
Preface

This book is intended to be used as a text for either undergraduate level
(junior/senior) courses in probability or introductory graduate level courses in
random processes that are commonly found in Electrical Engineering curricula.
While the subject matter is primarily mathematical, it is presented for engineers.
Mathematics is much like a well-crafted hammer. We can hang the tool on our wall
and step back and admire the fine craftmanship used to construct the hammer, or
we can pick it up and use it to pound a nail into the wall. Likewise, mathematics
can be viewed as an art form or a tool. We can marvel at the elegance and rigor, or
we can use it to solve problems. It is for this latter purpose that the mathematics is
presented in this book. Instructors will note that there is no discussion of algebras,
Borel fields, or measure theory in this text. It is our belief that the vast majority of
engineering problems regarding probability and random processes do not require
this level of rigor. Rather, we focus on providing the student with the tools and
skills needed to solve problems. Throughout the text we have gone to great effort
to strike a balance between readability and sophistication. While the book provides
enough depth to equip students with the necessary tools to study modern commu-
nication systems, control systems, signal processing techniques, and many other
applications, concepts are explained in a clear and simple manner that makes the
text accessible as well.

It has been our experience that most engineering students need to see how the
mathematics they are learning relates to engineering practice. Toward that end, we
have included numerous engineering application sections throughout the text to
help the instructor tie the probability theory to engineering practice. Many of these
application sections focus on various aspects of telecommunications since this com-
munity is one of the major users of probability theory, but there are applications to
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other fields as well. We feel that this aspect of the text can be very useful for accred-
itation purposes for many institutions. The Accreditation Board for Engineering
and Technology (ABET) has stated that all electrical engineering programs should
provide their graduates with a knowledge of probability and statistics including
applications to electrical engineering. This text provides not only the probability
theory, but also the applications to electrical engineering and a modest amount of
statistics as applied to engineering.

A key feature of this text, not found in most texts on probability and random
processes, is an entire chapter devoted to simulation techniques. With the advent of
powerful, low-cost, computational facilities, simulations have become an integral
part of both academic and industrial research and development. Yet, many stu-
dents have major misconceptions about how to run simulations. Armed with the
material presented in our chapter on simulation, we believe students can perform
simulations with confidence.

It is assumed that the readers of this text have a background consistent with
typical junior level electrical engineering curricula. In particular, the reader should
have a knowledge of differential and integral calculus, differential equations, lin-
ear algebra, complex variables, discrete math (set theory), linear time-invariant
systems, and Fourier transform theory. In addition, there are a few sections in
the text that require the reader to have a background in analytic function the-
ory (e.g., parts of Section 4.10), but these sections can be skipped without loss
of continuity. While some appendices have been provided with a review of
some of these topics, these presentations are intended to provide a refresher for
those who need to “brush up” and are not meant to be a substitute for a good
course.

For undergraduate courses in probability and random variables, we recommend
instructors cover the following sections:

Chapters 1–3: all sections,
Chapter 4: sections 1–6,
Chapter 5: sections 1–7 and 9,
Chapter 6: sections 1–3,
Chapter 7: sections 1–5.

These sections, along with selected application sections, could easily be covered in
a one semester course with a comfortable pace. For those using this text in grad-
uate courses in random processes, we recommend that instructors briefly review
Chapters 1–7 focussing on those concepts not typically taught in an undergraduate
course (e.g., Sections 4.7–4.10, 5.8, 5.10, 6.4, and 7.6) and then cover selected topics
of interest from Chapters 8–12.
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We consider the contents of this text to be appropriate background material
for such follow-on courses as Digital Communications, Information Theory, Cod-
ing Theory, Image Processing, Speech Analysis, Synthesis and Recognition, and
similar courses that are commonly found in many undergraduate and graduate
programs in Electrical Engineering. Where possible, we have included engineering
application examples from some of these topics.
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The study of probability, random variables, and random processes is fundamental
to a wide range of disciplines. For example, many concepts of basic probability
can be motivated through the study of games of chance. Indeed, the foundations
of probability theory were originally built by a mathematical study of games of
chance. Today, a huge gambling industry is built on a foundation of probability.
Casinos have carefully designed games that allow players to win just enough
to keep them hooked, while keeping the odds balanced slightly in favor of the
“house.” By nature, the outcomes of these games are random, but the casino owners
fully understand that as long as the players keep playing, the theory of probabil-
ity guarantees—with very high probability—that the casino will always come out
ahead. Likewise, those playing the games may be able to increase their chances of
winning by understanding and using probability.

In another application of probability theory, stock investors spend a great deal
of time and effort trying to predict the random fluctuations in the market. Day
traders try to take advantage of the random fluctuations that occur on a daily basis,
whereas long-term investors try to benefit from the gradual trends that unfold over
a much longer time period. These trends and fluctuations are random in nature and
hence can be described only in a probabilistic fashion. Another business built on
managing random occurrences is the insurance industry. Insurance premiums are
calculated based on a careful study of the probabilities of various events happening.
For example, the car insurance salesman has carefully evaluated the inherent risk
of various classes of drivers and will adjust the premiums of each class according to
the probabilities that those drivers will have an accident. In yet another application,
a meteorologist tries to predict future weather events based on current and past
meteorological conditions. Since these events are random, the weather forecast will
often be presented in terms of probabilities (e.g., there is a 40 percent chance, or
probability, of rain on Tuesday).
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2 Chapter 1 Introduction

Since the theory of probability and random processes finds such a wide range
of applications, students require various levels of understanding depending on the
particular field they are preparing to enter. For those who wish to improve their
proficiency at card games, a firm understanding of discrete probability may be
sufficient. Those going into operations management need to understand queueing
theory and therefore Markov and related random processes. A telecommunications
engineer needs to have a firm understanding of models of noise and the design of
systems to minimize the effects of noise.

This book is not intended to serve the needs of all disciplines, but rather
is focused on preparing students entering the fields of electrical and computer
engineering. One of the main goals of the text is to prepare the student to
study random signals and systems. This material is fundamental to the study
of digital signal processing (voice, image, video, etc.), communications sys-
tems and networks, radar systems, power systems, and many other applications
within the engineering community. With this readership in mind, a background
consistent with most electrical and computer engineering curricula is assumed.
That is, in addition to fundamental mathematics including calculus, differen-
tial equations, linear algebra, and complex variables, the student is assumed to
be familiar with the study of deterministic signals and systems. We understand
that some readers may be very strong in these areas, while others may need
to “brush up.” Accordingly, we have included a few appendices that may help
those who need a refresher and also provide a quick reference for significant
results.

Throughout the text, the reader will find many examples and exercises that
utilize MATLAB. MATLAB is a registered trademark of the MathWorks, Inc.;
it is a technical software computing environment. Our purpose for introducing
computer-based examples and problems is to expand our capabilities so that
we may solve problems too tedious or complex to do via hand calculations.
Furthermore, MATLAB has nice plotting capabilities that can greatly assist the
visualization of data. MATLAB is used extensively in practice throughout the
engineering community; therefore, we feel it is useful for engineering students
to gain exposure to this important software package. Examples in the text that use
MATLAB are clearly marked with a small computer logo.

Before diving into the theory of discrete probability in the next chapter, we first
provide a few illustrations of how the theory of probability and random processes
is used in several engineering applications. At the end of each subsequent chapter,
the reader will find engineering application sections that illustrate how the material
presented in that chapter is used in the real world. These sections can be skipped
without losing any continuity, but we recommend that the reader at least skim
through the material.
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1.1 A Speech Recognition System

Many researchers are working on methods for computer recognition of speech.
One application is to recognize commands spoken to a computer. Such systems
are presently available from several vendors. A simple speech recognition sys-
tem might use a procedure called template matching, which may be described
as follows. We define a vocabulary, or a set of possible words for a computer-
ized dictionary. This restricts the number of possible alternatives that must be
recognized. Then a template for each word is obtained by digitizing the word as it
is spoken. A simple dictionary of such templates is shown in Figure 1.1. The tem-
plate may be the time waveform, the spectrum of the word, or a vector of selected
features of the word. Common features might include the envelope of the time
waveform, the energy, the number of zero crossings within a specified interval,
and the like.

Speech recognition is a complicated task. Factors that make this task so difficult
include interference from the surroundings, variability in the amplitude and dura-
tion of the spoken word, changes in other characteristics of the spoken word such
as the speaker’s pitch, and the size of the dictionary to name a few. In Figure 1.2,
we have illustrated some of the variability that may occur when various speakers
say the same word. Here we see that the waveform templates may vary consider-
ably from speaker to speaker. This variability may be described by the theory of
probability and random processes, which in turn may be used to develop models
for speech production and recognition. Such models may then be used to design
systems for speech recognition.

TemplateVocabulary

hello

no

yes

bye

Figure 1.1 A simple dictionary of speech templates for speech recognition.
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Templates

Vocabulary

hello

Speaker 1
(male)

Speaker 2
(male)

Speaker 3
(female)

Speaker 4
(child)

yes

no

bye

Figure 1.2 Variations in speech templates for different speakers.

1.2 A Radar System

A classical problem drawing heavily on the theory of probability and random
processes is that of signal detection and estimation. One example of such a problem
is a simple radar system, such as might be used at an airport to track local air traffic.
A known signal is converted to an electromagnetic wave and propagated via an
antenna. This wave will reflect off an aircraft and return back to the antenna, where
the signal is processed to gather information about the aircraft. In addition to being
corrupted by a random noise and interference process, the returning signal itself
may exhibit randomness. First, we must determine if there is a reflected signal
present. Usually, we attempt to maximize the probability of correctly detecting an
aircraft subject to a certain level of false alarms. Once we decide that the aircraft
is there, we attempt to estimate various random parameters of the reflected signal
to obtain information about the aircraft. From the time of arrival of the reflected
signal, we can estimate the distance of the aircraft from the radar site. The fre-
quency of the returned signal will indicate the speed of the aircraft. Since the
desired signal is corrupted by noise and interference, we can never estimate these
various parameters exactly. Given sufficiently accurate models for these random
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Figure 1.3 A radar system.

disturbances, however, we can devise procedures for providing the most accurate
estimates possible. We can also use the theory of probability and random processes
to analyze the performance of our system.

1.3 A Communication Network

Consider a node in a computer communication network, such as that depicted in
Figure 1.4, that receives packets of information from various sources and must
forward them along toward their ultimate destinations. Typically, the node has a

Figure 1.4 Nodes and links in a communications network.
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fixed, or at least a maximum, rate at which it can transmit data. Since the arrival
of packets to a node will be random, the node will usually have some buffering
capability, allowing the node to temporarily store packets that it cannot forward
immediately. Given a random model of the arrival process of packets at a node, the
theory of probability and random processes developed in this text will allow the
network designer to determine how large a buffer is needed to insure a minimal
probability of buffer overflow (and a resulting loss of information). Or, conversely,
given a set buffer size, a limit on the amount of traffic (i.e., throughput) that the
node can handle can be determined. Other random quantities such as the delay a
packet encounters at the node can also be statistically characterized.

On a less local basis, when information is generated at one of the nodes with
a specified destination, a route must be determined to get the packet from the
source to the destination. Some nodes in the network may be more congested
than others. Congestion throughout the network tends to be very dynamic, so the
routing decision must be made using probability. Which route should the packet
follow so that it is least likely to be dropped along the way? Or, maybe we want
to find the path that will lead to the smallest average delay. Protocols for routing,
flow control, and the like are all based in the foundations of probability theory.

These few examples illustrate the diversity of problems that probability and
random processes may model and thereby assist in the development of effective
design solutions. By firmly understanding the concepts in this text, the reader will
open up a vast world of engineering applications.
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Many electrical engineering students have studied, analyzed, and designed
systems from the point of view of steady-state and transient signals using time
domain or frequency domain techniques. However, these techniques do not
provide a method for accounting for variability in the signal nor for unwanted
disturbances such as interference and noise. We will see that the theory of prob-
ability and random processes is useful for modeling the uncertainty of various
events (e.g., the arrival of telephone calls and the failure of electronic components).
We also know that the performance of many systems is adversely affected by noise,
which may often be present in the form of an undesired signal that degrades the
performance of the system. Thus, it becomes necessary to design systems that can
discriminate against noise and enhance a desired signal.

How do we distinguish between a deterministic signal or function and a stochas-
tic or random phenomenon such as noise? Usually, noise is defined to be any
undesired signal, which often occurs in the presence of a desired signal. This def-
inition includes deterministic as well as nondeterministic signals. A deterministic
signal is one that may be represented by parameter values, such as a sinusoid,
which may be perfectly reconstructed given an amplitude, frequency, and phase.
Stochastic signals, such as noise, do not have this property. While they may be
approximately represented by several parameters, stochastic signals have an ele-
ment of randomness that prevents them from being perfectly reconstructed from
a past history. As we saw in Chapter 1 (Figure 1.2), even the same word spoken by
different speakers is not deterministic; there is variability, which can be modeled as
a random fluctuation. Likewise, the amplitude and/or phase of a stochastic signal
cannot be calculated for any specified future time instant, even though the entire
past history of the signal may be known. However, the amplitude and/or phase of
a random signal can be predicted to occur with a specified probability, provided

7
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certain factors are known. The theory of probability provides a tool to model and
analyze phenomena that occur in many diverse fields, such as communications,
signal processing, control, and computers. Perhaps the major reason for study-
ing probability and random processes is to be able to model complex systems and
phenomena.

2.1 Experiments, Sample Spaces, and
Events

The relationship between probability and gambling has been known for some time.
Over the years, some famous scientists and mathematicians have devoted time to
probability: Galileo wrote on dice games; Laplace worked out the probabilities of
some gambling games; and Pascal and Bernoulli, while studying games of chance,
contributed to the basic theory of probability. Since the time of this early work,
the theory of probability has become a highly developed branch of mathematics.
Throughout these beginning sections on basic probability theory, we will often use
games of chance to illustrate basic ideas that will form the foundation for more
advanced concepts. To start with, we will consider a few simple definitions.

DEFINITION 2.1: An experiment is a procedure we perform (quite often hypothe-
tical) that produces some result. Often the letter E is used to designate an experiment
(e.g., the experiment E5 might consist of tossing a coin five times).

DEFINITION 2.2: An outcome is a possible result of an experiment. The Greek
letter xi (ξ ) is often used to represent outcomes (e.g., the outcome ξ1 of experiment
E5 might represent the sequence of tosses heads-heads-tails-heads-tails; however,
the more concise HHTHT might also be used).

DEFINITION 2.3: An event is a certain set of outcomes of an experiment (e.g., the
event C associated with experiment E5 might be C = {all outcomes consisting of an
even number of heads}).

DEFINITION 2.4: The sample space is the collection or set of “all possible” distinct
(collectively exhaustive and mutually exclusive) outcomes of an experiment. The
letter S is used to designate the sample space, which is the universal set of outcomes
of an experiment. A sample space is called discrete if it is a finite or a countably
infinite set. It is called continuous or a continuum otherwise.
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The reason we have placed quotes around the words all possible in Definition 2.4
is explained by the following imaginary situation. Suppose we conduct the
experiment of tossing a coin. It is conceivable that the coin may land on edge.
But experience has shown us that such a result is highly unlikely to occur. Therefore,
our sample space for such experiments typically excludes such unlikely outcomes.
We also require, for the present, that all outcomes be distinct. Consequently, we
are considering only the set of simple outcomes that are collectively exhaustive and
mutually exclusive.

EXAMPLE 2.1: Consider the example of flipping a fair coin once, where
fair means that the coin is not biased in weight to a particular side. There
are two possible outcomes, namely, a head or a tail. Thus, the sample
space, S, consists of two outcomes, ξ1 = H to indicate that the outcome
of the coin toss was heads and ξ2 = T to indicate that the outcome of
the coin toss was tails.

EXAMPLE 2.2: A cubical die with numbered faces is rolled and the
result observed. The sample space consists of six possible outcomes,
ξ1 = 1, ξ2 = 2, . . . , ξ6 = 6, indicating the possible faces of the cubical
die that may be observed.

EXAMPLE 2.3: As a third example, consider the experiment of rolling
two dice and observing the results. The sample space consists of 36
outcomes, which may be labelled by the ordered pairs ξ1 = (1, 1), ξ2 =
(1, 2), ξ3 = (1, 3), . . . , ξ6 = (1, 6), ξ7 = (2, 1), ξ8 = (2, 2), . . . , ξ36 = (6, 6);
the first component in the ordered pair indicates the result of the toss of
the first die, and the second component indicates the result of the toss
of the second die. Several interesting events can be defined from this
experiment, such as

A = {the sum of the outcomes of the two rolls = 4},
B = {the outcomes of the two rolls are identical},
C = {the first roll was bigger than the second}.

An alternative way to consider this experiment is to imagine that we
conduct two distinct experiments, with each consisting of rolling a single
die. The sample spaces (S1 and S2) for each of the two experiments are
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identical, namely, the same as Example 2.2. We may now consider the
sample space, S, of the original experiment to be the combination of the
sample spaces, S1 and S2, which consists of all possible combinations
of the elements of both S1 and S2. This is an example of a combined
sample space.

EXAMPLE 2.4: For our fourth experiment, let us flip a coin until a tails
occurs. The experiment is then terminated. The sample space consists
of a collection of sequences of coin tosses. Label these outcomes as
ξn, n = 1, 2, 3, . . . . The final toss in any particular sequence is a tail and
terminates the sequence. The preceding tosses prior to the occurrence
of the tail must be heads. The possible outcomes that may occur are

ξ1 = (T), ξ2 = (H, T), ξ3 = (H, H, T), . . . .

Note that in this case, n can extend to infinity. This is another example of
a combined sample space resulting from conducting independent but
identical experiments. In this example, the sample space is countably
infinite, while the previous sample spaces were finite.

EXAMPLE 2.5: As a last example, consider a random number genera-
tor that selects a number in an arbitrary manner from the semi-closed
interval [0, 1). The sample space consists of all real numbers, x, for which
0 ≤ x < 1. This is an example of an experiment with a continuous sample
space. We can define events on a continuous space as well, such as

A = {x < 1/2},
B = {|x − 1/2| < 1/4},
C = {x = 1/2}.
Other examples of experiments with continuous sample spaces include
the measurement of the voltage of thermal noise in a resistor or the
measurement of the (x, y, z) position of an oxygen molecule in the
atmosphere. Examples 2.1 to 2.4 illustrate discrete sample spaces.

