

Monday

* Basic concept (per unit revision):in the solution of the P.S. problems the per phase ckt is used.

$$
\begin{aligned}
z_{b} & =\frac{v_{b}{ }^{2}}{S_{b}} \\
\Delta z_{b} & =\frac{\left(v_{b} / \sqrt{3}\right)^{2}}{S_{3 申} / 3}
\end{aligned}
$$

He usually in the specification of power systems lines voltages and 3中 apparent e power are given.

$$
z_{\infty}=\left(\frac{V_{L}^{2}}{S 3_{\phi}}\right)=\frac{\left(V_{\phi} / \sqrt{3}\right)^{2}}{S_{3 \phi} / 3}
$$

\rightarrow this is the express of Z_{b} irrespective of the type of connection

* The given per unit value of the impedance of the power system components (ie: generator, transformer, lines \& loads) are usually based on the ratings of such components; however, to slue a given pocier system, then a common reference value should be used.
Consequently all the given per unit values should be updated according to this common reference, as follows:-
* if one select a reference value

$$
z,(p u)=\frac{z}{z_{b 1}}
$$

if the base value is $z_{b 2} \pi$

$$
\therefore z_{2}(p u)=\frac{z}{z_{b 2}}
$$

$$
\begin{aligned}
\Rightarrow \frac{z_{2}(p u)}{z_{1}}(\rho u) & \frac{z_{1}}{z_{b_{2}}} * \frac{z_{b_{1}}}{z}=\frac{z_{b_{1}}}{z_{b_{2}}} \\
& =\frac{\left(v_{b_{1}}\right)^{2}}{S_{b_{1}}}-\frac{S_{b_{2}}}{\left(V_{b_{2}}\right)^{2}} \\
& =\left(\frac{V_{b_{1}}}{V_{b_{2}}}\right)^{2} * \frac{S_{b_{2}}}{S_{b_{1}}}
\end{aligned}
$$

* if 1 represent old value 2 represent new value
then;

$$
\Rightarrow Z_{\text {new }}(p n)=Z_{\text {old }}(p n) *\left(\frac{V_{b \text { old }}}{V_{b \text { new }}}\right)^{2} \cdot\left(\frac{S_{b \text { now }}}{S_{b \text { old }}}\right)
$$

* illustration:

13.8 kv
$(13.8 / 132) \mathrm{kr} \Rightarrow$ equivalent reactance
50 mVA
50
$x=30 \%$
$x=5 \%$ of the transformer $=0.05 \mathrm{pu}$
$=0.3 \mathrm{pu}$
* irrespective of the reflection side
* Usually in power station G is a 3-phase synch. generator. When generated voltage

$$
=13.8 \mathrm{kv}
$$

synch. reactance $=x=0.3 \mathrm{pu}$

* If this system is to be solved by using base value of $(13.8 \mathrm{kv})$ and (loo mu A), then update the per unit values if necessary as follows:

$$
\rightarrow
$$

$$
\begin{aligned}
G: X_{\text {new }} & =x \text { old } *\left(\frac{13.8}{13.8}\right)^{2} * \frac{100}{50} \\
& =0.3 * 1 * 2=10.6 \\
T: x_{\text {new }} & =0.05 *\left(\frac{13.8}{13.8}\right)^{2} *\left(\frac{100}{50}\right)=0.1
\end{aligned}
$$

* Power system Representation :-

There are twi basic approaches:

1) math ematical rep.
2) graphical rep.
(1) mathematical:
this is based on the concept of the node equations, as follows:-

* Apply kcl @ each node:
(node 1): $\left(V_{1}-V_{2}\right) Y_{a}+\left(V_{1}-V_{4}\right) Y_{b}+V_{1} Y_{f}=I_{1}$

$$
V_{1}\left(Y_{a}+Y_{b}+Y_{f}\right)-V_{2} Y_{a}-Y_{b} V_{4}=I_{1} \ldots \text { (1) }
$$

* by similar approach at other nodes it can be found:-
(node 2): $-V_{a}+V_{2}\left(Y_{a}+Y_{c}+Y_{d}\right)$

$$
-V_{3} Y_{d}-V_{4} Y_{c}=0-\cdots
$$

(node 3): $\quad-V_{2} Y_{d}+\left(Y_{d}+Y_{G}+Y_{e}\right) \quad v_{3}$

$$
\begin{equation*}
-V_{4} Y_{e}=I_{3} \tag{3}
\end{equation*}
$$

(node 4): $\quad-V_{1} Y_{b}-V_{2} Y_{c}-V_{3} Y_{e}+V_{4}\left(Y_{b}+Y_{c}+Y_{c}\right)$ $=0$

* rewrite the equations $(1-4)$ in a matrix form:-
$\left[\begin{array}{cccc}Y_{a}+Y_{b}+Y_{f} & -Y_{a} & 0 & -Y_{b} \\ -Y_{a} & Y_{a}+Y_{c}+Y_{d} & -Y_{d} & -Y_{c} \\ 0 & -Y_{d} & Y_{d}+Y_{g}+Y_{e} & -Y_{e} \\ -Y_{b} & -Y_{c} & -Y_{e} & Y_{b}+Y_{e}+Y_{c}\end{array}\right]$
(5) can be written:

i) its element $Y_{i i}=\sum$ of admittances connected directly to the ($i^{\text {th }}$) bus
ii) its element $Y_{i j}=-1 *$ equivalent admittance between the $\left(i^{\text {th }}\right)$ and $\left(j^{\text {th }}\right)$ buses.
* hence mathematically:
the power system can be represented by its $Y_{\text {bus }}$
note : $\left[Y_{\text {bus }}\right]^{-1} \triangleq Z$ bus
where $Z_{\text {bus }}$ is called Bus impedence

$$
\text { matrix }=\left[\begin{array}{cccc}
z_{11} & z_{12} & \ldots & z_{1 n} \\
\vdots & & & \\
z_{n 1} & z_{n 2} & \cdots & z_{n n}
\end{array}\right]
$$

Note: to find $Z_{\text {bus: }}$
i) find Y bus
ii) find its inverse : $[Y \text { bus }]^{-1}$

* given the Yous matrix, find the corresponding equ. network:
* (2) Graphical representation :this is represented by the so called one-line or single-line diagram, defined and deduced as follows:-
* Consider the following sys.:-

if the system is balanced, then the perphase representation can be used

\rightarrow this is also called impedence diagram.
* if the resistance of the elements are neglected then it is called reactance diagram

\leftarrow impedance diagram
* if the Resistance of the basic components are neglected, then the diagram is called "reactance diagram".
note: this circuit is usually used in power system analysis
now if one is only interested to see how the components of a given power sys. are interconnected, then these components are represented by the standard symbol instead of its equivalent ckt, the resultant diagram called single-line or one-line diagram
* Component rotating machinary

2 winding trans.

Transmission line

Busbar (node)
load
ckt breaker isolator

Current transformer
\Rightarrow hence, for our system, the single line x diagram as follows:

(ヘ)

* given data on the single line diagram depend on the required analysis or Application
* As a practical example, consider the Jordanian electric single-line-diagram

毛当
ratings

$$
\searrow_{3 * 33} \quad 4 * 66
$$

double busbars

* the data on the diagram are the results of a given load flow analysis.
* load flow : is to calculate voltages at busbars and power flow in the system for a given load conditions.
(*) Na : voltage in kv
* N1: Power (MW)

Nb : voltage in per unit
N2: reactive Q (MVAR)
Nc: voltage in angle
N3: apparent- S (MVA)

* when we add + \&- values it will give the bises
* the other two generators are gas turbines, which is better at start up.
but the steam generators are better at efficient.
\Rightarrow
(G) (G) $7 \quad 6 \quad 5 \quad 4 \quad 3 \quad 21$
gas steam.

* $\sum \rho_{\text {in }}=\sum P_{\text {ont }}$

Ex: Draw the single-line diagram of a given subsystem?

* Consider a : Y- Δ Transformation (Yd):
N_{1} and N_{2} are the number of turns at the HIV and LV winding, which have voltage in phase.

* from figure * :

$$
\begin{aligned}
& \frac{\left|V_{L N}\right|}{\left|V_{2 H}\right|}=\frac{N_{1}}{N_{2}} \ldots \ldots-1 \\
& \frac{V_{L N}}{\sqrt{3} V_{l N}}=\frac{N_{1}}{N_{2}}, \frac{\left|V_{L N}\right|}{\left|V_{L n}\right|}=\frac{N_{1}}{N_{2} / \sqrt{3}} \ldots \text { (2) }
\end{aligned}
$$

from 2: deduce the equ. per-phase cot:

$\frac{\text { lew }}{m} \frac{\text { lew }}{m} \frac{\text { lew }}{m}$

* Illustration:
consider a $Y-Y$ connection among the rep. is that the letters $\mathrm{H}_{1}, \mathrm{H}_{2}, \mathrm{H}_{3}$ used for high collage side and x_{1}, x_{2}, x_{3} for low voltage.

sometimes the letters. A, B, C used for HV and a, b, c used for LV

H Concept of parameters Refliction in 3 phase T_{x}
It was found that the Refliction in the single phase T_{x} is as follows:-
$\rightarrow N_{1}, N_{2}$ are the actual \# at turns ratio.
$a: b$ the turns ratio

* It was found that:-

$$
a=\frac{N_{1}}{N_{2}}: 1
$$

1) to reflect z to
(a) side * it by a^{2}
2) $=\quad=\quad v$ to
(a) side $*$ it by a
3) $=I$ to (a) side \div it by a

* 3-phase transformer: -

The objective is to find its equivalent per phase cat for any type or connection

* Revision and Basic concept:-
* 3-phase transformer can be constructed by:

1) By using 3 single phase $T x$.
2) By using 1 single core on which there are 3 pairs of windings.

* The winding can be connected as:

$$
Y-Y, Y-\Delta, \quad \Delta-Y, \Delta-\Delta
$$

* in the $Y-Y$ or $\Delta-\Delta$ the phase voltages of the HV and $L V$ side one in phase. However in the $Y-\Delta$ or $\Delta-Y$ there is a phase shift between the phase wittages
* The winding or the core which are linked by the same flux linkage there induced voltages in phase.
(useful in graphical rep.)
* Consequently in ghraphical core schematic rep. such coils are drown parallel to each other with a dot is located at one end of each coil or the coil at one phase are drown parallel to each other.

$$
\begin{aligned}
& H V \leftarrow \frac{V_{L N}}{H V}=\left(\frac{N_{1}}{N_{2} / \sqrt{3}} \rightarrow \begin{array}{r}
\text { effective turns } \\
\text { ratio }
\end{array}\right. \\
& V_{L N} \uparrow \rightarrow V_{\text {ln }} \quad \text { (figl) }
\end{aligned}
$$

for all type of connections; although the effective turns ratio is different, but it is also equal to line voltage ratio, hence (Ai gl) can be used to reflect low voltage impedence $\left(Z_{L}\right)$ to the high voltage impedance $(Z \mathrm{H})$ or the other ways round:

$$
z_{H}=\left(\frac{v_{L L}}{v_{l l}}\right)^{2} z_{L}
$$

or

$$
z_{L}=\left(\frac{V_{l l}}{V_{L L}}\right)^{2} z_{H}
$$

* e.g: A balanced Δ-connected resistive load of 8000 kw is supplied by a bow voltage Δ connected side of a $Y-\Delta$ transformer rated at $10^{4} \mathrm{kVA}$, $138 / 13.8 \mathrm{kv}$.
find the bad resistance in ohms seen between the phase and neutral on the HV side assume rated voltage is supplied to primary.

* Requirement: $\quad R_{H}=\left(\frac{V_{\mathrm{LL}}}{V_{l l}}\right)^{2} * R_{L} * R_{Y}$

$$
R_{H}=\left(\frac{138}{13.8}\right)^{2} * 23.805=2380.5 \Omega
$$

* Phase Shift in 3-phase transformer :-

As stated before $Y-\Delta$ or $\Delta-Y$ introduce phase shift between the corresponding voltages on the MV and LV sides.

* Objectives:
i) To study this phase shift in the case of $+v e$ and $-v e$ sequence
ii) to represent this phase shift in the equivalent per phase ckt. as a ckt element
* Procedure:
consider a $Y_{d} \quad 3$ phase transformer

Now:
$V_{A N}$ is in phase with $V a b$

$$
\begin{aligned}
& V_{B N} \ldots \ldots \\
& V_{C N} \ldots
\end{aligned} V_{b C}
$$

let: N_{1} and N_{2} are the number of turns of the HV and LV winding of the corresponding in phase winding.

* Convention :-

The tue sequence voltages and currents are represented by the superscript "1" and the -ve sequence by " 2 "
hence, the ore sequence phase voltages on the HV side are written as:

$$
V_{A N}^{(1)}, V_{B N}^{(1)}, V_{C N}^{(1)}
$$

\rightarrow Sometimes this is simplified to:

$$
V_{A}^{(1)}, V_{B}^{(1)}, V_{C}^{(1)}
$$

* Let us solve the problem by using the concept of phasor diagram:
tree sequence:

$$
\text { * } \begin{aligned}
V_{A N}^{(1)} & =\frac{N_{1}}{N_{2} / \sqrt{3}} V_{a n}^{(1)} * 1 \angle 30^{\circ} \\
V_{A N}^{(1)} & =\frac{N_{1}}{N_{2} / \sqrt{3}} V_{a n}^{(1)} \angle 30 \ldots
\end{aligned}
$$

-ie sequence:-

* $V_{A N}^{(2)}=\frac{N_{1}}{N_{2} / \sqrt{3}} V_{a n}^{(2)} * 1 L-30$

$$
V_{A N}^{(2)}=\frac{N_{1}}{N_{2} / \sqrt{3}} V_{\text {an }}^{(2)} \angle-30
$$

* Comments :-
i) in the tue phase sequence HV quantities (i.e: voltages and currents) lead the corresponding bo V gauntities by 30°, where in the -ve phase sequence, the H IV quantities lags $L V$ by 30°.
ii) Since it was found that:

$$
\frac{\left|V_{\mu}\right|}{\mid V_{\mu \mu}}=\frac{N_{1}}{N_{2} / \sqrt{3}}
$$

\therefore (1) and (2) con be written:-

$$
\begin{aligned}
& \frac{V_{A N}^{(1)}}{\left|V_{L L}\right|}=\frac{V_{\text {an }}^{(1)}<30}{\left|V_{\mu}\right|} \cdots(3) \\
& \frac{V_{A N}^{(2)}}{\left|V_{L L}\right|}=\frac{V_{\text {an }}^{(2)}}{\left|V_{\mu l}\right|}<-30
\end{aligned}
$$

* if $\left|V_{L L}\right|$ and $\left|V_{V l}\right|$ are the rated voltages and used as base values, then:

$$
\left.\begin{array}{ll}
3 \rightarrow \quad V_{A N}^{(1)}(p u)=V_{\text {an }}^{(1)}(p u) \angle 30 \ldots
\end{array}\right]
$$

hence, in ($P U$) the (HV) and (W) quantities have the same magnitude
iii) in normal operation, one use +re sequence:

$$
\therefore 5 \rightarrow \frac{V_{A N}^{(1)}(p u)}{V_{\text {an }}^{(1)}(p n)}=1 \angle 30=\frac{e^{j / 6}}{1}
$$

graphically as a cot diagram or element (7) can be represented as:

\therefore phase shift in $Y-\Delta$ or $\Delta-Y$ is represented by ideal transformer with a complex turns ratio

* Comments :-
i) The same result apply to current

$$
I_{A}^{(1)}(p u)=J_{a}^{(1)}(\rho u)+1 \angle 30
$$

ii) hence, Impedence relationship:

$$
\begin{aligned}
& \frac{V_{A N}^{(1)}}{I_{A}^{(1)}}=\frac{V_{a n}^{(1)} * 1 \angle 30}{I_{a}^{(1)} * 1 \angle 30} \\
& Z_{N V}(p u)=Z_{L V}(p u)
\end{aligned}
$$

iii) power relationship:

$$
\begin{aligned}
& V_{A N}^{(1)} *\left(I_{A}^{(1)}\right)^{*}=\left(V _ { a n } ^ { (1) } \langle 3 0) * \left(I_{a}^{(1)}<(0)\right.\right. \\
& V_{A N}^{(1)}\left(I_{*}^{(1)}\right)^{*}=V_{a n}^{(1)} I_{a}^{(1)} *
\end{aligned}
$$

\rightarrow If one is only interested in power calculations then there is no need to represent $Y-D$ or $D-Y$ by an Ideal transformer.
iv) in general as far as analysis concern, then one may not include the ideal transformer in the (pu) perphare ckt. But should take into account the phase shift of 30°, when moving from $H V \rightleftarrows L V$
v) the same previous results of Y_{d} are applicable to Dy transformer, However one should mark the terminals to obtain the same results

H As an illustration, consider the voltage relationship in the Dy:

4. from the schematic diagram:
$V_{A C}$ is in phase with $V_{\text {an }}$

$$
\begin{array}{lll}
V_{C B} & V_{c n} \\
V_{B A} & V_{b n}
\end{array}
$$

* by using the power diagram for tee phase sequence

HV side

LV side
$\therefore \quad V_{M N}$ leads Van by 30°

* Ex: Show for D_{y} in tue phase sequence I_{A} leads I_{a} by 30° (prove).
* eng: A 3-phase generator supplying a load through a 3 phase transformer rated at $12 \mathrm{kV} \Delta / 600 \mathrm{VY}, 600 \mathrm{kVA}$, the transformer has perphase reactance of 10% The line voltage and current at the terminal of the generator are 11.9 kv and 20 A respectively.
If the power factor seen by the G is 0.8 lagging, then by using tue phase sequence, find:
i) the current, voltage at the load and its impedance
ii) the power supplied by the (HV) side and the power taken by the load

Sol:

II. per phase cot

generator I transformer load

* late the base values be $(12 \mathrm{kV})_{3}$ and (600 kVA)

$$
\begin{aligned}
& \therefore \quad 600 * 10^{3}=\sqrt{3} * 12 * 10^{3} * I_{b} \\
& \rightarrow I_{b}=28.87 \mathrm{~A} \\
& \rightarrow\left|I_{g}\right|=\frac{20}{28.87}=0.69 \mathrm{pu} \\
& \rightarrow \quad\left|V_{A N}\right|=\frac{11.9}{12}=0.99 \mathrm{pu} \\
& \therefore V_{A N}=0.99 \angle 0^{\circ} \\
& I_{g}=0.69 \angle \cos (0.8)=0.69 \angle-36.87^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
\rightarrow V_{H} & =0.99 \angle 0-j 0.1 * 0.69 \angle 36.87 \\
V_{H} & =0.952 \angle-3.6^{\circ} \\
\therefore V_{L} & =0.952 \angle-3.6-30^{\circ} \\
& =0.952 \angle-33.6 \\
\rightarrow I_{L} & =0.69 \angle-36.87^{\circ}-30^{\circ} \\
& =0.69 \angle-66.87
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow Z=\frac{V_{L}}{I_{L}}=\frac{0.952 \angle-33.6}{0.69 /-66.87}=1.38 / 33.27^{\circ} \mathrm{pu} \\
& \rightarrow Z_{b}=\frac{\left(V_{b}\right)^{2}}{s_{b}}=\frac{(600 / \sqrt{3})^{2}}{\frac{600 * 10^{3}}{3}} \\
& \Rightarrow Z(\Omega)=Z(p u) * Z_{b}
\end{aligned}
$$

$$
\begin{align*}
\Rightarrow \quad S_{\text {gen }} & =V_{\text {AN }} * I_{g}^{*} \\
& =0.99 \ell_{0} 0.69 \leqslant 36.87 \\
& =0.6831 \not 36.87 \\
S & =0.546+j 0.41 \mathrm{pu} \tag{in}
\end{align*}
$$

$$
\begin{aligned}
S_{\text {load }} & =V_{L} * I_{L}^{*} \\
& =0.952[33.6 * 0.69[66.89 \\
& =0.549+j 0.36 \mathrm{\beta} \quad \text { owe] }
\end{aligned}
$$

* $\left\{\begin{array}{l}\text { we have no resistors } \rightarrow \text { real part } \approx \\ \text { but the imaginary we have bosses }\end{array}\right.$ because of m
* 3-phase synch. generator:-

Revision: i) it contains of stator (which carry armature winding, in which the generator voltage is induced) + Rotor (field winding into which field current is applied)

* equivalent cot in the steady state:

$R=$ armature winding resistance $\begin{array}{cc}j x=j\left(w L_{s}+\omega M\right) \\ l & \downarrow \\ \text { synch self } \\ \text { reactance } & \text { inductance induct }\end{array}$
* Equivalent circuit. of 3-phase generator under short circuile conditions:
x problem:
if a solution is applied at the terminals of the generator, find its equivalent ckt?

