Com 2
 Notebook

sere Encoder: fakes the photog Signal \& passes it through a certain Condition" Conditioning aet that limits the Amp \& frg . of a signal:.

$$
\hat{s}(t)=\alpha s(t)+n(t)
$$

are botha R.U/R.process as a function of tine
PS\#1: Periodic signal dossn't have any information
P.S \#2: A periodic signal does have information (Energy Signal) "fandom Signal".
lecture \#2.

* $X[n], y[n] \rightarrow$ represented in Binary Serial \& has a certain bit rate $\left(r_{b}\right)$ in bPs.
* Antenna is part of channel so if we count to make the signal stronger we change it
* Add a Gaussian Noise \leftarrow channel (simplest type of the Channel
* to Save the signal from croon ; we make different things: eg \rightarrow Give three 1 s after a " 1 " signal (coding)
* Channel Coding: to check of the data is built in px as if was in T_{α}. (error detection).
p.S * error detection $\$$ error correction are both "Error Control Codes".

Modulation: mapping between logical data [Yin]] (Zero's \& One's) into physical waveforms (Energy signal) such that it can pass through the chanel with minimum errors.
\rightarrow Square Integrable "mechanical motion": have energy latter square it $\$$ integrate it

* 1\&0 must have a ven far distance between thier waveforms to make it easy to notice the difference between them.
* distance: define the signal from their basic components (must be all different); Orthogonality space $\$$ then represent the signal in this space
* Orthogonality space: has N-axis that all orthogonal / orthonormal axis.

$$
* \text { P.S } \neq N \text {-axis } \rightarrow a x_{1}(t) \text {, a } x_{2}(t) \text {, }
$$

G thy ore all function of time (must be wave forms).

Antipodal \Rightarrow is the maximum signet between any two signals. distance

* What are the features af the Rx?

1. hard decision (check only the maximum value)
2. Integrate the signal \& see the areas
3. Absolute value \& square it to find Area.
4. Square the Signal to find Area.

* distance means energy
* The best any to find the distance is the way that give the simplest implementation of the signal
"Soft (manipulation) information from all points Imony point (ie \Rightarrow Samples \Rightarrow Integration)
* distance happen on the R_{x}
* For cost effective we choose the Optimal choices
* Sharing types:
- Frepunyshaning: Share the channel @ different freq. that doesnit ova
- time shang: Share the channd @ different times.
- Space sharing: Share channel @ different places.

Orhegonatity:
if we have $s_{1} \& s_{2}$, if $\left\langle s_{1}, s_{2}\right\rangle=0$ then they are Orthogonal.
let $x=S_{1}+s_{2}$ \& S_{1}, s_{2} are orthogonal. Then:

$$
\left\langle s_{1}, x\right\rangle=\left|s_{1}\right|^{2}
$$

* $\rho \cdot 5$.

$$
\begin{aligned}
& \left\langle s_{1}, s_{2}\right\rangle=\int s_{1} * s_{2}^{*} d t \\
& \left\langle x, s_{1}\right\rangle=\int x \cdot s_{1} d t=\int s_{1} s_{1}^{*} d t+\int s_{1} s_{2}^{*} d t=\left|s_{1}\right|^{2}
\end{aligned}
$$

then it is an interfareca
P.S We con detect the signal according io SN.R "signals fo noise ratio" G the nature behavior of any R_{x}.

* P. 5 *if two signals went oxthegroal , we condn't detect the signal ines there is no insteferenance.
P.S In Digital Modulation we have a certain threshold. so we can defect the signal more correctly.
* SUR $\alpha \beta$ (square). \rightarrow ithe effect ON signal defect by SNR is non* Noise effect is nonlinear. linear.
P.S* The information content is hidden inside the physical. Signal.

4

* Static \rightarrow Audioable Noise \Rightarrow noise as voice (heavalde).
* Fourier series is important because it is the simpliest harmonic motion $\left(e^{j \omega t}\right) \cdot[\sin \& \omega S]$ and because i can see it on oscillator. ; Asin (wt) constant \Rightarrow easy to be generated. * ave an gentratect.
* Random Signal has a PSD \rightarrow Auto correction then I transfer it to Freq to have PSD.
* Y- axis is the minor.
* Maximum freq. For human emor is. 20 KHz .
* Toll quality is in 4 kHz .

PSD for Audio signal.

Channet:-Guided (limited), (wired, waveGuides)

- UnGuided (wireless Communication).
* we can do Ann en Radiation on Anternia
+ Radiator \longrightarrow Omidriciction. \longrightarrow point to point.
* The best propertig in digital communication syn. is that we car manipulate the signal.
* The Characteristic we cone about in (hanna: (Guided):
- Bandwidth. $(2 \pi \sqrt{L E})$
- Attenuation α ?!
- Interference.
- Characteristic Impedance $\cdot\left(\sqrt{\frac{L}{C}}\right) \rightarrow$ per unit capacitance $(\mathrm{H} / \mathrm{m}, \mathrm{f} / \mathrm{m})$ Gas Function \& length.
Speed $=\frac{1}{2 \pi \sqrt{1 C}} \rightarrow$ The speed of the signal in the chanel.
* The Antenna size is the most important fling in the system. related the Carrier frequency.
* less freq \rightarrow less size of the Component.
* limited Freq. \rightarrow limited BW \rightarrow limited Data bit Rate.
* In Wireless Commurucution:-
- Mill user. (I must be able to separate these Signals).
- higher Data bit Rate. Oshogonal Signals
* We are interested in Making teethe signals separable. at the R_{x} side. (different Orthogonal axis).
N-D space.

$$
=\int_{\pi}^{\infty} a x(t) i \cdot a x(t) j_{j}^{\pi} d r .
$$

* We choose finite signals in there thinner BW \& Magnitude.
the mower nowt bo Finite. (0 or 1)
"Square Integrable" (finite prot signal).
* two axis for the same user. (parauld channels). create parallel transmition using Orthogonal axissis \& 4 increase the transmition data speed.
* axis \& conviers., Basis function $\left(a x_{1}\left(+1 \ldots a x_{1}(t)\right)\right.$. G abstract math
p.S. * Non carrlapped starals in any domain are Orthogonal.

$S_{1} \& S_{2}$ are both Orthogonal.
($s_{1} \perp S_{2}$).
In Frequency domain

definitty aren't over-lapped in Time domain because they are Orthogonal.

$$
\int_{-\infty}^{\infty} a x(f) i \quad a x(f)_{j}^{*} d f=\int_{-\infty}^{\infty} a x(t) i a x(t)_{j} d t
$$

linear transformation

* Any linear transformation wont change the characteristic of the signal.
* Phase shift $=$ time delay $; i\left(\left(a 0^{\circ}\right) \quad\right.$ Orthogonal. (code).