There are also infinite sets that are uncountable and that are not continuous, but
these sets are beyond the scope of this book. So for our purposes, we will consider
only the preceding two types of sample spaces. It is also possible to have a sample
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space that is a mixture of discrete and continuous sample spaces. For the remainder
of this chapter, we shall restrict ourselves to the study of discrete sample spaces.

A particular experiment can often be represented by more than one sample
space. The choice of a particular sample space depends upon the questions that
are to be answered concerning the experiment. This is perhaps best explained
by recalling Example 2.3 in which a pair of dice was rolled. Suppose we were
asked to record after each roll the sum of the numbers shown on the two
faces. Then, the sample space could be represented by only eleven outcomes,
ξ1 = 2, ξ2 = 3, ξ3 = 4, . . . , ξ11 = 12. However, the original sample space is
in some way more fundamental, since the sum of the die faces can be determined
from the numbers on the die faces. If the second representation is used, it is not
sufficient to specify the sequence of numbers that occurred from the sum of the
numbers.

2.2 Axioms of Probability

Now that the concepts of experiments, outcomes, and events have been introduced,
the next step is to assign probabilities to various outcomes and events. This requires
a careful definition of probability. The words probability and probable are commonly
used in everyday language. The meteorologist on the evening news may say that
rain is probable for tomorrow or he may be more specific and state that the chance
(or probability) of rain is 70 percent. Although this sounds like a precise statement,
we could interpret it in several ways. Perhaps it means that about 70 percent of the
listening audience will experience rain. Or, maybe if tomorrow could be repeated
many times, 70 percent of the tomorrows would have rain while the other 30 percent
would not. Of course, tomorrow cannot be repeated and this experiment can be
run only once. The outcome will be either rain or no rain. The meteorologist may
like this interpretation since there is no way to repeat the experiment enough times
to test the accuracy of the prediction. However, there is a similar interpretation
that can be tested. We might say that any time a day with similar meteorological
conditions presents itself, the following day will have rain 70 percent of the time. In
fact, it may be his or her past experience with the given meteorological conditions
that led the meteorologist to the prediction of a 70 percent chance of rain.

It should be clear from our everyday usage of the word probability that it is a
measure of the likelihood of various events. So, in general terms, probability is a
function of an event that produces a numerical quantity that measures the like-
lihood of that event. There are many ways to define such a function, which we
could then call probability. In fact, we will find several ways to assign probabilities
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to various events, depending on the situation. Before we do that, however,
we start with three axioms that any method for assigning probabilities must
satisfy:

AXIOM 2.1: For any event A, Pr(A) ≥ 0 (a negative probability does not make
sense).

AXIOM 2.2: If S is the sample space for a given experiment, Pr(S) = 1 (probabilities
are normalized so that the maximum value is unity).

AXIOM 2.3a: If A ∩ B = Ø, then Pr(A ∪ B) = Pr(A) + Pr(B).

As the word axiom implies, these statements are taken to be self-evident and require
no proof. In fact, the first two axioms are really more of a self-imposed conven-
tion. We could have allowed for probabilities to be negative, or we could have
normalized the maximum probability to be something other than one. However,
this would have greatly confused the subject and we do not consider these pos-
sibilities. From these axioms (plus one more to be presented shortly), the entire
theory of probability can be developed. Before moving on to that task, a corollary
to Axiom 2.3a is given.

COROLLARY 2.1: Consider M sets A1, A2, . . . , AM that are mutually exclusive,
Ai ∩ Aj = Ø for all i �= j,

Pr

( M⋃
i=1

Ai

)
=

M∑
i=1

Pr(Ai). (2.1)

PROOF: This statement can be proved using mathematical induction. For those
students who are unfamiliar with this concept, the idea behind induction is to show
that if the statement is true for M = m, then it must also hold for M = m + 1. Once
this is established, it is noted that by Axiom 2.3a, the statement applies for M = 2,
and hence it must be true for M = 3. Since it is true for M = 3, it must also be
true for M = 4, and so on. In this way we can prove that Corollary 2.1 is true
for any finite M. The details of this proof are left as an exercise for the reader (see
Exercise 2.1). �

Unfortunately, the proof just outlined is not sufficient to show that Corollary 2.1
is true for the case of an infinite number of sets. That has to be accepted on faith
and is listed here as the second part of Axiom 2.3.
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AXIOM 2.3b: For an infinite number of mutually exclusive sets, Ai, i =
1, 2, 3, . . . , Ai ∩ Aj = Ø for all i �= j,

Pr

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

Pr(Ai). (2.2)

It should be noted that Axiom 2.3a and Corollary 2.1 could be viewed as special
cases of Axiom 2.3b. So, a more concise development could be obtained by starting
with Axioms 2.1, 2.2, and 2.3b. This may be more pleasing to some, but we believe
the approach given here is a little easier to follow for the student learning the
material for the first time.

The preceding axioms do not tell us directly how to deal with the probability of
the union of two sets that are not mutually exclusive. This can be determined from
these axioms as follows.

THEOREM 2.1: For any sets A and B (not necessarily mutually exclusive),

Pr(A ∪ B) = Pr(A) + Pr(B) − Pr(A ∩ B). (2.3)

PROOF: We give a visual proof of this important result using the Venn diagram
shown in Figure 2.1. To aid the student in the type of reasoning needed to complete
proofs of this type, it is helpful to think of a pile of sand lying in the sample space
shown in Figure 2.1. The probability of the event A would then be analogous to
the mass of that subset of the sand pile that is above the region A and likewise for
the probability of the event B. For the union of the two events, if we simply added
the mass of the sand above A to the mass of the sand above B, we would double
count that region that is common to both sets. Hence, it is necessary to subtract the

S

A ∩ B

A

B

Figure 2.1 Venn diagram for proof of Theorem 2.1.
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probability of A ∩ B. We freely admit that this proof is not rigorous. It is possible to
prove Theorem 2.1 without having to call on our sand analogy or even the use of
Venn diagrams. The logic of the proof will closely follow what we have done here.
The reader is led through that proof in Exercise 2.2. �

Many other fundamental results can also be obtained from the basic axioms of
probability. A few simple ones are presented here. More will be developed later
in this chapter and in subsequent chapters. As with Theorem 2.1, it might help the
student to visualize these proofs by drawing a Venn diagram.

THEOREM 2.2: Pr(A) = 1 − Pr(A).

PROOF: 1 = Pr(S) = Pr(A ∪ A) (by Axiom 2.2)

= Pr(A) + Pr(A) (by Axiom 2.3a)

∴ Pr(A) = 1 − Pr(A). �

THEOREM 2.3: If A ⊂ B, then Pr(A) ≤ Pr(B).

PROOF: See Exercise 2.4. �

2.3 Assigning Probabilities

In the previous section, probability was defined as a measure of the likelihood
of an event or events that satisfy the three Axioms 2.1–2.3. How probabilities are
assigned to particular events was not specified. Mathematically, any assignment
that satisfies the given axioms is acceptable. Practically speaking, we would like to
assign probabilities to events in such a way that the probability assignment actually
represents the likelihood of occurrence of that event. Two techniques are typically
used for this purpose and are described in the following paragraphs.

In many experiments, it is possible to specify all of the outcomes of the exper-
iment in terms of some fundamental outcomes, which we refer to as atomic
outcomes. These are the most basic events that cannot be decomposed into simpler
events. From these atomic outcomes, we can build more complicated and more
interesting events. Quite often we can justify assigning equal probabilities to all
atomic outcomes in an experiment. In that case, if there are M mutually exclusive
exhaustive atomic events, then each one should be assigned a probability of 1/M.
Not only does this make perfect common sense, it also satisfies the mathematical
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requirements of the three axioms that define probability. To see this, we label the
M atomic outcomes of an experiment E as ξ1, ξ2, · · · , ξM . These atomic events are
taken to be mutually exclusive and exhaustive. That is, ξi ∩ ξj = Ø for all i �= j, and
ξ1 ∪ ξ2 ∪ · · · ∪ ξM = S. Then by Corollary 2.1 and Axiom 2.2,

Pr(ξ1 ∪ ξ2 ∪ · · · ∪ ξM) = Pr(ξ1) + Pr(ξ2) + · · · + Pr(ξM) = Pr(S) = 1 (2.4)

If each atomic outcome is to be equally probable, then we must assign each a
probability of Pr(ξi) = 1/M for there to be equality in the preceding equation.
Once the probabilities of these outcomes are assigned, the probabilities of some
more complicated events can be determined according to the rules set forth in
Section 2.2. This approach to assigning probabilities is referred to as the classical
approach.

EXAMPLE 2.6: The simplest example of this procedure is the coin flip-
ping experiment of Example 2.1. In this case, there are only two atomic
events, ξ1 = H and ξ2 = T. Provided the coin is fair (again, not biased
towards one side or the other), we have every reason to believe that these
two events should be equally probable. These outcomes are mutually
exclusive and collectively exhaustive (provided we rule out the pos-
sibility of the coin landing on its edge). According to our theory of
probability, these events should be assigned probabilities of Pr(H) =
Pr(T) = 1/2.

EXAMPLE 2.7: Next consider the dice rolling experiment of Example
2.2. If the die is not loaded, the six possible faces of the cubicle die
are reasonably taken to be equally likely to appear, in which case,
the probability assignment is Pr(1) = Pr(2) = · · · = Pr(6) = 1/6. From
this assignment we can determine the probability of more complicated
events, such as

Pr(even number is rolled)=Pr(2∪4∪6)

=Pr(2)+Pr(4)+Pr(6) (by Corollary 2.3)

=1/6+1/6+1/6 (by probability assignment)

=1/2.
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EXAMPLE 2.8: In Example 2.3, a pair of dice were rolled. In this exper-
iment, the most basic outcomes are the 36 different combinations of
the six atomic outcomes of the previous example. Again, each of these
atomic outcomes is assigned a probability of 1/36. Next, suppose we
want to find the probability of the event A = {sum of two dice = 5}. Then,

Pr(A) = Pr((1, 4) ∪ (2, 3) ∪ (3, 2) ∪ (4, 1))

= Pr(1, 4) + Pr(2, 3) + Pr(3, 2) + Pr(4, 1) (by Corollary 2.1)

= 1/36 + 1/36 + 1/36 + 1/36 (by probability assignment)

= 1/9.

EXAMPLE 2.9: In this example we will use the MATLAB com-
mand rand to simulate the flipping of coins and the rolling of
dice. The command rand(m,n) creates a matrix of m rows and n
columns, where each element of the matrix is a randomly selected

number equally likely to fall anywhere in the interval (0,1). By rounding this
number to the nearest integer, we can create a randomly selected number
equally likely to be 0 or 1. This can be used to simulate the flipping of a coin
if we interpret 0 as “tails” and 1 as “heads” or vice versa. Similarly, if we
multiply rand(1) by 6 and round up to the nearest integer, we will get one
of the numbers 1, 2, . . . , 6 with equal probability. This can be used to simulate
the rolling of a die. Try running the following script in MATLAB.

% Simulation of coin flipping and die tossing.

coin_flip=round(rand(1)) % Simulate flip of a coin.

die_toss=ceil(6*rand(1)) % Simulate toss of one die.

dice_toss=ceil(6*rand(1,2)) % Simulate toss of two dice.

You should find that each time you run this script, you get different (random)
looking results. With any MATLAB command, if you want more information
on what the command does, typehelp followed by the command name at the
MATLAB prompt for detailed information on that command. For example,
to get help on the rand command, type help rand.

Care must be taken when using the classical approach to assigning probabil-
ities. If we define the set of atomic outcomes incorrectly, unsatisfactory results
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may occur. In Example 2.8, we may be tempted to define the set of atomic outcomes
as the different sums that can occur on the two die faces. If we assign equally likely
probability to each of these outcomes, then we arrive at the assignment

Pr(sum = 2) = Pr(sum = 3) = · · · = Pr(sum = 12) = 1/11. (2.5)

Anyone with experience in games involving dice knows that the likelihood of
rolling a 2 is much lower than the likelihood of rolling a 7. The problem here is that
the atomic events we have assigned are not the most basic outcomes and can be
decomposed into simpler outcomes, as demonstrated in Example 2.8.

This is not the only problem encountered in the classical approach. Suppose
we consider an experiment that consists of measuring the height of an arbitrarily
chosen student in your class and rounding that measurement to the nearest inch.
The atomic outcomes of this experiment would consist of all the heights of the
students in your class. However, it would not be reasonable to assign an equal
probability to each height. Those heights corresponding to very tall or very short
students would be expected to be less probable than those heights corresponding
to a medium height. So, how then do we assign probabilities to these events? The
problems associated with the classical approach to assigning probabilities can be
overcome by using the relative frequency approach.

The relative frequency approach requires that the experiment we are concerned
with be repeatable, in which case, the probability of an event, A, can be assigned by
repeating the experiment a large number of times and observing how many times
the event A actually occurs. If we let n be the number of times the experiment is
repeated and nA be the number of times the event A is observed, then the probability
of the event A can be assigned according to

Pr(A) = lim
n→∞

nA

n
. (2.6)

This approach to assigning probability is based on experimental results and thus
has a more practical flavor to it. It is left as an exercise for the reader (see Exercise 2.6)
to confirm that this method does indeed satisfy the axioms of probability and is
thereby mathematically correct as well.

EXAMPLE 2.10: Consider the dice rolling experiment of Exam-
ples 2.3 and 2.8. We will use the relative frequency approach to
assign the probability of the event, A = {sum of two dice = 5}. We
simulated the tossing of two dice using the following MATLAB

code. The results of this dice tossing simulation are shown in Table 2.1.
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Table 2.1 Simulation of Dice Tossing Experiment.

n 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000

nA 96 200 314 408 521 630 751 859 970 1,095

nA/n 0.096 0.100 0.105 0.102 0.104 0.105 0.107 0.107 0.108 0.110

% Simulation code for dice tossing experiment.

n=1000; % Number of times to toss the dice.

die1=ceil(6*rand(1,n)); % Toss first die n times.

die2=ceil(6*rand(1,n)); % Toss second die n times.

dice_sum=die1+die2; % Compute sum of two tosses.

nA=sum(dice_sum==5); % Count number of times sum = 5.

pA=nA/n % Display relative frequency.

The next to last line of MATLAB code may need some explanation. The double
equal sign asks MATLAB to compare the two quantities to see if they are equal.
MATLAB responds with 1 for “yes” and 0 for “no.” Hence the expression
dice_sum==5 results in an n element vector where each element of the vector
is either 0 or 1 depending on whether the corresponding element ofdice_sum
is equal to 5 or not. By summing all elements of this vector, we obtain the
number of times the sum 5 occurs in n tosses of the dice.

To get an exact measure of the probability of an event using the relative fre-
quency approach, we must be able to repeat the event an infinite number of
times—a serious drawback to this approach. In the dice rolling experiment of
Example 2.8, even after rolling the dice 10,000 times, the probability of observ-
ing a 5 was measured to only two significant digits. Furthermore, many random
phenomena in which we might be interested are not repeatable. The situation
may occur only once, and hence we cannot assign the probability according to the
relative frequency approach.

2.4 Joint and Conditional Probabilities

Suppose that we have two sets, A and B. We saw a few results in the previous
section that dealt with how to calculate the probability of the union of two sets,
A ∪ B. At least as frequently, we are interested in calculating the probability of the
intersection of two sets, A ∩ B. This probability is referred to as the joint proba-
bility of the sets A and B, Pr(A ∩ B). Usually, we will use the notation Pr(A, B).
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This definition and notation extends to an arbitrary number of sets. The joint prob-
ability of the sets A1, A2, . . . , AM , is Pr(A1 ∩ A2 ∩ · · · ∩ AM) and we use the simpler
notation Pr(A1, A2, . . . , AM) to represent the same quantity.

Now that we have established what a joint probability is, how does one com-
pute it? To start with, by comparing Axiom 2.3a and Theorem 2.1, it is clear that
if A and B are mutually exclusive, then their joint probability is zero. This is intu-
itively pleasing, since if A and B are mutually exclusive, then Pr(A, B) = Pr(Ø),
which we would expect to be zero. That is, an impossible event should never
happen. Of course, this case is of rather limited interest, and we would be much
more interested in calculating the joint probability of events that are not mutually
exclusive.

In the general case when A and B are not necessarily mutually exclusive, how can
we calculate the joint probability of A and B? From the general theory of probability,
we can easily see two ways to accomplish this. First, we can use the classical
approach. Both events (sets) A and B can be expressed in terms of atomic outcomes.
We then write A ∩ B as the set of those atomic outcomes that is common to both
and calculate the probabilities of each of these outcomes. Alternatively, we can
use the relative frequency approach. Let nA,B be the number of times that A and B
simultaneously occur in n trials. Then,

Pr(A, B) = lim
n→∞

nA,B

n
. (2.7)

EXAMPLE 2.11: A standard deck of playing cards has 52 cards that
can be divided in several manners. There are four suits (spades, hearts,
diamonds, and clubs), each of which has 13 cards (ace, 2, 3, 4, . . . , 10,
jack, queen, king). There are two red suits (hearts and diamonds) and
two black suits (spades and clubs). Also, the jacks, queens, and kings are
referred to as face cards, while the others are number cards. Suppose the
cards are sufficiently shuffled (randomized) and one card is drawn from
the deck. The experiment has 52 atomic outcomes corresponding to the
52 individual cards that could have been selected. Hence, each atomic
outcome has a probability of 1/52. Define the events: A = {red card
selected}, B = {number card selected}, and C = {heart selected}. Since
the event A consists of 26 atomic outcomes (there are 26 red cards),
then Pr(A) = 26/52 = 1/2. Likewise, Pr(B) = 40/52 = 10/13 and
Pr(C) = 13/52 = 1/4. Events A and B have 20 outcomes in common,
hence Pr(A, B) = 20/52 = 5/13. Likewise, Pr(A, C) = 13/52 = 1/4 and
Pr(B, C) = 10/52 = 5/26. It is interesting to note that in this example,
Pr(A, C) = Pr(C). This is because C ⊂ A and as a result A ∩ C = C.
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Often the occurrence of one event may be dependent upon the occurrence of
another. In the previous example, the event A = {a red card is selected} had a
probability of Pr(A) = 1/2. If it is known that event C = {a heart is selected}
has occurred, then the event A is now certain (probability equal to 1), since all
cards in the heart suit are red. Likewise, if it is known that the event C did
not occur, then there are 39 cards remaining, 13 of which are red (all the dia-
monds). Hence, the probability of event A in that case becomes 1/3. Clearly,
the probability of event A depends on the occurrence of event C. We say that
the probability of A is conditional on C, and the probability of A given knowl-
edge that the event C has occurred is referred to as the conditional probability of
A given C. The shorthand notation Pr(A|C) is used to denote the probability of
the event A given that the event C has occurred, or simply the probability of A
given C.