$f_{i g} 1$
* (fig 1) looks like an RL cirmit to which a sinusidd facing function ($f . f$) is suddenly applied to it.
* As found before, the response consist of transient + forced
dc repose

* If the $D C$ of transient response is neglected then the S.C current will have the following form:
 (fig 2)
* fig : is to be used to find the equ. che under S.C conditions.
* Although due to high $I_{s c}$, e (generated v) is going to change due to armature reaction; however, in the modeling it is assumed. that e (i.e: no load generated voltage) remains constant and it is assumed that the reactance of the generator changes

K Consequently the magnitude of the current in fig 2 can be expressed as follows: -

$$
I(t)=\frac{E}{x_{d}}+E\left(\frac{1}{x_{d}^{\prime}}-\frac{1}{x_{d}}\right)^{-t / \tau^{\prime}}+E\left(\frac{1}{x_{d}^{\prime \prime}}-\frac{1}{x_{d}^{\prime}}\right) e^{-t / \tau^{\prime \prime}}
$$

* $E=$ RMS value of the generated voltage. :(1)

Od: steady state reactance
x_{d} : transient reactance
$x^{\prime \prime} d$: $\sin b-$ transient $=$
where: $\quad x_{d}^{\prime \prime}<x_{d}^{\prime}<x_{d}$
15 $T^{\prime}, T^{\prime \prime} \equiv$ transient and sub-transient time constants
where $T^{n}<T^{\prime}$
\% if (fig 2) is given then one can determine $x_{d}, x_{d}^{\prime}, x_{d}^{\prime \prime}$ as follows:

* on \rightarrow mag
(RMS) $\frac{o a}{\sqrt{2}}=\frac{E}{x_{d}} \cdots$ (2)
$x d$ can be found from (2)

$$
\begin{array}{r}
\text { K } \frac{E b}{\sqrt{2}}=\frac{E}{x_{d}^{\prime}} \cdots-(3) \quad \text { neglect the } 1^{\text {st }} \\
\text { two cycles }
\end{array}
$$

x^{\prime} 'd can be found from 3

$$
\text { * } \frac{o c}{\sqrt{2}}=\frac{E}{x_{d}^{\prime \prime}} \cdots \cdots-(4)
$$

$x_{d}^{\prime \prime}$ can be found from 4

* If $x_{d}, x_{d}^{\prime}, x_{d}^{\prime \prime}$ one can evaluate Isc, Isc, $I_{s c}^{\prime \prime}$ by using the corresponding equ. eft as follows:

NE X: a $300 \mathrm{MVA}, 13.8 \mathrm{kV}, 3 \phi-Y$ connected 60 Hz generator is adjusted to raked voltage at open cot. A balanced 3中 force is applied to its terminals at $t=0$.
The obtained symmetrical current $i(t)$ is:
when $\tau_{1}=200 \mathrm{~ms}$

$$
\begin{aligned}
& \tau_{2}=15 \mathrm{~ms} \\
& \rightarrow \text { find } x_{d}, x_{d}^{\prime}, x_{d}^{u} ?
\end{aligned}
$$

Sol: $E=\frac{13.8}{\sqrt{3}} \mathrm{kw}$
by comparing the coif. of 1 and 5 , then:-

1) $10^{4}=\frac{E}{x_{d}} \rightarrow x_{d}=\frac{E}{10^{4}}=\frac{13.8 * 10^{3}}{\sqrt{3} * 10^{4}}=0.797 \Omega$
2) $10^{4}=E\left(\frac{1}{x_{d}}-\frac{1}{x_{d}^{\prime}}\right) \cdots \dot{x}_{d}=0.398 \pi$
3) $6 \times 10^{4}=E\left(\frac{1}{x_{d}^{\prime}}-\frac{1}{x_{d}^{\prime \prime}}\right) \ldots x_{d}^{\prime \prime}=0.0996 \Omega$

* to find the values in $(p n) \rightarrow$ calculate $z_{b} \ldots$
* Transmission line:
objective: to find the relationships for voltage, current, power.
introduction to its equivalent ckt.
* Tr equivalent cot of transmission line (TIL)

* $R d c=\frac{\rho l}{A}$
* G is usually
* $R_{a c}>R_{D C}$
* Inductance:

This depends on the configuration of the transmission line (TL), for example if the phase conductors are equally spaced.

then it can be found that:

$$
L=2 * 10^{-7} \ln \left(\frac{D}{D_{s}}\right) \mathrm{H} / \mathrm{m}
$$

Ds it is called the geometrical mean radius and can be found from standards Tables

* Capacitance:

For the same equally spaced conductors, it can be found that capacitance to Nuetral C_{n} is: $C_{n}=\frac{2 \pi \epsilon}{\ln (D / r)}$
r : raduis of conductor (F/m)

* Classifications of T.L :-

According to how one deal with the shunt capacitance, T.Ls are classified into:
i) Short T.L $<80 \mathrm{~km}$ \rightarrow here C is neglected.
ii) medium line: $80<l<240 \mathrm{~km}$ \rightarrow here C is taken into account and the line is represented by one π-che (i.e: lumped parameter)

iii) long T.L: $\quad l>240 \mathrm{~km}$
\rightarrow here C is taken into account, and the line is represented by a set of π-ckts connected in cascade.

* distributeal parameters
* Short T.L.

$$
\begin{aligned}
x & =\omega L \\
& =2 \pi f L \\
z & =R+j \omega L
\end{aligned}
$$

fig 1

* from the equivalent circil-, fig 1

$$
\begin{align*}
V_{s} & =V_{R}+I_{R} Z \\
Z & =R+j \omega L \\
I_{S} & =I_{R}
\end{align*}
$$ parameters:

$$
\rightarrow\left[\begin{array}{l}
V_{s} \\
I_{s}
\end{array}\right]=\left[\begin{array}{ll}
A & B \tag{3}\\
C & D
\end{array}\right]\left[\begin{array}{l}
V_{R} \\
I_{R}
\end{array}\right]
$$

1 and 2 ป

$$
\left[\begin{array}{l}
V_{s} \tag{4}\\
I_{s}
\end{array}\right]=\left[\begin{array}{ll}
1 & z \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
V_{R} \\
I_{R}
\end{array}\right]
$$

\rightarrow by equating 3,4 :

$$
\begin{aligned}
& A=D=1 \\
& B=Z \quad \text { (total series impedance of the line.) } \\
& C=0
\end{aligned}
$$

$\Rightarrow V_{S}, V_{R}$: sending and recieving and voltages respectively

* One of the tools used to measure the performance of T.L is called voltage regulation ($v R$)

$$
\rightarrow \text { where: } \quad V R \%=\frac{\left|V_{R N L}\right|-\left|V_{R F L}\right|}{\left|V_{R F L}\right|} * 100 \%
$$

$\Rightarrow M=$ No load
FL: full lead. (i.e: rated current)

$$
\begin{aligned}
\therefore\left|V_{R N L}\right|= & \left|V_{S}\right| \\
& \downarrow \\
& I_{s}=I_{R}=0
\end{aligned}
$$

* Performance of the line under varuis types of loads:

* objective: to find relationship between required V_{s} for given V_{R} for inductive, resistive, capacitive loads.
* procedure: here it is assumed that $\left|V_{R}\right|$ and $\left|I_{R}\right|$ are constants and the P.F is changing. Hence, by using phasor diagram, it can be found that:
* lagging if:

$$
\left|v_{s L}\right|>\left|v_{R}\right|
$$

lagging

* Unity Pf: (Resistive)

$$
\left|v_{s u}\right|>\left|v_{p}\right|
$$

unity
note: $\left|v_{\text {sun }}\right|<\left|v_{\text {si }}\right|$

* leading Pf: (capacitive)

$\left|v_{s}\right|<\left|v_{R}\right|$ capacitive
* gee. $p 750$, table A3
*Ex: An $18 \mathrm{~km}, 60 \mathrm{~Hz}$, single kt, 3phase transmission line is componnd of porridge conductor equally spaced with 1.6 m between centers, the line delivers 2500 kw of 11 kv to a balanced load. Assume a wire temperature of $50^{\circ} \mathrm{C}$ find:-

1) the three phase series impedence of the line
2) the required sending - end voltages when the Af is 0.8 lag, unity, 0.9 leading

$$
* Z=R+\delta x
$$

* from the standard table, is shown in the Appendix, it can be found that @ 50° :

$$
\begin{aligned}
\Rightarrow R & =0.3792 \mathrm{r} / \mathrm{m} \\
& =0.3792 \times \frac{18}{1.609}=4.24 \mathrm{r}
\end{aligned}
$$

* for equally spaced $\Rightarrow L=2 * 10^{-7} \ln \left(\frac{D}{D_{s}}\right) \mathrm{H} / \mathrm{m}$
* $x=2 \pi \mathrm{fl}, \quad f=60 \mathrm{~Hz}$.

$$
\begin{aligned}
& \Rightarrow \text { from standard table: } D s=0.0217 \frac{\mathrm{ft}}{\text { foot }} \\
& \rightarrow 1 \text { foot }=0.3048 \mathrm{~m} \\
& \rightarrow L=2 * 10^{-7} \ln \left(\frac{1.6}{0.0217 * 0.3048}\right)=10.98 * 10^{-177} \mathrm{H} / \mathrm{v} \\
& L=10.98 * 10^{-7} * 10^{9}=0.0197 \mathrm{H}
\end{aligned}
$$

*

$$
\begin{aligned}
& x=2 \pi f l=7.45 \Omega \\
& z=4.24+j 7.45 \Omega
\end{aligned}
$$

P.f $=0.8$ lagging.

$$
\begin{aligned}
& V_{R}=\frac{11}{\sqrt{3}} * 10^{3} \angle 0 V \\
& I_{R}=\frac{2500 * 10^{3}}{\sqrt{3} * 11 * 10^{3} * 0.8}<-63.8 \\
& V_{S}=V_{R}+I_{R} Z=7660.66 \angle 4.19^{\circ}
\end{aligned}
$$

$p f=1$ unity:
$U R=$ the same

$$
\begin{aligned}
& I_{R}=\frac{2500 * 10^{3}}{\sqrt{3} * 11 * 10^{3} * 1}<10^{\circ} \\
& V_{S}=V_{R}+I_{R} Z=6975.9<84^{\circ} \mathrm{V}
\end{aligned}
$$

$$
\text { Pf }=0.9 \text { leading: }
$$

Voe the sane $+N 5=2$

$$
\begin{aligned}
& I_{R}=\frac{2500 * 10^{3}}{\sqrt{3} * 11 * 10^{3} * 0.9}<\cos ^{-1}(0.9) \\
& V_{s}=6553.6 / 10.97^{\circ} v
\end{aligned}
$$

K pf	$\left\|v_{s}\right\|=$	
$0.8 \operatorname{lag}$	7660.66	$v_{R} \%$
1	6975.9	20.6
0.9 lead	6553.6	3.84

* high unacceptable V.R. can be solved by using the concept of compensation as will be explained later.
* By kVL.

$$
\begin{gathered}
V_{s}=z\left(I_{R}+V_{R} \frac{y}{2}\right)+V_{R} \\
V_{s}=V_{R} \frac{\left(1+\frac{z Y}{2}\right)}{A}+\frac{(z R}{B}
\end{gathered}
$$

* By kCl:

$$
I_{s}=V_{s}+\frac{Y}{2}+\left(I_{R}+V_{R}+\frac{y}{2}\right)
$$

sub (1) into (2):

$$
\begin{aligned}
& I_{S}=\frac{y}{2}\left(V_{R}\left(1+\frac{2 y}{2}\right)+z I_{R}\right)+I_{R}+V_{R} \frac{y}{2} \\
& =V_{R}\left(\frac{y}{2}+\frac{y^{2}}{4}+\frac{y}{2}\right)+I_{R}\left(\frac{z y}{2}+1\right) \\
& I_{s}=V_{R}\left(x+\frac{z y^{2}}{4}\right)+\left(1+\frac{z y}{2}\right) I_{R}
\end{aligned}
$$

8. $A=D=1+\frac{z Y}{2}$ mi misionsomit fiod

$$
\begin{aligned}
B & =z \\
C & =y+\frac{z y^{2}}{4} \\
V_{R} & =\frac{\left|V_{R n L}\right|-\left|V_{R} f l\right|}{\left|V_{R F L}\right|}
\end{aligned}
$$

$$
N L \rightarrow I_{R}=0
$$

$$
\theta \Rightarrow V R_{N L}=V_{S} / A
$$

$$
V_{R}=\frac{\left|\frac{V_{s}}{A}\right|-V_{R_{f l}}}{V R_{f l}}
$$

* long transmission line:
let a line of length $=1$ it's series impedence $=z \mathrm{z} / \mathrm{m}$
\therefore shunt impedance $=y \mathrm{~s} / \mathrm{m}$
$V_{s}, V_{R} \equiv$ it's sending and Recieving voltages
* Consider a segment Δx of this line @ a distance x from the recieving end

* objective: to use figure. 1 in order to formulate necessary equations in order to evaluate $V(x)$ and $I(x)$
* Analosis:-
\rightarrow By kVL:

$$
\begin{aligned}
& V(x+\Delta x)=z \Delta x I(x)+V(x) \\
\therefore & \quad \frac{V(x+\Delta x)-V(x)}{\Delta(x)}=z I(x)
\end{aligned}
$$

* in the limit when $\Delta x \rightarrow 0$

$$
\begin{equation*}
\therefore \frac{d v}{d x}=z I(x) \tag{1}
\end{equation*}
$$

\rightarrow By kcl:

$$
\begin{aligned}
& I(x+\Delta x)=V(x+\Delta x) y \Delta x+I(x) \\
& I(x+\Delta x)-I(x)=V(x+\Delta x) y
\end{aligned}
$$

* in the limit $\Delta x \rightarrow 0$

$$
\frac{d I}{d x}=v(x) y
$$

diff (1) w.r.t $x \Rightarrow \frac{d^{2} v}{d x^{2}}=\frac{z d I}{d x}$
sun (2) in (3) $\Rightarrow \frac{d^{2} v}{d x^{2}}=z \cdot y \cdot v(x)=z y v(x)$. (4)
Similarly it can be found $\frac{d^{2} I}{d x^{2}}=z Y I(x)$

$$
\begin{array}{ll}
\frac{d v}{d x}=z I(x) \ldots 4 & \frac{d^{2} v}{d x^{2}}=z y v(x) \\
\frac{d I}{d x}=y v(x) \ldots \text { (2) } & \frac{d I^{2}}{d x^{2}}=z y I(x) \tag{4}
\end{array}
$$

* To simplify tet $\gamma^{2}=z y$

$$
\gamma=\sqrt{z y}
$$

γ is called propagation constant
\therefore solve $1^{\text {st }}$ equation (2):

$$
\begin{equation*}
\frac{d^{2} v}{d x^{2}}=\gamma^{2} v(x) \tag{5}
\end{equation*}
$$

* Solution of (5) is:

$$
v(x)=A_{1} e^{\gamma x}+A_{2} e^{-\gamma x}
$$

* A_{1} and A_{2} can be found from initial conditions.

$$
\begin{aligned}
& V(0) c V_{R}=A_{1}+A_{2} \ldots .(7) \\
& \frac{d v}{d x}=A_{1} \gamma e^{\gamma x}-A_{2} \gamma e^{-\gamma x} \ldots
\end{aligned}
$$

F Substitute: (1) inte 8).

$$
\begin{align*}
& Z I(x)=A_{1} \gamma e^{\gamma x} \rightarrow A_{2} \gamma e^{\gamma x} \\
& \therefore Z I(0)=Z I_{R}=A_{1} \gamma-A_{2} \gamma
\end{align*}
$$

Solve $A_{1} 9:$ to find $A_{1}, A_{2}=$

$$
\begin{aligned}
& \therefore \gamma+(7+9 \\
& \therefore V_{R}+z I_{R}=2 \gamma A_{1} \\
& \therefore \quad A_{1} \frac{\gamma V_{R}+z I_{R}}{2 \gamma}+\left(V_{R}+\frac{z}{\gamma} I_{R}\right) \\
&=\frac{1}{2}(10 \\
&=\frac{1}{2} V_{R}+\sqrt{\frac{z}{y}} I_{R}
\end{aligned}
$$

is calted characterstic impedence : Zc

$$
=\frac{1}{2}\left(V_{R}+Z_{c} I_{R}\right)
$$

$$
\text { A* } \begin{align*}
A_{2} & =V_{R}-A_{1} \\
& =V_{R}-\frac{1}{2}\left(V_{R}+Z_{C} I_{R}\right) \\
\therefore A_{2} & =\frac{1}{2}\left(V_{R}-Z_{c} I_{R}\right) \ldots \tag{11}
\end{align*}
$$

