5

- 2x + ,II = 3
b. - 2x +)' = 3

- 8x + 4y = 12
8. Use MATLAB to olve the following problems:

- 2x + y =-5

- 2x +)' = -5.00001
b. XI + 5x~ - -'"3 + 6X4 = 19

2.\' 1 - x~ + X3 - 2x~ = 7

-XI + 4X2 -.\'3 + 3x~ = 20

3.\'1 - 7x~ - 2X3 +X4 = -75
9. The circuit shown in Figure P9 has five re i tances and one applied

voltage. Kirchhoff's voltage law applied to each loop in the circuit hown
give

v - R2i2 - R4i4 = 0

-R'2i~ + Rli l + R3i3 = 0

-R~ i~ - R)iJ + R5iS = 0

Con cn<1tion of charge applied at each node in the circuit gives

in = i l + i~
i2 +i.\ = i4

i l =i3+ iS

i~+i5 = i6

777--::-"---.w. .~~"~.-' j •• ~~r- •

Problcrns

Figure P9

a. Write a MATLAB script file that uses given values of the applied
voltage v and the values of the five re~ i s tances to solve for the
six currents.

b. Use the program developed in pari a to find the currents for (he ca~e :
RI = 1, R2 = 5, R3 = 2, R4 = 10, Rs = 5 kQ, hnd v = 100 V (1 kQ =
1000 Q).

10. Fluid flow in pipe networks can be analyzed in a manner ~imilar (0 that
u ed for electric-resi stance networks . Figure PI 0 shows a network with
three pipes. The volume flow rates in the pipe~ are q l, Q2 , and Q3. The
?res ures at the pipe ends are PlI' Ph, and p, . The pre~sure at the junction
IS PI. Under certain condition~ , the pressure-flow rate relation in a pipe
has the same form as the voltage-current relation in a resistor. Thu~ for the
three pipes, we have

I
Q] = R;(Pa - P I)

where the R; are the pipe resistances. From con'>ervation of mas.
ql = Q2 + Q3·

~ .

405

406 CHAPTER 6 Linear Algebraic Equations

Pb

q 2

R 1
R~

Pa - ql P1

~
q 3

Pc

(a)

R 1

Pa

(b)

FigUl"e PIO

a. Set up these equations in a matrix form Ax = b suitable for .solving
for the three flow rates ql, Q2, and Q3, and the pressure PI , given
the values of the pressures p" . Ph. and Pc. and the values of the
resistances RI , R2, and RJ . Find the expressions for A and b.

b. U e MATLAB to solve the matrix equations obtained in palt (/ for the
case: p" = 4320 Ib/ft2 , Pb = 3600 Ib/ft2

, and Pc = 2880 Ib/ft2. These
correspond to 30, 25, and 20 psi. respectively (I psi = 1 Ib/in.2;
atmospheric pressure is 14.7 psi). Use the resistance values
RI = 10.000: R2 = R3 = 14.000 Ib-secIft5• These values correspond

Problems

to fuel oil flowin g through pipes 2 ft long, with 2- in. and lA-in .
diameters, respectively. The units of the answers will be ft3/sec for
the fl ow rates and Ib/ft2 for pressure.

11. Figure P J J illustrates a robot arm that has two " links" connected by two
"joi nts": a shoulder, or base, joint and an elbow joint. There is a motor at
each joint. The joint angles are 81 and 82. The (x, y) coordin ates of the
hand at the end of the arm are given by

x = LI cos81 + L2 cos(81 + 82)

y = LI si n 8 1 + L2 sin(81 + 82)

where L I and L2 are the lengths of the links.
Polynomials are used for controlling the motion of robots. If we start

the arm from rest with zero velocity and acceleration , the following
polynomials are used to generate commands to be sent to the joint motor
controllers.

Finish

81 (t) = 81 (0) + (/1 (3 + (/2 , 4 + a315

82(1) = 82(0) + b l t
3 + b 214 + b315

Hand

L1 Elbow Motor

81

Base Motor

Start

(b)

Figure P1!

407

408

~ (-- -

CHAPTE R 6 Linear Algebraic Equations

where 8
1
(0) and 82(0) are the starting values at time t = O. The angles

81 (I f) and 82(1/) are the joint angles co rresponding to the desired
destinati on of the arm at time If. The values of 81 (0),82(0),81 (t f), and
82(1 f) can be fo und using tri gonometry if the starting and ending (x, y)

coordinates of the hand are pecified.

a. Set up a matri x equation to be solved for the coefficients ai, a2, and
a3, given values for 81 (0),81 (t f), and t f. Obtain a similar equation to
be solved for the coeffi cients b I , b2, and b3, given values fo r 82(0),

82(tf), and If ·
b. Use MATLAB to solve for the polynomial coefficients given the

values tf = 2 sec, 81(0) = - 19°,82(0) = 44°, 81(tf) = 43°, and
8

2
(t f) = 15 1°. (These values correspond to a starting hand location

of x = 6.5, Y = 0 ft and a desti nation location of x = 0, y = 2 ft
for L \ = 4 and L2 = 3 f t.)

c. Use the resul ts of part b to plot the path of the hand.

12.* Engineers u e the concept of thermal resistance R to pred ict the rate of
heat 10 s through a building wall in order to determine the heating
system's req uirements. This concept relates the heat flow rate q through
a material to the temperature difference I:::.T across the material :
q = I:::. T / R. This relation is li ke the voltage-current relation fo r an
electrical resistor: i = v / R. So the heat fl ow rate plays the role of
electrical current, and the temperature difference plays the role of the
voltage difference v. The SI unit for q is W/m2. A watt (W) is
1 joule/second.

The wall shown in Figure P1 2 consists of four layers: an inner layer
of pI a ter/ lathe 10 mm th ick, a layer of fiberglass insul ati on 125 mm
thick, a layer of wood 60 mm thi ck, and an outer layer of brick 50 mm
thick. If we assume that the inner and outer temperatures Ti and To
have remai ned constant for some time, then the heat energy stored in
the layers is constant; thus the heat fl ow rate through each layer is the
sam e. Applying conservation of energy gives the following
equations:

The thermal res i tance of a olid material is given by R = D / k where D
i the material's thickness and k is the materi al's thermal conductivity. For
the given materials, the res istances for a wall area of 1 m2 are R\ = 0.036,
R2 = 4 .01. R3 = 0.408, and R4 = 0.038 °KIW.

Suppa e that Ti = 20 and To = -100e. Find the other three
temperatures and the heat los rate q in W/m2 . Compute the total heat
10 s rate in watts if the wall's area i 10 m2

.

.l

Problems

Lathe Insulation Wood Bri ck

Inside

• --
Ai r Outside

Air

T, Tl T2 T3 To

(a)

(b)

Figure P12

13. The concept of thermal resistance described in Problem 12 can be used
t~ fi nd the temperature di stribution in the flat square plate shown in
FIgure P13a. Th~ plate 's edges are insul ated so that no heat can e cape,
except ~t two pOInts where the edge temperature is heated to Te, and Th ,

respectlv~ly. The temperature varies through the plate, so no single point
c~n ~esc.nbe. the plate's temperature. One way to estimate the temperature
dl stnbutlOn IS to imagine that the plate consists of fo ur subsquares and
to compute the temperature in each subsquare. Let R be the thermal
resistance. of the material between the centers of adjacent subsquares. Then
-:ve ~an thlI1k of the problem as a network of electrical resi tor , as shown
111 FIgure P13b. Let % be the heat flow rate between the points whose
temperatures are T; and Tj . If T" and Tb remain constant for some time.
then both the heat energy stored in each subsquare and the heat now rate
between each subsquare are constant. Under these conditions conservation
of energy says that the heat flow into a subsquare equals the heat fl ow
out. Applying thi s principle to each subsquare gives the fo llowing
equations:

q13 =q34

q 34 + q 24 = q4b

409

410 CHAPTER 6 Linear Algebraic Equations

0

a T1 T2 ~ ~ 0
0

~ T3 T4 T

~
%

(a)

(b)

Figure P13

Substituting % = (Ti - Tj) / R, we find that R can be canceled out of
every equation, and the equations can be rearranged as follows:

I
TI = 3(7:, + T2 + T3)

I
T2 = "l(TI + T4)

I
T3 = "l(TI + T4)

I
T4 = 3(T2 + T3 + Tb)

These equations tell us that the temperature of each subsquare is the
average of the temperatures in the adjacent subsquares!

Solve these equations for the case where Ta = 150°C and Tb = 20°e.

Problems

14. Use the averag ing principle developed in Problem 13 to find the
tempera~ure distribu.ti on of the plate shown in Figure P 14, u. ing the
3 x 3 gnd and the given va lues 7~, = j 50°C and Tb = 200 e.

~

a T 1 T2 T 3

~

T4 Ts Ta

~

T7 Ta T9 T

%

Figure P14

15. A convenient way to draw curves is to select a set of points and slopes on
the curve, and find a polynomial whose graph sati sfies these conditions.
Design the shape of a ski jump with the fo ll owing specifications. The
jump starts at a height of y = 100 ft and finishes at a height of 10ft. From
the start at x = 0 to the launch point, the jump extends a horizontal
distance of 120 ft. A skier using the jump will begin horizontally and will
fly off the end at a 30° angle from the horizontal. Develop and solve a
set of linear equations for the four coefficients of a cubic polynomial
y = Cl3X3 + G2X2 + alx + ao for the ide view of the jump. Plot the ski
jump profile and examine its slope for any undesired behavior. Its lope is
given by s = 3a3x 2 + 2a2x + a I.

16. A mjxture of benzene and toluene with p percent benzene and (l - p)
percent toluene at 10°C is fed continuously to a vessel in which the
mixture is healed to 50°e. The liquid product is 40 mole percent benzene
and the vapor product is 68A mole percent benzene. Using conservation of
the overall mass, we obtain the equation

V+L=I

where V is the vapor mass and L is the liquid mass. Using conservation of
benzene mass, we obtain the equation

0.684 V + OAL = 0.0 I p

Write a user-defined function that uses the left-division method to !>olve
for V and L with p a the function"s input argument. Te t your function
for the case where p = 50 percent.

411

412 CHAPTER 6 11110,H I\lycllrmc l:quallons

17. l he thc matrix invcr~e method to ~()Ive Problems Sa and Sh hy hand .

IS. U,c the matrix Ii\\CN; method with M!\TL/\H to ~o l ve PlOblell1 , 6(/

and 6h .
19.* (/. Sn"c the lollowing mallix cqll3tion 101 thc mat rix C :

(Be I) - B

h. E,aluate lhc "olution obtaincd in palt (I for the case :

H = [~ -3]
6

20.* 11. U~c i'vIt\TL/\B to solve the lollowlng cquation, 1'01 \ . I' , and : a~
runction;.. or the paralllcll:r c:

51' 2: = lie

6\ - 1y !:: = Lk

7 \ + .\\' - 5:= IOe

/1. Pint the s()lution, for .\, y. and :: \er'u, c on tile sallle plot for
10 c. c' 10.

Sl'CtiOIl 6.3

21. l ',c Cramcr', metl1lld to ,ol\'c Problem, III and Ih.

L' ,e Cram 'I" llll'lhod to '111\e Prohl 'Ill;" _ (/ and Sh .

2j. I-or til' 1'0110\\ ing c IU~llions. \\ h.lt \alue, ur the pdrameter b 3110\ a
non/erll ..,olutilln tl) '\i t for \ ami y? hnd that ;..olution.

h.\ - Y = 0

I(h + (/1 + 7)\' = (\

2... Th' II!.!ht\\cl~ht rigid md "hoI' n in Figurc P:2-b ha~ a weight IV at its
'nd . . 1;1d It i~-wppllncd by tlw \\\0 l\lhl" and by the rin joint at point O.
II 'He'!' the t ... n,ion for' 111 til 'ahl, b) 7 t and T2 . and let R, and R b
th ... r '.Kti(n f()r'.:: 1.,1' th' pin .I01l1t 'n Ih' beam. The free-b d;. wagram i ...
, he'\\11 tn ran /> ofthc ligllf'. Th ... \aluc r H. L 1• L:. and \~ are gi\en.

,'lInHllItl.! HI)Illenl, ah'Lll I (Int .\ gl\' H R, - H'L: = O. or
R, = H f.: Ii. 'lIlllming 11\\ 1ll'IIh .It>)UI romt 0 gle.

2)

A

o

L,

1-2

w

(al

A e\,,-::, __

R'~ ')A -----~ YL
1 '
VI

(b)

Figure PM

U,e Cramcr\ method to "olve equalion (J). (2). alld (3) for I . J 2.
and R in term~ of Crumer'" determin<.lnt f)

h. l.J~ethefactlh<1l~tn¢= I! /L . <,inf} = " / '. ,.(;(/'itP=L,jLl,and
co fl = L2/ L, to evaluate n. Wh<.l doc~ thl" re ult ay ~/ulthe
olutiom for T . T2. and R I

Section 6.4

25.* Cse .1ATLAB to ohe the following pro rem:

7x~9> -9~ == 22

3x - 2. - - == 12

x - 5,\ - =-2

413

414 CHAPTER 6 Linear Algebraic Equations

26. The followin o table shows how many hours reactors A and B need to
produce I tO I~ each of the chemical products 1,2, and 3. ~he two reactors
are available for 35 hours and 40 hours per week, respectively.

Hours

Reactor A
Reaclor B

Product 1 Product 2 Product 3

10
2

Let x, y, and z be the number of tons each of products I , 2, and 3 that can
be produced inane week.

a. Use the data in the table to write two equations in terms of x, y, and z.
Determine whether or not a unique so lution exists. If not, use
MATLAB to find the rel ations between x, y, and z.

b. Note that negative values of x, y , and z have no meaning here. Find
the allowable ranges for x, y, and z.

e. Suppose the profits for each product are $200, $300, and $100 for
products 1,2, and 3, respectively. Find the values of x, y, and z to
maximize the profit.

d. Suppose the profit for each product are $200, $500, and $100 for
product 1, 2, and 3, respectively. Find the values of x, y, and z to
maximize the profit.

27. See Figure P27. Assume that no veh icles stop withi n the network. A
traffic engineer wants to know whether the traffic flows 11, h, . . . , h
(in vehicles per hour) can be computed given the measured flows shown
in the figure. If not, then determine how many more traffic sensors need

200 300 100

'1 '2
100 500

'3 '4 '5

300 200

'6 '7

100 200 400

Figure P27

~ "~"~ r ~:" "-';r..~ -~::0<~!~~~~Jf'~::.'~,,,

.' . 1

Problems

to be insta ll ed and obtain the express ions for the other traffic flows in
terms of the measured quantities .

Section 6.5

28.* Use MATLAB to solve the following problem:

x - 3y = 2

x+ 5y= 18

4x - 6y = 20

29.* Use MATLAB to so lve the fo llowing problem:

x - 3y = 2

x+5y= 18

4x - 6y= 10

30. Use MATLAB to find the coefficients of the quadratic polynomial
y = ax

2 + bx + c that passes through these three points: (x , y) = (1 ,4),
(4, 73), (5, 120).

31. Use MATLAB to find the coefficients of the cubi c polynomial y = ax3 +
bx

2 + ex + d that passes through the three point given in Problem 30.

415

Engineering in the
21 st Century ...

International Engineering

T
he end of the Cold War has resulted in increased international coopera­
tion. A vivid example of this is the cooperation between the Russian and
American space agencies. The photo shows the American space shuttle

Atlantis docked with the Russian space station Mir while orbiting over a typhoon.
Now Russia, the United States, and several other countries are collaborating on a
more ambitious space project: the International Space Station (ISS). The launch
of the first element of the station, a Russian-built cargo block, occurred in 1998.
The first permanent crew arrived in 2000. The station will have a crew of seven,
will weigh over 1,000,000 pounds, and will be 290 feet long and 356 feet wide.
To assemble it will require 28 U.S. shuttle flights and 41 Russian flights over a
period of 5 years.

The new era of international cooperation has resulted in increased integration
of national economies into one global economy. For example, many components
for cars assembled in the United States are supplied by companies in other coun­
tries. In the 21 st century improved communications and computer networks will
enable engineering teams in different countries to work simultaneously on dif­
ferent aspects of the product's design, employing a common design database. To
prepare for uch a future in international engineering, students need to become
fami liar with other cu Itures and languages, as well as proficient in computer-aided
design.

MATLAB is available in international editions and has been widely used in
Europe for many years. Thus engineers familiar with MATLAB will already have
a head start in preparing for a career in international engineering . •

CHAPTER

Probabi I ity,
Statistics, and
Interpolation
OUTLINE

7.1 Statistics, Histograms, and Probability

7.2 The Normal Distribution

7.3 Random Number Generation

7.4 Interpol ation

7.5 Summary

Problems

This ~hapter is unlike the first six chapters in that it covers relatively few MATLAB
funct~ons. ~h~se functions are easy to use and have widespread and important
~ses 111 st~tlStlCS and data analysis; however, their proper application requires
lllformed Judgment and experience. Here we present enough of the mathematical
foundations of these methods to allow you to apply them properly.

We begin with an introduction to basic statistics and probability in Section 7.1.
You will see how to obtain and interpret histograms, which are specialized plots
fOf displaying stat istical results. The normal distribution, commonly called the
bell-shaped curve, fOfms the basi of many statistical methods and is covered
in Secti.on 7.2. As you saw in Chapter 4, MATLAB is useful for programming
SImulatIons. In Section 7.3 you will see how to include random processes in your
simulation programs. In Section 7.4 you will see how to use interpolation with
data tables to estimate values that are not in the table. An interesting application

7

417

41 8

MEAN

MEDIAN

C HAPTER 7 Probability, Statistics, and Interpolation

of thi s method is in machine contro l, and we give an example of contro lling a
robot arm .

When you have fini shed thi s chapter, yo u shoul d be able to use MATLAB to
do the following:

• Solve basic problems in stati stics and probability.

• Create simulati on incorporating random processes.

• Apply interpolati on techniques.

7.1 Statistics, Histograms, and Probability
In all likelihood you have computed an average, fo r example, the average of all
your tes t scores in a course. To find your average, you add your scores and divide
by the number of tests. The mathematical term for this average is the m.ean. On
the other hand, the median is the value in the middle of the data if the nu mber of
data points is odd. For example, if the test scores on a particular test in a class
of 27 students have a median of 74, then] 3 students scored below 74, 13 scored
above 74, and one student obtai ned a grade of 74. If the number of data points is
even, the median is the mean of the two values closest to the middle. The mean
need not be the same as the med ian. For example, for the data 60, 65, 68, 74, 88,
95 , the mean is 75, whereas the med ian is the mean of 68 and 74, or 7 1.

MATLAB prov ides the mean (x) and median (x) functi ons to perform
these computa ti ons. If x is a vector, the mean (or median) value of the vector's
values is returned. However, if x is a matrix, a row vector is returned containing
the mean (or median) value of each column of x. These functions do not require
the elements in x to be sorted in ascending or descending order.

In many applications, the mean and the median do not adequately describe a
data set. Two data sets can have the same mean (or the same median) yet be very
different. For example, the test scores 60, 65, 68, 74, 88, 95 have the same mean
as the score 7 1. 72, 73 , 77, 78 , 79, but the two sets describe very different test
outcomes. The fi rst set of scores vary over a large range, whereas in the second
set the scores are tightl y grouped about the mean.

The way the data are spread around the mean can be described by a histogram
plot. A histogram i a plot of the frequency of occurrence of data values versus
the values themselves. For example, suppa e that in a class of 20 students the
20 scores on the first tes t were

6 1 6 1 ~ 67 69 72 74 74 76 77
83 83 85 88 89 92 93 93 95 98

On this test there are five score in the 60- 69 range, fi ve in the 70-79 range, fi ve
in the 80-89 range, and fi ve in the 90- 100 range. The histogram for these scores
is 'hown in the top graph in Figure 7. 1- 1. It is a bar plot of the number of scores
that occur within each range, with the bar centered in the middle of the range (for
example. the bar for the range 60-69 is centered at 64.5 , and the asterisk on the
plot' s abscis a haws the bar's center).

7. 1 Statis tics, Histograms, and Probabili ty

Histogram of Scores for Test 1
10~---'----r----'----r-__ -' ____ r-__ -' __ ~

0
60 65 80

Score Range
90 95 100

;r

Histogram of Scores for Test 2

,I J

~

II

{fJ

I,
a
Q)

~
z

: H 60 65 70 75 80 85 90 95 100
Score Range

Figure 7.1-1 Histograms of test scores for 20 students.

Suppose that on the second test the following 20 scores were achieved:

66 69 72 74 75 76 77 78 78 79
79 80 81 83 84 85 87 88 90 94

?n thi s test there are two scores in the 60- 69 range, nine in the 70-79 range, seven
In the 80-89 range, and two in the 90- 100 range. The hi stogram for these cores
is shown in the bottom graph in Figure 7.1- 1. The mean on both te ts is identi cal
and is 79.75 . However, the di stribution of the scores is very di fferent. On the first
lest we say thal the scores are evenl y, or "uniformly," di stributed between 60 and
J 00, whereas on the second test the scores are more cl ustered around the mean.

To plot a hi stogram, you must group the data into subranges, called bins. In BINS
thi s example the four bins are the ranges 60- 69, 70-79,80-89, and 90- 100. The
choice of the bin width and bin center can dra ti call y change the shape of the
hi stogram. If the number of data va lues is relatively small, the bin width cannot
be small because some of the bins will contain no data and the resulti ng hi togram
might not usefull y illustrate the distribution of the data.

To obtain a his togram , first sort the data if it has not yet been sorted (you
can use the sort function here) . Then choose the bin ranges and bin centers
and count the number of values in each bin. U e the bar function ro plot the
number of values in each bin versus the bin centers as a bar chart. The fun cti on
bar (x , y) creates a bar chart of y versus x. The MATLAB script fil e that

419

420

eee'Pee,.

CHAPTER 7 Probability, Statistics, and Interpolation

generates Figure 7. 1- 1 follows. We have selected the bin centers to be in the
middle of the ranges 60-69, 70-79, 80-89, 90-99.

% Collect the scores in each bin .
testl = [5 , 5 , 5 , 5] ;
test2 = [2 , 9 , 7 , 2];
% specify the bin centers .
x = [64 . 5 , 74 . 5 , 84 . 5 , 94 . 5] ;
subplot (2 , 1, 1)
bar(x , testl) , axis([60 100 0 10]) , . . .
title (' Histogram of Scores for Test 1 ') , . ..
xlabel (' Score Range ') , ylabel (' Number of Scores ')

subplot (2 , 1 , 2)
bar (x , test2) , ax i s ([60 100 0 10]) , . ..
t i tle(' Hi s togram o f Score s for Test 2 ') , .. .
x label (' Sc ore Range ') , y label (' Numbe r of Scores ')

MATLAB provides the hist corrunand to generate a h.istogram. This ~o.m­
mand has several forms . Its basic fo rm is his t (y) , where y IS a vectorcontm nll1g
the data. This form aggregates the data into 10 bins evenly spaced between the
minimum and maximum values in y. The second fonn is hist (y , n) , where
n is a user-specified scalar indicating the number of bins .. The third f~rm is
hist (y , x) , where x is a user-specified vector that determ1l1es the locatIOn of
the bin centers; the bin widths are the distances between the centers.

Breaking Strength of Thread

To ensure proper quality control, a thread manufacturer selects samples and tests them
for breaking strength. Suppose that 20 thread samples are pulled until they break, and the
breaking force is measured in newton rounded off to integer values. The breaking force
values recorded were 92, 94. 93, 96, 93, 94, 95, 96, 91, 93, 95, 95 , 95, 92, 93, 94, 91, 94,
92. and 93 . Plot the histogram of the data.

• Solution
Store the data in the vector y, which is shown in the fo llowing script file. Because there
are six outcomes (9 1, 92. 93 , 94, 95, 96 N), we choose six bins. However, if you use
hist (y , 6), the bins wi ll not be centered at 9 l , 92, 93, 94, 95, and 96. So use the form
hist (y , x), where x = [91 : 96] . The fo llowing script file generates the hi stogram
shown in Figure 7. 1-2.
% Thread breaking strength data for 20 tests .
y = [92 , 94 , 93 , 96 , 93 , 94 , 95 , 96 , 91 , 93 , ...
95 , 95 , 95 , 92 , 93 , 94 , 91 , 94 , 92 , 93] ;
% The six possible outcomes are 91 , 92 , 93 , 94 , 95 , 96 .
x = [91 : 96];
hist(y , x) , axis([90 97 0 6]) ,ylabe1(' Absolute Frequency ') , ...
xlabel (' Thread Strength (N) ') , ...

citle (' Absolute Frequency Histogram for 20 Tests ')

7.1 Statistics, Histograms, and Probability

1

o
90

,---

91

Absolute Frequency Histogram for 20 Tests

,--

r-- -

,--

92 93 94 95
Thread Strength (N)

Figure 7.1-2 Histograms for 20 tests of thread strength.

,---

96 97

The absolute frequency is the number of times a particu lar outcome occurs.
For example, in 20 tests thi s data shows that a 95 occurred four time. The absolute
frequency is 4, and its relative frequency is 4/20, or 20 percent of the time.

When there is a large amount of data, you can avoid typing in every data
value by first aggregating the data. The following example shows how thi is
done u ing the ones function . The following data was generated by testing 100
thread samples. The number of times 9],92,93, 94, 95, or 96 N was measured is
13, 15 , 22, 19,17, and 14, respectively.

% Thread strength data for 20 tests .
y = [91 *ones(1,13) , 92 *ones(1,15) , 93 *ones(1,22) , ...
94 * ones (1 , 19) , 95 *ones (1, 17) , 96 *ones (1, 14)] ;
x = [91 : 96] ;
hist(y , x) , ylabel(' Absolute Frequency ') , ...
xlabel (' Thread Strength (N) ') , ...
title (' Absolute Frequency Histogram for 100 Tests ')

The result appears in Figure 7.1-3. .
The his t function is somewhat limited in its ability to produce useful hiS­

tograms. Unless all the outcome values are the same as the bin centers (as is
the case with the thread examples), the graph produced by the hist function

ABSOLUTE
FREQUENCY

RELATIVE
FREQUENCY

421

422 CHAPTER 7 Probability, Statistics, and Interpolation

Absolute Frequency Histogram for 100 Tests
25

,--

20
-

,--

,--
-

,--

5

0
97 90 91 92 93 94 96 95

Thread Strength (N)

Figure 7.1-3 Absolute frequency hi togram fo r 100 thread te ts.

will not be satisfactory. This case occur when you want to obtain a relative fre­
quency hi togram. In such cases you can use the bar function to generate the
hi togram. The following script file generates the relative frequency hi stogram for
the 100 thread tests. Note that if you use the bar function , you must aggregate the
data first.

% Relative frequency histogram using the bar function .
tes ts = 100 ;
y = [13 , 15 , 22 , 19 , 17 , 14) / tests ;
x = [91 : 96) ;

bar(x, y) , ylabel(' Relative Frequency ') , ...
xlabel (' Thread Strength (N) ') , ...

t i tle (' Relat i ve Frequency Histogram for 100 Tests ')

The result appear in Figure 7.1-4.
The fourth. fifth. and ixth form of the hi s t function do not generate a

plot, but are used to compute the frequency count ' and bin locations. The bar
function can then be u ed to plot the hi togram. The syntax of the fourth fornl is
[z , x } = h i s t (y) . where z is the returned vector containing the frequency
count and x i the returned vector containing the bin locations. The fifth and ixth
fonn are [z ,x] = r-is t(y , n) and [z , x] = his:: (y , x) .Inthelatter

7.1 Statistics , Histograms, and Probability

0.25

0.2

~ 0.15

3:
OJ

. ~
iii
Qi 0.1
a:

0.05

o
90

,----

91

Relative Frequency Histogram for 100 Tests

-

r---

-

-

92 93 94 95
Thread Strength (N)

Figure 7.1-4 Relati ve frequency hi stogram for 100 thread tem.

~

96 97

case the returned vector x is the same as the u er-supplied vector. The followin g
script file shows how the sixth form can be used to generate a rel ative frequency
histogram for the thread example with J 00 tests.

tests = 100 ;
y = [91*ones(1 , 13) , 92*ones(1 , 15) , 93*ones(1.22) , . . .
94 *ones (1 , 19) , 95 *ones (1 , 17) , 96*ones (1 , 14) } ;
x = (91 : 96) ;
[z , x) = hist(y , x) ; bar(x , z/tests) , . ..

ylabe1 (' Relative Frequency ') , x1abe1 (' Thread Streng~h (') ') , . ..

title(' Relative Frequency HistogralT' for 100 ':'es::s ')

The plol generated by thi s M-file will be identical to that shown in Figure 7.1-4.
The e commands are summarized in Table 7.1-1.

Test Your Understanding

T7.1-1 In 50 te I of thread, the number of times 91,92.93.94, 95, or 96 . ' w~
mea ured wa 7, 8. 10, 6. 12, and 7, re pectively. Obtain the ab olute and
relative frequency hi togram .

423

424 C HAPTER 7 Probability, Stati stics, and Interpolation

Table 7.1-1 Hi stogram functions

Command

bar (x , y)
hist (y)

hist (y , n)

hist(y , x)

(z , x] hist(y)

(z , x] hi s t (y , n)

(z , x] hist(y , x)

The Data Statistics Tool

Description

Creates a bar chart of y versus x.
Aggregates the data in the vector y into 10 bins evenl y spaced
between the minimum and maximum va lues in y.
Aggregates the data in the vec tor y into n bins evenly spaced
between the minimum and maximum va lues in y .
Aggregates the data in the vec tor y into bins whose center
locations are spec ified by the veCLOr x . The bin widths are the
distances between the centers.
Same as hist (y) but returns two vec tors z and x Lhat
contai n the frequency count and the bin locations.
Same as hi s t (y , n) but returns two veCLOrs z and x that
contain the frequency count anclthe bin locations.
Same a hi s t (y , x) but returns two vec tors z and x that
contain the frequency count and the bin locations. The
returned vec tor x is the same as the user-supplied vector x .

With the Data Stati stics tool you can calculate statistics for data and add plots of
the statistics to a graph of the data. The tool is accessed fro m the Figure window
after you plot the data . Click on the Tools menu, then select Data Statistics.
The menu appears as shown in Figure 7. 1-5. To plot the mean of the dependent
variab le (y), click the box in the row labeled mean under the column labeled Y,
a hown in the fig ure. You can plot other stati tics as well; these are shown in the
figure. You can save the stati tics to the workspace as a structure by clicking on
the Save to Workspace button. This opens a dialog box that prompts you for a
name for the structure contai ning the x data. and a name for the y data structure.

Probability

Probability is expressed as a number between 0 and I or as a percentage between
o percent and 100 percent. For example. becau e there are six poss ible outcomes
from rolling a single die. the probability of obtaining a specific number on one roll
is 1/ 6. or 16.67 percent. Thus if you roll the die a large number of times, you expect
to obtain a 2 one-, ixth of the time. Figure 7.1 -6 shows the theoretical uniform
probabilitie ' for rolling a single die, and the relati ve frequency hi stogram for the
data fro m I OOdie rolls. The nUll1beroftimes a I , 2, 3. 4, 5, 01'6 occurred was 21. 14,
18. 16. 19, and 12 respectively. The plot of the theory and the data are very similar,
but not identical. In genera l. if you had rolled the die 1000 times instead of 100
time. the hi stogram would look even more like the theoreticaJ probability plot.

If you roll two balanced dice, each roll has 36 possible outcomes because
each die can produce six numbers. There i only one way to obtain a sum of 2, but
there are two ways to obtain a sum of 3. and so on . Thus the probability of rolling a
sum of2 i 1/36. and the probability of rolling a sum of3 is 1/36 + 1/36 = 2/36.

7.1 Statistics, Histograms, and Probability

File Edit VIew Insert Tools Desktop W1ndow HeJp

D~r;/ S ~ ctl.Gl. f1 ~ ~ 0[;] [j)

ts.velowC>''''"""el~~

Figme 7.1-5 The Data Statistics tool.

Histogram of One Hundred Rolls of a Die
0.25r---,-----,----,----,-_--, __ -..,... __ --,

0.2

u
~ 0.15

,t
>
(ij
Qi 0.1
cr:

0.05

Data
1- - 1

~I~

Figure 7.1-6 Compari on of theory and experiment for 100 roll, of a ingle die.

425

426 CHAPTER 7 Probabili ty, Statistics, and Interpola tion

Conti nuing thi s line of reasoning, you can obtain the theoreti ca l probabilities for
the sum of two dice, as shown in the fo ll owing tab le.

Probabilities for the sum of two dice

Sum 2 3 4 5 6 7 8 9 10 I I 12
Probability ex 36) I 2 3 4 5 6 5 4 3 2 I

An experiment was performed by ro ll ing two dice 100 times and recording
the sums. The data follows.

Data for two dice

Sum 2 3 4 5 6 7 8 9 10 II 12
Frequency 5 5 8 I I 20 10 8 12 7 10 4

Figure 7.1-7 shows the relative frequency histogram and the theoretical probabil­
ities on the same plot. Tf you had co llected more data, the hi stogram would have
been closer to the theoretica l probabi lities.

The theoretical probabilities can be used to predict the outcome of an exper­
iment. Note that the sum of the theoretical probabilities for two dice equals I,
because it is 100 percent certain to obtain a sum between 2 and 12. The sum of the
probabilities corresponding to the outcomes 3, 4, and 5 is 2/36 + 3/36 + 4/36 =
1/ 4. This result corresponds to a probability of 25 percent. Thus if you roll two
dice many times, 25 percent of the time you would expect to obtain a sum of
either 3, 4, or 5.

Histogram of One Hundred Rolls of Two Dice
°.25.---r-----,r----.-----.----r----r--,

0.2
Data

1- 1

I I
Theory

1°·15

~ 0.1
cr:

0.05

°OL-~LLLL-D~li--ll~~-ll~8-ll~~10-ll~~~-~14

Outcome

Figllre 7.1-7 Comparison of theory and experiment for I 00 roll~ of two dice.

7.2 The Normal Distribution

In many applicati ons the theoretica l probabilities are not avai lable because
the ~lI1derlyin g causes of the process are not understood well enough. In such
applications you can use .the hi stogram to make pred ictions. For example, if you
did not have the t~leore tl ca l probabi lities for the sum of' two dice, you cou ld
use the data to estimate the probabi li ty. Using the previously given data from
100 ro lls, you can es timate the probabi li ty of obta ining a sum of either 3, 4,
or 5 by summing the relative frequenc ies of these three outcomes. Thi s sum is
(5 + 8 + I 1)/ I 00 = 0.24, or 24 percent. Thus on the bas is of the data from 100
roll s, 24 percent of'the time you can estimate that you wou ld obta in a sum of either
3,4, or 5. The accuracy of the es timates so obtained is highly dependent on the
number o!' trials used to co ll ect the data; the more tri als, the betler. Many sophisti­
cated stati stica l methods are availab le to assess the accuracy of such predictions;
these methods are covered in advanced courses.

e Your Understanding

T7 .1-2 If you roll a pair of balanced dice 200 times, how many times would
you expect to obtain a sum of 7? How many times would you ex pec t to
obta in a sum of either 9, 10, or I J? How many times wou ld you expect
to obtain a sum less than 7?
(An weI': 33 times, 50 times, and 83 times.)

7.2 The Normal Distribution

Rolling a die is an example ofa process whose poss ible outcomes are a limited set
of numbers; namely, the integers fro m 1 to 6. For such processes the probability
is a function of a di screte-valued variable, that is, a valiable hav ing a limited
number of values. For example, the fo llowing tab le gives the measured heights
of 100 men 20 years of age. The heights were recorded to the nearest 1/2 in., so
the height variab le is di screte valued.

Table 7.2-'1 Height data for men 20 year of age

Height (in.) Frequency Height (in.) Frequency

64 70
64.5 70.5
65 7 1
65.5 7 1.5
66 2 72
66.5 4 72.5
67 5 73
67.5 4 73.5
6l:l 8 74
68.5 II 74.5
69 12 75
69.5 10

427

428 CHAPTER 7 Probability, Statisti cs, and Interpolation

Scaled Frequency Histogram

You can plot the data as a histogram using either the abso lute or rela tive fre­
quencies. However, another useful his~ogram ~ses data scaled so th~,t th: tot~ 1
area under the histogram 's rectangles IS 1. ThIs scaled frequency, hl,ltogm/n IS
the absolute frequency hi stogram divided by the to~a l area of thatlllstogr.am . The
area of each rectangle on the absolute frequ ency hI stogram equal s the bll1 wIdth
times the abso lute frequency for that bin . Because all the rectangles have the sa.me
width, the total area is the bin width times the sum of the a.bso~ute frequenc Ies.
The fo llowing M-file produces the scaled hi stogram shown 111 Figure 7 .2- 1.

% Absolute frequency da t a .
y _ abs= [1 , 0 , 0 , 0,2 , 4 , 5 , 4 , 8 , 11, 1 2 , 10 , 9 , 8 , 7 , 5 , 4,4, 3 , 1 , 1, 0 , 1] ;
binwidth = 0 . 5 ;
% Compute scaled frequency data .
area = binwidth*sum (y_abs) i

y _ sca l ed = y _ abs / area i
% Define the bins .
bins = [64 : binwidth : 75] i

% Plot the scaled histogram .
b ar (bin s , y _ scaled) , ...
ylabe l (' Scaled Frequency ' l , xlabel ('Height (in .) ')

0.25

0.2

r-

5

1

0.0 5

0 n [Inn n
62 64 66 68 70 72 74

Height (in.)

Figure 7.2-1 Scaled hi togram of height data.

76

7.2 The Normal Distribution

Because the total area under the scal ed hi stogram is 1, the fractional area
corresponding to a range of heights gives the probability that a random ly selected
20-year-old man wi ll have a height in that range. For example, the heigh ts of
the sca led histogram rectangles corre ponding to heights of 67 th rough 69 in .
are 0 .1, 0 .08, 0.16, 0.22, and 0.24. Because the bin width is 0.5, the total area
corresponding to these rectangles is (0 .1 +0.08 + 0.16 + 0.22+0.24)(0.5) = 0.4.
Thus 40 percent of the heights lie between 67 and 69 in .

You can use the c ums um functio n to calcu late areas under the sca led
frequency hi stogram, and therefore calculate probabilities. If x is a vector,
c ums um (xl returns a vector the same length as x, whose elemen ts are the sum
of the previous elements. FOI' example, if x = [2 , 5 , 3 , 8] , cumsum (x) =
[2 , 7, 10 , 1 8 J • If A is a matrix , cumsum (A) computes the cumul ative sum
of each row. The resul t is a matrix the same size as A.

After running the previous script, th e las t element of cumsum (y _ scaled) *
binwidth is 1, which is the area under the scaled frequency hi stogram. To
compute the probability of a height lying between 67 and 69 in . (th at is, above
the 6th value up to the II th value, type)

»prob = cumsum (y_ scaled) *binwidth ;
» prob6 7 _ 69 = prob (11) -prob (6)

The result is prob67 _ 69 = 0.4000 , which agrees with our previous calcu­
lation of 40 percent.

Continuous Approximation to the Scaled Histogram

In the height data given previously, there was a limited number of possi ble out­
comes because the heights were measured to within 1/ 2 in . That is, if a particular
man's height is between 66 and 66.5, we would measure and record his height
as either 66 or 66.5. The number of possible outcomes is doubled if we were to
measure the heights to within 1/4 in. Other processes can have an infinite set of
possible outcomes. For example, you could obtain an infinite number of poss ible
height measurements in the human population if yo u could measure a person's
height to enough decimal places. For example, an infinite number of values exist
between 66 inches and 66.5 in .

Figure 7.2-2 shows the scaled histogram for very many height measurements
taken to within 1/ 4 in. For many processe , as we decrease the bin width and
increase the number of measurements, the tops of the rectangle in the scaled
hi stogram often form a smooth bell- haped curve such as the one shown in
Figure 7 .2-2. . .

For processes having an infinite number of pos ible outcomes, the probabtltty
is a function of a continuous variable and is plotted as a curve rather than as rect-
angles. It is based on the same concept as the scal~d histogram; th.a~ is, the total NORMAL OR
area under the curve is 1, and the fractional area gIves the probablltty of occur- GAUSSIA

rence of a specific range of outcomes. A probabilit~ fu~ction that. des~ribes many FUNCTIO'
processes is the normal or Gaussian function, which I shown 111 Figure 7.2-3.

429

430

NORMALLY
DISTRIBUTED

STANDARD
DEVIATION

CHAPTER 7 Probability, Statistics, and Interpolation

0.25--~---,----,--""------r---r--"---'--1

0.2

i 0.1 5

tt

~ 0.1

0 .05

OL--~~--

60 62 64 68 70
Height (in.)

72 74 76

Figure 7.2-2 Scaled hi togram of height data for very many measurements.

1/ufu -----------------

2u
O.6065/ufu - - - - - - - - - - - -I+----~

Figure 7.2-3 The basic shape of the normal distribution curve.

78

This function is also known as the "bell-shaped curve." Outcomes that can be
described by this function are said to be "normally distributed." Th~ normal prob­
ability function is a two-parameter function: one parameter, f..l:, I.S the mean .of
the outcomes, and the other parameter, (J, is the standard deviatIon. The ~ean
I.J. locates the peak of the curve and is the most likely value to occ~r. The wIdth,
or spread, of the curve is described by the parameter (J. Sometunes the term

7.2 The Normal Distribution

variance is used to describe the spread of the curve. The variance is the square of VARIANCE
the standard deviati on (J.

The normal probabi li ty funct ion is described by the fo llowing eq uation:

(7.2- 1)

Figure 7.2-4 is a plot of thi s function for three cases hav ing the same mean,
1.1, = 10, but different standard deviations: (J = 1,2, and 3. Note how the peak
height decreases as (J is increased. The reason is that the area under the curve must
equal I (because the value of the random variable x must certai nl y lie between
-00 and +00).

Recall that the fractiona l area under a scaled hi stogram gives the probabil ­
ity that a range of outcomes will occur. The fractional area under a probability
fu nction curve also gives thi s probability. It can be shown that 68.3 percent, or ap­
proximately 68 percent, of the area lies between the limits of 1.1, - (J ::s x ::s 1.1, + (J.
Consequently, if a variable is normally distributed, there is a 68 percent chance
that a randomly selected sample will lie within one standard deviation of the
mean. In addition, 95.5 percent, or approximately 96 percent, of the area lies
between the limits of f.J, - 2(J ::s x ::s I.J. + 2(J , and 99.7 percent, or practically
100 percent, of the area li es between the limits of I.J. - 3(J ::s x ::s I.J. + 3(J. So
there is a 96 percent chance that a randomly selected sample will lie within two

0.5

0.45

0.4

0.35

0.3

*0.25

0.2

0.15

0.1

0.05

0
0 10 12 14 16 18

Figure 7.2-4 The effect 011 the normal distribution curve of increasing a. For this
case /t = 10. and the three curves correspond to a = I , a = 2, and a = 3.

20

431

432 CHAPTER 7 Probability, Statistics, and Interpolation

16%

2%

p-2(J

).l-(J

(a)

).l

(b)

68%

16%

).l + (J

96%

2%

Figure 7.2-5 Probability interpretation of (a) tbe J1. ± (J and
(b) the I.t ± 2(J limits.

stand ',u'd deviations of the mean , and a 99.7 percent chance that a randomly se­
lected sample will lie within three standard deviations of the mean. Figure 7.2-5
illustrates the areas associated with the J1 ± a and J1. ± 2a limits. For example,
if the variable is normally distributed with a mean equal to 20 and a standard
deviation equal to 2. there is a 68 percent chance that a randomly selected sample
will li e between 18 and 22, a 96 percent chance that it will lie between 16 and
24. and a 99.7 percent chance that it will lie between 14 and 26.

Estimating the Mean and Standard Deviation

In most applications you do not know the mean or variance of the distribution of
po ible outcomes. but must estimate them from experimental data. An estimate

7.2 The Normal Distribution

Table 7.2-1 Statisti ca l functions

Command

cumsum (x)

mean (x)
median (x)
s d (x)

Description

Creates a vector the same size as x, containing the
cumul ativc sum of the clcments of x.
Ca lcul ates the mcan of the data stored in the vcctor x .
Calcul atcs the medi an of the data stored in the vector x .
Uses equati on (7 .2- 3) to calcul ate the stand 'lrd
dev iati on of the data to red in the vector Y. .

of the mean /..1- is denoted by >f and is fo und in the same way you compute an
average, namely,

_ 1 I II
X = ;:(X I +X2 +X3 + ... + XII) =;: L X;

;= 1

(7 .2- 2)

where the n data values are XI , X2, . .. , XII' The va ri ance of a set of data values
is the average of their squared deviations from their mean x. Thus the standard
deviati on a is computed from a set of n data values as fo llows:

L;'= I(X; - .:\')2

11-1
0.2- 3)

You wo uld expect that the divisor should be n rather than n - J. However, using
n - I gives a better estimate of the standard deviation when the number of data
points n is small. The MATLAB function mean (x) uses (7.2-2) to calculate the
mean of the data stored in the vector x . The function s td (x) u, es (7.2-3) to
calculate the standard deviation . Tab le 7.2- 1 5ummarizes these functions.

433

Mean and Standard Deviation of Height~ '6"'9"P'
Statistica l anal ysi of data on human proportion is required in many engineering applica­
ti ons. For example, designers of submarine crew quarter, need to know how mall they can
make bunk lengths without eliminating a large percentage of prospective crew member,.
Use MATLAB to estimate the mean and standard deviation for thc height data given in
Table 7.2- 1.

• Solution
The script file follows. The data given in Table 7.2-1 i the ab olute frcquency data and
is stored in the vector y_abs. A bin width of 1/2 in. is u~ed because the height'> ",ere
nleasured to the nearest 1/ 2 in. The vector bins contains the height ~ in 1/ 2 in. increments.

To compute the mean and tandard deviation. reconstruct the original (raw) height
data from the ab. olute freq uency data. ote that thi s data has orne zero cntrie~. For
example, none of the 100 men had a height of 65 in. Thus to reconstruct the raw data,
start with a null vector y _raw and fi ll it with the height clata obtained from the absolute
frequencies. The for loop checks to see whether the absolute frequency for a particular

434

ERROR FUNCTION

CHAPTER 7 Probability, Statistics, and Interpolation

bin is nonzero. If it is nonzero, append the appropriate number of data values to the vector

y _raw. If the particular bin frequency is 0, y _raw is left unchanged .

% Absolute frequency data.
y _ abs = [1 , 0 , 0 , 0 , 2 , 4 , 5 , 4 , 8 , 11 , 12 , 10 , 9 , 8 , 7 , 5 , 4 , 4 , 3 , 1 , 1 , 0 , 1] ;
binwidth = 0 . 5;
% Define the bins.
bins = [64:binwidth : 75] ;
% Fill the vector y_raw with the raw data.
% Start with a null vector .
y_raw = [];
for i = 1: length (y _abs)

if y_abs(i»O
new = bins (i) *ones (l,y_abs (i)) ;

else
new = [];

end
y _raw = [y _ raw, new] ;
end
% Compute the mean and standard deviation .
mu = mean (y_ raw) ,sigma = std (y_ raw)

When you run this program, you will find that the mean is fJ. = 69.6 in. and the
standard deviation is a = 1.96 in.

As discussed earlier, you can use the la , 2a, and 3a points to estimate
the 68.3 percent, 95.5 percent, and 99.7 percent probabilities, respectively. Thus
for the preceding height data, 68.3 percent of 20-year-old men will be between
J.L - a = 67 .3 and J.L + a = 71.3 in . tall.

If you need to compute the probability at other points, you can use the erf
function. Typing er f (x) returns the area to the left of the value t = x under
the curve of the function 2e- t 2

; ft. This area, which is a function of x, is known
as the error junction, and is written as erf(x). The probability that the random
variable x is less than or equal to b is written as P(x S b) if the outcomes are
normally distributed. This probability can be computed from the error function
a follows [Kreyzig, 1998]:

P(x Sb) = ~[l+erf(::;)] (7.2-4)

The probability that the random variable x is no less than a and no greater than
b is written a Pea s x S b). It can be computed as follows:

Pea s x S b) = - erf -- - erf --l[(b-fJ.) (a-J.L)]
2 a,Ji a,Ji

(7.2-5)

7.2 The Normal Distribution

These equations are useful for computing probabilities of outcomes for which the
data is scarce or missing altogether.

Estimation of Height Distribution

Use the results of Example 7.2-1 to estimate how many 20-year-old men are no taller than
68 in . How many are within 3 in . of the mean?

• Solution

In Example 7.2-1 the mean and standard deviation were found to be fJ. = 69.3 in . and
a = 1.96 in . In Table 7.2-1, note that few data points are available for heights less than
68 in. However, if you assume thal the heights are normally distributed, you can use
equation (7 .2-4) to e timate how many men are shorter than 68 in . Use (7.2-4) with b = 68;
that is,

P(x ~ 68) = ~ [I + erf (68 - 69.3)]
2 1.96.J2

To determine how many men are within 3 in. of the mean, use (7 .2-5) with
a = fJ. - 3 = 66.3 and b = fJ. + 3 = 72.3 ; that is,

P(66.3 ~ x ~ 72.3) = ~ [erf(_3_) - erf(~)]
2 1.96.J2 1.96.J2

In MATLAB these expressions are computed in a script file as follows:

mu = 69 . 3;
sigma = 1. 96 ;

% How many are no taller than 68 inches?
bl = 68 ;
PI = (l+erf((bl-mu)/(sigma*sqrt(2))))/2
% How many are within 3 inches of the mean?
a2 66.3;
b2 = 72 . 3 ;

435

+'1.'3'9'5'"

P2 = (erf ((b2-mu) 1 (sigma *sqrt (2))) -erf ((a2-mu) 1 (sigma*sqrt (2)))) 12

When you run thi program, you obtain the results PI = O. 2536 and P2 = O. 8741 .

Thus 25 percent of 20-year-old men are estimated to be 68 inches or les in beight, and
87 percent are estimated to be between 66.3 and 72.3 inches tall.

Test Your Understanding

T7.2-1 Suppose that 10 more height measurements are obtained so that the fol ­
lowing numbers must be added to Table 7.2-1.

436 CHAPTER 7 Probability, Statistics, and Interpolation

Height (in.) Additional data

64.5
65
66
67.5
70
73
74

(a) Plot the scaled frequency histogram. (b) Find the mean and stan­
dard deviation. (c) Use the mean and standard deviation to estimate how
many 20-year-o ld men are no taller than 69 in. (d) Estimate how many
are between 68 and 72 in. tall.
(Answers: (b) mean = 69.4 in., standard deviation = 2.14 in.; (c) 43 per­
cent; (d) 63 percent.)

Sums and Differences of Random Variables

It can be proved that the mean of the sum (or difference) of two independent
normally di stributed random variab les eq uals the sum (or di fference) of their
means, but the variance is always the sum of the two variances. That is, if x and
yare normall y distributed with means /-Lx and fJ- y, and vari ances o} and 0-;, and
if u = x + y and v = x - y, then

fJ-1I = /-Lx + fJ-y

/-Lv = fJ-x - fJ-y

o} = 0',; = 0''; + 0'';
These properties are applied in some of the homework problems.

7.3 Random Number Generation

(7.2-6)

(7.2-7)

(7.2-8)

We often do not have a simple probabi lity distribution to describe the distribution
of outcomes in many engineering appl ications. For example, the probability that
a circu it cons isting of many components will fail is a function of the Illimber
and the age of the components, but we often cannot obtain a function to describe
the failure probability. In such cases engi neers often resort to simulation to make
predictions. The simul ati on program is executed many times, using a random set
of numbers to represent the failure of one or more components, and the results
are used to estimate the des ired probability.

Unjformly Distributed Numbers

In a sequence of uniformly distributed random numbers, all values within a given
interval are equally likely 10 occur. The MATLAB function rand generates
random numbers uniforml y di stributed over the interval [0,1J. Type rand to
obtain a single random number in the interval [0, II . Typing rand again generates

7 .3 Random Number Generation

a dif:~rent,~lum~;r because the MATLAB algorithm used fo r the r and function
requlles a state to start. MATLAB obtains this state from the computer's CPU
c1oc~ . Thus every tIme the r a nd function is used, a different res ult wi ll be
obtallled. For example,

rand

0 . 6161
rand

0 . 51 84

Type. r a nd.(n) to obtain an n x n matrix ofu njfofmly di stributed random
numbers III the IIlterval [0, I]. Type rand(m , n) to obtai n an In x n matri x of
rando~ numbers. For example, to create a I x 100 vector y having 100 random
va.lues III ~hell1t~rva l [0, I], type y = rand (1 , 100). Using the rand function
thiS way IS equIValent, to typing rand 100 times. Even though there is a single
call to the rand function, the rand function 's calculation has the effect of usin C1

a different state to obtain each of the 100 numbers so that they wi ll be random. b

yse Y = rand (m , n , p , . , .) to generate a multidimensional array Y

havI.ng rand?m e lements,.Typing rand (si ze (A)) produces an array of random
entrI es that IS the same size as A.

Forexample, the following script makes a random choice between two eq uall y
probable alternatives.

if rand < 0 . 5
disp ('heads ')

else
disp (' tails ')

end

In order to compare the results of two or more simulations, you sometimes
will need to generate the same sequence of random numbers each time the sim­
ul ation runs. To generate the same sequence, YO ll must li se the same state each
time. The current state s of the uniform number generator can be obtained by
typing s = rand ('state') . This returns a 35-element vector containing the
current state of the uniform generator. To set the state of Ihe generator 10 s,
type rand ('state' , s), Typing rand ('state' , 0) resets the generatorto its
initial state. Typing rand (,state' , j), for integer j, resets the generator 10

tate j , Typing rand (' state', sum (100 *clock)) resets the generatorto a
different state each time. Table 7.3- 1 summarizes these functions.

The following session shows how to obtain the same sequence every lime
rand i called.

»rand (' state ' , 0)
»rand
ans

0 . 9501

437

438 CHAPTER 7 Probability, Statistics, and Interpolation

Table 7.3-1 Random number functions

Command

rand
rand (n)

rand (m, n)

s = rand ('state')

rand ('state' , s)
rand ('state', 0)
rand ('state', j)

Description

Generates a si ngle uni formly di tributed random number between 0 and I.
Generates an /I x /I matrix containing uniformly distributed random
number between 0 and I.
Generates anm x /I matri x containing uniformly distributed random
numbers between 0 and I.
Returns a 35-element vector s contai ning the current state or the
uniformly distributed generator.
Sets the tate of the uniformly di stributed generator to s.
Resets the uni form ly distributed generator to its initi al state.

rand (,state', sum (lOO*clock))
Re ets the uniformly distributed generator to state j, for integer j .
Resets the uniformly distri bu ted generator to a different state each Lime it
is executed.

randn

randn (n)

randn (m , n)

s = randn ('state')
randn ('state' , s)
randn ('state' , 0)
randn ('state' , j)

Generates a single normally distributed random number having a mean of
o and a standard deviation of I.
Generates an 11 x 11 matrix contai ning normally distributed random
numbers havi ng a mean of 0 and a standard deviation of I.
Generates an m x 11 matri x containi ng normally di stributed random
numbers having a mean of 0 and a standard deviation of I.

randn ('state' , sum (lOO*clock))

Like rand ('state') but for the normally distributed generator.
Like rand (' state' , s) but for the normally di stri buted generator.
Like rand ('state', 0) but for the normally distributed generator.
Like rand ('state', j) but for the normally distributed generator.
Like rand('state' , sum(lOO*clock)) but for the normally
distributed generator.

r andperm (n)

»rand

ans =

Generate a random permutation of the integers from I to n.

0 . 2311
»rand (, state ' , 0)

»rand

0 . 9501
»rand

0 . 2311

You need not s tart with the initial state in order to generate the same sequence.
To show this , continue the above sess ion as follow .

»s = rand (' state ') ;
»rand (' state ' ,s)
»rand
ans =

0 . 6068
»rand(' state ' ,s)
»rand

0 . 6068

7 .3 Random Number Generation

You can use th e rand function to generate random numbers in an interval
other than 10, I J. For exa mpl e, to generate va lu es in lhe interva l [2, 10], fi rs t
gene rale a ra ndo m number be tween 0 and I , multipl y it by 8 (the diffe re nce
belwe~n the upper a~d lo.wer bounds), and then add the lower bound (2). The
res ull is a va lue tha: IS unrf~l:m l y di s tributed in the interval [2, 10]. The genera l
formul a for genera tll1g a ulllf'o rml y distribu ted random number y in the interval
la , bJ is

y=(b-a)x + a (7 .3- 1)

where x is a random number uniformly distributed in the interval [0, Ij. For
example, to generale a vector y containing 1000 uniforml y di stributed random
numbers in the inte rval [2, 10], yo u type y = 8 *rand (1 , 1000) + 2 . You
can check the res ults with the mean, min, and max functi ons. You sho uld obtain
va lues c lose to 6 , 2, and 10, respectively.

You ca n use rand to genera te random results for games involving dice,
for exa mpl e, but you mus t use it to create in tegers . A n easier way is to use the
r andperm (n) function , which generates a random permuta tion of the integers
from I to n. For example, randperm (6) mig ht generate the vector [3 2
6 4 1 5], or some other permutati on of the numbers from 1 to 6. Note tha t
randperm call s rand and therefore changes the s ta te of the generator.

Test Your Understanding

T7.3-1 Use MATLAB to generate a vector y containing 1500 uniformly di s­
tributed random numbers in the interval [-5, 15]. Check your results
with the mean, min, and max function s.

Simulations Using Random Numbers

Simulation us ing random number generators can be used to analyze and find
solutions to problems that are difficult or impossible to solve using standard
mathemati cs. The following example illustra tes this method.

439

Optimal Production Quantity •• N,e"
You have recently taken a position as the engineer in charge of your company ' seasonal

product, which is manufactured during the off-season. You want to determine the optimum
production level. ff you produce more units than you can sell, your profit will not be as
large as it could be; if you produce too many units. the unsold units at the end of the season
wi ll hurt profit . A review of the company's records shows that the fixed cost of production
is $30,000 per season, no maller how many units are made. and that it co. ts $2000 above
the fixed cost to make one unit. fn addition, past . ale have fluctuated between 25 and
50 units per season, with no increa ing or decreasing trend in the sales data. Your sales
force es timates that you cannot raise the price above $4000 because of the competition.

440 CHAPTER 7 Probability, Statistics, and Interpolation

Determine the optimal number of units to produce for each season. Assume a selling
price of $4000 during the season. Assume also that at the end of the season all unsold

units can be sold at $1000 each.

• Solution
Given that the previous sales were always between 25 and 50 units per season, with no
trend in the data, the most reasonable model for the sa I.es is a uniform distribution over
the interval [25, 50]. In the following script file, the vector cost is the cost as a fu nction
of production level (the number of units produced). The loop over k computes the profit
for each of the 26 production levels starting with 25 and ending with 50. The loop over
m does a random number simulation to compute the profit fo r a pmticular production
level. The variable demand represents the demand for the product; it is a uniformly
distributed number in the interval [25 , 50). If the demand is greater than the number of
units produced, then all the units will be sold and the income is $4000 times the number
produced. If the demand is less than the number of units produced, then the income is
$4000 times the number sold pl us $1000 times the number unsold, which is the number
produced minus the demand. For each random demand, the profit is computed as the
difference between the income and the cost. This amount is the scalar profit. The
cumulative profit cum-prof it is the sum of profits fo r all the random simu lations for
a particular production level. The expected profit expected_prof i t for a particul ar
production level is the profit for that level averaged over all the random simul ations.

n = 5000; % number of random simulations
level = [25 : 50]; % initialize the production level vector
cost = 30000 + 2000*level;
for k = 1 : 26

cUffi-profit = 0 ;
for m = 1 : n

end

demand = floor(rand*(50-25)+26) ;
if demand >= level (k)

income = 4000*level (k) ;
else

income = 4000*demand+1000* (level (k) -demand) ;
end
profit = income-cost (k) ;
cum-profit = cum_profit+profit;

end
expected-profit = cum_profit/n;
p(k ,1) = level(k) ;
p (k, 2) = expected-prof it;

plot (p (: , 1) , p (: , 2) , ' 0 ' , p (: , 1) ,p (: ,2) , ' -') , ...
xlabel (' No. of Units ') , ylabel (' Profit ($)')

The choice of 5000 simul ations was a somewhat arbi trary compromise between accuracy
and the amount of ti me requi red to do the calcul at ions. The more simulations, the more
accurate the results, but the program will take longer to fi nish . The results are shown in
Figure 7.3-1. The maximum profi t is attained fo r a production level in the range of 39 to

7.3 Random Number Generation

3.8 x 10
4

3.6

3.4

3.2

Ef7 3

e
CL 2.8

2.6

2.4

2.2

25 30 35 40 45 50
No. of Units

Figure 7.3-1 Profit versus quantity plot for 5000 simu lations.