DEFINITION 2.5: For two events A and B, the probability of A conditioned on
knowing that B has occurred is

Pr(A|B) = Pr(A, B)
Pr(B)

. (2.8)

The reader should be able to verify that this definition of conditional probability
does indeed satisfy the axioms of probability (see Exercise 2.7).

We may find in some cases that conditional probabilities are easier to com-
pute than the corresponding joint probabilities, and hence this formula offers a
convenient way to compute joint probabilities:

Pr(A, B) = Pr(B|A)Pr(A) = Pr(A|B)Pr(B). (2.9)

This idea can be extended to more than two events. Consider finding the joint
probability of three events, A, B, and C:

Pr(A, B, C) = Pr(C|A, B)Pr(A, B) = Pr(C|A, B)Pr(B|A)Pr(A). (2.10)

In general, for M events, A1, A2, . . . , AM ,

Pr(A1, A2, . . . , AM) = Pr(AM
∣∣A1, A2, . . . , AM−1)Pr(AM−1

∣∣A1, . . . , AM−2) · · ·
× Pr(A2

∣∣A1)Pr(A1). (2.11)

EXAMPLE 2.12: Return to the experiment of drawing cards from a deck
as described in Example 2.11. Suppose now that we select two cards at
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random from the deck. When we select the second card, we do not
return the first card to the deck. In this case, we say that we are selecting
cards without replacement. As a result, the probabilities associated with
selecting the second card are slightly different if we have knowledge
of which card was drawn on the first selection. To illustrate this, let
A = {first card was a spade} and B = {second card was a spade}. The
probability of the event A can be calculated as in the previous example
to be Pr(A) = 13/52 = 1/4. Likewise, if we have no knowledge of what
was drawn on the first selection, the probability of the event B is the
same, Pr(B) = 1/4. To calculate the joint probability of A and B, we
have to do some counting.

To begin, when we select the first card there are 52 possible outcomes.
Since this card is not returned to the deck, there are only 51 possible out-
comes for the second card. Hence, this experiment of selecting two cards
from the deck has 52 ∗ 51 possible outcomes each of which is equally
likely and has a probability of 1/52 ∗ 51. Similarly, there are 13 ∗ 12 out-
comes that belong to the joint event A∩B. Therefore, the joint probability
for A and B is Pr(A, B) = (13 ∗ 12)/(52 ∗ 51) = 1/17. The conditional
probability of the second card being a spade given that the first card
is a spade is then Pr(B|A) = Pr(A, B)/Pr(A) = (1/17)/(1/4) = 4/17.
However, calculating this conditional probability directly is proba-
bly easier than calculating the joint probability. Given that we know
the first card selected was a spade, there are now 51 cards left in
the deck, 12 of which are spades, thus Pr(B|A) = 12/51 = 4/17.
Once this is established, then the joint probability can be calculated
as Pr(A, B) = Pr(B|A)Pr(A) = (4/17) ∗ (1/4) = 1/17.

EXAMPLE 2.13: In a game of poker, you are dealt five cards from a
standard 52 card deck. What is the probability that you are dealt a flush
in spades? (A flush is when you are dealt all five cards of the same suit.)
What is the probability of a flush in any suit? To answer these questions
requires a simple extension of the previous example. Let Ai be the event
{ith card dealt to us is a spade}, i = 1, 2, . . . , 5. Then

Pr(A1) = 1/4,

Pr(A1, A2) = Pr(A2|A1)Pr(A1) = (12/51) ∗ (1/4) = 1/17,

Pr(A1, A2, A3) = Pr(A3|A1, A2)Pr(A1, A2)

= (11/50) ∗ (1/17) = 11/850,
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Pr(A1, A2, A3, A4) = Pr(A4|A1, A2, A3)Pr(A1, A2, A3)

= (10/49) ∗ (11/850) = 11/4165,

Pr(A1, A2, A3, A4, A5) = Pr(A5|A1, A2, A3, A4)Pr(A1, A2, A3, A4)

= (9/48) ∗ (11/4165) = 33/66,640.

To find the probability of being dealt a flush in any suit, we proceed as
follows:

Pr(flush) = Pr({flush in spades} ∪ {flush in hearts}
∪ {flush in diamonds} ∪ {flush in clubs})

= Pr(flush in spades) + Pr(flush in hearts)
+ Pr(flush in diamonds) + Pr(flush in clubs).

Since all four events in the preceding expression have equal probability,
then

Pr(flush) = 4 ∗ Pr(flush in spades) = 4 ∗ 33
66,640

= 33
16,660

.

2.5 Bayes’s Theorem

In this section, we develop a few results related to the concept of conditional prob-
ability. While these results are fairly simple, they are so useful that we felt it was
appropriate to devote an entire section to them. To start with, the following theo-
rem was essentially proved in the previous section and is a direct result of the
definition of conditional probability.

THEOREM 2.4: For any events A and B such that Pr(B) �= 0,

Pr(A|B) = Pr(B|A)Pr(A)
Pr(B)

. (2.12)

PROOF: From Definition 2.5,

Pr(A, B) = Pr(A|B)Pr(B) = Pr(B|A)Pr(A). (2.13)

Theorem 2.4 follows directly by dividing the preceding equations by Pr(B). �
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Theorem 2.4 is useful for calculating certain conditional probabilities since, in
many problems, it may be quite difficult to compute Pr(A|B) directly, whereas
calculating Pr(B|A) may be straightforward.

THEOREM 2.5 (Theorem of Total Probability): Let B1, B2, . . . , Bn be a set of
mutually exclusive and exhaustive events. That is, Bi ∩ Bj = Ø for all i �= j and

n⋃
i=1

Bi = S ⇒
n∑

i=1

Pr(Bi) = 1. (2.14)

Then

Pr(A) =
n∑

i=1

Pr(A|Bi)Pr(Bi) (2.15)

PROOF: As with Theorem 2.1, a Venn diagram (shown in Figure 2.2) is used here
to aid in the visualization of our result. From the diagram, it can be seen that the
event A can be written as

A = {A ∩ B1} ∪ {A ∩ B2} ∪ · · · ∪ {A ∩ Bn} (2.16)

⇒ Pr(A) = Pr({A ∩ B1} ∪ {A ∩ B2} ∪ · · · ∪ {A ∩ Bn}) (2.17)

Also, since the Bi are all mutually exclusive, then the {A ∩ Bi} are also mutually
exclusive, so that

Pr(A) =
n∑

i=1

Pr(A, Bi) (by Corollary 2.3), (2.18)

=
n∑

i=1

Pr(A|Bi)Pr(Bi) (by Theorem 2.4). (2.19)

B5

A

B1

B2

B4

B3

S

Figure 2.2 Venn diagram used to help prove the theorem of total probability.
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Finally, by combining the results of Theorems 2.4 and 2.5, we get what has come
to be known as Bayes’s theorem. �

THEOREM 2.6 (Bayes’s Theorem): Let B1, B2, . . . , Bn be a set of mutually exclu-
sive and exhaustive events. Then

Pr(Bi|A) = Pr(A|Bi)Pr(Bi)
n∑

i=1
Pr(A|Bi)Pr(Bi)

. (2.20)

As a matter of nomenclature, Pr(Bi) is often referred to as the a priori1 probability of
event Bi, while Pr(Bi|A) is known as the a posteriori2 probability of event Bi given A.
Section 2.8 presents an engineering application showing how Bayes’s theorem is
used in the field of signal detection. We conclude here with a practical example
showing how useful Bayes’s theorem can be.

EXAMPLE 2.14: A certain auditorium has 30 rows of seats. Row 1 has
11 seats, while Row 2 has 12 seats, Row 3 has 13 seats, and so on to the
back of the auditorium where Row 30 has 40 seats. A door prize is to
be given away by randomly selecting a row (with equal probability of
selecting any of the 30 rows) and then randomly selecting a seat within
that row (with each seat in the row equally likely to be selected). Find
the probability that Seat 15 was selected given that Row 20 was selected
and also find the probability that Row 20 was selected given that Seat 15
was selected. The first task is straightforward. Given that Row 20 was
selected, there are 30 possible seats in Row 20 that are equally likely
to be selected. Hence, Pr(Seat 15|Row 20) = 1/30. Without the help
of Bayes’s theorem, finding the probability that Row 20 was selected
given that we know Seat 15 was selected would seem to be a formidable
problem. Using Bayes’s theorem,

Pr(Row 20|Seat 15) = Pr(Seat 15|Row20)Pr(Row 20)/Pr(Seat 15).

1The term a priori is Latin and is literally translated “from the former.” In this context, it
refers to probabilities that are formed from self-evident or presupposed models.

2The term a posteriori is also Latin and is literally translated “from the latter.” In this
context, it refers to probabilities that are derived or calculated after observing certain
events.



2.6 Independence 25

The two terms in the numerator on the right-hand side are both equal
to 1/30. The term in the denominator is calculated using the help of the
theorem of total probability.

Pr(Seat 15) =
30∑

k=5

1
k + 10

1
30

= 0. 0342.

With this calculation completed, the a posteriori probability of Row 20
being selected given seat 15 was selected is given by

Pr(Row 20|Seat 15) =
1

30
1

30
0. 0342

= 0. 0325.

Note that the a priori probability that Row 20 was selected is 1/30 =
0. 0333. Therefore, the additional information that Seat 15 was selected
makes the event that Row 20 was selected slightly less likely. In some
sense, this may be counterintuitive, since we know that if Seat 15 was
selected, there are certain rows that could not have been selected (i.e.,
Rows 1–4 have fewer than 15 seats) and, therefore, we might expect
Row 20 to have a slightly higher probability of being selected compared
to when we have no information about which seat was selected. To see
why the probability actually goes down, try computing the probability
that Row 5 was selected given that Seat 15 was selected. The event that
Seat 15 was selected makes some rows much more probable, while it
makes others less probable and a few rows now impossible.

2.6 Independence

In Example 2.14, it was seen that observing one event can change the probability
of the occurrence of another event. In that particular case, the fact that it was
known that Seat 15 was selected, lowered the probability that Row 20 was selected.
We say that the event A = {Row 20 was selected} is statistically dependent on
the event B = {Seat 15 was selected}. If the description of the auditorium were
changed so that each row had an equal number of seats (e.g., say all 30 rows had
20 seats each), then observing the event B = {Seat 15 was selected} would not
give us any new information about the likelihood of the event A = {Row 20 was
selected}. In that case, we say that the events A and B are statistically independent.
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Mathematically, two events A and B are independent if Pr(A|B) = Pr(A). That is,
the a priori probability of event A is identical to the a posteriori probability of A
given B. Note that if Pr(A|B) = Pr(A), then the following two conditions also hold
(see Exercise 2.8):

Pr(B|A) = Pr(B) (2.21)

Pr(A, B) = Pr(A)Pr(B). (2.22)

Furthermore, if Pr(A|B) �= Pr(A), then the other two conditions also do not hold.
We can thereby conclude that any of these three conditions can be used as a
test for independence and the other two forms must follow. We use the last
form as a definition of independence since it is symmetric relative to the events
A and B.

DEFINITION 2.6: Two events are statistically independent if and only if

Pr(A, B) = Pr(A)Pr(B). (2.23)

EXAMPLE 2.15: Consider the experiment of tossing two numbered
dice and observing the numbers that appear on the two upper faces.
For convenience, let the dice be distinguished by color, with the first
die tossed being red and the second being white. Let A = {number on
the red die is less than or equal to 2}, B = {number on the white die is
greater than or equal to 4}, and C = {the sum of the numbers on the
two dice is 3}. As mentioned in the preceding text, there are several
ways to establish independence (or lack thereof) of a pair of events. One
possible way is to compare Pr(A, B) with Pr(A)Pr(B). Note that for the
events defined here, Pr(A) = 1/3, Pr(B) = 1/2, Pr(C) = 1/18. Also, of
the 36 possible atomic outcomes of the experiment, six belong to the
event A ∩ B and hence Pr(A, B) = 1/6. Since Pr(A)Pr(B) = 1/6 as well,
we conclude that the events A and B are independent. This agrees with
intuition since we would not expect the outcome of the roll of one die
to affect the outcome of the other. What about the events A and C?
Of the 36 possible atomic outcomes of the experiment, two belong to
the event A ∩ C and hence Pr(A, C) = 1/18. Since Pr(A)Pr(C) = 1/54,
the events A and C are not independent. Again, this is intuitive since
whenever the event C occurs, the event A must also occur and so
the two must be dependent. Finally, we look at the pair of events B
and C. Clearly, B and C are mutually exclusive. If the white die shows
a number greater than or equal to 4, there is no way the sum can be 3.
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Hence, Pr(B, C) = 0 and since Pr(B)Pr(C) = 1/36, these two events are
also dependent.

The previous example brings out a point that is worth repeating. It is a common
mistake to equate mutual exclusiveness with independence. Mutually exclusive
events are not the same thing as independent events. In fact, for two events A and
B for which Pr(A) �= 0 and Pr(B) �= 0, A and B can never be both independent and
mutually exclusive. Thus, mutually exclusive events are necessarily statistically
dependent.

A few generalizations of this basic idea of independence are in order. First, what
does it mean for a set of three events to be independent? The following definition
clarifies this and then we generalize the definition to any number of events.

DEFINITION 2.7: The events A, B, and C are mutually independent if each pair
of events is independent; that is,

Pr(A, B) = Pr(A)Pr(B), (2.24a)

Pr(A, C) = Pr(A)Pr(C), (2.24b)

Pr(B, C) = Pr(B)Pr(C), (2.24c)

and in addition,

Pr(A, B, C) = Pr(A)Pr(B)Pr(C). (2.24d)

DEFINITION 2.8: The events A1, A2, . . . , An are independent if any subset of k <

n of these events are independent, and in addition

Pr(A1, A2, . . . , An) = Pr(A1)Pr(A2) . . . Pr(An). (2.25)

There are basically two ways in which we can use this idea of independence. As
shown in Example 2.15, we can compute joint or conditional probabilities and apply
one of the definitions as a test for independence. Alternatively, we can assume inde-
pendence and use the definitions to compute joint or conditional probabilities that
otherwise may be difficult to find. This latter approach is used extensively in engi-
neering applications. For example, certain types of noise signals can be modeled
in this way. Suppose we have some time waveform X(t) which represents a noisy
signal that we wish to sample at various points in time, t1, t2, . . . , tn. Perhaps we
are interested in the probabilities that these samples might exceed some threshold,
so we define the events Ai = Pr(X(ti) > T), i = 1, 2, . . . , n. How might we calcu-
late the joint probability Pr(A1, A2, . . . , An)? In some cases, we have every reason to
believe that the value of the noise at one point in time does not affect the value of the
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noise at another point in time. Hence, we assume that these events are independent
and write Pr(A1, A2, . . . , An) = Pr(A1)Pr(A2) . . . Pr(An).

2.7 Discrete Random Variables

Suppose we conduct an experiment, E, which has some sample space, S. Further-
more, let ξ be some outcome defined on the sample space, S. It is useful to define
functions of the outcome ξ , X = f (ξ ). That is, the function f has as its domain all
possible outcomes associated with the experiment, E. The range of the function f
will depend upon how it maps outcomes to numerical values but in general will
be the set of real numbers or some part of the set of real numbers. Formally, we
have the following definition.

DEFINITION 2.9: A random variable is a real-valued function of the elements
of a sample space, S. Given an experiment, E, with sample space, S, the random
variable X maps each possible outcome, ξ ∈ S, to a real number X(ξ ) as specified by
some rule. If the mapping X(ξ ) is such that the random variable X takes on a finite
or countably infinite number of values, then we refer to X as a discrete random
variable; whereas, if the range of X(ξ ) is an uncountably infinite number of points,
we refer to X as a continuous random variable.

Since X = f (ξ ) is a random variable whose numerical value depends on the
outcome of an experiment, we cannot describe the random variable by stating its
value; rather, we must give it a probabilistic description by stating the probabilities
that the variable X takes on a specific value or values (e.g., Pr(X = 3) or Pr(X > 8)).
For now, we will focus on random variables that take on discrete values and will
describe these random variables in terms of probabilities of the form Pr(X = x).
In the next chapter when we study continuous random variables, we will find this
description to be insufficient and will introduce other probabilistic descriptions
as well.

DEFINITION 2.10: The probability mass function (PMF), PX(x), of a random vari-
able, X, is a function that assigns a probability to each possible value of the random
variable, X. The probability that the random variable X takes on the specific value
x is the value of the probability mass function for x. That is, PX(x) = Pr(X = x).
We use the convention that upper case variables represent random variables
while lower case variables represent fixed values that the random variable can
assume.
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EXAMPLE 2.16: A discrete random variable may be defined for the
random experiment of flipping a coin. The sample space of outcomes is
S = {H, T}. We could define the random variable X to be X(H) = 0 and
X(T) = 1. That is, the sample space H, T is mapped to the set {0, 1} by
the random variable X. Assuming a fair coin, the resulting probability
mass function is PX(0) = 1/2 and PX(1) = 1/2. Note that the mapping
is not unique and we could have just as easily mapped the sample space
H, T to any other pair of real numbers (e.g., {1, 2}).

EXAMPLE 2.17: Suppose we repeat the experiment of flipping a fair
coin n times and observe the sequence of heads and tails. A random
variable, Y, could be defined to be the number of times tails occurs in
n trials. It turns out that the probability mass function for this random
variable is

PY(k) =
(

n
k

) (
1
2

)n

, k = 0, 1, . . . , n.

The details of how this PMF is obtained will be deferred until later in
this section.

EXAMPLE 2.18: Again, let the experiment be the flipping of a coin, and
this time we will continue repeating the event until the first time a heads
occurs. The random variable Z will represent the number of times until
the first occurrence of a heads. In this case, the random variable Z can
take on any positive integer value, 1 ≤ Z < ∞. The probability mass
function of the random variable Z can be worked out as follows:

Pr(Z = n) = Pr(n − 1 tails followed by one heads)

= (Pr(T))n−1Pr(H) =
(

1
2

)n−1 (
1
2

)
= 2−n.