* Substitute: (10) and (11) into (6)2:

$$
\begin{aligned}
V V(x)= & \frac{1}{2}\left(V_{R}+z_{c} I_{R}\right) e^{\gamma x} \\
& +\frac{1}{2}\left(V_{R}-z_{c} I_{R}\right) e^{\gamma x} \\
\therefore \quad V(x)= & V_{R}\left(\frac{1}{2}\left(e^{\gamma x}+e^{-\gamma x}\right)+I_{R} z \frac{1}{2}\left(e^{\gamma x}-e^{\gamma x}\right)\right. \\
\cosh (\gamma x) & \sinh (\gamma x) \\
& V_{R} \cosh (\gamma x)+\frac{I}{R} z_{c} \sinh (\gamma x)
\end{aligned}
$$

* By repeating the s some procedure, it can be found that=

$$
I(x)=\frac{1}{z_{c}} \sinh (\gamma x) V_{R}+\cosh (\delta x) I_{R}
$$

\mathbb{K} when $x=l \quad \therefore \quad v(l)=V_{s}$ and

$$
\begin{aligned}
&\quad I \mid l)=I_{s} \\
& \therefore \quad V_{s}=V_{R} \frac{\cosh \gamma l)}{A}+I_{R} \frac{\left(\overline{Z_{c} \sinh \gamma l}\right)}{B} \\
& I_{s}=V_{R} \frac{\frac{1}{Z_{c}} \sinh \gamma t}{C}+I_{R}\left(\frac{\cosh \gamma l)}{D}\right.
\end{aligned}
$$

$$
\begin{aligned}
\therefore \quad A & =D=\cosh \gamma l \\
B & =z_{c} \sinh \gamma l \\
C & =\frac{1}{z_{c}} \sinh \gamma L
\end{aligned}
$$

$* V R \%=\frac{\left(\frac{V_{s}}{A}\right)-\left|V_{R}\right|}{\left|V_{R}\right|} * \ldots \%$

* e.g: A $60 \mathrm{~Hz}, 3 \phi \mathrm{TL}$. is 175 miles long. it has total series impedance $=135+j 140 \Omega$ and total shunt admittance $=930 * 10^{\circ} \angle 90 \$$ it delivers 40 Mw at 220 kV and 0.9 pf lagging: a) find: voltage current and pf at the sending and
b) find V_{R} and effeciongy of line.

$$
\begin{aligned}
& \Rightarrow \quad V_{S}=A V_{R}+B I_{R} \\
& I_{s}=C V_{R}+D I_{R} \\
& Z_{c}=\sqrt{z / y} \\
& =\sqrt{\frac{35+j 140}{930+10^{-6} \angle 90}}=393.9 \angle-7^{\circ} \\
& \text { * } \gamma l=\sqrt{z y} \\
& =\sqrt{z * l} * \underbrace{y * l}_{Y} \\
& =\sqrt{(35+140 ;)\left(930 * 10^{6}<90\right)} \\
& \text { * } \begin{aligned}
F & =5 e^{j 30} \\
\sqrt{F} & =\sqrt{5 e^{j 80}}
\end{aligned} \\
& =(5)^{1 / 2} e^{j 20\left(\frac{1}{2}\right)} \\
& =(5)^{1 / 2} e^{j 15} \\
& 1 \angle 15 \\
& =0.3663 \angle 83^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& H e^{\gamma L}=e^{0.3663}<83^{\circ} \\
& =e^{0.0446+j 0.3636}=e^{0.0446} * e^{j 0.3636} \\
& =1.0456 \angle 20^{\circ} \\
& \therefore e^{\gamma l}=\frac{1}{1.0456 \angle 20} \\
& =0.9563<-20
\end{aligned}
$$

A. $A=D=\cosh \gamma l$

$$
\frac{1}{2}\left(e^{\gamma L}+e^{-\gamma L}\right)
$$

by substitution:-

$$
\begin{aligned}
& A=D=0.9407 \angle 1^{\circ} \\
& \beta=\frac{z_{c}}{} \sinh \gamma L=z_{c} \frac{1}{2}\left(e^{\gamma L}-e^{-x}\right) \\
& C=\frac{1}{z c} \sinh \gamma L=875 * 16^{6} \angle 90^{\circ} \\
\rightarrow \quad & V R=\frac{220 * 10^{3} L 0}{\sqrt{3}} \\
\rightarrow \quad & I_{R}=\frac{40 * 16^{\circ}}{\sqrt{3} * 220 * 10^{3} * 0.9} \quad \angle-\cos ^{-1} 0.9
\end{aligned} 116.6 \angle 25.8^{\circ} A
$$

$$
\begin{aligned}
\rightarrow V_{s} & =A V_{R}+B I_{R}=13.04 \angle 6.3^{\circ} \mathrm{kV} \\
\rightarrow I_{3} & =C V_{R}+D I_{R}=119 \angle 35^{\circ} \\
P \cdot f & =\cos \left(6.3^{\circ}-33^{\circ}\right) \\
& =0.89 \text { leading. }
\end{aligned}
$$

(b) $V R ? \eta$?

$$
\begin{aligned}
\rightarrow V R Y & =\frac{\left|\frac{V_{s}}{A}\right|-\left|V_{R}\right|}{\left|V_{R}\right|} * 100 \% \\
& =\frac{\frac{130.4}{0.9407}-\frac{200}{\sqrt{3}}}{\frac{220}{\sqrt{3}}} * 100 \%
\end{aligned}=9.15 \% .
$$

* Equivalent ckt of long T.L.~

Since such lines are port of a given power system then it is required to represent it by an equ. ckt.
it is represented by a π-ckt as that of medium T.L as follows:-

* for medium line

$$
\rightarrow V_{s}=V_{R}\left(1+\frac{z Y}{2}\right)+\left(I_{R}\right.
$$

However: for long line:

$$
V_{S}=V_{l} \cosh \gamma L+z_{c} \sinh \gamma L \cdot I_{R}
$$

* To use the same π-equ. :-
force:

$$
\begin{align*}
& z_{c} \sinh \gamma L=z \tag{1}\\
& \cosh \gamma L=1+\frac{z Y}{2} \tag{2}
\end{align*}
$$

* $z^{\prime}=z_{c} \sinh \gamma L$
(2) $\rightarrow \frac{Y}{2}=\frac{\cosh \gamma L-1}{z}=\frac{\cosh \gamma L-1}{Z_{c} \sinh \gamma L}$

$$
=\frac{1}{z_{c}} \tanh \left(\frac{\gamma L}{2}\right)
$$

c) find the equivalent cock of the line in the previous eng:

* by substitution it can be found that:

$$
\begin{aligned}
z^{\prime} & =z_{c} \sinh \gamma l=135.8995 \angle 76^{\circ} \\
\frac{\gamma^{\prime}}{2} & =\frac{1}{z_{c}}\left(\frac{e^{\gamma / 2}-e^{-\gamma / 2}}{e^{x / 2}+e^{\gamma / 2}}\right)=4.64 * 10^{-4} / 90.98^{\circ}
\end{aligned}
$$

* Power relationship for T.L:-
\rightarrow Although the power at any point along the line can be calculated if ones knows the v, I, P.f
\rightarrow the objective here is to find an expression for the power parameters
par ms of $\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]$

* Procedure:

$$
\begin{equation*}
\delta_{R}=V_{R} I_{R}^{*} \tag{1}
\end{equation*}
$$

S_{R} : complex power per phase

$$
\begin{align*}
& V_{S} \triangleq A V_{R}+B I_{R} \\
\therefore & I_{R}=\frac{V_{S}-A V_{R}}{B} \tag{2}
\end{align*}
$$

let: $\quad v_{s}=\left|v_{s}\right|<\delta$

$$
\begin{aligned}
& A=|A| \angle \alpha \\
& B=|B| \angle \beta \\
& V_{R}=\left|V_{R}\right| \angle 0^{\circ}
\end{aligned}
$$

* Sub (3) into (1):

$$
\begin{equation*}
I_{R}=\frac{\left|V_{s}\right|}{|B|}<\delta-\beta-\frac{|A|\left|V_{R}\right|}{|\beta|}<\alpha-\beta \tag{4}
\end{equation*}
$$

* Sub 4 into 1:

$$
S_{R}=\frac{\left|V_{R}\right|\left|V_{s}\right|}{|B|}<\beta-\delta-\frac{|A|\left|V_{R}\right|^{2}}{|\beta|}<\beta-\alpha
$$

Since:

$$
\begin{aligned}
S_{R} & =P_{R}+j Q_{R} \\
& =\left|V_{R} \| I_{R}\right| \angle_{\theta}
\end{aligned}
$$

* hence, from 5 \& 6 the following comments and conclusions can be made:

$$
\begin{align*}
& P_{R}=\frac{\left|V_{R}\right|\left|V_{s}\right|}{|\beta|} \cos (\beta-\delta)-\frac{|A|\left|V_{R}\right|^{2}}{|B|} \cos (\beta-\alpha) \\
& Q_{R}=\frac{\left|V_{R}\right|\left|V_{s}\right|}{|\beta|} \sin (\beta-\delta)-\frac{|A|\left|V_{R}\right|^{2}}{\mid B)} \sin (\beta-\alpha) \tag{8}
\end{align*}
$$

$\Rightarrow \quad S_{R}$ can be expressed graphically by using the concept of phasor diagram, where in (5) S_{R} is the resultant of two phases as follows:

$$
\text { (5): } S_{R}=\frac{\left|V_{R}\right|\left|V_{s}\right|}{|B|}\langle\beta-\delta)-\frac{\int_{|A|\left|V_{R}\right|^{2}}^{|B|}\langle\beta-\alpha}{\text { (1) }}
$$

* if the axis are shifted from point (n) to point (0), then the resultant diagram is the power diagram

* find the loans of the power when the bad changes keeping $\left|v_{R}\right|$ and $\left|v_{s}\right|$ constants

* Since n and the distance $n k$ deesintdepend on $\left|I_{R}\right|$, then as the load changes, then the distance $\left|V_{R}\right|\left|I_{R}\right|$ is going to change with the distance ak remains constant, hence k is going to move a long a circle
note: here (δ) changes with load.
 power circle diagram
(a) maximum power ($P_{\text {max }}$) will occur when

$$
\beta-\delta=0 \rightarrow \beta=\delta
$$

(b) max. power (i.e: Pax) occur at high value of leading current

X0 hence in practice $\frac{\left|V_{s}\right|}{\left|V_{R}\right|}$ is limited to 0.95 or higher, δ is limited to about 35°

* hence from (7): $P_{m * *}=\frac{\left|V_{R}\right|\left|V_{s}\right|}{|B|}-\frac{\left|A \| V_{R}\right|^{2}}{|B|} \cos (\beta-\alpha)$
from (9):

$$
P_{\max }=\alpha \frac{1}{|\beta|}
$$

for mednin \& long fines $\longrightarrow|B| \propto|z|$ $\therefore Z$ affect power capability of T.L

* Reactive Compensation:
problem: 1) at heavy load (i.e: higher IR) there is large voltage drop in the series impedence, hence $\left|v_{\mathcal{R}}\right|$ may be bebw an acceptable $|B|$ level, and Since $x \gg R$ then this drop is mainly due to inductive reactance.

Consequently, this problem can be solved by introducing series capacitor called: series reactive compensation

* At light load (no load), then inductive compensation is used to reduce the rise in recieving voltage.

* The compensation factor in this case is

$$
\begin{array}{r}
\frac{B_{L}}{B_{C}} ; \text { where: } \quad B_{L}=\frac{1}{x_{L} y} \\
B C=j \omega c
\end{array}
$$

reactance of compensation (jul)

* note : in the case of series or capacitive compensation the compensation factor $=\frac{x_{c}}{x_{L}}$
* Analysis:

Hence after introducing compensation, there will be two 2 -port networks connected in cascade:

equivalent network

* Parameters of compensation network:
* Series or capacitor compensation:

$$
\begin{aligned}
\therefore & V_{s c}=V_{R C}+I_{R} X_{c} \\
& I_{s c}=I_{R C} \\
\therefore \quad & {\left[\begin{array}{l}
V_{s c} \\
I_{s c}
\end{array}\right]=\left[\begin{array}{ll}
1(8) & x_{c} \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
V_{R c} \\
I_{R c}
\end{array}\right] }
\end{aligned}
$$

- Parallel or inductive compensation:

$$
\begin{aligned}
\Rightarrow V_{S L} & =V_{R L} \\
I_{S L} & =\frac{V_{R L}}{x_{L}}+I_{R L} \\
{\left[\begin{array}{l}
V_{S L} \\
I_{S L}
\end{array}\right] } & =\left[\begin{array}{ll}
1 & 0 \\
* 1 / x_{L} & 1
\end{array}\right]\left[\begin{array}{l}
V_{R L} \\
I_{R L}
\end{array}\right]
\end{aligned}
$$

$$
M_{e q}=M_{1} * M_{2}
$$

* e.g: 3-phose T.L. is 300 mile long and supply a load of 400 MVA with 0.8 pf lagging at 345 kv . The line has the following parameters:

$$
\begin{aligned}
A=D & =0.818 \angle 1.3^{\circ} \\
B & =172.2 \angle 84.2^{\circ} \\
C & =0.001933 \angle 90.4^{\circ}
\end{aligned}
$$

a) find v_{s} and $V R \%$?

$$
\begin{aligned}
V_{S} & =A V_{R}+B I_{R} \\
V_{R} & =\frac{345}{\sqrt{3}} \angle 0^{\circ} \mathrm{kV}=199.2 \angle 0^{\circ} \\
I_{R} & =\frac{400 * 10^{\circ}}{\sqrt{3} * 345 * 10^{3}} \quad-\cos ^{-1} 0.8 \\
& =669.4 \angle-36.87 \mathrm{~A}
\end{aligned}
$$

A By substitution:

$$
\begin{gathered}
V_{s}=256.8 / 20.1^{\circ} \mathrm{ku} \\
V R=\frac{\frac{256.8}{0.818}-199.2 * 100 \%}{199.2}=57.6 \%
\end{gathered}
$$

b) If a series capacitor bank having reactance of 146.6Ω is to be installed at the mid point of the line, and the $\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]$ constants for each 150 mile portion are

$$
\begin{aligned}
A=D & =0.9534 \angle 0.3^{\circ} \\
B & =90.33 \angle 54.1^{\circ} \\
C & =0.00104 \angle 90.1^{\circ}
\end{aligned}
$$

6.1: find the equivalent $\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]$ constants for cascade connection:

$$
\left[\begin{array}{l}
\text { iso } \\
\text { mile }
\end{array}\right] *\left[\begin{array}{l}
\text { expucist }
\end{array}\right] *\left[\begin{array}{l}
1 \text { so } \\
\text { mile }
\end{array}\right]
$$

given

$$
\left[\begin{array}{ll}
1 & z \\
0 & 1
\end{array}\right] \Rightarrow\left[\begin{array}{cc}
1 & -j 146.6 \\
0 & 1
\end{array}\right]
$$

* it can be found:

$$
=\left[\begin{array}{cc}
A_{c q} & \text { Seq } \\
\left.\begin{array}{cc}
0.96\left(1.2^{\circ}\right)^{\circ} & 42 \angle 64.8^{\circ} \\
0.002 \angle 90 & 0.96 \angle 1.19^{\circ}
\end{array}\right]
\end{array}\right.
$$

b.2: find V_{s} and $V_{R} \%$

$$
V_{s}=A_{e q} V_{R}+B_{e q} I_{R}
$$

by sub: $\quad v_{s}=216.7 \quad \angle 4.5^{\circ}$

$$
\Rightarrow V_{R}=\frac{216.7}{A_{\text {eq }}}-199.2 * 100 \%=13.3 \%
$$

* Comments on the equation of long line: it was found that:

$$
\begin{aligned}
& v(x)=\underbrace{\underbrace{v^{\gamma x}}_{\text {incident- wave }}}_{\frac{V_{R}+I_{R} z_{c}}{2} e^{\gamma x}+\frac{V_{R}-I_{R} z_{c}}{2} e^{-\gamma x}}+\frac{V_{\text {reflected wave }}^{z_{c}}+I_{R} e^{\gamma x}}{2}-\frac{\frac{V_{R}}{z_{c}}-I_{R}}{2} e^{-\gamma_{x}} \\
& I(x)=\underbrace{\frac{V_{R}}{2}}
\end{aligned}
$$

* where: $\gamma=\alpha+j \beta$
* in this case no reflected wave
* surge impedance $=\sqrt{L / C}$ for bssless

$$
\notin e^{\delta x}=e^{\alpha} \cdot e^{j \beta}
$$

* Surge Impedance Loading (SIL):

This is the power transmitted by the line to a pure resistive load whose value equal to surge impedance.

$$
\begin{aligned}
\Rightarrow & v_{R}^{+} \quad R=\sqrt{L / C} \\
\rightarrow \quad P & =\sqrt{3} V_{L} I_{L} \cos \theta \\
& =\sqrt{3} V_{L} I_{L} \\
& =\sqrt{3} V_{L}\left(\frac{V_{L}}{\sqrt{3} \sqrt{L / C}}\right)=\frac{V_{L}^{2}}{\sqrt{L / C}}
\end{aligned}
$$

* The end of the voltage current for T.L.
* Fault Analysis:
* objective:
what? defintion: Any failure which causes the interruption of normal current or power flow is called Fault.
why? under fault, extreme high convent flow, therefore power system should be protected against such high current's.
* Protection systems consist of the following components :

| instrument
 transf.
 PT \& CT |
| :---: | | Relay |
| :--- |
| brail |
| breaker |

for analysis is used to calculate fault current in order to make setting for Relay \& circuil. breaker.

How?

* Classifications of Founts:
here we are concerned with s / c fault

So, need to stop the current by circuit breaker.
balanced or symmetrical fault per phase ckt
unbalanced or unsymmetrical fall-
(1) line to ground fault
(2) line to line fart
(3) line to line to ground fault

* Balanced fault :-
* There are two cases:
(1) Unleaded generator suffer short circinlat it's terminal.
\rightarrow This was solved before by using the concept of $x_{d}^{\prime}, x_{d}^{\prime}, x_{d}$.
(2) Loaded generator suffer s.C at a certain point \& analyzed as follows:
* consider the following sys:-

let the problem that a short circuit occur at the terminal of the load and let the load by 3-ph synch motor

That perphase equ. ckt will be as follows:

fig (1) : before fault.

Zext. : equ. impedance between the generator terminals and load.
P : is the location of the fault.
V_{f} : prefault voltage.

