University of Jordan
Department of Electrical Engineering

EE212 - Electric Circuits II Second Semester 2015-2016 First Exam Time: 1 Hour Thursday, 6/3/2016 15:00 - 16:00 pm

Name: نموی ایمورمذ

sec#:

ID# 0144364

Serial #:

-Section I

Dr. Mohammed Abuelha

Section 3 Dr. Eyad Feilat Section 4 Mohammed Abuelhaj (3.5)

Questions 1 (5 points)

The circuit shown below consists of three loads in a series-parallel connection, with each of the loads defined as indicated. Find:

- a) The overall real, reactive and complex power supplied by the source, P_s , Q_s and S_s .
- b) The overall source power factor, PF_s .

51 = 100 + 200 j

c) The source phasor current, I.

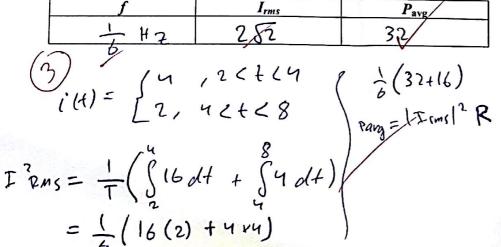
The source phasor current, I _s .			
MI	$P_1 = 100 \text{ W}$	52 = 400 -300	J .
Is	$Q_1 = 200 \text{ VAR (ind.)}$	$5_2 = 400 - 300$ $5_3 = 519.6 + 3$	00)
	Load 1		
	<u></u>] [7
$V_{\rm s} = 100 \underline{0^{\rm o}} V_{\rm rms} \underbrace{+}$	P ₂ = 400 W PF ₂ = 0.8 leading		$S_3 = 600 \text{ VA}$
	$PF_2 = 0.8$ leading	J Ç	$Q_3 = 300 \text{ VAR (ind.)}$
	2		

	P_s	Q _s	S_s	PF_s	I_s	
(6)	1019.6	200 NAR	1019.6 +2005	0.9813	IS=10.4/-11.	Arma
U		2 (- 2 - 1 :	T VA			, ,,,,,

S, = 1019.6 +200j

+5万2-HO 3 15 1= 10 3.9

Js = Vems Fring


Tems = 10.4/-11.1

Question 2 (3 points)

The current waveform shown below is flowing through a 4- Ω resistor. Compute

- a. the frequency of the signal, f.
- b. the effective values (rms) current I_{rms} ,
- c. average power delivered to the resistor, P_{avg} .

i(t) (A))					
2	/	T	Ę	1	+	7_	_	
	0	2	4	6	8	10	12	<i>l</i> (s)

Questions 3 (3 points)

A load with 0.8 lagging PF absorbs 60 W from a 100 V, 60 Hz power line. It is required to correct the power factor to 0.9 lagging. Find:

- a) The old and new line current,
- b) The value of the element (R, L, or C) to be added to achieve the required PF correction.

			,
I old	Ingw	Value of the element	
1.06 [-36.86]	0.942/-25.8	C= 8/449 MF	
(\pr. = 0.8 & =	36.86	· ~ *	
5= 60+45j	5= 多	VENS I PMS	
0)=00+101		10+45) 10	1121.06
V=100V	I cmc =	$= \frac{60+45)}{100/42} = 1.0$	0 1000
	(em)	100/42	
C=80H2		ng= 1.06 /-36.86	
$pl_{2} = 0.9$ $\theta_{2} = 2$	5.84	15= 1.00 [-26.86	
s2 = 60 +290	// p (tane,	-tan 82) 66	11. 12/011 4
	(0=/		(tan (36.86) -tan (25.86
	7 ~ v2	m (2T	60. 100 12
			100/5

Questions 4 (3 points)

The 60-Hz line current of a 3-phase balanced, abc sequence Y-Y system is 2 Arms. Each phase impedance Z consists of a $30-\Omega$ resistance connected in series with a 106-mH inductance. Find:

- a) The magnitudes of phase and line voltages of the load, $|V_{ph}|$ and $|V_{LL}|$.
- b) The total real, reactive, and apparent power absorbed by 3-phase load, P_L , Q_L and S_L .

c) The power factor of the load, PF.	
$ V_{ph} $ $ V_{LL} $ $ P_L $	QL SL PF
5/ 100/ 53 100 200m	266.667 333.33 D.6
F=80 IL = 2Arms	JAR (106nH
Z=301+40j=50 [53.13	iwl=
Vph = IL ZY Pf =	0 2 mx 60 x 10 6 x 10-3
PL= IIL/2 ZY	= 39.96 j
=	≈ 40 j