43 unjts per season. The profi t is nearly $38,000 per season, which is much more than the
profit obtained by a conservative production level of 25 units per season .

You should try different values of n and compare the results.

Test Your Understanding

T7.3-2 In Example 7.3-1 , what is the optimum production level and resulting
profit if we sell unsold units at the end of the season at cost ($2000),
instead of below cost?
(Answer: Optimum producti on level = 50 units per season ; profit =
$46,000.)

Normally Distributed Random Numbers

In a sequence of normally distributed random numbers, the values near the mean
are more likely to occur. We have noted that the outcomes of many processes
can be described by the normal distribution. Although a uniformly distributed
random vari able has defini te upper and lower bounds, a nonnally di stributed ran­
dom variable does not.

441

442 CHAPTER 7 Proba bili ty, Statistics, and Interpolation

The MATLAB function randn will generate a single number that is normall y
di stributed with a mean equal to 0 and a standard deviation equal to 1. Type
randn (n) to obtain an n x n matri x of such numbers. Type randn (m , n) to
obtain an In x I! matrix of random numbers.

The functions for retrieving and specifying the state of the normally dis­
tributed random number generator are identical to those for the uniformly di s­
tributed generator, except that randn (...) replaces rand (...) in the syntax.
These functions are summari zed in Table 7.3-l.

You can generate a sequence of normally distributed numbers having a mean
J..L and standard deviation a from a normally di stributed sequence having a mean
of 0 and a standard deviation of 1. You do this by mUltiplying the values by a
and adding /.L to each result. Thus if x is a random number with a mean of 0 and
a standard deviation of I , use the following equation to generate a new random
number y having a standard deviation of a and a mean of J..L.

y = ax + J..L (7 .3- 2)

For example, to generate a vector y containing 2000 random numbers nor­
mally distributed with a mean of 5 and a standard deviation of 3, you type
y = 3 *randn (1 , 2000) + 5 . You can check the results with the mean and
s td functions. You should obtain values close to 5 and 3, respectively.

Test Your Understa ding

T7 .3-3 Use MATLAB to generate a vector y containing 1800 random numbers
normall y distributed with a mean of 7 and a standard deviation of 10.
Check your results with the mean and s td functio ns. Why can't you use
the min and max functions to check your results?

Functions of Random Variables If y and x are linearly related, as

y = bx + c (7.3-3)

and if x is normally distributed with a mean /.Lx and standard deviation ax, it can
be shown that the mean and standard deviation of yare given by

J..L y = bp-x + c

ay = Iblax

(7.3-4)

(7.3-5)

However, it is easy to see that the means and standard deviations do not combine
in a straightforward fashion when the variables are related by a nonlinear function.
For example. if x is normally distributed with a mean of 0, and if y = x 2 , it is easy
to see that the mean of y is not 0, but is positive. In addition, y is not normally
distributed.

Some advanced methods are available for deriving a formula for the mean
and variance of y = j(x), but for our purposes. the simplest way is to use random
number simulation.

7.3 Random Number Generation

It ~as noted in the prev ious .se~tion that the mean of the sum (or difference)
o~ two II1dependent normally di strIbuted random variables equals the sum (or
dlfference~ of :helr me~ns, but the variance is always the sum of the two variances.
However, Jf Z JS a ~onhn~ar function of x and y, then the mean and variance of z
cannot be fou~d With a Simple formu la. In fact, the distribution of z will not even
be normal. ThiS outcome is illustrated by the following example.

Statistical Analysis and Manufacturing Tolerances

Suppose you must cut a triangular piece off the corner of a square plate by measuring

the di stances x and y from the corner (see Figure 7.3-2). The desired value of x is
10 in., and the desired value of e is 20°. This requires that y = 3.64 in . We are told that

m~asurements of x ~nd y are normally distributed with means of 10 and 3.64, re pectively,
With a standard deViation equal to 0.05 in . Detennine the tandard deviation of e and plot
the relative frequency histogram for e.

• Solution

From Figure 7.3-2, we see that the angle e is determined bye = tan- I (y Ix). We can find
the statistical distribution of e by creating random variables x and y that have means of

10 and 3.64, respectively, with a standard deviation of 0.05 . The random variable e is then

found by calculating e = tan - I(y/x) for each random pair (x, y). The following script
file shows this procedure.

s = 0 . 05 ; % standard deviation of x and y
n = 8000; % number of random simulations
x = 10 + s *randn(1 , n) ;
y = 3.64 + s*randn(1,n) ;
theta = (180/pi)*atan(y . /x) ;
mean_ theta = mean (theta)
sigma_theta = s td (theta)
xp = [19 : 0 . 1 : 211 ;
z = hist (theta ,xp) ;
yp = z/n ;

bar(xp , yp) , xlabel ('Theta (degrees)') , ylabel ('Relative Frequency ')

Plate

/-,\;,/' r
I' 'I

Figure 7.3-2 Dimensions of a
triangular cut.

443

""'d".

444 CHAPTER 7 Probability, Statistics , and Interpolation

1

~o.o 6

4

2

,nnl I~nn~
0

0.0

20
Theta (deg rees)

Figure 7.3-3 Scaled histogram of the angle e.

The choice of 8000 simulations was a compromise between accuracy and the amount of
time required to do the ca lcul ations. You should try different values of n and compare the
results. The results gave a mean of 19.9993° for e with a standard deviation of 0.2730°.
The histogram is shown in Figure 7.3-3. Although the plot resembles the normal distri­
bution, the values of e are not distributed normally. From the histogram we can calculate
that approximate ly 65 percent of the values of e lie between 19.8 and 20.2. This range
corresponds to a standard deviati on of 0.2°, not 0.273° as calculated from the simulation
data. Thus the curve is not a normal distribution.

This example shows that the interaction of two of more normally distributed variables
does not produce a result that is normally distributed. In general, the result is normally
di stributed if and only if the result is a linear combination of the variables.

7.4 Interpolation
Engineering problems often require the analysis of data pairs . For example, the
paired data might represent a cause and effect, or input-output relationship, such
as the current produced in a resistor as a result of an applied voltage, or a tim.e
history, such as the temperature of an object as a function of time. Another type of
paired data represents a profile, such as a road profile (which shows the height of
the road along its length) . In some applications we want to estimate a variable's
value between the data points. This process is called interpolation. In other cases
we might need to e tim ate the variable's value outside of the given data range.
Till s process is extrapolalion. Interpolation and extrapolation are greatly aided

7.4 In terpolation

by ~l ott i ng the dat~. Such p l o~s, ~ome perhaps using logarithmic axes , often help
to dIscover a functIonal descnptlOn of the data.

Suppose that x represents the independent variable in the data (such as the
applied voltage in the preceding example), and y represents the dependent variable
(such as the resistor cun-ent). In some applications the data set will contain only
one va lue of y for each value of x. In other cases there will be several measured
values of y fo r a particular value of x. This condition is called data scatter. For
example, suppose we apply 10 V to a resistor, and measure 3.1 mA of current.
Then, repeating the experiment, suppose we measure 3.3 mA the second time. If
we average the two results, the resulting data point will be x = J 0 V, Y = 3.2 rnA,
which is an example of aggregating the data. In this section we assume that the
data have been aggregated if necessary, so only one value of y cOITesponds to a
specific value of x. You can use the methods of Sections 7.1 and 7.2 to aggregate
the data by computing its mean. The data's standard deviation indicates how much
the data is spread around the aggregated point.

Suppose we have the following temperature measurements, taken once an
hour starting at 7:00 A.M. The measurements at 8 A. M. and 10 A.M. are missing
for some reason, perhaps because of equipment malfunction.

Time 7 A .M . 9 A .M. I j A .M. 12 noon

Temperature (OF) 49 57 71 75

A plot of this data is shown in Figure 7 A-I with the data points connected by
dashed lines. If we need to estimate the temperature at 10 A.M. , we can read the
value from the dashed line that connects the data points at 9 A.M. and 11 A.M. From
the plot we thus estimate the temperature at 8 A.M. to be 53°F and at 10 A.M. to be
64 OF We have just performed linear interpolation on the data to obtain an estimate
of the missing data. Linear interpolation is so named because it is equivalent to
connecting the data points with a linear function (a traight line).

Of course we have no reason to believe that the temperature follows the
straight lines shown in the plot, and our estimate of 64°F wil l most likely be
incorrect, but it might be close enough to be useful. When using interpolation,
we must always keep in mind that our results wi ll be approximate and should be
used with caution. In general, the more closely spaced the data, the more accurate
the interpolation. Plotting the data sometimes helps to judge the accuracy of the
interpolation.

Using straight lines to connect the data points is the simplest form of inter­
polation. Another function could be used if we have a good reason to do o. Later
in this section we use polynomial functions to do the interpolation.

Linear interpolation in MATLAB is obtained with the interpl and
interp2 functions . Suppose that x is a vector containing the independent vari­
able data and that y is a vector containing the dependent variable data. If x_ int
is a vector containing the value or values of the independent variable at which we
wish to estimate the dependent variable, then typing interpl (x , y , x_ int)

445

446 CHAPTER 7 Probability, Statistics, and Interpolation

Temperature Measurements at a Single Location
80~--~--~--~---r---'---'----'---'---'---1

75

70

LL
Ol

:2.65
OJ

(ij

~60
~
I-

55

50 ...-

45L-__ ~ __ ~ __ ~ __ -L __ ~ __ ~ __ ~~ __ L-__ ~~

7 7.5 8.5 9.5 10 10.5 11 11.5 12
Time (hr)

Figure 7.4-1 A plot oftemperalure data ver us time.

produces a vector the same size as x_ int containing the interpolated values of
y that correspond to x_into For example, the followi ng sess ion produces an
estimate of the temperatures at 8 A.M. and 10 A.M. from the preceding data. The
vectors x and y contain the times and temperatures, respectively.

»x = [7 , 9 , 11 , 12] ;
»y = [49 , 57 , 71 , 75] ;
»x_ int = [8 , 10] ;
»interp1 (x , y , x_int)
ans

53
64

You must keep in mind two restrictions when using the interp1 function.
The va lues of the independent variable in the vector x must be in ascending
order. and the values in the interpolation vector x _ int must lie within the range
of the values in x. Thus we cannot u e the interp1 function to estimate the
temperature at 6 A .M., fo r example.

The interp1 function can be u ed to interpolate in a tab le of values by
defining y (0 be a matrix instead of a vector. For example, uppose we now have

7.4 Interpolation

temperature meas L~re ~ll ents at three locations and that the measurements at 8 A.M.

and 10 A.M. are mlSSlllg for all three locations. The data is

Temperatures (OF)

Time Location 1 Location 2 Location 3

7 A.M . 49 52 54
9 A. M. 57 60 61
II A.M. 71 73 75
12 noon 75 79 81

We define x as before, but now we define y to be a matrix whose three co lumns
cont.ain the second, third: and fourth columns of the preceding table. Thefollowing
sess IOn produces an estImate of the temperatures at 8 A. M . and 10 A.M. at each
location.

»x = [7 , 9 , 11 , 12] ';
»y (: , 1) [49 , 57, 71 , 75] ';
»y(:, 2) = [52 , 60 , 73, 79] ';
»y(: , 3) = [54 , 61, 75 , 81] ';
»x_ int = [8 , 10] ';
»interp1 (x , y , x_ int)

53 . 0000
64 . 0000

56 . 0000
65 . 5000

57 . 5000
68 . 0000

Thus the estimated temperatures at 8 A.M. at each location are 53, 56, and 57 .5°F,
respectively. At 10 A.M. the estimated temperatures are 64, 65 .5, and 68. From
this example we see that if the first argument x in the interp1 (x, y , x_int)
function is a vector and the second argument y is a matrix, the function interpolates
between the rows ofy and computes a matrix having the same number of columns
as y and the same number of rows as the number of values in x_ int o

Note that we need not define two separate vectors x and y. Rather, we can
define a single matrix that contains the entire table. For example, by defining the
matrix temp to be the preced ing table, the session would look like this:

> > temp (: , 1) [7 , 9 , 11, 12] ';
»temp(:, 2) [49 , 57 , 71 , 75) ';
»temp (:, 3) [52 , 60 , 73 , 79] ';
»temp(:, 4) [54 , 61 , 7 5 , 81) ';
»x_int = [8 , 10] ';
»interp1 (temp (: , 1) , temp (: , 2 : 4) , x_ int)
ans

53.0000
64 . 0000

56. 0000
65 . 5000

57 . 5000
68 . 0000

447

448 CHAPTER 7 Probability Statistics and IlltGipolalion

'f'wo-Dimcn,.,ional Interpolation

Now ~ uppll~e Ihat we have temperalure mea,>urements at (our l oea t i() n ~ al 7 A.M.

Thc~c l oCa li o lJ ~ are at the corners or a rectangle I mi wide and 2 mi Ion ' . A~­
~ i gnin g a coordinate sy~ ICJl) ori gin (0, 0) lo the lir~ l locali on, the coordi mJ tef> of
the other locati on,> ~Ire (1, 0) , (1, 2), and (0,2); see Fi uure 7 . 4~2. The Lempera­
lUre ll1 e a s urel1l ent ~ :l fe ~hown in the Ii 'ure. The temperature i ., a function or two
van;!bl > ~ , the coordin a t e~ A and y. MATLAB prov ide'> the j ol (>rp2 function 10

inLerpolate (un c ti on ~ of two vari a blc~ . I f the runction i s wrillen a<, Z = { (x, y)
and we wi~ h to e~ tinHlI e the value or z for x = x , and y = y;, Ihe f>ynLax i ~
'lll rp2(x , y , z , x_Ly.i}.

Suppol>e we want to e'> timate the temperature at the poin l who~e coordin a t e~
arc (() .6, 1.5). Put the x coordin:lt e,> in the veclor x and the y eoordin aLe~ in lhe
vec tOJ y. Then put the temperature me:hllremenLS in a matri x z ,> uch Lh at aoing
acro ~1> a row repre:-.enLs an increase in .A and going down a column represenh an
inc rea ~e in y. The '>e%ion to do thi ~ j ~ a'> rollow~:

[0 , 1 J;

>~I lO , 2J ;
»z [49 , 54 ; c:>3 , 57]

4. 9 ')4
5,., S 7

~~.l1tFrp2 (Y , ,! , Z , 0 . 6 , ::' . S)

')4 .),)00

Thll ~ the e~ t il1laled temperature i~ 54.55 .

(0 ,0) (1 ,0)

49" 54

(0.6 , 1.5)

•
53 57

! (02) (12)

t

Figun 7.4-2 lc!flIpt'ralure
ffic!3Wlcmc!nt at lour Joc.lli,,",

Tahle 7.4- 1 1 -i nca !' in lerpolaLion ru nc l ion ~

Command

7.4 Intf:rpr,lati<JrI

J)es fiptiorl

U~ed to lin 'arl y inte) pr)late a IUIIl;li olJ "I
one vwi able: y j(~), I«;tllrn, a lin 'Hll y
inlelJJolated vector '(i fit al Ihe , pe(;ill cd
vallie y i nt, u, ing (bi ll ~t()rC(1 ill / awl 'I.
U~ed to lincarl y interpolale a l un(;tion 1)1
I wo variabl .,,: y - f (x , y). /{ el u rn ~ [I

l inearly interpoluled veclor 7. fit al lh

449

"pecill ed va lue:, / j or and (J (,1 , u"in ,
_____________ ..:.d:l:.:.' t a=-~=wred in Y. I. and ,/,

The i'>yntax or the j nl'rpl and inlr>rp2 funcliom i ~ f'> ulTImatizcd in
Table 7.4- 1. MATLAB also provide~ the j nl (:rrin fUJl ction for iJlLerpfl lating
J11ulLidimensional array~ .

Cubic-Spline fnterpolation

We have ~een thatlhe u<,e of high-order polyn()mial~ CHn exhibit unde~ired behav­
ior between the data point'>, and tili r, beha vior can JTI(Jke high-order polynomial,>
un <;uilabJc for interpol 'Hion. An aiLernati ve procedure thal i " widely u ~cd i '> to
fit the data point!> LI ~ ing a lower-order polynomial between each pair of adJa
cent data point s. Thi s method i ~ called spline interpolatioll afld i" '>0 named fur
the spline~ used by illu ~ lratol''> lO draw a '>mol)th curve through a ,>et of point'>,
Slich 8 devi ce can be con<,t.ructed from {J length or lead coaled wi th rubber ()T

flexible plastic. fl can be bent to provide a drawing guide pa<,s ing through the
data point'>.

Splinc inlcrpolation obLain,> an exact fit thal i !> al<,o ~m()Olh. The mOst cOJnmon
procedure u~e" cubic polynomial'>, called cubic vpfinr' \ , lind thu .. i., LaJJcd cubir et.8le SPJ.I. ES

\pline inlerpo/alion . If the data i ~ given a~ /I pair .. of (x , yJ valuc~, thcn II - I
cubic pol ynomiab are u~ed. Each hat, the furm

y ;(X) = a,(x - x,) 3 + b,(x -- X,)2 t- e,(x - X,) of d,

for x, ~ x ~ x
h

J and i =:. 1, 2, n - I. The coc/ficicm, (J" b,. ('" and d,

for each polynomial fire delenmncd ~o that the following three condition .. are

~ati ~ncd for each polynomial :

1. The polynomial mu'>t pa.,s through the data point .. at it'> endpoint at X, and

X" J.

2. The f> lope" of adjacent polynomiah mu ... be equal at their common data

point.
3. The curvaturc~ of adjacent polynomial .. mU!lt be equal at their common data

point.

450 CHAPTER 7 Probability, Statistics, and Interpolat ion

For example, a set of cubic splines for the temperature data given earlier fo llows
(y represents the temperature values , and x represents the hourly va lues) . The
data is repeated here.

II 12

49 57 7 1 75

We will shortly see how to use MATLAB to obtain these polynomials. For
7 S x S 9,

YI (x) = - 0 .35(x - 7)3 + 2.85(x - 7)2 - 0.3(x - 7) + 49

For 9 S x S 11 ,

Y2(X) = -0.35(x - 9)3 + 0.75 (x - 9)2 + 6.9(x - 9) + 57

For 11 S x S 12,

Y3 (X) = - 0.35(x - 11)3 - 1.35(x - 11)2 + 5.7(x - 11) + 71

MATLAB provides the spline command to obtain a cubic-spline inter­
polation. Its syntax is y _ int = spl ine (x , y , x_ int) , where x and y are
vectors containing the data and x_ int is a vector containing the values of the
independent variable x at which we wish to estimate the dependent variable y.
The result y _ int is a vector the same size as x_ int containing the interpolated
values of Y that correspond to x_ int o The spline fit can be plotted by plotting
the vectors x_int and y _ int o For example, the following session produces and
plots a cubic-spline fit to the preceding data, using an increment of 0.01 in the
x values.

»x = (7 , 9 , 11 , 12) ;
»y = (49 , 57 , 71 , 75);
»x_ int = (7 : 0 . 01 : 12) ;
»y_ int = spline(x , y , x_ int) ;
»plot (x , y , ' 0' , x , y ,' -- ', x_ int , y_ int) , ...
xlabel (' Time (hr) ') , ylabel (' Temperature (deg F) , , . . .

title (' Temperature Measurements at a Single Locat ion ') , . ..
ax i s ((7 12 4 5 8 0 1)

The plot is shown in Figure 7.4-3. The dashed lines represent linear inter­
polation, and the solid curve is the cubic spline. Note that if we use the sp]jne
plot to estimate the temperature at 8 A.M ., we obtain approximately 51°F. If we
evaluate tlle spline polynomial at x = 8, we obtain y(8) = 5 1.2°F. In either case
the estimate is different from the 53°F estimate obtained from linear interpola­
tion. It is impossible to say which estimate is more accurate without having more
understanding of the temperature dynamics.

7.4 Interpolation

80
Temperature Measurements at a Single Location

75

70

i:L
OJ

:S65

~
~
~ 60
~
l-

SS

50

45
7 7.5 8.5 9.5 10 10.5 11 11 .5 12

Time (hr)

F igure 7.4-3 Linear and cubic-spli ne interpolation of temperarure data.

Instead of plotting the cubic spline and estimating a point on the plot, we can
obtain a more accurate calculation, more quickly, by using the following variation
of the interpl function.

y_est = interpl(x , y , x_est , ' spline ')

In this form the function returns a column vector y _es t t.hat contains the
esti mated values of y that correspond to the x values specified in the vector
x_es t, using cubic-spline interpolation. For example, to estimate the va lue of y at
x = 8 for the preceding data, we would type interp1 (x , y , 8 , ' spline ') .
MATLAB returns the answer 51.2. To estimate the value of y at two differ­
ent points, say, x = 8 and x = 10, we would type interp1 (x , y , [8 , 10) ,
' spline ') . MATLAB returns the answers 51.2 and 64.3.

In some applications it is helpful to know the polynomial coefficients, but we
cannot obtain the spline coefficients from the interp1 function. However. we
can lise the form

(breaks , coeffs , m, n) = unmkpp(spline(x , y))

to obtain the coefficients of tbe cubic polynomials. The vector breaks contai ns
the x values of the data, and the matrix c oef fs is an m x n matrix containing
the coefficients of the polynomials. The scalars m and n give the dimensions of the
matrix coeffs ; m is the number of polynomials, and n is the number of

451

452 CHAPTER 7 Proba b ility, Statistics, and Inte rpolat ion

coefficien ts for cach polynomial (MATLAB will fit a lower-order polynomia l
if pos ible. so there can be fewer than four coefficients) , For example, using the
same data, the following sess ion produces the coeffic ients o f the po lynomia ls
given earlier:

[7 , 9 , 11 , 12] ;
»y = [49 , 57 , 71, 75] ;
»[breaks , coeffs , m, n]
breaks

7 11 12
coeffs

-0 . 3500 2 . 8500 -0 . 3000
-0 . 3500 0 . 7500 6 . 900
-0 . 3500 -1. 3500 5 . 7000

unrnkpp (spline (x , y))

49 . 0000
57 . 0000
71 . 0000

The first row of the mauix coeffs contains the coefficients of the first poly­
nomial. and so on. These functions ar summari zed in Table 7.4-2. The Ba ic
Fitlino interface which is available on the Tool menu of the Figure window, can
be us:d for cubi~-spline interpolation . See Chapter 5, Section 5.7 for instructions
for using the int.erface.

Table 7.4-2 Pol) nominl interpolation fUllction.

Command

y_est = interpl(x , y ,x_est, ' spline ')

coe:fs, ~I •

Description

Returns a colulllll vector y _ est that contains the
e timated values of r that cOITespond to the x
values specified in the vector x _ est . using
cubic- pline interpolation.
Compute a cubic- pline interpolation where x
and y are vectors containing the data and x_ int
i a vector containing the value of the
independent vuriabl;x at w hich we wi h to
C tilllate the dependent variab le y. The re ult
y_i:lL. is a \ ector the ame size a x_int
containing the interpolated value of y that
corre. pond to X_ iC1t.
Computes the coefficient of the cubic- pline
polynomiab for the data in x and y. The vector
brea ~s contains the x value. and the matrix
coe:fs is an III x II matrix containing the
poly nomial coefficients. The scalars !TI -and n give
the dimensions of the matrix cae: f s: ;n is the
number of polynomial. and :l is the number of
coefficient. for each polynomial.

7.4 In terpola tion

Application to Robot Control

Cubic splines are used to con trol robotic dev ices wch a the arm shown in
Figure 7.4-4. Thi s particular arm is a simple one that lTIove~ in a two-dimensional
plane. It has a motor at its "shoulder" and a motor at its "elbow." When these two
motors rotate through the proper angles. the arm can place its hand at a des ired
point in the pl~ne . Rob~ ts have a superv isory computer that accept!:> user input ,
such as the destredlocatlon of the hand. The computer then ca lcul ates liow much
rot ,~ ti on each mo.t~r must produce to move the hand from its starting poi III to it~
~estred final pos ition . . Then, at regular lime interval s. the supervi sory computer
l eeds the angular Illotl on commands to the two maIler compLlters that control
each motor. In many devices the superv isory computer uses cubic-spline inter­
polation to generate the angular motion cO lllmands. The advantage or a cubic
spline is that it results in smooth robot Illotion. We now show how the splines arc
computed.

Hand

L2

(Y
L1 Elbow Motor

81

Base Motor

Finish

Start

(b)

Figure 7.4-4 A robot arm h[j~lOg t",o JOint
(a) Dimen~ions and arm angle. (b) The hand \
path is not a straight line. but a complicated cuneo

453

454 CHAPTER 7 Probability, Statistics, and Interpolation

We can use tri gonometry to obtain the following expressions fo r the coordi­
nates of the elbow and the hand. For the elbow, Xelbow = L I cos 81 and Yclbow =
L I sin 81• The hand 's coordinates (x, y) are given by

x = Xelbow + L2 cos(81 + 82) = LI cos 81 + L2 cos(81 + 82) (7 .4- 1)

Y = Yelbow + L 2 sin (8 1 + 82) = LI sin 81 + L2 sin(8 1 + 82) (7 .4-2)

These two equations can be solved for 8 1 and 82 in terms of x and Y so that we
can determine the elbow and arm angles necessary to place the hand at a spec ified
position given by x and y. We omit the details of the solution and just state the

result .
R2 = x2 + i

cos 82 = R2 - L ~ - q
2LIL2

R2+ L2 _L2
cos f3 = 2L II R 2

Ci = arctan ~
x

if 82 < 0

if 82::: 0

(7.4-3)

(7.4-4)

(7.4- 5)

(7 .4-6)

(7 .4-7)

Ifwe use a cubic polynomial to express thejoint angles as functions of time for
o S t S T , then we can specify four condi tions for each angle. Two of these con­
ditions should require the polynomial to pass through the starting value 8(0) and
the endi ng value 8(T) . The other two conditions require that the slope of the poly­
nomjal should be 0 at the start and finish because we want the robot to start from
rest and to finish at rest. The cubic polynomial that satisfies these conditions is

8(t) = at3 + bt2 + 8(0) (7.4-8)

where a = 2[8(0) - 8(T») / T 3 and b = -3 [8(0) - 8(T))/T2
.

For example, suppose the robot arm shown in Figure 7.4-4a has the lengths
L I = 4 and L2 = 3 ft. Suppose also that in 2 sec we want the hand to move from
x(O) = 6.5 , yeO) = 0 to x(2) = 0, y(2) = 6.5 ft. We obtain the following angle
solutions from equations (7.4-3) through (7.4-7): 81(0) = -]8.717°,81(2) =
71.283°, and 82(0) = 82(2) = 44.049°. The polynomials are 8 1 (t) = -22.5t 3 +
67.5/2-18.717 and 82(t) = 44.049. If the robot controller uses these polynomials
to generate commands to the motors, then the path of the hand looks like that
shown in Figure 7.4-4b. Note that the hand 's path is not a straight line between
the starting and stopping points, and this motion might result in a collision with
nearby objects.

In many applications we want to control the hand 's path more precisely. For
example, the robot might be used for welding along a specific path. Suppose we
want the path to be a straight line. Then we must specify a series of intermediate
locations for the hand to pass through. These locations must lie on the straight

7.4 Interpolation

line con.necting the ~ tarting and ending hand pos itions. These points are called
kn~ 1 p Oll.1tS. To obta~n smooth m.otion, we want the hand to pass through these
POll1ts Without stopping .or chang l~g ~p.e~d, so we use cubic splines to interpolate
between these POll1t~ . If the hand IS II1ltl ally at the point (xo, YO) and we want it
to move to (x I, Y I) 111 a straight line, the line 's equation is

y = Y I - Yo (x - xo) + Yo
XI - Xo

(7.4-9)

455

KNOT POINT

Robot Path Control Using Three Knot Points "*'9"'1'
Write a MATLAB program to compute the arm angle solution for three knot points. Write
another program to compute the splines required to generate three knot points and to

plot the path of the robot's hand. Do thi s problem for the case where L 1 = 4, L 2 = 3,
(xo, Yo) = (6,0), (xf' Yf) = (0,4)

• Solution
The following script file pelforms these calculations. It solves the specific case where

L 1 = 4, L 2 = 3, (xo,)'0) = (6, 0), (x f , Y f) = (0, 4), using three equally spaced knot
points along the straight-li ne path.

% Solution for joint angles using n knot points .
% Enter the arm lengths below .
L1 = 4 ; L2 = 3 ;
% Enter the specific values of the starting point (xO , yO) ,
% the stopping point (xi, yf) , and the number of knot points
xO = 6 ; yO = O; xf = O; yf = 4 ; n = 3 ;
% Obtain the points on a straight line from (xO , yO) to (xi,yf) .
x = linspace(xO , xi,n+l) ; y = ((yf - yO)/(xf-xO)) * (x-xO)+yO ;
% Begin the angle solution . The answers will be in degrees.
R = sqrt(x . A2+y . A2) ;
theta2 = acos ((R . A2-L1 A2-L2 A2) / (2 *L1 *L2)) * (180/pi) ;
beta = acos((R . A2+L1A2 - L2A2)/(2 *L1*R))*(180/pi) ;
alpha = atan2 (y , x) * (180/pi) ;
if theta2 < 0

the tal = alpha+beta ;
else

t heta1 = alpha-beta ;
end

Theresultsare t het a l = [- 1 8 . 7170 , - 17 . 2129 , 4 . 8980 , 35 . 9172 ,
71.2830) and t h eta2 = [44 . 0486 , 86 . 6409 , 99 . 2916 , 86 . 6409 ,

44 . 0486] .
The second program uses these angle to compute the plines and plot the hand's path.

The plot is shown in Figure 7 A-S. The hand's path is very close to a straight line, as desired.

% Example of robot path using splines with three knot points .
% Define the joint angles and times along the straight line path .
theta1 = [- 18 . 717 , -17 . 2129 , 4 . 8980 , 35 . 9172 , 71.2830] ;

456 CHAPTER 7 Probability, Statistics, and Inte rpolation

Path of Robot Hand

END

Knot Point 3

Knot Point 2

Knot Point 1

START

2 L-____ L-____ L-____ L-____ ~ ____ ~----~--~

o
x(ft)

Figure 7.4--5 Path of a robot hand using three knot point .

theta2 = [44.0486, 86 . 6409, 99 . 2916, 86.6409 , 44 . 0486];
t = [0, 0.5 , 1, 1.5 , 2];
% Use 200 points for interpolation .
t _ i = linspace(0 , 2 , 200);
theta1_ i = spline(t,theta1,t_i) ;
theta2_i = spline(t , theta2 , t_i) ;
% Compute the (x,y) coordinates of the hand .
x = 4*cos (theta1_i* (pi/l80)) +3*cos ((theta1_i+theta2_ i) * (pi/l80)) ;
'I = 4*sin(theta1_ i* (pi/l80))+3*sin((theta1_i+theta2_ i) * (pi/l80)) ;
% Compute the (x,y) coordinates of the elbow.
x_ elbow = [4*cos(theta1_ i* (pi/l80)) I ;
'I_ elbow = [4*sin(theta1_i* (pi/180)) I ;
% Compute the coordlnates to display the arm ' s position at 5 points.
xl [O , x_elbow(l) , x(l) I ; '11 = [O , y_elbow(l) , '1(1) I ;
x2 [O,x_elbow(50) , x(50) I ; y2 = [0 , y_elbow(50) , y(50) I ;
x3 = [O,x_ elbow(lOO) , x(100) I ; y3 [0 , y_elbow(100) , y(100) I ;
x4 = lO , x_elbow(150) ,x(150) I ;y4 = [0 , y _ elbow(150) , y(150) I ;
x5 = [O,x_elbow(200) , x(200) I ; '15 = [0 , y_elbow(200) , y(200) I ;
% Plot the results .
plot (x,y, xl ,'11, x2 , '12, x3 ,'13, x4 , '14, x5 , y5) , ...
axis([O 7 -2 7j) , title(' ?ath of Robot.. Hand ') , ...
xlabel ('x (ft)' 1 ,ylabel (' 'I (ft)' 1

Table 7.5-1 Gui de to MATLAB fu nctions introduced
in Chapter 7

Histogram functi ons
Statistical functions
Random number fu ncti ons
Linear in terpolation functi ons
Polynom ial interpolati on func tions

See Table 7. 1- 1
See Table 7.2- 1
See Table 7.3- 1
See Table 7.4-- 1
See Table 7.4--2

Miscellaneous functions

Command

erf (xl

7.5 Summary

Description

Computes the error
functi on erf(x) .

7.5 Summary

This chapter introduces MATLAB funclion s thal have widespread and important
uses in stati stics and data analysis; however, their proper application requires
informed judgment and experience. Section 7.1 gives an inlroduction to bas ic
stati stics and probability, including hi stograms, which are specialized plQLS for
di splaying stati stical results. The normal di stribution that forms the basis of many
statistical methods is covered in Section 7.2. Section 7.3 covers random number
generators and their use in simulation programs. Section 7.4 covers interpolalion
methods , including linear and spline interpolation. Table 7.5- 1 i& a guide to the
functions introduced in this chapter.

Now that you have finished this chapter, you should be able to useMATLAB to

• Solve basic problems in statistics and probability.
• Create simulations incorporating random processes.
• Apply interpolation to data.

Key Terms with Page References

Ab olute frequency, 421
Bins, 419
Cubic splines, 449
Error function , 434
Gaus ian function , 429
Hi togram, 418
Interpolation. 444
Knot point, 455
Mean, 418

Median, 418
Normally di ' tributed, 430
Normal function , 429
Relative frequency, 421

Scaled frequency histogram,
Standard deviation. 430
Uniformly distributed. 436
Variance, 431

428

457

458 CH APTER 7 Probability, Statistics , and Interpolation

Problems
You can fi nd the answers to problems marked with an asterisk at the end of thc text.

Section 7.1

1. The foll owing li st gives the measured gas mileage in miles per ga ll on for
22 car of the same model. Plot the absolute frequency hi stogram and the
relative frequency hi togram.

23 25 26 25 27 25 24 22 23 25 26
26 24 24 22 25 26 24 24 24 27 23

2. Thirty pieces of structural timber of the same dimensions were subjected to
an increasing lateral force until they broke. The measured force in pounds
required to break them is given in the fo llowing list. Plot the absolute
frequency histogram. Try bin width of 50, 100, and 200 lb. Which gives
the most meaningful hi stogram? Try to find a better va lue for the bin width.

3.

4.*

243 236 389
404 464 605
497 500 535
132 196 2 17
457 347

628 143 417 205
137 123 372 439
577 44 1 23 1 675
660 569 865 725

The fo llowing list gives the measured breaking force in newtons for a
sample of 60 pieces of certai n type of cord. Plot the absolute frequency
histogram. Try bin widths of 10,30, and 50 N. Which gives the
most meaningful hi stogram? Try to find a better value for the bin width.

31 I 138 340 199 270 255 332 279 231 296 198 269

257 236 313 28 1 288 225 216 250 259 323 280 205

279 159 276 354 278 22 1 192 28 1 204 361 321 282

254 273 334 172 240 327 26 1 282 208 213 299 318

356 269 355 232 275 234 267 240 331 222 370 226

If you roll a balanced pair of dice 300 times, how many times would you
expect to obtain a sum of 8? A sum of ei ther 3, 4, or 5? A sum of less
than 9?

Section 7.2

5. For the data given in Problem I,
Plot the scaled freq uency histogram.

b. Compute the mean and standard deviation and use them to estimate
the lower and upper limits of gas mileage conesponding to 68 percent
of cars of thi model. Compare these limits with those of the data.

Problems

6. For the da ta given in Problem 2,

a. Pl ot the scaled freq uency hi stogram.
b. Compute the mean and standard dcv iati on and use them to estimate

the lower and upper limits of strength corresponding to 68 percent
and to 96 percent of such timber pieces. Compare these limits with
those of the data.

7. For the data given in Probl em 3,

Pl ot the scaled frequency hi stogram.
b. Compute the mean and standard deviation, and use them to estimate

the lower and upper limits of breaking force corresponding to
68 percent and 96 percent of cord pieces of thi s type. Compare these
Ii mits with those of the data.

8.* Data analysis of the breaking strength of a certain fabric shows that it is
normally di stribu ted with a mean of 200 Ib and a vari ance of 9.

C/. Estimate the percentage of fabric samples that wi ll have a breaking
strength no less than 194 lb.

b. Estimate the percentage of fabric samples that wi ll have a brcaking
strength no less than 197 Ib and no greater than 203 lb.

9. Data from service records shows that the time to repair a certain machine
is normally distributed with a mean of 50 min and a tandard devi ation of
5 min . Estimate how often it will take more than 60 min to repair a
machine.

10. Measurements of a number of fittings show that the pitch diameter of the
thread is normally di stributed wi th a mean of 5.007 mm and a standard
dev iation of 0.005 mm. The design specifications require that the pitch
diameter must be 5 ± 0.01 mm . Estimate the percentage of fittings that
will be wi thin to lerance.

11. A certa in product requires that a haft be inserted into a bearing.
Measurements show that the diameter d l of the cylindrical hole in the
bearing is normally distributed with a mean of 3 cm with a variance of
0.0064. The diameter d2 of the shaft i normally di stributed with a mean
of 2.96 cm and a variance of 0.0036.

a. Compute the mean and the vari ance of the clearance c = d l - el2.
b. Find the probabi lity that a given shaft will not fit into the bearing.

(Hint: Find the probability that the clearance is negative.)

12.* A shipping pallet holds 10 boxes. Each box holds 300 parts of different
types . The part weight is normally di tributed with a mean of I lb and a
standard deviation of 0.2 lb.
a. Compute the mean and standard deviation of the pallet weight.
b. Compute the probability that the pallet weight will exceed

3015 lb.

459

4 60 C HAPTER 7 Probability, Statistics, and Interpolation

13. A certain product i assembled by placing three components end to end .
The components ' lengths are L I, L 2 , and L3. Each component is
manufac tured on a different machine, so the random vari ati on in thei r
lengths is independent of each other. The lengths are normally di stributed
with means of 1,2, and 1.5 ft and variances of 0.00014, 0.0002, and
0.0003, respectively.
a. Compute the mean and vari ance of the length of the assembled

product.
h. Estimate what percentage of assembled products will be no less than

4.48 and no more than 4.52 ft in length.

Section 7.3

14. Use a random number generator to produce 1000 uniformly di stributed
numbers wi th a mean of 10, a minimum of 2, and a maximum of] 8.
Obtain the mean and the hi stogram of these numbers and di scuss
whether or not they appear uniformly di stributed with the des ired
mean.

15. Use a random number generator to produce 1000 normally distributed
numbers wi th a mean of 20 and a variance of 4 . Obtain the mean, variance,
and the hi stogram of these numbers and di scuss whether or not they
appear nomlall y di stributed with the desired mean and vari ance.

16. The mean of the sum (or difference) of two independent random variables
equals the sum (or difference) of their means, but the variance is always
the sum of the two vari ances. Use random number generation to verify this
statement for the case where z = x + y, where x and yare independent
and normall y distributed random vari ables . The mean and variance of x
are /.Lx = 10 and a} = 2. The mean and variance of y are f.Ly = 15 and
a ~ = 3. Find the mean and vari ance of z by simulation and compare
t~e results with the theoreti cal prediction . Do thi s for] 00, 1000, and
5000 tri als.

17. Suppose that z = xy, where x and yare independent and normally
di stributed random variables . The mean and variance of x are /.Lx = 10
and a} = 2. The mean and vari ance of yare /.Ly = 15 and a} = 3. Find
the mean and variance of z by simulation . Does f.Lz = f.Lxf.L l' ? Does
a} = a} a} ? Do thi s for] 00, 1000, and 5000 trial s. .

18. Suppose that y = x 2
, where x is a normally di stributed random

variable with a mean and variance of /.L x = a and a} = 4. Find the mean
and variance of y by simul ation . Does /.Ly = f.L;? Does ay = a} ? Do thi s
for] 00, 1000, and 5000 trial s.

]9.* Suppose you have analyzed the price behavior of a certain stock by
plotting the scaled frequency hi stogram of the price over a number of
months. Suppose that the hi stogram indicates that the price is normally
distributed with a mean $ I 00 and a standard deviation of $5. Write a

Problems

MATLAB program to simulate the effects of buying 50 shares of this
stock whenever the price is below the $ 100 mean, and selli ng all your
shares whenever the price is above $105 . Analyze the outcome of this
strategy over 250 days (the approximate nu mber of business days in a
year). Define the profi t as the yearly income from selling stock plus the
value of the stocks you own at year 's end, minus the yearly cost of buying
stock. Compute the mean yearly profit you would expect to make, the
minimum expected yearly profi t, the maximum expected yearly profi t, and
the standard deviation of the yearly profi t. The broker charges 6 cents per
share bought or sold with a minimum fee of $40 per transaction. Assume
yo u make only one transaction per day.

20. Suppose that data shows that a certain stock price is normall y distributed
with a mean of $] 50 and a variance of 100. Create a simulation to
compare the results of the following two strategies over 250 days. You
start the year with 1000 shares. With the first strategy, every day the price
is below $140 you buy 100 shares, and every day the price is above $160
you sell all the shares you own. With the second strategy, every day the
price is below $150 you buy 100 shares, and every day the price is above
$ 160 you sell all the shares you own. The broker charges 5 cents per share
traded with a minimum of $35 per transaction.

21. Wlite a script file to simulate 100 plays of a game in which you flip two
coins. You win the game if you get two heads, lose if you get two tails, and
you flip again if you get one head and one tail. Create three user-defined
function s to use in the script. Function fli p simulates the flip of one coin ,
with the state s of the random number generator as the input argument,
and the new state s and the result of the flip (0 for a tail and 1 for a head)
as the outputs. Function fl i p s simulates the flipping of two coins, and
calls fli p . The input of fl i ps is the state s, and the outputs are the new
state s and the result (0 for two tails, 1 for a head and a tail, and 2 for two
heads) . Function match simulates a turn at the game. Its input is the state
s, and its outputs are the result (1 for win , a for lose) and the new state s .
The script should first reset the random number generator to its initial
state, compute the state s , and then pass this state to the user-defined
functions.

22. Write a script file to playa simple number guessing game as follows. The
script should generate a random integer in the range 1,2,3, .. . ,]4, 15. It
should provide for the player to make repeated guesses of the number, and
should indicate if the player has won or give the player a hint after each
wrong guess . The responses and hints are:

• "You won," and then stop the game.
• "Very close," if the guess is within 1 of the correct number.

• "Getting close," if the guess is within 2 or 3 of the correct number.

• "Not close," if the gue is not within 3 of the correct number.

461

462 C HAPTER 7 Probability, Statistics, and Interpolation

Section 7.4

23.* Interpolation is useful when one or more data points are missi ng. Thi s
s ituati on often occurs with environmental measurements, such as
temperature, because of the diffi culty of making measurements around the
clock. The following table of temperatu re versus time data is missing
readings at 5 and 9 hours. Use li near interpolation with MATLAB to
estimate the temperature at those times.

Time (hours, P.M.) 1 I 4 5 8 9 10 II 12

Temperature (0C) 110 12 I 8 24 ? 2 I 20 18 ? 15 13

24. The following table gives temperature data in °C as a function of time of
day and day of the week at a specifi c location. Data is missing for the
entries marked with a questi on mark (?). Use linear interpolation with
MATLAB to estimate the temperature at the mi ssing poi nts.

Day

Hour Mon 'lUes Wed Thurs Fri

17 15 12 16 16
13 ? 8 11 12
14 14 9 15
17 15 14 15 19
23 18 17 20 24

25. Consider the robot arm shown in F igure 7.4-4 on page 453 . Suppose the
arm lengths are L I = 4 and L2 = 3 ft. Suppose we want the arm to start
from res t at the locati on x(O) = 6, yeO) = 0 and stop three seconds later at
the locati on x(3) = 0, y(3) = 4. Write a MATLAB program to compute
the arm angle solu tion using two knot points. Write another program to
compute the splines required to generate the two knot points and to plot
the path of the robot's hand . Discuss whether the hand 's path deviates
much fro m a straight line .

26. Computer-controlled machines are used to cut and to form metal and other
materi als when manufacturing products. These machines often use cubic
spli nes to specify the path to be cut or the contour of the part to be shaped.
The following coodinates specify the shape of a certain car's front fender.
Fit a eries of cubic splines to the coordinates and plot the splines along
with the coordinate points.

x (ft) 1 0 0 .25 0 .75 1.25 1.5 1.75 1.875 2.1 25 2.25

Y (ft) 1 1.2 1. 18 1. 1 0 .92 0. 8 0 .7 0 .55 0.35

Problems

27. The fo llowing data is ~h~ measured temperature T of water fl owi ng from a
hot water fa ucet after It IS turned on at time I = O.

t (sec) T (OF) l (sec) T (OF)

72.5 6 109.3
78 .1 7 110.2
86.4 8 110.5
92.3 9 109.9

11 0.6 10 110.2
11 1.5

Plot the data first connecting them with stra ight lines, and then wi th a
c ubic sp li ne.

b. Estimate the temperature values at the fo llowi ng times us ing linear
interpolation and then cubic-spline interpolation: t = 0.6, 2.5 , 4 .7,
8.9.

c. Use both the linear and cubic-spline interpolati ons to estimate the
time it will take for the temperature to equal the fo ll owi ng values:
T = 75, 85, 90, 105.

463

Engineering in the 21 st
Century ...

Energy-Efficient Transportation

W
estern societies have become very dependent on transportation pow­
ered by gasoline and diesel fuel. There is some disagreement about
how long it wi ll take to exhaust these fue l resources, but it will certai nl y

happen . Novel engineering developments in both personal and mass tran porta­
tion wi ll be needed to reduce our dependence on such fuels. These developments
will be required in a number of areas such as engine design, electric motor and
battery technology, lightweight materials, and aerodynamics.

A number of such initiatives are underway. The photo shows the Synergy
2010 concept car developed by Ford to explore new technologies fo r a circa
2010 family car. Designed for s ix passengers , the car is one- third li ghter and
40 percent more aerodynamic than today's s leekest cars. It is an example of a
hybrid-electric vehicle that has two power sources. Three devices-an internal
combu tion engine, a gas turbine, and a fuel cell-are candidates for the primary
power source. The secondary power source might be a fl yw hee l or a battery. Ford
is presently investigating a small , 1.0-L, direct-injection, compression-ign ited en­
gine to power a generator to produce electricity for motors located at each wheel.
A flywheel wou ld co ll ect excess engine and braking energy, to be released to
supplement the engine for quick acceleration or to climb hill s.

The weight reduction is to be achieved with all-a lu minum unibody construc­
tion and by improved design of the engine, flywheel, radiator, and brakes to make
use of advanced materials such as composi tes and magnesium . Other manufactur­
ers are investigating plastic bodies made from recycled materials. The fin-shaped
vertica l front fenders create an air ex tractor for the coo ling system and control
the ai rflow along the sides to reduce drag.

Further research on the design and technology concepts and the required
manufacturing processes is required to make the car affordable. MATLAB can
assist engineers performing such re earch . •

CHAPTER

NUl11erical Calculus
and Differential
Equations
OUTLINE

8.1 Review of Integration and Differentiation

8.2 Nu merical Integration

8.3 Numerical Differentiation

8.4 Analytical Solutions to Differential Eq uations

8.5 N umerical Methods for Differential Equations

8.6 Extension to Higher-Order Equation

8.7 ODE Solvers in the Control System Toolbox

8.8 Advanced Solver Syntax

8.9 SUlllmary

Problems

This chapter covers numerical methods for computing integrals and derivative
and for solving ordin ary differential equations. Some integrals .cannot be evaluated
analytically, and we need to compute them numerically w Ilh an approx imate
method. In addition, it is often neces ary to use data to e tlmate rates of change,
and this process requires a numerical estimate of the deri vative. Finall y, many
differential equations cannot be solved ana lyticall y, and so we must solve them

using appropri ate numerical techniques.

8

465

466

INTEGRAND

CHAPTER 8 Numerical Calculus and DiHerential Equations

When you have finished this chapter, you should be able to

• Use MATLAB to numerically evaluate integrals.

• Use numerical methods with MATLAB to estimate derivatives .

• Use the ana lytical expressions for simple integrals and derivatives to check
the accuracy of numerical methods .

• Use MATLAB 's numerical differential equation solvers to obtain solutions .

• Use the analytical olutions of s imple differential equations to check the
accuracy of numerical methods .

8.1 Review of Integration and Differentiation
The integral of a function f(x) for a S x S b can be interpreted as the area
betwee n the f(x) curve and the x -ax is, bounded by the limits x = a and x = b .
Figure 8. 1- 1 illustrates this area. If we denote this area by A, then we can write A as

rb

A = Jr. f(x)dx (8. 1-1)

The integrand is f(x). The lower and upper limits of integration here are a
and b. The symbol x here is the va riable of in leg ration.

Integrals are often encountered in engineering applications. Here are some

examples:

Acceleration and velocity: An object's velocity v(b) at time t = b, starting
with velocity v(O) at t = 0, is the integral of its acceleration aCt):

rb

v(b) = Jo aCt) dt + v(O)

!(x)

Figure 8.1 -1 The area under the curve of f(x) from

x = a to x = b.

(8.1-2)

8.1 Review of Integ ration and DiHerenllation

V~/ocilY a~~d distance: Th~ position of an object moving at velocity v(!)
flOm the tIme t = a to the lIme t = b and start ing at position x(a) at I = a is

r" x(b) = JlI v(t) dl + x(a) (8. 1- 3)

~apacilor voltage and curren t: The charge Q across a capacitor is the
lIltegral of the curre~t i applied to the capacitor. If a capac itor initially holds
a charge Q(a), then If the CUlTent i (t) is applied from time t = a to time
t = b, the capacitor voltage v- is

v(b) = ~ [[' i(t) dt + Q(a)]

wbere C is the capacitance of the capacitor.

Work exp ended: The mechanical work done in pushing an object a
distance d is the integral

W = lad f(x)dx

(8 .1-4)

(8. 1-5)

where f(x) is the force as a function of position x. For a linear spring
f(x) = kx, where k is the spring constant, and the work done agai nst the
spring is

r'
W = Jo bdx (8.1 - 6)

In many applications one or both integral limits are variables. For example,
an object's velocity at time t is the integral of its acceleration. If the object is
moving at time t = 0 with a velocity v(O), its velocity is given by

vCt) = l aCt) dl + v(O) (8.1-7)

Integrals have the linearity property. If c and d are not function of x, then

i'
b 1" l 'b [cf(x)+dg(x)]dx=c f(x)dx+d g(x)dx

n a Cl

(8.1-8)

Another useful property of integrals is the following:

1/, 1'" Ib f(x) dx = f(x)dx + f(x)dx
(l a C

(8.1-9)

The integrals of many functions can be evaluated analytically. We can
obtain a formula for the integral , and we are said to have obtained the answer
in "closed form." Here are some common example that you have probably seen

467

468

DEFINITE
INTEGRAL

INDEFINITE
INTEGRAL

CHAPTER 8 Numerical Calculus and Differential Equations

before:

l
b . X"+ I IX=I) b"+1 (111 +1

(/ x" dx = ~ <=a = ~ -;=tI n -=I -1

I
b

I IX-I) -:dx = In x x:a = Inb - In a
(/ x

(8 .1-10)

(8. 1- 11)

1 21T sin xdx = -cos x l:::!" = - [cos2n - cosn] = -2 (8. 1- 12)

The integrals we have seen thus far are called definite integrals because they
have specified limits of integration. Indefinite integrals do not have the limits
specified. For example, the following integral is indefinite:

jcosxdx=sin x (8. 1-13)

Not every function can be integrated analytically. For example, the following
is Fresnel 's cosine integral, which has not been evaluated analyticall y:

j cos x 2 dx (8.1-14)

In such cases we must compute the definite integral using numerical methods.
These are treated in Section 8.2.

Improper Integrals and Singularities

Some integrals have infinite val ues, depending on their integration limits . These
are call ed il'/'Lproper integrals. For example, the following integral can be found
in most integral tables:

j _l- dx =ln
l
x- 1

1 x - I

However. it is an improper integral if the integration hmits include the point x = I .
To see why, consider Figure 8. 1-2, which is a plot of the function y = l/(x - 1).
The function becomes undefined as x approaches 1 from the left or the right.
To show that the integral is improper, take the limit of the integral as the upper
integration limit h approaches I from the left.

1" I lim -- dx = lim In Ix - I II~
11--> 1- 0 x-I 11-> 1-

= lim (In 117 - II-In 1-11)
11--> 1-

= lim In (1 - h) = -00
11--> 1-

because 111 0 = -00. So even though an integral can be found in an integral table.
you should examine the integrand to check for points at which the integrand is
undefined. These points are called singularities. If singularities lie on or within
the integration limits, you need to check the limit of the integral to see whether it

8.1 Review of Integration and Differentiation

100

80

60

40

20

'I
'< 0
~
>,

-20

-40

-60

-80

-100
0 0.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8

F igure 8.1-2 A fUllction having a singularity at x = I .

is improper. The same warning applies when using numerical methods to evaluate
integrals. The points at which the integrand is undefined can cause problems for
the numerical method.

Test Your Understanding

TS.1-1 Compute the area under the in(x) curve from x = 0 tox = n .
(Answer: 2.)

TS.1-2 If a rocket is launched from rest with an acceleration of 5g. (/ . how fast will
it be going, and b. how high will it be lO s after launch ? (l g = 9.81 m/s2)
(Answer: (a) 490.5 mls; (b) 2452.5 m.)

Derivatives

Differentiation and integration are complementary operation. For example, if

g(x) = j j(x)dx

then I(x) i the derivative of g(x) with respect to x . This relation is wriuen as

dg
I(x) = d; (8.1-15)

469

470 CHAPTER 8 Numerical Calculus and Differential Equations

The derivative of f(x) can be interpreted geometrically as the slope of f(x). Thus
the derivative is sometimes called the "slope function ." .

A few basic rules and a short table of derivatives enable us to compute den va­
tives of complicated functions . The product rul e says that if hex) = f(x)g(x), then

r!!!.. = f(x)~ + g(x)c}l (8. 1- 16)
dx dx d x

The quotient rule states that if hex) = f(x)/g(x), then

dh g(x)% - f(x)*

dx g2
(8. 1- 17)

The following chain rule enables us to obtain de~ivati:es by decomposing fu nc­
tions into basic functions whose derivatives are gIven 111 a table. If z = fey) and
if y = g(x), then z is indirectly a function of x, and the chain rule says that

d z _ ~:!r (8. 1- 18)
dx - dy dx

Here are a few examples of derivatives:

dx" = nx n- I

dx

dlnx

dx

dsinx
-- =cosx

dx

dcosx .
-- = -S1OX

dx

(8.1-19)

(8.1-20)

(8.1-21)

(8.1-22)

Using this short table of derivatives and the product rule, we can show that

d(x
2

sinx) = x2 cosx + 2x sinx
dx

Use the chain rule with z = y2 and y = sin x to obtain the following derivative:

d(sin
2

x) = 2y:!r = 2sinx cosx
dx dx

Test Your Understanding

T8.1-3 Derive the expressions for the derivative of the following functions with
respect to x:
Q . sin(3x); h. cos2 x; c. x3 1nx; d. (sinx)/x2.
(Answers: a. 3cos(3x); h. -2cosx sinx; c. x 2(31nx + 1); d. (x cosx-
2sinx)/x3 .)

8.2 Numerical Integration

8.2 Numerical Integration

This section shows how to use MATLAB to calculate values of definite integral
using approximate methods. In Chapter 10 we show how to use MATLAB to
obtain the closed-form solution of some integrals.

Trapezoidal Integration

The simplest way to find the area under a curve is to split the area into rectangles
(Figure 8.2-1a) . If the widths of the rectangles are small enough, the sum of
their areas gives the approximate value of the integral. A more sophi sticated
method is to use trapezoidal elements (Figure 8.2-1b). Each trapezoid is called a
panel. It is not necessary to use panels of the same width; to increase the method 's PANEL

471

accuracy you can use narrow panels where the function is changing rapid I y. When -----­
the widths are adjusted according to the function's behavior, the method i said
to be adaptive. MATLAB implements trapezoidal integration with the trapz
function. Its syntax is trapz (x , y) , where the array y contains the function
values at the points contained in the array x . If you want the integral of a single
function , then y is a vector. To integrate more than one function , place their values
in a matrix y; typing trapz (x, y) wi ll compute the integral of each column ofy .

You cannot directly specify a function Lo integrate with the trapz function;
you must first compute and store the function's values ahead of time in an array.
Later we discuss two other integration functions , the quad and quadl functions,
that can accept functions directly. However, they cannot handle arrays of values.
So the functions complement one another. These functions are summarized in
Table 8.2-1.

Rectangular Trapezoidal

y=f(x) Y= (x)

(a) (b)

Figure 8.2-1 Illustration of (a) rectangular and (b) trapezoidal numerical

integration.

472 CHAPTER 8 Numerical Calculus and Differential Equations

Table 8.2-1 umerical integyation functions

Command Description

quad (' function ' , a , b , tol) Uses an adaptive Simpson's rule to compute the integral of the functi on
' function ' with a as the lower integyation lim it and b as the upper li mit.
The parameter tol is optional. tol indicates the specified error tolerance.
Uses Lohatto quadrature to compute the integral of the function quadl (' function ' , a , b , tol)

trapz(x , y)
, func t ion ' . The rest of the syntax is identica l to quad .
Uses trapezoidal integration to compute the integral of y with respect to x ,
where the alTay y contains the fu nction values at the points contained in the
array x.

As a simple example of the use of the trapz functi on, let us compute the
integral

r Jo sin x dx

The exact answer is

iN sin x dx = -cosx l ~ = co 0 - cosrr = 2

To investigate the effect of pane l width , let us first use 10 panels with equal widths
of rr / 10. The script file is

x = linspace (0 , pi , 10) ;
y = sin (x) ;
trapz (x , y)

The answer is 1.9797, which gives a relative error of 100(2 - 1.9797)/ 2) =
1 %. Now try 100 panels of equal width; replace the array x with x = 1 i nspace
(0 , pi , 100) . The answer is 1.9998 for a relative error of 100(2 - 1. 9998)/ 2 =

0.0 I %. If we examine the plot of the integrand sin x , we would see that the
function is changi ng fas ter near x = 0 and x = rr than near x = rr /2. Thus we
could achieve the same accuracy using fewer panels if narrower panels are used
near x = 0 and x = rr .

When numerical integration was done by hand (before World War II) , it was
important to use as few panels as necessary to achieve the desired accuracy. How­
ever, wi th the speed of modern computers, it is not diffic ult to find a reasonable
number of panels of uniform width to achieve the required accuracy for many
problems. The fo llowing method usually works: Compute the integral wi th a
reasonable nu mber of panels (say, 100). Then double the number of panels and
compare the answers. If they are close, you have the solution. If not, continue
increa ing the number of panels until the answers converge to a common value.
Thi method doe not always give accurate results, but it can be tri ed before using
variable panel widths or methods more sophisticated than trapezoidal integration.

We can use numerical integration to find the veloc ity when either the accel­
eration function a(l) cannot be integrated or the acceleration is given as a table
of val ues . The following example illustrates the latter case.

8.2 Numericallntegration

Velocity from an Accelerom eter

An accelerometer measures acceleration and is used in aircraft, rockets, and other vehicles
to es timate the vehic le's velocity and displacement. The accelerometer integrates the

ac~el erat l on signal to pro~ uce an es timate of the velocity, and it integra tes the ve locity
es timate to produce an estimate of displacement. Suppose the vehicle sta rts from res t at
time I = 0 and that its measured acceleration is given in the fo llowi ng table.

(a) Estimate the velocity after [0 s.

(b) Es timate the velocity at the times I = 1, 2, ... , lO s.

(c) Check your program by using a case that can be solved analytica ll y.

Time(s) o I 2 3 4 9 10

Accelerati on (m/s2) 0 2 4 7 II 17 24 32 4 1 48 5 [

• Solut ion

(a) We must use the trapz fun cti on here, because the acceleration is given as a table of
values. We cannot lise the quad or quadl functions. The relation between velocity and
acceleration is

1,0 llo
v(IO) = a(l) dl + v(O) = a(l)dl

o . 0

The script fi le foll ows.

t = [O : 10J ;

a = [0 , 2 , 4 , 7 , 11 , 17 , 24 , 32 , 41 , 48 , 51];
vf = trapz(t , a)

The answer for the fi nal veloci ty is given by vf and is 21 1.5 m/s.