* after fault:

* If: fault current at subtransient fault

$$
I_{f}^{\prime \prime}=I_{g}^{\prime \prime}+I_{M}^{\prime \prime}
$$

* objective to evaluate: $I_{g}^{\prime \prime}, I_{m}^{\prime \prime}, I_{f}^{\prime \prime}$
* Analysis:

Here it is assumed that: Eg \& E"m has the same value immediatiy before and immediatly after the fault.

* from $f_{i g}(1)$:

$$
\begin{align*}
& E_{g}^{\prime \prime}=I_{L}\left(j x_{g}^{\prime \prime}+Z_{\text {ext }}\right)+v_{f} \\
& E_{m}^{\prime \prime}=v_{f}-I_{L} j x_{m}^{\prime \prime} \tag{2}
\end{align*}
$$

* from fig (2):

$$
\begin{align*}
& E_{g}^{\prime \prime}=I_{g}^{\prime \prime}\left(j x_{g}^{\prime \prime}+Z_{\text {ext }}\right) \ldots(3) \\
& E_{M}^{\prime \prime}=I_{m}^{\prime \prime}\left(j x_{m}^{\prime \prime}\right) \ldots-(\Perp
\end{align*}
$$

3: $\quad I_{g}^{\prime \prime}=\frac{E_{g}^{\prime \prime}}{\left(j x_{g}^{\prime \prime}+z_{\text {ext }}\right)}$
$\rightarrow \operatorname{sub}$ (1) inte (5):

$$
\begin{equation*}
\Rightarrow I_{g}^{\prime \prime}=I_{L}+\left(\frac{V_{f}}{\left(j x_{g}^{\prime \prime}+z_{\text {ext }}\right)}\right) \tag{7}
\end{equation*}
$$

4: $\quad I_{m}^{\prime \prime}=\frac{E_{m}^{\prime \prime}}{j x_{m}^{\prime \prime}}$
\rightarrow sub (2) into (6):

$$
\begin{align*}
\Rightarrow & I_{m}^{\prime \prime}=\frac{V_{f}}{j x_{m}^{\prime \prime}}-I_{L} \ldots-(8) \\
\therefore & I_{f}^{\prime \prime}=I_{g}^{\prime \prime}+I_{m}^{\prime \prime} \ldots(8) \tag{1}
\end{align*}
$$

So: $\quad I_{f}^{\prime \prime}=\frac{V_{f}}{j x_{m}^{\prime \prime}}-I L+I L+\frac{V_{f}}{j x_{g}^{\prime \prime}+Z_{\text {ext }}}$
Ho This method up to How it is called the internal voltages method.

* comment.
(9) can be written as follows:

$$
\begin{aligned}
& I_{f}^{\prime \prime}=V_{f}\left(\frac{1}{j x_{m}^{\prime \prime}}+\frac{1}{j x_{g}^{\prime \prime}+Z_{\text {Ext }}}\right) \\
& =\frac{V_{f}}{\left(j x_{g}^{\prime \prime}+z_{\text {extallel }}\right) / /\left(j x_{m}^{\prime \prime}\right)}
\end{aligned}
$$

* So (10): can be represented by a theremin equivalent as follows:

\rightarrow so, the renin equ. is used to evaluate fault current ($I_{f}^{\prime \prime}$)
\rightarrow So, In and $I_{m}^{\prime \prime}$ can be found by using current division.
e.g: A generator is connected through atransformer to a synch. motor for the same base pu reactances of the components $x_{g}^{\prime \prime}=0.15, \quad x_{T}=0.1, \quad x_{m}^{\prime \prime}=0.35$.
A 3-ph fault occur at the terminal of the motor, when the terminal voltage of the generator $=0.9 \mathrm{pu}$ at the gen-current $=1$ pu at 0.8 pf leading.

Find: the sub-transient current in pu in the fault gen. and motor:
\Rightarrow sol:

* given information:

$$
\begin{aligned}
& V_{t}=0.9 \angle 0 \\
& I=1 \angle \cos ^{-1} 0.8=36.87^{\circ}
\end{aligned}
$$

* using internal voltage method:
before: $E_{g}^{\prime \prime}=V_{t}+j x_{g}^{\prime \prime} I=0.82 / 8.42$

$$
E_{m}^{\prime \prime}=V_{t}-I\left(j x_{\tau}+j x_{m}^{\prime \prime}\right)=1.22\lfloor-17.1
$$

after:

$$
\begin{aligned}
& I_{g}^{\prime \prime}=\frac{I_{g}^{\prime \prime}}{j 0.15+j 0.1}=8.28 \Sigma_{81.58} \\
& I_{m}^{\prime \prime}=\frac{E_{m}^{\prime \prime}}{j 0.35}=3.49 / \overline{107.1} \\
& I_{f}=I_{g}^{\prime \prime}+I_{m}^{\prime \prime}=6.6 \angle_{94} .78
\end{aligned}
$$

* Using Theremin:

$$
\begin{gathered}
I_{f}=V_{f} /\left[\left(j x_{g}^{\prime \prime}+j x_{T}\right) / / j x_{m}^{\prime \prime}\right] \\
\begin{aligned}
V_{f}=V_{t}-I x_{e x t} & =0.9 / 0-1 / 36.87 * j 0.1 \\
= & 0.963 /-4.76
\end{aligned}
\end{gathered}
$$

* by substitution :

$$
I_{f}^{\prime \prime}=6.6{ }^{-94.76}
$$

* by current division:

$$
\begin{aligned}
& I_{g}^{\prime \prime}=I_{f}^{\prime \prime}\left(\frac{j x_{m}^{\prime \prime}}{j x_{m}^{\prime \prime}+j x_{g}^{\prime \prime}+j x_{T}}\right)=\begin{array}{l}
3.85 \\
<-94.76 \\
\rightarrow \\
\\
\end{array} I_{m}^{\prime \prime}=I_{f}^{*}-I_{g}^{\prime \prime}=2.75(-94.76
\end{aligned}
$$

* The difference in the answer for In" and $I_{m}^{\prime \prime}$ in the two methods is due to fact that TheN. method neglect I_{L}
\therefore To take into account add I_{L} to I_{g} " and subtract it from IN
* Z-bus method:
this method is used to evaluate the fault current due to a balanced 3-ph fault for a general power system.
* procedure: consider the following sys.:

* problem:
for all given sub-transient parameters, evaluate the fault current ($I_{f}^{\prime \prime}$) and the internal current when a fault occur at any busbar.
* for e.g: let the fault at Bus (4).

now, the s.c of the fart can be represented by 2 voltage sources (ie: $V_{f},-V_{f}$) in series.

Scanned by CamScanner

* Since there are 4 sources then super position can be used to evaluate (I_{f}^{n})
(Q) if $E_{1}^{\prime \prime}, E_{f}^{\prime \prime}, V_{f}$ are taken together, then $I_{f}^{\prime \prime}=0$, because these sources represent pre-fault condition.
(b) hence, $I_{f}^{\prime \prime}$ is due only to the source $\left(-V_{f}\right)$ and evaluated as follows:

K This $I_{F}^{\prime \prime}$ is going to flow back through the system causing changes of voltages at the busbars $=\left[\begin{array}{l}\Delta V_{1} \\ \Delta V_{2} \\ \Delta V_{3} \\ \Delta V_{4}\end{array}\right]$

fig (1)

* By using the concept of $[y]$ and $[z]$:

$$
\begin{aligned}
& \therefore \quad[I]=[Y][v] \\
& \text { or }[y]^{-1}[I]=[v] \\
& \text { or }[V]=[z][I] \ldots z \triangleq[y]^{-1}
\end{aligned}
$$

K by applying (1) to fig (1):

$$
\begin{aligned}
& {\left[\begin{array}{c}
\Delta v_{1} \\
\Delta v_{2} \\
\Delta v_{3} \\
\Delta v_{4}
\end{array}\right]=\left[\begin{array}{llll}
Z_{11} & Z_{12} & Z_{13} & Z_{14} \\
Z_{21} & Z_{22} & Z_{23} & Z_{24} \\
Z_{31} & Z_{32} & Z_{33} & Z_{34} \\
Z_{41} & Z_{42} & Z_{43} & Z_{44}
\end{array}\right]\left[\begin{array}{c}
0 \\
0 \\
0 \\
-I_{f}^{\prime \prime}
\end{array}\right]} \\
& {\left[\begin{array}{c}
\Delta v_{1} \\
\Delta v_{2} \\
\Delta v_{3} \\
-V_{f}
\end{array}\right]=-I_{f}^{\prime \prime}\left[\begin{array}{l}
Z_{14} \\
Z_{24} \\
Z_{34} \\
Z_{44}
\end{array}\right]} \\
& \therefore \quad-V_{f}=-I_{f}^{\prime \prime} Z_{44} \\
& \therefore I_{f}^{\prime \prime}=V_{f} / Z_{44}
\end{aligned}
$$

* in general: $I_{f, k}^{\prime \prime}=\frac{V_{f, k}}{Z_{k k}}$

$$
\left[\begin{array}{l}
\Delta v_{1} \\
\Delta v_{2} \\
\Delta v_{3} \\
\Delta v_{4}
\end{array}\right]=-\left[\begin{array}{ll}
z_{14} & v_{f} / z_{44} \\
z_{24} & v_{5} / z_{44} \\
z_{34} & v_{f} / z_{44} \\
z_{44} & v_{5} / z_{44}
\end{array}\right]
$$

due to the source $\left(-V_{f}\right)$

* total voltages at the busbars:
now the voltages due to the sources $E_{1}^{\prime \prime}, E_{2}^{\prime \prime}, V_{f}$ and neglecting load currents, will be:

$$
\left[\begin{array}{l}
v_{f} \\
v_{f} \\
v_{f} \\
v_{f}
\end{array}\right]
$$

\Rightarrow total voltage at busbars:

$$
\begin{aligned}
& {\left[\begin{array}{l}
V_{1} \\
V_{2} \\
v_{3} \\
v_{4}
\end{array}\right]=\left[\begin{array}{l}
V_{f} \\
v_{f} \\
V_{f} \\
V_{f}
\end{array}\right]+\left[\begin{array}{l}
\Delta V_{1} \\
\Delta V_{2} \\
\Delta V_{3} \\
\Delta V_{4}
\end{array}\right]} \\
& \text { due to } \\
& \text { due to }
\end{aligned}
$$

* e.g;

$$
\begin{aligned}
V_{H} & =V_{f}+\Delta V_{u} \\
& =V_{f}-V_{f} \\
& =0
\end{aligned}
$$

DATE $16 / 11$ Monday.
*

$$
\begin{align*}
& I_{f}^{\prime \prime}=v_{f} / z_{k k} \tag{0}\\
& v_{j}=v_{f}-Z_{j k} I_{f k}^{\prime \prime} \tag{2}\\
& v_{j}=v_{f}-\frac{Z_{j k}}{Z_{k k}} v_{f}
\end{align*}
$$

* Having evaluated the voltages at the busbars then one can calculate internal fault current.

* eg: the bus-impedence matrix of a 4 -bust system is: $\quad z=j\left[\begin{array}{llll}0.15 & 0.08 & 0.04 & 0.07 \\ 0.08 & 0.15 & 0.06 & 0.09 \\ 0.04 & 0.06 & 0.13 & 0.05 \\ 0.07 & 0.09 & 0.05 & 0.72\end{array}\right]$
* The system has generators connected to buses
(1) and (2) if pre-fault current is neglected evaluate $\left(I_{f}^{\prime \prime}\right)$, for a 3 phase fault at bus (4)
* Assume $V_{f}=110$ pu, find also the current from generator (3) whose $X_{G 2}^{\prime \prime}=j 0.02$

$$
\begin{aligned}
& \text { * } I_{f}^{\prime \prime}=V_{f} / Z_{44} \\
& =110 / j 0.12 \\
& =8.33-90^{\circ} \\
& \text { * } I_{62}=\frac{E_{2}^{*}-V_{2}}{j 0.02}
\end{aligned}
$$

$$
\begin{aligned}
& \rightarrow \quad V_{2}=V_{f}-Z_{24} I_{f}^{\prime \prime} \\
& =10-j 0.09 * 8.53 \leq-90 \\
& =0.251<0 \\
& \rightarrow \quad E_{2}=160
\end{aligned}
$$

* by sub: $I_{62}^{\prime \prime}=-3.75$

$$
=3.75<-90
$$

* Equivalent cat of z-bus matrix:
it is impossible to find a single equ. ckt. for the Z-bus method.

However, one may find the Thevenin equ. for a pair of buses by using equ (1), (2) so that $\left(I_{f}^{\prime \prime}\right)$ can be evaluated by using Thew. equ.

* procedure :

$k=$ faulty bus

$$
j=\text { healthy bus }
$$

* Sopen: (pre-fantt)
by applying k / L :

$$
V_{k}=V_{j}=V_{f}
$$

* Sclosed: (i.e: sc fault between k and ref)
the $I_{F}^{\prime \prime}$ is going to flow by kVL :

$$
\begin{array}{rr}
V_{j}: & -V_{j}+0+V_{f}-I_{f}^{\prime \prime} Z_{j k}=0 \\
\therefore V_{j}=V_{f}-I_{f}^{\prime \prime} Z_{j k}
\end{array}
$$

\therefore equation (2) is satisfied
$V_{k}=$

$$
\begin{gathered}
V_{k}+I_{f}^{\prime \prime} z_{k}-V_{f}+I_{f}^{\prime \prime}\left(Z_{k k}-Z_{k j}\right)=0 \\
\therefore I_{f}^{\prime \prime}=V_{f} / Z_{k k}
\end{gathered}
$$

\therefore equation (1) is satisfied

If Solve the previous example by using Thar. eau.:

* by sub: $\quad I_{f}^{\prime \prime}=8.33<-90$

$$
v_{2}=0.251<0
$$

* See and study the example in the textbook. egg (10.4)
page 396

* There are two steps
for Thew. equ.
* Introduction for the selection of ckt breaker rating:

* usually power utility supply information to consumer, so that he/she can evaluate sic current
* This inforrention is called SC MVA and defined as follows:

$$
\begin{equation*}
\Rightarrow S C M V A \triangleq \sqrt{3} * \text { (nominal line voltage) } \underset{(\mathrm{kv})}{\Rightarrow} *{\underset{(A)}{ }}_{I_{(A)}} * 10^{-3} \tag{1}
\end{equation*}
$$

* if the MUA base is defined as:

$$
\begin{align*}
& \text { MVA base }=\sqrt{3} * \text { (base voltage) }\left(\text { base current) } * 10^{-3}\right. \\
& \frac{(1)}{(2)} \Rightarrow \text { sc MVA (pu) }=I_{s c} \text { (pu) } \tag{2}
\end{align*}
$$

* If the utility sys. boking from the consumer terminals is represented by its Thea. equ. hence under SC:

$$
I_{\text {sc }}(\rho n)=\frac{1<0}{z_{\text {th }}}=\frac{1}{z_{\text {th }}}
$$

* hence utility is supplying:
(1) expected SC
(2) $Z_{\text {th }}$ of the syr.
* from current point of view, the most two important factors:
i) the max instentanwons current, which the breaker must with stand.
ii) the interrupting current (i.e: the current at which contact open)
i) in order to take into account the $D C$ component then the sub-transient current ($I^{\prime \prime}$) is multiplied by a factor $3(>1)$.
This factor depend on the type of breaker and its voltage.
* for eng: for $C B$ (circuit breaker) with rating $>5 \mathrm{kv}$, this factor $=1.6$
* hence this is called: Momentary current $=2$

$$
=\text { factor } * I_{f}^{\prime \prime}
$$

* this is current which the breaker should with stand for a short period 1,2 socles
ii) is defined by means of interrupting $K V A=2$ $\sqrt{3}$ * bus voltage at which breaker * interrupting is connected (kv) current (A)
* this value depend on the speed of the breaker

DATE $18 / 11$ wed.

* Breakers with different speed are classified according to thier interrupting time, which is defined as follows:

$\rightarrow \quad t_{1} \equiv$ delay time of relay to take into account starthig normal current or guarding or coordination of protection.
$\rightarrow \quad k_{2} \equiv$ opening time
$\rightarrow \quad t_{3}=$ Arc exciatation time

* $\left(t_{2}+t_{3}\right)$ is called interrupting time.
* Conclusion:

Among the major Ratings of $C . B$ are:
i) nominal voltage (e.g: 132 kv)
ii) Rated continuous current
iii) maximum rated voltage
iv) voltage range factor (k)

* $k \triangleq \frac{\text { maximum raked voltage }}{\text { power limit of voltage range }}$
$\rightarrow k$ is selected in such away that the product of (sc current * operating witage) is always constant
v) Rated sc ensient
* e.g: A circuit breaker having nominal voltage rating of 34.5 kv contirivous current rating of 1500 A , has $k=1.65$ rated maximum silage is 38 kw and the rated SC current at this voltage is 22 kA
i) find the voltage below which raked sc current doesnit increase as operating voltage decreases and the value of that current.

$$
\begin{aligned}
\Rightarrow k=\frac{\max \text {. voltage }}{\text { lower limit }} \Rightarrow V_{\text {lower }} & =\frac{\max }{k} \\
& \frac{38}{1.65}=23.03 \mathrm{kv}
\end{aligned}
$$

* SC current * operating voltage $=$ constant

$$
\begin{aligned}
& 38 * 22=23.03 * I_{x} \\
\therefore & I_{x}=\frac{38 * 22}{23.03}=36.3 \mathrm{kv}
\end{aligned}
$$

- Unbalanced or Unsymmetrical faults:-

Here under unbalanced farts, current and voltages will be unbalanced.