Hence,

PZ(n) = 2−n, n = 1, 2, 3, . . . .
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Figure 2.3 MATLAB simulation results from Example 2.19.

EXAMPLE 2.19: In this example, we will estimate the PMF
given in Example 2.17 via MATLAB simulation using the relative
frequency approach. Suppose the experiment consists of tossing
the coin n = 10 times and counting the number of tails. We then

repeat this experiment a large number of times and count the relative fre-
quency of each number of tails to estimate the PMF. The following MATLAB
code can be used to accomplish this. Results of running this code are shown
in Figure 2.3.

% Simulation code to estimate PMF of Example 2.17.

n=10; % Number of coin flips per

experiment.

m=100; % Number of times to repeat

experiment.

X=round(rand(n,m)); % Simulate coin flipping.

Y=sum(X); % Calculate number of tails per

experiment.

Rel_Freq=hist(Y,[0:n])/m; % Compute relative frequencies.

for k=0:n % Compute actual PMF.

PMF(k+1)=nchoosek(n,k)*(2∧(-n));
end

% Plot Results
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plot([0:n],Rel_Freq,‘o’,[0:n],PMF,‘*’)

legend(‘Relative frequency’,‘True PMF’)

xlabel(‘k’)

ylabel(‘P_X(k)’)

title(‘Comparison of Estimated and True PMF for Example 2.19’)

Try running this code using a larger value for m. You should see more
accurate relative frequency estimates as you increase m.

From the preceding examples, it should be clear that the probability mass
function associated with a random variable, X, must obey certain properties. First,
since PX(x) is a probability, it must be nonnegative and no greater than 1. Second,
if we sum PX(x) over all x, then this is the same as the sum of the probabilities of
all outcomes in the sample space, which must be equal to 1. Stated mathematically,
we may conclude that

0 ≤ PX(x) ≤ 1, (2.26a)∑
x

PX(x) = 1. (2.26b)

When developing the probability mass function for a random variable, it is useful
to check that the PMF satisfies these properties.

In the paragraphs that follow, we describe some commonly used discrete ran-
dom variables, along with their probability mass functions, and some real-world
applications in which each might typically be used.

A. Bernoulli Random Variable This is the simplest possible random variable and is
used to represent experiments that have two possible outcomes. These experiments
are called Bernoulli trials and the resulting random variable is called a Bernoulli ran-
dom variable. It is most common to associate the values {0,1} with the two outcomes
of the experiment. If X is a Bernoulli random variable, its probability mass function
is of the form

PX(0) = 1 − p, PX(1) = p. (2.27)

The coin tossing experiment would produce a Bernoulli random variable. In that
case, we may map the outcome H to the value X = 1 and T to X = 0. Also, we
would use the value p = 1/2 assuming that the coin is fair. Examples of engineering
applications might include radar systems where the random variable could indicate
the presence (X = 1) or absence (X = 0) of a target, or a digital communication
system where X = 1 might indicate a bit was transmitted in error while X = 0
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would indicate that the bit was received correctly. In these examples, we would
probably expect that the value of p would be much smaller than 1/2.

B. Binomial Random Variable Consider repeating a Bernoulli trial n times, where
the outcome of each trial is independent of all others. The Bernoulli trial has a
sample space of S = {0, 1} and we say that the repeated experiment has a sample
space of Sn = {0, 1}n, which is referred to as a Cartesian space. That is, outcomes of
the repeated trials are represented as n element vectors whose elements are taken
from S. Consider, for example, the outcome

k times n − k times

ξk =
︷ ︸︸ ︷
(1, 1, . . . , 1,

︷ ︸︸ ︷
0, 0, . . . , 0) .

(2.28)

The probability of this outcome occurring is

Pr(ξk) = Pr(1, 1, . . . , 1, 0, 0, . . . , 0) = Pr(1)Pr(1) . . . Pr(1)Pr(0)Pr(0) . . . Pr(0)

= (Pr(1))k(Pr(0))n−k = pk(1 − p)n−k. (2.29)

In fact, the order of the 1s and 0s in the sequence is irrelevant. Any outcome with
exactly k 1s and n − k 0s would have the same probability. Now let the random
variable X represent the number of times the outcome 1 occurred in the sequence
of n trials. This is known as a binomial random variable and takes on integer values
from 0 to n. To find the probability mass function of the binomial random variable,
let Ak be the set of all outcomes that have exactly k 1s and n − k 0s. Note that all
outcomes in this event occur with the same probability. Furthermore, all outcomes
in this event are mutually exclusive. Then

PX(k) = Pr(Ak) = (# of outcomes in Ak) ∗ (probability of each outcome in Ak)

=
(

n
k

)
pk(1 − p)n−k, k = 0, 1, 2, . . . , n. (2.30)

The number of outcomes in the event Ak is just the number of combinations of
n objects taken k at a time. This is the binomial coefficient, which is given by

(
n
k

)
= n!

k!(n − k)! . (2.31)

As a check, we verify that this probability mass function is properly normalized:

n∑
k=0

(
n
k

)
pk(1 − p)n−k = (p + 1 − p)n = 1n = 1. (2.32)
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In this calculation, we have used the binomial expansion

(a + b)n =
n∑

k=0

(
n
k

)
akbn−k. (2.33)

Binomial random variables occur in practice any time Bernoulli trials are repeated.
For example, in a digital communication system, a packet of n bits may be transmit-
ted and we might be interested in the number of bits in the packet that are received
in error. Or, perhaps a bank manager might be interested in the number of tellers
who are serving customers at a given point in time. Similarly, a medical techni-
cian might want to know how many cells from a blood sample are white and how
many are red. In Example 2.17, the coin tossing experiment was repeated n times
and the random variable Y represented the number of times heads occurred in the
sequence of n tosses. This is a repetition of a Bernoulli trial, and hence the random
variable Y should be a binomial random variable with p = 1/2 (assuming the coin
is fair).

C. Poisson Random Variable Consider a binomial random variable, X, where the
number of repeated trials, n, is very large. In that case, evaluating the binomial
coefficients can pose numerical problems. If the probability of success in each
individual trial, p, is very small, then the binomial random variable can be well
approximated by a Poisson random variable. That is, the Poisson random variable is a
limiting case of the binomial random variable. Formally, let n approach infinity and
p approach zero in such a way that limn→∞ np = α. Then the binomial probability
mass function converges to the form

PX(m) = αm

m! e−α , m = 0, 1, 2, . . . , (2.34)

which is the probability mass function of a Poisson random variable. We see that
the Poisson random variable is properly normalized by noting that

∞∑
m=0

αm

m! e−α = e−αeα = 1. (2.35)

see Appendix E, (E.14).
The Poisson random variable is extremely important as it describes the behavior

of many physical phenomena. It is most commonly used in queuing theory and in
communication networks. The number of customers arriving at a cashier in a store
during some time interval may be well modeled as a Poisson random variable, as
may the number of data packets arriving at a given node in a computer network.
We will see increasingly in later chapters that the Poisson random variable plays a
fundamental role in our development of a probabilistic description of noise.
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D. Geometric Random Variable Consider repeating a Bernoulli trial until the first
occurrence of the outcome ξ0. If X represents the number of times the outcome ξ1
occurs before the first occurrence of ξ0, then X is a geometric random variable whose
probability mass function is

PX(k) = (1 − p)pk, k = 0, 1, 2, . . . . (2.36)

We might also formulate the geometric random variable in a slightly different
way. Suppose X counted the number of trials that were performed until the
first occurrence of ξ0. Then the probability mass function would take on the
form

PX(k) = (1 − p)pk−1, k = 1, 2, 3, . . . . (2.37)

The geometric random variable can also be generalized to the case where the out-
come ξ0 must occur exactly m times. That is, the generalized geometric random
variable counts the number of Bernoulli trials that must be repeated until the mth
occurrence of the outcome ξ0. We can derive the form of the probability mass func-
tion for the generalized geometric random variable from what we know about
binomial random variables. For the mth occurrence of ξ0 to occur on the kth trial,
then the first k−1 trials must have had m−1 occurrences of ξ0 and k−m occurrences
of ξ1. Then

PX(k) = Pr({((m − 1) occurrences of ξ0 in k − 1) trials}
∩ {ξ0 occurs on the kth trial})

=
(

k − 1
m − 1

)
pk−m(1 − p)m−1(1 − p)

=
(

k − 1
m − 1

)
pk−m(1 − p)m, k = m, m + 1, m + 2, . . . . (2.38)

This generalized geometric random variable sometimes goes by the name of a
Pascal random variable or the negative binomial random variable.

Of course, one can define many other random variables and develop the asso-
ciated probability mass functions. We have chosen to introduce some of the more
important discrete random variables here. In the next chapter, we will introduce
some continuous random variables and the appropriate probabilistic descriptions
of these random variables. However, to close out this chapter, we provide a sec-
tion showing how some of the material covered herein can be used in at least one
engineering application.
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2.8 Engineering Application: An Optical
Communication System

Figure 2.4 shows a simplified block diagram of an optical communication system.
Binary data is transmitted by pulsing a laser or a light emitting diode (LED) that
is coupled to an optical fiber. To transmit a binary 1 we turn on the light source
for T seconds, while a binary 0 is represented by turning the source off for the
same time period. Hence, the signal transmitted down the optical fiber is a series
of pulses (or absence of pulses) of duration T seconds that represents the string of
binary data to be transmitted. The receiver must convert this optical signal back into
a string of binary numbers; it does this using a photodetector. The received light
wave strikes a photoemissive surface, which emits electrons in a random manner.
While the number of electrons emitted during a T second interval is random and
thus needs to be described by a random variable, the probability mass function of
that random variable changes according to the intensity of the light incident on the
photoemissive surface during the T second interval. Therefore, we define a random
variable X to be the number of electrons counted during a T second interval, and
we describe this random variable in terms of two conditional probability mass
functions PX|0(k) = Pr(X = k|0 sent) and PX|1(k) = Pr(X = k|1 sent). It can be
shown through a quantum mechanical argument that these two probability mass
functions should be those of Poisson random variables. When a binary 0 is sent, a
relatively low number of electrons is typically observed; whereas, when a 1 is sent,
a higher number of electrons is typically counted. In particular, suppose the two
probability mass functions are given by

PX|0(k) = Rk
0

k! e−R0 , k = 0, 1, 2, . . . , (2.39a)

PX|1(k) = Rk
1

k! e−R1 , k = 0, 1, 2, . . . . (2.39b)

In these two PMFs, the parameters R0 and R1 are interpreted as the “average”
number of electrons observed when a 0 is sent and when a 1 is sent, respectively.

Laser
or

LED

Photodetector 
(electron
counter)

Decision
Data
input
{0,1}

{0,1}

Figure 2.4 Block diagram of an optical communication system.
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Also, it is assumed that R0 < R1, so when a 0 is sent we tend to observe fewer
electrons than when a 1 is sent.

At the receiver, we count the number of electrons emitted during each T second
interval and then must decide whether a 0 or 1 was sent during each interval.
Suppose that during a certain bit interval, it is observed that k electrons are emitted.
A logical decision rule would be to calculate Pr(0 sent|X = k) and Pr(1 sent|X = k)
and choose according to whichever is larger. That is, we calculate the a posteriori
probabilities of each bit being sent given the observation of the number of electrons
emitted and choose the data bit that maximizes the a posteriori probability. This is
referred to as a maximum a posteriori (MAP) decision rule, and we decide that a
binary 1 was sent if

Pr(1 sent|X = k) > Pr(0 sent|X = k); (2.40)

otherwise we decide a 0 was sent. Note that these desired a posteriori probabilities
are backwards relative to how the photodetector was statistically described. That
is, we know the probabilities of the form Pr(X = k|1 sent) but we want to know
Pr(1 sent|X = k). We call upon Bayes’s theorem to help us convert what we know
into what we desire to know. Using the theorem of total probability,

PX(k) = Pr(X = k) = PX|0(k)Pr(0 sent) + PX|1(k)Pr(1 sent). (2.41)

The a priori probabilities Pr(0 sent) and Pr(1 sent) are taken to be equal (to 1/2),
so that

PX(k) = 1
2

Rk
0

k! e−R0 + 1
2

Rk
1

k! e−R1 . (2.42)

Therefore, applying Bayes’s theorem,

Pr(0 sent|X = k) = PX|0(k)Pr(0 sent)
PX(k)

=
1
2

Rk
0

k! e−R0

1
2

Rk
0

k! e−R0 + 1
2

Rk
1

k! e−R1

, (2.43)

and

Pr(1 sent|X = k) = PX|1(k)Pr(1 sent)
PX(k)

=
1
2

Rk
1

k! e−R1

1
2

Rk
0

k! e−R0 + 1
2

Rk
1

k! e−R1

, (2.44)

Since the denominators of both a posteriori probabilities are the same, we decide
that a 1 was sent if

1
2

Rk
1

k! e−R1 >
1
2

Rk
0

k! e−R0 . (2.45)
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After a little algebraic manipulation, this reduces down to choosing in favor
of a 1 if

k >
R1 − R0

ln(R1/R0)
; (2.46)

otherwise, we choose in favor of 0. That is, the receiver for our optical communi-
cation system counts the number of electrons emitted and compares that number
with a threshold. If the number of electrons emitted is above the threshold we
decide that a 1 was sent; otherwise, we decide a 0 was sent.

We might also be interested in evaluating how often our receiver makes a wrong
decision. Ideally, the answer is that errors are rare, but still we would like to
quantify this. Toward that end, we note that errors can occur in two manners.
First a 0 could be sent and the number of electrons observed could fall above the
threshold, causing us to decide that a 1 was sent. Likewise, if a 1 is actually sent
and the number of electrons observed is low, we would mistakenly decide that a 0
was sent. Again, invoking concepts of conditional probability, we see that

Pr(error) = Pr(error|0 sent)Pr(0 sent) + Pr(error|1 sent)Pr(1 sent). (2.47)

Let x0 be the threshold with which we compare X to decide which data bit was
sent. Specifically, let x0 = (R1 − R0)/ln(R1/R0)� so that we decide a 1 was sent if
X > x0, and we decide a 0 was sent if X ≤ x0. Then

Pr(error|0 sent) = Pr(X > x0|0 sent) =
∞∑

k=x0+1

PX|0(k)

=
∞∑

k=x0+1

Rk
0

k! e−R0 = 1 −
x0∑

k=0

Rk
0

k! e−R0 . (2.48)

Likewise,

Pr(error|1 sent) =
x0∑

k=0

PX|0(k) =
x0∑

k=0

Rk
1

k! e−R1 . (2.49)

Hence, the probability of error for our optical communication system is

Pr(error) = 1
2

− 1
2

x0∑
k=0

Rk
0e−R0 − Rk

1e−R1

k! . (2.50)

Figure 2.5 shows a plot of the probability of error as a function of R1 with R0 as a
parameter. The parameter R0 is a characteristic of the photodetector used. We will
see in later chapters that R0 can be interpreted as the “average” number of electrons
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Figure 2.5 Probability of error curves for an optical communication system; curves are
parameterized from bottom to top with R0 = 1, 2, 4, 7, 10.

emitted during a bit interval when there is no signal incident of the photodetector.
This is sometimes referred to as the “dark current.” The parameter R1 is controlled
by the intensity of the incident light. Given a certain photodetector, the value of
the parameter R0 can be measured. The value of R1 required to achieve a desired
probability of error can be found from Figure 2.5 (or from Equation 2.50, which
generated the figure). The intensity of the laser or LED can then be adjusted to
produce the required value for the parameter R1.

Exercises
2.1 Using mathematical induction, prove Corollary 2.1. Recall that

Corollary 2.1 states that for M events A1, A2, . . . , AM that are mutually
exclusive (i.e., Ai ∩ Aj = Ø for all i �= j),

Pr

( M⋃
i=1

Ai

)
=

M∑
i=1

Pr(Ai).

2.2 Develop a careful proof of Theorem 2.1, which states that for any events A
and B,

Pr(A ∪ B) = Pr(A) + Pr(B) − Pr(A ∩ B).
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One way to approach this proof is to start by showing that the set A ∪ B
can be written as the union of three mutually exclusive sets,

A ∪ B = {A ∩ (A ∩ B)} ∪ {A ∩ B} ∪ {B ∩ (A ∩ B)}
and hence by Corollary 2.1,

Pr(A ∪ B) = Pr(A ∩ (A ∩ B)) + Pr(A ∩ B) + Pr(B ∩ (A ∩ B)).

Next, show that

Pr(A ∩ (A ∩ B)) = Pr(A) − Pr(A ∩ B)

and likewise

Pr(B ∩ (A ∩ B)) = Pr(B) − Pr(A ∩ B).

(Hint: Recall DeMorgan’s law) Put these results together to complete the
desired proof.

2.3 Show that the above formula for the probability of the union of two events
can be generalized to three events as follows:

Pr(A ∪ B ∪ C) = Pr(A) + Pr(B) + Pr(C)

− Pr(A ∩ B) − Pr(A ∩ C) − Pr(B ∩ C) + Pr(A ∩ B ∩ C).

2.4 Prove Theorem 2.3, which states that if A ⊂ B then Pr(A) ≤ Pr(B).

2.5 Formally prove the union bound which states that for any events
A1, A2, . . . , AM (not necessarily mutually exclusive),

Pr

( M⋃
i=1

Ai

)
≤

M∑
i=1

Pr(Ai).

2.6 (a) Demonstrate that the relative frequency approach to assigning proba-
bilities satisfies the three axioms of probability.

(b) Demonstrate that the definition of conditional probability Pr(A|B) =
Pr(A, B)/Pr(B) satisfies the three axioms of probability.

2.7 Prove that if Pr(B|A) = Pr(B), then it follows that

(a) Pr(A, B) = Pr(A)Pr(B), and
(b) Pr(A|B) = Pr(A).



40 Chapter 2 Introduction to Probability Theory

Furthermore, show that if Pr(B|A) �= Pr(B), then the two conditions (a) and
(b) do not hold as well.

2.8 We are given a number of darts. When we throw a dart at a target, we have a
probability of 1/4 of hitting the target. What is the probability of obtaining
at least one hit if three darts are thrown? Calculate this probability two
ways. Hint: Construct the sample space. How many outcomes are in the
sample space? Are all outcomes in the sample space equally likely?