(b) To find the velocity at the ti mes t = 1, 2, . . . , 10, we can use the fac t that VeIl) = 0
and write (8. [- 2) as

(8.2- 1)

fo r k = 2, 3, . . . , 11 . (Note that there are 11 values in the equence I = 0, I , 2, . . . , [0.
Thus I " corresponds to t = 10.)

t = [O : 10J ;
a = [0 , 2 , 4 , 7 , 11 , 17 , 24 , 32 , 41 , 48 , 51];
v(l) = 0 ;

fork= [2 : 11J
v(k) = trapz(t(l : k) , a(l : k)) ;

end
d isp ([t ' , v ' J)

The preceding method use more calculation than necessary because it does not take
advantage of the velocity va lue calculated in the previous pass through the fo r loop. The

473

"'",gee.f,i

474 CHAPTER 8 Numerical Calculus and Differential Equations

following script file is thus more effi cient. I t is based on (8. 1- 2), which can be written as

rol l ow~ by substituting I. for 0 and 1k+ 1 ror b.

l
" L"

V(Ik+ I) = a(l) dl + V(tk)
'L

[0 : 10) ;
a [0 , 2 , 4 , 7 , 11 , 17 , 24 , 32 , 41 , 48 , 51);
v (1) = 0 ;

for k =. [1 : 10)
v (k+l) = trapz (L(k : k+1) , a (k : k+1 » +v (k);

en d
disp ([t ' , v ' I)

For either method the answers are those given in the fo llow ing table:

Time (5) I 2 10

Velocity (m/s) 0 I 4 9.5 18.5 32.5 53 81 11 7 162 211.5

(c) Because the trapezo idal rule uses straight-line egm~nts to connect tile d~ta point ,
it will oivc the exaet so lution ror any panel width when the Integrand IS a lInear funclI~n.
So we ~a n use the linear accelerati on runction a(f) = I to test the program. The veloci ty
is given by

f' 121' 12
V(I) = ./0 I dt = "2 0 = "2

The vc loci ty at I = 10 is SO. The follow ing script file can be used to check the method
used in part (b):

t - [0 : 10) ;
a - t ;

v(l) = 0 ;

ior k = [1 : 10)
v(k+1) = trapz(L (k : k+l) , a(k : k+l))+v(k) ;

end
disp(v(ll))

When thi s file i, run it produces the answer v (11)

Te t Your Unde sanding

50, which i correct.

T8.2-1 Modify the above cript file to estimate the displacement at the time
, = 1.2, ... , 10 .
(Partial an . wer: The displacement after lOs is 584.25 m.)

. - .. ------

8.2 Numerical Integration

Quadrature F unctions

As we have just seen, when the integrand is a linear function (one having a plot
that is a straight line), trapezoidal integrati on gives the exact answer. However,
if the integrand is not a linear fun ction , then the Irapezoidal representation wi ll
be inex act. We can represent the function 's Curve by quadratic functions to ob­
tain more accuracy. Thi s approach is taken with Simpson 's rule, which divide!>
the integration range b - a into an even number of sections anc/ uses a different
quadrati c for each pair of adjacent panels. A Cjuadratie function has three param­
eters, and Simpson 's rule computes these parameters by requiring the quadrati c
to pass through the function 's three points corresponding to the two adjacent
panels. To obtain more accuracy, we can use polynomials of a degree higher
than two.

MATLAB function q uad implements an adaptive version of Simpson's rule,
whi le the quadl function is based on an adaptive Lobatlo integrati on algorithm.
The term quad is an abbreviation of quadrature, which is an old term for the pro­
cess of measuring areas. The syntax of both functions is identica l and is ~umma­
rized inTable 8.2- /. In its basic form , the syntax is quad (' function ' , a , b) ,
where' f unc t ion ' is the name of the functi on representing the integrand , a is
the lower integration limit, and b is the upper limit. To illustrate, letu s compute
an integral we already know.

10" sin x c/x = 2

The sess ion consists of one command :

» A = quad (' sin ' , a , pi)

The answer given by MATLAB is 2, wh ich is correct. We u c quadl the same
way; namely, A = quadl (' sin ' , 0 , pi) .

Although the quad anel quadl functions are more accurate than trapz ,
they are restri cted to computing the integrals of function and cannot be used
When the integrand is specified by a set of points. Thus we could not have u, ed
quad and quadl in Example 8.2- 1.

Slope Function Singularities

In addition to singularitie. of the integrand, another condition can cause problems
for numerical integration methods. This occurs when the sl~pe of the II1tegr~nd
become infinite eitheron or within the integration limits; that IS, the ,s /opejunc'lOn
has a singu/ari(v. A simple example of thi s is the squ~re root. fu~ct.ion Y.= {X,
shown in the top graph of Figure 8.2-2. The slope of thIS functIOn IS Its den~atlve,
which i. dyl dx = 0.51 ft. This slope is plotted in the bottom graph of the fIgure .
Note that it become infinite at x = O .

475

476 CHAPTER 8 Numerical Calculus and Differential Equations

~ ~.~ I
00 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

-'~\l~~
o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Figure 8.2-2 A function having a singularity in it slope fUllclion . The top graph
shows the function y = ,JX. The bottom graph shows the derivative of y = ,JX.
The lope ha a singularity at x = O.

Let us u e al l three integration functions and compare their performance in

computing the following integral :

fa1 ~dx

To use the trapz function , we must evaluate the integrand at a chosen number
of points . The number of points determines the panel width. Here we will use a
spacing of 0.01 , which requires 100 panels. The script file follows.

Al = quad (, sqrt ' , 0 , 1)
A2 = quad 1 (' sqrt ' , 0 , 1)
x = [0 : 0 . 01 : 1] ;
y = sqrt (x) ;
A3 = trapz(x , y)

The answers are A 1 = A2 = 0.6667 and A3 = 0.6665. The correct an wer, which
can be obtained analytically, is 2/ 3 = 0.6667 to four decimal places. The quad
and quadl functions can produce a message warning that a si ngularity might be
present; howe er, they do not produce such a message here. Thi indicates that
these function are capable of dealing with this singularity. The trapz is not
affected by the lope singularity here, and it gives a reasonably accurate answer.

8.2 Numerical Integration

You can use quad and quadl to integrate user-de fin ed func ti ons, a shown in
t!le fo. lI owin.g example. Because the quad and quadl fun cti ons ca ll the integrand
fun ct! on uSing ve.ctor a rguments, yo u must always usc array operati ons when
defi lllng the fun ction. The fo llowing exa mple shows how thi s is clone.

Evaluation of Fres nel's Cosine Integral

Some simple looking integrals cannot be evaluated in closed form. An example is Fresnel's
cos ine integral:

1" co x
2

dx

Compute the integral when the upper limit is b = .,J2if .

• Solution

(8.2-2)

Plot cos x2 and its slope versus x for 0 .::: x .::: .,J2if and use the plots to check for any
singularitie that might cause problems for the integration function . Use a small enough
step size to identify such points. Using 300 plouing points, the plot shows no problems.

Use the quad function to evaluate the integral. Define the integrand with a u er­
defined function as shown by the following function file:

function c2 = cossq (x)
% cosine squared function .
c2 = cos(x.A2);

Note that we mu t use array exponentiation. The quad function is called a~ foJlows:
quad (' cossq ' , 0 , sqrt (2*pi)) . The re ult is 0.6119.

The quad functions have some optional arguments. For example, one syntax
of the quad function is

quad (' function ' , a , b , tol)

where tal indicates the specified error tolerance. The function iterates until the
relative error is less than tal. The default value of tal is 15 * eps .

Test Your Understanding

TB .2- 2 Use both the quad and quadl function to compute the integral

rS
~dx

J2 x
and compare the answers with that obtained from the clo ed-foml <;olution.

TB.2-3 Use a tolerance of 0.00 I to integrate the square root function from 0 to 1
by typing quad (' sqrt ' , 0 , 1, 0 . 001) . Dothesameu ingthe q~ad::'
function, and compare with the result obtained with the default tolerance.

477

"#N'HI'II

478 CHAPTER 8 Numerical Calculus and Differential Equations

8.3 Numerical Differentiation
As we have seen, the delivative of a function can be interpreted graphically. as
the slope of the fu nction. This interpretation leads to methods for computmg
the derivative numerically. Numerical differentiation must be performed when
we do not have the fu nction represented as a formula that can be differentiated
using the rules presented in Section 8.1. Two major types of applications require
numerical differentiation. In the first type, data has been collected and must be
analyzed afterward using postprocessing to find rates of change. In the second
type, the rates must be estimated in real lime as the measuren:ents are ma.de.
This application occurs in control systems. For example, an aI~'craft autoptlot
needs to estimate the rate of change of pitch angle to control the aircraft properly.

umelical differentiation with postprocessing can use all of the data and need
not be particularly fast. However, real-time numerical differenti ation. requires a
fast alcrorithm that can use only the data measured up to the current tIme. These
two re~uirements place a heavier demand on real-time algorithms as compared

to postproce sing algorithms. . ' .
Here we will introduce some simple algorithms for computmg the denvattve

numerically. Consider Figure 8.3-1, which shows three data points that represent
a fu nction y(x) . Recall that the definition of the detivative is

dy lim D.y (8.3-1)
dx t.x~O D.x

The success of numerical differentiation depends heavily on two factors: the
spacing of the data points and the scatter present in the data due to measu.ren~ent
error. The greater the spacing, the more difficult it is to estimate the denvatlVe.
We assume here that the spacing between the measurements is regular; that is ,
X3 - X2 = X2 - XI = D.x . Suppose we want to estimate the derivative dy / dx at

True Slope

~
Y= ((x)

t.x

x,

Figure 8.3-1 Illustration of methods for estimating the
deri vative dy j dx.

8.3 Numerical Differentiation

the pO.int X2· The correct answer is the slope of the straight line passing through
~he pomt (X2, Y2), but we do not have a second point on that line, so we can not find
Its ~ l ope. Therefore, we must estimate the slope by using nearby data poin ts. One
estimate can be obtamed from the straight line labeled A in the fi gure. Its slope is

_ Y2 -)II Y2 -)I I
mA - X2 _ XI = ~ (8.3-2)

T hi s estimate of the derivative is called the backward difference estimate and
is actuall y a better es.timate of the derivative at X = XI + (D.x)/2, rather than at
x = X2· Another estImate can be obtained from the straight line labeled B. Its
slope is

Y3-Y2 Y3-Y2
mB = X3 _ X2 = ~ (8.3-3)

This estimate is called theforward difference estimate and is a better estimate
of the derivative at x = X2 + (D.x)/2, rather than at x = X2. Examining the plot,
you might think that the average of these two slopes would provide a better
estimate of the derivative at x = X2 because the average tends to cancel Ollt the
effects of measurement error. The average of rn A and mB is

In c = m A + mB = ~ (Y2 - Y I + Y3 - Y2) = Y3 - Y I

2 2 D.x D.x 2D.x
(8.3-4)

This is the slope of the line labeled C, which connects the first and third data
points. This estimate of the derivative is called the central difference estimate.

The dift' Function

MATLAB provides the di f f function to use for computing derivative estimates.
Its syntax is d = di f f (x), where x i a vector of values, and the result is
a vector d containing the differences between adjacent elements in x . That is,
if x has n elements, d will have 11 - I elements, where d = [x(2) - x(l),
x(3)-x(2), ... ,x(n)-x(n-1)].FoJexampJe, if x = [5 , 7 , 12 , -20),
then diff(x) returnsthe vectoJ [2 , 5 , -32] .

Let us compare the backward difference and central difference methods by
considering a sinusoidal signal that is measured 51 times during one half-period.
The measurements are in error by a uniformly distributed error between -0.025
and 0.025. Figure 8.3-2 shows the data and the underlying sine curve. The follow­
ing script file implements the two methods. The results are . hown in Figure 8.3-3.
Clearly the central difference method does better in thjs example.

Comparison of numerical derivative algorichms .
x = [0 : pi/50 :pi];
n = length (x) ;

true derivative
td = cos (x) ;
% generating function with +/-0 . 025 random error .
Y = sin(x) + 0 . 05*(rand(1,51l-0 . 5) ;

BACKWARD
DIFFERENCE

FORWARD
DIFFERENCE

CENTRAL
DIFFERENCE

479

480 CHAPTER 8 Numerical Calculus and Differential Equations

0.8

,., 0 .6

0.4

0.2

O~-----L----~------~-----L----~------~
o 0.5 1.5 2.5

Figure 8.3- 2 Measurements of a sine function containing uniformly distributed
random errors between -0.025 and 0.025.

Backward Difference Estimate
o 0

00 0 0

o 0 0

_2L-____ ~ ____ ~ ______ L_ ____ _L ____ ~ ______ ~

o 0.5 1.5 2 .5

00 00 Central Difference Estimate
Q) 00 00 0 > 00

:i 0
00

0 00

-1

-2
0 0.5 1.5 2.5

Figure 8.3- 3 Comparison of backward difference and central di fference methods
for the data hown in Figure 8.3-2.

% backward difference
dl = diff (y) . /diff (x) ;
subplot (2, 1, 1)

8.3 Numerical Differentiation

plot (x(2 : n) , td(2 : n) , x(2 : n) , d1 , ' 0 ') , xlabel (' x ') , ...
ylabel (' Derivative ') , axis ([0 pi -2 2]) , . ..
gtext (' Backward Difference Estimate ')
% central difference
d2 = (y(3 : n)-y(1 : n-2)) . /(x(3 : n)-x(1 : n-2)) ;
subplot (2 , 1 , 2)

plot (x (2 : n -1) , t d (2 : n -1) , x (2 : n -1) , d2 , '0') , xl abe 1 (, x ') , . ..
ylabel (' Derivative ') , a x is ([0 pi - 2 2]) , ...
gtext (' Central Difference Estimate ')

Many more-advanced numerical differentiation procedures have been devel­
oped; for example, a central difference method usi ng fo ur points instead of two is
common ly used. Some algorithms are suitable onl y for postprocessing, whereas
other~ have been develo~ed specifically for real-time appli cations. Postprocessing
algofi thms are covered 111 advanced texts dealing with data analysis. Real-time
algorithms are covered in signal-processing texts.

Test Your Understanding

TB.3-1 Modify the previous program to use the forwa rd difference method to
estimate the derivative. Plot the re ul ts and compare with the results from
the backward and central difference methods.

Polynomial Derivatives

MATLAB provides the polyder function to compute the derivative of a poly­
nomi al. The derivative of

is

Because polynomial derivatives can be obtained from the preceding formula, the
polyder function is technically not a numerical differentiation operation. Its
syntax has several forms. The basic form is

b = polyder (p)

where p is a vector whose elements are the coefficients of the polynomial
arranged in de cending powers; that is, p = [ai , a2, . . . , a1/]' The output of
polyder is the vector b containing the coefficients of the derivati ve; that is,

481

482 CHAPTER 8 Numerical Calcu lus and Differential Equations

b = [b l , b2 , . .. , b,, _I]. The second syntax form is

b = polyder (p1 , p2)

This form computes the derivati ve of the product of the two polynomial s p1 and
p2. T he third form i

[num , den] = polyder (p2 , p1)

This form computes the derivative of the quotient P2/ PI . The vector of coeffi ­
cients of the numerator of the derivative is given by num. The denominator is
given by den.

Here are some examples of the use of polyder. Let PI = 5x + 2 and
P2 = 1Ox2 + 4x - 3. Then

dP2 = 20x + 4
dx

PI P2 = 50x 3 + 40x2 - 7x - 6

d(Pl P2) = 150x2 + 80 - 7
dx

d(P2/ PI) 50x2 + 40x + 18

dx 25x 2 +20x +4

These re ults can be obtained as follows:

pl = [5 , 2] ; p2 = [10 , 4 , -3] ;
der2 = polyder (p2)
prod = polyder (pl , p2)
[num , den] = polyder (p2 , p1)

Theresultsare der2 = [20 , 4],prod = [1 5 0 , 8 0 , -7], n um =
[5 0 , 4 0 , 23 J , and den = [2 5 , 20 , 4 J . The numerical differentiation

functions are summarized in Table 8.3-1.

Table 8.3-1 Numerical differenti ation functions

Command Description

d = d i ff (xl Return a vector d containing the differences
between adjacent elements in the vector x.

b = polyder (p) Return a vector b containing the coefficients of
the deri ative of the polynomial represented by
the vector p .

b = polyder (pI , p2) Return a vector b containing the coefficients of
the polynomial that is the derivative of the product
of the pol ynomiai represented by p I and p2 .

[nuffi, den] = polyder (p 2 , pI) Return the vector num and den containing the
coefficient of [he nu merator and denominator
polynomials of the derivative of the quotient
pd PI · where p I and p2 are polynomial.

8.4 Analytical Solutions to Differential EquaUons

8.4 Analytical Solutions to Differential Equations

In thi s secti on we introduce some important concepts and terminology associated
with di rferenti al equati ons, and we develop analyti cal so lutions to somc differen­
ti al equati ons commonly fo und in engineering applications. These soluti ons will
give us insight into the proper use of numeri cal methods for solving difi'erenlial
equati ons. They also give us some te t cases to use to check our programs.

Solution by Direct Integration

An ordinary differential equation (ODE) is an equation contai ning ordi nary
derivatives of the dependent variable. An equation containing partial derivativcs
with respect to two or more independent vari ables is a partial differenti al equation
(PDE). Solution methods for PDEs are an advanced topic, and we wi ll not treat
them in thi s text.

A s,imple exampl e of an ODE is the equati on

c.!J... = ,2 (8.4-1)
dt

Here the dependent variab le is y, and' is the independent variable. We can solve
for y by integrati ng both sides of the equation with respect to the independent
variab le t.

The sol ution is

lc
·t d y !at 2 / 31

t
t
3

-dt = t cit = - = -
o dt 0 3 0 3

t3

yet) = yeo) +"3 (8.4-2)

You can always check your answer by . ubstilUting it into the differential equation
and evaluating the so lution at f = O. Try this method for the preceding solution.

It will be convenient to LI se the following abbrev iated "dot" notation for

derivati ves.

Oscillatory Forcing Function

d y
y(t) = dt

d2 y
Y(t) = dt2

Now consider the following equation:

~=f(t)
dt

(8.4-3)

(8.4-4)

(8.4-5)

The function f(t) is sometime caUed the forcing function beca~ e it ··for~e~'·
the solution to behave with a certain pattern. Let us ee what thiS pattern l~ If

483

4 8 4 C HAPTER 8 Numerical Calculus and Differential Equations

the forcing function is sinusoidal: f(t) = sin wI. We can solve thi s case with the

technique used earlier:

or

i'
l dy 11 cos wI \1 1 - cos wt

- dt= sin wldl=--- =---
o dt 0 wow

1-coswt
y(t) l~ = y(t) - yeO) = --w--

The solution is
1 - coswt

Y(I) = yeO) + --w--

A Second-Order Equation

(8.4-6)

The order of a differential equation is the order of its highest derivative. T hus
(8.4-1) is a firs t-order equati on. The followi ng is a second-order equation:

ct2y = ,3 (8.4-7)
d t2

To solve it we must integrate twice. Integrating once gives

or

r ct2y dy r 3 , 4
Jo dt 2 dt = dt -)1(0) = Jo I dt = 4"

cjz = ~ + yeO)
dt 4

Integrating once more gives

l ir- d t = yet) - yeO) = l [~+ Y(O)]dt = ~ + t y(O)

T he olution i yet) = t5/20 + t yeO) + yeO). Note that because the ODE is
second order, we need to specify two initial condition values to complete the
solution; one of these is the value of the derivative at t = O.

Substitution Method for First-Order Equations

Consider the differenti al equation

rcjz + y = f(l)
dt

(8 .4-8)

where ria constant and f(l) is a given function. Linear equations can often
be solved with the trial solution form Y(I) = Aesi

• Note that dy/dt = s Ae
sl

.

Substi tute this fo rm into the differenti al equation with f (t) = 0 to obtain

r cjz +)' = rsAeSl + Aesl = 0
dt

8.4 Analytical Solutions to Differential Equations 485

For the solu.tion to be .general, Aesl cannot be 0 and thus we can cancel it out
of the. equatlo~l to obtam r s + 1 = O. Th is equation is called the characteristic
equatIOn,. and, lts roots = -l/r is the characteristic root. To fin d A, we evaluate CHARACTERISTIC
the so lutIon form at t = O. This evaluation gives yeO) = Aeo = A. Thus the ROOT
so lution is ------

yet) = y(O)e-l
/
r (8.4-9)

This so lu tion is call ed the free response because it describes the behavior or
response of the process when the forcing function f(t) is 0; that is, when the
process is "free" of the in fl uence of fCt). The olu tion yet) decays with time if
r > O. It starts at yeO) when t = 0, equals 0.02y(0) at t = 4r , and equals 0.0 I yeO)
at / = Sr. Thus r gives an indication of how fa t yet) decays, and r is call ed the
time constant.

Now suppose that f(t) = 0 for t < 0 and suddenly increases to the constant
value M at t = O. Such a function is called a step function because its plot looks
like a single stair step. The height of the step is M. The solution form for thi s
case is yet) = Aesl + B. The initial condition gives B = yeO) - A, and thus
yet) = AeSl + yeO) - A. Substituting this into the differential equation, we find
that r s + 1 = 0 and A = yeO) - M . The solution for yet) is

yet) = y (O)e- l
/
r + M (l - e- I

/
r) (8 .4-1 0)

Theforced response is the term M (l- e- I
/
r), which is due to the forcing function .

Thus we see that the total response for this equation is the sum of the free and
the forced responses. Figure 8.4-1 shows the free and total response for the case
where r = 0.1, yeO) = 2, and M = 10. Note that the free response is essentially
0 (1 percent of its initial value) for / > 5r = 0.5. Note also that the total response
is essentially constant for t > 5r = 0.5. Thus the time con tant tell s us how
long it takes for the free response to di sappear and how long it takes for the total
respon e to reach steady state.

Nonlinear Equations

Nonlinear ODEs can be recognized by the fact that the dependent variable or its
derivatives appear raised to a power or in a transcendental function. For example,
the following equations are nonJinear:

y)i+5y+y=0

Y + siny = 0

Because of the great variety of po sible nonlinear equation forms, no general
solution method exists for them. Each clas must be treated separately.

FREE RESPONSE

TIME CONSTANT

FORCED
RESPONSE

TOTAL RESPONSE

486 C HAPTER 8 Numerical Calculus and Differential Equations

Total Response

~ 5

Free Response

00 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
t

Figure 8.4-1 Free and total step respon e of the equation 0. 1 y + y = 10, y(O) = 2.

Substitution Method for Second-Order Equations

Consider the . econd-order equation

y - c2y = 0 (8.4-1 1)

If we ubstitute yet) = Ae'(into this equation, we obtain

(s2 _ c2)AeS
(= 0

which i sati fied for all values of f only if S 2 - c2 = O. This gives two values for
the unknown constant s ; namely, s = ±c. The general solution is

y(t) = AleC(+ A2e-C((8.4-12)

ote that the soluti on becomes in finite a I --7 00 regardless of whether c is
po itive or negative. If the free response become infinjte, the equat.ion !s sa!d to
be unstable. If the free re ponse "dies out" (becomes 0) , the equation IS said to

be slable. We need two initial condi tion to determine the coefficients A I and A2·
For example, suppose that c = 2, and we are told that yeO) = 6 and yeO) = 4.
Then from (8.4-12). yeo) = 6 = AI + A2, and yeO) = 2AJ - 2A2 = 4. These
twO equations have the solution A I = 4, A2 = 2.

The following second-order equation i similar to (8.4-11) except that the
coefficient of y is po itive.

(8.4-13)

8.4 Analyllcal Solutions to Differential Equations

Substituting yO) = Ae'(into thi s equati on, we fi nd that the general soluti on is

y (l) = AleiW(+ A2e-itll(

Thi s soluti on is diffi cult to interpret until we use Euler's identifies

e± iw(= cos WI ± i sin wt

(8 .4- 14)

(8.4- 15)

If we substitute these two identities into (8.4- 14) and collect terms, we would
find that the soluti on has the fo rm

yet) = BI sin wi + B2coswi

where BI and B2 are constants that depend on the initial conditions and are
BI = y(0)/ 0 and B2 = y eO). The solution is

y(t) = yeO) sin wi + y eO) cos wt
w

(8 .4-16)

The solution oscill ates with constant amplitude and a freq uency of (j) radians per
unit time. The period P of the osci ll ation is the time between adjacent peaks and
is related to the freq uency as fo ll ows:

2n
P= -

w
The frequency .r in cycles per unit time is given by .r = 1/ P.

(8.4- 17)

The fo ll owing eq uation is often used as a model of structural vibrations and
. OlTle types of electric circuits.

my + cy + ky = f(t) (8.4- 18)

Suppose for now that J(t) = O. Substituting y (l) = Ae", we obtain

(ms2 + Col' + k)Aej(= 0

which i sati sfied for all values of t onl y if S 2 + cs + k = O. The characteri sti c
roots here can fall in to one of the followi ng three categories :

1. Real and di stinct: SI and S2.

2. Real and equal: SI.

3. Complex conjugates: s = a ± iw.

In the firsL case, the solution form is

yet) = A le, ,1 + A2e"((8.4-19)

For the second case,

(8.4-20)

For the third ca. e,

(8.4-2 1)

487

488 CHAPTER 8 Numerical Calculus and Differential Equations

These solutions can be obtained with the same methods used to so lve the earlier
equation . The values of the constants Ai and Bi depend on the initial conditions.

Let us look at fo ur specific cases.

1. Real, distincl roots: Suppose that m = I , C = 8, and k = IS. The
characteristic roots are s = -3, -5. The form of the free response is

y(t) = A l e- 31 + A2e- 51

The equation has two time constants, which are the negative reciprocals
of the roots . They are rl = 1/3 and r 2 = 1/ 5. Note that the term e-

51

disappears first and that it con'esponds to the smallest time constant.
The solution is e sentially 0 after the term e-31 disappears. This term
corresponds to the largest time constant. The time constant of this term
is r = 1/3, so for most practical purposes the solution will be 0 after

5r = 5/3.
2. Complex roolS: Suppose that m = 1, C = 10, and k = 601 . The

characteri tic roots are s = -5 ± 24i. The form of the free respon e is

(8.4--22)

This solution will oscillate at a frequency of 24 radians per unit time,
which corresponds to a period P = 2rr /24 = rr / 12. The oscillations will
disappear when the term e- 51 disappears. The time constant of this term is
r = 1/ 5, so for most practical purposes the osci llations will disappear after
5r = 5/ 5 = 1. Thus we should see approximately (5/5)/(rr/ 12) ~ 4 cycles
of the osci llations before they die out.

3. Unstable case, complex rOOIS: Suppose that m. = 1, C = -4, and k = 20.
The characteristic roots are s = 2 ± 4i. The form of the free response is

(8.4-23)

This solution will oscillate at a frequency of 4 radians per unit time, which
corre ponds to a period P = 2rr /4 = rr /2. Because the term e21 increases
with time, the oscillation amplitude al 0 increase. Because the free
response continues to increase, thi s ca e is said to be "unstable." You can
recognize an un table linear equation by the fact that at least one of its
char;cteristic roots will have a positive real part.

4. Unstable case, real roots: Suppo e that In = 1, C = 3, and k = - 10. The
characteristic roots are s = 2 and s = - 5. The f011l1 of the free response i

yet) = A I e21 + A2e- 51

The olution will become infinite as I -7 00 because of the e21 term. Thus
the equation i unstable.

Figure 8.4-2 hows the respon e for each case the initial conditions yeO) = I.
)/(0) = O. In the next section we will show how to obtain these plots.

0.8

0 .6

'" 0.4

0.2

m=1, c=B, k=15

X 105

1.5 ,..-:-'--------------

m=1, c=-4, k=20
0.5

-0.5

-1 L-______________ ~

a

8.4 Analytical Solutions to Differential Equations

0.5
m=1, c=10, k=601

'" a

-0.5

- 1 L-------________ ~
a 0.5

t

'r21 o 0.5 1
t

Figure 8.4-2 The free responses for the four cases di clissed in the text.

Test Your Understanding

TS.4-1 Find the form of the free response of the following equations:
a. y + 11 Y + 28y = 0
b. y + 6y + 34y = 0
c. y-2y- 15y=0
d. ji + 6y - 40y = 0

Summary

The olutions obtained in thi s section can be used to check the result of a nu­
merical solution technique. In addition, these solutions have al 0 pointed out the
following facts that will be helpful for properly using the numerical technique£.
presented in the next section .

1. For certain types of differential equations, called linear equations, the
characteristic polynomial can be found by making the substitution

Y(/) = Aesl
•

2. If any of the characteristic roots has a positive real part, the equation i
un table. If aJl the roots have negative real parts, the equation is ~table.

3. If the equation is stable, the time constant can be found from the negative
reciprocal of the real part of the characteri tic roots.

489

490 CHAPTER 8 Numerical Calculus and Differential Equations

4. The equation's largest time constant indicates how long the solution takes
to reach steady state.

5. The equation' , smallest time constant indicates how fast the solution
changes with I .

6. The frequency of oscillation of the free response can be found from the
imag inary parts of the characteri stic roots.

7. The rate of change of the forcing function affects the rate of change of the
solution . In particu lar, if the forcin g function osci ll ates, the solution of a
linear equation will also o. ciliate and at the same frequency.

8. The number of initial conditions needed to obtain the solution equals the
order of the equation.

8.5 Numerical Methods for Differential Equations
It is not always possible to obtain the closed- form so lu tion of a differential equa­
lion. In this section we introduce numerical methods for solving differentia l equa­
tions. First we treat first-order equations, and in the next section we show how
to extend the techniques to higher-order eq uati ons, The essence of a numeri cal
method is to convert the differentia l equation into a di fference equati on that can
be programmed on a calculator or digita l computer. Numeri cal algorithms differ
partly as a result of the specific procedure used to obtain the difference equati o~ s.
In oeneral, as the accuracy of the approxi mation is increased, so is the compl eX Ity
of 7he program ming involved. Understanding the concept of step size and its ef­
fects on solution accuracy is important. To provide a simple introduction to these
is. ues, we begin with the si mplest numerical method, the Euler method.

The Euler Method

The Euler melhod is the simplest algorithm for numerical solution of a differen­
tial equation. It usually gives the least accurate results but provides a bas is for
under~ta nding more sophi ticated methods. Consider the equation

~ =r(I)Y
dl

where r (1) is a known function. From the definiti on of the derivati ve,

~ = lim y(t + 8.1) - y(/)
dr 6 r - ·Q 8.1

(8.5-1)

If the time incrcment 8.1 i ~ small cnough, the deri vative can be replaced by the
approx imate expression

dy vCr + 8. /) -)I(r)
dt ~ ~ --8.-1-"- (8 .5-2)

8.5 Numerical Methods for Differential Equalions

Use (8.5- 2) to replace (8.5-1) by the fo llowing approximation:

Y(I + 8.1) - y(t)
8.1 = r(/) y(t)

or

Y(I + 8.1) = Y(/) + r(t)y(t)8. 1 (8.5-3)

Assume that the right side of (8.5- 1) remains constan t over the time interva l
(t, I + 8.1). Then equation (8.5-3) can be written in more convenient fo rm as
follows:

(8.5-4)

where tk+1 = Ik + 8./. The smaller 8.1 is, the more accurate are our two assump­
ti ons leading to (8.5-4). Thi s technique for repl acing a differential equati on with
a diffe rence equation is the Euler method. The increment 8.1 is called the slep size.
The Euler method fo r the general first-order equation y = f(/ , y) is

(8 .5-5)

Thi s equati on can be applied sll ccess ively at the times tk by pUll ing it in a for
loop. For example, the fo llowing script fi le solves the differenti al equation y = r y
and plots the solution over the range 0 :':S I :':S 0.5 for the case where r = - 10
and the initi al condition is yeO) = 2, The time constant is r = - 1/ r = 0.1, and
the true solution is yet) = 2e- 101 . To illu trate the effect of the step size on the
solution's accuracy, we llse a step size 8.1 = 0.02, which is 20 percent of the time
constant.

-10 ; delta = 0 . 02 ; y(l) = 2 ;
k = 0 ;
for time = [delta : delta : 0 . 5)

k = k + 1 ;
y(k+1) = y(k) + r*y(k)*delta ;

end
t = [0 : delta : 0 . 5) ;
y _ true = 2 *exp (-10*t) ;
plot (t, Y , ' 0 ' , t, Y _ true) ,xlabel (, t') , ylabel (' y ')

Fi gure 8.5- 1 shows the results, The numerical solution is shown by the small
circles. The true solution is shown by the solid line. There is ome noticeable
error. If we had used a step size equal to 5 percent of the time constant, the error
would not be noticeable on the plol.

Numerical methods have their greatest errors when trying to obtain solutions
that are rapidly changing. Rapid change can be due to mall time constants
or to o 'ciJlations. To illustrate the difficulties cau ed by an 0 cillating ~olution ,
consider the fo llowing equation

(8.5- 6)

491

STEP SIZE

492 CHAPTER 8 Numerical Calculus and Differential Equations

1.8

1.6

1.4

1.2

0.8

0.6

0.4

0.2

o L-~--~--~--~~~~~~~~~~~~ o 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Figure 8.5-1 Euler method solu tion for the free response of y = - lOy, yeO) = 2.

for yeO) = 0 and 0 :s I :s 4n . The true solution is y (t) =] - cos t, and its period
is 2n. To compare the results with those obtained from the ode2 3 function later
on, we will use a step size equal to 1/ 13 of the period, or !::"t = 2n / 13. The script
file is

delta = 2*pi/13; y(l) = 0 ;
k = 0 ;
for time = [delta : delta : 4*pi]

k = k + 1 ;
y(k+1) = y(k) + sin(time - delta)*delta ;

end
t _ true = [0 : delta/10 : 4*pi] ;
y _ true = 1 - cos (t_ true) ;
t = [O : delta : 4*pi] ;
plot (t , y , ' 0 ' , t _ true , y _ true) , xlabe 1 (, t ') , y lab e l (' y ')

The results are hown in Figure 8.5-2, where the numerical solution is shown by
the small circles. There is noticeable error, especially near the peaks and valleys,
where the solution is rapidly changing.

The accuracy of the Euler method can be improved by using a smaller step
size. However, very small step sizes require longer runtimes and can result in a
large accumulated error because of round-off effects. So we seek better algorithms
to use for more challenging applications.

8.5 Numerical Methods for Differential Equations

1.8

1.6

1.4

1.2

0.8

0.6

0.4

0.2

0
0 10 12 14

Figure 8.5- 2 Euler method solution of y = sin (, yeO) = O.

The Predictor-Corrector Method

We now consider two methods that are more powerful than the Euler method.
The first is a predictor-corrector method. The second method is the Runge-Kutta
family of algorithms. In this section we apply these techniques to first-order
equations. We then extend them to higher-order equations in the next section.

The Euler method can have a serious deficiency in problems where the vari­
ables are rapidly changing because the method assumes the variables are constant
over the time interval !::"t. One way of improving the method is to use a better
approximation to the right side of the equation

The Euler approximation is

r!:z = f(t,y)
dt

(8.5-7)

(8.5-8)

Suppose instead we use the average of the right side of (8 .5-7) on the interval
(lk, IH I). This gives

(8.5-9)

493

494 C HAPTER 8 Numerical Calculus and Differential Equations

where

(8.5- 10)

with a simil ar defini tion for fk+l. Equati on (8.5- 9) is equi va lent to integrati ng
(8.5- 7) with the trapezoidal ru le.

The diffi culty with (8.5-9) is that I k+ 1 cannot be eva luated until y (lH I) is
known , but thi s is prec isely the quantity being sought. A way out o f thi s difficulty
is by using the Euler formula (8.5-8) to obtain a preliminary estimate of y(lk+ I) .
Thi s e timate is then used to compute I k+ 1 for usc in (8.5-9) to obtain the required

value of y(lk+I).
The notation can be changed to clari fy the method . Let h = /:).1 and Yk = y(lk),

and let Xk +1 be the estimate of y(IH I) obtained from the Eu ler formula (8.5-8).
T hen, by om itt ing the Ik notation from the other equations, we obtain the following
descripti on of the predictor-corrector process:

Euler pred ictor: Xk+1 = Yk + hI(Ik, Yk) (8 .5- 11)

h
Trapezoidal correc tor: Yk+1 = Yk + 2"lI(lb yd + f(lk+ I , XH I)] (8 .5- 12)

IODIFIED EULER T hi algori thm ic someti mes ca lled the modified Euler melhod. H owever, note
MET HOD that any algorithm can be tried a a pred ictor or a corrector. T hus many other

methods can be classified as predictor-corrector. For purpose of comparison
wi th the Runge-Kulla methods, we can express the modified Euler method as

gl = hI(lb yd

82 = hf(tk + h , Yk + g l)

Yk+1 = Yk + !(81 + g2)

(8.5- 13)

(8.5- 14)

(8.5- 15)

For example, the fo ll owing. cript fi le sol ve the differential equation y = ry and
plot the so lution over the range 0 S I S 0.5 for the case where r = - 10 and the
init ia l condit ion is yeO) = 2. The time constant is r = - l / r = 0. 1, and
the truc so lution is y(l) = 2e- lo,. To illu trate the effcct of the step size on the
so lution's accuracy. we usea step size /:). 1 = 0.02, which is 20 percent of the ti me
con:-. tc\ nl.

r = -10 ; elta - 0 . 02 ; y(1) '" 2 ;
k '" 0 ;
for time [delta : delta : 0 . 51

... 1 ;
x(k·l) y(k) + delta*r*y(k) ;
y(k+1) y(k) + (del a/2)*(r*y(k) + l*x(k+l)) ;

nd
[0 : 'eJ <.l : O . 'J; ;

v_true 2*exp(-lO*) ;
plot (:" , y , ' 0 ' , t , y_true) , xldbel (' L ') , ylabel (' y')

8.5 Numerical Methods for Differential Equations

1.8

1.6

1.4

1.2

0.8

0.6

0.4

0.2

°0~~0.~05~~0~.1--~0.~1 5~~0.~2--0~.2-5--~0.-3--0~.3~5~0~.4~~0~.4~5~0.5

Figure 8.5-3 Modified Eu ler olution or y = - lOy, yeO) = 2.

F igure 8.5-3 shows the resul ts, wi th the numerical so luti on shown by the
small circles and the Lrue soluti on by the solid line. There is less error than wi th
the Euler method using the same step si ze.

To i llustra te how the modified Euler method work with an oscill ating olu­
ti on, consider the equation y = sin I for yeO) = 0 and 0 S I S 4)1:. To compare
the resul ts w ith those obta ined with the Euler method, we will use a step size
/:).t = 2)1: / 13. Note that because the right side of the ODE is not a function of Y,
we do not need the Euler predictor (8 .5- 11). The script fi le i~

delta = 2*pi/l3 ; y(l)=O ;
k = 0 ;
for time = [deJta : delta : 4*pij

k = k + 1 ;
y(k+l) = y(k) + (delta/2)* (sin (cime-delta) , sin(tirrel) ;

end
t_true", [O : delta/l0 : 4*pi] ;
v_true = 1 - cos (t_ true) ;
t = [0 : delta : 4 *pi 1 ;
plot (t , y, ' 0 ' , t_true , v_ true) , xlabel (' t ') , y':'aoe: (' y ')

The re ults are shown in Figure 8.5--4. The error is les than wi th the Euler method,
but there is still some noticeable error near the peak , where the olution i. rapidly
changing. Thi error can be decrea ed by decreasing the tep ize.

495

496 C H APTER 8 Numerical Calculus and Differential Equations

12 14

F igw-e 8.5-4 Modi fied Euler solution of y = sin t , yeO) = o.

Test You Understanding

TB.5-1 Use MATLAB to compare the solutions for 0 S t S 2 obtained with the
Euler and modified Euler methods for the following equation:

10~ + Y = te- 2r yeO) = 2
dt

Compare the results with the analytical solution yet) = (732e- O
.
lr

-

191 e-2r - I Oe-2r) / 361.

Runge-Kutta Methods

The Taylor series representation forms the bas is of everal methods for solving
di fferential equations, including the Runge-Kulla methods. The Taylor series may
be u ed to represent the solution y(t + h) in terms of yet) and its derivatives as
follows.

(8.5-16)

The number of tenns kept in the series determines its accuracy. The re­
quired deri vatives are calculated fro m the diffe rential equation. If these deriva­
tives can be found. (8.5-1 6) can be u ed to march forward in time. In practice. the

8.5 Numerical Methods for Differential Equations

high-order derivati ves can be difficult to ca lcul ate, and the seri es (8.5- 16) is trun­
c~~ed at s?me term. The Runge-Kutta methods were developed because of the
ddficul tY. 1Il computing the deri va ti ve. These methods use several evaluations of
the function f(t, y) in a way that approximates the Taylor series. The number
of terms in the s~ri es that is duplicated determ ines the order of the Runge-Kutla
method. Thus a f~ urth-~rder Runge-Ku tta algorithm du plicates the Tay lor series
through the term Il1vo lVll1g /7 4 .

The second-order Runge-Kutla methods express Yk+1 as

Yk+1 = Yk + wigi + w2g2

where W I and W2 are constant weighting factors and

gl = hf(tk. Yk)

g2 = hf Ctk + a h , Yk + /3hfd

(8.5- 17)

(8.5- 18)

(8 .5- 19)

The fa mily of second-order Runge-KUlla algorithms is categorized by the param­
eters a , /3 , WI, and W2. To dLlpl icate the Taylor series through the 17. 2 term, these
coefficient must satisfy the fo llowi ng:

WI +W2 = I
wl a = ~

(8 .5- 20)

(8 .5- 2 1)

W2 /3 = ~ (8.5- 22)

Thus one of the parameters can be chosen independently.
The fa mily of fo urth-order Runge-Kutta algorith ms expresses Yk+1 as

Yk+ 1 = Yk + wigi + w2g2 + w3g3 + w4g4 (8.5- 23)

gl = hf(tk, Yk)

g2 = hf(tk + al h , Yk + al gd

g3 = hf [tk + a21t , Yk + /32g2 + (a2 - /32)gl]

g4 = hf [tk + a 3h ,)'k + /33g2 + Y3g3 + (a3 - /33 - Y3)gl] (8.5- 24)

Compari son with the Taylor seri es yields eight equations for the 10 parameters.
Thus two parameters can be chosen in light of other considerations. A number
of different choices have been used. For example, the classical method, which
reduces to Simpson 's rule fo r integration if f(t , y) is a function of onl y t , u~e

the following set of parameters:

WI = W4 = 1/ 6

IVZ = W3 = 1/ 3

a l = az = 1/ 2

/32 = 1/ 2

Y3 =a3 = I
/33 = 0 (8.5-25)

497

498 CHA PTER 8 Numerical Calculus and Differential Equations

MATLAB ODE Solvers o de 23 and ode45

In addition to the many variations of the predictor-corrector and Runge-Kutta
algorithms that have been developed, some more-advanced algori thl:1S u.se a vari­
able step size. These algorithms use larger step sizes when the so lutlol: IS chang­
ing more slowly. MATLAB provides functions, called solvers, that Implement
Runae-Kutta methods with variable step ize. These are the ode23, ode45,
and ~del1 3 functions. The ode2 3 function uses a combination of second- and
thil'd-order Runge-Kutta methods, whereas ode4 5 uses a combination of fourt~­
and fifth-order methods. In general , ode45 is faster and more accurate, but It
uses larger step sizes that can produce a solution plot that is not as smooth as. the
plot produced with ode2 3 . These solvers are classified as low order and medIUm
order, respectively. T he solver odel13 is ba ed on a variable-order algorithm .

MATLAB contains four additional solver ; these are ode23t, ode15s,
ode2 3 s, and ode23 tb. T hese and the other solvers are categorized in
Table 8.5- 1. Some of these solvers are classi fied as "s tiff." A stiff solver is one
that is well-suited for solvi ng stiff equations, which are described in Section 8.8 .

Solver Syntax

In this section we limit our coverage to first-order equations . Solution of higher­
order equations, where y is a vector, is covered in Section 8.6. When used to solve
the equation y = J(t , y) . the basic syntax is (u ing ode2 3 as the example):

[t , y] = ode23 ('ydot ', tspan , yO)

where ydot is the name of the function fi le whose inputs must be t and y and
whose outpu t must be a column vector representing dy/dt ; that is, J(t, y). The
number of row in this column vector must equal the order of the equation . The
syntax for ode23 , ode45, and odel13 is identi cal. The vector tspan con­
tains the tarting and ending values of the independent variable t , ruld optionall y,
any intermedi ate values of t where the solution is des ired. For example, if no
intermediate values are specified, t span is (t 0 , t f 1 , where to and t fare
the desired truting and ending values of the independent parameter t . As another
example, us ing t span = (0 , 5 , 10 1 tell s MATLAB to fi nd the solution at
t = 5 and at t = 10. You can solve equati ons backward in time by spec ifyi ng
tO to be greater than t f . The parameter yO is the value y(to) . The function fil e

Table 8.5-1 ODE solvers

So\ver name

ode23
ode45
odell3
ode23s
ode23t
ode23tb
odel5s

Description

Nonsliff, low-order solver.
Nonsliff, medi um-order solver.
NOIlStiff, variable-order solver.
Stiff. low-order olver.
Moderately ti ff, trapezoidal- ru le solver.
Stiff, low-order solver.
Stiff, variable-order solver.

8.5 Numerical Methods for Differential Equations 499

Table 8.5-2 Basic syntax of ODE solvers

Command Description

[t , y) =ode23(' ydot ', tspan , yO) Solves the vector differential eq uation y = f(t , y) specified in Ihe
function file ydot, whose inputs must be I and y and whose
output must be a column vector representing ely jel l ; that b , f (l , y).
The number of rows in this column vector mu~t equal the order of
the equation. The vector tspan contains the starting and ending
va lues of the independent va riable I , and optionall y, any
intermediate values of I where the solution is de~ ired. The vector
yO contains y(lo). The function file must have IWO input argumenh
t and y even for equations where f {! , y) i~ not a functi on of I . The
syntax is identical for the other solvers.

must have two input arguments t and y even for equations where J(t , y) is not a
function of t. You need not use array operations in the fun ction fi le because t.he
ODE solvers call the fi le with scalar values for the arguments. The bas ic syntax
of ODE solvers is summarized in Table 8.5-2.

As a firs t example of using a solver, let us solve an equation whose so lu tion i
known in closed fo rm so that we can make sure we are using the method correctl y.

Response of an RC Circuit "1''9''1+1'
The model of the RC circuit shown in Figure 8.5-5 can be fou nd from Kirchhoff's voltage
law and conservation of charge.

dy
RCd! + y = vet)

Suppose the value of RC is 0. 1 s. Use a numerical method to find the free response for
the case where the applied voltage v is 0 and the ini tia l capaci tor voltage is yeO) = 2 V.
Compare the resul ts with the analytical solution.

• Solution
The equati on fo r the circuit becomes

O. IY+y=O

IT
Figure 8.5-5 An RC circuit.

500 CHAPTER 8 Numerical Calculus and Differential Equations

Fir t solve [hi for)':
y = - lOy

Next defin e the fol lowing function file. Note that the order of the input arguments must
be I and y.

function ydot = rccirc(t , y)
% An RC circuit model with no applied voltage .
ydot = -lO*y ;

The iniU al time i I = 0, so set tO to be O. The lime constant is 0. 1, so the response will be
2 percent of it initial value at I = 4(0.l) = 0.4 and I percent at I = 5(0.1) = 0.5 s. So
we can choose t f to be between 0.4 and 0.5 s, depending on how much of the response
we wish to see. The analytical so lution is y(l) = 2e- lo,. The fun ction is called as follows,
and the solution plotted along with the analytical solution y _ true.

[t , y) = ode45(' rccirc ', [0 , 0 . 4), 2) ;
y_ true = 2*exp(-10 *t) ;
plot (t , y , '0', t , y_true) , xlabel (' Time(s)') , .. .
ylabel ('Capacitor Voltage ')

Note that we need not generate the array t to evaluate y _true, because t is generated by
the ode4 5 function . The plot is shown in Figure 8.5-6. The numerical solution is marked
by the circles, and the analytical soluUon is indicated by the solid line. The numerical
solution clearl y gives an accurate answer. Note that the step size automati call y selected
by the ode45 function is 0.02, wh ich i the same step size we used with the Euler

1.4

Q)

~1.2
'0
>
.9 1
. ~

8 0.8

0.6

0.4

0.2

oL-~L---~ __ ~ __ ~ __ ~ __ -L __ ~~~~==~~

o 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Time Is)

Figure 8.5-6 Free re pon e of an RC circuit.

8.5 Numerical Methods for Differential Equations

method to obtain F~gure 8.5~ J . Comparing the two plots demonstrates the accuracy of the
Runge-Kulla algOrithm relati ve to the Eu ler method.

Effect of Step Size

The spac ing u s~d by ode2 3 is smaller than that used by ode4 5 because ode4 5
has less t.runcatlon error ~han ode23 and thus can use a larger step s ize . When
the solutl.on changes rapidly, such as with an oscillatory solution , the circ les
representll1g the numerical solution do not always yield a smooth curve. Thus
ode23 is sometimes more useful for plotting the solution because it often gives
a smoother curve. For example, consider the problem

d y .
di = Sll1t , yeO) = 0

whose analytical solution is yet) = I - cos I . To solve the differential equati on
numericall y, define the fo llowing function fil e:

function ydot = sinefn(t , y)
ydot = sin(t) ;

Use the fo llowing script file to compute the solution for yeO) = 0:

t _ true = [O : 0 . Ol : 4*pi) ;
subplot (2 , 1 , 1)

[t , y) = ode45{ ' sinefn ', [0, 4*pij, 0) ;

yl_true = 1 - cos (t_ true) ;
plot (t , y , '0' , t _ true , yl_ true) , xlabel (' t ') , ylabel (' y ') , ...
axis{[O 4*pi -0 . 5 2 . 5)) , gtext(' ode45 ')
subplot (2 , 1, 2)
[t , y) = ode23{'sinefn' , [0 , 4*pi) , 0) ;
y2 _ true = 1 - cos (t_ true) ;
plot(t , y ,' 0 ', t _ true , y2_ true) , xlabel{ ' t ') , ylabel (' y ') , . ..
axis([O 4*pi -0.5 2 . 5)) , gtext(' ode23 ')

Figure 8.5-7 shows the solution generated by ode45 (the top graph) and
ode23 (the bottom graph). Note the difference in step sizes .

Numerical Methods and Linear Equations

Even though there are general methods available for finding the analytical solu­
tions of linear differential equations, it is nevertheless sometimes more convenient
to use a numerical method to find the solution. Examples of such ituations are
when the forcing function is a complicated function or when the order of the
differenti a l equation is higher than two. In uch cases the algebra involved in
obtaining the analytical solution might not be worth the effort, especially if the
main objective is to obtain a plot of the solution. In such cases we can till use the
characteristic roots to check the validity of the numerical results. Example 8.5-2
demonstrates this method for an equation with a complicated forcing function.

501

502

ee,ny, ..

CHAPT E R 8 Numerical Calculus and Differential Equations

2.

2~

1.5

1

0.5

- 0. 0 2 4 6 8 10 12

1.5

1

0.5

t

-0. 0 2 4 6 8 10 12
t

Figure 8.5-7 umerical solutions of the equati on j = sin t, yeO) = o.

Use of Global Parameters

T he functi on fi le to be used wi th the ode functions must have onl y the two
arguments, I and y. Therefore, any additi onal parameters needed to describe the
differenti al equation cannot be passed through the f unction call. The global
x y z command allows all f unction and fi l es using that command to . hare
the va lues of the vari able, x , y , and z. Use of the global command avoids the
necessity of changing the va lue of certain parameters in every fil e. Example 8.5- 2
demon trates the use of thi s command.

Decaying Sine Voltage AppJied to an RC Circuit

Con ider the RC circuit shown in Figure 8.5- 5 where RC = 0. 1 . Now suppose that
the applied voltage oscil lates, inu 'oida ll y with a period P and a decay ing amplitude. The
volt age i g iven by

V(I) = IOe I/T, in(2rr l / P) (8 .5- 26)

Thu s the voltage amplitude will be Ies, than 2 percent of its initi al va lue, or e senti ally 0
for r ~ 4I I. Find and plot the output vo ltage y(l) for three ca. es:

1. T I = 0.3 s. P = 2 s.

2. II = 0.05 s. P = 0.03 ~.

3. I I = 0.3 ~ , P = 0.03 s.

8.5 Numerical Methods for Differential E.quations

Interpret the res ults in light of the circuit 's charac teri sti c root. In all three cases, take the
Initi al voltage yeO) to be O.

• Solution

The c ircui t's eq uati on was g iven earlier. It is

dy
RCT! + Y = V(I)

Solving fo r the deri va ti ve and using RC = 0. 1, we obt ain

dy
T! = IOl v(l) - y l

(8.5- 27)

(8.5- 28)

In this probl em we will be exa mining the effects of changing the values of the parameters
II, P, and the fin al time If· Therefore, we will declare these parameters as global. The
fun cti on fi le for the derivative is

funcLion ydot = circuit (t,y)
% RC circuit model with a decaying si ne input .
global tau_l P

v = 10*exp(-t/tau_l) "sin ((2*pi/p) *t);
ydot = 10* (v-y) ;

The ode23 solver is call ed with the script fil e eircplot .m:

% file circplot
% Solves the circuit equation and plots the response .
global tau_ l P

tau_l = 0.3 ;
P = 2 ;
tf = 2 ;
[t, yJ = ode23('circuit' , [0 , tf], 0);
subplot (2 , 1 , 1)
tp = [O : tf!300:tf] ;
v = 10*exp (-tp/tau_l) . *sin ((2*pilP) *tp) ;
plot (tp,v) ,x label (' Time (s) ') , ...
ylabel (' Applied Voltage (V) ')

subplot (2 , 1 , 2)
plot(t,y) , x]abel(' Time (s) ') , . . .
ylabel (' Capacitor Voltage (V) ')

The simulation i ~ perfo rmed by entering the desired values of II , P. and I / in the file
circplot, sav ing the fi le, and typing circplot at the prompt. a te thaI you need nOI

change the fil e e i rcui t. NOle also that the vari able t f need not be declared global in
the fi Ie c i reu i t because that fi le does not u\e t f.

The circuit 's time con~ t ant is I = RC = 0.1 s. Therefore, if the applied voltage v i~
constant , the output voltage y will reach a constant value after approx imate ly 4r = 0.4 ~ .

So the "~peed of respon e" of the circuit i ~ about 0.4 \ . The applied voltage will be e sen­
tiaJ ly 0 aft er I = 4II. We must estimate the final time ~ f to u ~e. This time is detennined
by the larger of the times 4T = 0.4 and 4r l. Now let us look at each ca~e .

503

504 CHAPTER 8 Numerical Calculus and Differential Equations

ttS;--------1
o 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Time (s)

f-----1
o 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Time (s)

Figure 8.5-8 Plot of the appbed voltage and the capacitor voltage when the
applied voltage is V(I) = LOe-r/O.3 sin(7l'1).

Case J: 'I = 0.3, P = 2. In this case the appl ied voltage will be essentiall y 0 after
I = 4'1 = J.2 s, which is longer than the response time of the circuit. So we choose a
final time If no less than 1.2. However, because the period of the applied voltage is 2 s,
we select If = 2 to see the effects of one full period . The resulting plot is shown in
Figure 8.5-8 along with a plot of the appJjed voltage for reference. Because the period is
greater than 4" we do not see a cillations in the capaci tor voltage; that is, the circuit's
respon e has died out before the applied voltage can complete one cycle. The plot shows
no discrepancies from the behavior predicted on the basis the circuit's time constant and

the time con tant and period of the applied vol tage.
Case 2: 'I = 0 .05, P = 0.03. In this case the applied voltage will be essentially 0

after I = 4, = 0.2 s. and its peJiod is 0.03, both of which are shorter than the circuit' s
response time (0.4). So the proper final time to use is determined by the response
time of the circuit and thus we choose a fin al time of If = 0.4. The results are shown in
Figure 8.5-9. Because the period is shorter than both 4, and 4'1 , we should see oscillations

in the capacitor voltage, and we do. The capacitor voltage is essentially 0 after 0.4 s, as

predicted.
Case 3: 'I = 0.3, P = 0.03. In this case the applied voltage will be essentially 0

after [= 4'1 = J.2 s, which is longer than the period and the response time of the circuit.
So we expect to see 0 cillations in the solution ; the proper final time is determined by
the decay time of the applied voltage and should be at least J .2. The results are shown in
Figure 8.5-J O. Because the period is shorter than both 4, and 4'1, we should see oscilla­
tion in the capacitor voltage. and we do.

8.5 Numerical Methods for Differential Equations

i':F g 0 ~ __________________ ~

1_:~ __ -n~ __ ~~~~ __ -7~ __ ~ __ ~ ____ ~ __ ~
o 0.05 0.1 0.15 0.2 0.25 0.3

Time (5)
0.35 0.4

f ~
o 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Time (5)

Figure ~.s-9 Plots of the applied voltage and the capacitor voltage when the applied
voltage IS vet) = LOe-r /O.OS sin(27l'1 / O.03).

i ':
~ 0

i_::
o 0.2 0.4 0.6 0.8 1 1.2

Time (5)

to:
i 0

()
~.5L-____ -L ____ ~ ______ ~ ____ -L ____ ~ ____ ___

o 0.2 0.4 0.6 0.8 1 1.2
Time (5)

Figure 8.5-10 Plots of the applied voltage and the capacitor voltage when the
applied voltage is V(I) = JOe-r/O.3 sin(27l't/O.03).

505

506 CHAPTER 8 Numerical Calculus and Differential Equations

Test Your Understanding

T8.5-2 Suppose you want to run several simulations of the equati on

r ~ + y = a + b sin ci , yeO) = Yo
d l

for everal values of r , a, b, c, and Yo. Write a program to do thi s using
the global command.

Solution of Nonlinear Equations

When the differential equation is nonlinear, we often have no analytical solution
to use for checking our numerical results . In such cases we can use our physical
insight to guard against grossly incolTect results. We can also check the equa­
tion for singularities that might affect the numerical procedure. Finally, we can
sometimes use an approximation to replace the nonlinear equation with a lin­
ear one that can be solved analytically. Although the linear approximation does
not give the exact answer, its solu tion can be used to see whether our numerical
answer is "in the ballpark." Example 8.5-3 illustrates this approach.

'W§'9" :§M Liquid Height in a Spherical Tank

Figure 8.5- 11 shows a spherical tank for storing water. T he tank is filled through a hole
in the top and drained through a hole in the bottom. If the tank's radius is ,. , you can use

integration to show that the volume of water in the tank as a function of its hei ght h is
given by

(8.5- 29)

Torricelli ' principle (see Chapter 5) states that the liquid fl ow rate through the hole

is proportional to the square root of the height h. Further sludie, in fluid mechanics have

identified the relat ion more precisely, and the result is that the volume flow rate through

~
7/\,\

Figure 8.5-11 Drai ning
of a spherical tank.

8.5 Numerical Methods for Di fferential Equations

the hole is g iven by

(8 .5-30)

where A is the area of the hole, g is the accelerati on due to gravity, and Cd is an experi­

menta ll y determlI1ed value that depends partl y on the type ofliquid . For water, Cd = 0.6 is

a common value. We can use the principle of conservation of mass to obtain a diffe rential

equ.ati~n fo r the ~e i ght h. Appl ied to this tank, the principle says that the rate of change
of liqUid volume 111 the tank must equal the volume fl ow rate out of the tank; that is

dV
dI = -q (8.5-3 1)

From (8 .5-29),

:!.!.. = 2n:"h~ _n:h 2~ = n:h (2,. - n:h) ~
~ ~ ~ ~

Substituting thi s and (8.5-30) into (8.5-3 1) gives the required equation for h.

n:(2,.h - h 2)~ = - CdA J2ih (8.5- 32)
dl

Use MATLAB to solve this equation to determine how long it wi ll take for the tank to

empty if the initial height is 9 ft. The tank has a radius of r = 5 ft and has a I -i n. diameter
ho le in the bottom. Use g = 32.2 ftlsec2. Discuss how to check the solu tion .

• Solution
With Cd = 0.6, r = 5, g = 32.2, and A = n:(1 / 24)2, (8 .5- 32) becomes

dh 0.0334-fl/
- ==----
ell 10h -h2 (8.5-33)

Because this is a nonlinear equation, we have no analytical solution to use for checki ng our
numerical results. We can use our physical insight to guard against grossly incorrect results.

We can also check the above expression for elh / ell for singul ari ties. The denominator does

not become 0 unless h = 0 or h = 10, wh ich correspond to a completely empty and a
completely full tank. So we will avoid singularities if 0 < h(O) < 10. Finally, we can use
the fo llowing approximation to estimate the time to empty. Replace h on the right side of

(8.5-33) with its average va lue, namely, (9-0)/ 2 = 4.5 ft. This give elh / elt = -0.00286,
whose solution is h(l) = h(O) - 0.002861 = 9 - 0.002861. According to this equation, if

h(O) = 9, the tank will be empty at I = 9/0.00286 = 3147 sec, or 52 min . We will use
this value as a reality check on our answer.