Here the mathernatical cocept of symmetrical components will be used and defined as:

* symmetrical components:-

Here any unbalanced voltinge or current can be expressed as the sum of 3 components called: the sequence
-re sequence
zero sequence

* superscripts are used (1) \rightarrow tie
(2) $\rightarrow \quad-v e$
(0) \rightarrow Zero
* for eeg: consider system of unbalanced voltages $V_{a n}, U_{b n}, V_{C n}$

$$
\begin{aligned}
\therefore \quad V_{a n} & =V_{a n}^{(0)}+V_{a n}^{(1)}+V_{a n}^{(2)} \\
V_{b n} & =V_{b n}^{(0)}+V_{b n}^{(1)}+V_{b n}^{(2)} \\
V_{a n} & =V_{c n}^{(0)}+V_{a n}^{(1)}+V_{a n}^{(2)}
\end{aligned}
$$

tue

-re

$$
\xrightarrow{\longrightarrow} V_{a n}^{(0)} V_{b n}^{(0)}
$$

zero

* By introducing the mathematical complex operator $\quad a \triangleq 1 \angle 120^{\circ}$
hence, by using (a) all the voltages
$V_{\text {an, }}$, Van, Van can be expressed in terms of the symmetrical components of phase (a), as:

$$
\begin{aligned}
\rightarrow \quad V_{a n} & =V_{a n}^{(0)}+V_{a n}^{(1)}+V_{a n}^{(2)} \\
V_{b n} & =V_{a n}^{(0)}+a^{2} V_{a n}^{(1)}+a V_{a n}^{(2)} \\
V_{c n} & =V_{a n}^{(0)}+a V_{a n}^{(0)}+a^{2} V_{a n}^{(2)}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \underbrace{\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & a^{2} & a \\
1 & a & a^{2}
\end{array}\right]}_{[A]}\left[\begin{array}{c}
V_{a n}^{(0)} \\
V_{a n}^{(1)} \\
V_{a n}^{(1)}
\end{array}\right] \\
& \therefore\left[\begin{array}{l}
V_{a n} \\
V_{b n} \\
V_{a n}
\end{array}\right]=[A]\left[\begin{array}{l}
V_{a n}^{(0)} \\
V_{a n}^{(1)} \\
V_{a n}^{(2)}
\end{array}\right] \\
& \Rightarrow\left[V_{a b c}\right]=[A]\left[V_{012}\right] \\
& {\left[V_{012}\right]=[A]^{\prime}\left[V_{a b c}\right]}
\end{aligned}
$$

* where: $[A]^{-1}=\frac{1}{3}\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & a & a^{2} \\ 1 & a^{2} & a\end{array}\right]$
* note: the same expression can be applied. to convent:

$$
\begin{aligned}
& {\left[I_{a b c}\right]=[A]\left[I_{012}\right]} \\
& {\left[I_{012}\right]=[A]^{-1}\left[I_{a b c}\right]}
\end{aligned}
$$

* Procedure:
i) find the 0 , the, -re sequences: cat for each power system element
(ie: generator, transf., line, bad)
ii) the inter connection of these sequence cuts give sequence networks
(i.e: the, te, o sequence network)

iii) the interconnection between networks depends on the type of the fault (i.e: L-L

$$
\begin{aligned}
& L-G \\
& L-L-G)
\end{aligned}
$$

* eg: $(L-G)$

as will be shown later
* erg: Given:

$$
\begin{aligned}
& V_{\text {an }}^{(0)}=5 \angle 30^{\circ} \quad ; \text { find }\left[V_{\text {abe }}\right] ? \\
& V_{0 n}^{(1)}=7 \angle-14^{\circ} \\
& V_{\text {an }}^{(2)}=10 \angle 4 i^{\circ}
\end{aligned}
$$

$$
\Rightarrow\left[\begin{array}{l}
V_{a n} \\
V_{b n} \\
V_{\text {an }}
\end{array}\right]=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & a^{2} & a \\
1 & a & a^{2}
\end{array}\right]\left[\begin{array}{l}
5 \angle+30 \\
7 \angle-14 \\
10 \angle 41
\end{array}\right]
$$

where: $a=1 \angle 120^{\circ}$

$$
a^{2}=1 \angle 240^{\circ}
$$

*eeg: When a 3phave generator has 1 terminal open cat and the other two terminals are shorked to ground, the symm. component of the currents as follows:

$$
\begin{aligned}
& I_{a}^{(1)}=600 \angle-90 \\
& I_{a}^{(2)}=250 \angle 90 \\
\text { and } I_{a}^{(9)} & =350 \angle 90
\end{aligned}
$$

* find the corresponding phase current and fault current?

$$
\Rightarrow\left[\begin{array}{l}
I_{a} \\
I_{b} \\
I_{c}
\end{array}\right]=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & a^{2} & a \\
1 & a & a^{2}
\end{array}\right]\left[\begin{array}{l}
I^{(0)} \\
I^{(1)} \\
I^{(2)}
\end{array}\right] \quad\left[\begin{array}{l}
a=1 / 120 \\
a^{2}=1 \angle 240
\end{array}\right.
$$

* By substitution and multiplication, it can be found:

$$
I_{f}=I_{b}+I_{c}=1050.1 \angle 90^{\circ}
$$

* Relationship between symmetrical components for currents and voltages of Y and Δ connections:
* Consider a Δ correction:

* objective: to find relationship between:

$$
\begin{aligned}
& I_{a}^{(1)}, I_{a b}^{(1) 1} \\
& I_{a}^{(2)}, I_{a b}^{(2)}
\end{aligned}
$$

note: (I_{a}) is taken as reference for I_{a}, I_{b}, I_{c} and $\left(I_{a b}\right)====I_{a b}, I_{b c}, I_{c a}$

* Procedure: by keel:

$$
\begin{aligned}
& I_{a}=I_{a b}-I_{c a} \ldots \text { (1) } \\
& I_{b}=I_{b c}-I_{a b} \cdots(2) \\
& I_{c}=I_{c a}-I_{b c} \cdots \text { (3) } \\
& I_{a}^{(0)} \triangleq \frac{1}{3}\left(I_{a}+I_{b}+I_{c}\right)=0 \text { by sub. } 1,2,3
\end{aligned}
$$

\therefore linear currents doit have zero sequence components

* rewrite (1) in terms of its symmetrical components:

$$
\begin{gathered}
I_{a}^{(0)}+I_{a}^{(1)}+I_{a}^{(2)}=\left(I_{a b}^{(0)}+I_{a b}^{(1)}+I_{a b}^{(2)}\right)-\left(I_{a}^{(0)}+I_{a}^{(1)}+I_{a}^{(2)}\right) \\
I_{a}^{(1)}+I_{a}^{(2)}=\frac{\left(I_{a b}^{(0)}-I_{c a}^{(0)}\right)+\left(I_{a b}^{(1)}-I_{c a}^{(1)}\right)+\left(I_{a b}^{(2)}-I_{c a}^{(2)}\right)}{0} \\
\quad \downarrow \\
\text { because } I_{a b}^{(0)}=I_{k}^{(0)}=I_{c a}^{(0)}
\end{gathered}
$$

$$
\therefore I_{a}^{(1)}+I_{a}^{(2)}=\left(I_{a b}^{(1)}-I_{-a}^{(1)}\right)+\left(I_{a b}^{(2)}-I_{(a)}^{(2)}\right)
$$

* If (1) and (2) are solved for $\Sigma_{a}^{(2)}$, it can be found that:

$$
I_{a}^{(2)}=\sqrt{3} \angle 30 I_{a b}^{(2)}
$$

note: similar expression can be obtained for $I_{b}^{(1)}$ \& $I_{b}^{(2)}$ by replacing ($I_{a b}$) by ($I_{b c}$) $I_{c}^{(1)}, I_{c}^{(2)}$ by replacing ($I_{a b}$) by (Ic)

* symm-components of voltage:
* consider Y connection:

$$
\begin{aligned}
& V_{a b}=V_{a n}-V_{b x} \cdots-(1) \\
& V_{b c}=V_{b x}-V_{a n} \cdots-(2) \\
& V_{c a}=V_{c n}-V_{a n} \cdots-(3)
\end{aligned}
$$

* let ($V_{a n}$) reference for $V_{a_{n}}, V_{b_{n}}, V_{e_{n}}$
, $\left(V_{a b}\right)=s V_{a b}, V_{b c}, V_{c a}$
* now;

$$
\begin{equation*}
V_{a b} \triangleq=\frac{1}{3}\left(V_{a b}+V_{b c}+V_{c a}\right) \tag{4}
\end{equation*}
$$

* sub $1,2,3$ into (4): $V_{a b}^{(0)}=0$
since $V_{a b}^{(0)}=V_{b c}^{(0)}=V_{c a}^{(0)}=0$
\therefore line voltages doesint- have zero seq. comp.
* rewrite (1) in terms of its symm-components:

$$
\begin{align*}
&\left(V_{a b}^{(0)} / V_{a b}^{(U)}+V_{a b}^{(2)}\right)=\left(V_{a n}^{(1)}\right.\left.+V_{a n}^{(1)}+V_{a n}^{(2)}\right) \\
&-\left(V_{b n}^{(9)}+V_{b n}^{(1)}+V_{b n}^{(2)}\right) \\
& \therefore V_{a b}^{(1)}+V_{a b}^{(2)}=\left(V_{a n}^{(1)}-V_{b n}^{(1)}\right)+\left(V_{a n}^{(2)}-V_{b n}^{(2)}\right) \ldots \tag{5}
\end{align*}
$$

\rightarrow Since $\left(V_{a n-}^{(Q)}-V_{b n}^{(9)}\right)=0$

$$
V_{a b}^{(1)}+V_{a b}^{(2)}=\left(V_{a n}^{(4)}-a_{a}^{2} V_{a n}^{(1)}\right)+\left(V_{a n}^{(1)}-a V_{a n}^{(2)}\right)
$$

$$
\begin{equation*}
\Rightarrow V_{a b}^{(1)}+V_{a b}^{(2)}=V_{a n}^{(1)}\left(1-a^{2}\right)+V_{a n}^{(2)}(1-a) \tag{6}
\end{equation*}
$$

by using (2) similar equation can be written for $V_{b c}$:

$$
\begin{aligned}
& V_{b c}^{(1)}+V_{b c}^{(2)}=V_{b n}^{(1)}\left(1-a^{2}\right)+V_{b n}^{(2)}(1-a) \\
& a^{2} V_{a b}^{(1)}+a V_{a b}^{(2)}=a^{2} V_{\text {an }}^{(1)}\left(1-a^{2}\right)+a V_{a n}^{(2)}(1-a) \cdots .(7) \\
& \Rightarrow a * \text { (6) - } 7 \text { : } \\
& V_{a b}^{(1)}\left(a-a^{2}\right)=V_{a n}^{(1)}\left(a\left(1-a^{2}\right)-a^{2}\left(1-a^{2}\right)\right) \\
& \left.+\frac{V_{\text {an }}^{(2)}(a(1-a)-a(1-a)}{0}\right) \\
& V_{a b}^{(1)}\left(a-a^{2}\right)=V_{a n}^{(1)}\left(1-a^{2}\right)\left(a-a^{2}\right) \\
& \text { * } V_{a b}^{(1)}=V_{a n}^{(1)}\left(1-a^{2}\right) \\
& \therefore V_{a b}^{(1)}=\sqrt{3} \angle 30 V_{a n}^{(1)}
\end{aligned}
$$

* if the same 2 equation are solved for $V_{a b}^{(2)}$, it can be found =

$$
V_{a b}^{(2)}=\sqrt{3} \quad-30 V_{a n}^{(2)}
$$

* note: similar equations can be optained for $V_{b c}$ and $V_{c a}$ by:
replacing $\left(V_{a b}\right)$ by $\left(V_{a b c}\right)$ and $\left(V_{a n}\right)$ by $\left(V_{b n}\right)$ and $=\left(V_{a b} / b_{y}\left(V_{c a}\right)\right.$ and $\left(V_{a n}\right)$ by $\left(V_{c n}\right)$
* Power in terms of symm-components:
* conclusions and comments:
\Rightarrow gym - components

$$
\begin{align*}
& I_{a}^{(1)}=\sqrt{3} I_{a b}^{(1)} \angle-30^{\circ} \\
& I_{a}^{(2)}=\sqrt{3} I_{a b}^{(2)} \angle 30 \tag{2}\\
& V_{a b}^{(1)}=\sqrt{3} V_{a}^{(1)} \angle 30 \\
& V_{a b}^{(2)}=\sqrt{3} V_{a n}^{(2)} \angle-30 \tag{4}
\end{align*}
$$

$Z_{D}=\frac{V_{a b}^{(1)}}{I_{a b}^{(1)}}=\frac{\sqrt{3} V_{a n}^{(1)} \angle 30}{I_{a}^{(1)} / \sqrt{3} \angle 30} \quad$ by using 3,1

$$
Z_{D}=\frac{\sqrt{153} V_{a n}^{(1)} \angle 30}{\sqrt{3} I_{a}^{(1)} \angle 30}=\frac{3 V_{a n}^{(1)}}{I_{a}^{(1)}}=3 z_{y}
$$

* power in terms of som. components:

$$
\begin{aligned}
& S \triangleq V_{a n} I_{a}^{*}+V_{b n} I_{b}^{*}+V_{c n} I_{c}^{*} \\
& =\left[\begin{array}{lll}
V_{a_{n}} & V_{b n} & V_{c n}
\end{array}\right]\left[\begin{array}{l}
I_{a} \\
I_{b} \\
I_{c}
\end{array}\right]^{*} \\
& \left.\therefore S=\left[\begin{array}{l}
V_{a n} \\
V_{b n} \\
V_{a n}
\end{array}\right]^{\top}\left[\begin{array}{l}
I_{a} \\
I_{b} \\
I_{c}
\end{array}\right]^{*}=\left[[A]\left[\begin{array}{c}
(0) \\
V_{a}^{(1)} \\
V_{a}^{(2)} \\
V_{a}^{(2)}
\end{array}\right]\right]^{\top} *[A]\left[\begin{array}{c}
I_{a}^{(a)} \\
I^{(1)} \\
I_{a}^{(a)}
\end{array}\right]\right]^{*} \\
& \rightarrow \quad S=\left[\begin{array}{l}
V_{a}^{(9)} \\
V_{a}^{(1)} \\
V_{a}^{(2)}
\end{array}\right]^{\top}[A]^{\top}[A]^{*}\left[\begin{array}{l}
J_{a}^{(9)} \\
I_{a}^{(1)} \\
I_{a}^{(2)}
\end{array}\right]^{*} \cdots \cdots(1) \\
& \text { * }[A]^{\top}=[A]=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & a^{2} & a \\
1 & a & a^{2}
\end{array}\right],\left[A^{*}\right]=\left[\begin{array}{ccc}
* & * & * \\
1^{*} & 1 & 1 \\
1^{*} & a^{2^{*}} & a^{*} \\
1^{*} & a^{*} & a^{2^{*}}
\end{array}\right] \\
& \text { where:- } \\
& \left\{\begin{array}{l}
1^{*}=1 \\
a^{*}=1 \angle-120=1 \angle 240=a^{2} \\
a^{2 *}=1 \angle 240=1 \angle 120=a
\end{array} \quad[A]^{*}=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & a & a^{2} \\
1 & a^{2} & a
\end{array}\right]\right.
\end{aligned}
$$

\Rightarrow Also if can be shown:

$$
\begin{aligned}
& 1+a+a^{2}=0 \\
& {[A]^{\top}[A]^{*}=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & a^{2} & a \\
1 & a & a^{2}
\end{array}\right]\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & a & a^{2} \\
1 & a^{2} & a
\end{array}\right]=\left[\begin{array}{lll}
3 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 3
\end{array}\right] \ldots \text { (2) }}
\end{aligned}
$$

Substitute (2) in (1):

$$
\begin{aligned}
& S=\left[\begin{array}{lll}
V_{a}^{(0)} & V_{a}^{(1)} & V_{a}^{(2)}
\end{array}\right]\left[\begin{array}{lll}
3 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 3
\end{array}\right]\left[\begin{array}{l}
I_{a}^{(0) *} \\
I_{a}^{(1)} \\
I_{a}^{(2)}{ }^{*}
\end{array}\right] \\
& \Rightarrow \quad S=3 V_{a}^{(0)} I_{a}^{(0)^{*}}+3 V_{a}^{(1)} I_{a}^{(1)^{*}}+3 V_{a}^{(2)} I_{a}^{(2)^{*}}
\end{aligned}
$$

A Ex: A balanced Y connected resistive load of 10Ω have the following voltages at its terminals : $V_{a b}=100 \angle 0^{\circ}, V_{b c}=80.8 /-121.44^{\circ}, V_{c a}=90 \angle 130^{\circ} \mathrm{V}$ by assuming that their is no connection to the nuctral of the lond. find:

1) live currents from the symm-comp. of the given lines voltages.
2) the supplied power by using symm-comp. of voltage and current.

* sequence ckt of power system analysis :-
* objective: to find the equivalent Zero, tee, -ve sequence cots of Generator, transformer, line, load.
* consider a 3ph Y connected load:
$V_{a n}=$ phase voltage
$v_{a}=$ voltage between line terminal and ref.