$\left\langle s_{1}^{* T}, s_{2}\right\rangle=0$ domain irepressmt the signal in Cod.

$$
S=\left[\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
1 \\
-1 \\
1 \\
-1
\end{array}\right]
$$

101111 bo

$$
\begin{aligned}
& \qquad \text { (hermechian). } \\
& \left\langle S_{1}, S_{2}\right\rangle=S_{1}^{* T} \cdot S_{2} .=S_{1}^{* T} \cdot S_{2} .
\end{aligned}
$$

$H=\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right] \quad$ * how to create Orthooonal Signal? Gargle it

lecture \#5 Thr. 8/10.

$$
S_{1}=\left[\begin{array}{c}
1 \\
-1
\end{array}\right] \quad S_{2}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \quad S_{1}^{H} S_{2}=0 .
$$

*W. H *

$$
H_{2}=\left[\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right]
$$

$H_{2 N}=\left[\begin{array}{ll}H_{N} & H_{N} \\ H_{N} & -H_{N}\end{array}\right]$

$$
H_{4}=\frac{1}{\sqrt{4}}\left[\begin{array}{cc}
{\left[\begin{array}{cc}
H_{2} & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{cc}
H_{2} & 1 \\
1 & -1
\end{array}\right]} \\
{\left[\begin{array}{cc}
H_{2} & 1 \\
1 & 1 \\
1 & -1
\end{array}\right]} \\
\left.\begin{array}{cc}
-1 & -1 \\
-1 & -H_{2} \\
-1
\end{array}\right]
\end{array}\right]\left[\begin{array}{c}
\mathrm{H}_{2}
\end{array}\right]\left[\begin{array}{c}
\mathrm{S}_{0} \\
\mathrm{~S}_{1} \\
\mathrm{~S}_{2} \\
\mathrm{~S}_{3}
\end{array}\right.
$$

thus:

$$
S_{0}=\frac{1}{2}\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right] \quad S_{1}=\frac{1}{2}\left[\begin{array}{c}
1 \\
-1 \\
1 \\
-1
\end{array}\right]
$$

$$
S_{3}=\frac{1}{2}\left[\begin{array}{c}
1 \\
-1 \\
-1 \\
1
\end{array}\right]
$$

thus:-

$\frac{1}{\sqrt{17}}($ to nomadize).

$$
\begin{aligned}
& 1={ }^{*} \varepsilon=\int_{0}^{T}\left|S_{0}\right|^{2} d t=N_{T} T *\left|S_{0}\right|^{2} \\
& \text { want the cnrygy t be } 1 * N T: \frac{T}{N_{T} T}
\end{aligned}
$$

que want the entry to be 1 *

* then we scale the Amplitude by $\frac{1}{\sqrt{N_{T} T}}$
tai N

$$
r_{b} \in(b p s)
$$

then $T \leqslant T b=\frac{1}{r_{b}}$. (we will change this biter to (equality) for some cases).

* can I produce Hiring sight ta time of T_{6} ?

$$
G N_{0} \text { problem } \Rightarrow T \leqslant T_{b}=\frac{1}{r_{b}} \quad-9
$$

A is a toll Rank Matrix. (all the raw or coloum are indyencarity \Leftrightarrow have an inverse
all eiqen values are nonzero \& different:
$\rightarrow \Phi=\operatorname{eig}(A)=\left[\begin{array}{llll}\Phi_{1} & \Phi_{2} & \ldots . & \Phi_{N}\end{array}\right]$. those are eigen vectors
$\rightarrow \phi_{i}^{H} \phi_{j}=\delta_{i j}$. (orthonurmat space)

$$
(A-\lambda I)=0 .
$$

example:

* Condition $L_{m:}=\frac{\lambda_{\max }}{\lambda_{\min }} \quad \simeq 1$ most stable matrix.
\rightarrow if $C N \gg 1$ (single matrix; have no inverse \& can't be used as a space).
\rightarrow so we measure the condition number before we create a s. sups.
\rightarrow if non_ full Rank matrix \Rightarrow we will loose some data.
* We can design using the concept of orthonormal axis.
* If signals don't ovalapped in Frequency domain, Then the center frequent for each signal is different.
* Base -Band comm (transmission):
\rightarrow Binary Transmission. The data may be zero or one.
distance $=3$
alg. enerat $=\frac{(5.5)^{2}-(2.5)^{2}}{2}$

* One dimensional axis (1-D)
* We need to maximize signals under condition of minimer -10 . average energy.
* Best Performance under minimum cost a antipodal.
better than the
 previous sys.

* The Performance is set only by the distance between the point the absolute value of energy doesn't directly effect the performance
 "signal space diagram"
best thing to make the zero in between of both signals/points.
signal space represent amplidid/vitage.

Bandwidth depends on the freq axis (differential $\frac{d v}{d t}$).
antipodal \rightarrow different point oppisite in axis through origin.

* Basband \rightarrow signal to be catered at 200 DHz Ex
$a x(t)$
ayct)
$a z(t)$.
let.

$$
H_{4}=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right]
$$

thus.

$a z(t)$

Lecture \#6. Son $11 / 10$.

* axis is used to cams info.
* assume ideal Channel (no atten. no limitation on $B \omega$).
* if we have a Binary signal. \rightarrow Binary Barband.
* In Binary Baseband we care about:
r_{b}.
T most be less than or equal to 100μ.
let $r_{b}=10 \mathrm{kbps}$. to transfer " 1 " or 0° "
the $T_{b}=100 \mu \mathrm{~s}$.

* we need two signal to send 1 \& 0.
* NM of signals $=$ NNM of differences.
thes

$$
\phi(t)= \begin{cases}S_{0}(t) & , 0^{\prime} \\ S_{1}(H) & , 7=\end{cases}
$$

D.s Evary So (T) \& $S_{1}(H)$ will occupy (T) ; it can fillit or use part of it

* for $1-D$ sa.

$$
\sigma=5 a_{x}
$$

$$
\delta_{1}=-5 a_{x}
$$

$$
\begin{aligned}
& * 2-50 \\
& S_{0}=5 a_{x} \\
& S_{1}=15 a_{y}
\end{aligned}
$$

* 3-D sol

$$
S_{0}=5 a x-2 a y
$$

$$
S_{1}=3 a_{y}+10 a_{z}
$$

$$
a_{z}
$$

(0.15)

as a. Fuxtion of thine (wave from) :-

$$
2-D
$$

$3-D$

*5 85, at of tansmiter
 qoes to R.

* the Rx makes an inner product. With the axis. measuring device

$$
\langle\phi,(t), \text { axis }\rangle=?
$$

let intermediate variable called vin R_{x}

$$
\begin{aligned}
& \text { let intermediate variable called vin } \\
& \text { For } \left.N=\left\langle\phi_{r}(t) \text {, } a x i s\right\rangle=L \phi_{r}(t), a x(t)\right\rangle=\left\{\begin{array}{l}
\int s_{0}(t) a_{x} d t=\int 5 a x a x d t=5 \\
\int s_{1}(t) a x d t=\int-5 a_{x} a_{x} d t=-5
\end{array}\right. \\
& \text { intermediate } \\
& \text { measured. } \\
& \text { variable (decision variable). } \\
& \text { to know what the data. }
\end{aligned}
$$

\Rightarrow it should be a synchronized procedure Crepeat ax In syate with the signal recieved)

* This R_{x} is a coonerant reciever since it ha be generate $a x(t)$ synchronously. ; This needs a synchronization et at R_{x} to detect the starting point of the relieved signal exch T.
(period) (signaling Interval).
Usually sifnelmonization et need Zero crossing pints in the signal to detect starting \& ending of the signal.
* most of syndmonization cot make. peak detection (it might be flat) \rightarrow zero decchin (better).
* Line Cods \rightarrow represent "1 "Ó" with synennomized

1 * Better $D C=0$ no average at the signal. (carts be defected or hard to defect).
2 * have Changes.