The function file based on equation (8.5-33) is

function hdot = height (t , hl
hdo t = -(O . 0334*sqrt(h)) / (lO *h - h A 2) ;

The file is called as follows, using the ode45 solver.

[t , hl =ode45(' heigh t ' , [0 , 2475]. 9) ,

plot(t , h) , xlabel(' Time (sec) ') , ylabel(' Height (ft) ')

The resulting plot is shown in Figure 8.5-12. Note how the height changes more rapidly
when the tank is nearly full or nearly empty. This condition is to be expected becau e

507

508 CHAPTER 8 Numerical Calculus and Differential Equations

ooL-------5~OO~-----1~O~OO~----~15~O~O----~2~O~OO~----~2500
Time (sec)

Figure 8.5-12 Plot of water height in a phericaltank.

of the effect of the tank' curvature. The tank empties in 2475 sec, or 41 min. This va lue
i not gros ' Iy different from our rough estimate of 52 min , so we should feel comfortable
accepting the numeri ca l results.

The alue of tbe final time of2475 sec wa found by increasing the final time until the
plot howed that the height became O. You could u e a whi 1 e loop to do thi , by increasi ng
the final time in the loop while calling ode4 5 repeatedly. However, the advanced syntax
for ODE solver can be used for detecting when the height become O. We will examine
the e capabilities in Section 8.7.

8.6 Extension to Higher-Order Equations
To use the ODE solvers to solve an equation higher than order 2, you mu t fir t
write the equation as a set of first-order equations. This is easily done. Consider
the econd-order equation

sy 7v+4y=j(t) (8.6-1)

Solve it for the highest derivative:

y = U(t) - ~Y - h' (8.6-2)

8.6 ExtenSion to Higher-Order Equations

Define two new variables XI and X2 to be y and its derivative y. That is, define

XI = Y

X2 = Y
These definitions imply that

X2 = ~ j(t) - ~X I - ~X2

This form is .sometime~ ca ll ed the Cauchy form or the slate-variable jorm. CAUCHY FORM

509

Now wnte a functIOn file that computes the values of XI and X2 and stores
them in a column vector. To do 0, we must first have a function spec ified for STATE-VARIABLE
Jet). Suppose that fet) = si n t . Then the required fil e i FORM

function xdot = examplel(t , x) -------

% Computes derivatives of two equations
xdot (1) = x(2);
xdot(2) = (1/S)*(sin(t)-4*x(l)-7""x(2)) ;
xdot = [xdot(l) ; xdot(2)] ;

Note that xdot (1) represents XI, xdot (2) represents X2, x (1) represents
XI, and x (2) represents X2 . Once you become familiar wi th the notation for the
state-variable form , you will see that the preceding code could be replaced with
the following shorter form:

function xdot = examplel (t , x)
% Computes derivatives of two equations
xdot = [x(2) ; (l/5) * (sin(t) -4*z(l) -7*x(2)) J ;

Suppose we want to solve (8.6- 1) for a :s I :s 6 with the initi al conditions
yeO) = 3, y eO) = 9. Then the initial condition for the vector x is [3 , 9]. To
use ode45, you type

[t , xJ = ode45(' examplel ', [0 , 6], [3 , 9)) ;

Each row in the matrix x corre ponds to a time returned in the column vector t.
If you type plot (t , xl , you will obtain a plot of both XI and Xz versu~ t . Note
that x is a matrix with two columns; the fir t column contains the value~ of XI at
the various times generated by the solver. The second column contains the values
of X2. Thus to plot only XI, type plot (t , x (: , 1)) .

Solution of Nonlinear Equations

We mentioned earlier that when olving nonlinear equations, sometime~ it i~

possible to check the numerical results by u ing an approximation that reduces
the equation to a linear one. The following example illustrate ~uch an approach
with a second-order equation.

510 CHAPTER 8 Numerical Calculus and Differential Equations

+_'9"'" A Nonlinear Pendulum Model

By studying the dynamics of a pendulum like that shown in Figure 8.6- 1, we can better

understand the dynamics of machines such as a robot arm. The pendulum show n consists
of a concentrated mass In attached to a rod whose mass is small compared to In. The rod 's

length is L. The equation of motion for this pendulum is

e + f sin 8 = 0 (8.6-3)

Suppose that L = 1 m and g = 9.81 m/s2 . Use MATLAB to solve this equation for 8(1)

for two cases: 8(0) = 0.5 rad and 8(0) = 0.8n rad. In both cases 8(0) = O. Discuss how

to check the accuracy of the results.

• Solution
If we use the small angle approximation sin 8 ~ 8 , the equation becomes

e + f8 = 0 (8.6-4)

which is linear and has a solu tion given by (8.4-16):

8(/) = 8(0) cos 1ft (8.6-5)

Thus the amplitude of oscillation is 8(0) and the period is P = 2n / ..filL = 2 s. We can
use this information to select a final time and to check our numerical results.

First rewrite the pendulum equation (8.6-3) as two first-order equations. To do

this, let

XI = 8

X2 = 8

Figure 8.6-1 A pendulum.

8.6 Extension to Higher-Order Equations

Thus

XI = 8 = X2

X2 =e=-fsinxl

The following function file is based on the last two equations. Remember that the
output xdot must be a column vector.

function xdot = pendul (t, x)
global 9 L
xdot = [x(2) ; -(g/L)*sin(x(1))];

It is called as follows . The vectors ta and xa contain the resu lts for the case where
8(0) = 0.5. The vectors tb and xb contain the results for 8(0) = 0.8n .

global 9 L
9 = 9.81;L = 1;

[ta , xa] = ode45('pendul' , [0,5], [0.5 , 0]);
[tb, xb] = ode45('pendul ', [0,5], [O.8*pi, 0]) ;
plot (ta, xa (: , 1) , tb , xb (: ,1)) ,xlabel ('Time (s) ') , ...
ylabel(' Angle (rad) ') ,gtext(' Case l') , gtext(' Case 2 ')

The results are shown in Figure 8.6-2. The amplitude remains constant, as predicted by
the small angle analysis, and the period fo r the case where 8(0) = 0.5 is a little longer

Case 2

-1

-2

_3L-__ ~ __ ~ __ ~ __ ~ __ ~ __ -L __ -L __ -L __ ~ __ ~

2.5
Time (5)

3.5 4.5 o 0.5 1.5

Figure 8.6-2 The pendulum angle as a function of time for two starting positions.

511

51 2 C H A PTER 8 Ilurn(JrlC81 Calculu& and Drf[cl r(jrllla l rquil tloll 'J

Ihan 2 \ , Ihe value rreciicted by Ihe ~ r n a ll angle an a l y~ i ~, Therciore, we Cllll pl ace ~() r ll e

con fl dellce in Ihe mrrnerical proccdure. For Ihe c..: a ~e where 0(0) = O.Xrr , the peri od 01
Ihe nu mer ical ~o l l1 li on i , aboul 1.1" '[hi ~ longer period i ll u \ l ra l e~ an i rnpOrl:lnl properl y

01 nonl inear di l ferential eq u a li () n ~, T he free re~ po l1 ~e of a linea r equation ha, Ihe ~a rne

pClioel fo r any initi al condilinn,; however, Ihe J'orm oJlhe J'ree re~po n~e oJ' a lI oril inear

eq ual ion () ll ell ~ depend I, Oil the par1ieular va lue.1, of Ihe in iti al c{) nd i li on ~ .
- ------- - - ---------

Matrix Methods

We call ll ~e matri x (J pera ti () n ~ Lo reduce Ihe nu mber o f' l ines to be Lyped in Lh e
deri va ti ve function fi le. For example, the foll owillg equati on descrihe:, the moti on
of a m U:' i> con nec ted to a ~pring with yiscou:, fri cti on acting hetween the rn a:,:-,
and the i> urface. Another force f(t) a l ~() actH on the mas~ (sec Figure H.6 3).

rn y+ cy I ky = f(1) (8 .6 6)

Thi :, equation can be put into Ca uchy forlll by lell ing X I = Y and X2 = y, which
giyc!'

C
X2

m

T he:,e two equati on,> c,ln he wri twn (I~ onc lI1atri x equation as foll ows:

[1~] = [_ - (I] r~~l l [(:]/(1)
m I'll

Figure H.lI-3 A lI1a~, ;uld ' prill /.(with V"Wll ~ ~ lIrf a(;c friu lon,

8.6 r Ilr;nsion 10 lliqhror Or(Jor CqlJiJtrorls

In compact rorm this i:,

where

and

x = A x f- Bf {t)

[

(J

A = k
- I'll,

I] C

- 1'11

x = [;~]

(H .I) -7)

T he foll owing function fil e s how~ how to usc matrix operations. In thi s
ex ample In = I , C = 2, k = 5, and the applied force f i ~ a con ~ lant equal to 10.

IuneUon xuoL rnsd (, x)
!/:; [unc:ljon file for rrk.l8~; ,lith ~;pring 2Jwl cJdm[oi nq .
% po:;i(: i c;n if'; firfol vclriclbl r"
global c; f k m
j ., [O, l ; - k / rn , e l m] ;

H 10 ; 1 Irn1 ;
xdo 1\ ' x 1 1l *1 ;

'I(-jr)ci '/ i:, sr ' (~()nrj ' ! i)(iob}r .

NoLe thal the output zcJoL will be a column vector bec<lu<,e or the dcilflition
of matri x-vector multipli cati on, The ch<lr<lc teri ~ ti c roOl'. arc the root, or
m ,\,2 + Col' I- k = .1'2 + 2s + 5 = 0 and arc s = - I J_ 2i . The time CO/l , tant
is I , and the ~ teady-s ta t e re:,ponse willthu, he reached aftcr I = 4. The peri od of
o~c ill a ti () n will he IT, Thus if we choose a final time of 5, we will ~ce the entire
respoJl se. Us ing the initi al conditions X I(O) = 0, X2(O) = 0, the ~o l yer i, called

as fo ll ows:

{J lobrJl e lk ffI

1 ; c /. ; Yo 'J i

flO ;
[L , /. j (Jr]r>/.·l (' rn :. d ' , [0 , 'j J , [0 , (J J) ;

[J I ol (t , %) , x I "br; I (' 'I i w_ ([;) ') , . ..
Y]'Jb'l(' lli :;p l "" c r'[T'('nL (rn) dfl(1V('()C.i. '/ Un/,) ') , ...
{Jl c.)(1 (' Di:,pld c rrnHI ') , qt .x' (' Vr (Jc','j ')

The result is ~h()wn in figure R.6-4.

513

514 CHAPTER 8 Numerical Calculus and Differential Equations

2.5

Displacement

Velocity

-0.5

-10L---0~.5--~--~1.5--~--~2~.5--~--~3~.5~~--~4.~5--~
Time (s)

Figure 8.6-4 Di placement and velocity of the mass as a function of time.

Test Your Understanding

T8.6-1 Plot the position and velocity of a mass with a spring and damping,
having the parameter values m = 2, c = 3, and k = 7. The applied
force is f = 35, the initial position is yeO) = 2, and the initial velocity is
.)'(0)=-3.

Characteristic Roots from the eig Function

We saw in Section 8.4 that you can obtain the characteristic polynomial and
root for a linear ODE by substituting y(r) = Aesr for the dependent variable y(t).
Hov ever. when the ODE is in tate-variable form, there is more than one depen­
dent variable. In such cases you must substitute XI (t) = A I eSI , X2(t) = A2esl , ...
for the dependent variable XI (I). x2(1), For example, making these substitu­
tion into the following

give

.1'1 = -3xl + X2

.T2 = -XI - 7X2

sAleH = -3A l e
sl + A2esl

sA 2eSl = -Al esI - 7A 2esl

(8.6-8)

(8.6-9)

8.6 Exlension to Higher-Order Equations

Collcctlike terms and c<1ncelthe e.ll terms to obtain

(s + 3)A J - A2 = 0

A J + (s + 7)A2 = 0

As we saw in Chapter 6, a nonzero soluti on wi ll exist [or A J and 11 2 if and on ly
if the determinant is zero. This requirement leads to

I
s + 3 - I I 2

I .1' + 7 = s + 10.1' + 22 = 0

This is the characteri stic equation , and its roots arcs = - 6.732 1 and s = - 3.2679.
MATLAB provides the ei g function to compute thecharacterisli c root~ when

the model is given inti1e state-variab le form (8 .6- 7). liS synlax is ei g (A) , where
A is the matrix that appears in (8.6- 7). (The function's name is an abbrev iati on
of eigenvalue, which is another name for characteristic rool.) For example, the WGE VALUE
matri x A for the equati ons (8.6-8) and (8.6- 9) is

[-3 I]
- I -7

To find the characteri stic roots, type

A = [-3 , 1 ; -1 , -7);
r = eig (A)

The answer so obta ined is r = [- 6 . 7321 , -3 . 2679 J, wh ich agree~ with
the answer we found by hand. To find the time constants, which are the negative
reciprocal s of the real parts of the roots, you type tau = -1 . / rea] (r) . The
time constants are 0.1485 and 0.3060.

Programming Detailed Forcing Functions

As a final example of higher-order equati ons, we now show how to program
deta iled forcing functions within the derivati ve function fil e. We now u,e a uc
motor as the application. The equati ons for an armature-controlled dc molor
(slIch as a permanent magnet motor) hown in Figure 8.6-5 are the fol lowing.
They result from Kirchhoff's voltage law and Newton's law applied to a rotating

R

Figure 8.6-5 An armature-controlled de motor.

515

51 6 C HAPTER 8 Numerical Calculus and Differential Equations

ine rti a. The mo tor 's c urre nt is i , and its ro ta tio nal velocity is w.

L c.!i.. = - Ri - Kew + vet)
df

dw ITt = KTi - cw

(8 .6- 10)

(8 .6-11)

L , R, and J are the motor's inductance, res istance , and inerti a ; K T a nd Ke are the
torque constant and back e mf constant; c is a viscolls damping constant; and v(t)
is the applied vo ltage. These equatio ns can be put into matri x form as fo llows,

whe re XI = i a nd X 2 = W .

[~I] = r-f -!f1 [XI] + [±] vet)
X2 KT _:. X2 0

I I

,."".,M Trapezoidal Profi le fo r a dc Motor

In many appli cations we want to accelerate the motor to a desired speed and allow it to run
at that speed fo r ome ti me before decelerating to a stop. Investigate whether an applied
voltage having a trapezoidal pro fil e wi ll accomplish thi s. Use the values R = 0.6 n,
L = 0.002 H, K T = 0.04 N . ml A, Ke = 0.04 V . s/rad, c = 0, and I = 6 X 10- 5 kg · m2.

The appli ed voltage in volts is given by

{

lOOt 0 ':::= 1 < 0.1
JO 0. 1 < 1 < 0.4

V(I) = - IOO(r - 0.4) + 10 0.4 ~ I ~ 0.5

o I > 0.5

This function i shown in the top graph in Figure 8.6-6.

• Solution
First fi nd the time constants using the eig function. Use the following script file:

R = 0 . 6 ; L = 0 . 002 ; c = 0 ;
K_ T = 0 . 04 ; K_ e = 0 . 04 ; 1 = 6e -5 ;
A = [-R/L , -K_ e/L ; K_ TII , -c/I l ;

% compute the character ist i c roo ts a nd t i me c on s tants.
disp(' The characteristi c r oots are : ')
eig (A)
disp (' The time constants a r e :')
- l . /real (eig (A))

The roots are s = -245.7427 and s = - 54.2573. The time constants are "[I = 0.0041
and "[2 = 0.01 84 s. The largest time constant indicates that the motor's response time is
approximately 4(0.01 84) = 0.0736 s. Because thi s time is less than the time needed for
the applied voltage to reach 10 V, the motor should be able to follow the desired trape­
zoidal profile reasonably well. To know for certain , we must solve the motor's differential

8 .6 Extension to Higher-Order Equations

'IV \
0 0.1 0.2 0.3 0.4 0.5

I (s)

f~l/ ~
0 0.1 0.2 0.3 0.4 0.5

I(s)

Figure 8.6-6 Voltage input and resulting velocity response of a de motor.

equations. Use the fo llowing derivative function fi le:

function xdot = dcmotor(t , x)
% dc motor model with trapezoidal voltage profile .
% First variable is current ; second is veloci ty .
global c I K_ T K_ e L R
A = [-R/L , -K_ e/L ; K_ T/I , -clIl ;
B = [IlL ; OJ ;
ift<O . l

v = 100 *t ;
elsei f t <= 0 . 3

10 ;
elseif t <= 0 . 4

- 100 * (t - 0 . 4) + 10 ;
else

0 ;
end
xdot = A*x + B*v ;

I

I
0.6

Us ing the initi al conditions XI (0) = O. X2(0) = 0, the olver is cal led as fo llows:

global c I K_ T K_ e L R
R = 0 . 6 ; L = 0 . 002 ; c = 0 ;
K_ T = 0 . 04 ; K_ e = 0 . 04 ; 1 = 6e-5 ;
[t , xl = ode23 ('dcmotor ' , [0 , 0 . 5]. [0 , 0 ;1 ;

517

518

LTIOBJECT

REDUCED FORM

CHAPTER 8 Numerical Calculus and Differential Equations

The re. ul ts are plotted in Fi gure 8.6-6. The motor 's velocity follows a trapezo idal profile

as expected, although there is ome sl ight deviation because of its electrica l resistance and

inductance and its mechanical inerti a.

8.7 ODE Solvers in the Control System Toolbox
Many of the functi ons of the Control System toolbox can be used [0 solve linear,
time- invari ant (constant-coefficient) differential eq uations. They are sometimes
more convenient to use and more powerful than the ODE solvers discussed thus
far, because general soluti on can be fo und for linear, time- invariant equations.
Here we discuss several of these functi on .. These are summarized in Table 8.7- 1.
The other features of the Control System toolbox require advanced methods and
will not be covered here.

Model Forms

The ODE solvers in the Control System toolbox can accept various descriptions
of the equations to be so lved. Version 4 of the Control System toolbox in troduced
the LTf object, which describes a linear, time- invariant equati on, or sets of equa­
tions, here referred to as the system. An LTI objec t can be created from different
descriptions of the system; it can be analyzed with several functi ons; and it can
be accessed to provide alternati ve descriptions of the system. For example, the
equation

2x + 3x + 5x = I (t) (8.7- 1)

is one description of a particular system. This description is ca lled the reduced
form. The standard arrangement of the reduced form has the forcing function
on the right-hand side of the equals sign, and all the function s of the dependent
variable on the left-hand side. Thi s di stinction is important when using the t f
function .

The following i. a state-modeJ description of the same system:

x = Ax + Bu (8.7- 2)

Table 8.7-] LTI object functions

Command

sys ss (A , B , C , D)

[A , 13 , C, DJ - ssdata (sys)

sys _ t(right , let)

[1 iqht , left] tid Lol(sys)

Description

Creates an L1'I object in , rate-space form , where the matrices A, B, C, and
D correspond to tho. e in the model x = Ax + Bu. y = Cx + ()u.
Extracts the matrices A. B, C, and D corre. ponding to those in the model
x = Ax + Bu, y = ex + ()u.

Creates an LTI object in Iransfer-function form, where the vector right
is the vector of coefficients of the right-hand side of the equation ,
arranged in descending derivative order, and left is the vector of
coefficients of the lefl -hand ~ide or the equation, al~o arranged in
descending derivative order.
Extracts the coefficients on the right- and left-hand sides of the
reduced-form model.

8.7 ODE Solvers in Ihe Control System Toolbox

where X I = X, x2 = X, U = I (!) ,

A = [-~ -~J (8.7- 3)

B = [~J (8.7- 4)

and

x = [~~J (8.7-5)

Both model fo rms contain the same informati on. However, each form has its own
advantages, depending on the purpose of the analys is.

Because th.ere ar~ two or more state vari ables in a state model, we need to
be able to sp~c lfy ~hlch ~ tate vari able, or combinati on of vari able, con. tiMes
the output of the Simulati on. For example, model (8.7- 2) thl"Ough (8.7-5) can
represent the motion of a mass, with XI the pos ition , and X2 the ve locity of the
mass . We n ~ed to be able to specify whether we want to sec a plot of the position,
?r the v~loclty, or b~th . ThiS sp~cifl cation of the output, denoted by the vector y,
IS done In general with the matnces C and D, which are defined a follows:

y = Cx + Du (8.7- 6)

Continuing the previous example, if we want the output to be the position x = X I ,

then y = X I ; and we would select

C= [1 0]

D = O

Thus, in thi s case, (8 .7- 6) reduces to y = XI .

To create an LTI object from the reduced form (8.7- 1), you use the
t f (right , left) function and type

»sysl = tf(l , [2 , 3 , 5]) ;

where the vector right is the vector of coefficients of the right side of the
equation, arranged in descending derivative order, and left is the vector of
coefficients of the left side of the equation, also arranged in de cending derivative
order. The result sys 1 is the LTl object that de. cribes the sy. tem in the reduced
form , also called the tran.lferJunctionform. (The name of the function t f . lands
for transferfunction, which is an equivalent way of describing the coefficients on
the left and right side of the equation.)

Here is another example. The LTI object sys2 in transfer-function form for
the equation

(PX d 2x dx d 2 f dI
6 dt J - 4

dr 2
+7df+5x=3d(f+9df+2f (8.7-7)

TRANSFER­
FUNCTION
FORM

519

520 CHAPTER 8 Numerical Calculus and Diffe rential Equations

is created by typing

»sys2 = tf([3 , 9 , 2],[6 , -4, 7 , 5]) ;

To create an LTI object from a state model, you use the s s (A , B , C , D)
function, where s s stands for state space. The matrix arguments of the function
are the matrices in the following standard form of a state model :

x = Ax+Bu

y = Cx+Du

(8 .7-8)

(8.7-9)

where x is the vector of state variables, u is the vector of input functions, and y is
the vector of output variables. For example, to create an LTI object in state-model
form for the system described by (8.7-2) through (8.7-5), you type

»A [0 , 1 ; -5 /2 , -3 /2] ;
»B [0;1 /2] ;
»C [1 , 0] ;

»D 0 ;
»sys3 = ss(A,B , C , D) ;

An LTI object defined using the t f function can obtain an equivalent state­
model description of the system. To create a state model for the system described
by the LTI object sys 1 created previously in transfer-function fonn you type
ss (sysl) . You will then see the resu lti ng A, B, C , and D matrices on the
screen. To extract and save the mauices , use the ssdata function as follows:

»[A1 , Bl, Cl, Dl] = ssdata (sysl) ;

The results are

Al = [-l.~

BI = [~.S]

CI = [0 0.5]

DI = [0]

-1.2~]

When usi ng s sda ta to convert a transfer-function form into a state model, note
that the output y will be a scalar that is identical to the solution variable of the
reduced fo rm ; in this case the solution variable of (8.7-1) is the variable x . To
interpret the state model , we need to relate its state variables XI and X2 to x. The
va lues of the matrices CI and DI tell us that the output variable is y = 0.SX2.
Because the output y is the same as x, we then see that X2 = 2x. The other state
variable XI is related to X2 by X2 = 2xl. Thus XI = ,r.

To create a transfer-function description of the system sys3, previously
created from the state model , you type t f sy s 3 = t f (sy s 3) ; . To ex tract and

8.7 ODE Solvers in the Control System Toolbox

save the coefficients of the reduced form, use the t fdata function as fol lows:

» [right , l eft] = tfdata(sys3 , ' v ') ;

For thi s exampl e, the vectors returned are right = 1 and left = [1 ,
1 . 5 , 2 . 5] . The optional parameter ' v ' tells MATLAB to return the coef­
fici en ts as vectors; otherwise, they are returned as cell arrays. These functions are
summari zed in Table 8.7-1.

Test Your Understanding

TB .7-1 Obtain the state model for the reduced-form model

Sx+7x+ 4x=!(t)

Then convert the state model back to reduced form and ee whether you
get the original reduced-form model.

ODE Solvers

The Control System toolbox prov ides several so lver for linear models. These
so lvers are categorized by the type of input function they can accept: zero input,
impulse input, step input, and a general input function. These are summarized in
Table 8.7-2.

The initial Function: The initial function computes and plots the
free response of a state model. This response is someti mes ca lled the initial
condition response or the undriven response in the MATLAB documentation.
The basic syntax is ini tial (sys, xO) , where sys is the LTl object in tate­
model fo rm and xO is the initial condition vector. The time span and number of
solution points are chosen automaticall y. For example, to find the free respon e
of the state model (8.7-2) through (8 .7-5), for XI(O) = 5 and X2(O) = -2, first

Table 8.7-2 Basic syntax of the LTI ODE solvers

Command

impulse (sys)

ini tial (sys, xO)

lsim(sys , u , t)

step(sys)

Description

Computes and plots the unit-impul e respon e of the
LTl object sys .
Computes and plots the free respon e of the LTl object sys
given in tate-model form , for the initial condi tion, pccilied

in the vector xO.
Computes and plot the response of the LTI object sys .
to Ihe input specified by the vector u . at tbe time · spectfied

by the vec tor t .
Computes and plots !he unit-step response of the L Tl

object sys.

(See the text for description of ex tended syntax.)

521

522 CHAPTER 8 Numencal Calculus and Differential Equations

Initial Condilion Results

Time (sec)

Figure 8.7-l Free re ponse of the model given by (8.7-2) through (8.7-5) for

.\ I (0) = 5 and X2(0) = -2.

define it in state-model form. Thi wa done previously to obtain the system
sys3. Then use the initial function as follow:

»initial(sys3 , [5 , -2])

The plot . hown in Figure 8.7-1 will be di played on the screen.
To pecify the final time t f . use the yntax ini t ial (sys , xO , t f) . To

specify a vector of times of the fOnl1 t = [0 : dt : t;:], at whjch to obtain the
' olution. u e the . yntax ini t ial (sys , xO , t) . When called with left-hand
argument.a~ [y , t , xl = ini ial(sys , xO , . . .) ,thefunctionre­
turn the output re ponse y . the time vector t used for the simulation, and the
state vector x e\'aluated at tho e time '. The column of the matrice y and x
are the output ' and the tates. respective ly. The number of rows in y and x
equals length(t) . 0 plot i. drawn. The yntax initial (sysl , sys2 ,
... , xO , t) plOb the free reo pon e of multiple LTI . ystems on a single plol.
The time \'ector t: is optional. You can pecify line color. line style, and marker for
each system: for example. initial (sysl , ' r ' , sys2 , ' y-- ' , sys3 ,
' gx ' , xO).

The ip"p . ::'se Function: The if'lpu::'se function plot the unit-impulse
reo ponse for each input-output pair of the sy. tern, aswming that the initial con­
dition are lero. (If you are unfamiliar with the irnpul e input, see Chapter 10.

8.7 ODE Solvers In the Control System Toolbox

Sec~ion I (). ~.) The basie syn.tax i ~ impulsp (sys), where sys i ~ the LTl object.
Un li ke the In1 L 1 al fLlnclion , the impul se functi on can be L1 ~ed with ei ther a
state model or a transfer-functi on model. The time span and number of' soluti on
poin ts are chosen automati ca ll y. For exam pl e, the impul se response of nU- I) is
fou nd as follows:

;" .-" S Y s 1 t.f (1 , [2. , 3 , 5 I) ;
»impu 1 se (sysl)

To specify the final time tf, LI se the syntax impulse (sys , tf) . To speeify
a vector of time .~ of the form - [0 : dt : l f 1, at whieh to obtain the ~olution ,
use the syntax impulse (sys I). When ca lled with left-hand a rgumenL~ , a~
[y , t 1 = impulse (sys , .. .), the function returns the ou tput re),pon ~e

y and the time vector t med for the , imulation . No plot is drawn. The array y
is p x q X 11'1, where p is length (t) , q is the number of output)., and m is
the number of inputs. To obtain the state vector solution , use the syntax [y I

xl = impulse(sys , ...).
The syntax impulse (sys 1 , sys2 , ... , t) plots the impulse rcsp()n~e

of multiple LTI sys tems on a ~ in g l e plot. The time vector t i ~ optional. You
can specify line co lor. line style, and marker for eaeh !'y~ tem ; for example,
impulse(sysl , ' r ' , s,/s2 , ' ,/-- ' , sys3 , ' gx ') .

The step FUllction: The s ep function plOb the unihtep respon~e for
each input-output pair of the system, a%uming that the initial condition~ are zero.
(If you are unfamili ar with the step function , ~ee Chapter 10, Section 10.5.) The
basic syntax is step (sys) where sys is the LTI object. The slep function
can be u ed with either a slate model or a tran)fer-function model. The time
span and number of solution points are chosen automatically. To '>pecify the fi ­
nal time tf , use the syntax step(sys , tf) . To bpecify a vector of times of
the form = [0 : dt : t f 1, at which to obtain the solution, u'>e the syntax
step(sys , t) . When called with left-hand arguments, as 'y , . ,
step (sys , . ..) , the function return~ the output response j and the time
vector t used for the simulation . 0 plot i~ drawn. The array "j is p ;t q)" 11'1 ,

where p i length (t) , q is the number of outputs, and 11'1 is the number of
inputs. To obtain the state vector solution for state-'>pace models, u'>c the ~yntax
[y , t , xl = step (s y s , . . .).

The syntax s ep! s,/sl , sys2 , . . . , '_} plots the'>tcp responsc of multi­
pie LTI systems on a single plot. The time vector :: is optional. You can specify line
co lor, l ine style, and marker for each system; for example. S : <=;[J (sy~_ : , ' { , ,
sys2 , ' y -- ' , sys3 , ' gy. ' }. To find the step respon<;e, for zero initial condi­
tions, of the state model (8.7-2) through (8.7-5), and the reduced-form model

5i + 7X + Sx = sj + f (8.7-10)

the ses., ion is (as uming sys3 is . till available):

523

524 CHAPTER 8 Numerical Calculus and Differential Equations

I

I

/

I
"-

Step Aespanse

\

\

\

C
'

02 /

01 1

I

Time (sec.)

Figure 8.7-2 Step response of the model given by (8.7- 2) through (8.7- 5) and the

model (8 .7-10), for zero initial conditions.

The result is shown in Figure 8.7-2. The steady-state response is indicated by the
horizontal dotted line. Note how the steady-state response and the time to reach
that state are automati cally determined.

The lsim Function: The lsim function plots the response of the system
to an arbitrary input. The basic syntax for zero initial conditi ons is lsim (.sys ,
u , t) , where sys is the LTI object; t is a time vector hav ing regu lar spac ll1g, as
t = [0 : dt : t f 1; and u i a matrix with a many columns as inputs and whose
ith row specifies the va lue of the input at time t (i) . To specify non zero initial
conditions for a state-s pace model, use the syntax 1 s im (sys , u , t , xO) .

When calledwith left-haod arguments,as [y , tl = lsim(sys , u , ...) ,
the function returns the output response y and the time vector t used for the
simulation. The columns of the matrix y are the outputs, and the number of its
rows equal length (t) . No plot is drawn . To obtain the state vector solution
for state-space models, use the syntax [y , t , xl = 1 s i m (s y s , u , ...) .
Thesyntax ls i m(sysl , sys2 , ... , u , t , xO) plots thefree respon . eofmul­
tiple LTI system on a si ngle plot. The initial conditi?n v.ector xO I ~ needed
only if the initial conditions are non zero. You can speCify line color, line style,
and marker for each system; for example, lsim (sys 1 , ' r ' , s y s2 , ' y- - '
s y s 3 , ' gx ' , u ,) .

We will see an example of the 1 s im function shortly.

8.7 ODE Solvers in the Control System Toolbox

LTJ Viewer: The Control System too lbox has the LTI Vi ewer to ass ist in
the analysis of LTJ systems. It prov ides an interacti ve user interface th at allows
yo u .to switch between di fFt~: rent types of response plots and between the anal ys is
of dl rferent systems. The viewer is in voked by typing 1 t i view. See MATLAB
he lp fo r more inform ati on.

Predefined Input Functions

You can always create any compli cated input fun cti on to use with the ODE solvers
ode xxx or lsim by definin g a vector containing the input fun cti on's values at
spec ifi ed times . However, MATLAB provides several predefined function that
you might find eas ier to use. These are described in the fol lowing paragraphs,
and are summarized in Table 8.7-3.

The fun ction s tepfun (t, to) returns a vector the same length as t wi th
zeros where t < to and ones where t ~ to. The vector t must have monotoni­
call y increasing e lements.

The function square (t) returns a vector the same length as t correspond­
ing to a sq uare wave of period 271: . The function square (t) is simi lar to
sin (t) , with ex treme points at ± I, except that the wave is square. The syn­
tax square (t , duty) generates a square wave with a duty cyc le ' pecified by
duty, whi ch is the percentage of the period over which the function is positive.

The function sawtooth (t) returns a vector the ame length as t cor­
re ponding to a sawtooth wave of period 271: . The funct ion sawtooth (t) is
sim ilar to sin (t), with extreme points at ± l , except that the wave shape is a

Table 8.7-3 Predefined input fUIlCLioils

Command

[u, tl = gensig(type , period , tf,dt)

Description

Generate a periodic input of a 5pecified type type, having
a period period. The following types are available: '>ine
wave (type = sin). quare wave (type = sqJare), and
narrow-width periodic pulse (ype = pu 1 se). The vector :;
contains the tjmes, and the veclor u contalil'> the input values

525

at Ihose times. All generated input'> have unit amplitudes. The
optional parameters l f and de 'pecify the lime duration ,: f of
the input and the spacing d between the time instant,.

sawtooth (t , width)

square (t , duty)

slepfun(t , tO)

Returns a veClor the same length as t corresponding to a
sawtooth wave of period 27T. The optional parameter w ~ d t h
generate a modified sawtooth wave where width delennine\
the fraclion between 0 and 27T at which the maximum occurs
(0 ~ width ~ I).
Returns a vector the ame length as t corresponding to a square
wave of period 27T. The optional parameter d" t.y generates a
,>quare wave with a duty cycle specified by duty, whIch is the
percentage of the period over which the f unction is positive.
Returns a vector the same length as " WIth zeros where t < '
and ones where L ::: :. O.

526 CHAPTER 8 Numerical Calculus and Differential Equations

lTiangle. The syntax sawtooth (t , width) generates a modified sa~tooth
wave where width determines the fract ion between 0 and 2rr at whtch the
maximum occurs (0 :::: width:::: l). . .

The fu nction [u , t J = gensig (type , period) generates ~ penodlc
input of a specified type type, havin~ a period period. The fo llo~ lI1 g t~p,es
are avai lab le: sine wave (type = 'sJn ') , square wave (type = squate),
and narrow-width periodic pulse (type = ' pulse'). Th~ vector t contains ~he
times, and the vector u contains the input values at those times. All generated 111 -

puts have unit amplitudes. The syntax [u , t J. = genslg (t~pe , perlod ,
t f , dt) specifies the time duration t f of the mput and the spacll1g dt between
the time instants.

For example, suppose a square wave with period 5 is applied to the following
reduced-form model.

x +2;i: +4x = 4 f (8.7-11)

To find the response for zero initial conditions, over the interval 0 :::: t :::: 10
and using a step size of 0.01 , tbe session is

»sys4 = tf (4 , [1 , 2 , 4]) ;
»[u , t] = gensig(' square ' , 5 , 10 , 0 . 01) ;
»[y , t] = lsim(sys4 , u , t) ; plot(t , y , t , u) , axis([0 10 - 0 . 5 1. 5]) , . ..

x label (' Time ') , ylabel (' Response ')

The result is shown in Figure 8.7-3.

j 0.5

-0.5 oL---'----'----'-----L....--
5
=--:---:----:---:;----:.

Time

Figure 8.7-3 Square-wave response of the model i + 2.r + 4x = 4f.

8.8 Advanced Solver Syntax 527

8.8 Advanced Solver Syntax

The complete syntax of the ODE solver is as fo llows and is summari zed in
Table 8.8-1.

[t, y] = ode23 (' yc1ot ', tspan , yO , options , p1 , p2 , . . .)

where the options (U'gument is created with the new odeset fun cti on, and
pI, p2, . . . are optional parameters that can be passed to the function fil e ydot
every ti me it is ca ll ed. If these optional parameters are used, but no options
are set, use options = [] as a placeholder.

The function fil e ydot can now take additional input arguments. It has the
fo rm ydot (t , y , flag , pI , p2 , . ..), where flag is an argument
that notifies the function ydot that the solver is expecting a spec ifi c kind of
info rmation. We will see an example of the flag argument shortl y.

The ode set Function

The odeset function creates an options structure to be supplied to the sol ver.
Its syntax is

options = odeset(' name1 ', ' value1 ' ' name2 ', ' value2 ', . . .)

Table 8.8-1 Complete syntax of ODE solver

Command

[t , y] = ode23(' ydot ', tspan , yO ,
options , pI , p2 , . . .)

opt ions = odeset (' n amel ' ,
' valuel ', ' name2 ', ' value2 ' , ...)

Description

Solves the differential equati on y = f(l . y) pecified in the function
fil e ydot, whose inputs must be I and y and who~e output mU M be
aco!lIIr/n vector representing dyl dl ; that is. nl , y). The number of
rows in thi column vector must equal the order of the equation .
The vector t span contains the starting and ending va lue, of the
independent vari able I , and optionally, any intermediate va lue, of I
where the solution is de, ired . The ector yO contain \ y (to). The
function file must have two input argument, t and y even for
equations where r(l , y) is not a fun ction of I .

The options argument is created with we odeser function.
and pI, p2 are optional parameter, that can be pa"ed to
the functi on file ydot every time it is called. If these optional
parameter are used. but no opt J ons are set. u,e op:: : O:·. E

[: a a placeholder.

The function file ydot can take addllional input argument, . Jt ha,
the form ydot (t , y , flag , pI , p2 , ...) . where ' lug
is an ar" ument that notifie. the function yeot that the ~olycr i
expecti~g a specific kind of information. The syntax for all the
sol ver, is identical to that of odeL 3.
Creates an integrator options tructure opt ions to be u\ed with
we ODE solver. in which the named propenies have the ~pecitieu
values. where name is the name of a properTy and 'fa, _<: i the
value to be assigned to the property. Any unspecified propertie
have default values. odeseL wiw no input argument~ displays
all property names and their possible values.

528 CHAPTER 8 Numerical Calculus and Differential Equations

wh re name is the name of a properly and val ue is the va lue to be assigned to
the property.

A simple example wi ll clarify things. The Ref ine property is used to in­
crease the number of output points from the so lver by an integer factor n. The
default value of n is I for all the solvers except ode45 , whose default value is 4
because of the so lver's large step sizes. Suppose we want to so lve the equation

ely .
- =SIl1I
dl

for 0 :s I :s 4rr with yeO) = O. Define the following function file :

function ydot = sinefn(t , y)
ydot = sin(t) ;

Then use the odeset function to set the value of Refine to n = 8, and call the
ode45 solver, as shown here:

options = odeset (' Refine ' , 8) ;
[t , y] = ode45(' sinefn ', [0 , 4*pi] , 0 , options) ;

Many properties can be set with the odeset function. To see a li st of these,
type odeset .

Another property is the Event s property, which has two possible values:
on and of f . It can be used to locate transi tions to, fro m, or th rough zeros of a
u er-defined function. This property can be used to detect when the ODE solution
reaches a certain value. To use this property, you must write the ODE fil e ydot
to have three outputs, as follows:

[value , isterminal , direction] = ydot (t,y,flag)

The vector value should be programmed to contain the vector describing the
event when the flag equals' events' . The vector value should be programmed
to conrain the derivatives when the flag i not set to ' events ' or is empty.
value i eval uated at the begi nning and end of each step, and if any of its
element make tran itions to, from , or through zero, the solver determine the
time when the tran ition occurred. The direction of the transition is specified in
the vector direct ion. A 1 indicates po itive direction. a -1 indicates negative
direction. and a ° indicates "don't care."

The isterminal vector is a logical vector of l s and Os that specifies
whether a zero ero sing of the corresponding element in val ue is a terminal
event. A 1 corre pond to a termi nal event and hal ts the solver; a ° corresponds
to a nontenll inal evcnt.

For e, ample. uppose we want to simu late a dropped ball bouncing up fro m
th floor. The equation of motion of the ball in free flig ht is

m.\!= -l11g

8.8 Advanced Solver Syntax

~r y = - g, w~ere y is the ball 's hei ght above the floor. Put thi s into state-variable
lorm by definll1g)'1 =)' and Y2 = y. The equations are

.i' l =)'2

h =-g

Define .the . follo~ing ~quation fil e to use with the solver. We u~e g = 9.8 1 m/s2

and an Inili al height of 10m. The value vector here consists of the slate vector.
The "event" here is a bounce, which occurs when the height is O.

function [value , isterminal , direction1 - ballode(t , y , fJag)
if (nargind) lisempty(flag)

value = [y(2) ; -9 . 81];
elseif flag == ' events '

% Returns height and velocity
value = y ;
%Instructs to stop when first
%variable (height) j s
isterminal = [1 ; 0] ;
% Instructs to detect an event only when the first
% variable (height) is decreasing ,
% regardless of velocity
direction = [-1 ; 0] ;

else
error ([' unknown flag '" flag ' , , . ']) ;

end

We ass ume that the ball loses I 0 percen t of i l~ speed each time it bounce5.
The script fi le to find the ball 's moti on up to the second bounce [01I ow5. It call s
the so lver before and after the bounce.

options = odeset (' Events ' , ' on ')
[tl , yl] = ode45(' ballode ', [0 , 10]' [10 , 0], op ions) ;
[t2 , y2] = ode45(' ballode ', [tl(length(:1)) ,]')] , ...
[0 , -0 . 9*yl (length(tl) , 2)] , options) ;
t = [e1; t2];y = [y1; y2];
ploe (t, Y (: , 1)) , xlabel (' Time (s) ') , . ..
ylabel(' Ball Height (m) '),axis([O 5010;)

The resulting pl ot of height verws time i ~hown in Figure 8.8-1.

Stiff Differential Equations

A sliff di fferential equat ion is one whose response change rapidly over a time
scale' that i short compared to the time cale over which we are interested in
the olution. Sti ff equation preent a challenge to solve numerically. A small
step ~ i ze i needed to solve for the rapid changes. but many ~tep" are neede? to
obtai n the olution over the longer time interval. and thu!. a large error might

5 2 9

530 CHAPTER 8 Numerical Calculus and Differential Equations

°OL-~L---~--~--~--~2~.5~~~~~--~--~--~
T,me(s)

Figure 8.8-1 Height of a bouIlcing ball as a function of time.

accumulate. For example. the following equation might be considered "stiff":

y + 100l y + tOOOy = 0 (8.8-1)

The characteri tic roots are s = -J and s = -1000. If the initial condition are
yeO) = J and .}'(O) = 0, the closed-form solution is

yCr) = ~(lOOOe-r - e- 1OOOr)
. 999

(8.8-2)

That part of the re pon e due to the term e- 1OOOr disappears after approximately
f = 4/ 1000 = 0.00-1-. but the tem1 due to e- r doe not disappear until after
t = 4. Thu it would be djfficult for a plot to show the olution accmately, and a
numerical solver would need a mall step size to compute the rapid changes due
to the e- 1OOOr term. much mailer than that required to compute the longer-term
re pon e due to the e- r term. The re ult can be a large accumulated error because
of the small tep ize combined with the large number of steps required to obtain
the full solution.

All of the solvers in MATLAB do rather well with moderately tiff equa­
tjons. but if you have u'ouble olving an equation with one of these solvers, try
one of the four olver specifically designed to handle stiff equation . The e are
odelSs , a vatiable-order method: ode23s . a low-order method: ode23tb.

8.9 Summary

another low-order method; and ode23 t , a trapezoidal method . Their syntax is
identical to the ode2 3 and ode4 S solvers.

We have not covered all of the new solver capabililies provided in MATLAB.
For more informati on and additi onal examples, consult online help.

8.9 Summary

This chapter covered numerical methods for computing integral~ and derivatives
and for solving ordinary differential equations. Some integral~ and many differ­
ential equations cannot be eva luated ana lyti call y, and we need to compute them
numericall y with an approximate method . In addition, it is onen necessary to use
data to es timate rates of change, and thi s process requires a numerical e1>timate
of the derivative.

Now that you have fini shed thi s chapter, you . hould be able to the followin g:

• Use the trapz, quad, and quadl functions to numerica ll y eva luate
integrals. Note that trapz must be supplied with IlLlmerical va lues for
the integrand, whereas quad and quad l can and mu~tU1>e a function .

• Use numerical methods with the di ff function to e:;timate derivatives.
• Use the analytical expre sions for simple integrals and derivatives to check

the accuracy of numericalmcthods.

• Use MATLAB ODE olvers to solve differential equation~.
• Use the analytical solutions of simple differential equations to check the

accuracy of numerical method ..

• Apply approximati ons to check the validity of numerical solutions of
nonlinear differential equation .

Table 8.9-1 summarizes the MATLAB command~ introduced in this chapter.

Table 8.9-1 Guide to MATLAB function, introduced in Chapter 8

Command

eig(A)

Numerical integration functions
Numerical differentiation functions
ODE olvers
Bas ic syntax of ODE olvers
LTI object function~
Basic syntax of the LTI ODE solver,
Predefined input function~
Complete syntax of ODE solvers

Miscellaneous collUlWld

Description

Table 8.2- 1
l able 8.3- 1
"/able 8.5- 1
Table 8.5- 2
Table 8.7- 1
Table S.7- 2
Table 8.7- 3
Table !Us-I

Computes the eigemaJue, of the m.atri' ,., . ",hich are the characteri~tJ(:
root · of the vector-matrix dIfferential equal/on = Ax.

531

532 CHAPTER 8 Numerical Calculus and Differential Equations

Key Terms with Page References

Backward difference, 479
Cauchy form , 509
Central difference, 479
Characteristic root, 485
Definite integral , 468
Eigenvalue, SIS

Panel , 471
Predictor-cOlTector method ,

Quadrature, 475
Reduced form , 518
Runge-Kulta method, 496
Singularity, 468

493

Euler meLhod, 490
Forced response, 485
Forcing function, 483
Forward difference, 479
Free response, 485
Improper integral, 468
Indefinite integral , 468
Integrand. 466

Slope function singularity,

Stable equation, 486
State-variable form, 509
Step size, 491

475

LTI object, 5 18
Modified Euler method , 494

Problems

Stiff equation, 529
Time constant, 485
Total response, 485
Transfer-function form, 519
Trapezoidal integration , 471
Unstable equation , 486

You can find the answers to problems marked wi th an asterisk at the end of the text.
Note: Unless otherwise directed by your instructor, for each of the following

problems select the easiest method (analytical or numerical) to solve the problem.
Discuss the rea ons for your choice. Your instructor might require you to use a
numerical method and might require you to check the numerical solution with
the ana lytical solution if possible.

Sections 8.1, 8.2, and 8.3

1.* An object moves at a velocity v(r) = 5 + 7r2 starting from the position
x(2) = 5 at r = 2. Determine its position at t = 10.

2. The total distance D traveled by an object moving at velocity vet) from the
time I = a to the time t = b is

D = lb Iv(t)1 dt

The abo olute value Iv(t)1 is used to account for the possibility that vCt)
might be negative. Suppose an object moves with a velocity of vet) =
cos(n t) for 0 :s t :s 1. Find the total distance traveled and the object's
location x(l) at t = 1 if x(O) = 2.

3. An object starts with an initial ve locity of 3 mls at t = 0 and accelerates
with an acceleration of a(l) = 51 rnJ 2. Plot it velocity as a function of
time for 0 :s t :s 5 and find the total distance the object travels in 5 s.

Problems

4. The equation for the vo ltage V(I) across a capacitor as a funct ion of time is

v(1) = ~ ([i(t)d t + Qo)

wher~ i(t). i ~ ~h e applied current and Qo is the initial charge. A certa in
capac lt~r 1Il1tJaily holds no charge. Its capacitance is C = 10- 5 F. If a
current l et) = 2[1 + sin(5t)]10- 4 A is applied to the capacitor plot the
vo ltage vet) as a function of time for 0 :s I :s 1.2 S. '

5.* T,:o electrons a distance x apart repel each other with a force k jx2 , where
k IS a constant. Let one electron be fixed at x = O. Determine the work
done by the force of repul sion in moving the second charge from x = I to
x = 5.

6. A ce~tain obj~ct's position as a function of time is given by x U) = 61 sin St.
Plot It velOCIty and acceleration as functions of time for 0 < I < 5.

7.* A ball wa.s thro~n vertically with a velocity v(O) m/s. Its 'n ;asu~ed height
as a functIon of time was determineci to be h(t) = 61 - 4.9t 2 m. Determine
its initial velocity.

8. The volume of liquici in a spherical tank of radius r as a function of the
liquid 's height h above the tank bottom is given by

h3
V(h) = nrh2 -n

3
a. Determine the volume rate of change dV j dh with respect to heighl.
h. Determine the volume rate of change d V j ell with respect to time.

9. A certain object moves with the velocity v(t) given in the following table.
Determine the object's position X(I) at t = JO s if x(O) = 3.

Time(s) o I 2 3 4 9 10

Velocity (m/s) 2 5 7 9 12 I 5 J 8 22 20 I 7

10.* A tank hav ing veltical sides and a bottom area of 100 ft2 stores water. To
fill the tank, water is pumped into the top at the rate given in the following
table. Determine the water height h(t) at I = JO min.

Time (min) 10

Flow rate (ft3/min) 0 80 130 ISO ISO 160 165 170 160 140 120

11. A cone-shaped paper drinking cup (the kind used at water fountains) ha~
a radius R and a height H . If the water height in the cup is h, the water
volume is given by

533

534 CHAPTER 8 Numerical Calculus and Differential Equations

Suppose that the cup 's dimensions are R = 1.5 in. and H = 4 in .

a. If the flow rate from the fountain into the cup is 2 in .3/sec, how long
will it take to fill the cup to the brim ?

b. If the flow rate from the fountain into the cup is given by
2(1- e- 21) in. 3/sec, how long will it take to fill the cup to the brim ?

12. A certain object has a mass of 100 kg and is acted on by a for~e 1(t) =
500[2 - e- t sin(5rrt)] N. The mass is at rest at t = O. DetermlI1e the
object's velocity at t = 5 s.

13.* A rocket 's mass decreases as it burns fuel. The equation of motion for a
rocket in vertical flight can be obtained from Newton 's law and is

m(t)~ = T - m(t)g
dt

where T is the rocket's tlU'ust and its mass as a function of time is given by
m(t) = mo(l - rt / b) . The rocket 's initial mass is /17.0, the burn time is b,
and r is the fractio n of the total mass accounted for by the fuel.

Use the values T = 48,000 N, /17.0 = 2200 kg, r = 0.8, g = 9.81 m/s2,
and b = 40 s. Determine the rocket's velocity at burnout.

14. The equation for the vo ltage vet) across a capacitor as a function of time is

v(t) = ~ (l i(t)dt + Qo)
where i(t) is the applied current and Qo is the initial charge. Suppose
that C = 10- 6 F and that Qo = O. Suppose the applied current is i (t) =
[0.0] + 0.3e-5t sin (25rr t)]lO-3 A. Plot the voltage v(t) for 0 S t S 0. 3 s.

15. Pl ot the estimate of the derivative dy / dx from the following data. Do this
using forward, backward, and central differences . Compare the results.

xOl234 10

y 0 2 5 7 9 12 15 [8 22 20 I 7

16. At a relative maximum of a cW"ve y(x), the slope d y/d x is O. Use the
following data to estimate the values of x and y that correspond to a
maximum point.

x Ol2 34 6 7 10

y 0 2 5 7 10 8 7 10

17. Compare the performance of the forward , backward, and central
difference methods for estimating the derivative of the following function :
y(x) = e- X sin(3x). Use JOI points from x = 0 to x = 4. Use a random
additive error of ±O.O I.

Sections 8.4 and 8.5

18. Plot the free and total response of the eq uation

5y+y =f(1)

Problems

if f(t) = 0 for t < 0 and f(t) = 10 for t :::: O. The initial condition is
y eO) = 5.

19. The equation for the voltage y across the capacitor of an RC circuit is

RC cJ!.. + Y = vet)
dt

where vet) is the appli ed voltage. Suppose that RC = 0.2 s and that the
capac!tor vo ltage is initia ll y 2 V. Suppose also that the app li ed voltage
goes from 0 to 10 V at t = O. Plot the voltage yet) for 0 S t S i s.

20. The fol lowi ng equation describes the temperature T(t) of a certain object
immersed in a liquid bath of constant temperature Tb .

d T
10di'+T=Tb

Suppose the object's temperature is initially TCO) = 70°F and the bath
temperature is Tb = 170°C.

a. How long will it take fo r the object 's temperature T to reach the bath
temperature?

b. How long will it take for the object's temperature T to reach 168°F?
c. Plot the object's temperature T(t) as a function of time.

21.* The equation of motion of a rocket-propelled sled is, from Newton's law,

mv = f - cv

where m. is the sled mass, f is the rocket thrust, and c is a air resistance
coefficient. Suppose that m = 1000 kg and c = 500 N . s/m. Suppose
vCO) = 0 and 1 is constant for t :::: O.
a. What is the form of the step response vCr)?
b. Determine the fin al speed the sled will reach as a function of f.

How long will it take to reach that speed?

22.* The following equation describes the motion of a mass connected to a
spring with viscous friction on the surface.

my+cj,+ ky =!(t)

where 1(t) is an applied force.
o. What is the form of the free response if m = 3, C = 18, and k = 102?
b. What is the form of the free response if m = 3, c = 39, and k = l20?

23. The equation for the voltage y across the capacitor of an RC circuit is

RCcJ!.. + y = vet)
dt

535

536 CHAPTER 8 Numerical Calculus and Differential Equations

where vet) is the applied voltage. Suppa e that RC = 0.2 s and that the
capacitor voltage is initially 2 V. Suppose also that the applied voltage
is vet) = 10[2 - e- t sin(5rrt)]. Plot the vo ltage yCt) for 0 :::: t :::: 5 s.
Interpret the results in terms of the circuit's time constant and the

behavior of the applied voltage.
24. The equation describing the water height h in a spheri cal tank with a

circular drain of area A at the bottom is

Suppose the tank 's radius is r = 3 01 and that the circular drain hole has a
radius of 2 cm. Assume that Cd = 0.5 and that the initial water height is

h(O) = 5 m. Use g = 9.81 rnJs2
•

C/.. Use an approximation to estimate how long it takes for the tank to

empty.
b. Plot the water height as a function of time until h(t) = O.

25. The following equation describes a certai n dilution process, where yet) is
the concentration of salt in a tank of fres h water to which salt brine is

being added .

d y 2
dt + 10 + 2t y = 4

Suppose that yeO) = o.
C/ . Plot yet) for 0 :::: t :::: 10.
b. Check your results by using an approximation that converts the

differential equation into one having constant coefficients.

Sections 8.6, 8.7, and 8.8

26. The following equation describes the motion of a certain mass connected
to a spring with viscous friction on the surface

3;; + I8y + 102y = f(t)

where f(t) is an applied force . Suppose that f(t) = 0 for t < 0 and
f(t) = 10 for t ::: O.
Cl. Plot yet) for yeO) = yeO) = O.
b. Plot y(t) for yeO) = 0 and)'(0) = 10. Discuss the effect of the nonzero

initial velocity.

27. The following equation describes the motion of a certain mass connected
to a spring with viscous friction on the surface

3)i + 39y + 120)' = f(t)

Problems

~here f(t) is an appli ed force. Suppose that f(t) = 0 fo r I < 0 and
j (I) = 10 for I ::: O.

a. Plot y(t) for y eO) = yeO) = O.
b. Plot y(t) .f~r yeO) = 0 and)1(0) = 10. Di scuss the effec t of the

nonzero 1I1lttai velocity.

28. The fo l~owin? equation describes the motion of a certain mass connected
to a spnng with no friction

3)i + 75 y = f(t)

where f(t) is an applied force. The equation 's characteristic roots are
s = ±5i , so the system 's natural frequency of oscillation is 5 rad/s.
SuPP?se the applied force is sinusoidal with a freq uency of w rad/s and an
amplttude of 10 N: f(t) = 10 sin(wt) .

Suppose that th~ initial conditions are yeO) = yeO) = O. Plot y(t) for
o :::: t :::: 20 s. Do thiS for the following three cases . Compare the results
of each case.

C/.. w = 1 rad/s.
b. w = 5.1 rad/s.
c. w = 10 rad/s.

29. Van der Pol's equation has been used to describe many oscillatory
processes. It is

Plot yet) for fJ- = 1 and 0 :::: I :::: 20, using the initial conditions yeO) = 2,
yeO) = O.

30. The equation of motion for a pendulum whose base is accelerating
horizontally with an acceleration aCt) is

LiJ+gsin B =a(t)cosB

Suppose that g = 9.8] m/s2, L = I m, and 8(0) = O. Plot B(t) for 0 :::: t ::::

10 s for the following three cases:

C/. The acceleration is constant: C/ = 5 rnJs2 and B(O) = 0.5 rad.
b. The acceleration is constant: C/ = 5 m/s2 and B(O) = 3 rad.
c. The acceleration is linear with time: Cl = 0.5t rnJs2 and B(O) = 3 rad.

31. The equations for an armature-controlled dc motor are the following. The
motor's current is i, and its rotational velocity is w.

L~ = -Ri - Kfw + vet)
elt

I~ = Kri -cw
dt

(8.6-10)

(8.6-11)

537

538 CHAPTER 8 Numerical Calculus and Differential Equations

where L, R , and / are the motor' s inductance, resistance, and inerti a; K T

and Ke are the torque constant and back emf constant; c is a viscous
damping constant; and vet) is the applied voltage.

Use the values R = 0.8 Q , L = 0 .003 H, K r = 0.05 N· miA,
Ke = 0.05 V . s/rad , c = 0, and / = 8 X 10- 5 kg· m

2
.

Find the motor 's characteri stic roots and time constants. If the applied
voltage is constant, approximately how long will it take for the motor

to reach a constant speed?
b. Suppo e the applied voltage is 20 V. Plot the motor 's speed and

CUlTent versus time. Choose a final time large enough to show the

motor' s speed becoming constant.
c. Suppose the applied voltage is trapezoidal as given here:

20 0.05 ::: t ::: 0.2

{

4001 0 ::: t < 0.05

vet) = 0-400(t - 0.2) + 20 0.2 < t ::: 0 .25
t > 0.25

Plot the motor's speed versus time for 0 ::: t ::: 0 .3 s. Also plot the
applied voltage versus time. Does the motor speed follow a
trapezoidal profile?

32.* (Control System toolbox) Find the state-space form of the following

model:

lOy + 3y + 7 y = J(t)

33. (Control System toolbox) Find the state-space form of the following

model:

10y+6y+2y=f+ 3j

34.* (Control System toolbox) Find the reduced form of the following state

model in terms of XI ·

(~~] = (-~ =;] (~~] + m £l(t)

35. (Control System toolbox) The following state model describes the motion
of a certain mass connected to a spring with viscous friction on the
sLlIface, where rn = I, c = 2, and k = 5.

(~~] = (_~ _;] (~~] + (~] J(t)

a. Use the in i t i al function to plot the position XI of the mass if the
initial posi tion is 5 and the initial velocity is 3.

b. Use the s t e p function to plot the step response of the position and
velocity for zero initial conditions, where the magnitude of the step
input is 10. Compare your plot with that shown in Figure 8.6-4.

Problems

36. Consider the fo llowing equation:

5y +2y + l0Y =J(t)

C/. Plot the fre.e response for the initial conditions 0 = . _
b. Plot the unit-step response (for ' '" I ~(.) 10, yeO) - -5.
c. Th I zero lIlltla conditions)

e Iota response to a step input is the sum of the fre~ res onse
a~dttt.he sthep response. Demonstrate this fac t for thi s equati~n by
p 0 IIlg t e sum of the solutions found '
the plot with that crenerated . In ~arts a and b and comparing
yeO) = 10,)1(0) =°-

5
. by so lvlllg fO! the total response with

37. ~;~~l~'~ :i~~~I: t~~ lbOx) Use ~he lsim function to solve .the dc motor
in Figure"'8.6- 6. ample 8.6 2. Compare your results With those shown

38. (Control System toolbox) The model for the RC '. . h .
Figure P38 is . CIICUlt s own In

RCdvo+ v =v·
dl ° I

For RC = 0.1 s, plot the voltage response vo(t) for the case where the
appl~ ed voltage is a sing.l~ square pulse of height 10 V and duration 0.2 s,
start1l1g at t = O. The 1I1Jtlal capacitor voltage is O.