2.9 A box of 30 diodes is known to contain five defective ones. If two diodes
are selected at random without replacement, what is the probability that
at least one of these diodes is defective?

2.10 Two balls are selected sequentially (without replacement) from an urn
containing three red, four white, and five blue balls.

(a) What is the probability that the first is red and the second is blue?

(b) What is the probability of selecting a white ball on the second draw if
the first ball is replaced before the second is selected?

(c) What is the probability of selecting a white ball on the second draw if
the first ball is not replaced before the second is selected?

2.11 In pulse code modulation (PCM), a PCM word consists of a sequence of
binary digits (bits) of 1s and 0s.

(a) Suppose the PCM word length is n bits long. How many distinct words
are there?

(b) If each PCM word, three bits long, is equally likely to occur, what is the
probability of a word with exactly two 1s occurring? Solve this prob-
lem in two ways. First, consider all words in a sample space. Second,
suppose each bit is equally likely.

2.12 In pulse amplitude modulation (PAM), a PAM word consists of a sequence
of pulses, where each pulse may take on a given number of amplitude
levels. Suppose a PAM word is n pulses long and each pulse may take on
m different levels.

(a) How many distinct PAM words are there?

(b) If each PAM word, four pulses long, is equally likely to occur and each
pulse can have one of three levels, {0, 1, 2}, what is the probability of a
PAM word occurring with exactly two pulses of level 2?
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2.13 A balanced coin is tossed nine times. Find the probabilities of each of the
following events:

(a) exactly 3 heads occurred;

(b) at least 3 heads occurred;

(c) at least 3 heads and at least 2 tails occurred.

2.14 Two six-sided (balanced) dice are thrown. Find the probabilities of each of
the following events:

(a) a 5 does not occur on either throw;

(b) the sum is 7;

(c) a 5 and a 3 occur in any order;

(d) the first throw is a 5 and the second throw is a 5 or a 4;

(e) both throws are 5;

(f) either throw is a 6.

2.15 Two six-sided (balanced) dice are thrown. Find the probabilities of each of
the following events:

(a) only 2, 3, or 4 appear on both dice;

(b) the value of the second roll subtracted from the value of the first roll is 2;

(c) the sum is 10 given that one roll is 6;

(d) the sum is 7 or 8 given that one roll is 5;

(e) one roll is a 4 given that the sum is 7.

2.16 Manufacturer X produces personal computers (PCs) at two different loca-
tions in the world. Fifteen percent of the PCs produced at location A are
delivered defective to a retail outlet, while 5 percent of the PCs produced at
location B are delivered defective to the same retail store. If the manufactur-
ing plant at A produces 1,000,000 PCs per year and the plant at B produces
150,000 PCs per year, find the probability of purchasing a defective PC.

2.17 I deal myself 3 cards for a standard 52-card deck. Find the probabilities of
each of the following events:

(a) 2 of a kind (e.g., 2 fives or 2 kings),

(b) 3 of a kind,

(c) 3 of the same suit (a.k.a. a flush, e.g., 3 hearts or 3 clubs),

(d) 3 cards in consecutive order (a.k.a. a straight, e.g., 2-3-4 or 10-J-Q).
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2.18 I deal myself 5 cards for a standard 52-card deck. Find the probabilities of
each of the following events:

(a) 2 of a kind,
(b) 3 of a kind,
(c) 2 pair (e.g., 2 eights and 2 queens),
(d) a flush (5 cards all of the same suit),
(e) a full house (3 of one kind and 2 of another kind),
(f) a straight (5 cards in consecutive order).

2.19 I deal myself 13 cards for a standard 52-card deck. Find the probabilities
of each of the following events:

(a) exactly one heart appears in my hand (of 13 cards);
(b) at least 7 cards from a single suit appear in my hand;
(c) my hand is void (0 cards) of at least one suit.

2.20 Cards are drawn from a standard 52-card deck until an ace is drawn. After
each card is drawn, (if the card is not an ace), it is put back in the deck
and the cards are reshuffled so that each card drawn is independent of all
others.

(a) Find the probability that the first ace is drawn on the 5th selection.
(b) Find the probability that at least 5 cards are drawn before the first ace

appears.
(c) Repeat parts (a) and (b) if the cards are drawn without replacement.

That is, after each card is drawn, (if it is not an ace) the card is set aside
and not replaced in the deck.

2.21 Cards are drawn from a standard 52-card deck until the third club is drawn.
After each card is drawn, it is put back in the deck and the cards are
reshuffled so that each card drawn is independent of all others.

(a) Find the probability that the 3rd club is drawn on the 8th selection.
(b) Find the probability that at least 8 cards are drawn before the 3rd club

appears.
(c) Repeat parts (a) and (b) if the cards are drawn without replacement.

That is, after each card is drawn, the card is set aside and not replaced
in the deck.

2.22 A computer memory has the capability of storing 106 words. Due to out-
side forces, portions of the memory are often erased. Therefore, words are
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stored redundantly in various areas of the memory. If a particular word
is stored in n different places in the memory, what is the probability that
this word cannot be recalled if one-half of the memory is erased by electro-
magnetic radiation? Hint: Consider each word to be stored in a particular
cell (or box). These cells (boxes) may be located anywhere, geometrically
speaking, in memory. The contents of each cell may be either erased or not
erased. Assume n is small compared to the memory capacity.

2.23 If two events A and B can occur and Pr(A) is not zero and Pr(B) is not zero,
what combinations of independent (I), not independent (NI), mutually
exclusive (M), and not mutually exclusive (NM) are permissible? In other
words, which of the four combinations (I, M), (NI, M), (I, NM), and (NI,
NM) are permissible? Construct an example for those combinations that
are permissible.

2.24 A possible outcome of an experiment is the event A. The probability of this
event is p. The experiment is performed n times, and the outcome of any
trial is not affected by the results of the previous trials. Define a random
variable X to be the number of times the event A occurs in n trials.

(a) What is the PMF Pr(X = x)?

(b) Show that the sum of the PMF over all x is 1.

(c) What is the name of this PMF?

2.25 For each of the following probability mass functions, find the value of the
constant c.

(a) PX(k) = c(0. 37)k, k = 0, 1, 2, . . .

(b) PX(k) = c(0. 82)k, k = 0, 1, 2, 3, . . .

(c) PX(k) = c(0. 41)k, k = 0, 1, 2, . . . , 24

(d) PX(k) = c(0. 91)k, k = 0, 1, 2, 3, . . . , 15

(e) PX(k) = c(0. 41)k, k = 0, 2, 4, . . . , 12

2.26 Consider a Bernoulli trial where Pr(1) = p and Pr(0) = 1 − p. Suppose this
Bernoulli trial is repeated n times.

(a) Plot the probability mass function for a binomial random variable, X,
with p = 1/5 and n = 10.

(b) Plot the corresponding probability mass function for a Poisson random
variable X with α = np = 2.
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(c) Compare Pr(X ≥ 5) as computed by both the binomial and Poisson
random variables. Is the Poisson random variable a good approxima-
tion for the binomial random variable for this example?

2.27 Suppose the arrival of telephone calls at a switch can be modeled with a
Poisson PMF. That is, if X is the number of calls that arrives in t minutes,
then

Pr(X = k) = (λt)k

k! e−λt, k = 0, 1, 2, . . . ,

where λ is the average arrival rate in calls/minute. Suppose that the
average rate of calls is 10 per minute.

(a) What is the probability that fewer than three calls will be received in
the first 6 seconds?

(b) What is the probability that fewer than three calls will be received in
the first 6 minutes?

2.28 In a certain lottery, six numbers are randomly chosen from the set
{0, 1, 2, . . . , 49} (without replacement). To win the lottery, a player must
guess correctly all six numbers, but it is not necessary to specify in which
order the numbers are selected.

(a) What is the probability of winning the lottery with only one ticket?

(b) Suppose in a given week, 6 million lottery tickets are sold. Suppose
further that each player is equally likely to choose any of the possible
number combinations and does so independently of the selections of all
other players. What is the probability that exactly four players correctly
select the winning combination?

(c) Again assuming 6 million tickets sold, what is the most probable
number of winning tickets?

(d) Repeat parts (b) and (c) using the Poisson approximation to the bino-
mial probability distribution. Is the Poisson distribution an accurate
approximation in this example?

2.29 Imagine an audio amplifier contains six transistors. Harry has determined
that two transistors are defective, but he does not know which two. Harry
removes three transistors at random and inspects them. Let X be the num-
ber of defective transistors that Harry finds, where X may be 0, 1, or 2.
Find the PMF for X.
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2.30 A software manufacturer knows that one out of 10 software games that the
company markets will be a financial success. The manufacturer selects 10
new games to market. What is the probability that exactly one game will
be a financial success? What is the probability that at least two games will
be a success?

2.31 Prove the following identities involving the binomial coefficient
(

n
k

)
=

n!
k!(n − k)! .

(a)
(

n
k

)
=

(
n

n − k

)

(b)
(

n
k

)
+

(
n

k + 1

)
=

(
n + 1
k + 1

)

(c)
n∑

k=0

(
n
k

)
= 2n

(d)
n∑

k=0

(
n
k

)
(−1)k = 0

(e)
n∑

k=1

(
n
k

)
k = n2n−1

(f)
n∑

k=0

(
n
k

)
k(−1)k = 0

2.32 In a digital communication system, a block of k data bits is mapped into
an n bit codeword that typically contains the k information bits as well as
n − k redundant bits. This is known as an (n, k) block code. The redundant
bits are included to provide error correction capability. Suppose that each
transmitted bit in our digital communication system is received in error
with probability p. Furthermore, assume that the decoder is capable of
correcting any pattern of t or fewer errors in an n bit block. That is, if t or
fewer bits in an n bit block are received in error, then the codeword will
be decoded correctly, whereas if more than t errors occur, the decoder will
decode the received word incorrectly. Assuming each bit is received in
error with probability p = 0. 03, find the probability of decoder error for
each of the following codes.

(a) (n, k) = (7, 4), t = 1
(b) (n, k) = (15, 7), t = 2
(c) (n, k) = (31, 16), t = 3

MATLAB Exercises
2.33 Write the MATLAB code to produce a randomly generated number that

is equally likely to produce any number from the set {0, 1, 2, . . . , 9}.
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2.34 Write the MATLAB code to produce a randomly generated number that
follows the Bernoulli distribution for an arbitrary parameter, p.

2.35 Modify the MATLAB code in Example 2.19 to produce a random variable
that follows a binomial distribution for arbitrary parameters n, p.

2.36 Write the MATLAB code to simulate a random variable, Z, whose PMF is
given by Pz(k) = 2−k, k = 1, 2, 3, . . . . Hint: See Example 2.18 for specifics on
how this random variable arises and then follow the lead of Example 2.19.

2.37 (a) Write and execute a MATLAB program to calculate n! for an arbitrary n.
Use your program to calculate 64!.

(b) What is the largest integer n for which your program gives a finite
answer?

(c) Sterling’s approximation for the factorial function is given by

n! ≈ √
2π

(
nn+ 1

2

)
e−n

(
1 − 1

12n

)
.

Use your program to compare the true value of n! with Sterling’s
approximation. For what ranges of n is the approximation within
1 percent of the true value?

2.38 Write your own program to evaluate the binomial coefficient
(

n
k

)
=

n!
k!(n − k)! . Create your program in such a way that it need not directly

evaluate n!. That way the program will not crash if you use it to evaluate a
binomial coefficient n greater than the value you found in Exercise 2.37b.

Use your program to evaluate
(

384
15

)
.



Random Variables,
Distributions, and
Density Functions 3

At the end of the last chapter, we introduced the concept of a random variable
and gave several examples of common discrete random variables. These random
variables were described by their probability mass functions. While this descrip-
tion works fine for discrete random variables, it is inadequate to describe random
variables that take on a continuum of values. We will illustrate through an example
shortly. In this chapter, we introduce the cumulative distribution function as an
alternative description of random variables that is appropriate for describing con-
tinuous as well as discrete random variables. A related function, the probability
density function is also covered. With these tools in hand, the concepts of random
variables can be fully developed. Several examples of commonly used continuous
random variables are also discussed.

To show the need for an alternative to the probability mass function, consider
a discrete random variable, X, that takes on values from the set {0, 1/N, 2/N, . . . ,
(N − 1)/N} with equal probability. That is, the probability mass function of X is

PX

(
k
N

)
= 1

N
, k = 0, 1, 2, . . . , N − 1. (3.1)

This is the type of random variable that is produced by “random” number gen-
erators in high-level languages, such as Fortran and C, and in math packages such
as MATLAB, MathCAD, and Mathematica. In these cases, N is taken to be a fairly
large number so that it appears that the random number can be anything in the con-
tinuous range [0, 1). The reader is referred to Chapter 12, Simulation Techniques,
for more details on how computer-generated random numbers work. For now,

47
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consider the limiting case as N → ∞ so that the random variable can truly fall
anywhere in the interval [0,1). One curious result of passing to the limit is that now

PX

(
k
N

)
= lim

N→∞
1
N

= 0. (3.2)

That is, each point has zero probability of occurring. Yet, something has to occur!
This problem is common to continuous random variables, and it is clear that the
probability mass function is not a suitable description for such a random vari-
able. The next sections develop two alternative descriptions for continuous random
variables, which will be used extensively throughout the rest of the text.

3.1 The Cumulative Distribution Function

Since a continuous random variable will typically have a zero probability of taking
on a specific value, we avoid talking about such probabilities. Instead, events of
the form {X ≤ x} can be considered.

DEFINITION 3.1: The cumulative distribution function (CDF) of a random vari-
able, X, is

FX(x) = Pr(X ≤ x). (3.3)

From this definition, several properties of the CDF can be inferred. First, since
the CDF is a probability, it must take on values between 0 and 1. Since random
variables are real-valued, it is easy to conclude that FX(−∞) = 0 and FX(∞) = 1.
That is, a real number cannot be less than −∞ and must be less than ∞. Next, if we
consider two fixed values, x1 and x2, such that x1 < x2, then the event {X ≤ x1} is a
subset of {X ≤ x2}. Hence, Fx(x1) ≤ Fx(x2). This implies that the CDF is a monotonic
nondecreasing function. Also, we can break the event {X ≤ x2} into the union of two
mutually exclusive events, {X ≤ x2} = {X ≤ x1} ∪ {x1 < X ≤ x2}. Hence, FX(x2) =
FX(x1) + Pr(x1 < X ≤ x2) or, equivalently, Pr(x1 < X ≤ x2) = FX(x2) − FX(x1).
Thus, the CDF can also be used to measure the probability that a random variable
takes on a value in a certain interval. These properties of cumulative distribution
functions are summarized as follows:

(1) FX(−∞) = 0, FX(∞) = 1, (3.4a)

(2) 0 ≤ FX(x) ≤ 1, (3.4b)
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(3) For x1 < x2, FX(x1) ≤ FX(x2), (3.4c)

(4) For x1 < x2, Pr(x1 < X ≤ x2) = FX(x2) − FX(x1). (3.4d)

EXAMPLE 3.1: Which of the following mathematical functions could
be the CDF of some random variable?

(a) FX(x) = 1
2

+ 1
π

tan−1(x),

(b) FX(x) = [1 − e−x]u(x), (u(x) is the unit step function),

(c) FX(x) = e−x2
,

(d) FX(x) = x2u(x).

To determine this, we need to check that the function starts at 0
when x = −∞, ends at 1 when x = ∞, and is monotonic increasing in
between. The first two functions satisfy these properties and thus are
valid CDFs, while the last two do not. The function in (c) is decreasing
for positive values of x, while the function in (d) takes on values greater
than 1 and FX(∞) �= 1.

To more carefully illustrate the behavior of the CDF, let us return to the com-
puter random number generator that generates N possible values from the set
{0, 1/N, 2/N, . . . , (N − 1)/N} with equal probability. The CDF for this particular
random variable can be described as follows. First, FX(x) = 0 for all x < 0, since
the random variable cannot take on negative values. Similarly, FX(x) = 1 for all
x ≥ (N − 1)/N since the random variable cannot be greater than (N − 1)/N. Next,
consider a value of x in the range 0 ≤ x < 1/N. In this case, Pr(X ≤ x) = Pr(X = 0)
since the only value in the specified range that this random variable can take on
is X = 0. Hence, FX(x) = Pr(X = 0) = 1/N for 0 ≤ x < 1/N. Similarly, for
1/N ≤ x < 2/N, FX(x) = Pr(X = 0) + Pr(X = 1/2N) = 2/N.

Following this same reasoning, it is seen that, in general, for an integer k such
that 0 < k < N and (k − 1)/N ≤ x < k/N, FX(x) = k/N. A plot of FX(x) as a
function of x would produce the general staircase type function shown in Figure 3.1.
In Figures 3.2(a) and 3.2(b), the CDF is shown for specific values of N = 10 and
N = 50, respectively. It should be clear from these plots that in the limit as N passes
to infinity, the CDF of Figure 3.2(c) results. The functional form of this CDF is

FX(x) =



0 x ≤ 0
x 0 < x ≤ 1.
1 x > 1

(3.5)
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3/N

2/N
1/N

1/N 2/N N−2
N

------------ N−1
N

. . .

1

FX(x)

x

------------

Figure 3.1 General CDF of the random variable X.

In this limiting case, the random variable X is a continuous random variable and
takes on values in the range [0, 1) with equal probability. Later in the chapter,
this will be referred to as a uniform random variable. Note that when the random
variable was discrete, the CDF was discontinuous and had jumps at the specific
values that the random variable could take on; whereas, for the continuous ran-
dom variable, the CDF was a continuous function (although its derivative was not
always continuous). This last observation turns out to be universal in that contin-
uous random variables have a continuous CDF, while discrete random variables
have a discontinuous CDF with a staircase type of function. Occasionally, one also
needs to work with a random variable whose CDF is continuous in some ranges
and yet also has some discontinuities. Such a random variable is referred to as
a mixed random variable.

