

Draw and label (in binary) the signal constellation. 1-

Find the required channel BW? 2-

 $\frac{200 \text{ Ke}}{3} (1.2)$ $\frac{2200^2}{3} \text{ Mescaro 2 drin}$ $Eavy = T_S. \text{ Pavy}$ $P = \frac{E}{T_S} = \frac{d_{min}^2}{u_{Sin}^2} (\frac{T_s}{v_m})$

3-Find the average power?

Write the general equation for the transmitted signal? 4-

> \$(E)= A; P(E) (OS(Well +6)) 25/22 (COS (200x + + + 67) = 5.276.p(i)COS(2x(100M) + +++i)

For a DPSK system the following table is used, then Draw the signal constellation and find the minimum distance if the signal power is 8 watts.

	$ \begin{array}{c cc} x & \Delta\theta \\ \hline 0 & -\pi/4 \\ \hline 1 & -\pi/2 \end{array} $	$P = r^{2}$ $r = $
	$d_{min} = 4.686$	
	3 dmin a	2T/ -8
271	b	$dmin = \Delta(\Delta\Theta)$

Q.4 (6 Points)

Draw the **OFDM** modulator for 8 sub-carriers each with a 4PSK signal.

Points 1	l each)
	Points 1

(0.20	\bigcirc	F	
Antipodal signals are used as carrier waveforms.			
	T	(F)	0
Two dimensional modulation is possible in band infined band			
pass systems.			. /
IF RPF is used to limit the noise bandwidth.	(1)	F	
	XX	(F)	the wover
Raised Cosine waveform is used to shape the spectrum of the	KX		> ic Fake
modulated signals.			()
ESV has the best performance in fading channels.	(D)	F	
Errors may propagate in Partial response signaling.		r	
	pass systems. IF BPF is used to limit the noise bandwidth.	Two dimensional modulation is possible in band limited band pass systems. IF BPF is used to limit the noise bandwidth. Raised Cosine waveform is used to shape the spectrum of the modulated signals. FSK has the best performance in fading channels.	Two dimensional modulation is possible in band limited band pass systems. IF BPF is used to limit the noise bandwidth. Raised Cosine waveform is used to shape the spectrum of the modulated signals. FSK has the best performance in fading channels.