* More Changes \rightarrow more BW.
* if the channel has aver a $9 \times$ The BW of the signal make . .t Good to detect \& observe he signal.
* Review line Code in Comm (1).

each prod (Rest) \& start over do integrate It hen we read the op voltage (give a wave form).
hard desicion \rightarrow at " then check which is closer b) So, S1. using a certain Alcorithin. (\#. of port \Rightarrow more accurate)
* Channel:
\rightarrow Wire chang, Baseband Tx.
\rightarrow Noise.
\rightarrow BW (Band limited signal, un limited signal)
\rightarrow Fading.
* The data come to transmitter as "1" or " 0 " Called (logical data).
* How the T_{x} choose:
ex g T_{x} select.
So if "O" at input $S_{\text {s }}$ if "1" at input.

* Ht the Reciever:

decision variable.
Nowt: $\int_{0}^{T} a x(t) \cdot \operatorname{Pr}(t) d t$.

1. Coherant Recieurr?

$$
\begin{aligned}
\text { Not } & =\int_{0}^{T} a x(t) \cdot(-\alpha x(t)) d t \\
& =-\alpha \int_{\text {h }}^{T}|a x(t)|^{2} d t \\
& =-\alpha \text { Crag if } \& \text { only if }^{\text {Ea x }}=1
\end{aligned}
$$

$$
\xrightarrow[S_{0}]{0_{0}^{+\alpha} S_{1}^{0}} a x(t)
$$

$$
S_{0}=-S_{Q}
$$

$$
S_{0}=(-\alpha a x(t))
$$

this.

$$
s_{1}=\alpha a(t) .
$$

So is to be transmitted)

* if $\&$ only if s_{1} is transmitted:

Vout $=+\alpha$

* Wont here is called \Rightarrow (decision Variable).

-hos the decision oles live:-

NIL Decision (most ${ }^{c^{4}}$ likely).

- कोणे
what the probability of a continuous Random Variable? $O \rightarrow$ that's why there's no equality.
x each possible valueissepresented by ane point on the axis.

Ni $=2^{m}$. (called Nary mod.).
when $m=1 \longrightarrow$ Binary.

$$
\operatorname{example}(1-0) \rightarrow
$$

4-ary.

* example (2D modulation): $d x(t), a y(t)$
*P. SAp * Modulation Dimensionality \rightarrow \# of points.
- Constellation Dimensionality \Rightarrow of axis.
* a $x(t), a y(t)$ are both Orthoopnal 4 have Zero DC value.

- we can represent so as:

1. $S_{0}=a_{0} x(t)+b_{0} y(t)$ if $a_{0}+y_{p} b_{0}$.
2. $\left(a_{0}, b_{0}\right)$
3. $15011 \theta_{0}$. means.
$\rightarrow+0$ know the Angle between So \&SI: $(\operatorname{say} \theta)$.
4. $E_{0}=\left|S_{0}\right|^{2}=a_{0}^{2}+b_{0}^{2} \longleftarrow x \& 4$ are Orthogonal.

$$
\begin{aligned}
& E_{1}=\left|S_{1}\right|^{2}=a_{1}^{2}+b_{1}^{2} \\
& E_{a v}=\frac{E_{0}+E_{1}}{2}=P(0) \cdot E_{0}+P(1) \cdot E_{1}
\end{aligned}
$$

2. to know. the distance between So \& S_{1}. (say $\left.d_{a}\right)$:

$$
d_{01}=\sqrt{\left(a_{0}-a_{1}\right)^{2}+\left(b_{0}-b_{1}\right)^{2}}
$$

\rightarrow at a certain n energy \rightarrow Constant energy (vita a circle). Maximum distance \rightarrow antipodal

* Constant envelope signals क When all signals are in a circle. - Curtain Energies.

Hew:
$y=\sum_{i=1}^{1 / 1} \alpha_{i}^{2} \quad ;$ find the Optimal. Walus of $\alpha^{\prime} s ?!$

- Once α is all equal are the Optimal solution

I Once the multiplexing between the probability. of any two α 's are equal.

* For a 10 kbps data design a one Dimension TX ante the available wave forms are

sol We chase $X_{4}(t) \rightarrow$ more data.
\& $x_{2}(t)$ better that x_{3} (less energy)

why antipodal?! easier synchronization

looks like phase shift keying constellation
"PSK" Constentution. $\sum_{\text {better in Fading channel. }}$
P.S best solution is . points on Grid:-

looks like QAM constellation.
* In basband, wired channel there's no fading \& the channel only additive white Gaussian. Noise.
* In cored Transmission
we can control the fading using matching both ends of the wires only additive white noise Gaussian Noise. (Thermal Noise).

For PSK. r as fr. of minimum distance:

$$
\frac{d \min }{2}=r \sin \left(\frac{2 \pi}{\mu}\right)
$$

\# of points.

Thus:

$$
\begin{aligned}
& r=\frac{d_{\min }}{2 \sin \left(\frac{2 \pi}{2 M}\right)} \\
& \Rightarrow E_{\text {a* }}=\left(\frac{d_{\min }}{2 \sin \left(\frac{2 \pi}{2 M}\right)}\right)^{2} T
\end{aligned}
$$

For QAM:

$$
\begin{aligned}
& \text { Pal 1: } \frac{1}{4}\left[\frac{d_{\text {min }}{ }^{2}}{2}+2\left[\frac{10}{4} d \text { min }^{2}\right]+\frac{18}{4} d_{\text {min }}{ }^{2}\right] \\
& \text { Eat }=\frac{40 d_{\text {min }}{ }^{2} T}{16}
\end{aligned}
$$

$$
=2.5 \mathrm{dmin}^{2} T
$$

QAMI is better.

* Peak do Average Pour ratio \rightarrow (PAPR).

Co we need it as small as possible.

$$
a y(t)
$$

APSK "Amplitude, phase shift Keying".

* Designing Criteria.
- Minimum energy a Maximum distance.

- Mare decision variable \rightarrow increase the ability to Notice the difference. (increase the probability of detection)

Mapper

* Gray Code: - every adjacent symbols differs in only 1 bit.
* Gray Code

s.
if the 8 -puints on 1 circle it beeorous like
* all mápping tectriaques whe bray code:minimize fror n only.
 1 bit.
 constllation. 11
* Csually we con improve entancemest using ifStatement. (corelined).
* Che-One \Rightarrow Foll response Sgraling. (Nremary less)
\therefore Nlemony \rightarrow Patiol response Signaling
In tull response \rightarrow One bit import one bir arpat (systam is fully ressponse for a tima).
bettore Lpartial resparke \rightarrow respanding to the cerrent and bettern fromañe.
- Correlation in partial response is infinite. Quadrature $R X$
\& Coherent RXFor $2 D$

$(2-D)$ according to $V_{1} \& V_{2}$ we put it on constellation.

More error.

$$
\binom{\text { limited }}{\text { Areal }}
$$

* Non linear functions \Rightarrow We Get Gain. Linear froctions \Rightarrow No Gain.
* Coherent $R x \rightarrow$ has syndmonization.
* to Get less peak to fug Raver we should Get rid of the points that have a un-limited Areas.