EXAMPLE 3.2: Suppose we are interested in observing the occurrence
of certain events and noting the time of first occurrence. The event might
be the emission of a photon in our optical photo detector at the end
of Chapter 2, the arrival of a message at a certain node in a computer
communications network, or perhaps the arrival of a customer in a store.
Let X be a random variable that represents the time that the event first
occurs. We would like to find the CDF of such a random variable, FX(t) =
Pr(X ≤ t). Since the event could happen at any point in time and time
is continuous, we expect X to be a continuous random variable. To
formulate a reasonable CDF for this random variable, suppose we divide
the time interval (0, t] into many, tiny nonoverlapping time intervals of
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(a) (b)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

x

F
x(

x)

F
x(

x)

F
x(

x)

CDF of the Random Variable X for N=10
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Figure 3.2 CDF of the random variable X for (a) N = 10, (b) N = 50, and (c) N → ∞.

length �t. Assume that the probability that our event occurs in a time
interval of length �t is proportional to �t and take λ to be the constant
of proportionality. That is

Pr(event occurs in (k�t, (k + 1)�t)) = λ�t.

We also assume that the event occurring in one interval is independent
of the event occurring in another nonoverlapping time interval. With
these rather simple assumptions, we can develop the CDF of the random
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variable X as follows:

FX(t) = Pr(X ≤ t) = 1 − Pr(X > t),

Pr(X > t) = Pr(X /∈ (0, t]) = Pr({X /∈ (0, �t]} ∩ {X /∈ (�t, 2�t]}
∩ · · · ∩ {X /∈ ((k − 1)�t, k�t]}).

In this equation, it is assumed that the time interval (0, t] has been
divided into k intervals of length �t. Since each of the events in the
expression are independent, the probability of the intersection is just
the product of the probabilities, so that

Pr(X > t) = Pr(X /∈ (0, �t]) Pr(X /∈ (�t, 2�t]) · · · Pr(X /∈ ((k − 1)�t, k�t])

= (1 − λ�t)k =
(

1 − λt
k

)k

.

Finally, we pass to the limit as �t → 0 or, equivalently, k → ∞ to
produce

Pr(X > t) = e−λtu(t) ⇒ FX(t) = (1 − e−λt) u(t).

EXAMPLE 3.3: Suppose a random variable has a CDF given by FX(x) =
(1 − e−x)u(x). Find the following quantities:

(a) Pr(X > 5),

(b) Pr(X < 5),

(c) Pr(3 < X < 7),

(d) Pr(X > 5
∣∣X < 7).

For part (a), we note that Pr(X > 5) = 1 − Pr(X ≤ 5) = 1 − FX(5) = e−5.
In part (b), we note that FX(5) gives us Pr(X ≤ 5), which is not quite
what we want. However, we note that

FX(5) = Pr({X < 5} ∪ {X = 5}) = Pr(X < 5) + Pr(X = 5).

Hence,

Pr(X < 5) = FX(5) − Pr(X = 5).

In this case, since X is a continuous random variable, Pr(X = 5) = 0
and so there is no need to make a distinction between Pr(X < 5) and
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Pr(X ≤ 5); however, for discrete random variables we would need to
be careful. Accordingly, Pr(X < 5) = FX(5) = 1 − exp(−5). For part (c),
we note that in general FX(7) − FX(3) = Pr(3 < X ≤ 7). Again, for
this continuous random variable, Pr(X = 7) = 0, so we can also write
Pr(3 < X < 7) = FX(7) − FX(3) = e−3 − e−7. Finally, for part (d) we invoke
the definition of conditional probability to write the required quantity
in terms of the CDF of X:

Pr(X > 5|X < 7) = Pr({X > 5} ∩ {X < 7})
Pr(X < 7)

= Pr(5 < X < 7)
Pr(X < 7)

= FX(7) − FX(5)
FX(7)

= e−5 − e−7

1 − e−7 .

For discrete random variables, the CDF can be written in terms of the probability
mass function defined in Chapter 2. Consider a general random variable, X, which
can take on values from the discrete set {x1, x2, x3, . . . }. The CDF for this random
variable is

FX(x) =
k∑

i=1

PX(xi), for xk ≤ x < xk+1. (3.6)

The constraint in this equation can be incorporated using unit step functions, in
which case the CDF of a discrete random variable can be written as

FX(x) =
k∑

i=1

PX(xi) u(x − xi). (3.7)

In conclusion, if we know the PMF of a discrete random variable, we can easily
construct its CDF.

3.2 The Probability Density Function

While the CDF introduced in the last section represents a mathematical tool to
statistically describe a random variable, it is often quite cumbersome to work
with CDFs. For example, we will see later in this chapter that the most impor-
tant and commonly used random variable, the Gaussian random variable, has a
CDF that cannot be expressed in closed form. Furthermore, it can often be difficult
to infer various properties of a random variable from its CDF. To help circumvent
these problems, an alternative and often more convenient description known as
the probability density function (PDF) is often used.
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DEFINITION 3.2: The probability density function (PDF) of the random variable
X evaluated at the point x is

fX(x) = lim
ε→0

Pr(x ≤ X < x + ε)
ε

. (3.8)

As the name implies, the probability density function is the probability that the ran-
dom variable X lies in an infinitesimal interval about the point X = x, normalized
by the length of the interval.

Note that the probability of a random variable falling in an interval can be
written in terms of its CDF as specified in Equation 3.4d. For continuous random
variables,

Pr(x ≤ X < x + ε) = FX(x + ε) − FX(x) (3.9)

so that

fX(x) = lim
ε→0

FX(x + ε) − FX(x)
ε

= dFX(x)
dx

. (3.10)

Hence, it is seen that the PDF of a random variable is the derivative of its CDF.
Conversely, the CDF of a random variable can be expressed as the integral of its
PDF. This property is illustrated in Figure 3.3. From the definition of the PDF in
Equation 3.8, it is apparent that the PDF is a nonnegative function, although it is not
restricted to be less than unity as with the CDF. From the properties of the CDFs,
we can also infer several important properties of PDFs as well. Some properties of
PDFs are

(1) fX(x) ≥ 0; (3.11a)

(2) fX(x) = dFX(x)
dx

; (3.11b)

(3) FX(x) =
∫ x

−∞
fX(y) dy; (3.11c)

x

FX(xo) = area

fX(x)

xo

Figure 3.3 Relationship between the PDF and CDF of a random variable.
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(4)
∫ ∞

−∞
fX(x) dx = 1; (3.11d)

(5)
∫ b

a
fX(x) dx = Pr(a < X ≤ b).

(3.11e)

EXAMPLE 3.4: Which of the following are valid probability density
functions?

(a) fX(x) = e−xu(x);

(b) fX(x) = e−|x|;

(c) fX(x) =
{

3
4 (x2 − 1) |x| < 2
0 otherwise

;

(d) fX(x) =
{

1 0 ≤ x < 1
0 otherwise

;

(e) fX(x) = 2xe−x2
u(x).

To verify the validity of a potential PDF, we need to verify only that
the function is nonnegative and normalized so that the area underneath
the function is equal to unity. The function in part (c) takes on negative
values while the function in part (b) is not properly normalized, and
hence these are not valid PDFs. The other three functions are valid PDFs.

EXAMPLE 3.5: A random variable has a CDF given by FX(x) =(
1 − e−λx) u(x). Its PDF is then given by

fX(x) = dFX(x)
dx

= λe−λxu(x).

Likewise, if a random variable has a PDF given by fX(x) = 2xe−x2
u(x),

then its CDF is given by

FX(x) =
∫ x

−∞
fX(y) dy =

∫ x

−∞
2ye−y2

u(y) dy

=
∫ x

0
2ye−y2

dyu(x) = (1 − e−x2
)u(x).
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EXAMPLE 3.6: The MATLAB function rand generates random
numbers that are uniformly distributed in the interval (0,1) using
an algorithm to be discussed in Chapter 12, Simulation Tech-
niques. For the present, consider the algorithm to select a number

from a table in a random manner. To construct a histogram for the random
numbers generated by rand, we write a script that calls rand repeatedly.
Since we can do this only a finite number of times, we quantize the range of
the random numbers into increments of 0.1. We then calculate the number
of times a random number falls in each quantized interval and divide by the
total number of numbers generated for the example. If we plot this ratio of
relative frequencies using a bar graph, the resulting plot is called a histogram.
The MATLAB script for this example follows and the histogram is shown in
Figure 3.4, where the total number of values generated is 10,000. Try chang-
ing the value of N or the number and width of the bins in this example to see
how results vary.

N=10,000; % Do N times

x=rand(1,N); % Produce N random numbers.

bins=[0.05:0.1:0.95]; % Create 10 bins,

% with centers at 0.05,

0.15, ....
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Figure 3.4 Histogram of relative frequencies for uniform random variable generated by
MATLAB’s rand function using 10,000 trials.
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[yvalues,xvalues]=hist(x,bins); % Define xvalues and

yvalues.

yvalues=yvalues/N; % Normalize to produce

% relative frequencies.

bar(xvalues,yvalues); % Plot bar graph.

xlabel(‘x’)

ylabel(‘Relative Frequencies’)

3.3 The Gaussian Random Variable

In the study of random variables, the Gaussian random variable is clearly the most
commonly used and of most importance. As we will see later in the text, many
physical phenomena can be modeled as Gaussian random variables, including the
thermal noise encountered in electronic circuits. Although many students may not
realize it, they are probably quite familiar with the Gaussian random variable, for
it is this random variable that leads to the so-called curve on which many students
are graded.

DEFINITION 3.3: A Gaussian random variable is one whose probability density
function can be written in the general form

fX(x) = 1√
2πσ 2

exp

(
− (x − m)2

2σ 2

)
. (3.12)

The PDF of the Gaussian random variable has two parameters, m and σ , which
have the interpretation of the mean and standard deviation respectively.1 The
parameter σ 2 is referred to as the variance.

An example of a Gaussian PDF is shown in Figure 3.5. In general, the Gaussian
PDF is centered about the point x = m and has a width that is proportional to σ .

It should be pointed out that in the mathematics and statistics literature, this
random variable is referred to as a “normal” random variable. Furthermore,
for the special case when m = 0 and σ = 1, it is called a “standard normal”

1The terms mean, standard deviation, and variance will be defined and explained carefully
in the next chapter.
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Figure 3.5 PDF (a) and CDF (b) of a Gaussian random variable with m = 3 and σ = 2.

random variable. However, in the engineering literature the term Gaussian is much
more common, so this nomenclature will be used throughout the text.

Because Gaussian random variables are so commonly used in such a wide vari-
ety of applications, it is standard practice to introduce a shorthand notation to
describe a Gaussian random variable, X ∼ N(m, σ 2). This is read “X is distributed
normally (or Gaussian) with mean, m, and variance, σ 2.”

The first goal to be addressed in the study of Gaussian random variables is to
find its CDF. The CDF is required whenever we want to find the probability that a
Gaussian random variable lies above or below some threshold or in some interval.
Using the relationship in Equation 3.11c, the CDF of a Gaussian random variable
is written as

FX(x) =
∫ x

−∞
1√

2πσ 2
exp

(
− (y − m)2

2σ 2

)
dy. (3.13)

It can be shown that it is impossible to express this integral in closed form. While
this is unfortunate, it does not stop us from extensively using the Gaussian random
variable. Two approaches can be taken to deal with this problem. As with other
important integrals that cannot be expressed in closed form (e.g., Bessel functions),
the Gaussian CDF has been extensively tabulated, and one can always look up
values of the required CDF in a table (such as the one provided in Appendix E).
However, it is often a better option to use one of several numerical routines that
can approximate the desired integral to any desired accuracy.

The same sort of situation exists with many more commonly known mathe-
matical functions. For example, what if a student was asked to find the tangent
of 1.23 radians? While the student could look up the answer in a table of trig
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functions, that seems like a rather archaic approach. Any scientific calculator,
high-level programming language, or math package will have internally generated
functions to evaluate such standard mathematical functions. While not all scien-
tific calculators and high-level programming languages have internally generated
functions for evaluating Gaussian CDFs, most mathematical software packages do,
and in any event, it is a fairly simple thing to write a short program to evaluate the
required function. Some numerical techniques for evaluating functions related to
the Gaussian CDF will be discussed specifically in Appendix F.

Whether the Gaussian CDF is to be evaluated by using a table or a program,
the required CDF must be converted into one of a few commonly used standard
forms. A few of these common forms are

• error function integral, erf(x) = 2√
π

∫ x

0
exp

(
−t2

)
dt,

• complementary error function integral, erfc(x) = 1 − erf(x) = 2√
π

∫ ∞

x
exp(−t2) dt,

• �-function, �(x) = 1√
2π

∫ x

−∞
exp

(
− t2

2

)
dt,

• Q-function, Q(x) = 1√
2π

∫ ∞

x
exp

(
− t2

2

)
dt.

The error function and its complement are most commonly used in the mathematics
community; however, in this text we will primarily use the Q-function. Neverthe-
less, students at least need to be familiar with the relationship between all of these
functions because most math packages will have internally defined routines for the
error function integral and perhaps its complement as well, but usually not for the
�-function or the Q-function. So, why not just use error functions? The reason is
that if one compares the integral expression for the Gaussian CDF in Equation 3.13
with the integral functions defined in our list, it is a more straightforward thing
to express the Gaussian CDF in terms of a �-function or a Q-function. Also,
the Q-function seems to be enjoying the most common usage in the engineering
literature in recent years.

Perhaps the advantage is clearer if we note that the �-function is simply the CDF
of a standard normal random variable. For general Gaussian random variables that
are not in the normalized form, the CDF can be expressed in terms of a �-function
using a simple transformation. Starting with the Gaussian CDF in Equation 3.13,
make the transformation t = (y − m)/σ , resulting in

FX(x)=
∫ x

−∞
1√

2πσ 2
exp

(
− (y−m)2

2σ 2

)
dy =

∫ x−m
σ

−∞
1√
2π

exp

(
− t2

2

)
dt =�

(
x−m

σ

)
.

(3.14)
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Hence, to evaluate the CDF of a Gaussian random variable, we just evaluate the
�-function at the points (x − m)/σ .

The Q-function is more natural for evaluating probabilities of the form
Pr(X > x). Following a line of reasoning identical to the previous paragraph, it
is seen that if X ∼ N(m, σ 2), then

Pr(X > x) =
∫ ∞

x−m
σ

1√
2π

exp

(
− t2

2

)
dt = Q

(
x − m

σ

)
. (3.15)

Furthermore, since we have shown that Pr(X > x) = Q((x−m)/σ ) and Pr(X ≤ x) =
�((x − m)/σ ), it is apparent that the relationship between the �-function and the
Q-function is

Q(x) = 1 − �(x). (3.16)

This and other symmetry relationships can be visualized using the graphical def-
initions of the �-function (phi function) and the Q-function shown in Figure 3.6.
Note that the CDF of a Gaussian random variable can be written in terms of
a Q-function as

FX(x) = 1 − Q
(

x − m
σ

)
. (3.17)

Once the desired CDF has been expressed in terms of a Q-function, the numer-
ical value can be looked up in a table or calculated with a numerical program.

2π 2
exp

x2

Φ(x2)

x2 x1

(area under
left tail)

Q(x1)

1

(area under
right tail)

t

Figure 3.6 Standardized integrals related to the Gaussian CDF: the �(·) and Q(·) functions.
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Other probabilities can be found in a similar manner as shown in the next
example. It should be noted that some internally defined programs for Q and
related functions may expect a positive argument. If it is required to evaluate
the Q- function at a negative value, the relationship Q(x) = 1 − Q(−x) can be
used. That is, to evaluate Q(−2) for example, Q(2) can be evaluated and then use
Q(−2) = 1 − Q(2).

EXAMPLE 3.7: A random variable has a PDF given by

fX(x) = 1√
8π

exp

(
− (x + 3)2

8

)
.

Find each of the following probabilities and express the answers in terms
of Q-functions.

(a) Pr(X ≤ 0),

(b) Pr(X > 4),

(c) Pr(|X + 3| < 2),

(d) Pr(|X − 2| > 1).

For the given Gaussian pdf, m = −3 and σ = 2. For part (a),

Pr(X ≤ 0) = �((0 − (−3))/2) = �(1. 5).

This can be rewritten in terms of a Q-function as

Pr(X ≤ 0) = 1 − Q(1. 5).

The probability in part (b) is easier to express directly in terms of a
Q-function.

Pr(X > 4) = Q((4 − (−3))/2) = Q(3. 5).

In part (c), the probability of the random variable X falling in an interval
is required. This event can be rewritten as

Pr(|X + 3| < 2) = Pr(−5 < X < −1) = Pr(X > −5) − Pr(X > −1)

= Q(−1) − Q(1) = 1 − 2Q(1).

We can proceed in a similar manner for part (d).

Pr(|X−2|>1)=Pr(X <1)+Pr(X >3)=�(2)+Q(3)=1−Q(2)+Q(3).
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EXAMPLE 3.8: While MATLAB does not have a built-in function
to evaluate the Q-function, it does have built-in functions for the
erf and the erfc functions. Hence, it is very simple to write your
own MATLAB function to evaluate the Q-function. Such a one-line

function is shown in the MATLAB code that follows.

function output=Q(x)

% Computes the Q-function.

output=erfc(x/sqrt(2))/2;

EXAMPLE 3.9: MATLAB also has a built-in function, randn,
which generates random variables according to a Gaussian or nor-
mal distribution. In particular, randn(k,n) creates a k×n matrix
whose elements are randomly chosen according to a standard

normal distribution. This example constructs a histogram of the numbers
generated by the randn function similar to what was done in Example 3.6
using the rand function. Note that by multiplying the output of the randn
function by σ and adding m, the Gaussian random variable produced by
randn now has mean m and variance σ 2. We will elaborate on such trans-
formations and others in the next chapter. Note that the MATLAB code that
follows is similar to that of Example 3.6 with the exception that we are now
using randn instead of rand. Also the Gaussian PDF has a domain that is
infinite and, thus, in principle we would need an infinite number of bins in
our histogram. Since this is impractical, we choose a sufficiently large number
of bins such that those not included would represent relatively insignificant
values. Note also that in this histogram we are plotting probability densi-
ties rather than relative frequencies so that a direct comparison can be made
between the histogram and the true PDF. The histogram obtained using the
following code is shown in Figure 3.7.

N=10,000; % Do N times.

m=5; sigma=2; % Set mean and variance.

x=m+sigma*randn(1,N); % Produce N random numbers.

left=-4.5; width=1; right=14.5; % Set bin parameters.

bins=[left:width:right]; % Create bins with centers at

% left, left+width,..., right.