IT
Figure P38

39. Van der Pol's equation is

)i - J-l(l -lhl + Y = 0

This equation is stiff for hU'ge values of the parameter J-l. Compare the
performance of ode4 5 and ode23 s for this equation. Use J-l = 1000 and
0 ::: f ::: 3000 with the initial conditions yeO) = 2, ,>'(0) = O. Plot yet)
versus t .

40. Use MATLAB to plot the trajectory of a ball thrown at an angle of 30? to
the horizontal with a speed of 30 mfs. The ball bounces off the horizontal
surface and loses 20 percent of its vertical speed with each bounce. Plot
the trajectory showing three bounces.

539

Engineering in the
21 st Century ...

Embedded Control Systems

A n embedded control system is a microprocessor and sensor suite designed
to be an integral part of a product. The aerospace and automotive indus­
tries have used embedded controllers for some time, but the decreasing

cost of components now make embedded controllers feasib le for more consumer
and biomedical applications.

For example, embedded controllers can greatly increase the performance of
orthopedic devices . One model of an artifi cial leg now uses sensors to meas ure
in real time tbe walking speed, the knee joint angle, and the loading due to the
foot and ank le. These measurements are used by the controller to adjust the hy­
draulic resistance of a piston to produce a more stable, natural, and efficient gait.
The controller algorithms are adaptive in that they can be tuned to an individ­
ual's characteristics and their settings changed to accommodate different phys ical
activities.

Engines incorporate embedded controllers to improve efficiency. Embedded
controllers in new active suspensions use actuators to improve on the performance
of traditional passive systems consisting only of springs and dampers. One design
phase of such systems is hardware-in-the-loop testing, in which the controlled
object (the engine or vehicle suspension) is replaced with a real-time simulation
of its behavior. This enable the embedded system hardware and software to be
te ted faster and less expensively than with the physical prototype, and perhaps
even before the prototype is available.

Simulink is often used to create the simulation model for hardware-in-the­
loop testing. The Control Systems and the Signal Processing toolboxes, and the
DSP and Fixed Point blocksets, are also useful for such applications .•

Simulink
OUTLINE

9.1 Simulation Diagrams

9.2 Introduction to Simulink

9.3 Linear State-Variable Models

9.4 Piecewise-Linear Models

9.5 Transfer-Function Models

9.6 Nonlinear State-Variable Models

9.7 Subsystems

9.8 Dead Time in Models

9.9 Simulation of a Vehicle Suspension

9.10 Summary

Problems

Si~~linki s builton top of MAT LAB, so you musthaveMATLAB to use Simulink.
It IS lI1c1uded in the Student Edition of MAT LAB, and i also available separately
from The Math Works, Inc . The popularity of Simulink has greatly increased in the
last f~w years, as evidenced by the increasing number of short courses offered at
meetll1~s sp?nsored by professional organizations such as the American Society
of Engll1eenng Education.

Simulink provides a graphical user interface that uses various types of ele­
ments called blocks to create a simulation of a dynamic system-that is, a y tem
tha~ can ?e l:nodeled with differential or difference equations whose independent
varIable IS time. For example, one block type is a multiplier, another performs a
sun:, .and another is an integrator. The Simulink graphical interface enables you to
posItIon the blocks, resize them, label them, specify block parameters, and inter­
connect the blocks to describe complicated systems for imulation.

541

542

BLOCK DIAGRAM

GAIN BLOCK

INTEGRATOR
BLOCK

CHAPTER 9 Simultnk

This chapter starts with s imulations of simple systems that require few
blocks. Gradually, through a seri es of examples, more block type~ are IIltroduced.
The chosen applications require onl y a basic knowledge of physIcs and thus can
be appreciated by readers from any engineering discipline. By the time you have
finished thi s chapter you will have seen the block types needed to Simul ate a large

variety of common engineering applications.

9.1 Simulation Diagrams
You develop Simulink models by constructing a diagram that shows the e lements
of the problem to be solved. Such diagrams are called simulation diagrams or
block diagrams. Consider the equation y = I Of(t). lts solution can be represented

symbolically as

Y(I) = IIOf(t)d'

which can be thought of as two steps, using an intermediate variab le x :

x (t) = 10f(t) and y (l) = I X(I) dt

T hi s soluti on can be represented graphically by the simulation diagram shown in
Figure 9. 1- 1 a. The arrows represent the variables y,x, and f· The blocks represent
cause-and-effect processes. Thus, the block containing the number 10 represents
the proces xU) = 10 fU), where f(t) is the cause (the input) and x(t) represents
the effect (the output). This type of block is ca ll ed a multiplier or gain block.

The block contai ning the integral sign I represents the integration process
y (t) = I X(I) dl , where x(t) is the cause (the input) and y(t) represents the effect
(the output). Thi s type of block is called an integrator block.

There is some vari ation in the notation and symbols used in simulation
di agrams. Figure 9.I-lb shows one variati on. Instead of being represented by
a b~x, the multiplication process is now represented by a triangle like that used
to represent an electrical amplifier, hence the name gain block.

In addition , the integration symbol in the integrator block has been replaced
by the operator symbol 1/ s, which derives from the notation used for the Lapl~ce
transform (see Section 10.5 for a di scuss ion of thi s transform). Thus the equation
y = 10I(I) is represented by sy = 10f, and the solution is represented as

10l
)'=-. s

~ ~~[}---1
Ca) (b)

Figure 9.1-1 Simulation diagrall1 ~ for 5' = 10f(t)·

9.2 Introduction to Simulink

11~ . y~
(a) (b)

FigUl'e 9.1-2 (a) The summer element. (b) Simulation diaoram for
)1=f(I)-IOy. b

or as the two equations:

x = 10 f and y = ~ x
s

A~other element used in sim ul ation diagrams is the summer that, de pite its SUMMER
name, IS us.ed t.o subtract as we Ll as to sum variables. Two versions of its symbol
are shown III Figure 9.1-2a. In each case the symbol represents the equation z =
x - y. Note that a plus or minus sign is required for each input arrow .

. The summer symbol can be used to represent the equati on)1 = f(t) - lO y,
which can be expressed as

yet) = I[f (t) - lOy] dl

or as
I

y = -(f - lOy)
s

You should study the simul ation di agram shown in Figure 9.1-2b to confirm that
it represents this equation. This fi gure forms the basis for developing a Simulink
model to solve the equation.

9.2 Introduction to Simulink
Type simulink in the MATLAB Command window to start Simulink. The
SimulinkLibraryBrowser window opens. See Figure 9.2-1 . The Simulink blocks LIBRARY
are located in "libraries ." These libraries are displayed under the Simulink heading BROWSER
in Figure 9.2-1. Depending on what other Mathworks products are installed. you
might see additional items in this window, such as the Control System Toolbox
and Stateflow. These provide additional Simulink. blocks. which can be displayed
by clicking on the plus sign to the left of the item. As Simulink evolves through
new versions, some libraries are renamed and some blocks are moved to different
libraries, so the library we specify here might change in later release, . The best
way to locate a block, given its name, is to type its name in the Find pane at the
top of the Simulink Library Browser. When you press Enter, Simulink will take
you to the block location and will display a brief description of the block in the

pane below the Find pane.
To create a new model, click on the icon that resembles a clean sheet of

paper, or select New from the File menu in the Browser. A new U~titIed window
opens for you to create the model. To select a block from ~he. Llbr~ Browser,
double-click on the appropriate library and a list of blocks wlthm that hbrary then

543

544 CHAPTER 9 Simulink

: I

File Edit View Help

Integrator: Continuous-tirne integration of the input signal.

- lj Simuflnk

~J Continuous
~ Discontinuities
~ Discrete
~ Logic and Bit Operations
~ Lookup Tables

+ ~- rY1ath Operations
~ rY10del Verification
~- r'/lodel-Wide Utilities
~ Ports & Subsystems
!l>- Signal Attributes
~" Signal Routing
~ Sinh

~ Sources

~ User-Defined Functions
Control System Toolbox

Embedded MA TLAB
Simulink Extras
Stateflow

Figure 9.2-1 The Simulink Library Brower.

EJ Derivative

State-Space

~TransferFcn
~
~ Transport Delay

~ Variable Transport Delay

I (:;.1) I Zero-Pole
~S+1)

appears as shown in Figure 9.2- 1. T hi s figure hows the result of double-clicking
on the Continuous library, then clicking on the Integrator block.

Click on the block name or icon, hold the mouse button down, drag the block
to the new model window, and release the button. Note that when you click on
the block name in the Library Browser, a bri ef description of the block's function
appears at the top of the Brow er, You can access help for that block by right­
clicking on its name or icon, and selecti ng Help from the drop-down menu.

Simulink model files have the extension _ mdl. Use the File menu in the
model window to Open, Close, and Save model files. To print the block diagram
of the model, select Print on the File menu. Use the Edit menu to copy, cut and
paste blocks. You can also use the mouse for these operations. For example, to
delete a block, click on it and press the Delete key.

9.2 Introduction to Simulink

Gelling started with Sim ulin k is best done through exampl h' I
presenl. es, w IC 1 we now

Simu link Soluti on of y - 10 sin t

Use Sim ul ink to solve the foll owing problem for 0 :5 I :5 13.

d y
dI = 10 sini yeO) = 0

The exact solution is Y(I) = 10(1 - COS I).

• Solution

To construct the simulation, do the following steps. Refer to Figure 9.2-2.

1. Start Simulink and open a new model window as described previously.

2. Select and. place in the new window the Sine Wave block from the Sources library.
Double-click on It to open the Block Parameters window, and make sure the
Amplitude is set to I, the Frequency to I, the Phase to O. and the Sample time to O.
Then cli ck OK.

3. Select and place the Gain block from the Math Operations li brary, double-click on
it, and set the Gain va lue to 10 in the Block Parameters wi ndow. Then cli ck OK.
Note that the va lue 10 then appears in the tri angle. To make the number more
vi sible, click on the block, and drag one of the comers to expand the block so that all
the text is visible.

4. Select and place the Integrator block from the Continuous library, double-c li ck on it
to obtain the Block Parameters window, and set the Initi al conditi on to 0 (this is
because yeO) = 0). Then click OK.

5. Select and place the Scope block from the Sink library.

6. Once the blocks have been placed as shown in Figure 9.2-2, con nect the input port
on each block to the outport port on the preceding block. To do this, move the cursor
to an input port or an output port; the cursor will change to a cross. Hold the mouse
button down , and drag the cu rsor to a port on another block. When you relea e the
mouse button, Simulink will connect them with an arrow pointing at the input port.
Your model hould now look like that shown in Figure 9.2-2.

7. Click on the Simulation menu. and click the Configuration Parameters item.
Click on the Solver tab, and enter 13 for the Stop time. Make sure the Start lime i ~ O.
Then click OK.

8. Run the simulation by clicking on the SimuJation menu, and then clicking the Start
item. You can also start the simulation by clicking on the Start icon on the tool bar
(thi s is the black triangle).

~
Sine Wave Gain Integrator Scope

Figure 9.2-2 Simulink model for .i' = 10 sin I.

545

"SiN'qe'9'

546 CHAPTER 9 Simulink

9. You will hear a bell sound when the simulation is fi ni shed. Then do uble-cl ick on the
Scope block and then click on the binocul ars icon in the Scope di spl ay to enable
autosca ling. You should see an o. cill ating curve with an amplitude of 10 and a
peri od of 2][. The independent variable in the Scope block is time I ; the input to
the block is the dependent va ri able y. This completes the simul ation.

In the Configura tion Param eters sub menu under the Simulation menu,
you can select the ODE solver to use by clicking on the Solver tab. The defa ult
is ode4 5.

To have Simuli nk automati ca ll y connect two blocks, se lect the source block,
hold dow n the Ctrl key, and left-cl ick on the destination block. Si mulink also pro­
vides easy ways to connect mUltiple blocks and lines; see the help fo r in fo rmati on.

Note that blocks have a Block Parameters window that opens when you
double-cli ck on the block . This window contains several items, the number and
nature o f which depend on the pecific type of block. In general, yo u can use
the default va lues of these parameters, except where we have explicitly indicated
that they should be changed. You can always click on Help within the Block
Parameters window to obtain more information .

When you click on Apply, any changes immediately take effect and the
window remains open. If yo u cli ck on OK, the changes take effect but the window
clo es.

Note that mos t blocks have default labels. You can edit tex t associated with a
block by clicking on the text and making the changes. You can save the Simulink
model as an . mdl fil e by selecting Save from the File menu in Simulink. The
model fil e can then be reloaded at a later time. You can also print the diagram by
. electing Print on the FiJe menu.

The Scope block is useful for examining the solution , but if you want to
obtain a labeled and printed plot you can use the To Workspace block, which is
described in the nexL example.

'5"'9',,+ Exporting to the MATLAB Workspace

We now demonstrate how to export the results of the simulation to the MATLAB work­
space, wherc they can be plotted or analyzed with any of the MATLAB functions.

• Solution
Modify the Simulink model constructed in Example 9.2- 1 as follows. Refer to
Figure 9.2- 3.

1. Delete the arrow connecting the Scope block by clicking on it and pressing the
Delete key. Delete the Scope block .in the same way.

2. Select and place the To Work. pace block from the Sinks library 1U1d the Clock block
from the Sourl'es library.

3. Select and place the Mux block from the Signal Routing library. double-click
on it. and . et the Number of inputs to 2. Click OK. (The name Mux is an

9.2 Introduction [0 Simulink

[E9-~ ~
Sine Wave Gain Integrator

C9---=I-GJ
Clock To Workspace

FigUl'e 9.2- 3 Si lllul ink Illodelusing the Clock and To
Workspace blocks.

abbreviati on for mUltiplexer, which is an electri cal dev ice for transmitting several
signals.)

4. Connect the top input port of the Mux block to dle output POrl of the Integrator
block. Then use the same technique to connect the bottom input port of the Mux
block to the outport POrl of the Clock block. Your model should now look li ke that
shown in Figu re 9.2-3.

S. Double-cli ck on the To Workspace bl ock. You can specify any variabl e name you
wa nt as the output; the default is simout . Change its name to y. The outpu t
variable y will have as many rows as there are simulation time steps, and as many
co lumns as there are inputs to the block. The second column in our simulation will
be time, because of the way we have connected the Clock to the second input port of
dle Mux. Specify the Save form at as Array. Use the default va lue for the other
parainelers (these should be inf, 1, and - 1 for Maximum number of rows,
Decimation, and Sample time, respectively). Click on OK.

6. After running the simulation, you can use the MATLAB plotting commands from
the Command window to plot the columns of y (or simout in general). To plot
y(I), type in the MATLAB Command window:

»plot (y (: , 2) , y (: , 1)) , xlabel (, t ') , ylabel (' y ')

Simulink can be configured to put the time variable tout into the MATLAB
workspace automatically when you are using the To Workspace block. This is
done with the Data IIO tab under Configuration Parameters on the Simulation
menu. The alternative is to use the Clock block to put tout into the workspace.
The Clock block has one parameter, Decimation. If this parameter is set to I, the
Clock block will output the time every time step; if set to 10 for example, the
block will output every 10 time steps. and so on.

547

Simulink Model for)' lOy + /(1) +.'9".
Construct a Simulink model to solve

y = -lOy + f(t) yeO) = I

where f(t) = 2sin41, forO ~ t ~ 3.

548 CHAPTER 9 Simulink

• Solution

[~l---H-
Sine Wave

Gain

Figure 9.2-4 Simulink model for

.i' = - lOy + f(l)·

To construct the simu lation, do the following steps.

B
Scope

1. You can use the model shown in Figure 9.2-2 by rearrang ing the blocks as shown in

Figure 9.2-4. You wi ll need to add a Sum block.

2. Select the Sum block from the Math Operations library and place it as shown in

the simul atio n diagram. Its defau lt setting adds two input signals. To change thi s,

double-c li ck on the bl ock, and in the List of Signs window, type I +-. The signs are

ordered coun terclockwise from the top. The symbol I is a spacer indicating here

that the top port is to be empty.

3. To reverse the direction of the Gain block, right-c lick on the block, select Format

from the pop-up menu , and select Flip Block.

4. When you connect the negati ve input port of the Sum block to the output port of the

Gain b lock. Simulin k wi ll attempt to draw the shortest line. To obtain the more

standard appearance shown in Figure 9.2-4, first extend the line vertically down

from the Sum input port. Release the mouse button and then c li ck on the end of the

line and attach it to the Gain block. The result wi ll be a line with a right angle. Do

the same to connect the input of the Gain to the arrow connecti ng the Integrator and

the Scope. A small dot appears to indicate that the lines have been successfull y

connected . Thi s point is ca lled a takeofj"point because it takes the value of the

variab le represented by the alTOW (here, the vari able y) and makes that va lue

ava il ab le to another block .

5. Select Configuration Parameters from the Simulation menu. and set the Stop time

to 3. Then click OK.

6. Run thc simul ati on as before and observe the results in the Scope.

9.3 Linear State-Variable Models
State-variable model s, unlike transfer-function models, can have more than one
input and more than one output. Simulink has the State-Space block that represents
the linear state-vari able model x = Ax + Bu, y = ex + Du. (See Section 8.7 for
di scussion of thi s model form.) The vector u represents the inputs, and the vector
y represents the outputs. ThllS, when you are connecting inputs to the State-Space

9.3 Linear State-Variable Models

block , ca re must be taken to connect them in the r '. . . .
be taken when connectin o the block' popel oldel. SlIndar care mllst
example illustrates how this is done. s outputs to anot her block. The following

Simulink Model of a Two-Mass System

Consider the two-mass system shown in Figure 9 3-1 S h

1111 = 5, 111 2 = 3, CI = 4, C2 = 8, kl = I, and k 2 ~ 4. ~h~P~~~~ti~l~sP~~~~:~~~:; :~~ues are

SXI + 12xI + SXI - 8,r2 - 4X2 = 0

3X2 + 8X2 + 4X2 - 8xI - 4xI = f(l)

These equations can be expressed in state-variable form as

21 = Z2 22 = ~(-SZI- 12z2+ 4z3+8z4)

23 = Z4 24 = H4Z1 + 8z2 - 4Z3 - 8z4 + I(t)]

In vector-matri x form these equations are

where

A=

and

f-~ o
4
3"

z = Az + B f(t)

Develop a Simlliink model to plot the unit-step response of the variables XI and xo wi th
the initi al conditions XI(O) = 0.2. ,rl(O) = 0, X2(0) = 0.5 , X2(0) = O. -

• Solution

First select appropriate va lues for the matrices in the output equation y = Cz + B f(t).

Since we want to plot XI and X2. which are::1 and Z2. we choose C and D as follows.

C = [I 0 0 0]
o 0 I 0

To create this simulation, obtain a new model window. Then do the following to
create the model shown in Figure 9.3-2.

1. Select and place in the new window the Step block. Double-click on it to obtain the

Block Parameters window, and set the Step time to O. the Initial and Final values to 0

and I , and the Sample time to O. Click OK. The Step time is the time at which the

step input beg ins.

Figure 9.3-1 A
vibrating systcm
having Iwo masses.

549

550 CHAPTER 9 Simulink

III ___ ~
~- -- . ~p

Step State-Space Scope

Figure 9.3-2 Simulink model containing
the State-Space block and the Step block.

2. Select and place the State-Space block. Double-c lick on it, and enter [0 , 1 , 0 ,
0 ; -1, -12/5, 4/5 , 8/5 ; 0 , 0 , 0 , 1 ; 4/3 , 8/3 , -4/3, -8/3]
for A, [0 ; 0 ; 0 ; 1/3] for B, [1 , 0, 0 , 0 ; 0 , 0 , 1 , 0] for C, and

[0 ; 0] forD . Then enter [0 . 2 ; 0 ; 0 . 5 ; 0] forthe initi al conditions. Click
OK. Note that the dimension of the matrix B te ll s Simu lin k that there is one input.

The dimensions of the matrices C and D tell Simulink that there are two outputs.

3. Select and place the Scope block .

4. Once the blocks have been placed, connect the input port on each block to the
outport port on the preceding bl ock as shown in the figure.

S. Experiment with different va lues of the Stop time until the Scope shows that the
steady-state respon e has been reached. For thi s application , a Stop time of 25 is
satisfactory. The pl ots of both XI and X2 wi ll appear in the Scope.

9.4 Piecewise-Linear Models
Unlike linear models, clo ed-form solutions are not available for most nonlinear
differential equations. and we must therefore solve such equations numerically.
A nonlinear ordinary differential equation can be recognized by the fact that the
dependent vari able or its deri vatives appears rai sed to a power or in a transcen­
dental function. For example, the following eq uations are nonlinear.

y y + 5.\1 + Y = 0)1 + sin y = 0

PieceIVise-linear models are actually nonlinear, although they may appear
to be linear. They are composed of linear models that take effect when certain
condition are sati sfied. The effect of switching back and forth between these
linear model makes the overall model nonlinear. An example of such a model
i. a mass attached to a spring and sliding on a horizontal surface with Coulomb
friction . The model is

liLt + k.r = l(t) - f.Llng if x 2: 0

171.\' + k.r = I(t) + f.Lmg if >t < 0

These two linear equations can be expressed as the single. nonlinear equation

{
+1 if x> 0

m1' + kx = I(t) - f.Lmg sign(x) where sign(x) = -1 ifi ~ 0

9.4 Piecewise-Linear Models

Output

Upper Limit

Slope = 1

------~f-------Input

Lower Limit

F igure 9.4-1 The saturation nonlinearity.

Solutions of models that contai n piecewise- linear functi ons are very tedious
to program . However, ~imulink ha buill-in blocks that represent many of the
commonly-found functions such a. Coulomb fric ti on. Therefore Simulink is es­
peciall y useful for such applications. One such block is the SaLUration block in
the Discontinuities library. The block implements the sa turation function shown
in Figure 9.4-1.

551

Simulink Model of a Rocket-Propelled Sled 'UM'be,,1
A rocket-propelled sled on a track i, represented in Figure 9.4- 2 as a ma~s m with an
appli ed fo rce f that represents the rocket thrust. The rocket thrust initially i ~ horizon tal,
but the engi ne accidentally pivot during firing and rotate · with an angular acceleration
of e = 7r / 50 rad/s. Compute the sled's velocity v for 0 :5 t :5 6 jf 1'(0) = D. The rocket
thrust is 4000 N and the sled mass is 450 kg.

The sled's equation of motion is

450iJ = 4000 cos B(t)

Figure 9.4-2 A rock.et-propelled I~.

552 CHAPTER 9 Simulink

To obtain 8(1), note that

and

8 = 8 cil = - I cil = - I j.t. j.t 7'[7'[2

.0 0 50 100

Thus the equation of motion becomes

450iJ = 4000 cos (1~01 2)

The so lution is formal ly given by

V(I) = ~ f' cos (~t2) cil
9 ./0 100

Unfortunately, no closed-form solution i available for the integral, which is called

Fresnel 's cosine inlegral. The value of the integral has been tabulated numerically, but we

wi ll use Simulink to obtain the solution .

(a) Create a Simulink model to so lve (hi problem for 0 ::: I :::]0 s.

(b) Now suppose that the engine angle is Umited by a mechanical stop to 60°, which is

60JT / 180 rad. Create a Simulink model to so lve the problem.

• Solution
(a) There are several ways to create the input function 8 = (7'[/100)£2. Here we note that

e = 7'[/ 50 rad/s and that

and

e = f' edl
./0

8 = 8ci l = -I-j.t . JT ?

. 0 LOO

Thus we can create 8(1) by integrating the constant e = 7'[/ 50 twice. The simulation

di agram is shown in Figure 9.4-3 . Thi s di agram is u, ed to create the corresponding

Simulink model shown in Figure 9.4-4.
There are two new blocks in this model. The Constant block is in the Source library.

After placing it. double-click on it and type pi / 5 0 in its Constant Value window.
The Trigonometric block is in the Math Operation library. After placing it, double­

click on it and select cos in its Function window.

Figure 9.4-3 Simulation diagram for v = (80/ 9)cos(7'[12 /100).

9.4 Piecewise-Lrnear Models

E}-{IJ-{[J-B-{~~>-{IJ-1g
Constant Integrator Integrator 1 Trigonometric Gain Integ~ato r 2 Scope

Function

Figu re 9.4-4 Simuli nk model for u = (80/9) COS(lU 2 / I 00) .

B-CD----=I~fDl
Constant 1 Integrator ~ -~D

Scope

s s ~~ ~
Integrator Integrator 1 Saturation Trigonometric Gain Integrator 2

Function

Figure 9.4-5 Simulink model for v = (80/9) COS(7'[{2 / I 00) with a Saturation block.

Set the Stop time to 10, run the imulation, and examine the results in the Scope.
(b) Modify the model in Figure 9.4-4 as follows to obtain the model shown in

Figure 9.4-5 . We use the Saturation block in the Di scontinuities library to limit the range

of 8 to 60JT / 180 rad. After placing the block as shown in Figure 9.4-5, double-cli ck on

it and' type 60*pi/180 in its Upper Limit wi ndow. Then type ° in its Lower Limit
wi ndow.

Enter and connect the remaining elements as howll , and fUll the ~imulation. The

upper Constant block and Integrator block are u ed to generate the solution when the

engine ang le is 8 = 0, as a check on our results. (The equation of moti on for 0 = 0 is

iJ = 80/9, which gives V(I) = 801 / 9.)
If YOll prefer, YOll can substitute a To Workspace block for the Scope. add a Clock

block, and change the number of inputs to the Mux block to three (do Ihi \ by double­
c]jcki ng on it). Then you can plot the reo ults in MATLAB. The re~ulting plol is , hown in

Figure 9 .4-6.

The Relay Block

The Simulink Relay block is an example of something that is tedious to program
in MATLAB but is easy to implement in Simulink. Figure 9.4-7a is a graph of
the logic of a relay. The relay switches the output between two specified values.
named On and Off in the figure. Simulink calls these values "Output when on"
and "Output when off." When the relay output is On, it remains On until the
input drops below the value of the Switch-off point parameter. named SwOffin
the figure . When the relay output is Off, it remain Offuntil the input exceed the
value of the Switch-on point parameter. named SwOn in the figure.

The Switch-on point parameter value must be greater than or equal to the
Switch-off point value. Note that the value of Off need not be zero. ote al 0

553

554 CHAPT ER 9 Simulink

60~----~----~----~-----'----~-----'

50

40

20

10

3
1(5)

Figure 9.4-6 Speed response of the sled for 0 = 0 and e i- O.

(a) (b)

Figure 9.4-7 The relay function . (a) The case where
On > Off . (b) The case where Orl < OJ]'.

0=0

that the value of OjJ need not be less than the va lue of 011 . The ca. e where
Off > On is shown in Figure 9 .4-7b. As we wi ll see in the followin g example,

it is sometimes necessary to use thi s case.

'el'9'E'. Model of a Relay-Controlled Motor
The model of an armature-contro lled dc motor was di sc ussed in Section 8.6. See Fig­

ure 9.4--l:L The mode l i~

di
L - = - Ri - K,.w + v(t)

dl

d(o / - = K Ii - cw - ~,(I)
dl

9.4 Piecewise-Linear Models

R

Figure 9.4-8 An armature-colllrolled dc motor.

where the model now includes a torque 0, (1) acting on the motor shaft, due for ex ample, to

some unwanted source such as Coulomb fric ti on or wind gusts. Control sy~tem engineers

ca ll thi s a "di sturbance." These equations can be put into matrix fo rm a~ follows, where

X I = i and X2 = W .

Use the va lues R = 0.6 ~, L = 0.002 H, K T = 0.04 N . miA , Ke = 0.04 V ~/rad ,

c = 0 .01 N . m . s/rad, and I = 6 x 10- 5 kg· m2

Suppose we have a sensor that measure ' the motor speed, and we u 'c the ,en~o r '

signal to activate a rel ay to switch the applied voltage v(t) betwcen 0 and 100 V to

keep the speed between 250 and 350 rad/s. Thi s corre ponds to the relay logic shown in

Figure 9.4--7 b, with SwOjf = 250, SwOn = 350, Off = 100. and On = O. Inve,t igate

how well thi s scheme wi ll work if the disturbance torque i a step functi on that in c rease~

from 0 to 3 N . m, starting at I = 0.05 s. As ume tbat the system stam from reo t with

w(O) = 0 and i(O) = O.

• Solution
For the g iven parameter value,

[
-300 -20]

A = 666.7 - 166.7 [
500 0]
o - 16667

To examine the speed w as output, we choose C = 10, IJ and D = 10. OJ. To create thi ~
simulation , fir t obtain a new model wi ndow. Then do the following.

1. Select and place in the new window the Step block from the Source~ library. Labe l it

Di sturbance Step as shown in Figure 9.4-9. Double-click on it to obtain the Block

Parameters window, and . et the Step time to 0.05, the Initial and Final values to 0

and 3, and the Sample time to O. Click OK.

2. Se lect and place the Relay block from the Discontinuities library. Double-click on it.

and set the Switch-on and Switch-off point~ to 350 and 250. and et the Output

when on and Output when off to 0 and 100. Click OK.

3. Select and place the Mux block from the Signal Routing library. The Mux block

combines two or more signals into a vector ignal. Double-click on it, and I the

555

556 C HAP TER 9 Simulink

Disturbance
Step

Relay

Mux

Figw'e 9.4-9 Simulink model of a relay-controlled motor.

Number of inputs to 2, and the Display option to signals. Cl ick OK. Then click on
the Mux icon in the model window, and drag one of the corners to expand the box so

that all the text is vi sible.
4. Select and place the State-Space block from the Continuous library. Double-click on

it. and enter [-300 , - 20 ; 666 . 7 , -166 . 7] forA , [500 , 0 ; 0 ,
- 16667] fo rB , [0 , 1] forC,and [0 , 0] forD. Then enter [0 ; 0] for the

in itial condi tions. Click OK. Note that the dimension of the matrix B tells SimuJink
that there are two inputs. The dim ension of the matrices C and D tell Simulink that

there is one outpu t.

5. Select and pl ace the Scope block from the Sinks library.

6. Once the blocks have been placed, connect the input port on each block to the
outport port on the preceding block as shown in the figure. It is important to connect

the lOp port of the Mux block (which corresponds to the first input, V(I» to the
output of the Relay block, and to connect the bottom port of the Mux block (which

corresponds to the second input, Tr/ (I» to the output of the Disturbance Step

block.
7. Set the Stop time to 0.1 (whi ch is simply an estimate of how long is needed to see

the complete response) , run the simulation, and examine the plot of wet) in the
Scope. You should see something like Figure 9.4-10. If you want to examine the

current i (t), change the matrix C to [1 , 0] , and run the simulation again .

The results show that the relay logic control scheme keeps the speed within the desired
limits of 250 and 350 before the di turbance torque starts to ac t. The speed oscillates

becau e when the applied voltage i zero, the speed dect'eases as a result of the back emf
and the vi scous damping. The speed drops below 250 when the disturbance torque starts

to act, because the applied voltage is 0 at that time. As soon as the speed drops below 250,
the relay controller switches the voltage to 100, but it now takes longer for the speed to

increase because the motor torque must now work against the di sturbance.

9.5 Transfer-Function Models

Figure 9.4-10 Scope display of the speed response of a relay-controlled lllotor.

Note that the speed becomes constant, instead of osc illating. This is because with
v = 100, the system achieves a steady-state condi tion in which the motor torque equals
the sum of the disturbance torque and tbe viscous damping torque. Thus the acceleration

is zero.
One prac ti cal use of this simulation is to determine how long the speed is below the

limit of 250. The simulation shows that this time is approx imately 0.01 3 s. Other uses of
the simulation include finding the peri od of the speed'. oscillation (about 0.01 3 s) and
the maximum value of the di sturbance torque that can be tolerated by the relay controller

(it is abollt 3.7 N . m).

9.5 Transfer-Function Models
The equatjon of motion of a mass-spring-damper system is

m)i + c)1 + ky = J(t) (9.5-1)

As with the Control System toolbox, Simulink can accepts a system description in
transfer-function form and in state-variable form. (See Section 8.7 for a discussion
of these forms.) If the mass-spring system is subjected to a sinusoidal forcing
function J Ct), it is easy to use the MATLAB commands presented t~us far to
solve and plot the response y(I). However. suppose that the force J(t) J created

557

558 CHAPTER 9 Simulink

0 .5 .--~~--,--~--,-~-~~~~

004

0.3

0.2

::l 0.1

~ O~--~------+-----~~-~
0_0.1

-0.2

-0.3

-004

-O.~ 1 -0.8 -0.6 -004 -0.2 0 0.2 004 0.6 0.8 1
Input

FigUl'e 9.5-1 A dead-zone nonlineari ty.

DEAD ZONE by app lyi ng a sinusoidal input voltage to a hyd raulic piston that has a dead-zone
non linearity. This means that the piston does no t generate a force until the input
vo ltage exceeds a certa in m agnitude, and thus the system m odel is piecewise

linear.
A graph of a part icul a r dead-zone no nlinearity is show n in F igure 9.5-1.

Whe n the input (the inde pe nde nt variabl e o n the g raph) is be tween -0.5 a nd 0.5 ,
the o utput is zero. When the input is greater than or equal to the upper limit of
0.5, the o utput is the input minus the upper limit. Whe n the input is less than o r
equ a l to the lower limit of -0.5, the output is the input minus the lower limit. In
this exampl e, the dead zone i symme tri c about 0, but it need not be in general.

Simulations with d ead-zone nonlinearitie a re som ewhat tedious to program
in MATLAB , but are easil y done in Simulink. The following example illus tra tes
how it is done.

-a'9".' Response with a Dead Zone

Create and run a Simulink imulation of a mass-spring-damper model (9.5- 1) using the

parameter values 111 = I. c = 2, and k = 4. The forcing function is the function f(r) =
. in lAt. The system has the dead-zone nonlinearity shown in Figure 9.5- J .

• Solution
To con truct the simulation. do the following step ..

1. Start Simulink and open a new model window as described previously.

2. Select and place in the new window the Sine Wave block from the Sources library.
Double-click on it , and set the Amplitude to I. the Frequency to lA, the Phase to O.
and the Sample time to O. Click OK.

9.5 Transfer-Func tion Models

3. Select and place the Dead Zone block f
on it, and set the Start of dead I~m the Dl sconllnultJe, library, double-click
Click OK. ' Zone to - .5 and the End of dead zone to 0.5.

4. Select and place the Transfer Fcn block from the Con tinuous li brar . . .
It, and set the Numerator to [1] a d th D' y, double-c lI ck on

n e enOffill1ator to [1 , 2 , 4 J . Click OK
5. Select and place the Scope block from the Sinks library. .

6. Once the blocks have been placed, connect the input port on each block to the

ou.tport port on the preceding block. Your model should now look like Figure 9.5-2

7. ClIck on the Simula tion menu, then click the Configuration Parameters item .

~~I:: ~/;c~~~.l ver tab, and enter 10 fo r the Stop time. Make Sure the Sta;'llime' is O.

8. ~un the simulation by clicking on the Simulation menu, and then clickino the Start
Ilem. You should see an oscillating curve in the Scope display. b

. It isinformative to plot both the input aod the output of the Transfer Fcn block ver~us
tllne on the ame graph. To do this, . .

1. Delete the arrow con n~cting the Scope block to the Transfer Fcn block. Do thi , by
clI cki ng on the arrow Ill1e and then pressing the Delete key.

2. Select and place the Mux block from the Signal Routing library, double-cl ick 0 11 it ,
and set the Number of Il1puts to 2. Click OK.

3. Connect the top input port of the Mux block to the output port of the Transfer Fcn
block. Then use the same technique to connect the bOllom input port of thc Mux
block to tbe an'ow from the outport pon of the Dead Zone block. Ju~t remember to
start with the input port. Simul'ink will sense the arrow automatically and make the
connection. Your model should now look like Figure 9.5-3.

4. Set the Stop time to 10, run the imulation a before, and bring up the Scope di splay.
You should see what is hown in Figure 9.5-4. Thi, pial shows the effect of the dead
zone on the sine wave.

lBi--m--1 S2+~S+4 ~
Sine Wave Dead Zone Transfer Fen Scope

Figure 9.5-2 The SimuJink model of dead-zone
re ponse.

Scope

Figure 9.5--3 Modification of the dead-zone model to include
a Mux block.

559

560 CHAPTER 9 Simulink

Figure 9.5-4 The response of the dead-zone model.

M~
ffi __ . _I---=~I simoul I
~ux 2 To Workspace
Clock

Figure 9.5-5 Modi fica tion of the dead-zone model to ex port variables to the
MATLAB workspace.

You can bring the imulation results into the MATLAB workspace by using the To
Workspace block. For example. , uppose we want to examine the effec ts of the dead zone
by comparing the rcsponse of the systcm with and without a dead zone. We can do thi s
with the model shown in Figure 9.5- 5. To creatc this model,

1. Copy the Transfer Fcn block by right-clicking on it. holding down the Illouse button,
and dragging the block copy to a new location. Then release the button. Copy the
Mux block in the same way.

9.6 Nonlinear State-Variable Models

2. Double-cli ck on the first Mux block and change the number of its inputs to 3.
3. In the usual way, select and place the 1': W 'k . . _ ' .

tl CI k b f · . 0 01 space block from the Sinks library and
;:u c,~~ s e~~f 10m the .~ource:~ li brary. Double-click on the To Workspace block.
C ' 0 • p . y any vall <lble name you want as the output; the default is simout .
. h d l~",e Its naille to y. The output va riable y wiJJ have as many rows as therc are

~ l m ~1 ,1lI0n tllne steps, .and as many coluillns as there are inputs to the bl ock. The
10lll th colu mn In our slInulation will be time, because of the way we have connected
the Clock to the second Mux. Spec ify the Save fo rmat as Matrix. Use the default
va lues for the other parameters (thcse should be inf, 1, and -1 for Max imum
nu mber of rows, Decimation, and Sample time, respecti vely). Click on O K.

4. Connect the blocks as shown, and run the simulati on .

5. You can use the MATLAB plotting commands from the Command window to plot
the col umns of y; for example, to plot the re ponse of the two systems and the
output of dle Dead Zone block versus time, type

»plot (y (: , 4) , Y (: , 1) , Y (: , 4) , y (: , 2) , y (: , 4) , y (: , 3))

9.6 Nonlinear State-Variable Models

Nonlinear models cannot be put into transfer-functi on form or the sta te-variab le
form x = Ax + Bu. However, they can be simulated in Simulink. The fo llowi ng
example shows how this can be done.

561

Model of a Nonlinear Pendulum

The pendulum shown in Figure 9.6-1 has the fo llowing nonlinear eq uation of motion. if
there is viscous fri ction in the pi vot and if there is an applied moment M(I) about the
pivot.

+.'''''d'
I e + cB + mg L sin B = M(/)

where I is the mass moment of inertia about the pi vo t. Create a Simulink model for this
system for the case where I = 4, mg L = 10, c = 0.8, and M(/) is a square wave with an
amplitude of 3 and a frequency of 0.5 Hz. As ume that the initial condition ~ are ew) = I
70 / 4 rad and B(O) = O. g+

• Solution Figure 9.6-J
To simulate this model in Simulink, define a . et of variables that lets you rewri te the A pendulum.
equation as two first-order equations. Thus let w = B. Then the model can be written

B=w

w = ~r-ClV - mgL sin B + M(t)l = O.2S[-O.8w -lO sinB + M(tJ]
I

562 CHAPTER 9 Simulink

B
Scope

'--____ ----41 Q*sin(u) k---------'

Fcn

Figure 9.6-2 Simulink model of nonlinear pendulum dynamics.

Integrate both sides of each equation over time to obtain

e = / Wdl
W = 0.25 /[-0.8W - 10 sine + M (t)] dt

We will introduce four new blocks to create this simulation. Obtain a new model wi ndow

and do the following.

1. Select and place in the new window the Integrator block from the Continuous
library. and change its label to Integrator I as shown in Figure 9.6-2. You can
edit text associated with a block by clicking on the text and making the changes.
Double-click on the block to obtain the Block Parameters window, and set the
Initial condition to 0 (thi s is the initial condition 8(0) = 0). Click OK.

2. Copy the Integrator block to the location shown and change its label to Integrator 2.
Set its initial condition to iT: / 4 by typing pi! 4 in the Block Parameters window.

This is the initial condition e(O) =][/4.
3. Select and place a Gain block from the Math Operations library, double-click on it,

and set the Gain value to 0.25. Click OK. Change its label to 1/1. Then click on the
block, and drag one of the corners to expand the box so that all the text is visible.

4. Copy the Gain box. change its label to c . and place it as shown in Figure 9.6-2.
Double-click on it. and et the Gain value to 0.8. Click OK. To flip the box left to

right. right-click on it. elect Format, and select Flip.

S. Select and place the Scope block from the Sinks Library.
6. For the term 10sin e. we cannot use the Trig function block in the Math library

because we need to multiply the sine by 10. So we use the Fcn block under the
User-Detined Functions library (Fcn stands for function). Select and place this

9.7 Subsystems

block as shown. Double-click on it and t)e 1 * . .
window. This block uses the ... '1 YI 0 Sln (u) In the expression
OK. Then nip the block. v<ul ab e U to represent the input to the block. Click

7. Select and place the Sum block from the M h .' .
it , and select round for the Icon sly I ' at .opel a:lOns library. Double-cli ck on
OK. <l pe. n the List of Signs window, type + - - . Cli ck

8. Select and place the Signal Generator blo k [. I .
on it, select square wave [or the Wave for~ ~~:. ~~: ~ources Ilbr~ry. Dou~l e-cli ck
Frequency, and Hertz for the Units. Click OK. mplilude, <l nd 0.5 for the

9. Once the blocks have been pl aced, connect arrows as shown in the f"igure

10. sset the Stop time to 10, run the simul ati on, and examine the plot of e(l) i'n the
cope. ThiS completes the simulati on.

9.7 Subsystems

~ne rotential disadvantage of a graphi ca l interface such as Simulink is that to
slmu ate a complex systel~ , th~ diagram can become rather large and ;her~fore
somewhat cum.bersome. SIITIuhnk, however, provides for the creat ion of subl' ~­
tem blocks, which play a role a~alogoLl to that of subprograms in a program~~g
l~ngll age. A subsystem block IS actually a Simulirtk pro(Jram repre ented by '1

s l~lgl~ block. A su~system block, once created, can be u~ed in other Simulin~
plOglal~s. We also IIltroduce some other blocks in this section.

To .Illustrate subsystem blocks we. will use a simple hydrauli c systcm whose
model IS based o.n the co~servatlOn of mas principle familiar to engineers. Be­
cause th~ g~ven:lIlg equatIOns are similar to other engineering applications, such
as electnc CI:Clllt~ and devices, the lessons learned from thi s example will enable
you to use Simullllk for other applications.

A Hydraulic System

The ,:~rkingfluid in a hydraulic sy tem i an incompress ible fluid uch as water
or a.slhcon-?ased oil. (Pneumatic systems operate with compressible fluids, uch
as .alr.) ConSider a hydraulic system composed of a tank of liquid of mass density p
(Figure 9.7-1). The tank shown in cross section in the figure is cylindrical with
a bottom area A. A flow source dumps liquid into the tank at the mass flow rate

qllli

~
Po

R Po

Figure 9.7-1 A hydraulic y tern with a How source.

563

564 CHAPTER 9 Simulink

qll/i(t). The total mass in the tank is 117 = pAh, and from conservation of mass we
have

dm dh
dt = pAd(= qll/ i - qll/o (9.7- 1)

since p and A are constants.
If the outlet is a pipe that discharges to atmospheric pressure Pa and provides

a resistance to flow that is proportional to the pressure difference across its ends,
then the outlet flow rate is

1 pgh
qll/o = /i[(pgh + Pa) - Po] = R

where R is caJled the flu id resistance. Substituting this expression into eq ua­
tion (9.7-1) gives the model:

dh pg
pAd(= qmi(t) - Rh (9.7-2)

The transfer function is
H (s)

QlI/i(S) pAs + pg / R

On the other hand, the outlet may be a valve or other restriction that provides
nonlinear resistance to the flow. In such cases, a common model is the signed­
square-root relation

1
qmo = RSSR(.0.p)

where qmo is the outlet mass flow rate, R is the resistance, .0.p is the pressure
difference across the resistance, and

SSR(.0.p) = {
.JE;P if .0.p 2: 0

-.JT3.PT if.0.p < 0

Note that we may express the SSR(u) function in MATLAB as follows :
sgn(u)*sqrt(abs(u)) .

Consider the slightly different system shown in Figure 9.7-2, which has a
flow source q and two pumps that supply liquid at the pressures PI and Pr . Suppose

Pa Po

Figure 9.7-2 A hydraulic system with a flow ouree and pump.

9.7 Subsystems

the resistances are nonlinear and obey the igned-square-root relation . Then the
model of the system is the fo ll owi ng:

dh I 1
pAd(= q + R;SSR(PI - p) - R;SSR(p - Pr)

w~lere ~ is the bottom area. and P = pgh. The pressures PI and Pr are the gage
plessUl es at the left- and nght-hand sides. Gage pressure is the difference be­
tween the abso lute pressure and atmospheric pressure. Note that the atmospheric
pressure ~a ca ncel ~ out o~' the model because of the use of gage pressure.

We will use thlS appltcation to introduce the following Simulink elements:

• Subsystem blocks, and

• Input and Output Ports.

You can create a subsystem block in one of two ways: by dragging the Sub­
system block fro m the library to the model wi ndow or by first creating a Simulink
model and then "encapsulating" it within a bounding box. We will illustrate the
latter method.

We will create a subsystem block for the liquid-level system shown in
Figure 9.7-2. First construct the Simulink model shown in Figure 9.7-3 . The
oval blocks are Input and Output Ports (In 1 and Out 1), which are available in
the Ports and Subsystems library. Note that you can use MATLAB variables and
expressions when entering the gains in each of the four Gain blocks.
. Before running the program we will assign values to these variables in the

MATLAB Command window. Enter the gains for the four Gain blocks using the
expressions shown in the block. You may also use a variable as the Initial condition
of the Integrator block. Name this variable hO .

The SSR blocks are examples of the Fcn block, which is i.n the User-Defined
Functions library. Double-click on the block and enter the MATLAB expression

Figure 9.7-3 Simulink model of the sy tern shown in Figure 9.7-2.

565

566 CHAPTER 9 Simulink

Left Pressure

Right Pressure

Left Pressure
Bottom Pressure

Right Pressure

Liquid Height
Mass Flow Input

Mass Flow Input '---------'
Subsystem

Figure 9.7-4 The Subsystem bl ock.

CD
Bottom
Pressure

Liquid
Height

sgn (u) * sqrt (abs (u)) . Note that the Fcn block requires you to use the
variable u. The output of the Fcn block must be a scalar, as is the case here, and
you cannot perform matrix operations in the Fcn block, but these are not needed
here. (An alternative to the Fcn block is the MATLAB Fcn block to be discussed
in Section 9.9.) Save the model and give it a name, such as Tank.

Now create a "bounding box" surround ing the diagram. Do this by placing
the mouse cursor in the upper left, holding the mouse button down, and dragging
the expanding box to the lower right to enclose the entire diagram. Then choose
Create Subsystem from the Edit menu . Simulink will then replace the di agram
with a single block having as many input and output ports as required and will
assign default names. You can resize the block to make the labels readable. You
may view or edit the subsystem by double-clicking on it. The result is shown in
Figure 9.7-4.

Connecting Subsystem Blocks

We now create a simulation of the system shown in Figure 9.7-5, where the mass
inflow rate q is a step function. To do this, create the Simulink model shown in
Figure 9.7-6. The square blocks are Constant blocks from the Sources library.
These give constant inputs (which are not the same as step function inputs).

The larger rectangular blocks are two subsystem blocks of the type just cre­
ated. To insert them into the model , first open the Tank subsystem model, select
Copy from the Edit menu, then paste it twice into the new model window. Connect

Figure 9.7-5 A hydraulic system with two tanks.

GI-----ILett Pressure

No Left Bottom Pressure

Input Right Pressure

I Liquid Height r--+---~
-.J1----+-JMass Flow Input

Mass Inflow
Tank 1

Left P ressu re
Bottom Pressure

Right Pressure

Atmosphere
Liquid Height

I-----'Mass Flow Input

Input Flow 2 Tank 2

Figure 9.7-6 Simu li nk model of the system shown in Figure 9.7-5.

9.7 Subsystems

f-ig
Scope

the input and output ports and edit the labels as shown . Then double-click on the
Tank 1 subsystem block, set the left-side gain l/R_ l equal to 0, tbe right-side
gain 1 / R_ r equal to l/R_ l, and the gain 1 /rho* A equal to 1/ rho* A_I. Set
the Initial condition of the integrator to hl0. Note that setting the gain l/R_l
equal to 0 is equivalent to R_l = 00, which indicates no inlet on the left-hand side.

Then double-click on the Tank 2 subsystem block, set the left-side gain
l/R_l equal to l/R_l, the right-side gain 1/R_r equal to 1/R_ 2, and the
gain 1/ rho * A equal to 1/ rho* A_ 2. Set the Initial condition of the integrator
to h2 O. For the Step block, set the Step time to 0, the Initial value to 0, the Final
value to the variable <1-1, and the Sample time to O. Save the model using a name
other than Tank.

Before running the model, in the Command window assign numerical values
to the variables. As an example, you may type the following values for water, in
U. S. Customary units, in the Command window.

»A_ l = 2 ; A_ 2 = 5 ; rho = 1.94 ; g = 32.2 ;
»R_ l = 20 ; R_ 2 = 50 ; q_ l = 0 . 3 ; hl0 = 1 ; h20 = 10 ;

After selecting a simulation Stop time, you may run the simulation. The
Scope will display the plots of the heights h t and h2 versus time.

Figures 9.7-7, 9.7-8, and 9.7-9 illustrate some electrical and mechanical
systems that are likely candidates for application of subsystem blocks. In
Figure 9.7-7, the basic element for the subsy tern block is an RC circuit. In
Figure 9.7-8, the basic element for the ubsystem block is a mas connected to

two elastic elements.

567

568 CHAPTER 9 Simulink

Figure 9.7-7 A network of RC loops.

Figure 9.7- 8 A vibrating system.

Control
Voltage

Load
Torque

Speed

Figure 9.7-9 An armature-controlled dc motor.

Figure 9.7- 9 is the block diagram of an armature-controlled dc motor, which
may be converted into a subsystem block. The inputs for the block would be the
voltage from a controller and a load torque, and the output would be the motor
speed. Such a block would be useful in simulating systems containing several
motors, such as a robot arm.

9.8 Dead Time in Models
TRANSPORT
DELAY

Dead time, also called transport delay, is a time delay between an action and its
effect. It occurs, for example, when a fluid flows through a conduit. If the fluid
velocity v is constant and the conduit length is L, it takes a time T = L/v for the
fluid to move from one end to the other. The time T is the dead time.

Let (>-0)1(1) denote the incoming fluid temperature and 8 2(1) the temperature
of the fluid leaving the conduit. If no heat energy is lost, then 8 2(t) = 8 1 (t - T).

From the shifting property of the Laplace transform,

8 2(s) = e-T"8 1(s)

9.8 Dead Time in Models

So the transfer function for a dead-time process is e- T ,.

Dead time may be described as a "pure" time delay, in which no response
at all occurs for a time T , as opposed to the time lag associated with the ti me
constant of a response, fo r which 8 2(1) = (l - e- I /')8

1

(/).

Some systems have an unavo idable time delay in the interaction between
components. The delay often results from the phys ical separation of the compo­
nents and typically occurs as a delay between a change in the actuator signal and
its effect on the system being controlled, or as a delay in the measurement of the
outpu t.

Another, perhaps unexpected, source of dead time is the computation time
required fo r digital control computertocalcul ate the control algorithm. This can be
a significant dead time in systems using inexpensive and . lower microprocessors.

The presence of dead time means the system does not have a characteri stic
equation offinite order. In fact, there are an infinite number of characteristic roots
for a system with dead time. This can be seen by noting that the term e-Ts can
be expanded in an infinite series as

- Ts 1
e = eTs 1 + T s+ T 2s2/2+ .

The fact that there are an infinite number of characteristic roots means that the
analysis of dead-time processes is difficult, and often simulation is the only prac­
tical way to study such processes.

Systems having dead-time elements are ea, ily simulated in Simulink. The
block implementing the dead-time transfer function e- Ts is called the "Transport
Delay" block.

Consider the model of the height h of liquid in a tank. such as that shown in
Figure 9.7-1, whose input is a mass flow rate qi. Suppose that it takes a time T for
the change in input flow to reach the tank following a change in the valve o~ening .
Thus, T is a dead time. For specific parameter values, the transfer function has
the form

H(s) = e - Ts _2_

Qi(S) 5s + I
Figure 9.8-1 shows a Simulink model for this system. After placing the Trans~ort
Delay block, set the delay to 1.25. Set the ~tep time to 0 in the Step Function
block. We will now discuss the other blocks 111 the model.

Specifying Initial Conditions with Transfer Functions

The "Transfer Fcn (with initial outputs)" block, so-called to distinguish it from
the Transfer Fen block, enables us to set the initial.valu~ of the block ~utput. In
our model this corresponds to the initial liquid height 111 the t~. Thl fe~tu~e
thus provides a useful improvement over traditional transfer-functIon analysl ,111

which initial conditions are assumed to be zero.

569

570 CHAPTER 9 Simulink

Transfer Fcn

Figure 9.8-1 Simulink model of a hydraulic system with dead time.

PI CONTROLLER

The "Transfer Fcn (with initial outputs)" block is equivalent to adding the
free response to the block output, with all the block 's state variables set to zero
except for the ou tput variable. The block also lets you assign an initial value to
the block input, but we will not use this feature and so will leave the Initial input
set to 0 in the Block Parameters window. Set the Initial output to 0.2 to simulate
an initi al liquid height of 0.2.

The Saturation and Rate Limiter Blocks

Suppose that the minimum and maximum flow rates avail able from the input flow
valve are 0 and 2. These limits can be simulated with the Saturation block, which
was di scussed in Section 9.4. After placing the block as shown in Figure 9.8-1,
double-click on it and type 2 in its Upper limit wi ndow and 0 in the Lower limit
window.

In addition to being limited by saturation, some actuators have limits on how
fast they can react. This limitation might be due to deliberate restrictions placed
on the unit by its manufacturer to avoid damage to the unit. An example is a flow
control valve whose rate of opening and closing is controlled by a "rate limiter."
Simulink has such a block, and it can be used in series with the Saturation block to
model the valve behavior. Place the Rate Limiter block as shown in FiGure 98-1
Set the Rising slew rate to 1 and the Falling slew rate to - 1. b "

A Control System

The Simulink model shown in Figure 9.8- 1 is for a specific type of control system
calJed a PI con/rollel; whose response f(t) to the error signal eel) is the sum of
a term proportional to the error signal and a term proportional to the integral of
the error signal. That is,

f(t) = Kp e(t) + K/ l e(t)dl

where Kp and K/ are called the proportional and integral gains. Here the error
signal e(t) is the difference between the unit-step command representing the
desired height and the actual height. In transform notation this expression becomes

F(s) = KpE(s) + ~E(S) = (Kp + ~) E(s)

9.9 Simulation of a Vehicle Suspension

. In Figure 9.~- 1 , we used the values Kp = 4 and K/ = 5/ 4. These values
ale computed uSing the methods of control theory (For a di scuss ion of control
systems, see, for example, [Palm, 2005)). The simulation is now ready to be run
Set the Stop ~Ime to 30 and ?bserve the behavior of the liquid height h(t) in th~
Scope. Does It reach the deS ired height of I?

9.9 Simulation of a Vehicle Suspension

Linear or linearized model s are usefu l for predicting the behavior of dynamic
sys te~ s because po,:erful analytical techniques are available for such models,
especl.ally when tl.le II1putS al.-e relatively simple functions such as the impulse,
step, !amp, and sine. Oftel~ 111 the deSign of an engineering system, however,
w~ musteventually deal wlth nonlinearities in the system and with more com­
phcated Inpu ts such as trapezoidal functions, and this must often be done with
simulation.

In this section we introduce fo ur additional Simulink elements that enable us
to model a wide range of nonlinearities and input functions, namely,

• the Derivative block,
• the Signal Builder block,
• the Look-Up Table block, and

• the MATLAB Fcn block.

As our example, we will use the single-mass suspension model shown in
Figure 9.9-1, where the spring and damper forces f s and /d have the nonlinear
models shown in Figures 9.9-2 and 9.9-3. The damper model is unsymmetric
and represents a damper whose force during rebound is higher than during jounce
(in order to minimize the force transmitted to the passenger compartment when
the vehicle strikes a bump). The bump is represented by the trapezoidal function
yet) shown in Figure 9.9-4. This function corresponds approximately to a vehicle
traveling at 30 mi/hr over a road surface elevation 0.2 m high and 48 m long.

Body

Datum level

(a) (b)

Figure 9.9-1 Single-mas model of a vehicle
suspension.

571

572 CHAPTER 9 Simulink

Spring force (N)

4500 -- -------- -

-_0+-. 5--+_--10'f-3-f---+50_0~=--+--+_I---+--I----+-De flection
0.5 Y - x (m) - - 500 0.3

---------- - - 4500

Figure 9.9-2 Nonlinear spring functi on.

f= 200v O.6

f= -800Ivlo.6

o
v = dyldt - dxldt (m/s)

Figure 9.9-3 Nonlinear damping function.

y(l) (m)E
0.2---

1
l

1 1
1 1
1 1
1 1

0.1 3.0 3.1 I(S)

Figure 9.9-4 Road surface profile.

9.9 Simulation of a Vehic le Suspension

Figure 9.9-5 Simulati on diagram of' a vehicle suspension model.

The system model from Newton 's law is

~here In = 400 kg, f s(Y - x) is the nonlinear spring function shown in
F~gure 9.9-2, and !dey - x) is the nonlinear damper function shown in
FIgure 9.9-3 . The corresponding simulation diagram is shown in Figure 9.9- 5.

The Derivative and Signal Builder Blocks

The simulation diagram shows that we need to compute y. Because Simulink
uses numerical and not analytical methods, it computes derivatives only approxi­
mately, using the Derivative block. We must keep this in mind when using rapidly
changing or discontinuous inputs. The Derivative block has no settings, a merely
place it in the Simulink diagram as shown in Figure 9.9-6.

Next, place the Signal-Builder block, then double-click on it. A plot window
appears that enables you to place points to define the input function. Follow the
directions in the window to create the function shown in Figure 9.9-4.

The Look-Up Table Block

The spring function j~ is created with the Look-Up Table block. After placing it
as shown, double-click on it and enter [-0 . 5 , -0 . 1 , 0 , 0 . 1 , 0 . 5] for
the Vector of input values and [- 4 5 0 0 , - 500 , 0 , 500 , 4500] for the
Vector of output values. Use the default settings for the remaining parameters.

Place the two integrators as shown, and make , ure the initial values are set to
O. Then place the Gain block and set its gain to 1/400. The To Workspace block
and the Clock will enable us to plot x(t) and .v(t) - x(t) versus t in the MATLAB
Command window.

The MATLAB Fcn Block

In Section 9.7 we used the Fen block to implement the signed- quare-root function.
We cannot use this block for the damper function shown in Figure 9.9-3 becau e

573

574 CHAPTER 9 Simulink

ri simout I _ r To (9l Workspace

Clock

L-----------------------------------~I+
Scope 1

Figure 9.9-6 Simulink model of a veh.icle suspension system.

we mu t write a user-defi ned fu nction to describe it. This function is as follows.

function f = damper (v)
if v <= 0

f = -800*(abs(v)) . A(O . 6) ;
else

f = 200*V . A(O . 6) ;
end

Create and save this function file. After placing the MATLAB Fcn block,
double-click on it and enter its name damper. Make sure Output dimensions is
set to -1 and the Output signal type is set to auto.

The Fcn. MATLAB Fen, Math Function, and S-Function blocks can be used
to impleme~t functions, but each has its advantages and limitations. The Fen
block can contain an expression, but its output must be a scalar, and it cannot
call a function file. The MATLAB Fen block is slower than the Fen block, but its
output can be an array, and it can call a function file.

The Math Function block can produce an array output but it is limited to a sin­
gle MATLAB function and cannot use an expression or call a file. The S-Function
block provides more advanced features, such as the ability to use C language code.

The Simulink model when completed should look like Figure 9.9-6. You can
plot the response xU) in the Command window as follows:

»x = simout (: , 1) ;
»t = simout (: , 3) ;
»plot(t , x) , grid , xlabel(' t (s) '),ylabel(' x (m) ')

0.3

0.25

0.2

0.15

0.1

I 0.05
x

-0.05

-0.1

-0. 15

-0.2
0 0.5 1.5 2.5

t (s)

9.10 Summary

3.5 4.5

FigUl'e 9.9-7 Outpul of the Simulink model hown in Figure 9.9-6.