$r_{b}=30$ kbps.

$$
r s=\frac{r_{0}}{m}=10 \mathrm{kmps}
$$

$T s=m T_{b}$ "Convert Anta to parallel fransmission"

Nulti-Dmensional Tx:
N-D Mooulation

*R1 doesn' relate to N
\# of constillation \# of axas.
ports.

$$
M=2^{m}
$$

Example: $m=4 \rightarrow N=16$.
16-any mod.
$N=6$ dinersion.

$$
\begin{aligned}
& N=6 \text { dinersion. } \\
& H_{2}=\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right] \rightarrow H_{4}=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right]
\end{aligned}
$$

$$
H_{8}=\left[\begin{array}{ccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 & 1 & 1 & -1 \\
1 & 1 & -1 & -1 & 1 & 1 & -1 \\
1 & -1 & -1 & 1 & 1 & -1 & -1 \\
1 & 1 & 1 & 1 & -1 & -1 & 1 \\
1 & -1 & -1 \\
1 & -1 & 1 & -1 & 1 & -1 & -1 \\
1 & 1 & -1 & -1 & -1 & -1 & -1 \\
1 & -1 & -1 & 1 & -1 & 1 & 1 \\
\hline & -1
\end{array}\right] \frac{a x_{2}}{a x_{3}} \begin{aligned}
& a x_{4} \\
& a x_{6} \\
& a
\end{aligned}
$$

$$
\begin{aligned}
& \text { dk. } p_{i}=\left(\alpha_{1}^{i}, \alpha_{2}^{i}, \alpha_{3}^{i}, \alpha_{4}^{i}, \alpha_{5}^{i}, \alpha_{6}^{i}\right) \\
& \text { axois-1 decoéeisl emo }
\end{aligned}
$$

* each 2 axis can be represented as aplane (3-planes for this example).
* pave One point for example:

$$
P_{5}=(1,-2,-1,0,1,0)
$$

* 16 points in 4 planes ore better than two planes; more dimensionality of the space \rightarrow less peak to average ratio.
* let's distribute the 16 pants on the three planes.

* modulator \rightarrow do the mapping.
* One-One mapping for Full response (modulator): every input compensation has an output symbol.
* more axis \rightarrow more complexity \rightarrow each axis need. Quadrature modulator \rightarrow more cost from implementation point if view. \qquad more \# \& deasion variables.
* Non Coherent Rx: dossin't have to be preciese.

Example: Binary $T_{x}\left(S_{0}, S_{1}\right)$.
A. let $a x(t)$ be:

3-types of synchanization:

do samples in the Period

- using voltage without synchonizana

1. Carrier Eschnonization (not enough to read data)
2. bit degree synchronization
3. Frame degree synchronization [must be verified].
B. let $a x(t)$ be:

* to eleminate DC value \rightarrow Pr $(0)=\operatorname{Pr}(1)$ statistical features of Data.
P.S 1. used for Asynchronous.

2. $R_{x} \rightarrow$ simple but only depends on Amplitude
3. we use a small length of frame to not bose synch. G if a shot noise happened \rightarrow error in reading data.
4. High Amplitude isn't required because we need high-valued source requrdiess to the min. energy it has.

Optimal Reciever:
After detection we need decision..

$$
\text { SUR }=\frac{\left|\phi_{r} * h(t)\right|^{2}}{\int \sin (f) \cdot|t(t)|^{2} d f}
$$

$\frac{n_{2}^{n}}{1}$; for additive white Gaussian Noise -

$$
\text { SUR }=\frac{\int|\operatorname{dr}(t) H(t)|^{2} d t}{1 / 2 \int|H(t)|^{2} d f}
$$

thus:

$$
\begin{aligned}
& \text { thus: } \\
& \int 1+\left.(t) \cdot H(f)\right|^{2} d f \leqslant \int|\phi(f)|^{2} d f \cdot \int|H(f)|^{2} d f
\end{aligned}
$$

$* * *$ the equality happened when $\phi(f)=H^{*}(-f)$.
In time domain $\rightarrow h(t)=\phi^{*}(T-t)$
if

\rightarrow rotate and shift by T
\rightarrow as min as possible of Noise (best decision)
thus:

$$
\begin{aligned}
\text { thus: } & \begin{aligned}
& \text { Tout }=\int \phi(t) h(\tau-t) d t=\int \phi(t) \phi(t-T+\tau) d t \\
& \text { constant. Variable }
\end{aligned} \\
& \rightarrow \text { Vout }(u)=\int \phi(t) \phi(t+u) d t \ldots \\
& \phi(t) \text { correlater Rx. }
\end{aligned}
$$

* Correlator Rx is the Optimal Rx.

Quiz \#2 :-
a)

$$
V_{h}=\frac{3+V_{x}}{2}
$$

NO $\begin{gathered}\text { TX } \\ \text { * } \\ \text { NO }\end{gathered}$

* More Data.
* Maximum Distance
* Minimum energy

Rx

- More Dina $\left(V_{t h} \gg\right)$
* tine (better)

Band-Limited channels:

Soft limitation of bandwidth \rightarrow limit the BW of fere transmitted signal no matter what the BW of the channel.

* $s(f)$ is a sine in time domain.

$$
\omega=\frac{1}{2 \tau}
$$

if $\tau=T_{b}$ (period) $r_{0}=\frac{1}{T_{b}}$

$$
\text { For Binary } \Rightarrow \omega=\frac{r_{b}}{2}, x
$$

the BW of the channel must be half the used data rate.
if Piny Transmission can pars the double value of the data rate.

$$
\tau=T_{s} \Rightarrow \omega=\frac{r_{s}}{2}
$$

thus.

$$
\left.\omega=\frac{r_{s}}{2}=\frac{r_{b}}{2 m}\right\} \text { Mary }
$$

* If $r_{0}=160 \mathrm{kbps} . \Phi \omega=20 \mathrm{kHz}$. Can it be transmitted?

801 $\omega=\frac{r_{6}}{2 m} \Rightarrow m=\frac{160 k}{2220 k}=4$
lase band. (2)
Band Pass (No 2)

* At the same channel of the same tine I can transmit 4 bits in parallel.
* The most expensive part of communication is the. BWJ
* Data rate \rightarrow consumer requirement. it

we can approximate it using a thin.
unit sep If

$$
\omega=(1+\alpha) f_{m} .
$$

$R C_{\alpha}=$ waveform shapping file.
raised Cosine a Simple to implement if causal. suboptimal

$$
w=\frac{r_{b}}{2 m}(1+\alpha)
$$

* Che mere time: in bandpass there's no (2).
* 3 types of BW:.

1- 3 AB BU ($1 / 2$ power.
2- non to mu Bandwidth.
3. Percentage of Power Bandwidth.

Example:

$$
\begin{array}{ll}
2 r b & =1 \mathrm{Mbps} \quad \text { Design a system: } \\
B W & =20 \mathrm{kHz} \\
20 k & =\frac{11}{2 m}(1+\alpha) \\
m & =\frac{1 * 10^{6}}{40 \times 10^{3}}(1+\alpha)
\end{array}
$$

$$
\text { Sol } 20 k=\frac{11}{2 m}(1+\alpha)
$$

$\rightarrow \alpha$ mustit be zero; $\alpha=0$ ideal and there's no ideal system.
\rightarrow Practically: $\quad 0.12 \leqslant \alpha \leqslant 0.25$.