[yvalues,xvalues]=hist(x,bins); % Define xvalues and yvalues.

yvalues=yvalues/(N*width); % Normalize to produce

% probability densities.
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Figure 3.7 Histogram of random numbers produced byrandn along with a Gaussian PDF,
where m = 5, σ = 2.

bar(xvalues,yvalues); % Plot bar graph.

z=[left-width/2:width/10:right+width/2];

pdf=exp(-(z-m).∧2/(2*sigma∧2)); % Compute true PDF

pdf=pdf/sqrt(2*pi*sigma∧2);
hold on % Place plot of true PDF on

plot(z,pdf) % top of histogram.

xlabel(‘x’)

ylabel(‘f_X(x)’)

3.4 Other Important Random Variables

This section provides a summary of other important random variables that find
use in engineering applications. For each random variable, an indication is given
as to the sorts of applications that might best employ that function.

3.4.1 Uniform Random Variable

The uniform probability density function is constant over an interval [a, b). The PDF
and its corresponding CDF are

fX(x) =



1
b − a

a ≤ x < b,

0 elsewhere.
(3.18a)
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Figure 3.8 Probability density function (a) and cumulative distribution function (b) of
a uniform random variable.

FX(x) =




0 x < a,
x − a
b − a

a ≤ x < b,

1 x ≥ b.

(3.18b)

Since this is a continuous random variable, the interval over which the PDF
is nonzero can be open or closed on either end. A plot of the PDF and CDF
of a uniform random variable is shown in Figure 3.8. Most computer random
number generators will generate a random variable that closely approximates a
uniform random variable over the interval (0,1). We will see in the next chap-
ter that by performing a transformation on this uniform random variable, we
can create many other random variables of interest. An example of a uniform
random variable would be the phase of a radio frequency sinusoid in a com-
munications system. Although the transmitter knows the phase of the sinusoid,
the receiver may have no information about the phase. In this case, the phase at
the receiver could be modeled as a random variable uniformly distributed over the
interval [0, 2π ).

3.4.2 Exponential Random Variable

The exponential random variable has a probability density function and cumulative
distribution function given (for any b > 0) by

fX(x) = 1
b

exp
(
−x

b

)
u(x), (3.19a)

FX(x) =
[
1 − exp

(
−x

b

)]
u(x). (3.19b)

A plot of the PDF and the CDF of an exponential random variable is shown in
Figure 3.9. The parameter b is related to the width of the PDF and the PDF has
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Figure 3.9 Probability density function (a) and cumulative distribution function (b) of an
exponential random variable, b = 2.

a peak value of 1/b which occurs at x = 0. The PDF and CDF are nonzero over
the semi-infinite interval (0, ∞), which may be either open or closed on the left
endpoint.

Exponential random variables are commonly encountered in the study of queue-
ing systems. The time between arrivals of customers at a bank, for example, is
commonly modeled as an exponential random variable, as is the duration of voice
conversations in a telephone network.

3.4.3 Laplace Random Variable

A Laplace random variable has a PDF which takes the form of a two-sided
exponential. The functional forms of the PDF and CDF are given (for any
b > 0) by

fX(x) = 1
2b

exp
(

−|x|
b

)
, (3.20a)

FX(x) =




1
2

exp
(x

b

)
x < 0

1 − 1
2

exp
(
−x

b

)
x ≥ 0

. (3.20b)

A plot of these functions is shown in Figure 3.10. The width of the PDF is deter-
mined by the parameter b while the peak value of the PDF is 1/2b. Note that
this peak value is one-half of what it is in the case of the (one-sided) exponential
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Figure 3.10 Probability density function (a) and cumulative density function (b) of
a Laplace random variable, b = 2.

shown in Figure 3.9. This makes sense since the Laplace random variable has two
sides and the area under the curve must remain constant (and equal to unity). The
Laplace random variable has been used to model the probability distribution of a
speech (voice) signal.

3.4.4 Gamma Random Variable

A random variable that follows a gamma distribution has a PDF and CDF given
(for any b > 0 and any c > 0) by

fX(x) =
(x/b)c−1 exp

(
−x

b

)
b �(c)

u(x), (3.21a)

FX(x) = γ (c, x/b)
�(c)

u(x). (3.21b)

In these two equations, the gamma function is a generalization of the factorial
function defined by

�(α) =
∫ ∞

0
e−ttα−1 dt, (3.22)
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and the incomplete gamma function is given by

γ (α, β) =
∫ β

0
e−ttα−1 dt. (3.23)

The gamma random variable is used in queueing theory and has several other
random variables as special cases. If the parameter c is an integer, the resulting
random variable is also known as an Erlang random variable; whereas, if b = 2
and c is a half integer, a chi-squared (χ2) random variable results. Finally, if c = 1,
the gamma random variable reduces to an exponential random variable.

3.4.5 Erlang Random Variable

As we’ve mentioned, the Erlang random variable is a special case of the gamma
random variable. The PDF and CDF are given (for positive integer n and any
b > 0) by

fX(x) =
(x/b)n−1 exp

(
−x

b

)
b(n − 1)! u(x), (3.24)

FX(x) =
[

1 − exp
(
−x

b

) n−1∑
m=0

(x/b)m

m!

]
u(x). (3.25)

The Erlang distribution plays a fundamental role in the study of wireline telecom-
munication networks. In fact, this random variable plays such an important role in
the analysis of trunked telephone systems that the amount of traffic on a telephone
line is measured in Erlangs.

3.4.6 Chi-Squared Random Variable

Another special case of the gamma random variable, the chi-squared (χ2) random
variable has a PDF and CDF given (for positive integer or half-integer values of
c) by

fX(x) =
xc−1 exp

(
−x

2

)
2c�(c)

u(x), (3.26)

FX(x) = γ (c, x/2)
�(c)

u(x). (3.27)
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Many engineering students are probably familiar with the χ2 random variable
from previous studies of statistics. It also commonly appears in various detection
problems.

3.4.7 Rayleigh Random Variable

A Rayleigh random variable, like the exponential random variable, has a one-sided
PDF. The functional form of the PDF and CDF are given (for any σ > 0) by

fX(x) = x
σ 2 exp

(
− x2

2σ 2

)
u(x), (3.28a)

FX(x) =
(

1 − exp

(
− x2

2σ 2

))
u(x). (3.28b)

Plots of these functions are shown in Figure 3.11. The Rayleigh distribution is
described by a single parameter, σ 2, which is related to the width of the Rayleigh
PDF. In this case, the parameter σ 2 is not to be interpreted as the variance of the
Rayleigh random variable. It will be shown later (Example 5.23) that the Rayleigh
distribution arises when studying the magnitude of a complex number whose real
and imaginary parts both follow a zero-mean Gaussian distribution. The Rayleigh
distribution arises often in the study of noncoherent communication systems and
also in the study of land mobile communication channels, where the phenomenon
known as fading is often modeled using Rayleigh random variables.
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Figure 3.11 Probability density function (a) and cumulative density function (b) of
a Rayleigh random variable, σ 2 = 1/2.
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3.4.8 Rician Random Variable

A Rician random variable is closely related to the Rayleigh random variable (in
fact, the Rayleigh distribution is a special case of the Rician distribution). The
functional form of the PDF for a Rician random variable is given (for any a > 0 and
any σ > 0) by

fX(x) = x
σ 2 exp

(
−x2 + a2

2σ 2

)
Io

( ax
σ 2

)
u(x). (3.29)

In this expression, the function Io(x) is the modified Bessel function of the first
kind of order zero, which is defined by

Io(x) = 1
2π

∫ 2π

0
ex cos(θ ) dθ . (3.30)

Like the Gaussian random variable, the CDF of a Rician random variable cannot
be written in closed form. Similar to the Q-function used to describe the Gaussian
CDF, there is another function known as Marcum’s Q-function which describes the
CDF of a Rician random variable. It is defined by

Q(α, β) =
∫ ∞

β

z exp

(
− (z2 + α2)

2

)
Io(αz) dz. (3.31)

The CDF of the Rician random variable is then given by

FX(x) = 1 − Q
( a
σ

,
x
σ

)
. (3.32)

Tables of the Marcum Q-function can be found as well as efficient numerical rou-
tines for calculating it. A plot of the Rician PDF is shown in Figure 3.12. The Rician
distribution is described by two parameters, a and σ 2, which are related to the cen-
ter and width, respectively, of the PDF. As with the Rayleigh random variable, the
parameter σ 2 is not to be interpreted as the variance of the Rician random variable.
The Rician distribution arises in the study of noncoherent communication systems
and also in the study of satellite communication channels, where fading is modeled
using Rician random variables.

3.4.9 Cauchy Random Variable

The Cauchy random variable has a PDF and CDF given (for any a and any b > 0) by

fX(x) = b/π

b2 + (x − a)2 , (3.33)

FX(x) = 1
2

+ 1
π

tan−1
(

x − a
b

)
. (3.34)
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Figure 3.12 PDF of a Rician random variable, where σ 2 = 1/2, a = 1/2, 1, 2, 3.

The Cauchy random variable occurs when observing the tangent of a random
variable which is uniformly distributed over [0, 2π ). The PDF is centered around
x = a and its width is determined by the parameter b. Unlike most of the
other random variables where the PDFs decrease exponentially in the tails, the
Cauchy PDF decays quadratically as |x − a| increases. Hence, there is a greater
amount of probability in the tails of the Cauchy PDF than in many of the
other commonly used random variables. We say that this type of distribution is
“heavy-tailed.”

EXAMPLE 3.10: One can construct many new types of random
variables by making functions of random variables. In this exam-
ple, we construct a random variable that is the sine of a uniform
random phase. That is, we construct a random variable  which

is uniformly distributed over [0, 2π ), and then form a new random variable
according to X = sin(). In the next chapter, we will develop the tools to
analytically determine what the distribution of X should be, but for now we
will simply observe its PDF by plotting a histogram. The MATLAB code that
follows was used to accomplish the plot and the results are illustrated in
Figure 3.13.
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Figure 3.13 Histogram from Example 3.10: sine of a uniform phase.

N=10000;

Theta=2*pi*rand(1,N); % Uniform phase.

X=sin(Theta); % sinusoidal transformation.

bins=[-0.95:0.1:0.95]; % Histogram bins.

[yvalues,xvalues]=hist(X,bins); % Histogram values.

pdf_estimate=yvalues/(N*0.1); % Normalize probability

densities.

bar(xvalues,pdf_estimate) % Plot PDF histogram.

xlabel(‘x’); ylabel(‘f_X(x)’) % label plot.

3.5 Conditional Distribution and Density
Functions

In Chapter 2, we defined the notion of conditional probability. In a similar man-
ner, it is quite common to talk about the distribution or density of a random
variable conditioned on some event, A. As with the initial study of random vari-
ables in the beginning of this chapter, it is convenient to start with the notion of a
conditional CDF.
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DEFINITION 3.4: The conditional cumulative distribution function of a random
variable, X, conditioned on the event A having occurred is

FX|A(x) = Pr(X ≤ x|A) = Pr({X ≤ x}, A)
Pr(A)

. (3.35)

Naturally, this definition requires the caveat that the probability of the event A
must not be zero.

The properties of CDFs listed in Equations 3.4a–3.4d also apply to conditional
CDFs, resulting in the following properties of conditional CDFs:

(1) FX|A(−∞) = 0, FX|A(∞) = 1, (3.36a)

(2) 0 ≤ FX|A(x) ≤ 1, (3.36b)

(3) For x1 < x2, FX|A(x1) ≤ FX|A(x2), (3.36c)

(4) For x1 < x2, Pr(x1 < X ≤ x2|A) = FX|A(x2) − FX|A(x1). (3.36d)

It is left as an exercise for the reader (see Exercise 3.13) to prove that these
properties of CDFs do indeed apply to conditional CDFs as well.

EXAMPLE 3.11: Suppose a random variable X is uniformly distributed
over the interval [0, 1) so that its CDF is given by

FX(x) =




0 x < 0

x 0 ≤ x ≤ 1

1 x > 1

.

Suppose further that we want to find the conditional CDF of X given
that X < 1/2. Here the event A = {X < 1/2} is related to a numerical
condition on the random variable itself. From the definition of a condi-
tional CDF,

FX|{X<1/2}(x) = Pr(X ≤ x, X < 1/2)
Pr(X < 1/2)

.

For x < 0, the event X ≤ x has probability zero and hence FX|{X<1/2}(x) =
0 for x < 0. When 0 ≤ x ≤ 1/2, the intersection of the events X ≤ x and
X < 1/2 is simply the event X ≤ x, so that

FX|{X<1/2}(x) = Pr(X ≤ x)
Pr(X < 1/2)

= x
1/2

= 2x for 0 ≤ x ≤ 1/2 .
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Finally, for x > 1/2, the intersection of the events X ≤ x and X < 1/2 is
simply the event X < 1/2 and the conditional CDF reduces to 1. Putting
this all together, the desired conditional CDF is

FX(x) =




0 x < 0

2x 0 ≤ x ≤ 1/2

1 x > 1/2

.

In order to generalize the result of the previous example, suppose that for some
arbitrary random variable X, the conditioning event is of the form A = a < X ≤ b
for some constants a < b. Then

FX|{a < X ≤ b}(x) = Pr(X ≤ x, a < X ≤ b)
Pr(a < X ≤ b)

. (3.37)

If x ≤ a, then the events {X ≤ x} and a < X ≤ b are mutually exclusive and the
conditional CDF is zero. For x > b the event a < X ≤ b is a subset of {X ≤ x} and
hence Pr(X ≤ x, a < X ≤ b) = Pr(a < X ≤ b) so that the conditional CDF is 1. When
a < x ≤ b, then {X ≤ x} ∩ {a < X ≤ b} = a < X ≤ x and Pr(X ≤ x, a < X ≤ b) =
Pr(a < X ≤ x). This can be written in terms of the CDF (unconditional) of X as
Pr(a < X ≤ x) = FX(x) − FX(a). Likewise, Pr(a < X ≤ b) = FX(b) − FX(a). Putting
these results together gives

FX|{a ≤ X < b}(x) =




0 x < a

FX(x) − FX(a)
FX(b) − FX(a)

a < x ≤ b

1 x > b

. (3.38)

This result could also be extended to conditioning events where X is conditioned
on being in more extravagant regions.

As with regular random variables, it is often more convenient to work with a
conditional PDF rather than a conditional CDF. The definition of the conditional
PDF is a straightforward extension of the previous definition given for a PDF.

DEFINITION 3.5: The conditional probability density function of a random
variable X conditioned on some event A is

fX|A(x) = lim
ε→0

Pr(x ≤ X < x + ε|A)
ε

. (3.39)



74 Chapter 3 Random Variables, Distributions, and Density Functions

a b a b

fX (x) fX{a ≤ X < b}(x)

x x

(a) (b)

Figure 3.14 A PDF (a) and the corresponding conditional PDF (b).

As with the conditional CDF, it is not difficult to show that all of the properties of
regular PDFs apply to conditional PDFs as well. In particular,

(1) fX|A(x) ≥ 0. (3.40a)

(2) fX|A(x) = dFX|A(x)
dx . (3.40b)

(3) FX|A(x) = ∫ x
−∞ fX|A(y) dy. (3.40c)

(4)
∫ ∞
−∞ fX|A(x) dx = 1. (3.40d)

(5)
∫ b

a fX|A(x) dx = Pr(a < X ≤ b|A). (3.40e)

Furthermore, the result in Equation 3.38 can be extended to the conditional PDF
by applying Equation 3.40b. This results in the following general formula for the
conditional PDF of a random variable, X, when the conditioning event is of the
nature A = {a ≤ X < b}:

fX|{a≤X<b}(x) =



fX(x)
Pr(a ≤ X < b)

a ≤ x < b

0 otherwise
. (3.41)

To summarize, the conditional PDF takes on the same functional form (but is scaled
by the probability of the conditioning event) over the range of x where the condition
is satisfied, and the conditional PDF is zero wherever the conditioning event is not
true. This result is illustrated in Figure 3.14.

EXAMPLE 3.12: Let X be a random variable representing the length of
time we spend waiting in the grocery store checkout line. Suppose the
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random variable X has an exponential PDF given by fX(x) =
(1/c) exp(−x/c)u(x), where c = 3 minutes. What is the PDF for the
amount of time we spend waiting in line given that we have already
been waiting for 2 minutes? Here the conditioning event is of the form
X > 2. We can use the result in Equation 3.41 by letting a = 2 and b = ∞.
The probability of the conditioning event is Pr(X > 2) = 1 − FX(2) =
exp(−2/3). Therefore, the conditional PDF is

fX|{X>2}(x) = exp(2/3)fX(x)u(x − 2) = 1
3

exp
(

−x − 2
3

)
u(x − 2).

It is curious to note that for this example, fX|{X>2}(x) = fX(x − 2). That
is, given that we have been waiting in line for 2 minutes, the PDF of
the total time we must wait in line is simply shifted by 2 minutes. This
interesting behavior is unique to the exponential distribution and we
might not have seen the same result if we had started with a different
distribution. For example, try working the same problem starting with
a Rayleigh distribution.

Up to this point, we have primarily looked at conditioning events that impose a
numerical constraint. It is also common to consider conditioning events of a qual-
itative, or nonnumerical, nature. Consider, for example, a random variable X that
represents a student’s score on a certain standardized test (e.g., the SAT or GRE).
We might be interested in determining if there is any gender bias in the test. To
do so we could compare the distribution of the variable X given that the student
is female, FX|F(x), with the distribution of the same variable given that the student
is male, FX|M(x). If these distributions are substantially different, then we might
conclude a gender bias exists and work to fix the bias in the exam. Naturally, we
could work with conditional PDFs fX|F(x) and fX|M(x) as well. Here, the condition-
ing event is a characteristic of the experiment that may affect the outcome rather
than a restriction on the outcome itself.