The result is hown in Figure 9.9-7 . The maximum overshoot is seen to be
(0.26 - 0.2) = 0.06 m, but the maximum undershoot is seen to be much greater,
-0.168 m.

9.10 Summary

The Simulink model window contains menu items we have not discussed. How­
ever, the ones we have discussed are the most important ones for getting started.
We have introduced just a few of the blocks available within Simulink. Some of
the blocks not di scussed deal with discrete-time systems (ones modeled with dif­
ference, rather than differential, equations), digital logic sy tem ,and other types
of mathematical operations. In addition, some blocks have additional properties
that we have not mentioned. However, the examples given here will help you get
started in exploring the other features of Simulink. Consult the online help for
information about these items.

Key Terms with Page References

Block diagram, 542
Dead time, 568
Dead zone. 558
Derivative block, 573
Fen block. 573

Gain block. 542
Integrator block. 542
Library Browser, 543
Look-Up Table block. 573
PI controller, 570

575

576 CHAPTER 9 Simulink

Piecewi e-linear models, 550
Rate-Limi ter block, 570
Relay block, 553
Saturalion block, 570
Signal-B uilder block, 573
Simulalion diagram , 542

Problems

Section 9.1

State-variable models, 548
Subsystems, 563
Summer, 543
Transfer-function models, 557
Transport delay, 568

1. Draw a simulation diagram fo r the fo llowing equation.

y = 5J(t) - 7 y

2. Draw a simulation diagram for the following equation.

5y+ 3y+ 7 y =J(t)

3. Draw a simulation diagram for the followi ng equation .

3y + 5 sin y = J(t)

Section 9.2
4. Create a Simulink model to plot the solution of the following equation for

o ~ t ~ 6.

10); = 7 sin 4t + 5 cos 3t yeO) = 4

5. A projectile is launched with a velocity of 100 mls at an angle of 30°
above the horizontal. Create a Simulink model to solve the projectile's
equations of motion where x and y are the horizontal and vertical
displacements of the projectile.

x=O
y = -g

x(O) = 0

yeO) = 0

,i:(0) = 100cos30°

yeO) = 100 sin 30°

Use the model to plot the projectile's trajectory y versus x for

o ~ t ~ 10 s.
6. The following equation has no analytical solution even though it is linear.

.t +x = tant x(O) = 0

The approximate solution. which is less accurate for large values of t , is

x(t) = ~t3 - t 2 + 3t - 3 + 3e-1

Create a Simulink model to solve this problem and compare its solution
with the approximate solution over the range 0 ~ t ~ 1.

Problems

7. Construct a Sim uli nk model to plot the solu tion of the ro ll ' . .
for 0 ~ 1 ~ 10. oW ing equali on

15,i: + 5x = 4u.\.(/) - 4u sO - 2) x(O) = 2

where u, (1) is a unit-step function (in the Block Parameters window of the
Step block, set the Step time to 0, the Ini tial va lue to 0, and the Final value
to I).

8. A tank having vertical sides and a bottom area of 100 ft2 is used to store
water. :0 fi ll the tank, water is pumped into the top at the rate given in the
fo llowtllg table. Use Simulin k to solve for and plot the water height h(t)
for ° ~ 1 ~ 10 min .

Time (min) o I 10

Flow Rate (ft 3/min) 80 130 150 150 160 165 170 160 J 40 J 20

Section 9.3

9. Construct a Simulink model to plot the solution of the following equati ons
for 0 ~ 1 ~ 2.

XI = -6xl + 4 X2

,i:2 = 5x I - 7x2 + f(t)

where J(t) = 2t. Use the Ramp block in the Sources library.
10. Construct a Simulink model to plot the solution of the fo llowing equations

for ° ~ 1 ~ 3.

. .\"1 = - 6xl + 4 X2 + fl(l)

X2 = 5xI - 7x2 + h e!)

where fl(/) is a step function of height 3 starting at 1 = 0, and h(t) i!> a
step function of height -3 starting at I = I .

Section 9.4
11. Use the Saturation block to create a Simulink model to plotlhe solution

of the following equation for 0 ~ I ~ 6.

35' +1' = J(I) yeo) = 2

where

{

8 if 10 in31 > 8

J(t) = -8 if \0 sin 31 < -8

10 in 3t otherwise

577

578 CHAPTER 9 Simulink

12. Construct a Simulink model of the following problem.

5x + sinx = J(t) x(O) = 0

The forcing function is

{

- S if g(t) .::: -5

J(t) = gs(t) if -S .::: get) .::: S

if g(t) :::: S

where get) = lOsin4t.

13. If a mass-spring system has Coulomb friction on the surface rather than
viscous friction, its equation of motion is

mY =-ky+ J(t)-fJ.-mg

my = -ky + J(t) + fJ.-Ing

if Y :::: 0

if y < 0

where fJ.- is the coefficient of fri ction. Develop a Simulink model for the
case where In = 1 kg, k = S N/m, fJ.- = 0.4, and g = 9.8 rnls2

. Run the
simulation for two cases: (a) the appljed force J(t) is a step function
with a magnitude of 10 N and (b) the applied force is sinusoidal:
J(t) = lOsin2.St. Either the Sign block in the Math Operations library
or the Coulomb and Viscous Friction block in the Discontinuities library
can be used, but since there is no viscous fric tion in this problem, the
Sign block is easier to use.

14. A certain mass, In = 2 kg, moves on a surface inclined at an angle
¢ = 30° above the horizontal. Its initial velocity is v(O) = 3 m/s up the
incline. An external force of JI = S N acts on it parallel to and up the
incline. The coefficient of Coulomb friction is fJ.- = O.S. Use the Sign
block and create a Simulink model to solve for the velocity of the mass
until the mass comes to rest. Use the model to determine the time at which
the mass comes to rest.

15. a. Develop a Simul1nk model of a thermostatic control system in which
the temperature model is

RC
dT + T = Rq + 1'c,(t)
dt

where T is the room air temperature in OF, Ta is the ambient (outside)
air temperature in OF, time t is measured in hours, q is the input from
the heating system in Ib-ftlhr, R is the thermal resi stance, and C is the
thermal capacitance. The thermostat switches q on at the value qmax

whenever the temperature drops below 69° and switches q to q = 0
whenever the temperature is above 7] 0 . The value of qmax indicates
the heat output of the heating system.

Run the simulation for the case where T(O) = 70° and Ta(t) =
50 + 10 sin(n t /12). Use the values R = 5 X 10- 5 °F-hr/lb-ft and

Problems

C = 4 X 10
4

Ib-ft/°F. Plot the temperatures T and T versus I on the
same graph, for 0 .::: I .::: 24 hr. Do this for two case;~ q - 4 x 105
and ~Illax = 8 X 10

5
lb-ftlhr. Investigate the effectiv~~es~a~t~ach case.

b. The II1tegra.1 of q over time is the energy used. Plot I q dl versus I
and determll1e J10W much energy is used in 24 hr for the case where
qmax = 8 x 10 .

16. Refer to Problem. 15. Use the imulation with q = 8 x 105 to compare the
energy consumptIon and the thermostat cycling frequency for the two
temperature bands (69°, 71 °) and (68°, 72°).

17. Consi.der the liquid-level system shown in Figure 9.7-1. The governin g
eq.uatlon based on c~nservation of mass is (9.7-2). Suppose that the height
h IS controlled by uSll1g a relay to switch the input flow rate between the
values 0 and SO kg/so The flow rate is switched on when the height is less
than 4.S III and is switched off when the height reaches S.S m. Create a
Simulink model for thi s application using the values A = 2 m2, R =
400 N· s/(kg 'ni), p = 1000 kg/m3, and h(O) = 1 m. Obtain a plot of h(t) .

Section 9.5

18. Use the Transfer Function block to construct a Silllulink model to plot the
solution of the following equation for 0 .::: I .::: 4.

2i + 12x + lOx = Sus(t) - Sus(t - 2) x(O) = x(O) = 0

19. Use Transfer Function blocks to construct a Simulink model to plot the
solution of the following equations for 0 .::: I .::: 2.

3i + ISx + 18x = f(L) x(O) = x(O) = 0

2y + 16y + SOy = x(t) yeO) =)1(0) = 0

where J(t) = SOus(t).

20. Use Transfer Function blocks to construct a Simulink model to plot the
solution of the following equations for 0 .::: I .::: 2.

3i + 15,t + 18x = J(t) x(O) = x(O) = 0

2Y + 16.Y + SOy = x(t) yeO) = .YeO) = 0

where J(t) = 50us (t) . At the output of the first block there is a dead zone
for -1 .::: x .::: 1. This limits the input to the second block.

21. Use Transfer Function blocks to construct a Simulink model to plot the
solution of the following equations for 0 .::: t .::: 2.

3.A' + ISx + 18x = J(t) x(O) = x(O) = 0

2.\' + 16.Y + SOy = xU) yeO) = .v(O) = 0

where J(t) = 50us(t). At the output of the first block there is a saturation
that limits x be Ixl .::: I. This limits the input to the second block.

579

580 CHAPTER 9 Simullnk

Section 9.6

22. Construct a Simul ink model to plot the olu tion of the fo ll owing equation
fo r 0 ~ I ~ 4.

2i +] 2x + IOx 2 = 5 sin 0.8/ x(O) = x(O) = 0

23. Create a Simulink model to plot the solution of the following equation for

o ~ I ~ 3.

x (O) = 1

24. Construct a Simulink model of the following problem.

lOx + sin x = J(t) x(O) = 0

The forcing function is J(t) = sin 2t. The system has the dead-zone
nonlinearity shown in Figure 9.5- 1.

25. The followin g model describes a mass supported by a nonlinear,
hardening spring. The units are SI. Use g = 9.81m/s2.

5)i = 5g - (900y + 1700i) yeO) = 0.5

Create a Simulink model to plot the solution for 0 ~ t ~ 2.
26. Consider the system for Jifting a mast shown in Figure P26. The 70-ft long

mast weighs 500 lb. The winch applies a force J = 380 lb to the cable.
The mast is supported initially at an angle of 30° , and the cable at A is
initially horizontal. The equation of motion of the mast is

.. 626,000
25 ,400B = -17 ,500cosB + - -Q- sin(1.33 + B)

where

Q = J 2020 + 1650 cos(1 .33 + B)

Create and run a Simulink model to solve for and plot BCt) for B(t) ~
n / 2 rad.

FigureP26

Problems

27. The equation ?escribing the water height h in a spheri ca l tank with a drain
at the bottom IS

Suppose the tank's radius is r = 3 m and that the circular drain hole of
area A h ~s a ~-adius of 2 cm. A sume that Cd = 0.5, and that the initial
wate.r height IS ~1, (0) = 5 m. Use g = 9.8 1 m/s2. Use Simulin k to solve the
nonlll1ear equati on and plot the water height as a functi on of time until
h(t) = O.

28. A cone-s~ aped paper d~in king cup (like the kind used at water fountains)
has a ra~lLI s . R and a height fl . If the water height in the cup is h, the water
volume I.S given by

Suppose that the cup 's dimensions are R = l.5 in . and fl = 4 in .

a. If the flow rate from the fountain into the cup is 2 in .3/sec, use
Simulink to determine how long will it take to fill the cup to the brim.

b. If the flow rate from the fountain into the cup is given by
2(J - e- 21) in .3/sec, use Simulink to determine how long will it take
to fill the cup to the brim.

Section 9.7

29. Refer to Figure 9.7- 2. Assume that the resistances obey the linear relation,
so that the mass flow ql through the left-hand resistance is ql =
(PI - p)/ RI , with a similar linear relation for the right-hand resistance.

a. Create a Simulink subsystem block for thi element.
b. Use the subsystem block to create a Simulink model of the system

shown in Figure 9.7-5. As ume that the mass inflow rate is a step
function.

c. Use the Simulink model to obtain plots of hl(t) and h2(t) for the
following parametcr values: Al =21112, A2=5 m2

, RI =
400 N· s/(kg· m2), R2 = 600 N . s/(kg· 1112), p = 1000 kg/m3,
qllli = 50 kg/s, hi (0) = 1.5 m, and h2(0) = 0.5 m.

30. a. Use the subsystem block developed in Section 9.7 to construct a
Simulink model of the system shown in Figure P30. The mass inflow
rate is a step function.

b. Use the Simulink model to obtain plots of hl(t) and h~(t) for the
following parameter values: Al = 3 ft2, A2,= 5 ft2, RI =
30 Ib-sec/(slug-ft2), R2 = 40 Ib-secl(slug-ft"), P = 1.94 sluglft

3
,

qllli = 0.5 slug/sec, hi (0) = 2 ft, and h2(0) = 5 f1.

581

582 C H APTE R 9 Simulink

Figure P30

31. Consider Figure 9.7-7 for the case where there are three RC loops with
the values R I = R3 = 104 ~, R2 = 5 X 104 ~, C I = C3 = 10- 6

F, and
C2 = 4 X 10- 6 F.

a. Develop a subsystem block for one RC loop.
h. Use the subsystem block to construct a Simulink model of the

entire system of three loops. Plot V3(t) over 0 :::: t :::: 3 for
VI(t) = 12sin lOt V.

32. Consider Figure 9.7-8 for the case where there are three masses. Use
the values In l = 1n3 = 10 kg, 1n2 = 30 kg, k l = k4 = 104

N/m, and
k2 = k3 = 2 x 104 N/m.

a. Develop a subsystem block for one mass.
h. Use the subsystem block to construct a Simulink model of the entire

system of three masses. Plot the di splacements of the masses over
o :::: t :::: 2 s for if the initial displacement of In I is 0.1 m .

Section 9.8

33. Refer to Figure P30. Suppose there is a dead time of 10 sec between the
outflow of the top tank and the lower tank. Use the subsystem block
developed in Section 9.7 to create a Simulink model of thi s system. Using
the parameters given in problem 30, plot the height h I and h2 versus time.

Section 9.9

34. Redo the Simulink suspension model developed in Section 9.9, using the
spring relation and input function shown in Figure P34, and the following

damper relation.

{

-SOOIVI1.2
/d(v) = SOvl.2

V:::: O

v > O

Problems

Spri ng force (N)

3000

(m)

1300

Y(l)0=
O ~-- -i l I

- 0.25 - 0.15 500 :
----t--t--;--+--t--:;~_l__f_I -II--I---+--~ Dellection

y -x(m) I I
I - 5000.15 0.25 o 0. 15 4.0 4. 15 f (5)
I
I

- 1300

-3000

(a)

Figure P34

Use the simulati on to plot the response. Eva luate the overshoot and
undershoot.

(b)

35. Consider the system shown in Figure P35 . The equations of motion are

mix i + (el + C2)XI + (k l + k 2)x I - C2X2 - k 2X2 = 0

1n2X2 + C2 X2 + k 2X2 - C2XI - k2X I = f(t)

Suppose that In l = m2 = 1, CI = 3, C2 = 1, kl = 1, and k2 = 4.

a. Develop a Simulink model of thi s system. In doing this, consider
whether to use a state-vari able representation or a transfer-functi on
representati on of the model.

h. Use the Simulink model to plot the response XI (I) for the following
input. The initial conditions are zero.

Figure P35

0 :::: 1 :::: 1

1 < 1 < 2

t ?- 2

583

Engineering in the
21 st Century ...

Rebuilding the Infrastructure

D
uring the Great Depression, many public works projects that improved
the n.ation's. infrastructure were u.ndert.aken to stimulate the e~onomy and
provide employment. These projects lI1cluded hIghways, bndges , water

supply systems, sewer systems, and eJectrical power distribution networks. Fol­
lowing World War II another burst of such activity cu lminated in the construction
of the interstate highway system. As we enter the 21st century, much of the in­
frastructure is 30 to 70 years old and is literally crumbling or not up-to-date. One
survey showed that more than 25 percen t of the nation 's bridges are substandard.
These need to be repaired or replaced with new bridges, such as the one under
construction in Savannah, Georgia, shown above.

Rebuilding the infrastructure requires engineering methods different from
those in the past because labor and material costs are now higher and environ­
mental and social issues have greater importance than before. Infrastructure engi­
neers must take advantage of new materials , inspection technology, construction
techniques, and labor-saving machine .

Also, some infrastructure components, such as communications networks,
need to be replaced because they are outdated and do not have sufficient ca­
pacity or ability to take advantage of new technology. An example is the "in­
formation infra tructure," which includes physical facilities to transmit, store,
process, and display voice, data, and images . Better communications and com­
puter networking technology will be needed for such improvements. Many of
the MATLAB toolboxes provide advanced support for such work, including
the Financial, Communications, Image Processing, Signal Processing, PDE, and
Wavelet toolboxes. _

Symbolic Processing
lNith MATLAB
OUTLINE

10.1 Symbolic Expressions and Algebra

10.2 Algebraic and Transcendental Equations

10.3 Calculus

10.4 Differential Equations

10.5 Laplace Transforms

10.6 Symbolic Linear Algebra

10.7 Summary

Problems

Up to now we have used MATLAB to perform numerical operations only; that is,
our answers have been numbers, not expressions. In thi s chapter we use MATLAB
to perform symbo/icprocessing to obtain answers in the form of expressions. Sym­
bolic processing is the term used to describe how a computer performs operations
on mathematicaJ expressions in the way. for example. that humans do algebra
with pencil and paper. Whenever po sible, we wi h to obtain solutions in clo ed
form because they give us greater insight into the problem. For example. we often
can see how to improve an engineering design by modeling it with mathematical
expressions that do not have specific parameter values. Then we can analyze the
expressions and decide which parameter values will optimize the de ign.

This chapter explains how to define a symbolic. exp:ession su~h as)' =
sin x/cos x in MATLAB and how to use MATLAB to Simplify expre IOns wher­
ever possible. For example, the previous function sim~l~fie to y = ~n .~ / c~s x =
tan x. MATLAB can perform operations . uch a addition and multiplicatIOn on

SYMBOLIC
EXPRESSION

586 CHAPTER 10 Symbolic Processing with MATLAB

mathematical expressions, and we can use MATLAB to obtain symbolic so lu­
ti ons to algebraic equations such as x 2 + 2x + a = 0 (the so lution for x is
x = - I ± ~). MATLAB can al 0 perform symbolic differen ti at ion and
integration and can solve ordinary differenti al equations in closed form .

To use the methods of thi s chapter, yo u must have either the Symbolic Math
toolbox or the Student Edition of MATLAB , whi ch contai ns all the functions of
the Symbolic Math toolbox but has limited access to the Maple kernel.

The program in thi s chapter are compatible with versions 2 through 3.1 of the
toolbox, although different versions might give slightly different error messages
and slightly different displays of expressions.

The symbolic processing capabiliti es in MATLAB are based on the Maple V
software package, which was developed by Waterloo Maple Software, Inc. The
Math Works has li censed the Maple "engine," that is, the core of Maple. If you have
used Maple before, however, or plan to use it in the future, you should be aware
that the syntax used by MATLAB differs from that used by the commercia ll y
avai lable Maple package.

We cover in thi s chapter a subset of the capabilities of the Symbolic Math
toolbox . Specincally we treat

• Symbolic algebra.

• Symbolic methods for so lving algebraic and transcendental equations.

• Symbolic methods for solving ordinary differential equations.

• Symbolic calculus, including integration, differentiation, limits, and series.

• Laplace transforms.

• Selected topics in linear algebra, including symbolic methods for obtaining
determinants , matrix inverses, and eigenvalues.

The topic of Laplace transforms i included because they provide one way
of solving differential equation and are often covered along with differential
equations.

We do not discuss the following features of the Symbolic Math toolbox:
canonical forms of symbolic matrices; variable precision arithmetic that allows
you to evaluate expressions to a specified numerical accuracy; and special mathe­
matical functions such as Fourier transforms. Details on these capabilities can be
found in the online help.

When you have finished thi s chapter, you should be able to use MATLAB to

• Create symbolic expressions and manipulate them algebraically.

• Obtain symbolic solutions to algebraic and transcendental equations.

• Perform symbolic differentiation and integration.

• Evaluate limits and series symbolically.

• Obtain symbolic solutions to ordinary differential equations.

• Obtain Laplace transforms.

• Perform symbolic linear algebra operations, including obtaining
expressions for determinants, matrix inverses, and eigenvalues.

10.1 Symbolic Expressions and Algebra

10.1 Symbolic Expressions and Algebra

!he sym functio n can be used to create" ymbolic objects" in MATLAB If th
~nput a~gul1lent ~o sym is ~ string, the resu lt is a symbolic numberor vari abl~ Ifth:
~it~~a~~ument IS a ~:umenc scalar or matrix, the result is asymbolic represen'tation

<::,IVen numellc values. For example, typin x _ " .
symbolic vari able with d' g - sym (x) cleates the

. . name x, an tYPlllg y = sym (' y ') creates a symbolic
vanabl~ n.amed y .. TYPll1g x = sym (' x ' , ' real ') tells MATLAB to assume
thhat x .IS leal. TYPll1g x = sym (' x' , ' unreal ') tell s MATLAB to as ume
t at x IS not real.

. Th~ syms function enables you to combine more than one such statement
Illto a s lllgie statement. For example, typing syms x is equivalent to typing x _
sym (, x ') , and typing s:r:ms x y u v creates the four symbolic variables ;,
y , li, and v. When used wIthout arguments, syms lists the symboli c objects in
the workspace. The syms command, however, cannot be used to create symbolic
constants; you must use sym for this purpose.

The syms command enables you to specify that certain variables are real.
For example,

»syms x y real

Y~u can use the sym function to create symbolic constants by using a
numencaJ value for the argument. For example, typing pi = sym (' pi') ,
fractlon = sym(' l!3 '),and sqroot2 = sym(' sqrt(2) ') create
symbolic constants that avoid the floating-point approximations inherent in the
values o~ IT, 1/3, and ../2. If you create the symbolic constant IT this way, it
tempo~anly replaces the built-in numeric constant, and you no longer obtain a
numencal value when you type its name. For example,

»pi = sym ('pi')
pi =

pi
»sqroot2 sym(' sqrt(2) ')
sqroot2 =

sqrt (2)
»a = 3 *sqrt(2)
a =

4 . 2426

% This gives a numeric result .

»b = 3 *sqroot2 % This gives a symbolic result .
b

3*2"(112)

The advantage of using symbolic constants is that they need not be evaluated
(with the accompanying round-off error) until a numeric answer is required.

Symbolic constants can look like numbers but are actually symbolic expres­
sions. Symbolic expressions can look like character strings but are a different
sort of quantity. You can use the class function to determine whether or not a

SYMBOLIC
CONSTANT

587

588 CHAPTER 10 Symbolic Processing with MATLAB

quantity is symbolic, numeric, or a character string. We will give examples of the
clas s fu nction later.

The effect of round-off elTor needs to be considered when converting
MATLAB floating-point values to symbolic constants in thi s way. You can use
an optional second argument with the sym function to specify the technique for
converting floating-point numbers. Refer to the online help for more information.

Symbolic Expressions

You can use symbolic variables in expressions and as arguments of function s. You
use the operators + - * I A and the built-in fu nctions just as you use them
with numerical calculations. For exanlple, typing

»syms x y
»s = x + y;
»r = sqrt(xA2 + y A2) ;

creates the symbolic variables s and r . The terms s = x + y and r =
sqrt (x A2 + yA2) are examples of symbolic expressions. The variab les s
and r created this way are not the same as user-defined function files. That is, if
you later assign x and y numeric values, typing r will not cause MATLAB to
evaluate the equation r = J x 2 + y2. We will see later how to evaluate symbolic
expressions numerically.

The syms command enables you to specify that expressions have certain
characteristics. For example, in the following session MATLAB will treat the
expression w as a nonnegative number:

»syms x y real
»w = xA2 + yA2 ;

To clear x of its real property, type syms x unreal . Note that typing
clear x eliminates x from the workspace and does not make x a nonreal
variable.

The vector and matrix notation used in MATLAB also applies to symbolic
variables. For example, you can create a symbolic matrix A as follows:

»n = 3 ;
»syms X i

»A = x . A((O:n) '*(O:n))
A

1 , 1 , 1, 1]
1 , x , x A2 , x A3]
1 , x A2 , x A4 , x A6]
1 , x A3 , x A6 , x A9]

Note that it was not necessary to use sym or syms to declare A to be a symbolic
variable beforehand. It is recognized as a symbolic variable because it is created
with a symbolic expression.

10.1 Symbolic Expressions and Algebra 589

In MATLAB the variable x i tl d Ii .
vari ab les can be specified t b sh 1~ ~ ault lI1dependent variable, but other -::::DE:::;'F:::-:'I\-::-U=L=T---
know which variable is the i 0 e t e lI1de~ende~t vanable. It is important to VARJABLE
f indsym (E) c b ndepend.ent variable 1I1 an expression. The function
. . . an e .used to determ1l1e the symbolic variable used by MATLAB
In a particular expressIOn E.

. ~he functio~ f i ndsym (E) fi nds the symbolic variables in a symbolic ex­
ples.~ lOn or m~tr.lx , where E is a scalar or matri x symbolic express ion, and returns
a .Stl.U1g cont~lI1l11g all ~f the symbolic variables appearing in E. The va ri abl e~
ru e. letu rned 111 alphabetical order and are separated by commas If no symbol"
van~l es are fo und , f indsym returns the empty string.· IC

. Y contrast, t~e func~on f indsym (E , n) returns the n symbolic variab les
111 E .closest to x, with the tie breaker going to the variable closer to z. The fo llowi n
sessIOn shows some examples of its use: g

» syms b xl y
» findsym(6*b+y)
ans =

b , y

»findsym(6*b+y+x) %Note : x has not been declared symbolic .
??? Undefined function or variable ' x ' .
»findsym (6*b+y , 1) %Find the one variable closest to x
ans =

y

»findsym(6*b+y+xl , 1) %Find the one variable closest to x
ans =

xl
»findsym(6 *b+y*i) %i is not symbolic
ans

b , y

Manipulating Expressions

The following functions can be used to manipulate expressions by collecting coef­
ficients of like powers, expanding powers, and factoring expressions, for example.

The function collect (E) collects coefficients of like powers in the ex­
pression E. If there is more than one variable, you CM use the optional form
collect (E , v), which collects all the coefficients with the same power of v .

»syms x y
»E = (X-5) A2 +(y-3)A2 ;
»collect (E)
ans =

xA2 - 10*x+25+ (y-3) A2
»collect (E , y)
ans

y A2-6*y+ (x-5) A2 +9

590 CHAPTER 10 Symbolic Processing with MATLAB

The function e x pand (E) expands the express ion E by carrying out powers.
For example,

»syms x y
»expand((x+y) "2) % a pplies alge bra rules
ans =

x "2 +2 *x*y+y"2
»expand(sin(x+y)) % a pplies trig identities
ans =

sin(x)*cos(y)+cos(x)*sin(y)
»simplify (6 * ((sin (x)) "2+ (cos (x)) "2)) app l ies ano ther trig identity

The function factor (E) factors the expression E. For example,

»syms x y
»factor (x" 2-1)
ans =

(x- I) * (x+l)

The function simplify (E) simplifies the expression E, using Maple 's
simplification rules. For example,

» syms x y
»simp l ify(x* sqrt (x"8 *y"2))
an s =

x*(x"8 *y"2) "(1/2)

The function simple (E) searches for the shortest form of the expression E
in tenns of number of characters. When called, the function displays the results of
each step of its search . When called without the argument, s i mp le acts on the
previous expression. The form [r , howl = simpl e(E) does not display
intermediate steps, but saves those steps in the string how. The shortest form
found is stored in r.

You can use the operators + - * I and " with symbolic expressions to
obtain new expressions. The following session illustrates how this is done.

»syms x y
» El x "2+5 ;
»E2 y"3-2 ;
»81 El + E2
81 =

x "2+3+y"3
» 8 2 = El *E2

S2
(x" 2 +5) * (y " 3- 2)

% define two expressions

% add the expressions

% mu ltipl y the e xpress ions

10.1 Symbolic Expressions and Algebra

»expa nd (82)
an s = expand the product

x"2 *y " 3 -2 *x"2+5 *y"3 -10
» E3 = x"3 +2 *x"2+5 *x+l0 ' % d ' .
» 83 = E3 lEI ~ . . eflne a thlrd expression

o dlvlde two expressions
. 8~ = (x"3+2 *x"2+5 *x+l0) I (x "2+5)

:~:lmpllfY(83) % see if some terms can cel

x+2

. The function [num den] = numden (E) return two symbolic expres­
sions tha: represent the numerator num and denominator den for the rational re­
presentati on of the expression E.

» syms x
» El = x " 2+5 ;
» E4 = 1/ (x+6) ;
» [num , den] = numden(El+E4)

x"3+6 *x"2+5 *x+31
den

x +6

The function doubl e (E) converts the expres ion E to numeric form . The
expression R must not contain any symbolic variables. The term double stand for
floating-point, double precision. For example,

» sqroot 2 = s ym (' s q r t (2) ') ;
» y = 6 * s qroo t2
y

6 *2 " (1 /2)
z = double(y)

8 . 4853

The function poly2 sym (p) converts a coefficient vector p to a symbolic
polynomial. The form poly2sym (p , ' v ') generates the polynomial in terms
of the variable v. For example,

»poly2 s ym ([2 , 6 , 4])
ans =

2 *x"2+6 *x+4
»poly2sym([5 , -3, 7) , ' y ')
ans

5*y"2 - 3 *y+7

591

592 CHAPTER 10 Symbolic Processing with MATLAB

The function sym2poly (E) converts the expression E to a polynomia l
coefficient vector.

»syms x
»sym2poly(9 *x A2+4 *x+ 6)

946

The funct ion pret ty (E) displays the expression E on the screen in a fo rm
that resembles typeset mathematics.

The function subs (E, old, new) substitutes new for old in the expres­
sion E, where old can be a symbolic variable or expression and new can be a sym­
bolic variable, expression, or matrix, or a numeric value or matrix. For example,

»syms x y
»E x A2+6 *x+ 7 ;
»F = subs(E,x,y)
F

yA2+6*y+7

If old and new are cell anays of the same size, each element of old is
replaced by the corresponding element of new. If E and old are scalars and new
is an array or cell array, the scalars are expanded to produce an array result.

If you want to tell MATLAB that f is a function of the variable t , type
f = sym (, f (t) ,) . Thereafter, f behaves like a function of t, and you can
manipulate it with the toolbox commands. For example, to create a new function
get) = f(t + 2) - f(t), the session is

»syms t
»f sym(' f(t) ') ;
»g = subs(f , t , t+2)-f
9 =

f(t+2)-f(t)

Once a specific function is defined for f(t), the function g(t) will be available.
We will use this technique with the Laplace transform in Section 10.5.

MATLAB does not have a symbolic factorial function, but you can use
the sym and subs functions to access the Maple factorial function to compute
(n - I)! as follows:

»kfac = sym(' k! ') ;
»syms k n
»E = subs(kfac,k,n-1)
E =

(n-1) !

»expand (E)

ans
n ! I n

10.1 Symbolic Expressions and Algebra

To compute a numeric factorial , say, 5!, type factorial (5) or use the
prod function and type prod (1 : 5) . '

. To perform multi~le substitutions, enclose the new and old elements in braces.
FOI ~xa~l pl e, to substitute a = x and b = 2 into the expression E = a sin b the
sessIOn IS '

»syms a b x
»E a *s in (b) ;
»F = subs (E , {a , b) , {x, 2)
F

x*sin(2)

Evaluating Expressions

In most app.lications ,;e eventually want to obtain numerical values or a plot from
the symbolic expresSion. Use the subs and double functions to evaluate an
expression numerically. Use subs (E , old , new) to replace old with anumeric
value new in the expression E. The result is of class double. For example,

»syms x
»E xA2+6*x+ 7 ;
»G = subs(E , x , 2)
G =

23
»class (G)

ans =
double

Sometimes MATLAB will display all zeros as the result of evaluating an
expression, whereas in fact the value can be nonzero but so small that you need to
evaluate the expression with more accuracy to see that it is nonzero. You can use
the dig its and the vpa functions to change the number of digits MATLAB uses
for calculating and evaluating expressions. The accuracy of individual arithmetic
operations in MATLAB is 16 digits, whereas symbolic operations can be carried
out to an arbitrary number of digits. The default is 32 digits. Type dig its (d)
to change the number of digits used to d . Be aware that larger values of d will
require more time and computer memory to perform operations. Type vpa (E) to
compute the expression E to the number of digits specified by the default value of
32 or the current setting of digi ts . Type vpa (E , d) to compute the expression
E using d digits. (The abbreviation vpa stands for "variable precision arithmetic.")

Plotting Expressions

The MATLAB function ezpl ot (E) generates a plot of a symbolic expression E,

which is a function of one variable. The default range of the independent variable
is the interval [-2rr, 2rr J unless this interval contains a singularity. The optional
fonn ezplot (E, [xmin xmaxl) generates a plot over the range from xmin

593

594 CHAPTER 10 Symbolic Processing with MATLAB

Figure 10.1-1 Plot of the function £ = x2
- 6x + 7 generated by the ezplot

function.

to xmax . Of course, you can enhance the plot generated by ezp lot by using the
plot format commands discussed in Chapter 5; for example, the axis, xlab el ,

and y l a b el commands.
For example,

»syms X

»E = x"2 - 6*x+7 ;
» e zp 1ot (E , [- 26])

The plot is shown in Figure 10.1-1. Note that the expression is automatically
placed at the top of the plot and that the axis label for the independent vari­
able is automatically placed. You can use other plot-enhancement functions with
ezplot to modify its appearance. For example, sometimes the automatic selec­
tion of the ordinate scale is not satisfactory. To obtain an ordinate scale from -5
to 25 and to place a label on the ordinate, you would type

»ezplot(E) , axis([- 26 -5 2 5]) , ylabel(' E ')

Order of Precedence

MATLAB does not always arrange expressions in a form that we nonnally would
use. For example, MATLAB might provide an answer in the fonn - c + b , whereas

10.1 Symbolic Expressions and Algebra 595

we would normally .writ~ b-c. The order of precedence used by MATLAB must
be constantly kept III mlIld to avoid misinterpreting the MATLAB output (see
?ages 9 ~nd I Of~r the order of precedence). MATLAB freq uently ex presses res ~i1ts
III the fO I m 1/ a b, whereas we wou ld normall y write b/ a MATLAB t" ,
writes.x " (,1/2) *y" (1/2) instead of grouping the rer~s as (x*y ~~n~~ ~I;~S
~nd often fa ll s to cancel negative signs where possible, as in -a/ (-b'kc-d) ,
Instead of a/ (b*c+d). For example, ,

»syms x
» E x"2-6*x+7
» F = -E/3
F

-1/3 *x"2+2 *x- 7!3

The answer is F = -(1/ 3)x2 + 2x - 7/3 , which we would normall y expre s
as F = -(x 2 - 6x + 7)/3,

Tabl ~s 10,.1- 1 and 10.1-2 summari ze the functions for creating, eva luating,
and mal1lpulatlIlg symbolic expressions.

Table 10.1-1 Functions for creating and evaluating symbolic expressions

Command

class (E)
digits (d) .

double (E)
ezplot (E)

findsym(E)

findsym (E , n)

[num denl = numden (E)

x = sym(' x ')

syms x y u v

vpa (E , d)

Description

Returns the class of the express ion E.
Sets the number of decimal digi ts used to do va ri able precis ion ari thmetic. The
default is 32 digits.
Converts the express ion E to numeric form .
Generates a plot of a symboJjc expre sion E, which is a functi on o f one va ri ab le.
The default range of the independent variable i ~ the interval [- 2n , 2n]unless thi .,
interval contains a singUlarity. The optional form ezploc (E , [y.min xmax J)

generates a plot over the range from xmin to Y.max.
Finds the symbolic variable in a symbolic expre sion or matrix, where E i, a s(;a lar
or matrix symbolic expre sion, and returns a string containi ng all the "ymbolic
variables appearing in E. The variables are returned in alphabetical order and are
separated by comma. If no symbolic variables are found, f ~!1ds"lfn returns the
empty string.
Returns the n symbolic variables in E cJ ose~t to x, with the tie breaker going to
the variable closer to z.
Returns two symbolic expressions that represent the numerator ex pression
n um and denominator expression der: for the rational repre entation o f the

expression E.
Creates the symbolic variable with name x . Typing x = sym (' x ' , ' red: ')
tells MATLAB to assume that x is real. Typing x 0 sy=" (, x ' , ' ur.rea' ,)
tells MATLAB to assume that x is not real.
Creates the symbolic variables x, y . u. and 'f . When used without arguments,
syms Ii ts the symbolic objects in the workspace.
Sets the number of digits used to evaluate the expre ion E to d . Typing vp (E)

causes E to be evaluated to the number of digits pecified by the default value
of 32 or by the current setting of digits.

596 CHAPTER 10 Symbolic Processing with MATLAB

Table 10.1-2 Functions for manipulating symboli c expressions

Command

collect (E)
expand (E)
factor (E)

poly2sym(p)

pretty (El
simple (E)

simplify (E)
subs (E, old , new)

sym2poly (El

Description

Collects coefficients of like powers in the expression E.
Expands the expression E by carrying out powers.
Factors the expression E.
Converts a polynomial coefficient vector p to a symbolic polynomial. The form
poly2 sym (p , ' v ') generates the polynomial in terms of the variable v.
Displays the expression E on the screen in a form that resembles typeset mathematics.
Searches for the shortest form of the expression E in terms of number of characters. When
call ed, the function di spl ays the results of each step of its search. When called without the
argument, simple acts on the previous expression. The form [r , howl = simple (E)
does not display intermediate steps , but saves those steps in the string how. The shortes t form
found is stored in r .
Simplifies the expression E using Maple's s implification rules.
Substitutes new for old in the expression E, where old can be a symbolic variable or ex­
pression , new can be a symbolic variable, expression, or matri x, or a numeric value or matrix.
Converts the ex pres ion E to a polynomial coefficient vector.

Test Your Understanding

T10.1-1 Given the expressions: EI = x 3 - 15x 2 + 75x - 125 and E 2

(x + 5? - 20x, use MATLAB to
a. Find the product E 1 E2 and express it in its simplest form.
b. Find the quotient E 1/ E2 and express it in its simplest form .
c. Evaluate the sum E 1 + E2 at x = 7.1 in symbolic form and in numeric

form.
(Answers: a. (x - 5)5; b. x - 5; c . 13,671/1000 in symbolic form,
13.6710 in numeric form.)

10.2 Algebraic and Transcendental Equations
The Symbolic Math toolbox can solve algebraic and transcendental equations , as
well as systems of such equations. A transcendental equation is one that contains
one or more transcendental functions, such as sin x, eX, or log x. The appropriate
function to solve such equations is the sol ve function.

The function sol ve (E) solves a symbolic expression or equation repre­
sented by the expression E.lf E represents an equation, the equation's expression
must be enclosed in single quotes. If E represents an expression, then the solution
obtained will be the roots of the expression E; that is , the solution of the equation
E = O. Multiple expressions or equations can be solved by separating them with
a comma, as sol ve (El , E2 , ... , En). Note that you need not declare the
symbolic variable with the sym or syms function before using sol ve.

There are three ways to use the solve function. For example, to solve the
equation x + 5 = 0, one way is

»eq1 = 'x+5=O ';
»solve (eq1)

ans =
-5

The second way is

»sol ve (' x+5=O ')
ans =

-5

The third way is

»syms x
»solve(x+5)
ans =

-5

10.2 Algebraic and Transcendental Equations

You can store the result in a named variable as fo llows:

»syms x
solve (x+5)

-5

To solve the equation e2x + 3ex = 54, the session is

»solve (' exp (2*x) +3*exp (x) =54')
ans =

[10g(-9)]
[log (6)]

Note that log (6) is In (6) = 1.7918, whereas log (-9) , which is In (-9), is a
complex number. To see this, in MATLAB type log (-9) to obtain 2.1972 +
3.] 4l6i. So we obtained two solutions, instead of one, and now we must decide
whether both are meaningful. The answer depends on the application that pro­
duced the original equation. If the application requires a real number for a solution,
then we should choose log (6) as the answer.

The following sessions provide some more examples of the use of these
functions.

»eq2 = 'y"2+3*y+2=O ';
»sol ve (eq2)
ans

[-2]

[-1]

»eq3 = ' x"2+9*y"4 =O';
»sol ve (eq3) %Note that x is presumed to be the unknown variable
ans

[3 * i *y"2]
[-3*i *y"2J

597

598 CHAPTER 10 Symbolic Processing with MATLAB

When more than one variable occurs in the expression, MATLAB assumes that
the variable closest to x in the alphabet is the variable to be found. You can specify
the solution variable using the syntax solve (E , 'v ') , where v is the solution

variable. For example,
»solve(' b"2+8 *c+2 *b=O ') %solves for c because it is closer to x

ans =
- 1/8 *b"2-1/4 *b

»solve(' b"2+8 *c+2*b=O', ' b ') solves for b

SOLUTION
STRUCTURE

- 1+ (1 - 8 *c)" (1/2)]
- 1 - (1 - 8 *c)"(1/2)]

Thus the solution of b2 + 8c + 2b = 0 for c is c = _(b2 + 2b)/ 8. The solution

for b is b = - 1 ± .JT=8c.
You can save the solutions as vectors by using the form [x , y] = so l ve

(eq1, eq2) . Note the difference in the output formats in the following example:

» e q4 = ' 6*x+2 *y =14 ' ;
»eq5 = ' 3 *x+ 7 *y =31 ';
»sol v e (eq4 , e q5)

x : [lx1 sym]
y : [lx1 sym]

ans . x

»y = ans . y =
4

»[x, y] = solve(eq4 , eq5)

y =
4
You can save the solution in a structure with named fields (see Chapter 2,

Section 2.7 for a discussion of structures and fields). The individual solutions are
saved in the fields. For example, continue the preceding session as follows :

»S = solve(eq4 , eq5)

[lx1 sym]
y : [lx1 sym]

» S.x
ans =

»S .y
ans

10.2 Algebraic and Transcendental Equations

Test Your Understanding

T10.2-1 Use MATLAB to solve the equation .Jl=X2 = x
(Answer: x = -Ji12.) .

T10.2-2 Use MA!LAB to solve the equation set x + 6y = a, 2x - 3y = 9 for
x and y lI1 terms of the parameter a.
(Answer: x = (a + 18)/5 , y = (2a - 9)115.)

Intersection of Two Circles

We want to find the intersection points of two circles. The first circle has a radi us of 2 and
is centered at x = 3, Y = 5. The second circle has a radius b and is centered at x = 5
y = 3. See Figure 10.2-1. '

(a) Find the (x, y) coordinates of the intersection points in terms of the parameter b.
(b) Evaluate the solution for the case where b = ./3.

• Solution
(a) The intersection points are found from the solutions of the two equations for the circles.
These equations are

(x - 3i + (y - 5)2 = 4

for the first circle, and

The session to solve these equations follows. Note that the result x : [2xl sym] indi­
cates that there are two solutions for x. Similarly, there are two solutions for y.

»syms x y b
»8 = solve((x-3)~2+(y-5)~2-4 , (x-5)~2+(y - 3)~2-b~2)

Figure 10.2-1 Intersection points of
two circles.

599

"*§ige'''D'

600 CHAPTER 10 Symbolic Processing with MATLAB

y :
» S . X

[2x1 sym]
[2x1 sym]

9/2 - 1/8*b A 2+1/8 * (- 16+24 *b A 2 - b A 4) A (1/2)]
9/2- 1 /8 *b A 2 - 1/8* (- 16+24 *b A 2-b A 4) A (1/2)]

The solution for the x coordinates of the intersection points is

T he solution for the y coordinates can be fo und in a s imilar way by typing S .y.
(b) Continue the session by substituting b = .,J3 into the expression for x .

»subs(S . x , b , sqrt(3))

4.9820
3.2680

Thus the x coordinates of the two intersection points are x = 4 .982 and x = 3.268.

The y coordinates can be found in a si mil ar way.

Test Your Understanding

T1 0.2-3 Find the y coordinates of the intersection points in Example 1O.2-l. Use
b = v'3.
(Answer: y = 4.7320, 3.0180.)

Equations containing periodic functions can have an infinite number of solu­
tions. In such cases the sol ve function restricts the solution search to solutions
near 0. For example, to solve the equation sin(2x) - cos x = 0, the session is

»solve (' sin (2*x) -cos (x) =0 ')
ans

1/2*pi)
-1/2*pi)
1/6 *pi)
S/6*pi)

'.'9""E Positioning a Robot Arm

Figure 10.2-2 shows a robot arm having two joints and two links. The angles of rotation

of the motor at the joints are 0, and 02. From trigonometry we can derive the following

10.2 Algebraic and Transcendental Equations

Hand

Elbow Motor

e,

Base Motor

Figure 10.2-2 A robot arm having two joints and two links.

expressions for the (x, y) coordinates of the hand:

x = LI cosBI + L 2 cos(BI + B2)

y = L I sin BI + L2 sin(BI + B2)

Suppose that the link lengths are LI = 4 ft and L2 = 3 ft.

(a) C~mpute the motor angles required to position the hand at x = 6 ft, Y = 2 ft.
(b) It IS desITed to move the hand along the straight line where x is constant at 6 ft

and y varies fro m y = 0.1 to y = 3.6 ft. Obtain a plot of the required motor angles as a
function of y.

• Solution

(a) Substituting the given values of L I. L2, x. and y into the above equations gives

6 = 4 cos BI + 3 cos(BI + B2)

2 = 4 sin B1 + 3 sin(BI + B2)

The following session solves these equations. The variables th1 and t h2 represent BI
and B2.

» S = solv e('4*cos (th1)+3*cos(th1+th 2)=6 ', .. .
' 4 * sin (th1) +3 *sin (th1+th2) =2 ')
S

th1 : [2x1 sym]
th2 : [2x1 sym]

»double(S . th1)*(180 / pi) % convert from radians to d e grees

-3 . 2981
40 . 1680

»double(S . th2)*(180/pi) % convert from radians t o degrees

51. 3178
- 51. 3178

Thus there are two solutions. The first is B, = -3.298} O, 02 = 51.3178' , This i
called the "elbow-down" solution, The second solution i B. = 40.168 '(h = -51.3178".

601

602 CHAPTER 10 Symbolic Processing with MATLAB

This is called the "elbow-up" solution. When a problem can be solved numericall y, as in
thi case, the solve function will not perform a symbolic solution. Tn part (b), however,
the symbolic solution capabi lities of the solve function are put to use.

(b) First we find the solutions for the motor angles in terms of the variable y. Then
we evaluate the solution for numerical va lues of y and plot the results. The script fil e is
shown below. Note that because the problem has three symbolic variable, we must tell
the sol ve function that we want to solve for 8, and 82.

S = solve(' 4*cos(th1)+3*cos(th1+th2)=6 ', . . .
' 4*s in(th1)+3*sin(th1+th2)=y ', ' th1 ', ' th2 ') ;
yr = [1 : 0 . 1 : 3 . 6) ;
th1r = [subs(S . th1(1) ,' y ', yr) ; subs(s . th1(2) ,' y ', yr)) ;
th2 r = [subs (S . th2 (1) , ' y ' , yr) ; subs (s . th2 (2) , ' y' , yr)) ;
th1d = (180/pi)*th1r ;
th2d = (180/pi) *th2r ;
subplot (2 , 1 , 1)
plot (yr, th1d , 2 , -3 . 2981 , ' x ', 2 , 40 . 168, '0') ,xlabel (' y (feet) '), ...
ylabel (' Theta1 (degrees)')
subplot (2 , 1 , 2)
plot (yr , th2d , 2 , - 51 . 3178 , '0', 2 , 51 . 3178, ' x') , xlabel (' y (feet) '), ...
ylabel (' Theta2 (degrees) ')

The results are hown in Figure 10.2-3, where we have marked the solution from
part (a) to check the validity of the symbolic solutions. The elbow-up solutions are marked

i_~I-- ::: ::: I
-40 0 2 3 4

y(leet)

I~I : : : ' 21
-100 0 0.5 1 2 2.5 3 3.5 4

y (feet)

Figure 10.2-3 Plot of the motor angle for the robot hand moving along a
vertical line.

10.3 Calculus

with an .0, and the elbOw-down solutions are marked with an x. We cou ld have rillled the
ex~resslOn for the solutions for 8, and 82 as functions of y, but the expression~ are cum­
be, some and unnecessary 'f all we want is the plol.

MATLAB is powerful enough to solve the robot arm eq uati ons for arbitrary va l­
ues of the hand coordlllates (x , y). However, the resu lting expressions for 8, and 8 are
compilcated. 2

Table J 0.2-1 summari zes the sol ve fu nction.

Table 10.2-1 Functions for solving algebraic and transcendental equations

Command Description

solve (E)

solve(El , . .. , En)
S = solve (E)

10.3 Calculus

Solves a symbolic expre sion or equation repre ented by the
express~on E. If E represents an equation. the cquation's
expression must be encJo ed in single quotes. If E represents
all expre sion, then the solution obtained will be the root~ of
the expression E; that is, the solution of the equation E = O.
You need not declare the symbolic variable with the sym or
syms function before using sol ve.
Solves mUltiple expressions or equations.
Saves the solution in the structure s.

In Chapter 8 wediscussed techniques for performing numerical differentiation and
numerical integration; thi s section covers differentiation and integration of ym­
bolic expressions to obtain closed form results for the derivatives and integrals.

Differentiation

The di f f function is ll sed to obtain the symbolic derivative. Although this fun c­
tion has the same name as the function used to compute numerical differences (see
Chapter 8), MATLAB detects whether or not a symbolic expression is used in the
argument and directs the calculation accordingly. The basic syntax is di f f (E) ,
which returns the derivative of the expression E with respect to the default inde­
pendent variable.

For example, the derivatives

dxn = nxn- t

dx

dlnx

dx

d sin
2
x = 2 sinx cosx

dx

dsiny
----;Jy = co y

603

604 CHAPTER 10 Symbolic Processing with MATLAB

are obtained with the following session :

»syms n x y
»diff (x"n)
ans =

x"n*n/x
»simplify (ans)
ans =

x"(n-l)*n
»diff(log(x))

ans =
l/x

»diff ((sin (x)) "2)

ans =
2*sin (x) *cos (x)

»diff(sin(y))

ans =
cos (y)

If the expression contains more than one variable, the di f f function operates
on the variable x, or the variable closest to x, unless told to do otherwise. When
there is more than one variable, the di f f function computes the partial derivative.

For example, if

then

f(x, y) = sin(xy)

~ = ycos(xy)
ax

The corresponding session is

»diff (sin (x*y))

ans =
cos (x*y) *y

There are three ways to use the di f f function, but the third way is preferred.
Using the function x2 as an example, the first way is

»E = ' x"2 ';
»diff(E)
ans =

2 *x

The second way is

»diff ('x"2')
ans

2*x

The third way is

»syms x
»diff (x"2)
ans =

2*x

10.3 Calculus

~a~~:~~a~~~eb:~~I~~~~~~~~Ot be differenti.ated n.eed not be placed in quotes if the
. a be symbolic. Thls method is prefelTed because the

use of qfuohted stnngs.bypasses the use of symbolic expressions, which is the whole
POll1t ate SymbolIc Math toolbox .

There are tl:u-e~ other forms of the di f f function . The function di f f (E)
returns the denvatlVe of the expression E with respect to the variable v F~r
~am~~ . .

a[x sin(xy)] 2
--a-y-- = x cos(xy)

is given by

»syms x y
»diff (x*sin(x*y) ,y)
ans =

x"2*cos (x*y)

The functi.on di f f (E , n) returns the nth derivative of the expre sian E with
respect to the default independent variable. For example,

is given by

»syms x
»diff (x"3, 2)
ans =

6 *x

d
2
(x

3
) = 6x

dx 2

The function di f f (E, v, n) returns the nth derivative of the expression E

with respect to the variable v . For example,

a2[x sin(xy)] 3 .
--ay-2-- = -x sm(xy)

is given by

»syms x y
»diff(x*sin(x*y) ,y, 2)

ans =
-x"3 *sin (x*y)

Table 10.3-I summarizes the differentiation function .

605

606 CHAPTER 10 Symbolic Processing with MATLAB

Table 10.3-1 Symbolic calculus functions

Command

diff (E)
diff (E , v)

diff (E , n)

diff (E , v , n)
int (E)
int (E , v)
int (E , a, b)

int(E , v,a,b)

int (E,m, n)

limit (E)
limit (E, a)
limit (E,v,a)
1 imi t (E, v , a, 'd')

symsum(E)
taylor (f, n, a)

Description

Returns the derivative of the expression E with respect to the default independent variable.
Returns the derivative of the expression E with respect to the variable v.
Returns the nth derivative of the expression E with respect to the default independent
variable.
Returns the nth derivative of the expression E with respect to the variable v .
Returns the integral of the expression E with respect to the def~ult independent variable.
Returns the integral of the expression E with respect to the variable v.
Returns the integral of the expression E with respect to the default independent variable
over the interval [a. b] , where a and b are numeric quantities.
Returns the integral of the expression E with respect to the variable v over the interval
[a, b] , where a and b are numeric quantities.
Returns the integral of the expression E with respect to the default independent variable
over the interval [/11, n], where m and n are symbolic expressions.
Returns the limit of the expression E as the default independent variable goes to O.
Returns the limit of the expression E as the default independent variable goes to a.
Returns the limit of the expression E as the variable v goes to a .
Returns the limit of the expression E as the vari ab le v goes to a from the direction specified
by d, which may be right or left.
Returns the symbolic summation of the expression E.
Gives the first n -1 terms in the Taylor series for the function defined in the expression f ,
evaluated at the point x = a. If the parameter a is omitted, the function returns the series
evaluated at x = O.

Max-Min Problems

The delivative can be used to find the maximum or minimum of a continuous
function, say, f(x), over an interval a S x S b. A local maximum or local mini­
mum (one that does not occur at one of the boundaries x = a or x = b) can occur
only at a critical point, which is a point where either df / dx = 0 or elf/ dx does not
exist. If d2 fldx 2 > 0, the point is a relative minimum ; if d2 fldx 2 < 0, the point
is a relative maximum . Ifd 2 fldx 2 = 0, the point is neither a minimum nor a max­
imum, but is an inflection point. If multiple candidates exist, you must evaluate
the function at each point to determine the global maximum and global minimum .

'P"'9"'",1 Topping the Green Monster

The Green Monster is a wall 37 ft high in left field at Fenway Park in Boston. The wall is

310ft from home plate down the left-field line. Assuming that the batter hits the ball 4 ft

above the ground. and neglecting air resistance, determine the minimum speed the batter

must give to the ball to hit it over the Green Monster. In addition, find the angle at which

the ball must be hit (see Figure 10.3-1).

• Solution
The equation of motion for a projectile launched with a speed Vo at an angle 8 relative to

the horizontal are

x(t) = (vocosf))t
gt 2

yet) = -2 + (vosin8)t

100

90

80

70

g 60

'" -§, 50

'w
:r:

40

30

10

50 100 150 200
Distancex(ft)

250

Green
Monster

300

Figure 10.3-1 A baseball trajectory to clear the Green Monster.

10.3 Calculus

350

w~ere x ~ 0, y = 0 is the location of the ball when it is hit. Becau e we are not concerned
~lth the tlllle of flight in this problem, we can eliminate, and obtain an eq uation for y
111 terms of x. To do so, solve the x equation for' and substitute thi into the y equation
to obtain

g x 2(t)
y(l) = -2 V6 cos2 f) + x(t) tan f)

(You could use MATLAB to do this algebra if you wish. We will use MATLAB to do Ihe
more difficult task to follow.)

Because the ball is hit 4 ft above the ground, the ball must ri e 37 -4 = 33 ft to clear the

wall. Let h represent the relative height of the wall (33 fl) . Let d represenL the distance to the

wall (310ft). Use g = 32.2 ftlsec2. When x = c/, Y = h. Thus Ihe previous equation give~

h = _~_c/_2 _ +dtanf)
2 v6 cos2 f)

which can easily be solved for vJ as follows:

g d2

v5= 2cos2 8(dtan8-h)

Because Vo > O. minimizing V6 is equivalent to minimizing Vo · Note al 0 that gd2/2 i
a multiplicative factor in the expre sion for v6. Thus the minimizing value of 8 i inde­

pendent of g and can be found by minimizing the function

I
f cos2 8(dtan8 - h)

607

608 C HA PT ER 1 0 Symbolic Processing with MATLAB

The session to do th is is as fo llows. The vari able th represents the angle e of the ball's

ve locity vector relative to the horizontal. T he first step is to calcul ate the deri vative dfl de
and solve the equatio n df Ide = 0 for e.

»syms d 9 h th
»f = 1/(((cos(th))A2)*(d*tan(th)-h)) ;
»dfdth = diff(f , th) ;
»thmin solve (dfdth , th) ;
»thmin = subs (thmin, {d , h} , (310 , 33})
thmin =

0 . 8384
-0 . 7324

Obviou Iy, the negative angle is not a proper solution, so the only so lu tion cand idate

is e = 0.8384 rad , or about 48°. To veri fy that thi s angle is a mini mum solu tion, and not

a maximum or an infl ection pOiJlt, we can check the econd derivative d2 f l de2 . If thi s

derivative is positi ve, the solu ti on represents a minimum. To check thi s solu tion and to

find the peed required, continue the ses ion as fo ll ows:

»second = diff(f,2 , th) ; % This is the second derivative .
»second = subs (second , (th , d , h) , (thmin (1) , 310 , 33})
second =

0 . 0321
»v2 = (g * d A 2 /2) * f ;
»v2min = subs(v2 , {d , h , gj, (310 , 33 , 32 . 2}) ;
»vmin = sqrt (v2min) ;
»vmi n = double (subs (vmin (1) , (th , d , h , g) , (thmin (1) , 310 , 33 , 32 . 2}))
vmin =

105 . 3613

Becau e the second derivative is positive, the solution is a minimum. T hus the In.i ni ­

mu m speed required is] 05 .3613 ftlsee, or about 72 mi/hr. A ba JJ hit with this speed will

clear the wall only if it is hit at an angle of approximate ly 48° .

Test Your Understanding

T10 .3-1 Given that y = sinh(3x)cos h(5x) , use MATLAB to fi nd d yjdx at
x = 0.2.
(Answer: 9.2288.)

T10.3-2 Given that z = 5 cos(2x) In(4y), use MATLAB to fi nd a- j ay.
(Answer: 5 cos(2x)jy .)

Integration

The int (E) function is used to integrate a symbolic expression E. It attempts
to find the symbolic expression I such that di f f (I) =E. If the integral does not
exi t in closed form or MATLAB cannot find the integral even if it exists, the
function will retum the expression unevaluated.

10.3 Calculus

As with the diff functi on, there are three ways to use the int fun cti on'
two of the ways use quoted strings bu t th f J/ " '
function 2x as an example, the me;hod is e 0 oWing way IS preferred. Us ing the

»syms x
»int (2*x)
ans =

x"2

The functio n int (E) returns the in tegral of th e express ion E with respect
~o the defa~lt llldependent variable. For example, you can obtain the following
Illtegrals wIth the nex t session:

»syms n x y
»int (x "n)
ans =

x " (n+l) / (n +l)
»int (l/x)
ans =

l og (x)

»int (cos (x))
a ns =

sin (x)
» int (sin (y))
ans =

-cos (y)

j. X" + I

x" dx =-­
n + l

J ~dX = In x
x

J cosx dx = sin x

J sin y dy = - cosy

Here are the other forms of the int function. The form in t (E , v) returns
the integral of the expression E with respect to the variable v . For example, the
result

J
xn

x" dn = ­
ln x

can be obtained with the session:

»syms n x
»int (x " n , n)
ans

lllog (x) *x"n

609

610 CHAPTER 10 Symbolic Processing with MATLAB

The form int (E , a , b) returns the integral of the ex press ion E with respect
to the default independent vari able eva luated over the interval [a , b I. where a and
b are numeric expressions. For exampl e, the result

is obtained as fol lows:

»syms x
»int(x"2 , 2 , S)

ans =
39

x 2 dx = - = 39 l 5 x315
.2 3 2

The form int (E , v , a , b) relUrns the integral of the expression E with
re peet to the variable v evaluated over the interval [a., b], where a and b are
numeric quantities. For example, the result

is obtained from

»syms x y
»int(xy"2 , y , O, S)
ans =

12S!3 *x

The result

is obtained from

»syms a b x
»in (x"2 , a , b)
ans ::

lo
S? y315 125

xy- dy = x - = - x
. 0 3 0 3

l
b

x2dx = ~ - ~
a 3 3

1!3*b"3-1!3*a"3

The form int (E I mi n) returns the integral of the expression E with respect
to the default independent variable evaluated over the interval [m, n), where m
and n are symbolic expressions. For example,

1
~1

I • in x dx = -cos X I~' = -cos(e l
) + cos t

are given by thi s sess ion :

» syms t x
» int (x , l , t)
ans =

1/2*t"2-1/2
int (sin(x), t , exp(t))
ans

-cos(exp (t)) + cos(t)

10.3 Calculus

The fo llowing session gives an example for which no integral can be found .
The indefinite integral exists, but the definite integral does not ex ist if the limits
of integration include the singularity at x = 1. The integral is

j. I
-- dx = In lx - I I
x- J

The session is

»syms x
»int (1/ (x-1))
ans =

log(x-1)
»int (1/(x-1) , 0 , 2)
ans

NaN

Table 10.3-1 summarizes the integration functions.

