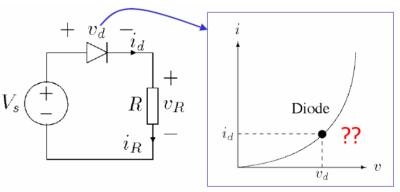
Diode Circuits Analysis

Graphical Method


- The intersection of the diode and the resistor current equations is calculated
- Gives good understanding to the circuit operation
- Time consuming
- Not suitable for large circuits

Analytical Method

- Both diode and resistor current equations are solved simultaneously or iteratively
- Faster than graphical method
- More accurate
- Time consuming
- Not suitable for large circuits

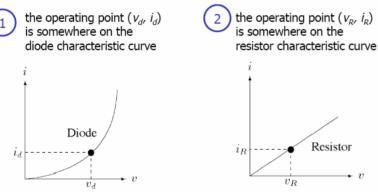
Diode Models

- Piecewise-linear diode model is used to replace the diode
- Least time consuming method
- Suitable for larger circuits
- Accuracy depends on the used model

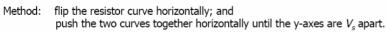
A simple diode circuit.

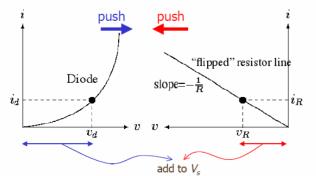
Diode Current Equation

$$I_D = I_S \left(e^{\frac{V_D}{nV_T}} - 1 \right)$$

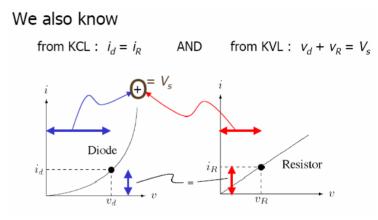

Resistor Current Equation

$$I_R = \frac{V_S - V_D}{R}$$

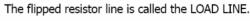

Graphical Method

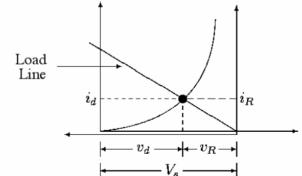

Step 1 : Locating the Operating Points

We know



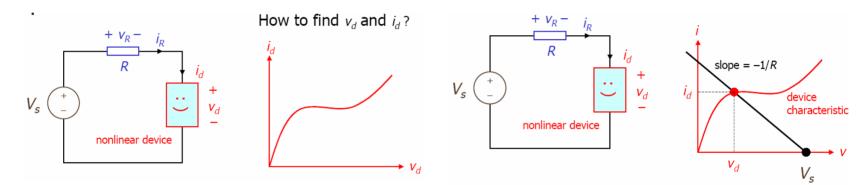
Step 3 : Enforcing KVL & KCL





Step 2 : KVL & KCL Constraints

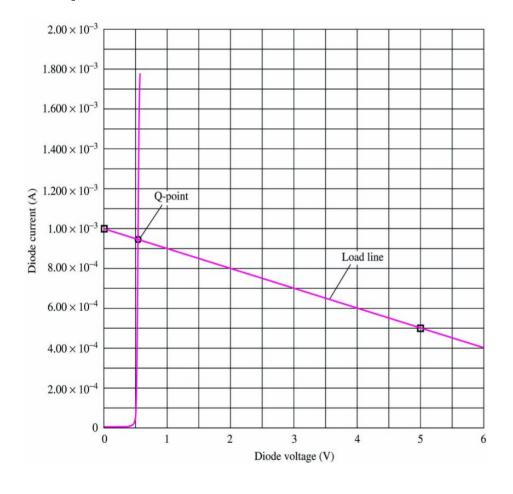
Solution




Graphical Method (cont.)

General Problem

Basic Load Line Construction



Alternative Construction

- Gives good understanding to the circuit operation
- Not suitable for large circuits

Graphical Method (Example)

Problem: Find Q-point **Given data:** V_s =10 V, *R*=10k Ω . **Analysis:**

To define the load line we use, $V_D = 0$ $V_D = 5 \text{ V}$, $I_D = 0.5 \text{ mA}$

These points and the resulting load line are plotted.Q-point is given by the intersection of the load line and the diode characteristic:

Q-point = (0.95 mA, 0.6 V)

Analytical Method

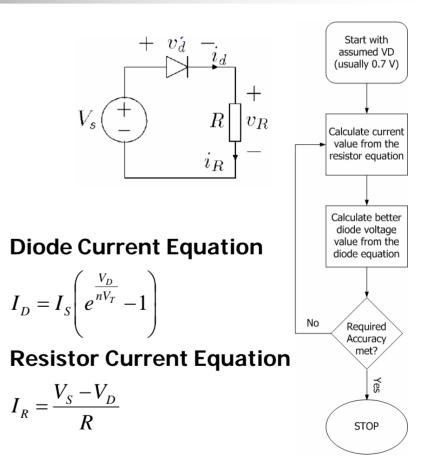
Example:

 $I_s = 10^{-15} \text{ A}, n = 1, V_s = 5 \text{ V}, R = 1 \text{ K}$

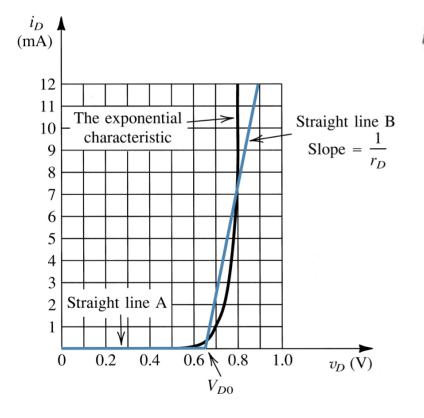
Step 1:

Assume $V_D = V_{Do} = 0.7V$

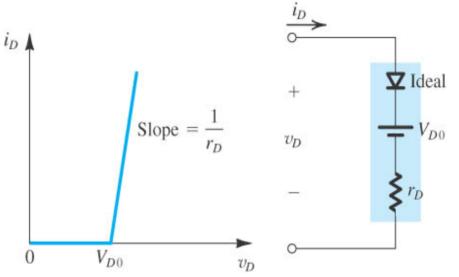
 $I_{D1} = (V_s - V_{D0})/R = 4.3 \text{ m.A}$


 $V_{D1} = 0.025 ln(I_{D1}/I_s) = 0.7272 V$

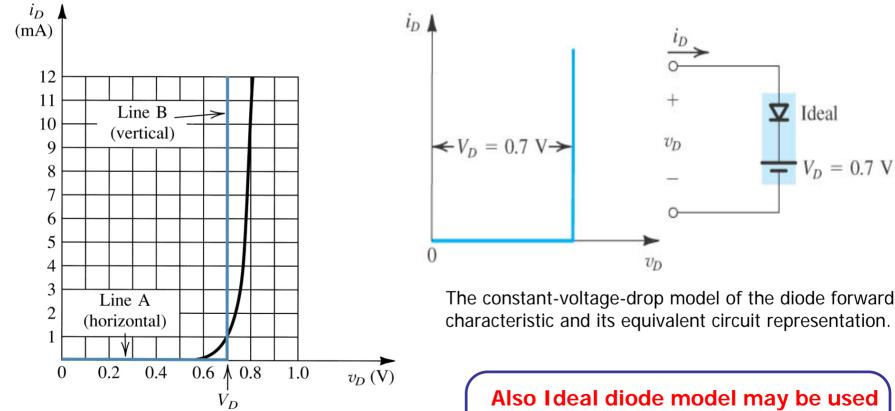
Step 2:


 $I_{D2} = (V_s - V_{D1})/R = 4.2728 \text{ m.A}$ $V_{D2} = 0.025 \ln(I_{D2}/I_s) = 0.7271 \text{ V}$

Exact Value:

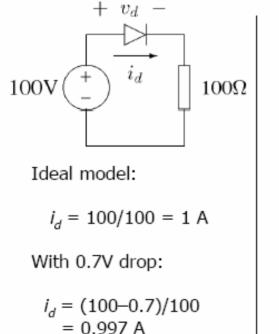

 I_{D} =4.2729 m.A, V_{D} =0.7271 V

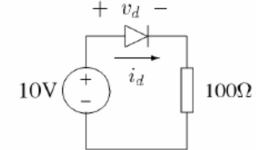
Diode Models



Approximating the diode forward characteristic with two straight lines.

Piecewise-linear model of the diode forward characteristic and its equivalent circuit representation.

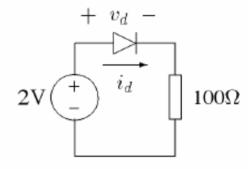

Diode Models (cont.)



Development of the constant-voltage-drop model of the diode forward characteristics. A vertical straight line (b) is used to approximate the fast-rising exponential. Also Ideal diode model may be used which means short circuit in the forward direction and open circuit in the reverse direction.

Which Model to Use?

The choice depends on the external voltage magnitudes.