* By kVL.

$$
\begin{align*}
& V_{a}=V_{a n}+I_{n} Z_{n} \tag{1}\\
& V_{b}=V_{b n}+I_{n} Z_{n} \tag{2}\\
& V_{c}=V_{c n}+I_{n} Z_{n} \cdots(2) \tag{3}\\
& I_{n}=I_{a}+I_{b}+I_{c} \\
& C=\left(I_{a}^{(0)}+I_{a}^{(1)}+I_{a}^{(2)}\right)+\left(I_{b}^{(0)}+I_{b}^{(1)}+I_{b}^{(2)}+\left(I_{c}^{(0)}+I_{c}^{(1)}+I_{c}^{(2)}\right)\right. \\
& =\left(I_{a}^{(0)}+I_{b}^{(0)}+I_{c}^{(0)}\right)+\left(I_{a}^{(1)}+I_{b}^{(1)}+I_{c}^{(1)}\right)+\left(I_{a}^{(2)}+I_{b}^{(2)}+I_{c}^{(2)}\right) \\
& \\
& \tag{4}\\
& I_{a}^{(9)}=I_{b}^{(0)}=I_{c}^{(1)} \\
& \Rightarrow \\
& \Rightarrow I_{n}=3 I_{a}^{(9)} \text { (balanced) } \\
&
\end{align*}
$$

* Rewrite 1, 2,3:

$$
\begin{aligned}
& {\left[\begin{array}{l}
V_{a} \\
V_{b} \\
V_{c}
\end{array}\right]=\left[\begin{array}{l}
V_{a n} \\
V_{b n} \\
V_{c n}
\end{array}\right]+3 Z_{n} I_{a}^{(\Phi)}} \\
& \quad=\left[\begin{array}{l}
V_{m n} \\
V_{b n} \\
V_{c n}
\end{array}\right]+3 Z I_{a}^{(0)}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \cdots(5)
\end{aligned}
$$

* rewrite in terms of symm components:

$$
\begin{aligned}
& {[A]\left[\begin{array}{l}
V_{a}^{(a)} \\
V_{a}^{(1)} \\
V_{a}^{(2)}
\end{array}\right]=[A]\left[\begin{array}{l}
V_{a n}^{(0)} \\
V_{a n}^{(1)} \\
V_{a n}^{(2)}
\end{array}\right]+3 Z_{n} I_{a}^{(0)}\left[\begin{array}{l}
1 \\
i \\
1
\end{array}\right] \cdots } \\
\Rightarrow & (6) *[A]^{-1}: \\
& {\left[\begin{array}{l}
V_{a(0)}^{(0)} \\
V_{a}^{(1)} \\
V_{a}^{(2)}
\end{array}\right]=\left[\begin{array}{l}
V_{a n}^{(0)} \\
V_{a n}^{(1)} \\
V_{a n}^{(2)}
\end{array}\right]+3 z_{n} L_{a}^{(0)}[A]^{-1}\left[\begin{array}{l}
1 \\
1
\end{array}\right] \cdots(7) }
\end{aligned}
$$

note: $\quad V_{a x}=z_{y} I_{a}$

$$
V_{b n}=z_{y} I_{b}
$$

$$
V_{c n}=Z_{y} I_{c}
$$

$$
\begin{aligned}
& \Rightarrow \quad[A]\left[\begin{array}{c}
V_{a n}^{(0)} \\
V_{a n}^{(1)} \\
V_{a n}^{(1)}
\end{array}\right]=Z_{y}[A]\left[\begin{array}{l}
I_{a}^{(0)} \\
I_{a}^{(1)} \\
I_{a}^{(2)}
\end{array}\right] \\
& \therefore \quad\left[\begin{array}{l}
(10) \\
V_{a n}^{(1)} \\
V_{a n}^{(1)} \\
V_{a n}^{(2)}
\end{array}\right]=Z_{y}\left[\begin{array}{c}
I_{a}^{(0)} \\
I_{a}^{(1)} \\
I_{a}^{(2)}
\end{array}\right]
\end{aligned}
$$

sub 8 into 7 :

$$
\left[\begin{array}{l}
v_{a}^{(a)} \\
v_{a}^{(1)} \\
v_{a}^{(2)}
\end{array}\right]=z_{y}\left[\begin{array}{l}
I_{a}^{(9)} \\
I_{a}^{(1)} \\
I_{a}^{(2)}
\end{array}\right]+3 z_{n} I_{a}^{(2)}\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \cdots(9
$$

$$
\text { * } \begin{aligned}
& {\left[\begin{array}{c}
v_{a}^{(0)} \\
v_{a}^{(1)} \\
v_{a}^{(2)}
\end{array}\right] }=z_{y}\left[\begin{array}{c}
I_{a}^{(0)} \\
I_{a}^{(1)} \\
I_{a}^{(2)}
\end{array}\right]+3 I_{a}^{(0)} z_{a}\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \\
& V_{a}^{(0)}=z_{y} I_{a}^{(0)}+3 I_{a}^{(9)} z_{a} \ldots-(1) \\
& V_{a}^{(1)}=z_{y} I_{a}^{(1)}+0 \ldots \ldots(2) \\
& V_{a}^{(2)}=z_{y} I_{a}^{(1)} \ldots \ldots(3)
\end{aligned}
$$

* 1,2,3 represent 3 decoupled equations. Hence, these equations can be used to deduce the equivalent sequence cot
(1)

(3)

(2)

$$
\begin{aligned}
\therefore \quad z_{0} & =z_{y}+3 z_{n} \\
z_{1} & =z_{y} \\
z_{2} & =z_{y}
\end{aligned}
$$

tue sequence

* Consider the Δ-comected bad:

$$
\begin{aligned}
& V_{a b}=I_{a b} Z_{\Delta} \\
& V_{b c}=I_{b c} Z_{\Delta} \\
& V_{c a}=I_{c a} Z_{\Delta} \\
& \therefore \quad\left(V_{a b}+V_{b c}+V_{c a}\right)=\left(Z_{\Delta} I_{a b}+I_{b c}+I_{c a}\right) \\
& 0^{k} \\
& \quad 3 V_{a b}^{(0)}=Z_{\Delta}\left(3 I_{a b}^{(0)}\right) \\
& \therefore \quad 0=3 V_{a b}^{(0)}=Z_{\Delta}\left(3 I_{a b}^{(0)}\right) \\
& \therefore \quad V_{a b}^{(0)}=I_{a b}^{(0)}=9
\end{aligned}
$$

\Rightarrow As shown before, line current in Δ connection doesút have Zero sequence component.

Since the Δ has no neutral return earth path

Hence, in converting Δ to its equivalent Y, then there is no connection between nuetral and ref.

* Sequence cots of T.L:
* consider the following section of a symmetrical T.L:

* $Z_{a a}=$ self impedance of each phase conductor
* $Z_{n n}=$ self impedance of neutral
* Z ab $=$ mutual impedance between phases
* Zoan = mutual impedance between the nentral and each phase
* consider the bop (aanina) by KVL :

$$
\begin{aligned}
& V_{a n}=I_{a} Z_{a n}+I_{b} Z_{a b}+I_{c} Z_{a b}+I_{n} Z_{a n}+V_{a n^{\prime}} \\
&-\left(I_{n} Z_{n n}+I_{a} Z_{a n}+I_{b} Z_{n n}+I_{c} Z_{a n}\right) \\
& \therefore \quad V_{a n}-V_{a a_{n}^{\prime}}= I_{a}\left(Z_{a a}-Z_{a n}\right)+I_{b}\left(Z_{a b}-Z_{a n}\right) \\
&+I_{c}\left(Z_{a b}-Z_{a n}\right)+I_{n}\left(Z_{a n}-Z_{a n}\right) \\
& \therefore V_{a n}-V_{a n^{\prime} \prime}= I_{a}\left(Z_{a a-}-Z_{a n}\right)+\left(I_{b}+I_{c}\right)\left(Z_{a b}-Z_{a n}\right) \\
&+I_{n}\left(Z_{a n}-Z_{n n}\right) \quad \because \text { (1) }
\end{aligned}
$$

* Similar equations con be written for phases b, c as follows:

$$
\begin{aligned}
* V_{b n}-V_{b n}^{\prime \prime}=I_{b}\left(Z_{a a}-Z_{a n}\right) & +\left(I_{a}+I_{c}\right)\left(Z_{a b}-Z_{a n}\right) \\
& +I_{n}\left(Z_{a n}-Z_{n n}\right)= \\
* V_{a n}-V_{c n}^{\prime \prime}=I_{c}\left(Z_{a a}-Z_{a n}\right) & +\left(I_{a}+I_{b}\right)\left(Z_{a b}-Z_{a n}\right) \\
& +I_{n}\left(Z_{a n}-Z_{n n}\right)-
\end{aligned}
$$

but: by keel:

* sub 4 into $1,2,3$: and rearrange:

$$
\begin{aligned}
& V_{a n}-V_{a n \prime}^{\prime \prime}= I_{a}\left(Z_{a a}-2 Z_{a n}+Z_{n n}\right) \rightarrow Z_{s} \\
&+I_{b}\left(Z_{a b}-2 Z_{a n}+Z_{n n}\right) \rightarrow Z_{m} \\
&+I_{c}\left(Z_{a b}-2 Z_{a n}+Z_{n n}\right) \ldots(5) \\
& V_{b n}-V_{b n}^{\prime \prime}= I_{a}\left(Z_{a b}-2 Z_{a n}+Z_{n n}\right) \\
&+I_{b}\left(Z_{a n}-2 Z_{a n}+Z_{n n}\right) \\
&+I_{c}\left(Z_{a b}-2 Z_{a n}+Z_{n n}\right) \ldots(6) \\
& V_{a n}-V_{c n}^{\prime \prime}=I_{a}\left(Z_{a b}-2 Z_{a n}+Z_{m n}\right)+ \\
&+I_{b}\left(Z_{a b}-2 Z_{a n}+Z_{n n}\right) \\
&+I_{c}\left(Z_{a a-2}-2 Z_{a n}+Z_{n n}\right) \ldots(7)
\end{aligned}
$$

let: $Z_{s}=Z_{a n}-2 Z_{a n}+Z_{n n}$

$$
Z_{m}=Z_{a b}-2 Z_{a n}+Z_{n n}
$$

let:

$$
\begin{aligned}
& V_{a_{a}^{\prime}}=V_{a n}-V_{a_{n}^{\prime}}^{\prime} \\
& V_{b b^{\prime}}=V_{b n}-V_{b_{n}^{\prime}} \\
& V_{c c^{\prime}}=V_{c n}-V_{c c^{\prime}}
\end{aligned}
$$

* $5,6,7$ can be written as:

$$
\left[\begin{array}{l}
V_{a a^{\prime}} \\
V_{b b^{\prime}} \\
V_{c c^{\prime}}
\end{array}\right]=\left[\begin{array}{lll}
Z_{s} & Z_{m} & Z_{m} \\
Z_{m} & Z_{s} & Z_{m} \\
Z_{m} & Z_{m} & Z_{s}
\end{array}\right]\left[\begin{array}{l}
I_{a} \\
I_{b} \\
I_{c}
\end{array}\right] \ldots(b)
$$

* express (8) in terms of symm. components:

$$
\text { [A] }\left[\begin{array}{l}
V_{a a^{\prime}}^{(0)} \\
V_{b=a a^{\prime}}^{(1)} \\
V_{a a^{\prime}}^{(2)}
\end{array}\right]=\left[\begin{array}{lll}
Z_{s} & Z_{m} & Z_{m} \\
Z_{m} & Z_{s} & Z_{m} \\
Z_{m} & Z_{m} & Z_{s}
\end{array}\right][A]\left[\begin{array}{l}
I_{a}^{(0)} \\
I_{a}^{(1)} \\
I_{a}^{(2)}
\end{array}\right] \ldots(9)
$$

* multiply @ by $[A]^{-1}$:

$$
\left.\begin{array}{rl}
{\left[\begin{array}{l}
v_{a a^{\prime}}^{(0)} \\
v_{a a a^{\prime}}^{(1)} \\
v_{a a^{\prime}}^{(2)}
\end{array}\right]=} & {[A]^{-1}\left[\begin{array}{lll}
z_{s} & z_{m} & z_{m} \\
z_{m} & z_{s} & z_{m} \\
z_{m} & z_{m} & z_{s}
\end{array}\right][A]}
\end{array}\right]\left[\begin{array}{l}
I_{a}^{(0)} \\
I_{a^{(1)}}^{(1)} \\
I_{a}^{(2)}
\end{array}\right]
$$

$$
\begin{aligned}
\Rightarrow \quad V_{a a}^{(9)} & =I_{a}^{(0)}\left(z_{s}+2 z_{m}\right)=I_{a}^{(0)}\left(Z_{a a}+2 z_{a b}-6 z_{a n}+3 z_{a n}\right) \\
V_{a a^{\prime}}^{(1)} & =I_{a}^{(1)}\left(Z_{a a}-Z_{a b}\right) \rightarrow Z_{1} \\
Z_{a a^{\prime}} & =I_{a}^{(2)}\left(Z_{a a}-Z_{a b}\right) \rightarrow Z_{2}
\end{aligned}
$$

$$
\left.\Rightarrow \quad \begin{array}{l}
v_{a a^{\prime}}^{(0)}=I_{a}^{(0)} Z_{0} \\
V_{a a^{\prime}}^{(1)}=I_{a}^{(1)} Z_{1} \\
v_{a a^{\prime}}^{(2)}=I_{a}^{(2)} Z_{2}
\end{array}\right)
$$

$$
\text { * where: } z_{1}=z_{2}
$$

$$
z_{a a}=R+j \omega L
$$

tve sequience -ve sequence

* comment:
usually T.L have overhead conductor (2 or more) which are grounded at regular points
there conductors with the
 earth provide the so called:
(effective neutral return part)
* note: $V_{a a^{\prime}}^{(0)}=V_{a n}^{(0)}-V_{a a^{\prime}}^{(0)}$

$$
V_{a a^{\prime}}^{(1)}, V_{n a}^{(2)}
$$

* note: by applying some analy sis and procedure one can find sequence. cts of gen. + transf.
* Sequence cols of 3 phase generator:
(+ we)

(-le)

(Zero)

where:

$$
\begin{aligned}
& Z_{1}=z_{2}=R_{+j n}\left(L_{s}+M_{s}\right) \\
& Z_{j}=R+j \omega\left(L_{s}-2 n_{s}\right)
\end{aligned}
$$

* 3-ph transformer:
each side (1 and 2) can be connected as Δ or Y hence as shown before there are 4 types of connections $Y Y, \Delta \Delta, \Delta Y, Y \Delta$

tue:

-re:

where: $z_{1}=z_{2}=z_{\text {eq }}$ of the transformer
Zero:

$$
z_{0}=z_{e q}
$$

\& the connection between (1 and ${ }^{\prime \prime}$) and (2^{\prime} and $2^{\prime \prime}$) depends on the type of comection for the given side:
i) for Y connection, then connect (1', 11) and $O R \quad\left(2^{\prime}, 2^{\prime \prime}\right)$ by an impedance $=3 Z_{n}$ where Z_{n} = earthing impedance of the neutral.
ii) for Δ connection, then short acct 1" or $2^{\prime \prime}$ to the the ref.

* illustration:

Y \triangle

* Sequence networks:

Having produced seq. celts. of individual components, one can produce the seq. networks of a given power system as illustrated- by the following eeg:

* for the given power system draw the per unittue, $-v e, 0$ seq. networks by using phase values of (50 MJA) and (13.8 kV), also the Zero seq impedance of T.L are, for $B C, Z_{0}=210$ \&

$$
C E, Z_{0}=250 \Omega
$$

* put base voltages
* note:

The pu values of each component are based on the rating of each component.

* +re seq:

* -ve sequence network is the same as the bute with the sources replaced by S.C
* Zero seq:

* Comments:
i) for example: find Zeqn between C and the ref

$$
\begin{gathered}
Z_{\text {eq }}=(j 0.217+j 0.2) / /(j 0.258+j 0.17) \\
=j 0.21
\end{gathered}
$$

* similarly by using et anlaysis, one can find equ. cot. for $(+v e)$ and ($-v e$) seq. networks.

* the interconnection between tue seq. networks depend on the type of fault e
* Single line - to - ground fanlt
* from fig (i):

$$
\begin{align*}
& I_{b}=I_{c}=0 \\
& V_{a}=I_{a} Z \tag{2}
\end{align*}
$$

(1)

$$
\begin{gathered}
\Rightarrow \quad I_{a}^{(0)}+a^{2} I^{(1)}+a I_{2}^{(2)} \\
=I_{a}^{(9)}+a I^{(1)}+a^{2} I^{(2)} \\
\therefore I^{(1)}\left(a^{2}-a\right)=I^{(2)}\left(-a+a^{2}\right) \\
\therefore \quad I_{0}^{(1)}=I^{(2)}
\end{gathered}
$$

$z_{f}=$ fant imped.
(1) $\Rightarrow \quad I_{6}=0$

$$
\begin{equation*}
I^{(0)}+a^{2} I^{(1)}+a I^{(2)}=0 \tag{4}
\end{equation*}
$$

* sub 3 inte 4:

$$
\begin{gather*}
I^{(0)}+I^{(1)} \underbrace{\left(a^{2}+a\right)}=0 \\
\therefore \quad I^{(0)}-I^{(1)}=0 \\
 \tag{5}\\
\\
I^{(0)}=I^{(1)}=I^{(2)} f
\end{gather*}
$$

(2) \Rightarrow

$$
\begin{gathered}
v^{(9)}+v^{(1)}+v^{(2)}=z_{f}\left(I^{(1)}+I^{(1)}+I^{(2)}\right) \\
v^{(9)}+v^{(1)}+v^{(2)}=3 z_{f} I^{(0)}---6
\end{gathered}
$$

* Sequence networks should be connected in such away that (5) and (6) are satisfied:

$$
\begin{aligned}
& \therefore \quad I^{(0)}=I^{(1)}=I^{(2)}=\frac{E}{z_{0}+Z_{1}+Z_{2}+Z_{f}} \\
& V^{(0)}=-I^{(0)} Z_{0} \\
& V^{(1)}=E-I^{(1)} Z_{1} \\
& V^{(2)}=-I^{(2)} Z_{2}
\end{aligned}
$$

* Having found [IO12] and [Va12] one can find [I abc] and [Vabc]
* e.g.

* for the given single line diagram, when the forminat voltage of gen is 20 kv , a single tine to ground fault occur at the high voltage side,
\rightarrow Find the initial symmetrical current and the phases of the generator by using phase values of 20 kV and a 100 MVA ?

$$
\begin{aligned}
& \text { note hare }
\end{aligned}
$$

$$
I_{G}^{(1)}=1.429 \angle-90-30
$$

$$
\text { * } I_{G}^{(2)}=1.429<-90+30=-60
$$

$I_{G}^{(9)}=0$ because of the open circuit

$$
\rightarrow \quad\left[I_{a b c}\right]_{G}=[A]\left[I_{012}\right]_{G}=\left[\begin{array}{cc}
2.475 & <-90 \\
2.475 & <90 \\
0
\end{array}\right]
$$

* Comments:

$$
\begin{aligned}
\quad I_{\text {bale }}=I_{\text {rated }} & =\frac{100 * 10^{6}}{\sqrt{3} * 20 * 10^{3}}=2886.8 \mathrm{~A} \\
\therefore I_{\text {fault }} & =2.475 * 2886.8 \\
& =7144.7 \mathrm{~A}
\end{aligned}
$$

voltage sag: large variation in the RMS voltage outside its specified limits.

* in power system quality there are the problems of voltage sag and intermption which occur during SC faults.