Test Your Understanding
T10.3-3 Given that y = x sin(3x), use MATLAB to find J y dx .

(Answer: [sin(3x) - 3x cos(3x»)/9.)

T10.3-4 Given that z = 61 tan(8x), use MATLAB to find J z dy .
(Answer: 2l tan(8x).)

T10.3-5 Use MATLAB to evaluate

(Answer: 0.6672.)

15 x sin(3x) dx
-2

611

612 CHAPTER 10 Symbolic Processing with MATLAB

Taylor Series

Taylor 's theorem states that a function f(x) can be represented in the vicinity of
x = a by the expansion

(d f) I 1 (d2 f) I ? f(x) = f(a) + - (x - a) + - ~ (x - a)- + ...
dx x=a 2 d x x=a

1 (dkf)1 + -k I -d k (x - a)k + ... + Rn ,
. x X=Q

(10.3-1)

The term R" is the remainder and is given by

R - - - (x - a)" 1 (dllf) 1
II - n! dx" x=b

(10.3-2)

where b lies between a and x.
These results hold if f(x) has continuous derivatives through order n. If RII

approaches 0 for large n , the expansion is called the Taylor series for f(x) about
x = a. If a = 0, the series is sometimes called the Maclaurin series.

Some common examples of the Taylor series are

x 3 x 5 x 7

sin x = x - 3! + 5! - 7! + ... , -00 < x < 00

x 2 x4 x 6
cosx = 1 - 2! + 4! - 6! + ... , -00 < x < 00

x 2 x 3 X4
eX = 1 + x + 2! + 3! + 4! + ... , -00 < x < 00

where a = 0 in all three examples.
The taylor (f , n, a) function gives the first n -1 terms in the Taylor series

for the function defined in the expression f, evaluated at the point x = a. If the
parameter a is omitted the function returns the series evaluated at x = O. Here
are some examples:

»syms x
»f = exp (x) ;
»taylor (f ,4)

ans =
1+x+l / 2*xA2+1/6*xA3

»tay1or (f, 3,2)
ans =

exp(2)+exp(2)*(x-2)+1/2*exp(2)*(x-2)A2

The latter expression corresponds to

10.3 Calculus

Sums

~I~~ i~ymsum (E) functi on returns the symbolic summati on of the expression E;

x- I

L E(x) = E(O) + E(I) + E(2) + ... + E(x - J)
x=o

The syms~m (E: a , b) ~:unc tion returns the Sum of the expression E as the
default symbolic vcmable vanes from a to b . That is, if the symboli c variable is
x, then S = symsum (E , a , b) returns

b

~ E(x) = E(a) + E(a + J) + E(a + 2) + .. . + E(b)

Here are some examples. The summations

10

L k = 0 + I + 2 + 3 + ... + 9 + J 0 = 55
k= O

,, - I

L k = 0 + 1 + 2 + 3 + ... + n - 1 = ~n2 - ~n
k=O 2 2
4

L k2 = 1 + 4 + 9 + 16 = 30
k=I

are given by

»syms k n
»symsum(k , 0 , 10)
ans =

55
»symsum(k A 2, 1, 4)
ans =

30
»symsum (k , 0 , n-l)
ans =

1/2 *nA2-1/2*n
»factor(ans)
ans =

1/2*n * (n-1)

The latter expression is the standard form of the re ult.

Limits

The function 1 imi t (E , a) return the limit

.!~E(x)

613

614 CHAPTER 10 Symbolic Processing with MATLAB

if x is the symbolic variable. There are several variations of thi s syntax . The basic
form 1 imi t (E) finds the limit as x -+ O. For example

is given by

»syms a x
»limit(sin(a*x) / x)
ans =

lim sin(ax) = a
x->o X

The form 1 imi t (E , v , a) finds the limit as v -+ a . For example,

lim x - 3 = ~
x->3 x 2 - 9 6

lim sin(x + /1) - sin(x)

x->o h

are given by

»syms h x
»limit ((x- 3) I (x"2 -9) ,3)
ans =

1 /6
»limit ((sin (x+h) -sin (x)) I h, h , 0)

ans =
cos (x)

The forms limi t (E, v , a, 'right') and 1 imi t (E , v , a, 'left')
specify the direction of the limit. For example,

lim ~ =-00
x-->o- X

lim ~ = 00
x->o+ X

are given by

»syms x
»limit(l/x,x,O, 'left')
ans =

-inf
»lirnit (l/x, x, 0, 'right')
ans =

inf

Table 10.3-1 summarizes the series and limit functions .

10.4 Differential Equations

Test Your Understanding

T10 .3-6 Use MATLAB to find the first thl' " .
for cosx. . ee nonzero terms 111 the Taylor seri es

(Answer: I - x 2 /2 + x 4/24.)

T10.3-7 Use MATLAB to fin d a formula for the sum

111 =0

(Answer: /11
4 /4 - m3/ 2 + m2/ 4.)

T1 0.3-8 Use MATLAB to evaluate

(Answer: 0.)

T10.3-9 Use MATLAB to evaluate

(Answer: 2/75.)

10.4 Differential Equations

7

Lcos(nn)
1/=0

I
. 2x - 10
Im--­
x~5 x3 - 125

A first-order ordinary differential equation (ODE) can be written in the form

dy
dt = J(t , y)

where 1 is the independent variable and y is a function of t . A solution to such
an equation is a function y = get) such that dg/dt = J(t, g), and the olution
will contain one arbitrary constant. This constant becomes determined when we
apply an additional condition of the solution by requiring that the solution have
a specified value y(tl) when t = tl. The chosen value t l is often the smallest, or
starting value, of I , and if so, the condition is called the initial condition (quite
often tl = 0). The general term for such a requirement is a boundary condition,
and MATLAB lets us specify conditions other than initial conditions. Forexample,
we can specify the value of the dependent variable at t = t2, where t2 > tl·

Methods for obtaining a numerical solution to differential equations were
covered in Chapter 8. However, we prefer to obtain an analytical olution when­
ever possible because it is more general and thus more useful for designing

engineering devices or processes.

615

616 CHAPTER 10 Symbolic Processing with MATLAB

A second-order ODE has the following fo rm :

d
2
y = . (t c}2)

dt2 f 'Y' dt

Its solution will have two arbitrary constants that can be determined once two
additional conditions are specified. These conditions are often the specified values
of y and d y / dt at t = O. The generalization to third-order and higher equations
is straightforward. ,

We will occasionally use the following abbreviations for the first- and second­
order derivatives :

. dy
y = dt

MATLAB provides the dsol ve function for solving ordinary differenti al
equations. Its various forms differ according to whether they are used to solve
single equations or sets of equations, whether or not boundary conditions are
specified, and whether or not the default independent variable t is acceptable.
Note that t is the default independent variable and not x as with the other symbolic
functions. The reason is that many ODE models of engineering applications have
time t as the independent variable.

Solving a Single Differential Equation

The dsol ve function's syntax for solving a single equation is dsol ve
(, eqn ') . The function returns a symbolic solution of the ODE specified by

the symbolic expression eqn. Use the uppercase letter D to represent the first
derivative, use D2 to represent the second derivative, and so on. Any character
immediately following the differentiation operator is taken to be the dependent
variable. Thus Dw represents dw / dt. Because of this syntax, you cannot use
uppercase D as symbolic variable when using the dsol ve function.

The arbitrary constants in the solution are denoted by Cl, C2, and so on. The
number of such constants is the same as the order of the ODE. For example, the
equation

has the solution

dy - + 2y = 12
dt

The solution can be found with the following session. Note that you need not
declare y to be symbolic prior to using dsol ve.

»dsolve('Dy+2*y=12')
ans

6+Cl *exp (-2 *t)

10.4 Differential Equations

There can be symbolic constants in the equation. For example,

dy
di = sin(a /)

has the so lution

yet) = - cos(a /) + C
I a

It can be found as fo llows:

»dsolve('Dy=sin(a*t)')
ans =

(-cos (a*t) +Cl*a) fa

Here is a second-order example:

d2y 2
dt 2 = c y

The solution yet) = Clecl + C 2e-c1 can be found with the following session:

dsol ve (' D2y=c"2 *y ')
ans

Cl*exp(-c*t) + C2*exp(c*t)

Solving Sets of Equations

Sets of equations can be solved with dsol ve. The appropriate syntax is dsol ve
(, eqnl ' , ' eqn2 ' , ...) . The function returns a symbolic solution of the set
of equations specified by the symbolic expressions eqnl and eqn2.

For example, the set

dx
dr = 3x + 4y

dy
di = -4x +3y

has the solution x(t) = C le 31 cos4t + C 2e 31 sin4t, y(t) = -Cl e 31 sin4t +
C2 e31 cos 4t. The session is

» [x, y] = dsol v e(' Dx=3*x+4*y','Dy=-4*x+3*y')
x = Cl*exp(3*t)*cos(4*t)+C2*exp(3*t)*sin(4*t)
y = -Cl* exp(3 *t)*sin(4*t)+C2*exp(3*t) *cos(4 *t)

Specifying Initial and Boundary Conditions

Condi tions on the solutions at specified values of the independent variable can be
handled as follows. The form dsol ve ('eqn ', 'condl ', ' cond2 ', ...)
returns a symbolic solution of the ODE specified by the symbolic expression
eqn, subject to the conditions specified in the expressions condl, cond2, and

617

618 CHAPTER 10 Symbolic Processing with MATLAB

so on. If y is the dependent variable, these conditions are specified as follows:
y (a) = b, Dy (a) = c, D2y (a) = d, and so on. These correspond to yea),
y ea) , yea), and so on. If the number of conditions is less than the order of the
equation, the returned solution will contain arbitrary constants CI, C2, and so on.

For example, the problem

cJ:!.. = sin(bt), yeO) = 0
dt

has the solution y(t) = [1 - cos(bt)] / b. It can be found'as follows :

»dsolve('Dy=sin(b*t)' , ' y(O)=O')
ans =

- cos(b*t)/b+l/b

The problem

d2 y 2
dt 2 = C y, yeO) = 1, yeO) = 0

has the solution yet) = (eCI + e-CI)/2. The session is

»dsolve('D2y=c A 2*y ', 'y(0)=1', 'Dy(O)=O ')
ans =

1/2 * exp (c * t) + 1 /2 * exp (- c * t)

Arbitrary boundary conditions, such as yeO) = c, can be used . For example,
the solution of the problem

dy
dt + ay = b, yeO) = c

is

b (b) al yet) = ~ + c - ~ e-

The session is

»dsolve(' Dy+a*y=b' , ' y(O)=c ')

1/a*b+exp(-a*t)*(-1/a*b+c)

Plotting the Solution

The ezplot function can be used to plot the solution, just as with any other
symbolic expression, provided no undetermined constants such as CI are present.
For example, the problem

cJ:!.. + lOy = 1O+4sin(4t), yeO) = 0
dt

has the solution

yet) = 1 - ~ cos(4t) + ~ sin(4t) - ~e-IOI

10.4 Differential Equations

1-4/29 C08(4 1)+10/298in(4 1)-25/29 exp(-10 1)

1.4

°O~~~--~--~--~--~2~.5---L--~--~--~L-~
1

Figure 10.4-1 Plot of the solution of 5' + 10)' = 10 + 4 sin(41), yeO) = o.

The session is

»y = dsolve(' Dy+10*y=10+4*sin(4*t) ', ' y(O)=O ')
y =

1-4/29*cos (4 *t) + 10/29*sin (4 *t) -25/29*exp (-10*t)
»ezplot (y) , axis ([0 5 0 2])

The plot is shown in Figure 10.4-1.
Sometimes the ezplot function uses too few values of the independent

variable and thus does not produce a smooth plot. To override the spacing chosen
by the ezplot function , you can use the subs function to substitute an array of
values for the independent variable. Note that you must define t to be a symbolic
variable. For example. you can continue the previous session as follows:

»syrns t
»x = [0 : 0 . 05 : 5J ;
»P = subs (y , t , x) ;
»plot(x , P) , axis([O 5 0 2]) , xlabel(' t ')

Equation Sets with Boundary Conditions

Sets of equations with specified boundary conditions can be solved as follows.
The function dsol ve (, eqnl ' , , eqn2 ' , ... , , condl' , 'cond2' , .. .)

619

620 CHAPTE R 1 0 Symbolic Processing with MATLAB

returns a symbolic solution of a set of equations specified by the symbolic ex­
pressions eqnl, eqn2, and so on, subject to the initial conditions specified in
the expressions condl, cond2, and so on.

For example, the problem

dx
di = 3x + 4y, x(O) = 0

dy
di= -4x+3y, y(O) = 1 '

has the solution

x(t) = e31 sin(4t) , yet) = e31 cos(4t)

The session is

» ds o 1v e (' Dx=3*x+4 *y ', 'Dy=-4*x+3*y ', ' x(O)=O' , ' y(O)=l ')
[x,y] =

x = e xp (3 *t) *sin(4*t) , y = exp(3*t)*cos(4*t)

It is not necessary to specify only initial conditions. The conditions can be
specified at different values of t . For example, to solve the problem

d2 y
dt 2 + 9y = 0, yeO) = 1, y(n) = 2

the session is

»dso1ve(' D2y+9*y= O' , ' y(O)= l', ' Dy(pi)=2 ')
ans

- 2 / 3 *sin(3*t)+cos(3 *t)

Using Other Independent Variables

Although the default independent variable is t, you can use the following syn­
tax to specify a different independent variable. The function dso1 ve ('eqnl ' ,
, eqn2 " ... , , con d l ' , ' cond2 " . .. , , x') returns a symbolic
solution of a set of equations where the independent vari able is x.

For example, the solution of the equation

dv
- +2v = 12
dx

is vex) = 6 + Cte-2x . The session is

» dsolve (, Dv +2 *v =12' , ' x ')
ans

6+exp(-2 *x)*C1

Test Your Understanding

T10 .4-1 Use MATLAB to solve the equation

d2y
dt 2 +b

2
y = 0

Check the answer by hand or with MATLAB .
(Answer: yet) = C t cos(bt) + C2 sin(bt).)

T10.4-2 Use MATLAB to solve the problem

d2y
dt 2 + b2

y = 0, yeO) = 1,

Check the answer by hand or with MATLAB .
(Answer: yet) = cos(bt).)

Solving Nonlinear Equations

10.4 Differential Equations

yeO) = 0

MATLAB can solve many nonlinear first-order differential equations . For exam­
ple, the problem

~=4- l
dt '

can be solved with the fo llowing sess ion

»dso1ve(' Dy=4-y"2' , ' y(O)=l ')
ans =

yeO) = 1 (10.4-1)

2 * (exp (4 * t -log (- 1/3)) + 1) / (-1 + exp (4 * t -log (-1 !3)))

» s imp1e(ans)
ans =

2 * (3 *exp(4*t) -1) / (1+3*exp(4 *t))

which is equivalent to

3e41 -1
y(t) = 2 1 + 3e41

Not all nonlinear equations can be solved in closed form. For example, the
following equation is the equation of motion of a specific pendulum.

d2y .
dt2 + 9 S1l1(y) = 0, y(O) = I, .5'(0) = 0

The following session generates a message that a solution could not be found.

» dso1ve(' D2y+9*sin(y) =O', 'y (O)=l ' , ' Dy(O)= O')

621

622 CHAPTER 10 Symbolic Processi ng with MATLAB

Table 10.4-1 The dso l v e function

Command

dsol ve (' eqn')

Description

Returns a symbolic soluti on of the ODE
specified by the symbolic expression
eqn. Use the uppercase letter D to
represent the first derivative; use D2 to
represent the second deri vative, and so
on. Any character immedi ately fo llowing
the differentiation operator is taken to be
the dependent vari able.

dsolve(' eqnl ', 'eqn 2 ' , .. .) Retu rns a symbolic solu tion of the set of
equations specified by the symbolic
expressions eqnl, eqn 2, and so on.
Returns a symbolic solution of the ODE
specified by the symbolic expression
eqn, subject to the conditions specified
in the expressions condl, cond2 , and
so on . If y is the dependent vari able,
these conditions are specified as fo llows:
y(a) = b,Dy(a) = c , D2(a) = d ,
and so on.

dsol ve (, eqn ' , ' condl ' , 'cond2 " ...)

dsolve (' e qnl ' , 'eqn2 ' , . .. , ' condl ', ' cond2 ' , . . .) Returns a symbolic solution of a set of
equations specified by the symbolic
expressions eqnl , eqn2, and so on,
subject to the initial conditions specified
in the expressions condl, cond2 , and

Thus MATLAB was unable to find a closed-form solution. It is possible, however,
that later versions of MAT LAB will be able to solve this equation. Try it and see!

Table 10.4-1 summarizes the functions for solving differential equations.

10.5 Laplace Transforms
This section explains how to use the Laplace transform with MATLAB to solve
some types of differential equations that cannot be solved with dsol ve. Appli­
cation of the Laplace transform converts a linear differential equation problem
into an algebraic problem. With proper algebraic manipulation of the resulting
quantities, the solution of the differential equation can be recovered in an or­
derly fashion by inverting the transformation process to obtain a function of time.
We assume that you are familiar with the fundamentals of differential equations
outlined in Chapter 8, Section 8.4.

The Laplace transform .c[y(t)] of a function y(t) is defined to be

.c[y(t)] = 100

y(t)e-SI dt (10.5-1)

The integration removes t as a variable, and the transform is thus a function of
only the Laplace variable s, which may be a complex number. The integral exists

y(t)

Mr----___ _

Figure 10.5-1 A step function of
magnitude M .

10.5 Laplace Transforms

for m~t of the co.mmonly encountered functions if suitable restrictions are placed
on s . n alternative notation is the use of the uppercase symbol to represent the
transform of the corresponding lowercase symbol; that is,

yes) = .c[y(t)]

We will use the one-sided transfo~, ~hich assumes that the variable yet) is 0 for
t < O. F~r example, the step functIOn IS such a function. Its name comes from the
fact that ItS. graph looks like a stair step (see Figure 10.5-1).

The heIght of the st~p is M and is called the magnitude. The unit-step junction,
denoted us(t) , has a heIght of M = 1 and is defined as follows:

{
o t < 0

us(t) = 1 t > 0
indeterminate t = 0

The engi~eeri~g literature generally uses the term step function, whereas
the mathematJ~al hterature uses the name Heaviside function. The Symbolic
Math toolbox mcludes the Heaviside (t) function, which produces a unit­
step function.

A step function of height M can be written as yet) = Mu s(t). Its transform
is

100 100 - SI /OO M .c[y(t)] = Mus(t)e-Sldt = M e-Sldt = -M =-- =-
o 0 s 0 s

where we have assumed that the real part of s is greater than 0, so that the limit
of e-s t exists as t -7 00. Similar considerations of the region of convergence
of the integral apply for other functions of time. However, we need not concern
ourselves with this topic here, because the transforms of all the common functions
have been calculated and tabulated. They can be obtained in MATLAB with the
Symbolic Math toolbox by typing laplace (function), where f unction
is a symbolic expression representing the function yet) in (10.5-1). The default
independent variable is t, and the default result is a function of s. The optional
form is laplace (function,x,y), where function is a function ofx
and y is the Laplace variable.

623

STEP FUNCTION

624 CHAPTER 10 Symbolic Processing with MATLAB

Here is a session with some examples. The functions are t 3 , e-al
, and sin bt.

»syms b t
»laplace (t "3)

6/s"4
»laplace (exp(-b*t))
ans =

1/ (s+b)
»laplace(sin(b*t))

b / (s "2 +b"2)

Because the transform is an integral, it has the properties of integrals. In
particular, it has the linearity property, which states that if a and b are not functions
of t , then

£ [a/! (t) + bh(t)] == a£[fl (t)] + b£[h U)] (10.5-2)

The inverse Laplace transform £ - 1 [Y es)] is that time fu nction yet) whose
transform is yes); that is, yet) == £ - 1 [Y es)]. The inverse operation is also linear.
For example, the inverse transform of lO/s + 4/(s + 3) is 10 + 4e- 31

. Inverse
transforms can be found using the i laplace function . For example,

»syms b s
»ilaplace (l/s"4)
ans =

1/6*t"3
»i laplace (1/ (s+b))
ans =

exp (-b*t)
»ilaplace (b/ (s"2+b"2)
ans =

sin (b* t)

The transforms of derivatives are useful for solving differential equations.
Applying integration by parts to the definition of the transform, we obtain

{, (t!2) == roo ~e-·!I dt == yet) e- sr
1

00 + s roo y(t)e-SI dt
dt Jo dl 0 Jo

== s£[y(t)] - yeO) == sY(s) - yeO) (10.5-3)

This procedure can be extended to higher derivatives. For example, the result for
the second derivative is

(10.5-4)

10.5 Laplace Transforms

The general result for any order derivative is

(
dlly) II £ - . = slly(S) _ '""' II-k dIll ~s gk - I

k=1
(10.5-5)

where

_ d
k

-
Iy /

gk- I - dt k- I 1=0 (10.5-6)

Application to Differential Equations

The ~erivative and linearity properties can be used to solve the differential
equation

ay + y = bv(t) (10 .5- 7)

If we multiply both sides of the equation by e-sl and then integrate over time
from t == 0 to t = 00, we obtain

lo DO (ay + y) e-sl dt = loDO bv(t) e- sr dt

or

£(ay + y) = £[bv(t)]

or, using the linearity property,

a£(y) + Ley) = b£[v(t)]

Using the derivative property and the alternative transform notation, the preceding
equation can be written as

a[sY(s) - yeO)] + yes) = byes)

where yes) is the transform of v. This equation is an algebraic equation for y es)
in terms of Yes) and yeO). Its solution is

Yes) = ay(O) + _b_V(s)
as + I as + 1

(10.5-8)

Applying the inverse transform to (10.5-8) gives

yet) == £-1 [ay(O)] + £-1 [_b_ Yes)]
as + I as + 1

(10.5- 9)

From the transform given earlier, it can be seen that

£-1 [ay(O)] == £-1 [~] == y(O)e-l /a
as+l s+I/a

which is the free response. The forced response is given by

£-1 [_h_V(S)]
as+ I

(10.5-10)

625

626 CHAPTER 10 Symbolic Processing with MATLAB

This inverse transform cannot be evaluated un til V(s) is specified. Suppose v(L)
is a unit-step function. Then V(s) = l /s, and (10.5-10) becomes

£ -1 [b]
seas + 1)

To find the inverse transform, enter

»syms a b s
»ilaplace(b/(s*(a*s+l)))
ans =

2*b*exp(-1/2*t/a)*sinh(1/2*t/a)

Thus the forced response of (10.5-7) to a unit-step input is 2be- I
/
2a sinh(t / 2a),

which is equivalent to b(1 - e- r/ a).

You can use the Heaviside function with the dsolve function to find
the step response, but the resulting expressions are more complicated than those
obtained with the Laplace transform method.

Consider the second-order model

x + lAx +x = J(t)

Transforming this equation gives

(10.5-11)

[s2 Xes) - sx(O) - x(O)] + 1.4[sX(s) - x(O)] + Xes) = F(s)

Solve for Xes) .

x(O)s + x(O) + 1.4x(0) F(s)
Xes) = S2 + l.4s + 1 + s2 + l.4s + 1

The free response is obtained from

x t = £ - 1 [X(O)S + x(O) + l.4X(O)]
() s2 + l.4s + 1

Suppose the initial conditions arex(O) = 2 andx(O) = -3. Then the free response
is obtained from

_ I [2s - 0.2]
x(t)=£ s2+1.4s+1

It can be found by typing

»ilaplace((2*s-O.2) /(s"2 +1 . 4 *s+ l))

The free response thus found is

x(t) = e-O
.
71

[2 cos (~t) - 16~ sin (~t) 1
The forced response is obtained from

x(t) = £-1 [S2 + ~~~ + 1]

(10.5-12)

10.5 Laplace Transforms

If J(t) is a unit-s tep functi on, F(s) = I /s and the forced response is

x(t) = £ -1 [I]
s(s2 + lAs + I)

To find the forced response, enter

»ilaplace(ll (s* (s"2+1.4*s+l)))

The answer obtained is

x(t) = 1 - e-
O

.
71 [cos (&t) + 7& . (&)] 10 51 SIn lOt (10.5- 13)

Input Derivatives

!wo simi1a: mechanical systems are shown in Figure 10.5- 2. In both cases the
mput IS a displacement y(t) . Their equations of motion are

mx + ex + kx = ky + ey

mx + ex + kx = ky

(10.5- 14)

(l0.5-15)

The only difference between these systems is that the system in Figure 10.5-2a
has an equation of motion containing the derivative of the input function y(t) .
Both systems are examples of the more general differential equation

mx + ex + kx = dy + gy (10.5-16)

As noted earlier, you can use the Heaviside function with the dsol ve
function to find the step response of equations containing derivatives of the input,
but the resulting expressions are more complicated tban those obtained with the
Laplace transform method.

We now demonstrate how to use the Laplace transform to find the step
response of equations containing derivatives of the input. Suppose the initial
conditions are zero. Then transforming (10.5-16) gives

d +gs
X(s) = ms2+es+kY(s) (l0.5-17)

(a) (b)

Figure 10.5-2 Two mechanical systems. The model for (a) contains the derivative
of the input y(t); the model for (b) does not.

627

628 CHAPTER 10 Symbolic Processing with MATLAB

Let us compare the unit-step response o~ ~ 1.0.S-16). ~or two cases using the
values m = 1, c = 1.4, and k = 1, with zero initial conditIOns. The two cases are
g = a and g = S.

With yes) = l i s , (10.5- 17) gives

1 + gs
Xes) = S(S 2 + l.4s + 1)

(l0.S-18)

The response for the case g = a w~s found earlier. It is given by (10.5-13) . The
response for g = 5 is found by typmg

:::~:~l:c e ((1+ 5* 8) I (8 * (8"2+ 1. 4 *8+1)))

The response obtained is

x(t) = 1- eO.?r [cos (~t) + 43;(1 sin (~t) 1 (10.5-19)

Figure 10.5-3 shows the response.s given ~y (10.5-13) an,d (10.5-19). The
effect of differentiating the input is an Increase m the response s peak value.

Figure 10.5-3 The unit-step response of the model x + lAi + x = u + gil for
8 =Oandg = 5.

10.5 Laplace Transforms

Impulse Response

The area A under the curve of the pulse Junction shown in Figure 10.S-4a is
called the strength of the pUlse. If we let the pulse duration T approach a while
keeping the area A constant, we obtain the impulse func tion of strength A, repre­
sented by Figure 1O.S-4b. If the strength is 1, we have a unit impulse. The impulse
can be thought of as the derivative of the step function and is a mathematical ab­
straction for convenience in analyzi ng the response of systems subjected to an
input that is applied and removed suddenly, such as the force from a hammer blow.

The engineering literature generally uses the term impulse function, whereas
the mathematical literature uses the name Dirac delta function. The Symbolic
Math toolbox includes the Dirac (t) function, whi ch returns a unit impulse.
You can use the Dirac function with the d801 ve function when the input
fu nction is an impulse, but the resulting expressions are more complicated than
those obtained with the Laplace transform.

It can be shown that the transform of an impulse of strength A is simply A.
So, for example, to find the impulse response of x + l.4x +x = J(t), where J(t)
is an impulse of strength A, for zero inital conditions, first obtain the transform.

1 A
Xes) = s2 + lAs + 1 F(s) = s2 + lAs + 1

Then you type

» 8ym8 A 8
» il a p l ace (AI (8"2+1 . 4 *8 +1))

The response obtained is

IOA.J5l -O.7r . (.J5l) x(t) = -S-l-e SlIl lOt

t(t) t(1)

n,L,
I T I

(a) (b)

Figure 10.5-4 Pulse and impulse functions.

629

630 CHAPTER 10 Symbolic Processing with MATLAB

Direct Method

Instead of performing by hand the algebra required to find the response transform,
we could use MATLAB to do the algebra for us. We now demonstrate the most
direct way of using MATLAB to solve an equation with the Laplace transform.
One advantage of this method is that we are not required to use the transform
identities (10.5-3) through (10.5-6) for the derivatives. Let us solve the equation

dy
ad[+ y = f(t) (10 .5-20)

wi th f(t) = sin t , in terms of an unspecified value for yeO). Here is the session:

»syms a L s t
»y = sym(' y(t) ') ;
»dydt = sym('diff(y(t) , t) ');
»f = sin(t);
»eq = a*dydt+y-f;
»E = laplace(eq,t,s)
E =

a*(s*laplace(y(t) , t ,s)-y(O)) + laplace(y(t) , t ,s)- 1 / (sA2+1)
»E = subs(E, 'laplace(y(t) , t,s)' ,L)
E =

a*(s*L-y(O))+L-l/(sA2+1)
»L = solve (E, L)
L =

(a*y(O)*sA2+a*y(O)+1)/(a*sA3+a*s+sA2+1)
»1 = simplify(ilaplace(L))
I

(-a *cos(t)+sin(t)+exp(-t/a)*y(O)+exp(-t/a)*aA2*y(O)+
exp(-t/a)*a)/(1+aA2)

»1 = collect(1 , exp(-t/a))
I

1/(1+aA2)*(-a*cos(t)+sin(t))+(a+y(O)+y(O)*aA2)/(1+aA2)*exp(-t/a)

The answer is

y et) = _ 1_1 {sint - acos t + e-I/O [y (O) + a 2 y(0) + a]}
l+a-

Note that this session consists of the following steps:

1. Define the symbolic variables, including the derivatives that appear in the
equation. Note that yet) is explicitly expressed as a function of t in these
definitions.

2. Move all terms to the left side of the equation and define the left side as a
symbolic expression.

3. Apply the Laplace transformation to the differential equation to obtain an
algebraic equation.

10.6 Symbolic Linear Algebra

Table 10.5-1 Laplace transform functions

Command Description

ilaplace (function)
laplace (function)
laplace (function, x, y)

Returns the inverse Laplace transform of function .
Returns the Laplace transform of function.
Retu~ns the Laplace transform of f unc t i on, which is a
functIOn of x, In terms of the Laplace variable y .

4. Substitute a sy~bolic variable, here L, for the expression laplace
(y.(t) ,. t , s). 111 ~he algebraic equation. Then solve the equation for the
varIable L, whIch IS the transform of the solution.

5. Invert L to fi nd the solution as a function of t.

Note that this procedure can also be used to solve sets of equations.

Test Your Understanding

T10.5-1 Find the Laplace transform of the following functions: 1 - e-ol and
cos bt . Use the i laplace function to check your answers.

T10.5-2 Use the Laplace transform to solve the problem 5)i + 20y + 15y =
30u - 4Li, where u(t) is a unit-step function and yeO) = 5, yeO) = 1.
(Answer: yet) = -1 .6e- 31 + 4.6e-1 + 2.)

Table 10.5-1 summarizes the Laplace transform functions.

10.6 Symbolic Linear Algebra
You can perform operations with symbolic matrices in much the same way as
with numeric matrices. Here we give examples of finding matrix products, the
matrix inverse, eigenvalues, and the characteristic polynomial of a matrix.

Remember that using symbolic matrices avoids numerical imprecision in
subsequent operations. You can create a symbolic matrix from a numeric matrix
in several ways, as shown in the following session:

»A sym([3 , 5 ; 2, 7)); % the most direct method
»B [3 , 5 ; 2 , 7);
»C sym(B) ; %B i s preserved as a numeric matrix
»D subs(A , [3, 5 ; 2 , 7)) ;

The first method is the most direct. Use the second method when you want
to keep a numeric version of the matrix. The matrices A and C are symbolic and
identical. The matrices Band D look like A and C but are numeric of class double.

You can create a symbolic matrix consisting of functions . For example,
the relationship between the coordinates (X2, Y2) of a coordinate system rotated

631

632 CHAPTER 10 Symbolic Processing with MATLAB

counterclockwise through an angle a rel ative to the (XI , YI) coodinate system is

X2 = X I cosa + Y I sina

)/2 =)/ 1 cosa - X I sina

These equations can be expressed in matrix form as

[~~] = [_~~~~ ~~~~] [~:] = R.[~ :]
where the rotation matrix R (a) is defined as

R(a) = [c~sa
-sma

sin a]
cosa

The symbolic matrix R can be defined in MATLAB as follows:

» syms a
» R = [cos t a) , sin(a) ; - s in (a) , cost a))
R

[cos (a) ,
[-sin(a),

sin(a))
cos (a))

(10.6-1)

If we rotate the coordinate system twice by the same angle to produce a third
coordinate system (X3,)/3), the result is the same as a single rotation with twice
the angle. Let us see ifMATLAB gives that result. The vector-matrix equation is

Thus R(a)R(a) should be the same as R(2a) . Continue the previous session as
follows:

»Q = R*R
Q

cos(a)"2-sin(a)"2, 2*cos(a)*sin(a)
- 2*cos(a)*sin(a) , cos(a) " 2-sin(a) " 2

»Q = simple (Q)

Q
(cos(2*a), s in(2*a))
[-sin(2*a), cos(2*a))

The matrix Q is the same as R(2a), as we suspected.
To evaluate a matrix numerically, use the subs and double functions. For

example, for a rotation of a = rr /4 rad (45°),

»R = subs(R,a,pi/4)

10.6 Symbolic Linear Algebra

Characteristic Polynomial and Roots

Sets of first-order differential equation b .
as s can e expressed In vector-matrix notation

x = Ax + Bf(t)
where x is the vector of depende t . bl .
forcing functions For e I h

n
van a . es and f(t) IS a vector conta ining the

. xamp e, t e equatIOn set

XI =X2

X2 = -kx l - 2X2 + J(t)

comes from the .equa~ion of motion of a mass connected to a spring and slidin
°hn a surface hav.mg VISCOUS friction. The term J(t) is the applied force actina o~
t e mass. For thIS set the vector x and the matrices A and B are b

x = [;~]

B= m
The equation lsI - AI = 0 is the characteristic equation of the model where s
repres~n ts the ch~acteristic roots of the model . Use the poly (A) fu'nction to
find this polynonual, and note that MATLAB uses the default symbolic variable x
to represent the wots. For example, to find the characteristic equation and solve
for the roots in terms of the spring constant k, use the following session :

» syms k

» A = [0 , 1 ;-k, - 2);
» poly (A)

ans =
x " 2+2*x+k

» sol ve (ans)
ans

[-1+ (l-k) " (l / 2)

[-1-(1 - k) " (l/2)

Thus the roots are s = -1 ± ~.
Use the eig (A) function to find the roots directly without finding the char­

acteristic equation (eig stands for "eigenvalue," which is another tenn for "char­
acteristic root"). For example,

»syms k
»A = [0 ,1;-k , -2J;
»eig (A)
ans

-1+ (l-k) A (1/2)
-1- (l -k) " (1/2)

633

634 CHAPTER 10 Symbolic Processing with MATLAB

You can use the inv (A) and det (A) fu nctions to invert and fi nd the de­
terminant of a m atrix symbolically. For example, using the same matrix A from
the previous session,

»inv (A)
ans

[-2/k , -11k 1
[1 , 0 1

»A*ans % verify that the inverse is correct

[1, 1
[0 , 1 1

»det (A)

k

Solving Linear Algebraic Equations

You can use matrix methods in MATLAB to solve linear algebraic equations
symbolically. You can use the matrix inverse method, if the inverse exists, or
the left-division method (see Chapter 6 for a discussion of these methods). For
example, to solve the set

2x - 3y = 3

5x + cy = 19

using both methods, the session is

»syms c
»A sym([2, -3; 5, c]) ;
» b sym([3; 19]) ;

i nv(A) *b % t he mat rix inverse me t hod

[3*c l (2 *c+1 5) +5 71 (2*c+15)]
[231 (2 *c+15) 1

»x = A\ b % the left-division method

[3* (19+c) I (2*c+15)]
[231 (2*c+15)]

Although the results appear to be different, they both reduce to the same solution:
x = 3(19 + c)/(2c + 15), y = 23/(2c + 15).

Table 10.6-1 summarizes the functions used in this section. Note that their
syntax is identical to the numeric versions used in earlier chapters.

10.7 Summary

Table 10.6-] Linear algebra functions

Command Description

det (A)
eig(A)

Returns the determinant of the matrix A in symbolic form .
Retlilns the eigenvalues (charac teristi c roots) of the matr ix A in
symbolic form.

inv(A)
poly (A)

RelUrns the inverse of the matrix A in symbolic form.
Re turns the characteristic polynomial of the matri x A in symbolic form.

Test Your Understanding

T10.6-1 Considerthree successive coordinate rotati ons using the same angle a.
Show that the productRRR of the rotation matri x R(a) given by (10.6- 1)
equals R(3a).

T10.6-2 Find the characteri sti c polynomial and roots of the foll owing matrix.

A = [=~k _~]
(Answer: s2 + 7s + 10 + 3k and s = (-7 ±.)9 - 12k)/2.)

T10.6-3 Use the matrix inverse and the left-d.ivisioo method to solve the follow­
ing set.

-4x + 6y = - 2c

7x - 4y = 23

(Answer: x = (69 - 4c)/ 13, y = (46 - 7e) / 13 .)

10.7 Summary

This chapter covers a subset of the capabilities of the Symbolic Math toolbox,
specifically

• Symbolic algebra.

• Symbolic methods for solving algebraic and transcendental equations.

• Symbolic methods for solving ordinary differential equations.

• Symbolic calculus, including integration, differentiation, limits, and 5eries.

• Laplace transforms.
• Selected topics in linear algebra, including symbolic method~ for obtaining

determinants, matrix inverses, and eigenvalues.

Now that you have finished this chapter, you should be able to use MATLAB to

• Create symbolic expressions and manipulate them algebraically.

• Obtain symbolic solutions to algebraic and tran cendental equations.

635

636 CHAPTER 10 Symbolic Processing with MATLAB

Table 10.7-1 Guide to MATLAB commands introduced in Chapter 10

Creating and evaluating expressions
Manipulating symbolic expressions
Solving algebraic and transcendental equations
Symbolic calcu lus functions
The d so l v e function
Laplace transform functions
Linear algebra functions

Miscellaneous functions

Command Description

Table 10.1-1
Table 10.1- 2
Table 10.2-1
Table 10.3-1
Table 10.4- 1
Table 10.5- 1
Table 10.6- 1

Dirac (t) Dirac delta function (unit-impulse function at t = 0).
Heaviside (t) Heaviside function (unit-step function making a

transition from 0 to 1 at t = 0).

• Perform symbolic differentiation and integration .

• Evaluate limits and series symbolically.

• Obtain symbolic solutions to ordinary differential equations.

• Obtain Laplace transforms.
• Perform symbolic linear algebra operations, including obtaining

expressions for determinants, matrix inverses, and eigenvalues.

Table 10.7-1 is a guide by category to the functions introducedln this chapter.

Key Terms with Page References

Boundary condition, 615
Default variable, 589
Impulse function. 629
Initial condition, 615
Laplace transform. 622

Problems

Solution structure, 598
Step function. 623
Symbolic constant, 587
Symbolic expression, 585

You can find the answers to problems marked with an asterisk at the end of the
text.

Section 10.1

1. Use MATLAB to prove the following identities:

a. sin2 x + cos2 X = I
b. sin(x + y) = sinx cos y + cosx sin y
c. in 2x = 2 sin x cos x
d. COSh2 X - sinh2 x = I

Problems

2. Use MATLAB to express cos Sf) as a polynomi al in x, where x = cos f).
3.* Two polynomials in the variab le x are represented by the coemcient

vectors pl = [6 , 2 , 7 , -3) and p2 = [10 , -5 , 8) .

G. Use MATLAB. to ~nclthe product of these two pol ynomial s; expre:-,s
the product In Its simplest form.

b. Use MATLAB to find the numeric value of the product if x = 2.

4.* The equation of a circle of rad ius r centered at x = 0, y = 0 is

x
2 + / = r 2

~se the su~s and other MATLAB functions to find the eq uation of a
circle of rad iUS r centered at the point x = a, y = b. Rearrange the
equation into the form Ax2 + Bx + exy + Dy + £i = F and find
the express ions for the coeffi cients in terms of C/, b, and r .

5. The equation for a curve ca ll ed the "lem ni scate" in polar coordinates
(r , e) is

,.2 = a2 cos(2f)

Use MATLAB to find tbe equation for the curve in terms of Cartesian
coordinates (x, y), where x = r cos e and y = r sin f) .

Section 10.2

6.* The law of cosi nes for a triangle states that ([2 = b2 + (;2 - 2bc cos A,
where a is the length of the side opposite the angle A , and band c are the
lengths of the other sides.
a. Use MATLAB to solve fo r b.
b. Suppose that A = 60°, a = S m, and c = 2 01 . Determine b.

7. Use MATLAB to solve the polynomial equati on x 3 + 8x 2 + ax + 10 = 0
for x in terms 0(" the parameter a, and evaluate your solution for the ca~e
a = 17. Use MATLAB to check the answer.

8.* The equation for an ellipse centered at the origin of the Cartesian
coordinates (x,y) is

~+i = I
0 2 b2

where a and b are constants that determine the shape of the ellipse.
In terms of thc parameter b, use MATLAB to tlnd the points of
intersection of the two ellipses described by

and

x
2

+4i = I
100

b. Evaluate the solution obtained in part a for the case b = 2.

637

638 CHAPTER 10 Symbolic Processing with MATLAB

9. The equati on

p
r = ----

I - E cos8

describes the polar coordinates of an orbi t with the coord inate o rigi n at the
sun. If E = 0, the orbit is ci rcul ar; if 0 < E < I, the orbi t is e ll iptical. The
planets have orbits that are nearl y c ircu lar ; comets have orbits that are
highl y elongated w ith E nearer to I. It is of obvious interest to determi ne
whether or not a comet's or an as teroid 's orbi t w ill intersect that of a
planet. For each of the followin g two cases , use MATLAB to determine
whether or not orbits A and B intersect. If they do, determ ine the polar
coordin ates of the intersection po int. The units of di stance are AU, where
1 AU is the mean di stance of the Earth f rom the sun.

a. Orbit A: p = I , E = 0.01. OrbitB: p = 0.1, E = 0. 9.
b. Orbit A: p = 1, E = 0.01. Orbit B : p = 1.1, E = 0.5.

10. Figure 10.2-2 on page 601 shows a robot arm having two joints and two
links. The angles of ro tation of the motors at the joi nts are 81 and 82. From
trigonometry we can derive the fo llowing ex pressions for the Cx, y)
coordinates of the hand.

x = LI cos 8 , + L 2 cosC8, + 82)

y = L, sin 8, + L2 sinC8] + 82)

Suppose that the link length are L, = 3 ft and L2 = 2 ft.
a. Compute the motor angles required to position the hand at x = 3 f t,

Y = I ft. Identify the elbow-up and elbow-down solutions.
b. Suppose you want to move the hand along a straight, horizontal line at

y = 1 for 2 ~ x ~ 4 . Plot the required motor angle versus x. Label
the elbow-up and elbow-down solutions.

Section 10.3

11. Use MATLAB to find all the values of x where the graph of y = y - 2x
has a horizontal tangent line.

12.* Use MATLAB to determine all the local minima and local maxim a and all
the inflection points where dyl dx = 0 of the following fun ction:

y = X4 - ~x3 + 8.1 2 - 4

13. The surface area of a sphere of rad ius r is S = 4rr ,.2. Its volume is
V = 4rrr3/3.
a. Use MATLAB to find the expression for d S i d V .
b. A spherical balloon expands as air is pumped into it. What is the rate

of increase in the balloon 's surface area with volume when its volume
i 30in.3?

Problems

14. U
I
sc ~ATLAB to find the po int on the line y = 2 - xl3 th at is closest to

t le POllltx = -3, y = I.

15. A particul ar circle is center~d at the origin and has a radi us of 5. Use
MI AT~A B to fi nd the equati on of the li ne that is tangent Lo the circle at
tl e pO lnL x = 3, y = 4.

16. Ship ~ i:~ trave ling. north at 6 mi/hr, and ship B is Lraveling wes t at
12 ml/hl. When shlp A W.ClS dead aheCid of ship B, it was 6 mi away.
Use MATLAB to determine how cia e the hips come to each oLher.

17. Suppose yo u hav~ ~ wire of length L . You cut a length x to make a square,
and use the remaining length L - x to make a circle. Use MATLAB to
fi nd the length x th at max imizes the sum of the areas enclosed by the
square and the circle.

18. * A certai n spheri ca l street lamp emits li ght in all direcLions. It is mounted
o.n a pole .of I~ e i ght h (see Figure P 18). The brightness B at point P on the
s idewalk IS dLr~ct l y proporti onal to sin 8 Clnd inversely proportional to the
square of the di stance d from the light to the point. Thus

c
B = d2 sin 8

where c is a constant. Use MATLAB to determine how hi gh h shoul d be to
maximize the brightne s at poi nt P, which i 30 ft from the base of the pole.

Light

~
J------I

30 Feet

Figure PI8

19.* A certain object has a mass m = 100 kg and is acted on by a force 1(1) =
500[2 - e- I sin(57T1)] N. The rna s is at rest at I = O. Use MATLAB to
compute the object's velocity vat r = 5 s. The equation of motion i5

mu=/(r).
20. A rocket 's mass decreases as it bums fuel. The equation of motion for a

rocket in vert ical fli ght can be obtained from Newton's law and is

dv
m(t)di = T - m(t)g

where T is the rocket's thru t and it mass as a function of time i given by
m(t) = mo(l - rl l b). The rocket's initial mas i mo. the bum time i b.

639

640 CHAPTER 10 Symbolic Processing with MATLAB

and r is the f raction of the total mass accounted for by the fuel. Use the
values T = 48 ,000 N; mo = 2200 kg; r = 0.8; g = 9.81 m/s2; and
b = 40 s.
a. Use MATLAB to compute the rocket 's velocity as a functi on of time

for t < b.
b. Use MATLAB to compute the rocket 's velocity at burnout.

21. The equation for the voltage v(t) across a capacitor as a function of time is

vet) = ~ (.l i (t)dt + Qo)
where i(t) is the applied current and Qo is the initial charge. Suppose
that C = 10- 6 F and that Qo = O. If the applied current is iCt) =
[0.01 + 0.3e-51 sinC25JT t)]10-3 A, use MATLAB to compute and plot
the voltage vCt) for 0 S t S 0.3 s.

22. The power P dissipated as heat in a resistor R as a function of the current
i(t) pass ing through it is P = i 2 R. The energy E(t) lost as a function of
time is the time integral of the power. Thus

E(l) = .l P(t)dt = R .l i 2(t)dt

If the current is measured in amperes, the power is in watts and
the energy is in joules (1 W = 1 J/s) . Suppose that a current
i(t) = 0.2[1 + sin(0.2t)] A is applied to the resistor.
a. Determine the energy E(I) dissipated as a function of time.
b. Determine the energy dissipated in 1 min if R = 1000 Q.

23. The RLC circuit shown in Figure P23 can be used as a n.arrow-bandfilter.
If the input voltage vi(r) consists of a sum of sinusoidally varying voltages
with different frequencies, the narrow-baud filter will allow to pass only
those voltages whose frequencies lie within a narrow range. These filters
are used in tuning circuits, such as those used in AM radios, to allow
reception only of the carrier signal of the desired radio station. The
magnification ratio M of a circuit is the ratio of the amplitude of ~he
output voltage uo(t) to the amplitude of the input voltage viet). It IS a

C L

(131
Figure P23

Problems

fl~nct i ~.n of ~he radian frequency w of the input vo ltage. Formu las for M
a ~ e d~llved. In ~I ementary elect rical circu its Courses. For thi s particu lar
CircUit, M IS given by

M= RCw

yI(I - LC(2)2 + (RCw?

The.freq.uency at whi ch M is a maximum is the frequency of the des ired
carner signal.

a. Determine thi s frequency as a function of R, C, and L.
b. Plot M versus w for two cases where C = 10- 5 F and L = 5 X 10- 3 1-1 .

For the fi rst case, R = 1000 Q . For the second case, R = J 0 Q.
Comment on the filtering capability of each case.

24. The shape of a cable hanging wi th no load other than its own weigh t is a
caten.w), curve. A particular bridge cable is described by the catenary
y(x) = 10 cosh«x - 20)/ I 0) for 0 S x S 50, where x and yare the
horizon tal and vertical coord inate measured in feel. (See Figure P24.)
It is desired to hang plastic sheeting from the ca ble to protect passersby
whil e the bridge is being repainted. Use MATLAB to determ ine how many
sq uare feet of sheeting are required . Assume that the bOllom edge of the
sheeting is located along the x -axis at y = O.

Cable

Plastic Sheet

Bridge Deck

Figure P24

25. The shape of a cable hanging with no load other than its own weight is a
catenary curve. A particular bridge cable i~ described by the catenary
y(x) ='10 cosh«(x - 20)/ 10) for 0 ~ x ~ 50, where x and y are the
horizontal and vertical coordinates mea~ured in feet.

The length L of a curve described by y(x) for a S x S b can be found
from the following integral:

Determine the length of the cable.

641

6 4 2 CHAPTER 1 0 Symbolic Processing with MATLAB

26. Use the first five nonzero terms in the Taylor seri es for eix , sin x, and
cos x about x = 0 to demonstrate the validity of Euler's formula eix =
cosx + i sin x.

27. Find the Taylor series for eX sin x about x = 0 in two ways: a. by
multiplying the Taylor series for eX and that for si n x, and b. by using
the taylor function directly on eX sinx.

28. Integrals that cannot be evaluated in closed form sometimes can be
evaluated approximately by using a series representation for the integrand.
For example, the fo llowing integral is used for s9me probabi lity
calculations (see Chapter 7, Section 7.2):

a. Obtain the Taylor seri es for e- x2 about x = 0 and integrate the fi rst six
nonzero terms in the series to find J. Use the seventh term to estimate
the error.

b. Compare your answer with that obtained with the MATLAB erf (t)
function, defined as

2 t ?

erf(t) = -J7r Jo e-r
- dt

29.* Use MATLAB to compute the following limits:

x 2 - 1
a.lim - -

x 1 x 2 - X

(2 _ 4
b. lim -'--

x->-2 x 2 + 4

30. Use MATLAB to compute the following limits:

a. lim XX
X"" 0+

b. lim (cosx)l/lanx
x-> o+

(
J) -1/.<2

c. lim --
x->o+ I - x

. sinx2

d. hm--
x ->o- x 3

lim
.r~5- x 2 - lOx + 2S

f lim ~
X 1+ sin (x _ 1)2

31. Use MATLAB to compute the follow ing limits:

a. lim ~

b.

x oo x

lim 3x
3

- 2x
x -oo 2x3 + 3

32. Find the expression for the sum of the geometric series

/I-I

for r =1= I .

Problems

33. A part ic ul ar rubber ball rebounds to one-half its ori ginal height when
dropped on a Aoor.

If the ball is initially dropped from a height h and is allowed to
continue to bounce, fi nd the ex pression for the total di stance traveled
by the ball after the ball hils the Aoor fo r the nth time.

b. If it is in itially dropped from a height of lO ft, how far will the ball
have traveled after it hits the Aoor fo r the eighth time?

Section 10.4

34. The equation for the voltage y across the capacitor of an RC circuit is

RCcJ.!.. +)' = v(t)
dl

where v(t) is the applied voltage. Suppose that RC = 0.2 s and that the
capacitor voltage is initially 2 V. If the applied voltage goes from 0 to
lOY at I = 0, use MATLAB to determine and plot the voltage y(t) for
o :s I :s I s.

35. The foll owing equation describes the temperature T(t) of a certain object
immersed in a liquid bath of temperature Tb(t) :

ciT
JOdr + T = Tb

Suppose the object's temperature is initially T(O) = 70 F and the bath
temperature is 170 ' F. Use MATLAB to answer the following questions:

a. Determine T(t).
b. How long will it take for the object's temperature T to reach 168 F?
c. Plot the object's temperature T(t) as a function of time.

643

644 CHAPTER 10 Symbolic Processing with MATLAB

36. * This equation describes the motion of a mass connected to a spring with
viscous fricti on on the surface

m y+cjl +ky=f(t)

where f(t) is an applied force . T he position and velocity of the mass at
t = 0 are denoted by Xo and Vo. Use MATLAB to answer the fo ll ow ing
questions:
a. What is the free response in terms of Xo and Vo if In = 3, c = 18, and

k = 102?
h. What is the free response in terms of Xo and Vo if m = 3, c = 39, and

k = 120?

37. The equation for the voltage y across the capaci tor of an RC circuit is

RC c!!.. + y = vet)
cit

where v(t) is the applied voltage. Suppose that RC = 0.2 s and that
the capacitor voltage is initially 2 V. If the applied voltage is vet) =
10[2 - e- I sin(5rrt)] , use MATLAB to compute and plot the voltage
yet) for 0 S t S 5 s.

38. The following equation describe a certain dilution process, where y et) is
the concentration of salt in a tank of fresh water to which salt brine is
being added:

Suppose that yeO) = O. Use MATLAB to compute and plot y(l) for
Os t S 10.

39. This equation describes the motion of a certain mass connected to a spring
with viscous friction on the surface

3y + 18)1 + 102y = f(t)

where f(t) is an applied force. Suppose that f(l) = 0 for t < 0 and
f(t) = 10 for t :::: O.
a. Use MATLAB to compute and plot yet) when yeO) = y eO) = O.
b. Use MATLAB to compute and plot yet) when yeO) = 0 and

y(0) = 10.

40. This equation describes the motion of a certain mass connected to a spring
with viscous friction on the surface

3)i + 39)1 + 120y = f(t)

where f(t) is an applied force. Suppose that f(t) = 0 for t < 0 and
f(t) = IOfort:::: O.

Problems

C/. Use MATLAB to compute and plot yet) when yeO) = yeO) = 0
h. l!se MATLAB to compute and plot yet) when yeO) = 0 and .

yeO) = 10.

41. Th~. equ.ati.ons f?f an ar~natu re-contro ll ed dc motor foll ow. The motor's
CLlJ lent IS I and Its rota tI onal velocity is cv.

di
Ldi = - Ri - Kecv + vet)

dcv
l di = KTi-ccv

L , R , and I are the motor's inductance, resistance, and inerti a; KT and Ke
are the torque con~tant and back emf constant; c is a viscous damping
constant; and vet) IS the applied voltage.

Use the values R = 0.8 Q , L = 0.003 H, K r = 0.05 N . miA,
Ke = 0.05 V· slrad, c = 0, and I = 8 X 10- 5 N . m . S2.

Suppose the applied voltage is 20 V. Use MATLAB to compute and
plot the motor 's speed and current ver us time for zero initial conditions.
Choose a final time large enough to show the motor 's speed becoming
constant.

Section 10.5

42. The RLC circuit described in Problem 23 and shown in Figure P23 on
page 640 has the following differential equation model :

LCvo + RC vo + Vo = RCVi (t)

Use the Laplace transform method to solve for the unit-step response of
vo(t) for zero initial conditions, where C = 10- 5 F and L = 5 X 10- 3 H.
For the first case (a broadband filter) , R = 1000 Q. For the 'econd case
(a narrow-band filter) , R = 10 Q. Compare the step responses of the two
cases.

43. The differential equation model for a certain speed control system for a
vehicle is

where the actual speed is v, the de ired peed is Vd(t) , and K p and K, are
constants called the "control gains." Use the Laplace transform method to
find the unit-step response (that is, Vd(t) i a unit-step function). Use zero
initial conditions. Compare the respon e for three case :

Q. Kp = 9. K, = 50
b. Kp = 9. Kt = 25
c. K p = 54. K, = 250

645

646 CHAPTER 10 Symbolic Processing with MATLAB

44. The differential equation model for a certain posi ti on contro l system fo r a
metal cutting tool i

d 3x d 2x dx
df3 + (6 + K D) dt2 + (11 + K p)7it + (6 + K,)x

el2Xd d Xd
= K Ddf2 + KPdt + K, Xd

where the actual tool position is x; the desired pqs ition is Xd(t); and K p ,

K" and K D are constants called the control gains. Use the Laplace
transform method to find the unit-step response (that is, Xd(t) is a unit-step
function). Use zero initial conditions. Compare the response for three
cases:

a. Kp = 30, K, = KD = 0
b. K p = 27, K, = 17.18, KD = 0
c. K" = 36, K, = 38. 1, KD = 8.52

45.* The differential equation model for the motor torque m(t) required for a
certain speed control system is

4/1i + 4Kri7 + K 2m = K 2vd

where the desired speed is Vd(t), and K is a constant called the control
gain.
a. Use the Laplace transform method to find the unit-step response

(that is, Vd(t) is a unit-step function). Use zero initial conditions.
b. Use symbolic manipulation in MATLAB to find the value of the peak

torque in terms of the gain K .

Section 10.6

46. Show that R -I(a)R(a) = I, where I is the identity matrix and RCa) is the
rotation matrix given by (10.6-1). This equation shows that the inverse
coordinate transformation returns you to the original coordinate
system.

47. Show that R - '(a) = R(-a) . This equation shows that a rotation through
a negative angle is equivalent to an inverse transformation.

48.* Find the characteristic polynomial and roots of the following matrix:

[-6 2]
A = 3k -7

49.* Use the matrix inverse and the left-division method to solve the following
set for x and y in terms of c:

4cx + 5y = 43

3x - 4y = -22

Problems

SO. The currents i i, i?, and i in tl . ' . ' '.
by the foll ow' 0 - " 3 :e CIi CUlt shown In Figure PSO are described

In l:> equati on set If all the res istances are equal to R.

[~~ ~ ~ - ~] [;~l :=: [~l
o R -2R 13 V2

~I ~n? V2 ~lre ap~li ed :oltages; the other two currents can be found from
14 - 'I - 12 and I S :=: 12 - i3 .

a. Use both the matrix il:verse method and the left-divi sion melhod to
sol ve for the currents In terms of the resistance R and the vollaoes v
and V2 . I:> I

b. Find the numerical values for the currents if R :=: 1000 Q :=: 100 Y
and V2 :=: 25 V ' v I ,

Figure P50

51. The equations for the armature-controlled dc motor hown in Figure PSI
follow. The motor 's current is i , and its rotational velocity is w.

di
Ldr = - Ri - Kew + vU)

I~ = KTi -cw
dt

L, R, and I are the motor's inductance, resistance, and inertia; KT and
Ke are the torque constant and back emf constant; c is a viscous damping
constant; and v(t) is the applied voltage.

Find the characteristic polynomial and the characteri tic roots.
b. Use the values R = 0.8 Q, L = 0.003 H, KT = 0.05 N· miA,

Ke = 0.05 V · s/rad, and 1= 8 X 10- 5 kg· m2
• The damping con tant

647

648 CHAPTER 10 Symbolic Processing with MATLAB

c is often diffi cult to determine with accuracy. For these values fi nd
the expressions for the two characteri sti c roots in terms of c.

c. Using the parameter values in part b, determine the roots for the
following values of c (in newton meter second): c = 0, c = 0 .0 I,
c = 0.1 , and c = 0.2 . For each case, use the roots to estimate how
long the motor's speed will take to become constant; also discuss
whether or not the speed will oscillate before it becomes constant.

R

Figure PSI

Guide to Commands
and Functions in
This Text

Operators and special charactcr.

(tern Description

Plus: addition operator.
Minus: subtracti on operatur.
Scalar and matri x multiplication operator.
Array multiplication operator.
Scalar and matri x exponentiation operator.

• A Array exponentiation operator.
\ Left-division operator.
I Right-divi ion operator.
· \ Array left-divi sion operatur.
· I Array right-divi ion operator.

Colon; generate regularly spaced elements and represents
an entire row or column.

() Parentheses; encloses function arguments and array indices;
overrides precedence.

[1 Brackets; encloses array elements.
{} Braces: encloses rell elements

Decimal point.
Ellipsis: line-continuation operator.
Comma: separates statements, and elements in a row of an array.
Semicolon: separates columns in an array, and uppre ses di play.
Percent sign; designates a comment, and pecifies formatting.
Quote sign and transpo e operator.
Nonconjugated transpo e operator.
Assignment (replacement) operator.
Creates a function handle.

Pages

9
87
9
92
9
9
91
91
20.72. 75, 124

9,45

19.72
113
13
13
12,13
12,74, 124
30, 673
25,72.124
72. 124
II
163

650 Appendix A

Logical and relational operators

Item

&&

I
II

Description

Relational operator: equal to.
Relational operator: not equ al to.
Relational operator: less than.
Relational operator: less than or eq ual to.
Relationa l operator: greater than.
Relational operator: greater than or equal to.
Logical operator: AND.
Short-circuit AN D.
Logical operator: OR.
Short-circuit OR.
Logical operator: NOT.