* bigger value of $\alpha \rightarrow$ smoother. (less Bu
* BW related to the boitsate Linearly. *
$\rightarrow \alpha$ is too small, lat must be bigger than zero, the design of raised cosine filter is more complicated. that why we select α between. (0.12-0.25) for acceptable BW.

$$
\begin{equation*}
\text { if } m=26 \rightarrow \alpha=0.04 \tag{*}
\end{equation*}
$$

* show that you understand what an you. doing in the exam. $=P *$.
L let $\alpha=0.15 \rightarrow$ this $m=25 * 1.12=28$. ats.
* more bits \rightarrow more error \rightarrow increase the peak to any ratio (not preferred).
* choose the boger value by one integer clue than if is when $\alpha=0$.
then you find α; if $\alpha<0.12$ you say: valid but not optimal (more Complexity system). then you take $x=0.12$. to find the Optimal value. of m.

$$
\frac{1}{\frac{\mu}{2} \frac{t}{d \min }}
$$

Find the average energy for this example \rightarrow as a function of drin and M.

* Inter symbol intertrance [ISI].
after crossing a channel that \leftarrow has less Bu term the signal.

$\tilde{S}(t)$: Signal with destrition.

$$
\left.\begin{array}{ll}
I S I=\sum_{\substack{i=1 \\
\text { practically. }}}^{\infty} \delta_{i}(t)
\end{array} \quad\left|\delta_{i}(t)\right| \rightarrow \text { can be two sided five } \delta_{+v e}\right) .
$$

* Mosulation: Quantization (eituar +1 or -1).

* Central limit theorum: $2 R U=$ Gpussian (RU) this:.
* ISI is a qausoion Random Cariable Yadditive white Growsion Noise)

$$
* \phi_{t}(t) \underset{n(t)}{ } \rightarrow \phi_{r}(t)=\phi_{t}(t)+n(t) \text {. }
$$

* SAW: Surface Acostic wave filter.
$-1 \square ト . \quad$ size $\alpha^{-1} f$.
1 angal.

* Led $\Rightarrow 241112015$.
* Performance:-

$$
\begin{aligned}
* B \omega & =\frac{r_{b}}{2 m}(1+\alpha) \\
d_{t}(t) & =a_{i} R C_{\alpha}(t) \\
& =a_{i} p(t)
\end{aligned}
$$

* quality of service \Rightarrow has
- raised arsine.
a parameter of qualify of $\operatorname{signat}(R X)$ (lased on the system prametio).
* We usually count the any error (bit enor rate). Which is the way to descripe the quality measure of a Recieved signal. (Performance measure).
$B E R \rightarrow$ expectation of errors $E\{$ error $\}$.

Tx	R_{x}	
1	0	$\operatorname{Pr}(011)$
or	1	$\operatorname{Pr}(1 / 0)$.

$$
V_{0}=\int_{\pi 0}^{T} p p(t) d t \quad=a_{i}
$$

* in RC $(-\infty, \infty) *$ signet with

$$
V_{0}=\int_{0}^{T} \phi_{R} P(t) d t+\int_{\substack{1 \\ n}}^{n(t) p(t) d t} \leqslant \text { with noise. }
$$

additive white Gaussian Noise.
ot if the PSD For the input $=\frac{n}{2}$. then the PSD for the OP axil be..

$$
\operatorname{Sin}_{n}^{0}(f)=\int_{-\omega}^{\omega} \sin (f) \cdot|H(f)|^{2} d f .=\frac{n_{0}}{2} \int_{-\omega}^{\omega}\left(\left.H(f)\right|^{2} d f=\begin{array}{|c}
\left.\begin{array}{r}
\eta_{0} \cdot \omega \\
A
\end{array}\right] \\
\text { if raised cosine }
\end{array}=\sigma_{n_{0}}{ }^{2}\right.
$$

(example \rightarrow eSD $=10^{-5} \omega / \mathrm{Hz} \Rightarrow \frac{n_{0}}{2}$

$$
P S D_{0}=10^{5} * 2 * B W
$$

* Total Power of a process= variance $=O_{n o}^{2}$.

$$
\text { * } f_{n_{0}}\left(n_{0}\right)=\frac{1}{\sqrt{2 \pi \sigma_{n_{0}^{2}}}} e^{\frac{-1}{2 \theta_{0}}\left(n_{0}-\mu_{n 0}\right)^{2}} \Rightarrow \text { for Gaussian. }
$$

\rightarrow thus = 1

$$
V_{0}=\int_{0}^{T} \phi_{r} p(t) d t+\int n(t) \cdot p(t) d t
$$

* White \rightarrow PSD exist on all frequmaies.
* if the noise took the shape of the fiver \rightarrow colour Epuossion noise. (different PSD).

$$
\operatorname{Pr}(n \leqslant \beta)=\int_{-\infty}^{\beta} f_{n}(n) d n
$$

$$
V=a_{1}+n_{0} \vec{N}\left(0, \sigma_{n_{2}}{ }^{2}\right)
$$

$N\left(a_{i}, \sigma_{n i}^{2}\right)$. constant shift.
$\hat{1}$
conditional PDF function based on ai.

* Benny I_{x}. Case:

$$
\begin{aligned}
& \underset{G \text { less than varoshted }}{\operatorname{Pr}(0 \mid 1) .} \quad=\int_{-\infty}^{1 / 4} N\left(a_{1}, \sigma_{n_{0}}^{2}\right) d n \text {. } \\
& \text { ave ace transmit } \\
& \operatorname{Pr}(1 \mid 0)=\int_{V / n}^{\infty} N\left(a_{0}, \sigma_{n o}^{2}\right) d n \text {. } \\
& \text { Vtheschuld } \\
& \text { * } B C R=\operatorname{Pr}(1 \mid 0) * P(0)+P(0 / 1) P(1) \ldots \quad \text { total probability. } \\
& \text { 介 } \\
& \text { if } P(0)=P(1) \Rightarrow \therefore \operatorname{Pr}(0 / 1)=P(1 / 0) \text { check it they are equal } \\
& =\int_{-\infty}^{1+h} \frac{1}{\sigma_{n} \sqrt{2 \pi}} e^{-\frac{1}{2 a_{n}^{2}}\left(n_{0}-a_{1}\right)^{2}} d n_{0} \quad *\left(T(t)=\int_{\sqrt{2 \pi} \int_{\infty}^{\infty}}^{\infty} e^{-t^{2} / 2} d t\right. \\
& \text { let } x=\frac{n_{0}-a}{\sigma_{n_{0}}} \Rightarrow d x=\frac{d n_{0}}{\bar{n}_{0}} \\
& \text { this it bxomes: } \int_{-\infty}^{\frac{V_{t+-}-a_{1}}{\sigma_{i}}} \frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}} d x=Q\left(\frac{-\nu_{t h}+a_{1}}{\sigma_{n}}\right)
\end{aligned}
$$

$* B E R=Q\left(\frac{-V_{k t}+a_{1}}{\sigma_{0}}\right)$

$$
Q=\int_{u}^{\infty} N(0,1) d t \text {. }
$$

\rightarrow assume $v_{4 h}=0$

$$
a_{1}=\frac{d_{\text {min }}}{2} \text { \& } a_{0}=-\frac{d \text { min }}{2}
$$

Vh.
thes $\quad B E R=Q\left(\frac{d \min }{2 \sigma_{n s}}\right)=Q\left(\sqrt{\frac{d m_{i n}^{2}}{4 \sigma_{n o}^{2}}}\right)$.
\rightarrow But $\sigma_{n o}^{2}=\eta_{0} \frac{r_{b}}{2}$.

thos:

$$
Q=\left(\sqrt{\frac{d \min ^{2}}{2 \eta_{0} r_{0}}}\right)=Q\left(\sqrt{\frac{d_{\min ^{2} T_{b}}^{2 \eta_{0}}}{0}}\right) .
$$

if this increme $\rightarrow Q$ decrease.