* line to - line fault:

$$
\begin{align*}
& I_{a}=0 \\
& I_{b}=-I_{c} \\
& V_{b}=I_{b} z_{f}+V_{c} \ldots-(3) \tag{3}\\
& I^{(9)} \triangleq \frac{1}{3}\left[I_{a}+I_{b}+I_{c}\right] \text { (4) sub } 1,2 \text { into (4) } \tag{4}\\
& \Rightarrow I^{(0)}=\frac{1}{3}\left(0+I_{b}-I_{b}\right) \\
& I^{(9)}=0
\end{align*}
$$

since, $V^{(0)} \triangleq-I^{(0)} Z_{0}$

$$
\therefore \quad v^{(0)}=0
$$

* zero seq. network is isolated:
(2)

$$
\begin{gather*}
\Rightarrow I^{(0)}+a^{2} I^{(1)}+a I^{(2)}=-\left(I^{(2)}+a I^{(1)}+a^{2} I^{(2)}\right) \\
I^{(1)}\left(a^{2}+a\right)+I^{(2)}\left(a+a^{2}\right)=0 \\
\therefore I^{(1)}=-I^{(2)}-\text { - (6) } \tag{6}
\end{gather*}
$$

(3)

$$
\begin{align*}
& \Rightarrow v^{(9)}+a^{2} v^{(1)}+a v^{(2)}=Z_{f}\left(I^{(0)}+a^{2} I^{(1)}+a I^{(2)}\right) \\
&+\left(v^{(0)}+a v^{(1)}+a^{2} v^{(2)}\right) \\
& v^{(1)}\left(a^{2}-a\right)-v^{(2)}\left(a^{2}-a\right)=z_{f}\left(a^{2} I^{(1)}-a I^{(1)}\right) \\
&=z_{f} I^{(1)}\left(a^{2}-a\right) \\
& v^{(1)}-v^{(2)}=z_{f} I^{(1)} \tag{7}
\end{align*}
$$

* connect seq. networks to sitisfy 5,6,7

A L-L font:

Ex: solve the previous example by assuming L-L fault:

$$
\begin{aligned}
& I^{(1)}=-I^{(2)}=\frac{E}{Z_{1}+z_{2}+Z_{f}} \\
& v_{1}=E-I^{(\prime \prime} z_{1} \\
& v_{2}=-I^{(2)} z_{2}
\end{aligned}
$$

* line- line - ground fanlt:

$$
\begin{align*}
& \therefore \quad I_{a}=0 \tag{1}\\
& V_{b}=V_{c} \tag{2}\\
& V_{b}=Z_{f}\left(I_{b}+I_{c}\right) \tag{3}
\end{align*}
$$

$$
\begin{aligned}
& (1) \Rightarrow I^{(0)}+I^{(1)}+I^{(1)}=0 \\
& I^{(0)}=-\left(I^{(1)}+I^{(2)}\right) \ldots(4) \\
& \begin{array}{c}
(2) \Rightarrow V^{(9)}+a^{2} v^{(1)}+a V^{(2)}=V^{(9)}+a V^{(1)}+a^{2} V^{(2)} \\
V^{(1)}\left(a^{2}-a\right)=V^{(2)}\left(a^{2}-a\right) \\
\therefore V^{(1)}=V^{(2)}
\end{array}
\end{aligned}
$$

$$
\text { (3) } \begin{aligned}
\Rightarrow v^{(0)}+a^{2} v^{(1)}+a v^{(2)}=z_{f}\left(I^{(0)}+a^{2} I^{(1)}\right. & +a I^{(2)}+I^{(0)} \\
& +a I^{(1)}+a^{2} I^{(2)}
\end{aligned}
$$

$$
\begin{aligned}
\leadsto V^{(0)}+V^{(1)}\left(a^{2}+a\right) & =z_{f}\left(2 I^{(0)}+I^{(1)}\left(a^{2}+a\right)+I^{(a)}\left(a^{2}+a\right)\right) \\
\therefore \quad\left(V^{(0)}-v^{(1)}\right) & =Z_{f}\left(2 I^{(0)}-I^{(1)}-I^{(a)}\right) \\
\therefore \quad & =z_{f}\left(2 I^{(0)}-\left(I^{(1)}+I^{(0)}\right)\right) \\
& =3 Z_{f} I^{(0)}
\end{aligned}
$$

$$
\therefore \quad V^{(0)} V^{(1)}=3 z_{f} I^{(0)}, \ldots(6)
$$

* connect the sequence cats in such away to satisfy $3,5,6$:

$$
\begin{aligned}
& \rightarrow I^{(1)}=\frac{E}{z_{1}+\left(\left(z_{0}+3 z_{f}\right) / / z_{2}\right)} \\
& \rightarrow I^{(0)}=-I^{(1)} \frac{z_{0}}{Z_{2}+\left(z_{0}+3 z_{f}\right)} \\
& \rightarrow I^{(0)}=-\left(I_{1}+I_{2}\right) \\
& \\
& \rightarrow v^{(0)}=-I^{(0)} z_{0} \\
& \rightarrow v^{(1)}=E-I^{(1)} z_{1} \\
&
\end{aligned} \quad \begin{aligned}
& \text { (2)}=-I^{(2)} z_{2}^{\prime \prime}
\end{aligned}
$$

* e.g: Solve the previous e.g for L-L-G fanlt:

* by sub:

$$
\begin{aligned}
\rightarrow I^{(1)} & =\frac{1 \angle 0}{j 0.3+(j 0.3 / / j 0.1)} \\
& =2.67 \angle-9
\end{aligned}
$$

$$
\begin{aligned}
\rightarrow v^{(0)}=v^{(2)} & =v^{(1)}=E-I_{1} z_{1} \\
& =120-(2.67(-\infty 0)(j 0.03) \\
& =0.2
\end{aligned}
$$

$$
\begin{aligned}
& \rightarrow \therefore I^{(2)}=\frac{-V^{(2)}}{Z_{2}}=0.67 \angle 90 \\
& \rightarrow I^{(1)}=\frac{-V^{(0)}}{Z^{(1)}}=j 2=2 \angle 90
\end{aligned}
$$

* for the Generator:

$$
\begin{aligned}
I_{g}^{(1)} & =2.67 \angle-90-30=-120 \\
I_{g}^{(2)} & =0.67\langle 90+30=120 \\
I_{g}^{(0)} & =0 \\
\Rightarrow\left[I_{a b c}\right] & =[A]\left[I_{a c}\right] \ldots . .
\end{aligned}
$$

* Summary.

The results of the three types of faults for the same system are as follows:

* Symm. current	$L-G$		$L-L$	$L-L-G$
$I^{(1)}$	$1.429<-120$		$1.67(-120$	$2.67 \angle-120$
$I^{(2)}$	$1.429 \angle-60$	$1.67<-60$	$0.67<120$	
$I^{(1)}$	0	0	0	

$\Rightarrow\left[I_{a b c}\right]=[A]\left[I_{012}\right]$ for each.

* Having performed fault analysis, which value of fanti current is used to set the setting of protection system component. (search)
* Load flow or power flow:
what?: defenition: load flow is the conclusions of the voltages of the busbars at a given power system for a given load condition.
* having found voltages, one can find other quantities:

1) current in the lines
2) power flow in the power sss. components
3) loses in the system.

Why? objective: load flow analysis is used in the planning, design, and operation of power sys.

How? Mathematical formulation of the load flow problem:

* consider a given busbar say the $i^{\text {th }}$ busbar
$\overbrace{G_{i}} \overbrace{D_{i}}^{S_{1}} S_{G i}=$ complex generated power at
$S_{D_{i}}=$ demand power at the $i^{\text {th }}$ busbar (i.e: load)
$S_{i}=$ complex power entering the $i^{\text {th }}$ busbar
* let : $V_{i}=$ voltage at the $i^{\text {th }}$ busbar

$$
\begin{equation*}
\therefore \quad V_{i}=\left|V_{i}\right| \angle \delta_{i} \tag{1}
\end{equation*}
$$

* by using the concept of bus admittance matrix

$$
\begin{gather*}
{[I]=[y][v]} \\
I_{i}=\sum_{j=1}^{N} y_{i j} v_{j} \tag{2}
\end{gather*}
$$

$\left\{\begin{array}{l}I_{i}=\text { current entering the busbar }\end{array}\right.$
$N=$ No. of busbars

* let: $\quad y_{i j}=\left|y_{i j}\right| \angle \theta_{i j} \ldots$ (3)

Now; $\quad S_{i} \triangleq V_{i} I_{i}^{*} \ldots$ (4)

* sub $1,2,3$ info 4 :

$$
\begin{aligned}
S_{i} & =\left|v_{i}\right| \angle \delta_{i}\left(\sum_{j=1}^{N} y_{i j} \angle \theta_{i j} *\left|v_{j}\right| \angle \delta_{i}\right)^{*} \\
& =\left|v_{i}\right| \angle \delta_{i} \sum_{j=1}^{N}\left|y_{i j}\right|\left|v_{i}\right| /\left(-\delta_{j}-\theta_{i j}\right) \\
& =\sum_{j=1}^{N}\left|v_{i}\right|\left|v_{j}\right|\left|y_{i j}\right| \angle\left(\delta_{i}-\delta_{j}-\theta_{i j}\right)
\end{aligned}
$$

since: $\quad S_{i}=P_{i}+Q_{i}$

$$
\begin{align*}
& \therefore \quad P_{i}=\sum_{j=1}^{N}\left|N_{i}\right|\left|V_{j}\right|\left|Y_{i j}\right| \cos \left(\delta_{i}-\delta_{j}-\theta_{i j}\right) \ldots \text { (5) } \\
& \underline{\underline{Q_{i}}}=\sum_{j=1}^{N}\left|V_{i}\right|\left|V_{j}\right|\left|Y_{i j}\right| \sin \left(\delta_{i}-\delta_{j}-\theta_{i j}\right) \ldots \text { (6) } \tag{6}
\end{align*}
$$

* Comments:

1) equations 5,6 are called (power flow equations)
2) if the voltages are known then $\left(P_{i}\right)$ and $\left(Q_{i}\right)$ can be calculated, i.e: P_{i}, cal

$$
Q_{i}, \text { cal }
$$

ch 9:

$$
\begin{aligned}
& \text { Si } \xrightarrow[S_{g i}]{\downarrow} \xrightarrow{S_{i}} \mid \text { if } P_{G i}=\text { scheduled gen. power } \\
& P_{D_{i}}=\text { load }= \\
& \left\{\begin{array}{l}
P_{s c h}=P_{G i}-P_{D i} \\
Q_{s c h}=Q_{\text {Gi }}-Q_{D i}
\end{array}\right.
\end{aligned}
$$

* Hence in the process of lead flow solution

$$
P_{\text {cal }} \neq P_{\text {sch }} \text { and } Q_{\text {cal }} \neq Q_{\text {sch }}
$$

* one may say that there is a power mismach:

$$
\begin{aligned}
& \Delta P_{i}=P_{\text {sch ;i }}-P_{\text {cal }} ; \\
& \Delta Q_{i}=Q_{\text {sch }, i}-Q_{\text {cal }, i}
\end{aligned}
$$

\Rightarrow Therefore a solution is obtained when ΔP i and $\Delta Q_{i}=0$, Hence one may say that
a power balance is obtained. Consequently there are 2 functions to be satisfied.

$$
\begin{aligned}
& g_{i}=P_{\text {rh }}-P_{\text {cal }}=\left(P_{\text {Gi }}-P_{\text {Di }}\right)-P_{\text {cal }}=0 \\
& g_{i}^{\prime \prime}=Q_{\text {sch }}-Q_{\text {cal }}=\left(Q_{\text {Gi }}-Q_{\text {Di }}\right)-Q_{\text {cal }}=0
\end{aligned}
$$

\rightarrow In the 2 equations of the power flow，there are 4 unknowns：$P_{i}, Q_{i},\left|V_{i}\right|, S_{i}$
＊Hence to overcome this problem，one has to specify values for 2 unknows and calculate values for other 2.

\rightarrow therefore，in practice 3 types of busbars are specified as follows：
i）load bus ：this is a non－generator bus ，Hence $P_{G i}=Q_{G i}=0 \quad \therefore$（unknowns $\left.\rightarrow\left|V_{i}\right|, s_{i}\right)$ since load on the bus can be estimated by lead forcast or historical data or measurement This is usually for P_{D} ，hence by assuming certain power factor for egg：0．85， then Q_{D} can be found：$Q_{D}=P_{D} \tan \theta$ $\theta=$ P．F（angle）

$$
\therefore Q_{i}, \text { sch }=0-Q_{D i}, \quad \therefore P_{i}, \text { sch }=0-P_{D i}
$$ hance this bus is also called $P Q$－bus

\therefore at this bus ΔP_{i} and ΔQ_{i} are to be satisfied．
ii) Voltage controlled bus: this is usally has a generator by means of its prime mover, one can control (P_{i}), and by means of its excitation \rightarrow one can control $\left|V_{i}\right|$
\therefore at this busbar $\left(P_{i}\right)$ and $\left|V_{i}\right|$ are specified here $\left(Q_{i}\right)$ will be calculated when the load flow is complete so the unknowns here is Si
it is also called $P V$-bus
\rightarrow here only $\Delta p_{i}=0$ to be satisfied
iii) reference or slack busbar: as a convention busbar \#1 is taken as a slack, here SI is specified, and taken as the convention $=0^{\circ}$.

Here (P_{1}) and $\left(Q_{1}\right)$ can't be satisfied in advance, as will be explianed later.
\rightarrow Therefore, no need to satisfy $(\Delta P=0)$ and $(\triangle Q=0)$, at each busbar: $P_{i} \triangleq P_{G_{i}}-P_{D_{i}}$ for the total number of busbars $=N$ there are N equations like (1)
\therefore summating these equations:

$$
\sum_{i=1}^{N} P_{i}=\sum_{i=1}^{\sum_{i=1}^{N} P_{G i}}-\underbrace{\left.\sum_{i=1}^{N} P_{D i}\right)}_{i=1}=P_{\text {losel }} \text { demand }
$$

ratal generation a
\longrightarrow total demand or load

$$
\begin{aligned}
& \Rightarrow \sum_{i=1}^{N} P_{i}=\sum_{i=1}^{N} P_{G_{i}}-\sum_{i=1}^{N} P_{P_{i}}=P_{\text {losses }} \\
& \Rightarrow P_{\text {loses }}=\sum 3|I|^{2} R
\end{aligned}
$$

this should be supplied the slack bus

* Similarly: $\quad \sum Q_{i}=\sum Q_{G i}-\sum Q_{D i}=Q$ bosses (reactive power loss)
* for the slack bus: $S_{1}=P_{\text {loss }}+j Q_{\text {ass }}$
* Conclusion:

The unknown in the bad flow problem are called state or dependent variables.
Hence the number of state variables determine the number of equations to be solve as illustrated by table (9.1) study.

$$
\begin{aligned}
& \rightarrow \quad i=1 \\
& \rightarrow \quad i=2 \ldots, N_{g+1} \\
& \rightarrow \quad i=\& N_{g+2} \ldots, N
\end{aligned}
$$

$$
\begin{aligned}
& \text { equations }= 2 N-N g-2 \\
& N=10 \rightarrow 20-3-2=15 \text { equations } \\
& N g=3
\end{aligned}
$$

* Gauss - seidel method:

This method is based on the power flow equations as follows:

$$
\begin{aligned}
& S_{i}=V_{i} I_{i}^{*} \\
& S_{i}^{*}=V_{i}^{*} I_{i}
\end{aligned}
$$

to simplify, let the system has 4 busbars with bus 1 is taken as a slack.

$$
\begin{aligned}
* \text { bus } 2 \rightarrow S_{2}^{*} & =V_{2}^{*} I_{2} \\
P_{2}-j Q_{2} & =V_{2}^{*}\left(\sum_{j=1}^{4} Y_{i j} V_{j}\right) \\
& =V_{2}^{*}\left(Y_{21} V_{1}+Y_{22} V_{2}+Y_{23} V_{3}+Y_{24} V_{4}\right) \\
\therefore V_{2}^{*} & =\frac{1}{Y_{22}}\left(\frac{P_{2}-j Q_{2}}{V_{2}^{*}}-\left(Y_{21} V_{1}+Y_{23} V_{3}+Y_{24} V_{4}\right)\right) \ldots \text { (1) }
\end{aligned}
$$

* Similarly one can write equations for V_{3} and V_{y} as:

$$
\begin{aligned}
& V_{3}=\frac{1}{Y_{33}}\left(\frac{P_{3}-j Q_{3}}{V_{3}^{*}}-\left(Y_{31} V_{1}+Y_{32} V_{2}+Y_{34} V_{4}\right)\right) \\
& V_{4}=\frac{1}{Y_{44}}\left(\frac{P_{4}-j Q_{4}}{V_{4}^{*}}-\left(Y_{41} V_{1}+Y_{42} V_{2}+Y_{43} V_{3}\right)\right) \ldots \text { ? }
\end{aligned}
$$

\rightarrow here it is assumed that $2,3,4$ are $P Q$ buses

* Procedure:
i) on the RHS of $2,3,4$ one substitute the assumed solution and specified values
ii) initially one assume solutions for the unknowns $V_{2}^{(0)}, V_{3}^{(0)}, V_{4}^{(0)}$ usually $V_{2}^{(9)}=V_{3}^{(0)}=V_{4}^{(0)}=120$ this is called: flat start.
iii) always use most recent values

$$
\Rightarrow V_{2}^{(11)}=\frac{1}{Y_{22}}\left(\frac{P_{2}-j Q_{2}}{V_{2}^{(0)}}-\left(Y_{21} V_{1}+Y_{25} V_{3}^{(0)}+Y_{24} V_{4}^{(0)}\right)\right)
$$ specified

$$
v_{1}=120
$$

$$
\begin{aligned}
& V_{3}^{(1)}=\frac{1}{Y_{33}}\left(\frac{P_{3}-j Q_{3}}{V_{3}^{(0) *}}-\left(Y_{31} V_{1}+Y_{32} V_{2}^{(1)}+Y_{34} V_{4}^{(0)}\right)\right) \\
& V_{4}^{(1)}=\frac{1}{Y_{44}}\left(\frac{P_{4}-j Q_{4}}{V_{4}^{(0) *}}-\left(Y_{41} V_{1}+Y_{42} V_{2}^{(1)}+Y_{43} V_{3}^{(1)}\right)\right)
\end{aligned}
$$

$\therefore 1^{\text {st }}$ iteration is completed

* check that for all buses $\left|V_{i}^{(k)} V_{i}^{(k-1)}\right| \leq \epsilon$ where E is certain specified tolerance, e.g: $\left(E=10^{-6}\right)$
\rightarrow if yes \rightarrow solution is obtained
$N_{0} \rightarrow$ go to next iteration
* The general defining equation is:

$$
V_{i}^{(k)}=\frac{1}{Y_{i i}}\left(\frac{P_{i}-j Q_{i}}{V_{i}^{(k-1)^{*}}}-\sum_{j=1}^{i-1} Y_{i j} V_{j}^{(k)}-\sum_{j=i+1}^{N} Y_{i j} V_{j}^{(k-1)}\right)
$$

(k : \# of iteration)

* eng $9.2 \cdot(\rho 337):$

$$
\begin{aligned}
& \Rightarrow L_{12} \rightarrow Z=0.01008+j 0.05040=0.05 \angle 78.69 \\
& \Rightarrow Y_{\text {line }}=G+j \beta=\frac{1}{z}=\frac{1}{0.05 \angle 78.69} \\
&=3.815629-j 19.078144
\end{aligned}
$$

* total charging MVAR is related to stent capacitors of the line:

$$
\left.\left.\begin{array}{rl}
\rightarrow V_{A R} A R \text { total }= & 3 V_{p} I_{p}=3 V_{p}\left(V_{p} w_{c}\right) \\
& \uparrow \neq 3 V_{p}^{2} \cdot w_{c}=3 V_{p}^{2} Y_{\text {shat }} \\
\text { phase } \\
\text { quality }
\end{array}\right)=\frac{10.25 * 10^{6}}{3\left(\frac{\left.230 * 10^{3}\right)^{2}}{\sqrt{3}}=\frac{10.25}{(230)^{2}}(\$)\right.} \begin{array}{rl}
3 V_{p}^{2}
\end{array}\right)
$$