Special variables and constants

Item

ans
eps
i,j
Inf
NaN
pi

Description

Mo t recent answer.
Accuracy of floatin g-point precision .
The imaginary unit P.
Infinity.
Undefined numerical result (not a number).
The number 7f .

Commands for managing a se sion

Item

clc
clear
doc
exist
global
help
helpwi n
lookfor
quit
who
whos

Description

Clears Command window.
Rcmoves variables from memory.
Displays docllmentation .
Checks for existence of file or variable.
Declares variables to be global.
Displays help tcxt in the Command window.
Displays help text in the Help Browser.
Searches help entrie for a keyword.
Stops MATLAB.
Lists current variables.
Li ts current variable (long di play).

Pages

44, 19 1
44, 19 1
44, 19 1
44, 19 1
44, 19 1
44, 19 1
194
197
194
197
194

Pages

8
15
15
15
15
15

Pages

13
13
43
13,32
153
43
43
41 , 43
13
13
13

Guide to Commands and Functions in This Text

System and fi le commands

Hem

cd
date
dir
load
path
pwd
save
type
what
wklread
xlsread

Descdption

Changes curren t directory
Displays currcn t date. .
Li sts all fi les in current directory.
Loads workspace variables from a file .
DIsplays search path.
Displays current direc tory.
Saves workspace variables in a file.
DIsplays contents of a file.
Lists all MATLAB fi les.
Reads. wkl spreadsheet fi le.
Reads. xIs spreadsheet file.

Input/outpu t command.

Item Description

disp
format
fprintf
input

Display contents of an array or string.
Controls screen display format.
Performs formatted writes to screen or file .
Displays prompts and wai ts for input.
Di plays a menu of choices.
Suppresses screen printing.

Numeric di splay format s

Item

format short
format long
format short e
format long e
format bank
format +
format rat
format compact
format loose

Description

Four decimal digits (default).
16 decimal digits.
Five digits plus exponent.
16 digits plus exponent.
Two decimal digits.
Positive. negative. or zero.
Rational approximation.
Suppre ses orne line feeds.
Resets to Ie compact di play mode.

Page.~

24
167
24
22, 173
24
24
22
43
24
173
173

Pages

36
16. 17
36.672,673
36,2 10
36,37
12

Paps

16, 17
16.17
16.17
16.17
16.17
16.17
16.17
16.17
16.17

651

652 Appendix A

Array functions

Item

cat
find
length
linspace
logspace

min
size
sort

Special matrices

Description

Concatenates arrays.
Fi nds indices of nonzero elements.
Computes nu mber of elements.
Creates regui<lrly spaced vector.
Creates logarithmically spaced vector.
Returns largest element.
RelUrns smallest element.
Computes array size.
Sorts each colu mn.
Sums each colu mn.

Item Description

eye Creates an identity matri x.
Creates an array of ones.
Creates an array of zeros.

Matrix functi ons for solving li near equations

Item Description

det Computes determinant of an array.
inv Computes inverse of a matrix.
piny Computes pseudoi nverse of a matrix.
rank Computes rank of a matri x.
rref Computes reduced row echelon fo rm.

Exponent ial and logarithmic function

Item Description

Pages

77,82
45 ,77,78, 198
77, 79
73, 77
73,77
77, 78
77,78
77,78,209
77,78
77 , 78

Pages

l OS
105
105

Pages

379, 635
376, 635
385,399
382,399
389, 399

Pages

exp(x)
log (x)

loglO (x)
sqrt(x)

Exponential; e' .
Natural logari thm; In x.
Common (base 10) logarithm; logx = 10gIOx.
Square root; ...;x.

142
142
142
142

Complex functions

abs (x)

angle (x)

conj (x)

imag (x)

real {xl

Description

Absolute value; 1.11 .
Angle of a complex number x .
Complex conjugate of x .
Imaginary part of a complex number x .
Real part of a complex number x .

Pages

142
142
142
142
142

GUide to Commands and Functions in This Text

Numeric fun ctions

Item

ceil
Ii x
floor
round
sign

Descdption

Rounds to the ncareq integer toward 00.

Rounds to the neares t in teger toward zero.
Rounds to the nea rc~ t integer toward -00.

Rounds toward the ncares t integcr.
Signum fun ction .

Tri gonomctric r unctions

Hem

a cos (x)
acot (x)

acsc (x)

asec (x)
asin (x)
atan (x)
atan2 (y, x)
cos (x)
cot (x)
esc (x)

sec (x)
sin (x)
tan (x)

Description

Inverse cosinc; arccos x = cos IX.
Inverse cotangent; arccot x = cot- I .. \'.
Inverse cosecant; arccsc x = csc IX.
Inverse secan t; arcsec x = sec IX.
Inver.csi ne; arc, in x = in Ix.
Inverse tangent; arctan x = tan- Ix.
Four-quadrant inver e tangent.
Cosine: cos x.
Cotangent; cot x.
Cosecan t; esc x.
Secant; sec x.
Sine; sin x.
Tangent: tan x .

Hyperbolic functi ons

Item

acosh (x)
acoth(x)
acsch (x)

asech (x)
asinh (x)
atanh(x)
cosh (x)
coth (x)
csch(x)
sech (x)
sinh (x)
tanh (x)

DeSCription

Inverse hyperbolic co~ ine: co&h Ix .
Inverse hyperbolic cotangent; coth - I x.
Inver,e hyperbolic cosecant; c,<:h- I x.
Inverse hyperbolic secant : <,ech- I x.
Inverse hyperbolic sine; si nh IX.
I nver~e hyperbolic tangent: tanh I x.
H)perbolic co inc: cosh x.
Hyperbolic cotangent; cosh x/<,inh x .
Hyperbolic cosecant ; I /, inh x.
Hyperbolic sccunt: I /co,h x.
Hyperbolic , inc; sinh x.
Hypcrbolic tangent: ., inh x/co<,h x.

Polynomial functions

Item

cony
deconv
eig
poly
polyfi::.
po~yval

Description

Computes product of two pol) nomials.
Compute, ratio of polynomial .
Computes the igenvalue of a matri".
Computes polynomial from roots.
Fib a polynomial to data.
Evaluate polynomial.
Compute! polynomial roots.

Page.s

11 2, 116
142
142
142
14R

Page~

146
146
146
146
146
146
146
146
146
146
146
146
146

Pages

14H
148
14S
148
148
14k
14S
148
148
148
148
148

108.109
108. 109
515.635
107. lOS
302.303.31 5
108. 109.315
20.107. 108

653

654 Appendix A

String functions

Item

findstr
lower
strcmp
upper

Logical function s

Description

Finds occurrences of a string.
Converts string to all lowercase.
Compares strings .
Converts string to all uppercase.

Item Description

a ny True if any elements are nonzero.
a ll True if all elements are nonzero.
f i nd Fi nds indices of nonzero elements.
f ini t e True if elements are finite.
ischar True if elements are a character array.
isin f True if elements are infinite.
isempty True if matrix is empty.
i snan True if elements are undefi ned .
isreal True if all elements are real.
isnumeric True if elements have numeric values.
logical Converts a numeric array to a logical array.

Exclusive OR.

Miscell aneous mathematical functi ons

Item

cross
dot
fu nc ti on
nargin
nargout

Description

Computes cross products.
Computes dot product .
Creates a user-defined function.
Number of function input arguments.
Number of function output arguments.

Cell array functions

Item

cell
celldisp
cellplot
num2cell
deal
iscell

Description

Creates cell array.
Displays cell array.
Displays graphical representation of cell array.
Converts numeric array to cell array.
Matches input and output lists.
Identifies cell array.

Pages

198

Pages

2 10
2 10
2 10, 240
2 10

198
45 , 77 , 78 , 198
198
198
198
198
198
198
198
198
196, 198

Pages

107
107
148
208
208

Pages

11 2, 116
1I2, 114
112,114
114
11 2, liS
ll2

Guide to Commands and Functions in This Text

Struct ure runcti ons

Item

fieldnames
get field
is field
isstruct
rmfield
set field
struct

Description

Rcturns fie ld namcs in a Slructure array.
Return.s fie ld content or a ~ Iructure array.
Ident lflcs a structure array fic ld.
Identifies a structurc array.
Remove, a field from a structure array.
Sets contents of fi eld .
Creates structure array.

Basic xy pl otting commands

Item

axis
cIa
fplot
ginput
grid
plot
print
title
xl abel
ylabel

Description

Sets axis limits and other ax is properties.
Clears the axes.
Intelligent plotting of function .
Reads coordinates of the cursor position.
Di spl ays gridlines.
Generates xy plot.
Prints plot or saves plot to a fil e.
Puts tex t at top of plot.
Adds tex t label to x-axis.
Adds tex t label to y-axis.

Plot-enhancement commands

Item

axes
c o lormap
gtex t
hold
l egend
refresh
set
subplot
text

Description

Creates axes objects.
Sets the color map of the current figure.
Enables label placemcnt by mou. e.
Freezes current plot.
Legend placement by mou 'c.
Redraws current fi gure window.
Specifies properti es of' objects 5uch as axes.
Creates plots in subwindolVs.
Places string in figure.

Speciali zed plOI functions

Item

bar
loglog
plotyy
polar
semilogx
semiJogy
staj rs
stem

Description

Creates bar chart.
Create, log-log plol.
Enables plotting on left and right axes.
Creale~ polar plot.
Creates semi log plot (logarithmic absci sa).
Creates semilog plot (logarithmic ordinate).
Creates stairs plot.
Creates stem plot.

Pages

Pages

120
120.1 21
120
120, 122
24
120. 121
120

264, 269
662
266,269
26, 27
27,269
27. 269, 280, 663
26, 269
27,269
25,269
25.269

Pages

276, 280
662
27. 280
279,280
275,280
276,280
288. 289, 664
271. 280
276. 280, 668

Pages

284,424
284
284.290
284,290
284
284
284.289
284.289

655

656 Appendix A

Three-dimensional plotting functions

Item

contour
mesh
meshc
meshgrid
mesh z
plot3
shading
surf
surfc
surfl
v iew
waterfall
zlabel

Description

Creates contour plot.
Creates th ree-dimensiona l mesh surface pl ot.
Same as mesh with contour plot underneath .
Creates rectangular grid.
Same as mesh with vertical lines underneath.
Creates three-dimensional plots from lines and points.
Specifies type of shading.
Creates shaded three-dimensional mesh surface plot.
Same as surf with contour plot underneath.
Same as surf with lighting.
Sets the angle of the view.
Same as mesh with mesh lines in one direction.
Adds text label to z-axis.

Program flow control

Item Description

break Term.inate execution of a loop.
Provides alternate execution paths within switch structure.

cont inue Passes control to the next iteration of a for or while loop.
else Delineates alternate block of tatem.ents.
elseif Conditionally executes statements.
end Terminate for, while, and if statements.
for Repeats statements a specific number of times.
if Executes statement conditionally.
otherwise Provides optional control within a swi tch structure.
switch Directs program execution by comparing input with

case expressions.
while Repeats statements an indefinite number of times.

Optimization and root-finding functions

I..... Description

fminbnd Finds the minimum of a function of one variable.
fminsearc h Finds the minimum of a l1lultivariable function.
fzero Finds the zero of a function.

Histogram functions

bar
hist

Creates a bar chart.
Aggregates the data into bins.

Pages

337, 338
336,338
338
336,338
338
335,338
662
338
338
662
662
338
335

Pages

2 14
225
214
47,52, 202
47, 52, 205
47, 52,202
48 , 52,2 11
47,52,201
225
225

48,52,224

Pages

157, 160
159, 160
156, 160

Pages

284,424
424

Guide to Commands and Functions in This Text

Statistical fun cti ons

Item

cumsum
erf (x l
mean
median
s t d

Deser'iplion

Computes the cumulati ve sum aeross a row
Computes the error function erf(x). .
Calculates the mean.
Calcu lates the median.
Calcu lates the >tandard deviation .

Random number fun cti ons

Item

rand

randn

randperm

DeSCription

Generates uniformly di tributed random numbers
between 0 and I ; sets and retrieves the . tate.
Generates normally distributed random numbers'
ets and retrieves the state. '

Generates random permutati on of integers.

Polynomial functions

Item

poly
polyfit
polyval
roots

Description

Computes the coefficients of a polynomial from its roOlS.
Fits a polynomial to data.
Evaluates a polynomial and generates error estimate '.
Computes the roots of a polynomial from its coefficients.

Interpolation functions

Item

interpl

interp2
spline
unmkpp

Description

Linear and cubic- pline interpolation of a function of
one variable.
Linear interpolation of a function of two variables.
Cubic-spline interpolation.
Computes the coefficients of cubic· spline polynomials.

Numerical integration functions

Item

quad
quadl
trapz

Description

Numerical integration with adaptive Simpson' rule,
Numerical integration with Lobano quadrature.

umericaJ integration with the trapezoidal rule.

Pages

429, 433
435
433,434
433,434
433,434

Pages

437,438

438, 443

438,439

Pages

107, 108
302,303
108, 109,3 15
20, 107, 108

Pages

446,449, 452

449, 452
451.452
451 , 452

657

658 Appendix A

umerical differentiation functions

Item Description

diff (xl

polyder

ODE solver

Item

ode23
ode45
ode1l3
ode23s
ode23t
ode23tb
ode15s
odeset

Computes the differences between adjacent
elements in the vector x .
Differentiates a pol ynomi al, a polynomial product,
or a polynomi al quotient.

Description

j onstiff. low-order solver.
Nonstiff, medium-order solver.
Nonstiff. variable-order solver.
Stiff, low-order solver.
Moderately st iff, trapezoidal rule solver.
Stiff, low-order solver.
Stiff, variable-order solver.
Creates integrator options structure for ODE solvers.

LTJ object functions

Item

ss
ssdata
tf
tfdata

LTJ ODE solvers

Item

impul se
initial
lsim

step

Description

Create an LTI object in state- pace form .
Extracts tate-space matrices from an LTI object.
Creates an LT[object in transfer-function form.
Extracts equ ation coefficients from an LTI object.

Description

Computes and plots the impul se response of an LTI object.
Computes and pl ots the free response of an LTI object.
Computes and plots the respon e of an LTI objec t to a
general input.
Computes and plots the step response of an LTI object.

Predefined input functions

gensig
sawtooth
square
stepfun

Description

Generates a periodic sine, square, or pulse input.
Generates a periodic sawtooth input.
Generates a quare wave input.
Generates a step function input.

Pages

479,482

482

Pages

498, 499, 527
498, 499, 527
498, 499, 527
498, 499, 527
498, 499, 527
498,499, 527
498,499,527
527,528

Pages

5 18,520
5 18, 520
518,519
518 , 521

Pages

52 1, 522
521,522
521,524

521 , 523

Pages

525,526
525
525 , 526
525

GUide to Commands and Functions in This Text

Functions for creating and evaluating symbolic express ions

Item Description

class
digits

double
ezplot
findsym
numden
s ym
syms
vp a

Returns the class of an expression.

;1~:~I~l:t:~~mber of decimal digits used to do variable precision

Converts an expression to numeric form
Generates a plot of a symbolic expressi;n.
~Inds the symbolic variables in a symbolic expres ion

C
eturns the llum~rator and denominator of an expressi~n
leates a symbolic variable. .

Creates one or more symbolic variables.
Sets the number of digits u ed to evaluate express ions.

Functions for manipulating symbolic expressions

Item

collect
expand
factor
poly2sym

pretty

simple
simplify
subs
sym2poly

Description

Collects coefficients of like powers in an expression.
Expands an express ion by carry ing out powers.
Factors an expression.

Converts a polynomial coefficient vector to a symbolic
polynomial .

Displays an expression in a form that resembles type et
mathematiCs.

S~arches for the shortest form of an expression.
SImplifies an expression using Maple's simplification rules.
Substitutes variables or expressions.
Converts an expression to a polynomial coefficient vector.

Symbolic soluti on of algebraic and transcendental equation

Item Description

sol ve Solves symbolic equations.

Symbolic calculus functions

Item DescriptiOD

di ff Returns the derivative of an expres ion.
Dirac Dirac delta function (unit impulse).
Heaviside Heaviside function (unit step).
int Returns the integral of an expression.
limi t Returns the limit of an expression.
symsum Returns the symbolic ummation of an expression.
t ay 1 or Returns the Taylor series of a function.

Pages

593, 595
595

240, 591 , 595
594, 595, 618
589,595
591 , 595
587, 595
587, 595
595

Pages

589, 596
590,596
590,596
591,596

592,596

590, 596
590,596
592,596
596

Pages

596,603

604, 606
629,636
623, 636
606,608

.. 606,613
606
606,612

659

660 Appendix A

Symbolic solut ion of differenti al equati ons

Item

dsol ve

Description

Returns a symbolic soluti on of a differenti al
equation or set of equation s.

Laplace transform functions

Item

ilaplace
laplace

Description

Return the inverse Laplace transform.
Return the Laplace transform .

Symbolic linear algebra function

Item Description

det
eig

Returns the determinant of a matrix.
Returns the eigenvalues (characteri stic roots)
of a matrix .

i nv
po l y

Returns the inverse of a matrix . .
Return the characteristic polynomial of a matrix.

Animation functions

Item

d rawnow
ge tf r ame
movie
movie in
pause

Sound functions

Item

sound
soundsc
wavplay
wavread
wavrecord
wavwrite

Description

lniti ates immediate plotting.
Captures curreIll figure in a frame.
Play back frames.
Initiali zes movie frame memory.
Pauses the display.

Dt'SCription

Plays a vector as sound.
Scales data and plays as ound.
Play recorded sound.
Reads Microsoft WAVE file .
Record sound from input device.
Write Microsoft WAVE file.

Pages

61 6,622

Pages

624
623

Pages

635
635

635
633 , 635

Pages

665
661
661
663
665

Pages

669
670
670
670
671
671

Animation and Sound
in MATLAB

B.1 Animation

Animation can be used to di splay the behavior of an object over time. Some of
the MATLAB demos are M-files that perform animation . After completing thi s
section, which has simple examples, you may study the demo files, which are
more advanced. Two methods can be used to create animation in MATLAB. The
first method uses the movie function. The second method uses the EraseMode
property.

Creating Movies in MATLAB

The get frame command captures, or takes a snapshot of, the current figure to
create a sinole frame for the movie. The get frame function is usually u ed in a
for loop t; assemble an array of movie frames. The movie function plays back
the frames after they have been captured.

To create a movie, use a script file of the following form .

for k = l : n
plorting expressions
M(k) = getframe ; % Saves current figure i11 array M

end
movie(M)

For example, the following seript file creates 20 frames of the function fe -li b for
o S t S 100 for each of 20 values of the parameter b from b = I to b = 20.

% Program moviel . m
% Animates the function t*exp (-t/b) .

881

662 Appendix B

t = [0 : 0 . 05 : 100] i
f or b = 1 : 20

plot(t ,t.*exp(-t/b)) , axis([0 100 0 10]) , xlabel(' t ') i
M(: , b) = getframe i

end

The line M (: , b) = get frame i acquires and saves the current figure as
a column of the matrix M. Once this file is run , the frames can be replayed as a
movie by typing mo v ie (M) . The animation shows ho}\' the location and height
of the function peak changes as the parameter b is increased.

Rotating a 3D Surface

The fo llowing example rotates a tlu'ee-dimensional surface by changing the view­
point. The data is created using the built-in function , p eaks .

Program movie2 . m
Rotates a 3D surface .

[X,Y,Z] = peaks(50) i % Create da t a .
surfl(X , Y, Z) % Plot the surface .
axis([-3 3 -3 3 -5 5]) % Retain same scaling for each frame .
axis vis3d off Set the axes to 3D and turn off tick marks ,

and so forth .
shading interp Use interpolated shading .
colormap(winter) Specify a colormap .
for k = 1 : 30 % Rotate the viewpoint and capture each frame.

view(- 37 . 5+0 . 5*(k-1) , 30)
M(k) = getframe i

end
cIa % Clear the axes .
movie(M) % Play the movie .

The colormap (map) function sets the cun-ent figure 's color map to map.
Type help graph3d to see a number of colormaps to choose for map. The
choice winter provides blue and green shading. The view function specifies the
3D graph viewpoint. The syntax view (az , el) sets the angle of the view from
which an observer sees the cun-ent 3D plot, where az is the azimuth or horizontal
rotation and el is the vertical elevation (both in degrees) . Azimuth revolves
about the z-axis, with positive values indicating counterclockwise rotation of the
viewpoint. Positive values of elevation correspond to moving above the object;
negative values move below. The choice az = - 3 7 . 5, el = 30 is the default
3D view.

Extended Syntax of the movie Function

The function movie (M) plays the movie in array M once, where M must be
an array of movie frames (usually acquired with get frame). The function
movie (M , n) plays the movie n times. If n is negative, each "play" is once

Animation and Sound in MATLAB

t:orward and once backward. If n is a vector . .
limes toplay the movie, and the remainin

o
.1' the fi, l .s~ e.l e l~lc ntl s thc numbcr of

the mOV ie. For example if M h . f r be ements al e d lI st of frames to play in
l.he movie 10 times, and'the m~~ieo~~n:~mes,.t~:n n = [10 4 4 2 1] plays
fo ll owed by fl:ame 2 and , fina ll y, frame ~~s of fl<lme 4 followed by frame 4 aga in ,

The funct ion movie (M n f) I .
If ~ps is om itted, the defm;lt is f2s fr~~~~" the.movleat fps frames per second.
achl ~ve the spec ifi ed fps wi ll pia the I ~el ~e.~on ~L Compu ters that ca n~l o t
mOVl e (h , ...) plays the movie ~n ob . ~~v l e as f ~st cl~ they can. The functi on
an axis. Handl.es are discussed in Sect i o~ 2.2~' whele h I. a handle to a figurc or

The function movie (h , M, n f . .
movie, relative to the lower-left co I~ne;'~; olb~C) sl:eclr: es t.he 1 0c~ lI on to play the
va lue of the object's Units property, where l~~~t ~ <lnd In pi xels, lega rdl es of the
isafour-elementpositionvec . f ' - [x y unused unused]

but all four elemen;s are req~~~~~. ~~~c~~~;~ ;1:;Sa~:c{ co.~rdi7tes ~~elu scd ,
height in which it was recorded. USlllg t 1e WI t1 and

Note that for code to be compatible with versions of MATLAB '.
Release 11 (5 3) tl " . pnOi to
f . . .' .' 1e ~ovle ln (n) fl~ nction must be used to initiali ze movic
lame memOlY for n frames. To do tillS, place the line M = movi ein (n) .

before the. fo r loop that generates the plots. '

T~e ?Isadvantage of the mov i e function is that it might require too much
memOIY If many frames or complex images are stored.

Animation with the EraseMode Property

One form of extended syntax for the plot function is

plot (. .. , ' PropertyName ' , ' PropertyValue ' , ...)

Thi s form sets the pJot property specifi ed by PropertyName to the valucs
specIfied by PropertyVal ue for all line objects created by the plot function .
One such property name is EraseMode. This property controls the technique
MATLAB uses to draw and erase line objects and is useful for creating an imated
sequences. The allowable values for the EraseMode property are the following.

• normal This is the default value for the Era cMode propCI1y. By typing

plot (.. . , ' EraseMode ' , ' normal ')

the entire figure, including axes, labels, and titles, is erased and redrawn
using only the new set of points. In redrawing the display. a three­
dimensional analysis is performed to ensure that all objects are rendered
con-ectJy. Thus. this mode produces the most accurate picture but is the
slowest. The other modes are faster but do not perform a complete redraw
and are therefore less accurate. Thi method may cause blinking between
each frame because everything is era ed and redrawn. This method i
therefore undesirable for animation.

663

664 Append ix B

• none When the EraseMode property value is set to none, objec ts in
the existing figure are not erased, and the new plot is superimposed on the
existing figure. This mode is therefore fast because it does not remove
existing points, and it is useful for creating a " trail " on the screen.

• xor When the EraseMode property va lue is set to xor, objects are drawn
and erased by performing an exclusive OR with the background color. This
produces a smooth animation. This mode does not destroy other graphics
objects beneath the ones being erased and does not change the color of the
objects beneath. However, the object's color depends on the background
color.

• background When the EraseMode property value is set to
background, the res ult is the same as with xor except that objects
behind the erased objects are destroyed. Objects are erased by drawing
them in the axes ' background color or in the figure background color if the
axes Color property is set to none . This damages objects that are behind
the erased line, but lines are always properly colored.

The drawnow command causes the previous graphics command to be exe­
cuted immediately. If the drawnow command were not used, MATLAB would
complete all other operations before performing any graphics operations and
would di splay only the last frame of the animation.

Animation speed depends of the intrinsic speed of the computer and on what
and how much is being plotted. Symbols such as 0, *, or + will be plotted s lower
than a line. The number of points being plotted also affects the animation speed.
The animation can be slowed by usi ng the pause (n) function , which pauses
the program execution for n seconds.

Using Object Handles

An expression of the form

p = plot (. ..)

assigns the results of the plot function to the variable p, which is a figure identifier
called a ··figure handle." This stores the figure and makes it available for future
use. Any valid variable name may be ass igned to a handle. A fi gure handle is
a specific type of ·'object handle." Handles may be assigned to other types of
objects. For example, later we will create a handle with the text function .

The set function can be used with the handle to change the object properties.
This function has the general format

set(object handle , ' PropertyName ', ' PropertyValue ', ...)

If the object is an entire figure, its handle also contains the specifications for line
color and type, marker size. and the value of the EraseMode property. Two of the
properties of the figure specify the data to be plotted. Their property names are
XData and YData. The following example shows how to use these properties.

Animation and Sound in MATLAB

Animating a Function

Consider the function te - Ilb, which was u . . .
functIon can be animated as th ' sed In the first mOVI e example. This
o e pdrameter b changes with the fo llowing program.

~ Program animatel . m
Animates the function

t = [0 : 0 . 0 5 : 1 0 0] ; t * exp (- t I b) .
b = 1 ;

p ~lot(t , t .* exp(-t/b) " EraseMode " ,
aXls([O 100 0 10]) , xlabel ' '. ,xor) ; ...

forb=2 : 20 (t) ,

se~(p , 'XData' , t , ' YData ' , t . *exp(-t/b))
aXls([O 100 0 10]) , xlabel(' t'). , ...
drawnow '
pause(O . l)

end

o < ;n ~hilst~~~~a: ~h~ fun~tiohn tfie -
Ilb

is first e:aluated and plotted over the range
- - - , an t e gure handle IS assigned to the v . bl T ·

establishes .the plot format for all following operations for exam l:r;~ne ~ p. hIS
color, labehng, and axis seal ing. The function t e-I l b is' then eva l~at~d ani~~~~~
over. the range 0 S t S 100 for b = 2, 3, 4, ... in the for loop and the revious
plot IS erased.-Each call to set in the for loop causes the next ~et of pOi~ts to be
plotted. The E.raseMode property value specifies how to plot the existing points
on the figur~ (I.e., .how to refresh the screen) , as each new set of points is added
You sh.ould IllvestIgate what happens if the EraseMode property value is set t~
none Ill stead ofxor.

Animating Projectile Motion

This foj~owi~g pr.ogram illustrates how user-defined functions and subplots can
be used III a.l11matIOns. The following are the equations of motion for a projectile
launch~d with a speed.so at an a.ngle B a~ove the horizontal, where x and yare
:he. honzontal and vertical coordlllates, g IS the acceleration due to gravity, and!
IS tIme.

xU) = (socosB)!
gt 2

yet) = -2 + (sosinB)1

By setting y = 0 in the second expression, we can solve for l and obtain the
following expression for the maximum time the projectile is in flight, 1max .

lmax = ~sinB
g

665

666 Appendix B

The express ion for yet) may be differentiated to obtai n the expression for the
vertical veloci ty:

dy .
Vvcrt = dr = -gt + So SIn e

The maximum distancexmax may be computed from x(tmaJ, the maxi mum height
Ymax may be computed from y(tmax/ 2), and the max imum vertical veloc ity occurs
att = O.

The fo llowing functions are based on these express ions, where sO is the
launch speed So, and th is the launch angle e.

function x = xcoord(t ,s O,th) ;
% Computes projectile horizontal coordinate .
x = sO*cos(th)*t ;

function y = ycoord(t , sO , th , g) ;
% Computes projectile vertical coordinate .
y = -g*t . ~2/2 +s0*sin(th)*t ;

function v = vertvel(t , sO,th , g) ;
Computes projectile vertical velocity .

v = - g*t+sO*sin(th) ;

The following program uses these functions to animate the projectile motion
in the first subplot, while si multaneously displaying the vertical veloci ty in the
second subplot, fo r the values e = 45°, So = 105 f tlsec, and g = 32.2 ftlsec2

.

Note that the values of xmax, ymax, and vmax are computed and used to set the
axes scales. The figure handles are hI and h2 .

Program animat e 2 . m
An i mates project i le motion .
Uses funct i ons xcoord , ycoord , and vertvel .

th = 45 * (p i / 1 80) ;
9 = 32 . 2 ; s O = 10 5;
%
t max 2 *s O*sin(t h)/ g ;
xmax xcoor d(tmax , sO , th) ;
y max ycoord (tmax /2 , sO , th , g) ;
vmax vertvel(O , sO , t h , g) ;
W = linspace(O , t max , 500) ;
%
subp l ot(2 , I , I)
plo t (xcoor d(w,sO,th) , y c oord(w, sO , th , g)) , ho ld ,
h1 = p l ot(xcoord(w, sO , th) , ycoor d(w,sO , t h , g), ' 0 ', , EraseMode ' , ' xor ');
axis([O xma x 0 1 . I *ymax)) , x l abel(' x ') , y label (' y ')
subplot (2, 1 , 2)
plo t(xcoor d (w , sO , th) , v e rtvel(w , s O, th , g)) , hold ,

Animation and Sound in MATLAB
667

h2 =.Plot(xcoOrd (W , SO , th) , vertvel(w ,
aXls([O xmax 0 11*vma]) 1 , SO , th , g) , s ',' Erase~10de ' ' xor ')'
Ylabel(' Vertical ' veloc:ty;~ abel(' x ') ,... "

for t = [O : O. Ol : tmax]
set (hI , ' XData ' Xcoord(t 0
set(h2 , ' XData ' : xcoOrd(t : :o ' t~) , : YData : , ycoord(l , sO , th , g))
drawnow , t) , YData , vertvel(l , sO , th , g))
pause(0.005)

end
hold

You should experiment with different values ofthepause function argument.

Animation with Arrays

Thus far ,:e h a~e seen how the functi on to be animated may be eva lualed in lhe
~ et fL~nctlOn wIth an expression or wi th a functi on. A th ird method is to compute
t ,.e t,0llltS to be plotted a~ead of time and store them in arrays. The fo lJowing
p I ~b l am shows I~ow thIS IS done, using the projecti le application. The plolled
POlll tS are stored III the arrays x and y .

% Program animate3 .m
% Animation of a projectile using arrays .
th = 70*(pi/180) ;
9 = 32 . 2; sO=100 ;
tmax 2*sO*sin(th)/g ;
xmax = xcoord(tmax , sO , th) ;
ymax = ycoord(tmax/2 , sO , th , g) ;
%

w = linspace(0 , tmax , 500) ;
x = xcoord(w , sO , th) ;y = ycoord(w , sO , th , g) ;
plot (x , y) , hold ,
hI = plot (x , y , ' 0 ', , EraseMode ' , ' xor ') ;
axis([O xmax 0 1 . I *ymax]) , xlabel(' x ') , ylabel(' y ' J
%
kmax = length(w) ;
for k =1 : kmax

set (hI , , XData ' , x (k) , ' YDa t a ' , y (k))

drawnow
pause (0 . 001)

end
hold

Displaying Elapsed Time

It may be helpful to display the elapsed time dmiog an animation. To do this.
modify the program animate3 . mas shown in the following. The new lines are

668 Appendix B

indicated in bold; the li ne fo rmerly below the line h1
deleted .

% Program animate4 .m

plot (. .. has been

% Like animate3 .m but displays elapsed time .
th = 70 *(pi /180) ;
9 = 32 . 2 ; sO = 100 ;

tmax 2*sO*sin(th)/g ;
xmax xcoord(tmax , sO , th) ;
ymax ycoord(tmax/2 , sO , th , g) ;

t = linspace(O , tmax , 500) ;
x = xcoord(t , sO,th) ; y = ycoord(t , sO ,th , g) ;
plot(x,y) ,hold,
h1 = plot(x , y , ' 0 ' , ' EraseMode ', ' xor ') ;
text(lO,lO, 'Time = ')
time = text(30,10, '0', 'EraseMode', 'background')

axis([0 xmax ° l.l*ymax]),xlabel('x'),ylabel('y')

kmax = length(t) ;
for k = l : kmax

set(h1 , ' XData ' ,x(k) , ' YData ' , y(k))
t _string = num2str(t(k));
set(time, 'String',t_string)
d r awnow
pause(O . OOl)

end
hold

The first new line creates a label for the time display using the text state­
ment, which writes the label once. The program must not write to that location
again. The second new statement creates the handle time for the text label and
creates the string for the first time value, which is O. By using the background
value for EraseMod e , the statement specifies that the existing display of the
time variable will be erased when the next value is displayed. Note that the nu­
merical value of time t (k) must be converted to a string, by using the function
num2s tr, before it can be displayed. In the last new line, in which the set
function uses the t ime handle, the property name is 'S t ring', which is not a
variable but a property associated with text objects. The variable being updated
is t_string.

B.2 Sound
MATLAB provides a number a functions for creating, recording, and playing
ound on the computer. This section gives a brief introduction to these functions.

Animation and Sound in MATLAB

A Model of Sound

SOll nd is the flu ctuati on of air pressure as " "
pure lone, the pressure p(l) oscil h; . d :unctl on of lime I . If the sound is a

. (es sinusoida ll y at a single frequency; that is,
p(l) == A sin (2n./1 + (jJ)

where A is the pressure ampli tude (the "Ioudn " " .
In cycles per second (Hz), and ¢ is the h, ~~s), j IS the sound frequency
sound wave is P == 1/ f. P lse shift In radians. The period of the

Because sound is an analoo vari able (I ' '.
ues), it must be converted into; finite ' ~.ne lav lI~ g an. Infi~lJte number of va l­
used in a di oital computer This ~~t 0 numbel.s before It can be stored and
signal into di screte value; and convel ~ :on ~rocess IIlvolves sampling the sound

re~ented in .bi.nary form . Ql~ antii~~:~:~Zi~ l~nt i ;S ~;~I:~~;~ ~~i~ l~a~ ~~y. ca~ be rep~
analog- to-d lgl.tal converter to c~pture real sound, but we will not ~~~~~s~lilt\~;.~
because we Wi ll produce only slITIulated sounds in oftware.

You lise a process s i l~ilar to sampling whenever you plot a function in
MATL~B. To plot the func tlo~l you should evaluate it at enough poin t to produce
~ smoot plot. So, .to plot a sine wave, we should "sample" or eva luate it many
tnnes over theyenod. The frequency at which we evaluate it is the SW17p':n ,
.freqL~ency. So, If we us~ a time step of 0. 1 s, our sampling frequency is 10Hz. l'f
the ~ Ille ~ave has a penod of I , .then we are "sampling" the function 10 times
~ve? pel,lo.d. So we see th.at the higher the sampling frequency, the beller is our
repl esentatlon oJ the function.

Creating Sound in MATLAB

The MATLAB fu nction sound (sound_vector , sf) plays the signal in the
vecto,r sound_vecto.r, created with the , ampling freq uency sf, on the Com­
puter s speaker. Its use IS demonstrated with the fo llowing user-defi ned function
which plays a simple tone. '

function playtone(freq , sf , amplitude , duration)
% Plays a simple tone .

freq = frequency of the tone (in Hz) .
sf = sampling frequency (in Hz) .
amplitude = sound amplitude (dimensionless).
duration = sound duration (in seconds) .

t = [O : l/sf :duration) ;
sound_vector = amplitude *sin(2 *pi *freq*t) ;
sound (s ound_vector , sf)

Try this function with the following value: freq = 1000. sf = 10000,
a mp l itude = 1, and durati on = 10. The sound function truncates or
"clips" any values in sound_vector that lie outside the range -I to +1.
Try using ampli tude = 0 . 1 and ampli tude = 5 to eetheeffectonthe
loudness of the sound.

669

670 Appendix B

Of course, real sound contains more than one tone. You can create a sound
having two tones by adding two vectors created from sine functions having differ­
ent frequencies and ampl itudes. Just make sure that they are sampled with the same
frequency, have the same number of samples, and their sum lies in the range - 1 to
+ I. You can play two different sounds in sequence by concatenating them in a row
vector, as sound ([sound_vector_l , sound_vector_ 2], sf) . You
can play two different sounds simultaneously in stereo by concatenating them in a
column vector, as sound ([sound_vector_l ' , sound_vector_2 '] ,
sf) . '

MATLAB includes some sound files . For example, load the MAT-nle
chirp . mat and play the sound as follows:

»load chirp
»sound(y , Fs)

Note that the sound vector has been stored in the MAT-file as the array y and the
samp ling frequency has been stored as the variab le Fs. You can also try thenle
gong . mat .

A rel ated function is soundsc (sound_vector , sf). This function
scales the signal in sound_ vec tor to the range - 1 to + 1 so that the sound is
played a loudly as possi ble without clipping.

Reading and Playing Sound Files

The MATLAB function wavread (' filename ') reads a Microsoft WAVE
file having the extension. wav. The syntax is

[sound_vector , sf , bits] = wavread(' filename')

where sf is the sampling frequency used to create the file, and bi t s is the number
of bits per sample used to encode the data. To play the file, use the wavplay
function as follows:

»wavplay(sound_vector, sf)

Most computers have WAVE files to play bells, beeps, chimes, etc., to signal
you when certain actions occur. For example, to load and play the WAVE file
chimes. way located in C: \ windows \ media on some PC systems, you type

»[sound_vector , sf) = wavread(' c : \w indows \media\chimes . wav ') ;
»wavplay(sound_vector , sf)

You can also play this sound using the sound command, as sound (y , sf) ,
but the wavplay function has more capabilities than the sound function . See
the MATLAB help for information about the extended syntax of the wavplay
function.

Animation and Sound in MATLAB

Recording and Writing Sound Files

You can use MATLAB to record sound .
The wavrecord function record dand WrIte sound data to a WAVE nle.
Its basic syntax is s SOun from a PC-based audio input device.

sound_vector = wavrecord(n, sf)

where n is the number of sa I
is 11 ,025 Hz. For exam Ie, to7ec

es
, ampled ,at t~e rate sf. The default value

11 ,025 Hz, speak into tte audio d::i~; s~':lot audJO fro.m channell sampled at
W I e the followIng program runs.

»sf = 11025 ;
»sound_vector = wavrecord(5 *sf, sf) ;

Play back the sound by typing wavplay (Sound v
You can th . . _ector,sf).

use e wavwrlte functIOn to write sound stored in the vec
tor sound_vector to a Microsoft WAVE nle. One syntax is wavwrit~
(sound_vector , sf , ' filename '), where the sam lin fre uenc .
sf Hz and the data is assumed to be 16-bit data The function l' g q r y IS
values outside the range _} to + 1. . C IpS any amp ltude

671

872

Formatted Output
in MAT LAB

The disp and format commands provide simple ways to control the screen
output. However, some users might require more control over the screen dis­
play. In addition, some users might want to write formatted output to a data
file. The fprint f function provides this capability. Its syntax is count =
fprintf (fid , format , A , ...) , which formats the data in the real part of
matrix A (and in any additional matrix arguments) under control of the specified
format string format, and writes it to the file associated with file identifier f id.
A count of the number of bytes written is returned in the variable count. The
argument fid is an integer file identifier obtained from fop en. (It may also be 1
for standard output-the screen-or 2 for standard error. See fopen for more
information.) Omitting f id from the argument list causes output to appear on
the screen, and is the same as writing to standard output (f id = 1). The string
format specifies notation, alignment, significant digits, field width, and other
aspects of output format. It can contain ordinary alphanumeric characters, along
with escape characters, conversion specifiers, and other characters, organized as
shown in the following examples. Table C.] summarizes the b asic syntax of
fpri nt f. Consult MATLAB help for more details.

Suppose the variable Speed has the value 63.2. To display its value using
three digits with one digit to the right of the decimal point, along with a message,
the session is

» fprin tf (' The speed is : %3 . 1f\n ', Speed)
The speed i s : 63 . 2

Here the "field width" is 3, because there are three digits in 63.2. You may want
to specify a wide enough field to provide blank spaces or to accommodate an
unexpectedly large numerical value. The % sign tells MATLAB to interpret the

Formatted Output in MATLAB

Ta ble C.I Display form ats with the fprintf function

Syntax

fprintf (' format ' , A , . . .)

, format ' structure

Control codes

Code Description

Description

Displays the elements of the array A, and any
~ddltlOna l a~Tay arguments, according to the
ormat speCified In the string' format ' .

% [- J [numbe~l . number2 J C, where
numberl speCifies the minimum fie ld wid th
r:umber2 specifies the number of digits to the
nght of the deCimal point, and C contains
control codes and format codes. Item in
brackets are optional. [J specifies left justified.

Format codes

Code Description
\ n
\r
\b
\t

Start new line. %e
Beginning of new line. %E
Backspace. % f

Scientific form at with lowercase e.
Scientific Format with uppercase E.
DeCimal form at.

\\

Tab.
Apostrophe.
Backslash.

%g %e or %f , whichever is shorter.

following text as codes. The code \ n tells MATLAB to tart r f
displaying the number. a new me a ter

The output can have more than one column, and each column can have its
own format. For example,

»r = [2 . 25 : 2 0 : 42 . 25] ;
»c i r cum = 2 *pi *r ;
» y = [r ; circum] ;
»fprintf(' %5 . 2f %11.5g\n ', y)

2 . 25 14 . 137
22 . 2 5 139 . 8
42 . 25 265 . 46

Note that the fpri nt f function displays the transpose of the matrix y .
Format code can be placed within text. For example, note how the period

after the code % 6 . 3 f appears in the output at the end of the displayed text.

»fprintf(' The first circumfe r ence i s %6 . 3f. \ n ', circum(1))
The first circumference i s 14 . 137

An apostrophe in displayed text requires two sjngle quotes. For example:

»fprintf(' The second ci r cle"s radi us %15 . 3e is large . \ n ', r(2))
The second c i r cl e 's radius 2.2 25e+ 00 1 i s large .

A minus sign in the format code causes the output to be left justified within its
field. Compare the following output with the preceding example:

»fprint f (' The sec ond circle"s radius %- 15. 3e is large . \n ', r(2)
The second circle's r adius 2.225e+001 i s large .

673

674 Appendix C

Control codes can be placed within the fo rmat string. The fo llowing example uses
the tab code (\ t).

»fprintf(' The radii are : %4 . 2f \t %4 . 2f \t %4 .2 f\n ' , r)
The radii are : 2 . 25 22 . 25 42 . 25

The disp function sometimes displays more digits than necessary. We can
improve the display by using the fprint f function instead of disp . Consider
the program:

p 8 . 85 ; A = 20/100 A 2 ;
d = 4/1000 ; n = [2 : 5) ;
C = ((n - 1) . *p*A/d) ;
table (: , 1) = n ';
table (:, 2) = C ';
disp (table)

The di sp function displays the number of decimal places specified by the
format command (4 is the default value).

If we replace the line di sp (table) with the fo llowing three lines,

E= " ;
fprintf(' No . Plates Capacitance (F) X e12 %s\n ' , E)
fprintf('%2 . 0f \t \t \t %4 . 2f\n ', table ')

we obtain the following display:

4 . 42
8.85
13 . 27
17 . 70

The empty matrix E is used because the syntax of the fpr in t f statement
requires that a variable be specified. Because the first fprint f is needed to
display the table title only, we need to fool MATLAB by supplying it with a
variable whose value will not display.

Note that the fpr int f command truncates the results, instead of rounding
them. Note also that we must use the transpose operation to interchange the rows
and columns of the table matrix in order to display it properly.

Only the real part of complex numbers will be displayed with the fprint f
command. For example:

»z = -4+9i ;
»fprintf(' Complex number : %2 . 2f \n ' , z)
Complex number : -4 . 00

Instead you can display a complex number as a row vector. For example, if w =
-4+9i:

»w = [- 4 , 9);
»fprintf(' Real part is %2.0f . Imaginary part is %2 . 0f . \n ' , w)
Real part is -4 . Imaginary part is 9 .

References

[Brown, 1994] Brown, T. L. ; H. E. LeMay, Jr. ; and B. E. Bursten. Chemistry' The
. Central SCience. 6th ed. Upper Saddle River, N]: Prentice Hall , 1994. .

[Elde, 1998] Eic!e, A. R. ; R. D. Jeni on; L. H. Mashaw; and L. L. Northup. IflIroduclion
to Engll1een ng Problem Solving. New York: McGraw- Hili , 1998.

[Feld~r, 1986] Felder, R. M. and R. W. Rousseau. Elementary Principles a/Chemical
PlOcesses. New York: John WIley & Sons, 1986.

[Garber, 1999] darber, N.J . and L. A. Hoe!. Traffic and Highway Engineering. 2nd ed.
Pacific Grove, CA: PWS Publishing. 1999.

[Jayara~an, 1991] Jayaraman. S. Com.puter-Aided Pmhlem Solving for Scie/'lliSls and
Engmeers. New York: McGraw-Hill, 199 1.

[Kreyzig, 1999] Kreyzig, E. Advanced Engineering Malhematics. 8th cd. New York:
John Wiley & SOilS, 1999.

[Kutz, 1999] Klit z, M., editor. Mechanical Engineen ' Handbook. 2nd ed. New York:
John Wiley & SOilS. 1999.

[Palm, 200S] Palm. W. System Dynamics. New York: McGraw-Hili, 2005.
[Rizzoni, 1996] Ri zZOlli , G. Principles and Applicaliolls o/Electrical

Engineering. 2nd ed. Homewood, IL: Irwin. 1996.

[Starfield, 1990] Starfield, A. M.: K. A. Smith; and A. L. Bleloch. Hall' 10 Model It:
Problem Solving for Ihe COlllpllter Age. New York: McGraw-Hili. J 990.

8'78

- "

_ 7 ~" ",-

Answers to Selected
Problems

Chapter 1

2. (a) -13.3333; (b) 0.6; (e) 15; (d) 1.0323
8. (a)x+y=-3-2i:(b)xy=-13-4li;

(e) x/.\' = -1.72 + 0.04i
18. -15.685.0.8425 ± 3.4008i
27. x=-3 , y=IO,;; =4
28. L = 12.58 m. perimeter = 39.65 111

Chapter 2

3.

A _ [0 6 12 I 8 24 30]
- - 20 - 10 0 10 20 30

7. (a) Length = 3. absolute value = [2 , 4, 7);
(b) Same a (a): (e) Length = 3. absolute
value = [5.831 , 5 , 7 . 2801)

12. (a)

[-4 2]
A+B+C = 22 15

(b)

A _ B C = [-16 12] + -2 19

13. (a) [1024 , -128 ; 144 , 32) ;
(b) [4 , -8; 4 , 8) :
ee) [4096 , -64 ; 216 , -8)

14. (a) Work done on each segment, in joules (I J =
I . m) i 800. 275, 525, 750, 1800:
(b) Total work done = 4150 1.

27.

_ [-47 -78]
AB - 39 64

[-5 -3]
BA = 48 22

30. 60 tons of copper, 67 tons of magnesium, 6 tons of
mangane e, 76 tons of s ilicon, and 101 tons of z inc

33. M = 869 N . m if F is in newtons and r is in
meters.

40. 2.8x - 5.12 with a remainder of 50.04x - 11.48

41. 0.5676

Chapter 3

1. (a) 3. 3. 1623, 3.6056;
(b) 1.732 Ii, 0.2848+ 1.7553i ,0.5503+ 1.8174i ;
(e) 15 +2 Ii,22 + 16i , 29+ IIi ;
(d) -0.4 - 0.2i. -0.4667 - 0.0667i ,
-0.5333 + 0.0667i

2. (a) IxYI = J05 , Lxy = -2.6 fad;
(1;) Ix/yl =0.84, Lx/y = -1.67 fad

3. (a) 1.0 I rad (58°); (b) 2.1 3 rad (122°);
(e) -1.0 I fad (-58°); (d) - 2.13 rad (- 122°)

7. FI = 198 N if f.L = 0.3, F2 = 100 N, and
f3 = 130 .

10. For the test values, 1= 7.46 and 2.73 sec.

Chapter 4

4. (a) z 1: (b) z 0: (e) z 1; (d) z
5. (a) z 0: (b) z 1: (e) z 0 ; (d) z

(e) z 1; (f) z 5 ; (g) z 1 ; (h) z

1

4 ;
0

6. ~%~ ~ = [0 , 1 , 0 , 1 , 1);
(e) z [[~ ' 0 , 0 , 1 , 1);

, 0 , 0 , 1 , 0) ;
(d) z [1, 1 , 1 , 0 , 1)

11. ~%~ ~ [1 , 1, 1 , 0 , 0 , 0);
[1 , 0 , 0 , 1 , 1 , 1);

(e) z = [1, 1 , 0 , 1, 1 , 1);
(d) z = [a , 1, a , a , 0 , 0)

13. (a) $7300; (b) $5600; (e) 1200 shares; (d) $15 ,800
25. (a) x = 9, Y = 16 m
28. 33 years

30. W = 300 N. If W = 300, the wire tensions are
T; = 4~9, 47 1, 267, 233, 200, and J 00 N,
respectively.

42. Weekl y inventory for cases (a) and (b) :

Week 1 2 3 4 5
Inventory (a) SO SO 45 40 30
Inventory (b) 30 25 20 20 LO

Week 6 7 8 9 LO
Inventory (a) 30 30 25 20 LO
Inventory (b) 10 5 0 a « 0)

Chapter 5

1. Production is profitable for Q 0:: J 08 gallons per
year. The profit increases linearly with Q, so there
IS no upper limit on the profit.

3. To two significant digits , the two roots are x = I
and x = 4.5 .

5. The left end is 47 m above the reference line. The
right end is 110 m above the reference line.

10. 0.54 rad (31 °).
14. The steady-state value of y is Y = J. Y = 0.98 at

I =4/ b.
18. (a) The ball will ri se 1.68 m and will travel 9.58 m

horizontally before striking the ground after 1.17 s.

30. (a) y = 53.5x - 1354.5;
(b) Y = 3.58 x 103x - O.976;

(e) y = 2.06 X 105(10)-0.0067.<
32. (a) b = 1.2603 x 10- 4 ; (b) 836 years; (e) between

760 and 928 years ago
36. If unconstrained to pass through the origin,

1 = 0.1999.1 - 0.0147. If constrained to pass
through the origin, 1 = 0.1977 x.

38. d = 0.0509v2 + 1.1054v + 2.3571. J = 10.1786,
S = 57.550, r2 = 0.9998

40. y = 40 + 9.6xI - 6.75x2. Maximum percent error

is 7.125 percent.

Answers to Selected Problems 677

Chapter 6

3. x = 2, Y = -3, z = 5
12. TI = 19 . ~ o C, T2 = -7.0°C, T3 = -9.7°C. Heat

loss rate IS 66.8 W.

19. ~%~ C = B- I(A- IB - A)

C = [-0.6212 -2.3636]
1.197 2.1576

20. x = 3c, Y = -2e, Z = e
25. The non unique solution is x = 1.38z + 4.92,

Y = -O.077z - 1.38, where z can have any va lue.
28. The exact and unique solution is x = 8, Y = 2.

29. Ther~ is no exact solution . The least squares
solution is x = 6.09, Y = 2.26.

Chapter 7

4. (Answers rounded to integers.) You would expect
to obtalll a sum of 8 forty-two times ; a sum of
ei ther 3, 4, or 5 seventy-five times, and a sum Ie s
than 9 two hundred and seventeen times.

8. (a) 99%; (b) 68%
12. (a) M~an pallet weight is 3000 Ib, standard

deVIation IS 10.95 Ib; (b) 9 percent

19. Mean yearly profit = $64,609. Minimum expected
profit = $51 ,340. MaxJll1llm expected profit =
~~~6iO. Standard deviation of yearly profit = 

23. The value at 5 P.M. i 22.5 , the value at 9 P.M . is 
16.5. 

Chapter 8 

1. 2360 
5. Work = 0.8k 
7. 6 mls 

10. 13.65 ft 
13. 1363.4 mls 
21. (a) v(t,l = (f/500)(1 - e- I

/
2); (b) Steady-state 

speed IS 1/500 mls. The speed is within 2 percent 
of this value after t = 8 s. 

22. (a) yet) = C l e- 3l sin5t + C,e-J1cos5t· 
(b) yet) = Cle- '+ C2e-SI - , 

32. XI = -O.3xI - O.7X2 + 0.251, X2 = XJ, 
Y =0.4X2 

34. XI + 7x, + 14x, = 2u 



678 Answers to Selected Problems 

Chapter 10 
3. (a) 60.\"5 - 10x4 + 108x3 - 49x2 + 71x - 24; 

(b) 2S46 
4. A = I , B = -2a, C = 0, D = -2b, E = 1, 

F = r 2 - a 2 - b2 

6. (a) b = ccosA ± Ja 2 - c2 sin2 A; (b) b = S.69 

8. (a) x = ±10 (4bz - 1)/(400b2 
- 1), y = 

±b 99 / (400b2 - I); 
(b) x = 0.968S, y = 0.4976 

12. Critical points: x = 0 and x = 2. Local minimum 
at x = O. Inflection points at x = 2 and x = 2/3 

18. h = IS.J2 
19. 49.68 m/s 

29. (a) 2; (b) 0; (c) 0 31 . 

36. (a) y(1) = [0.6y(0) + 0.2v(0)] e- SIllSI + 
y(0)e - 31 cos SI ; 
(b) y(t) = (1/3) [v(0) + 8y(0)] e-51 

- (1 f3) [v(O) + 
Sy(0)] e-81 

45. (a) m(r) = (K 2 / 4)l e- K1
/
2

; 

(b) m peak = K / S.4366 ' 
48. s2+ 13s+42-6k,s = (-13±.J1+ 24k ) / 2 
49. x = 62/ (16c + IS), y = (129 + 88c) / (16c + IS) 

J 

"\ 

L 

t-

Symbols 

+ :ldditioll , 9 
-subtr3ction.9 
"' multiplic:Hion, 9 
. * arraymult ipli cHlion. 87 
"' exponclltimiol1.9 

. "' arraycxponent iation,92 
\ leftdi visioll .9 
/ rightdivision,9 

. \ array leftdivision,9 1 

. / nrray ri ghtdivision.9 l 
: colon 

arrayaddrcss ing, 72,75, 124 
array generation. 20 

MATLAB Commands 

A 
a b s . 142 
acos, 146 
a c osh. 148 
a c ot , 146 
a coth,148 
a c sc, 146 
acsch, 148 
addpath, 24 
all . 198 
angle, 142 
ans .8 
any, 198 
asec. 146 
asech. 148 
asin. 146 
asinh.148 
atan, 146 
atan2 ,146 
atanh, 148 
axes , 276, 280 
axis, 264, 269 

bar. 284.424 
break, 214 

C 
case, 225 
cat. 72.82 
cd, 24 
ceil. 142 
cell, 11 2. 116 
celldisp, 112, 114 
cellplot , 112. 114 
cla,662 

INDEX 

(J parcnlhcltcs % percenl sign > grcalerrh ;:"n,44, J91 
fUllctionarguments, 145 commellldes ign:uloli .30 >":: greater than Or equal 10,44, 191 
modifying precedence. 9 fo rmat spcclficalion, 673 I< A D.1 94 

fjbraccs;cnclosedcell elemcnts, 113 'apostrophe && !o.hon-cin.:uitAND. 197 
[J brackets.19, n lrnnspo;c, 72. 124 l OR. 194 
. decimal point, 13 slring designmion,25 lI,horHircullOR.197 
.. . ellipsis, 13 .' noncol1jugalcdlrfimpo~c. 72. 124 - NOT, 194 

= assignmenl orrcpJaccmcnt >, MATLAO prompt. 7 
opera tor, 11 @ create~ .. runction handle. lin 

== egualto,44,191 
; semicolon -= nol eql,.alto.44, 191 

displny suppression, 12,124 < less than, 44. 191 
row separation. 74. 124 <::: less lhan or cquallo.44, 19! 

class, 593. 595 elseif. 47. 52. 205 H 
clc. 13 end. 47,52, 202 HeaV .Sice. 623. 636 
clear, 13 eps. 15 hp.p.41 
collect. 589,596 erf, 435 helpw,c, 43 
colormap, 662 exist , 13,32 h15! . 424 
conj , 142 exp.142 hold, 279, 2HO 
continue. 214 expand. 590, 596 
contour, 337. 338 eye. lOS 
conv. J08. 109 ezplot, 594, 595. 618 . ,15 
cos , 146 ~ f. 47. 52, 201 
cosh,148 lldpla'.:e, 624 
cot. 146 

factor, 590. 596 
,,,,ag ,142 

coth. 148 IF 1) ... 8 .521.522 
cross. 107 fielanaCL'! 5, 120 

Ir.f. 15 
csc, 146 find, 45.52. 77, 78,198 ,r"' ,a •. 521.522 
csch, 148 flnd~tr. 210 

In ...... :1P. I64 
cumsum. 429, 433 f indsy",, 589.595 

;r.p"c,36,2 10 
finite, 198 

irr . 606. 608 
f,x. 142 

.r.',eq,,:, 446. 449. 452 

date, 167 
floor , 142 

;.~erp2. 448. 449 
fmir.bnd. 157. 160 

ir.v. 376. 635 deal. 112. 115 fmir.searcr •. 159. 160 
eel:, 112 deconv, 108, 109 for 48,52,211 

!sc".d!", I98 det, 379,635 format. 16, 17 
lsemp~y. 198 diff. 479,482,604,606 fploc , 266, 269 
,sf ",'ld, 120 digits, 595 fprlntf, 36, 672.673 
~s "n!. 198 dir.24 funct ~or.. 148 
lSr .. . 198 Dirac, 629. 636 fzero, 1S6, 160 
lsn c. l98 disp.36 

re 1.198 doc, 43 
G t. 120. 122 dot, 107 

doubl e. 240. 59 I. 595 genslg. s2S. 526 
dsolve. 616. 622 getfleld. 120. 121 

.1' drawnow.66S get trame. 661 
g'nput.26.21 

L 9rld. 27.269 

eig. SIS. 635 910ba .153 .623 

818e.41.52.2112 II ex 77.. 2-".. 

.,. 



t!l lntmduc/;oo to MATIAB 7 fm· Eog;n",,;, " " mple, oood" book d"'g"d to be ",eful fot 
beginners and to be kept as a reference. MATLAW' is presently a globall y avai lable standard 
computat ional tool for engineers and scienti sts. The terminology, syntax, and the use of the 
programming language are well defined , and the organi zation of the materi al makes it easy to 

B E S T locate information and navigate through the textbook. The text covers all the major capabi li ­
ti es of MATLAB that are useful for beginning users of MATLAB . 

Key Features of the Book: 
• The text is wri tten for beginning users of MATLAB and uses mathematics appropriate for thi s level. 
• Test Your Understanding exercises appear throughout the chapters to allow readers to assess their 

grasp of the material as soon as it is covered. It has numerous practical examples and homework prob­
lems drawn from all the fields of engineering. 

• Thi s book is a great reference with many tables that summarize the MATLAB commands. 

New to this Edition : 
• New material based on the features of MATLAB 7. 
• Coverage of Simulink'" has been expanded to a separate chapter in light of its growing popUlarity. 
• Function handles, anonymous functions, subfunctions, and nested functions are now treated. 
• Expanded coverage of programming now includes structured programming and logical variables. 
• A new Appendix B contains an introduction to producing animation and sound with MATLAB . 

Website: 
Visit the book's website, www.mhhe.com/palm. to find valuable resources for instructors and students. 
Thi s includes Appendix E: Some Project Suggestions, which is now an online-only appendix. 

For a selection of titles in McGraw-Hill's BEST series, Basic Engineering Series and Tools, please see the 
BEST series website: 

McGraw-Hili EngineeringCS.com 
www.McGraw-HillEngineeringCS.com - Your one-stop online shop for 
all McGraw-Hill Engineering & Computer Science books, supplemental 
materials. content, & resources! For the student, the professor and the 
professional, this site houses it all for your Engi neering and CS needs. 

The McGraw'Hill Compol1les ' 

McGtrIW-HIU Higher EIIuCDt/on 