* more dmin \rightarrow decerease BER.

$$
V_{\text {Ins }}=\sqrt{4 K T B}
$$

timprusice.

noise TNC RMS value (vottwe)
for (1 Ω) Resistome

$$
\sigma_{n 0}^{2}=\frac{V_{m n s}^{2}}{\|(P)(\Omega)}=\frac{4 k T B}{\frac{y_{0}}{2}}
$$

Example:
$B E R=10^{-4} \quad$ (Probability of detecting the signal in any $T X$ witheror).
-1- Transmit the signal in packets (1000 bit instead of 10000) thews the propability to have an error. is $\frac{1}{100000}$ thus; an resend the packet if thurs my error. (Packet switching).
-2- error correction : if there's an error we resend the data until we have a zero error.
p.S* Theris no good or bad value for BER; it depends on the System itself.

Consider the following Constitution

Closer points might have more error.

Worst case sunareo \rightarrow the points with min distance have the blgapest BER/SER, any two points will have less RER. symbol.

thus:

$$
S E R \cong Q\left(\sqrt{\frac{d m i n}{2 \eta_{0}}}\right)
$$

$B \& R=\frac{1}{m} S E R$ (For Gray Coded)
Only for Coherent R_{x}.
$B E R=\frac{1}{m} Q \cdot\left(\sqrt{\frac{d m^{2} n^{2} m T_{0}}{2 \eta_{0}}}\right) \leftarrow$ approximation type fo any. mocluation for coherent $R x$.

$$
a(x) \cong\left[\frac{1}{(1-a) x+a \sqrt{x^{2}+b}}\right] \frac{e^{-x^{2} / 2}}{\sqrt{2 \pi}}
$$

where $a=\frac{1}{\pi} \quad$ a $\quad b=2 \pi$.

* For von-Coheront Recievor: (level detector).

(6) $B E_{R}$ (for binary Tramsmission) $=\frac{1}{2} e^{-\frac{d \operatorname{dnin} T_{0}}{8 \eta_{0}}}$

$$
\Leftrightarrow B \& R \quad(\text { for Mramy }) \simeq \frac{1}{2 m} e^{-\frac{d \min m T_{0}}{\delta \eta_{0}}}
$$

Example:

$$
\begin{aligned}
& r_{b}=10 \text { kbps. } \\
& M_{-} \text {ary } M=16 . ~ \\
& \eta_{0}=10^{-4} \\
& \text { dmin }=2 \text { Volts. }
\end{aligned}
$$

Cohurant $B x$:

$$
\begin{aligned}
& \text { Coherant } R x: \\
& \text { BER }=\frac{1}{4} \quad a\left(\sqrt{\frac{4 * 4}{2}}\right)=\frac{1}{4} Q(\sqrt{8}) \text {. } \\
& \text { lever Detector: } \\
& \text { BER }=\frac{1}{6} e^{-1}
\end{aligned}
$$

* Autolaralation fr of noise $=5 \Delta T$

$$
P S D=F\{(\text { Auto Corelation })\} \text {. }
$$

thus PSD $=5$

- PSD $=\sin (\omega \tau)$ is stationary or not stationary \rightarrow not stationary because it isn't symmetric around the origin.
* Band Pass: (Applied in wireless channels)
\rightarrow we don't have an infinite bandwidth.
* We care about orthogonality in order to
 detect the signals (signals must be orthogonats)
\rightarrow physically the wireless channel is the space:
* We need $T_{x} \& R_{x}$ antenna.
* Multi Tx \& Multi R_{x} - use the same channel at the same time so the pest way to detect them
 is to make from in different freq.
\rightarrow weltiple axis \rightarrow (1) Controlled \rightarrow ate Can do TDN.
Corthogonality is t - domain).
L (2) un controlled (different syskms) \rightarrow Regulation each system works in different freq.
soft limitation of the bund width (Band limited systems).
* The most expensive pert in the system is the spectrum (Brei).
* BW in the base rand was: $\frac{10}{2 m}(1+\alpha)$.. usingRCa.
* the te is a mirror image of the +ie.

$$
p(t) \Rightarrow \text { Raised cosine. }
$$

* translate to Bank Pass * in band Pass.

$$
\text { Bu in Band Pass }=\frac{r_{b}}{m}(1+\alpha)
$$

$$
\phi(t)=a_{i} a \times(t) \quad \frac{\text { aip }(t) \cos (\operatorname{coc} t)}{a \times(t)}
$$

*P.S * if we have another signet: bip(t) and transmits it on the same channel it will have * interference so if we
 make the signal: bi $p(t) \sin (\omega+1$
$a y(t)$
Is $d_{i} a x(t)$ \& $y(t)$ are orthogonal?! We cant decide according to $p(t)$ which can make them not orthogonal;
so the affect of $p(t)$ \& the amplitude must be constant for the same period.
thus the max. free q of $P(t)$ must be lesstham the freq. of the carrier. fir<fc. to make the two signal Orthogonal.
\rightarrow two Dimension modulation
for mutt Dimension Mooulanon we change ω
Scanned by CamScanner
\rightarrow We change wo in the way that it wont overlap with other signals.
\rightarrow Inside the channel uk count the signal to be orthogonal to not overlap or SUR acceptable if the interferance happen with a little amount.
\rightarrow Band Pass trans. Realize pond United, One Dinmsion, two Dimension Modulation by selecting efferent fer. cusing $\cos \$$ sine for (D). such that it grantee to not over ep. overlap.
\rightarrow axis now is ($P(t)$ cos wot)
curveform shapping filter.
\rightarrow Bu(Band Pass) $=2$ Bu(勇 base band).

* $I-D \rightarrow$ the change in Carrier (sometimes we neglect $P(t)$) we only have cosine or sine with a factor (ai). $a_{i} \equiv$ constellation (Amplitude).
\& then we put the binary. (Gray Coded) BCR (best).

1110 oo al
-AT IX:

ai $\rho(t) \cos (\omega c t)$

each antenna must be matched.

(FET) Vo x Vine ${ }^{2}$ (and Order).
we put on the (out) of the FET a band Pass filler centered around ω_{c} so we pass $\rightarrow \delta(t) \cos \left(\omega_{c} t\right)$

* We do mixing in Multistage.