Ideal model:

 $i_d = 10/100 = 100 \text{ mA}$

With 0.7V drop:

$$i_d = (10-0.7)/100$$

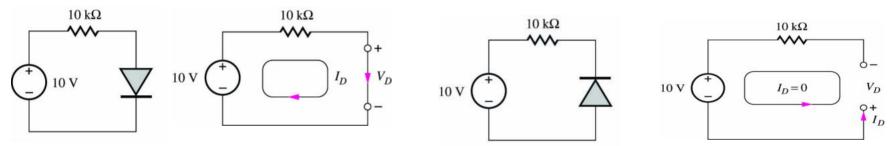
= 93 mA

Ideal model:

 $i_d = 2/100 = 20 \text{ mA}$

With 0.7V drop:

Analysis using Diode Models


Diode is assumed to be either ON or OFF.

Analysis is conducted as follows:

- 1. Select diode model.
- 2. Identify anode and cathode of diode and label v_D and i_{D} .
- 3. Guess diode's region of operation from circuit.
- 4. Analyze circuit using diode model appropriate for assumed operating region.
- 5. Check results to check consistency with assumptions. (For forward assumption check that $i_D > 0$, for reverse biased check that $v_D < V_{DO}$ or zero for ideal diode model)

Analysis using Ideal Model for Diode: Example

Find the Q-Point (I_D, V_D) for the following diodes assuming ideal diode model.

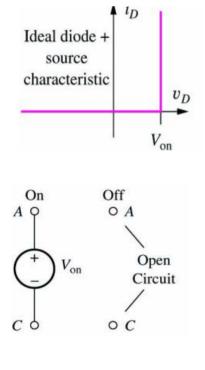
Since source is forcing positive current through diode assume diode is on.

$$I_D = \frac{(10-0)V}{10k\Omega} = 1mA$$

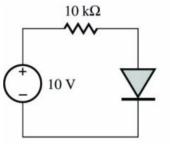
:: $I_D \ge 0$ our assumption is right

Q-point is(1 mA, 0V)

Since source is forcing current backward through diode assume diode is off. Hence $I_{D} = 0$. Loop equation is:

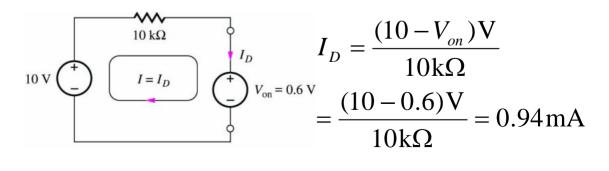

$$10 + V_D + 10^4 I_D = 0$$

 $\therefore V_D = -10$ V our assumption is right.


Q-point is (0, -10 V)

Analysis using Constant Voltage Drop Model for Diode

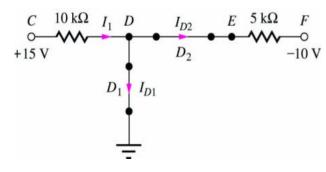
Find the Q-Point (I_D , V_D) for the following diode assuming CVD, with $V_{DO}=0.6V$.



 $V_D = V_{on}$ for $i_D > 0$ and $i_D = 0$ for $V_D < V_{on}$.

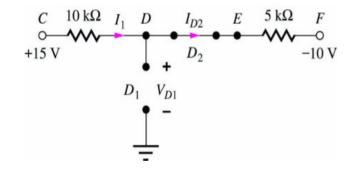

Analysis:

Since 10V source is forcing positive current through diode assume diode is on.


Two-Diode Circuit Analysis

Find the Q-Point (I_D, V_D) for the following diodes assuming ideal diode model.

Analysis: Since 15V source is forcing positive current through D_1 and D_2 and -10V source is forcing positive current through D_2 , assume both diodes are on.


Since voltage at node D is zero due to short circuit of ideal diode D_{1} ,

$$I_{1} = \frac{(15-0)V}{10k\Omega} = 1.50 \text{ mA } I_{D2} = \frac{0-(-10)V}{5k\Omega} = 2.00 \text{ mA}$$
$$I_{1} = I_{D1} + I_{D2} \qquad \therefore I_{D1} = 1.5 - 2 = -0.50 \text{ mA}$$

Q-points are (-0.5 mA, 0 V) and (2.0 mA, 0 V) But, $I_{D1} < 0$ is not allowed by diode, so try again.

Two-Diode Circuit Analysis (cont.)

Since current in D_2 but that in D_1 is invalid, the second guess is D_1 off and D_2 on. Since current in D_1 is zero, $I_{D2} = I_1$,

$$15-10,000I_{1}-5,000I_{D2}-(-10)=0$$

$$\therefore I_{1} = \frac{25V}{15,000\Omega} = 1.67 \text{mA}$$

$$V_{D1} = 15-10,000I_{1} = 15-16.7 = -1.67 \text{V}$$

Q-points are D_1 : (0 mA, -1.67 V):off D_2 : (1.67 mA, 0 V) :on