Question 5 (3 points)

or the circuit shown below

-	-		
1	1 .	Find, draw and label the Thevenin equivalent circuit as seen from terminals a - b .	1'm=7.07/15
	b.	If the load impedance $Z_L = 3 + j4 \Omega$, find the load current, I_L .	$I_{L} = 9 - 60 \text{ / } 34.9$
	c.	If Z_L is adjusted till maximum power is transferred, find Z_L which absorbs maximum power, and find the value of the maximum power, P_{max} .	$Z_L = 8 + 8 \text{j}$ $P_{max} = \frac{ V_{th} ^2}{8Rth} = 0.781$

$$2 \ln z - 38 11 (84)8$$

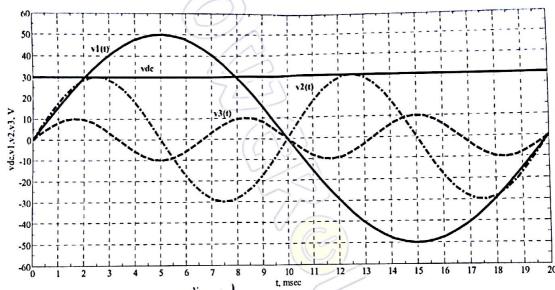
$$2 \ln z - 38 (848)$$

$$2 \ln z - 80 (848)$$

$$2 \ln z - 80 (848)$$

$$2 \ln z - 80$$

$$2$$


Questions 6 (3 points)

In the Figure shown below, $v(t) = v_{dc}(t) + v_1(t) + v_2(t) + v_3(t)$. Answer questions 6.1-6.3.

the average voltage V_{dc} is 0

the effective voltage V_{eff} is 71.83 V. \angle

if v(t) appears across a 10- Ω resistor, the average power dissipated is 515-2 6.3

$$\frac{2500}{2} + \frac{900}{2} + \frac{100}{2}$$

 $v_{dc}(t) \quad V_{1}(t) = 50 \sin(nt) + \theta$ $v_{2}(t) = 30 \sin(nt) + \theta$ $v_{3}(t) = 10 \sin(nt) + \theta$ $v_{3}(t) = \frac{2500}{2} + \frac{900}{2} + \frac{100}{2}$ $v_{eff} = \sqrt{1.83} + \sqrt{4c} = 41.83 + 30 = 71.83$

University of Jordan Department of Electrical Engineering

EE212 - Electric Circuits II Second Semester 2015-2016

First Exam Time: I Hour Thursday, 6/3/2016 15:00 - 16:00 pm

Name:

sec#:

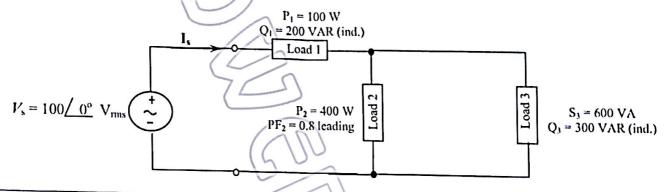
ID#

Serial #:

Section 1

Dr. Mohammed Abuelhaj

Section 3 Dr. Eyad Feilat


Section 4

Mohammed Abuelhaj

Questions 1 (5 points)

The circuit shown below consists of three loads in a series-parallel connection, with each of the loads defined as indicated. Find:

- a) The overall real, reactive and complex power supplied by the source, P_s , Q_s and S_s .
- b) The overall source power factor, PF_s .
- c) The source phasor current, Is.

Q_s	S	PF_s	I.
200 VAR	1019.6+j200	0.981	
	$S_s = 1039 \angle 11.1^{\circ} \text{ VA}$	lagging	$I_s = 10.39 \angle -11.1^{\circ} \text{ A}$
	<u>Q</u> s 200 VAR	200 VAR 1019.6+j200	200 VAR 1019.6+j200 0.981

Question 2 (3 points)

The current waveform shown below is flowing through a 4- Ω resistor. Compute

- a. the frequency of the signal, f.
- b. the effective values (rms) current I_{rms} ,
- c. average power delivered to the resistor, P_{avg} .

I _{rms}	Pavg
$\sqrt{8} A_{rms}$	32 W
	[O 4

Questions 3 (3 points)

A load with 0.8 lagging PF absorbs 60 W from a 100 V (peak), 60 Hz power line. It is required to correct the power factor to 0.9 lagging. Find:

- a) The old and new line current,
- b) The value of the element (R, L, or C) to be added to achieve the required PF correction.

Iold	Inen	Value of the element
$I_{old} = 1.5 \angle -36.9^{\circ} \text{ A}$	$I_{new} = 1.33 \angle -25.8^{\circ} \text{ A}$	C= 8.512×10 ⁻⁰⁶ F 8.512 μF