(just like the sattelite).

$$
T P \rightarrow(12-14) G
$$

choose the freq.
we need.
for $1-1$:-

$\cos \left(\omega_{1}, t\right), \quad \cos \omega_{2}(t) \quad \Delta$

$$
\omega_{c}=\omega_{2} \overbrace{\text { f }} \omega_{I f} .
$$

determined by BPF.
thus $f_{1}=f_{55}$.

$$
\text { If } \omega_{c}=\omega_{2}+\omega_{I f} \text {. }
$$

the image is for away Form the Original (No Problem)

* Linear or second order mixer. is needed to simplify. the mixer. ; thus we assume that all the mixers are Linear region.
* Mixer Order:-
assume we have a $2^{\text {nd }}$ order bout $=\sum_{i=1}^{I_{m \text { min }}} k_{i} V_{i n}{ }^{i}$.
mixer. tho $I_{\text {max }}=3$ this. mixer: two $I_{\text {max }}=3$ tho
thus; when assuming $U_{n}=\cos \left(\omega_{c} t\right)+S(t)$.
Noun $\left.v_{\text {out }}=s(t)+\cos \left(\omega_{c} t\right)+((s s t))^{2}+\cos ^{2}\left(\omega_{c} t\right)+s(t) \cos \omega_{c} t\right)$

$$
+\cdots+s(t)^{2} \cos \left(\omega_{c} t\right) \ldots . .
$$

centred around the same freq. Y distortion come from the thinearty of the mixer)
*, The main recon to use the $R C_{x}$ is to remove the intersymber interference \& then we use it as a filter.

* Commutator CRt:

* before the BPF the Spection. is repeated

*, Miser Can be used as Commutator.
* Aceerding to non-lincerity of the mixer then a distortion of. $s(t)^{2} \cos \rho^{(}(t)$ is shown at the same center freq. but if k_{3} is small it can be regligable. (. for the output of BPF is $\left.k_{2} s(t) \cos (\omega c t)+s(t)^{2} \cos (\omega c t)\right)$
*) for k th order mixer: $^{\text {th }}$ or

$$
s(t) \rightarrow @ f_{1}
$$

carrier $\rightarrow @ f_{2}$.
thus: $f_{0}=\frac{f_{c}}{m} \mp \frac{n}{m} f_{1} \quad n_{1} m \leqslant k$.
\rightarrow if $k \gg$ then $m \gg$, then thesis a fractions of $s(t)$ so ihs we need a narrower BPF "problem".
\rightarrow In Order to reduce the complexity of RF BPF. we must use linear mixers (1st order Nevers)
\rightarrow And we need to have P.A is to be Rail to Rail linear P.A.
show the op exactly for the range of the power Supply.

* If we add a transformer with a gain then we can maximize the output. Which is Galp(t) $\cos \omega_{c} t$ which is $\phi(t)$.
* For a 2-Dimensional 2 outputs to show from the mapper but with phase shift of the carrier equal to $\frac{\pi}{2}$ which make the system QAM modulator.

to Gain the
Tx signal
"QAM1":- $A_{r}(t)=G a_{i p}(t) \cos \omega_{0} t+G b_{i p}(t)$ sin $\omega_{c t}$
* BF \Rightarrow RLC but inductance in high Frequency is a problem so we use an insulating system (costy design),
* Adjacent channel interference: Inter the power between the signals (signal Power Inverter Interference).
* SAW Filter is to be used as BPF.

mechanical.

. Modulator.
Com Recieve Nulti Dimensions and with any Constellation types).
RF bandPassfiller \rightarrow Limit the noise Power \& reject the image Frequency from external sources.
LNA \rightarrow the signal will be attenuated with avery high value; (both internal noise and noise from air) thews the noise Generated or $\frac{\text { added from } R x}{1}$ is avery small noise. noise" Figure
$\rightarrow P_{r}=\frac{V_{r m s}^{2}}{\operatorname{Rin}}$ (Revived Power \& Pin to be 50Ω) usually $P_{r}=-100 \mathrm{dBm}=10^{-10} \mathrm{~m} \mathrm{\omega}=0.1 \mathrm{pw}$.
\rightarrow For Internal noise \Rightarrow.

$$
V_{f m s}^{n}=\sqrt{4 K T B}
$$

\rightarrow assume $V^{n}=1 * 10^{-15} \mathrm{~V} / \sqrt{H z}\left[\begin{array}{c}\text { (square it } \& \text { will give } \\ \text { PSI). } \\ \text { then Nwitiply if by } B W\end{array}\right.$ will give noise Power.

* if we put a wire (in antenna design) to be $\left(\frac{1}{4}\right)$ gives internal impedance $=53,172$, so we can reduce -172 to be zero by: 1. Adding $+y 72 \quad 2$ recces the ungth by 75%. the resistance cari't be redre so we build the whole system according to it.
* N-ckt: used to N larch the impedance.

IF : to Limit the exact BW
$A G C$: Automatic Gain control; Change the Gain from $G_{\min } \leqslant G \leq G_{\max }$ $\Delta G=G_{\text {max }}-G_{\text {min }}$ (dynamic range) in $d B$ that the $R x$ can be recieved (ΔP_{1} in dB).

* Reciever Sensitivity \rightarrow @ Gmax = Prmin - minimum value of the pave that can the Reciever detect; usually to be messed after [The antenna, Marching ckt $\& B P F]$; why?!
we put the controller before the matching ckt to determine the power that can be detected, so if we Recieve smaller value we can: 1. choose tehange the gain of the Antenna (best). 2. change the length.
* M-D (multi-Dimension): according to the data we choose the Frequency (FSK)
* Constant envelope signals : information is nit in the AMP, it's in the Frequency.; we can use either Fillers or Molt -frequencies.
* we compare between the signal \&

$$
\phi_{F_{5 k}(t)}=a p(t) \cos (u t)
$$

\uparrow depend on Freq.

M-D F Sk.
lecture $\# 18$.

$$
\phi(t)=\sum_{\substack{A \\ \text { constant value. }}}^{\frac{a G}{A} p(t) \cos \left(\omega_{c} t\right)}
$$

Tr. 19/11

* Mapping Table:

00	f_{1}
01	f_{2}
10	f_{3}
11	f_{4}

$$
* \frac{r_{0}}{m}=r_{s} \Rightarrow \frac{1}{r_{s}}=T_{s} .
$$

$$
B W=\mu_{\frac{1}{m}}(1+\alpha) \text {. "Wide band mad." }
$$

$F S K>M$ MSS , ASK.

* Narrow Band \Rightarrow Min. BW. (from implementation equal distance, of view and form modulation point of view. .

depends on free.

IC I \rightarrow inter carring interference

$$
G B \rightarrow \text { Guide Band. }
$$

* We need to Compress the BW bat keeping all the signals orthorengy.
fast fourier transform

$\Delta f=\frac{f_{s}}{n}$ (frequency resolution increase when \# of points increase)

Scanned by CamScanner

OFDM. (take the dote \& Compress it):
each hog. for

Orthogonal.
we use OFDM \rightarrow to get the channel for Multi user. (more than One user share the same channel).

$$
\begin{aligned}
& x=\omega_{s} . j \frac{n k 2 \pi}{N} \\
& \quad \omega=e^{n, k=0, \ldots, N .}
\end{aligned}
$$

OFDM is a compressed. FSK.