* Here it is assumed that each load has a power factor: $p f=0.85$ lagging

$$
\begin{aligned}
& \rightarrow \text { Bus 1 } \\
& P_{L}=50 \\
& \quad Q_{\text {a }} Q_{L}=P_{L} \tan \theta=50 \tan \left(\cos ^{-1}(0.85)\right) \\
&=30.99
\end{aligned}
$$

* flow chart:

DATE Wednesdy 23/12.
(page 339)

$$
\begin{aligned}
& \rightarrow P_{2, \text { sch }}=P_{2 \text { gen }}-P_{2} \text {, load }=-P_{2}, \text { bod }=-1.7 \\
& \rightarrow Q_{2}, \text { sch }=Q_{2}, \text { gan }-Q_{2, \text { bad }}=-Q_{2} \text {,bad }=1.0535 \\
& \rightarrow V_{2}^{(0)}=1 \angle 0 \\
& \rightarrow V_{1} \text { (slack bus) }=1 \angle 0 \\
& \rightarrow V_{3}^{(0)} \notin \text { flat start }=1 \angle 0 \\
& \rightarrow V_{4}=\left|V_{4}\right| \angle 0^{\circ}=1.02 \angle 0
\end{aligned}
$$

$\uparrow{ }_{\text {specified }} \uparrow$

* by substitution:

$$
V_{2}^{\prime \nu}=0.983564-j 0.032316
$$

in order to accebrate the process of convergence, then the calculated value of $v_{2}^{(1)}$ has to be modified as follows:
\# of
iteration $\rightarrow(k)$

$$
\Rightarrow V_{i, \text { acc }}=V_{i, \text { acecection }}^{(k-1)}+\alpha\left(V_{i}^{k}-V_{i, a c c)}^{(k-1)}\right) \ldots-(9 \cdot 21)_{\text {Look }}
$$

$$
1<\alpha<2
$$

usually: $\alpha=1.6$

$$
\begin{aligned}
& \Rightarrow V_{2, a c c}^{(1)}=V_{2, a c c}^{(0)}+1.6 \prod_{\text {calculated }}^{\left(V_{2}^{(1)}-V_{2, a c c}^{(0)}\right)} \\
& \text { (page: 340): } \quad=110+1.6\left(V_{2}^{(1)}-V_{2}^{(9)} \text {, ace }\right) \\
& \uparrow \\
& \text { calculated } \\
& =110+1.6[(0.98 \cdots-j 0.03 \ldots)-120] \\
& V_{2, \text { ace }}^{(1)}=0.97 \cdots-j 0.05 \cdots
\end{aligned}
$$

* Next, apply the same procedure for bus 3 to find $V_{3}^{(1)}$ (use $\left.v_{2}^{(1)}, a c c\right)$, then find $V_{3, a c c}^{(1)}$
* Next evaluate $V_{4}^{(1)}$
\Rightarrow the $1^{\text {st }}$ thing evaluate $Q_{4}^{\prime \prime}$ why?
* for any 3 -phase synch. generator, it has the following characteristics:

$$
\text { constraints } \Rightarrow P_{\min } \leqslant P \leqslant P_{\text {max }} \quad \left\lvert\, \begin{gathered}
\text { max } \\
Q_{\text {min }} \leqslant Q \leqslant Q_{\text {max }} \\
P_{\text {min }}
\end{gathered}\right.
$$

\rightarrow But for PV -bus: $|P|$ is specified, and one can specify a value within its limit

$$
\begin{aligned}
& \rightarrow \quad H_{0} w ? ~ V_{i} I_{i}^{*} \\
& S_{i}^{*}=V_{i}^{*} I_{i} \\
& \therefore \quad P_{i}-j Q_{i}=V_{i}^{*} I_{i} \\
& \therefore \quad Q_{i}=-* I_{m}\left[V_{i}^{*} I_{i}\right] \\
& \quad L_{\text {imaginary }} \\
& \therefore Q_{i}=-* \operatorname{Im}\left[V_{i}^{*} \sum_{j=1}^{N} Y_{i j} V_{j}\right]
\end{aligned}
$$

* in our example: $i=4, \quad N=4, \quad k=1$ barbers

$$
\begin{aligned}
\rightarrow Q_{4}^{(1)} & =-* \operatorname{Im}\left\{V_{4}^{(0) *}\left[Y_{41} v_{1}+Y_{42} v_{2, a c c}^{(1)}+Y_{43} v_{3, \text { acc }}^{(1)}+Y_{44}^{\left.()_{4}\right)}\right]\right. \\
& =1.654151
\end{aligned}
$$

* check that: $Q_{4_{\text {min }}}<Q_{4}^{(1)}<Q_{4}$ max
\rightarrow if Yes: go and calculate $V_{4}^{u /}$ by using the same equation for $P Q$-buses, $O \sin$, $Q_{4}^{(1)}$, sch

$$
\Rightarrow v_{4}^{(u)}=\left|v_{4}^{w}\right|<v_{4}^{(u)}
$$

* Next multiply $V_{4}^{\prime \prime \prime}$ by the factor: $\frac{\left|V_{4}\right| \text { specified }}{\left|V_{4}^{(1)}\right|}$

$$
\begin{aligned}
& \rightarrow V_{4}^{(1)}(\text { modified })=\left|V_{4}^{(1)}\right|\left\langle V_{4}^{(1)} * \frac{\left|V_{4}\right| \text { specified }}{\left|V_{4}^{(1)}\right|}\right. \\
& \\
& \rightarrow V_{4}^{(1)} \text { (modified) }=\left|V_{4}\right|_{\text {specified }} \mid V_{4}^{(1)}
\end{aligned}
$$

\rightarrow if N_{0} : then set Q_{4} at the violated limit, ie: $Q_{y}=Q_{4}$ max , if $Q_{4}^{\prime \prime}>Q_{4 \text { max }}$ $=Q_{4 \text { min }} \quad Q_{4}^{(1)}<Q_{4}$ min
\rightarrow and since now P_{4} and Q_{4} are specified then convert busbar 4 from PV-bus to $P Q$ bus and calculate $V_{4}^{(1)}$, using the same equation of $P P_{\text {-buses }}$
\rightarrow next, check that $\left(\left|V_{i-}^{(k)} V_{i}^{(k-1)}\right| \leqslant \epsilon\right)$ for All bosses certain specified tolerance
if Yes: solution is obtained
if \bar{N}_{0} : go to next iteration

* to find $V_{2}^{(2)}, V_{3}^{(2)}, V_{4}^{(2)} \rightarrow 1^{\text {st }}$ check Q_{4} if within limits \rightarrow Reinstate bus 4 in PV bus kep $\left|V_{4}\right|=\left|V_{4}\right|$ specif.

DATE Monday 28/12

* Nevelson Raphson method, for power - flow solution :

This method is based on the taylor's series expansion of the function with 2 or more variables

* procedure :
i) mathematical concept
ii) iss application to load flow
* Mathematical concept.
let the function: $h_{1}\left(x_{1}, x_{2}, u\right)=b_{1}$ and let the function: $h_{2}\left(x_{1}, x_{2}, u\right)=b_{2}$
$x_{1}, x_{2}=$ variables or unknowns to be found $u=$ is called independent control variable $b_{1}=$ constant represent specified value of h_{1} $b_{2}=, \quad===\underline{h_{2}}$
\rightarrow Since x_{1} and x_{2} will be evaluated by iterative techniques, then the following function:
$\left(g_{1}\right)$ and $\left(g_{2}\right)$ are introduced as follows:

$$
\begin{align*}
& g_{1}\left(x_{1}, x_{2}, u\right)=h_{1}\left(x_{1}, x_{2}, u\right)-b_{1}=0 \tag{3}\\
& g_{2}\left(x_{1}, x_{2}, u\right)=h_{2}\left(x_{1}, x_{2}, u\right)-b_{2}=0
\end{align*}
$$

$\rightarrow g_{1}, g_{2}$ represent mismatch or difference between calculated and specified values.
\Rightarrow let $x_{1}^{(0)}$, and $x_{2}^{(0)}$ be the initial estimates of x_{1} and x_{2}.
\rightarrow if the actual solution is x_{1}^{*} and x_{2}^{*}, then a correction has to be made to $x_{1}^{(0)}$ and $x_{2}^{(0)}$ to get the required answer; Hence:

$$
\begin{align*}
& g_{1}\left(x_{1}^{*}, x_{2}^{*}, u\right)=g_{1}\left(x_{1}^{(0)}+\Delta x_{1}^{(0)}, x_{2}^{(0)}+\Delta x_{2}^{(0)}, u\right) \tag{5}\\
& g_{2}\left(x_{1}^{*}, x_{2}^{*}, u\right)=g_{2}\left(x_{1}^{(0)}+\Delta x_{1}^{(0)}, x_{2}^{(0)}+\Delta x_{2}^{(0)}, u\right) \tag{6}
\end{align*}
$$

\rightarrow the objective now is to evaluate $\Delta x_{1}^{(0)}$ and $\Delta x_{2}^{(0)}$.
\Rightarrow this can be achieved by the taylor's expansion about the assumed solution as follows:

$$
\begin{align*}
& \therefore \quad g_{1}\left(x_{1}^{*}, x_{2}^{*}, u\right)=g_{1}\left(x_{1}^{(0)} x_{2}^{(0)}, u\right)+\Delta x_{1}^{(9)} \frac{d g_{1}}{d x_{1}}\left|+\Delta x_{2}^{(0)} \frac{d g_{2}}{d x_{2}}\right|^{(0)}+\cdots=0 \\
& g_{2}\left(x_{1}^{*}, x_{2}^{*}, u\right)=g_{2}\left(x_{1}^{(0)}, x_{2}^{(0)}, u\right)+\left.\Delta x_{1}^{(0)} \frac{d g_{2}}{d x_{1}}\right|^{(0)}+\left.\Delta x_{2}^{(0)} \frac{d g_{2}}{d x_{2}}\right|_{+\cdots} ^{(0)}=0 \tag{8}
\end{align*}
$$

\rightarrow the partial derivative of g_{2} is evaluated at $x_{1}^{(0)}$ and $x_{2}^{(0)}$ the same thing for other partial derivative
the
\Rightarrow Here in (7) and (8) the higher partial derivative are neglected.
\rightarrow rewrite 7,8 in a matrix form as:

$$
\left[\begin{array}{ll}
\frac{d g_{1}}{d x_{1}} & \frac{d g_{1}}{d x_{2}} \tag{9}\\
\frac{d g_{2}}{d x_{1}} & \frac{d g_{2}}{d x_{2}}
\end{array}\right]^{(0)}\left[\begin{array}{l}
\Delta x_{1}^{(0)} \\
\Delta x_{2}^{(0)}
\end{array}\right]=\left[\begin{array}{l}
-g_{1}\left(x_{1}^{(0)}, x_{2}^{(0)}, u\right) \\
-g_{2}\left(x_{1}^{(0)}, x_{2}^{(0)}, u\right)
\end{array}\right]
$$

$$
\begin{aligned}
& \therefore J^{(0)}\left[\begin{array}{l}
\Delta x_{1}^{(0)} \\
\Delta x_{2}^{(0)}
\end{array}\right]=\left[\begin{array}{l}
-g_{1}\left(x_{1}^{(0)}, x_{2}^{(0)}, u\right)=b_{1}-h_{1}\left(x_{1}^{(0)} x_{2}^{(0)}, u\right)=\Delta g_{1}^{(0)} \\
-g_{2}\left(x_{1}^{(0)}, x_{2}^{(0)}, u\right)=b_{2}-h_{2}\left(x_{1}^{(0)}, x_{2}^{(0)}, u\right)=\Delta g_{2}^{(0)}
\end{array}\right] \\
& \therefore\left[\begin{array}{l}
\Delta x_{1}^{(0)} \\
\Delta x_{2}^{(0)}
\end{array}\right]=\left[J^{(0)}\right]^{-1}\left[\begin{array}{l}
\Delta g_{1}^{(0)} \\
\Delta g_{2}^{(0)}
\end{array}\right] \sim
\end{aligned}
$$

i) Since the RHS of (11) is known, then $\Delta x_{1}^{(0)}$ and $\Delta^{(0)} x_{2}$ can be calculated
ii) find new values: $x_{1}^{(1)}=x_{1}^{(0)}+\Delta x_{1}^{(0)}$

$$
x_{2}^{(1)}=x_{2}^{(0)}+\Delta x_{2}^{(0)}
$$

iii) repeat the same procedure to find new correction $\Delta x_{1}^{(1)}$ and $\Delta x_{2}^{(2)}$
iv) the process terminates when $\left|\Delta x_{1}^{(k)}\right|$ and $\left|\Delta x_{2}^{(k)}\right| \leqslant E$. where: ϵ is certain sepecified to lerance
see:

* Ex (9.4), page (344):

$$
P_{1}=\sum_{j=1}^{N}\left|v_{i}\right|\left|v_{j}\right|\left|Y_{i j}\right| \cos \left(\delta_{i}-\delta_{j}-Q_{i j}\right)
$$

here: $\quad N=2, i=2$

* Application of mathematical concept to load flow problem:

The starting point is the complex power $\left(S_{i}=P_{i}+j Q_{i}\right)$ which is entering the $i^{\text {th }}$ bus

$$
\rightarrow P_{i}=\sum_{j=1}^{N}\left(\left|v_{i}\right|\left|v_{j}\right|\left|Y_{i j}\right| \cos \left(\delta_{i}-\delta_{j}-\theta_{i j}\right)\right)
$$

note: $Y_{i j}=\left|Y_{i j}\right| \angle \theta_{i j}$

$$
\begin{aligned}
& =\frac{\left\lvert\, Y_{i j} \frac{\cos \theta_{i j}}{G_{i j}}+\frac{j\left|Y_{i j}\right| \sin \theta_{i j}}{B_{i j}}\right.}{\rightarrow Q_{i}}=\sum_{j=1}^{N} \cdots-\sin \left(\delta_{i}-\delta_{j}-\theta_{i j}\right)=\left|V_{i}\right|^{2} B_{i j}+\sum_{\substack{j=1 \\
j \neq i}}^{N} 1
\end{aligned}
$$

\therefore (1) and (2) can be used to find the partial derivatives of P_{i} and Q_{i} with respect to $\left|V_{i}\right|$ and δ_{i}

DATE Wed $30 / 12$

$$
\begin{align*}
& \Delta P_{i}=P_{i, \text { sch }} P_{i}, \text { cal } \tag{3}\\
& \Delta Q_{i}=Q_{i}, \text { sch }-Q_{i, c a l} \tag{4}
\end{align*}
$$

* assume the system has 4 buses, whose bus \#1 is clack, and assume that the remaining 3 are $P Q$ or bad buses.
* the state variables are: $\left|V_{2}\right|,\left|V_{3}\right|,\left|V_{4}\right|, \delta_{2}, \delta_{3}, \delta_{4}$
* the mismatch equations will be:

$$
\begin{align*}
\Delta P_{i}=\frac{\partial P_{i}}{\partial \delta_{2}} \cdot \Delta \delta_{2} & +\frac{\partial P_{i}}{\partial \delta_{3}} \cdot \Delta \delta_{3}+\frac{\partial P_{i}}{\partial \delta_{4}} \cdot \Delta \delta_{4}+\frac{\left|V_{2}\right| \frac{\partial P_{i}}{\partial\left|V_{2}\right|} \cdot \frac{\Delta V_{2}}{\left|V_{2}\right|}}{} \\
& +\left|V_{3}\right| \frac{\partial P_{i}}{\partial\left|V_{3}\right|} \cdot \frac{\Delta V_{3}}{\left|V_{3}\right|}+\frac{\left|V_{4}\right| \frac{\partial P_{i}}{\partial\left|V_{4}\right|} \frac{\Delta V_{4}}{\left|V_{4}\right|}}{} \tag{5}
\end{align*}
$$

* note: $\frac{\Delta\left|V_{i}\right|}{\left|V_{i}\right|}$ is introduced for mathematical simplification as will be shown boer.
ΔQ_{i} is the same as (5) but with P_{i} replaced by Q_{i}
* rewrite 5,6 in a matrix form as follows:
eqn (9.45) in the book

* (7) is used for load flow solution by using Newton Raphson method

1) The partial derivatives of the Jacobian, can be derived from the equations (1) and (2) (i.e: Peal, Qcal) see equations: $9.52,9.53,9.55,9.56,9.58,9.60$
2) By assuming initial values for state variables, using flat start: $v_{2}^{(0)}=v_{3}^{(0)}=v_{4}^{(0)}=1 \angle 0^{\circ}$, then:
(a) the elements of the Jacobian matrix can be evaluated
(b) evaluate $P_{\text {cal }}, Q_{\text {cal }}$, then find: $\Delta P_{i}=P_{i}$ sch $-P_{i}$, cal
where:

$$
\begin{aligned}
& P_{\text {sch }}=P_{G}-P_{D} \\
& Q_{\text {sch }}=Q_{G}-Q_{D}
\end{aligned}
$$

for $i=2,3,4$
3) evaluate the state variables:

$$
\left[\begin{array}{c}
\Delta \delta_{2} \\
\vdots \\
\frac{\Delta\left|v_{4}\right|}{\left|v_{4}\right|}
\end{array}\right]=[J]^{-1}\left[\begin{array}{c}
\Delta P_{2} \\
\vdots \\
\Delta Q_{2}
\end{array}\right]
$$

4) calculate new values:

$$
\begin{aligned}
& \delta_{i}^{(1)}=\delta_{i}^{(0)}+\Delta \delta_{i}^{(0)} \\
& \left.\left|v_{i}^{(1)}=\left|v_{i}\right|^{(0)}+\Delta\right| v_{i}\right|^{(0)}=v_{i}^{(0)}\left(1+\frac{\Delta\left|v_{i}\right|^{(0)}}{\left|v_{i}\right|^{(0)}}\right)
\end{aligned}
$$

5) Repeat the process to calculate new values for the state variables
6) the process terminates when $\left|V_{i}^{(k)}-V_{i}^{(k-1)}\right| \leqslant E$ for all i or $\left|D P_{i}\right|$ and $\left|\Delta Q_{i}\right| \leqslant E$ for all i

* Comments :
i) in this example (i.e all buses except the slack) the order of the Jacobian is (6×6)
ii) if bus \#4 is PV (i.e $\left|V_{4}\right|$ is specified) :

$$
\left|\Delta v_{u}\right|=0
$$

\therefore (a) the $6^{\text {th }}$ column of the $[J$) will be eliminated.
(b) Qu can not be calculated untill load flow is complete.
$\therefore 6^{\text {th }}$ row will be eliminated
\therefore the order of the Jacobian will be: (5×5)

* in general the order of Jacobian $=\left(2 N-N_{3}-2\right)$
in this example: $N=4$

$$
\therefore \text { order }=(2(4)-1-2)=\$ 5
$$

* see: e.g: (9.5) page 353