Quiz \#3:
For the shown constellation write the mapping table \& find the average energy and. PARR $\rightarrow r_{b}=15 \mathrm{kbps}$.
(Peak to avg Power ratio).

sol
$E_{a y}=1.5 \mathrm{Ts}_{\mathrm{s}}$.

$$
P A P R=\frac{2}{1,5}
$$

$$
\begin{aligned}
r_{s} & =\frac{r_{b}}{m} \\
& =\frac{15}{3}=5 k .
\end{aligned}
$$

data.	a_{i}	b_{i}
001	-1	1
000	0	1
010	1	1
011	1	0
111	1	-1
110	0	-1
100	-1	-1
101	-1	0

OFDN:

‘人,

Lecture \# 19
Sat. 2110
 or Nult usees.

Constelation: 1.minimum Cost (min aus enerog) at max dmin) (BSRLV)
2. Peak to avg power ratio $\simeq 1$ (smant)
3. $\min B W$. \rightarrow 万 $(1+\alpha)$.

Binary Transmisis:
Constellation : 1. minimum Cost (min any energy) at max Amin) (BERJ) 2. Peak to avg power ratio $\simeq 1$ (shan)

3. min $B W \rightarrow \frac{\Gamma_{b}}{m}(1+\alpha)$

for 1,2 Dimension. (ASK, PSK, QAM..)
(FSK) Multi Dimension $\rightarrow \frac{M_{r_{0}}}{m}(1+\alpha)$

* BUR \rightarrow determine the quality of service (Performance).
$\Rightarrow f=\frac{f_{s}}{N} \rightarrow$ we do a project (s) to a space w.

$$
=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & c^{1} & 1 \\
1 & & \\
\vdots & &
\end{array}\right.
$$

as band width of the signal
splat the frequency to bank of smaller frequencies.

* Sub band Transformation: (Wovlet fromsformation) \rightarrow make the sub frequencies different from each other $(\Delta f, 2 \Delta f, 4 \Delta f \ldots)$....
* We Spread the signals but we Control it
- we can use it as a variable data rate transmission.
* $P_{r}=P_{t}+G_{t}+G_{r}-$ loss. (dB).
reciever transmitter
sensitivity.
sensitivity

$$
P_{F}+G_{R}=E I R P .
$$

* Modulation technique $\Rightarrow 64$ RAM \rightarrow LOAM $\rightarrow 4$ RAM $\rightarrow 2$ binary.
\qquad more distance. max min distance
* Change Constellation Dimensionality acwroing to the distame called. adaptive modulation \rightarrow keep the same power $\$$ equating. in a good quality.
"Is sine power to control the peak to any power ratio (PAPR)..
* I can manage the fading affect \Rightarrow to not send on the fading frequencies \rightarrow In ofOM its good in fading channels (if convert freq. selective channels into flat fading channels \rightarrow fording select a frequency.
on the whole signal
thees a facing.
G fading goes to only one
port of the channel.
(*) each user has his awn group of the signal.
* Channel estimation techniques: the kay for successful communication
* Differential moodulation(Coded Modulation):
\rightarrow Full response signaling \rightarrow the channel is used for ts for only one dater until its being recieved.

* depending on the previous currant \& previous data.

Assume.
at, 0101101
IC Q version every signed table transmitted we send partial signaling (part of the current signal (symbol) and ane from the previous).
O1, 10, 01, 11, 10, 01. (this is how the signal transmit).
partial
response * the response for current \& previous data every signaling interval. signaling.
another technique:

on	dn-1	Δ phase.
0	0	$\pi / 4$.
0	1	$\pi / 2$
1	0	$-\pi / 4$
1	1	$-\pi / 2$.

Scanned by CamScanner
assume the following signal.

$$
0101101 \quad \rightarrow A p(t) \cos (\omega t+\theta i)
$$

Example: \rightarrow delay ($L C \quad C(C)$
Mk.

Usk Same as pst

change as a function of time.

$$
\phi_{t}(t)=A p(t) \operatorname{Cos}(\omega t+\theta)
$$

Linear. Unit step.
why linear is better than unit step?.

$$
\begin{aligned}
B W= & 2 \text { fax }+2 \Delta f \\
& \frac{\text { Bitrate }}{2} \quad \text { depends on the } \\
& \text { derivative of }
\end{aligned}
$$

smoothing for the sharp edges (lo the RC).
continuous phase.
if base band. the phase. (frequency division)

$$
\begin{aligned}
& \text { instantaneous freq }= w+\Phi^{0}(t) \\
& \dot{\theta}^{\dot{0}}=\frac{d \theta}{d t}=\frac{\Delta \theta}{\Delta t} \rightarrow \text { if linear (better) }
\end{aligned}
$$

CPFSK \rightarrow cont. phase reg shift keying.
types of CPFSR: \rightarrow Multi th signaling
2. MSK.
minimum
change the phase
shift keying ($\pi / 4$ or $-\pi / 4)$.

GMSK \rightarrow gaussian shape \& minimum shift Keying FM Transmitter. (used in SiM) Gaussian filter.
example:
$\pi / 4-$ QDPSK: (two bits at a time)

Lota	$\Delta \theta$	
00	$\pi / 4$	
01	$-\pi / 4$	
10	$-K / 4 / 4 t$	2 min
11		$\min \Delta(\Delta \theta)$

we need to maximize the minimum distance.
Ditferntialy Consent $R x$:
IF

instead of Quadrature Modulator.
lecture 20

$$
\begin{aligned}
& B E R=\frac{1}{m} Q\left(\sqrt{\frac{d_{\text {min }}^{2} m T_{b}}{2 \eta_{0}}}\right) \\
& S N R \triangleq \gamma_{b} \triangleq \frac{E_{b}}{\eta_{0}} \\
& \text { BoR }=\frac{1}{m} Q\left(\sqrt{2 \gamma_{b}^{m}}\right) \\
& \frac{\pi}{4} \text {-GOPak: } \\
& \left\lvert\, \begin{array}{c|c|}
\hline \text { data } & \Delta \theta=x \\
\hline 00 & \pi / 4 \\
01 & -\pi / 4 \\
10 & 3 \pi / 4 \\
11 & -3 \pi / 4 \\
\hline
\end{array}\right. \\
& d_{\text {min }} \text { @ } \min (\Delta x) \\
& \underbrace{\theta_{n}}_{\text {preserd }}=\underbrace{\theta_{n-j}}_{\text {previous }}+\Delta \theta \\
& \left.\phi_{p S}(t)=A p(t) \cos (6)_{t} t+\theta_{n}\right)
\end{aligned}
$$

Why do we need din?
To measure the error probability (SER or BER) hence we compare possible outcomes neglecting our present state.

Ex III:

$$
\left[\left.\begin{array}{c|c}
d & \Delta \theta \\
\hline 0 & \pi / 5 \\
\hline 1 & \pi / 3
\end{array} \right\rvert\,\right.
$$

Design involves $\Delta \theta$ values, observe how posing $\Delta \theta$ affects the number of constellation points

Mid exam material \uparrow coded modulation:-

memory content $\overline{\text { state }} \equiv$ node on the graph

State diagram