In general, consider a set of mutually exclusive and exhaustive conditioning
events, A1, A2, . . . , AN . Suppose we had access to the conditional CDFs, FX|An (x),
where n = 1, 2, . . . , N, and wanted to find the unconditional CDF, FX(x). According
to the theorem of total probability (Theorem 2.6),

FX(x) = Pr(X ≤ x) =
N∑

n=1

Pr(X ≤ x|An) Pr(An) =
N∑

n=1

FX|An (x) Pr(An). (3.42)

Hence, the CDF of X (unconditional) can be found by forming a weighted sum of
the conditional CDFs with the weights determined by the probabilities that each of
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the conditioning events is true. By taking derivatives of both sides of the previous
equation, a similar result is obtained for conditional PDFs, namely,

fX(x) =
N∑

n=1

fX|An (x) Pr(An) . (3.43)

We might also be interested in looking at things in the reverse direction. That
is, suppose we observe that the random variable has taken on a value of X = x.
Does the probability of the event An change? To answer this, we need to compute
Pr(An|X = x). If X were a discrete random variable, we could do this by invoking
the results of Theorem 2.5

Pr(An|X = x) = Pr(X = x|An) Pr(An)
Pr(X = x)

. (3.44)

In the case of continuous random variables, greater care must be taken since both
Pr(X = x|An) and Pr(X = x) will be zero, resulting in an indeterminate expression.
To avoid that problem, rewrite the event {X = x} as {x ≤ X < x + ε} and consider
the result in the limit as ε → 0:

Pr(An|x ≤ X < x + ε) = Pr(x ≤ X < x + ε|An) Pr(An)
Pr(x ≤ X < x + ε)

. (3.45)

Note that for infinitesimal ε, Pr(x ≤ X < x + ε) = fX(x)ε and similarly Pr(x ≤ X <

x + ε|An) = fX|An (x)ε. Hence,

Pr(An|x ≤ X < x + ε) = fX|An (x)ε Pr(An)
fX(x)ε

= fX|An (x) Pr(An)
fX(x)

. (3.46)

Finally, passing to the limit as ε → 0 gives the desired result:

Pr(An|X = x) = lim
ε→0

Pr(An|x ≤ X < x + ε) = fX|An (x) Pr(An)
fX(x)

. (3.47)

We could also combine this result with Equation 3.43 to produce an extension to
Bayes’s theorem:

Pr(An|X = x) = fX|An (x) Pr(An)
N∑

n=1
fX|An (x) Pr(An)

. (3.48)

EXAMPLE 3.13: In a certain junior swimming competition, swimmers
are placed in one of two categories based on their previous times so that
all children can compete against others of their own abilities. The fastest
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swimmers are placed in the A category, while the slower swimmers are
put in the B group. Let X be a random variable representing a child’s
time (in seconds) in the 50-meter, freestyle race. Suppose that it is deter-
mined that for those swimmers in group A, the PDF of a child’s time
is given by fX|A(x) = (4π )−1/2 exp(−(x − 40)2/4), while for those in
the B group the PDF is given by fX|B(x) = (4π )−1/2 exp(−(x − 45)2/4).
Furthermore, assume that 30 percent of the swimmers are in the A group
and 70 percent are in the B group. If a child swims the race with a time
of 42 seconds, what is the probability that the child was in the B group?
Applying Equation 3.48, we get

Pr(B|X = 42) = 0. 7fX|B(42)
0. 3fX|A(42) + 0. 7fX|B(42)

= 0. 7 exp(−9/4)
0. 3 exp(−1) + 0. 7 exp(−9/4)

= 0. 4007.

Naturally, the probability of the child being from group A must then be
Pr(A|X = 42) = 1 − Pr(B|X = 42) = 0. 5993.

3.6 Engineering Application: Reliability
and Failure Rates

The concepts of random variables presented in this chapter are used extensively
in the study of system reliability. Consider an electronic component that is to be
assembled with other components as part of a larger system. Given a probabilistic
description of the lifetime of such a component, what can we say about the lifetime
of the system itself? The concepts of reliability and failure rates are introduced in
this section to provide tools to answer such questions.

DEFINITION 3.6: Let X be a random variable that represents the lifetime of a
device. That is, if the device is turned on at time zero, X would represent the time
at which the device fails. The reliability function of the device, RX(t), is simply the
probability that the device is still functioning at time t:

RX(t) = Pr(X > t). (3.49)

Note that the reliability function is just the complement of the CDF of the random
variable. That is, RX(t) = 1 − FX(t). As it is often more convenient to work with
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PDFs rather than CDFs, we note that the derivative of the reliability function can
be related to the PDF of the random variable X by R′

X(t) = −fX(t).
With many devices, the reliability changes as a function of how long the device

has been functioning. Suppose we observe that a particular device is still function-
ing at some point in time, t. The remaining lifetime of the device may behave (in a
probabilistic sense) very differently from when it was first turned on. The concept
of failure rate is used to quantify this effect.

DEFINITION 3.7: Let X be a random variable that represents the lifetime of a
device. The failure rate function is

r(t) = fX|{X>t}(x)|x=t . (3.50)

To give this quantity some physical meaning, we note that Pr(t < X < t + dt|X > t) =
r(t)dt. Thus, r(t)dt is the probability that the device will fail in the next time instant
of length dt, given that the device has survived up to now (time t). Different types
of “devices” have failure rates that behave in different manners. Our pet goldfish,
Elvis, might have an increasing failure rate function (as do most biological crea-
tures). That is, the chances of Elvis “going belly up” in the next week is greater
when Elvis is six months old than when he is just one month old. We could also
imagine devices that have a decreasing failure rate function (at least for part of
their lifetime). For example, an integrated circuit might be classified into one of
two types, those fabricated correctly with expected long lifetimes and those with
defects which generally fail fairly quickly. When we select an IC, we may not know
which type it is. Once the device lives beyond that initial period when the defective
ICs tend to fail, the failure rate may go down (at least for a while). Finally, there
may be some devices whose failure rates remain constant with time.

The failure rate of a device can be related to its reliability function. From
Equation 3.41, it is noted that

fX|{X>t}(x) = fX(x)u(x − t)
1 − Fx(t)

. (3.51)

The denominator in this expression is the reliability function, RX(t), while the PDF
in the numerator is simply −R′

X(x). Evaluating at x = t produces the failure rate
function

r(t) = −R′
X(t)

RX(t)
. (3.52)

Conversely, given a failure rate function, r(t), one can solve for the reliability
function by solving the first order differential equation:

d
dt

Rx(t) = −r(t) RX(t). (3.53)



3.6 Engineering Application: Reliability and Failure Rates 79

The general solution to this differential equation (subject to the initial condition
Rx(0) = 1) is

RX(t) = exp
[
−

∫ t

0
r(u)du

]
u(t). (3.54)

It is interesting to note that a failure rate function completely specifies the PDF of
a device’s lifetime:

fX(t) = −R′
X(t) = r(t) exp

(
−

∫ t

0
r(u)du

)
u(t). (3.55)

For example, suppose a device had a constant failure rate function, r(t) = λ.
The PDF of the device’s lifetime would then follow an exponential distribution,
fX(t) = λ exp(−λt) u(t). The corresponding reliability function would also be expo-
nential, RX(t) = exp(−λt) u(t). We say that the exponential random variable has
the memoryless property. That is, it does not matter how long the device has been
functioning, the failure rate remains the same.

EXAMPLE 3.14: Suppose the lifetime of a certain device follows a
Rayleigh distribution given by fX(t) = 2btexp(−bt2)u(t). What are the
reliability function and the failure rate function? The reliability function
is given by

RX(t) = Pr(X > t) =
[∫ ∞

t
2buexp(−bu2)du

]
u(t) = exp(−bt2)u(t).

A straightforward application of Equation 3.52 produces the failure rate
function, r(t) = 2bt u(t). In this case, the failure rate is linearly increasing
in time.

Next, suppose we have a system which consists of N components, each of which
has a lifetime described by the random variable Xn, n = 1, 2, . . . , N. Furthermore,
assume that for the system to function, all N components must be functioning. In
other words, if any of the individual components fails, the whole system fails. This
is usually referred to as a series connection of components. If we can characterize
the reliability and failure rate functions of each individual component, can we
calculate the same functions for the entire system? The answer is yes, under some
mild assumptions. Define X to be the random variable representing the lifetime of
the system. Then

X = min(X1, X2, . . . , XN). (3.56)
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Furthermore,

RX(t) = Pr(X > t)

= Pr({X1 > t} ∩ {X2 > t} ∩ · · · ∩ {XN > t}). (3.57)

We assume that all of the components fail independently. That is, the event {Xi > t}
is taken to be independent of {Xj > t} for all i �= j. Under this assumption,

RX(t) = Pr(X1 > t) Pr(X2 > t) · · · Pr(XN > t)

= RX1 (t) RX2 (t) · · · RXN (t). (3.58)

Furthermore, application of Equation 3.52 provides an expression for the failure
rate function:

r(t) = −R′
X(t)

RX(t)
= −

d
dt

[RX1 (t)RX2 (t) · · · RXN (t)]
RX1 (t)RX2 (t) · · · RXN (t)

(3.59)

= −
N∑

n=1

R′
Xn

(t)

RXn (t)
=

N∑
n=1

rn(t), (3.60)

where rn(t) is the failure rate function of the nth component. We have shown that
for a series connection of components, the reliability function of the system is the
product of the reliability functions of each component and the failure rate function
of the system is the sum of the failure rate functions of the individual components.

We may also consider a system that consists of a parallel interconnection of
components. That is, the system will be functional as long as any of the components
are functional. We can follow a similar derivation to compute the reliability and
failure rate functions for the parallel interconnection system. First, the reliability
function is written as

RX(t) = Pr({X1 > t} ∪ {X2 > t} ∪ · · · ∪ {XN > t}). (3.61)

In this case, it is easier to work with the complement of the reliability function (the
CDF of the lifetime). Since the reliability function represents the probability that
the system is still functioning at time t, the complement of the reliability function
represents the probability that the system is not working at time t. With the parallel
interconnections, the system will fail only if all the individual components fail.
Hence,

1 − RX(t) = Pr(X ≤ t) = Pr({X1 ≤ t} ∩ {X2 ≤ t} ∩ · · · ∩ {XN ≤ t})
= Pr(X1 ≤ t) Pr(X2 ≤ t) · · · Pr(XN ≤ t)

= (1 − RX1 (t))(1 − RX2 (t)) · · · (1 − RXN (t)). (3.62)
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As a result, the reliability function of the parallel interconnection system is
given by

RX(t) = 1 −
N∏

n=1

(1 − RXn (t)). (3.63)

Unfortunately, the general formula for the failure rate function is not as simple as
in the serial interconnection case. Application of Equation 3.52 to our preceding
equation gives (after some straightforward manipulations)

r(t) = −1 − RX(t)
RX(t)

N∑
n=1

R′
Xn

(t)

1 − RXn (t)
, (3.64)

or, equivalently,

r(t) =
[

1
RX(t)

− 1
] N∑

n=1

rn(t)
1

RXn (t)
− 1

. (3.65)

EXAMPLE 3.15: Suppose a system consists of N components each with
a constant failure rate, rn(t) = λn, n = 1, 2, . . . , N. Find the reliability
and failure rate functions for a series interconnection. Then find the same
functions for a parallel interconnection. It was shown previously that a
constant failure rate function corresponds to an exponential reliability
function. That is, RXn (t) = exp(−λnt)u(t). For the serial interconnection,
we then have

RX(t) =
N∏

n=1

RXn (t) =
N∏

n=1

exp(−λnt)u(t) = exp

(
−

[ N∑
n=1

λn

]
t

)
u(t),

r(t) =
N∑

n=1

rn(t) =
N∑

n=1

λn.

For the parallel interconnection,

RX(t) =
{

1 −
N∏

n=1

[1 − exp(−λnt)]

}
u(t),

r(t) =

N∏
n=1

[1 − exp(−λnt)]

1 −
N∏

n=1
[1 − exp(−λnt)]

N∑
n=1

λn

exp(λnt) − 1
.
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Exercises
3.1 Suppose a random variable is equally likely to fall anywhere in the interval

[a, b]. Then the PDF is of the form

fX(x) =




1
b − a

a ≤ x ≤ b

0 otherwise
.

Find and sketch the corresponding CDF.

3.2 Find and plot the CDFs corresponding to each of the following PDFs:

(a) fX(x) =



1 0 ≤ x < 1

0 otherwise
.

(b) fX(x) =




x 0 ≤ x < 1

2 − x 1 ≤ x < 2

0 otherwise

.

3.3 A random variable has the following exponential PDF:

fX(x) =



a−bx x ≤ 0

0 otherwise
,

where a and b are constants.

(a) Determine the required relationship between a and b.
(b) Determine the corresponding CDF.

3.4 A certain random variable has a probability density function of the form
fX(x) = ce−2xu(x). Find the following:

(a) the constant c,
(b) Pr(X > 2),
(c) Pr(X < 3),
(d) Pr(X < 3|X > 2).

3.5 Repeat Problem 3.4 using the PDF fX(x) = c
x2 + 4

.
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3.6 Repeat Problem 3.4 using the PDF fX(x) = c√
25 − x2

, −5 < x < 5.

3.7 The voltage of communication signal S is measured. However, the
measurement procedure is corrupted by noise resulting in a random mea-
surement with the PDF shown in the accompanying diagram. Find the
probability that for any particular measurement, the error will exceed
±0. 75 percent of the correct value if this correct value is 10 volts.

10.1

10

fS(s)

s

9.9

3.8 Prove the integral identity, I =
∫ ∞

−∞
exp

(
−x2

2

)
dx = √

2π . Hint: It may

be easier to show that I2 = 2π .

3.9 Using the normalization integral for a Gaussian random variable, find an
analytical expression for the following integral:

I =
∫ ∞

−∞
exp(−(ax2 + bx + c)) dx,

where a > 0, b, and c are constants.

3.10 A Gaussian random variable has a probability density function of the form

fX(x) = c exp(−(2x2 + 3x + 1)).

(a) Find the value of the constant c.
(b) Find the values of the parameters m and σ for this Gaussian random

variable.

3.11 A Gaussian random variable has a PDF of the form

fX(x) = 1√
50π

exp

(
− (x − 10)2

50

)
.

Write each of the following probabilities in terms of Q-functions (with
positive arguments) and also give numerical evaluations.
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(a) Pr(X > 17)
(b) Pr(X > 4)
(c) Pr(X < 15)
(d) Pr(X < −2)

(e) Pr(|X − 10| > 7)
(f) Pr(|X − 10| < 3)
(g) Pr(|X − 7| > 5)
(h) Pr(|X − 4| < 7)

3.12 Prove the following properties of the Gamma function.

(a) �(n) = (n − 1)!, for n = 1, 2, 3, . . .

(b) �(x + 1) = x�(x)

(c) �(1/2) = √
π

3.13 Prove the following properties of conditional CDFs.

(a) FX|A(−∞) = 0, FX|A(∞) = 1

(b) 0 ≤ FX|A(x) ≤ 1

(c) For x1 < x2, FX|A(x1) ≤ FX|A(x2)

(d) For x1 < x2, Pr(x1 < X ≤ x2|A) = FX|A(x2) − FX|A(x1)

3.14 Let X be a Gaussian random variable such that X ∼ N(0, σ 2). Find and plot
the following conditional PDFs.

(a) fX|X>0(x)

(b) f
X
∣∣|X|<3

(x)

(c) f
X
∣∣|X|>3

(x)

3.15 Mr. Hood is a good archer. He can regularly hit a target having a 3-ft.
diameter and often hits the bull’s-eye, which is 0.5 ft. in diameter, from 50 ft.
away. Suppose the miss is measured as the radial distance from the center
of the target and, further, that the radial miss distance is a Rayleigh random
variable with the constant in the Rayleigh PDF being σ 2 = 4(sq. ft.).

(a) Determine the probability of Mr. Hood’s hitting the target.

(b) Determine the probability of Mr. Hood’s hitting the bull’s-eye.

(c) Determine the probability of Mr. Hood’s hitting the bull’s-eye given
that he hits the target.

3.16 A digital communication system sends two messages, M = 0 or M = 1,
with equal probability. A receiver observes a voltage which can be mod-
eled as a Gaussian random variable, X, whose PDFs conditioned on the
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transmitted message are given by

fX|M=0(x) = 1√
2πσ 2

exp

(
− x2

2σ 2

)
and

fX|M=1(x) = 1√
2πσ 2

exp

(
− (x − 1)2

2σ 2

)
.

(a) Find and plot Pr(M = 0|X = x) as a function of x for σ 2 = 1. Repeat
for σ 2 = 5.

(b) Repeat part (a) assuming that the a priori probabilities are Pr(M = 0) =
1/4 and Pr(M = 1) = 3/4.

3.17 In Problem 3.16, suppose our receiver must observe the random variable X
and then make a decision as to what message was sent. Furthermore,
suppose the receiver makes a three-level decision as follows:

(1) Decide 0 was sent if Pr(M = 0|X = x) ≥ 0. 9.

(2) Decide 1 was sent if Pr(M = 1|X = x) ≥ 0. 9.

(3) Erase the symbol (decide not to decide) if both Pr(M = 0|X = x) < 0. 9
and Pr(M = 1|X = x) < 0. 9.

Assuming the two messages are equally probable, Pr(M = 0) = Pr(M =
1) = 1/2, and that σ 2 = 1, find

(a) the range of x over which each of the three decisions should be made,

(b) the probability that the receiver erases a symbol,

(c) the probability that the receiver makes an error (i.e., decides a 0 was
sent when a 1 was actually sent, or vice versa).

3.18 Recalling Example 3.15, suppose that a serial connection system has
10 components and the failure rate function is the same constant for all
components and is 1 per 100 days.

(a) Determine the probability that the lifetime of the system exceeds
10 days.

(b) What is the probability that the lifetime of one component exceeds
10 days?

(c) What is the reliability function of each component and of the system
as a whole?
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MATLAB Exercises
3.19 Write a MATLAB program to calculate the probability Pr(x1 ≤ X ≤ x2)

if X is a Gaussian random variable for an arbitrary x1 and x2. Note that
you will have to specify the mean and variance of the Gaussian random
variable.

3.20 Write a MATLAB program to calculate the probability Pr(|X − a| < b) if
X is a Gaussian random variable for an arbitrary a and b > 0. Note that
you will have to specify the mean and variance of the Gaussian random
variable.

3.21 Use the MATLAB rand function to create a random variable X uniformly
distributed over (0, 1). Then create a new random variable according to
Y = − ln(X). Repeat this procedure many times to create a large number
of realizations of Y. Using these samples, estimate and plot the probabil-
ity density function of Y. Find an analytical model that seems to fit your
estimated PDF.

3.22 Use the MATLABrandn function to create a Gaussian distributed random
variable X. Repeat this procedure and form a new random variable Y.
Finally, form a random variable Z according to Z =

√
X2 + Y2. Repeat this

procedure many times to create a large number of realizations of Z. Using
these samples, estimate and plot the probability density function of Z. Find
an analytical model that seems to fit your estimated PDF.

3.23 Use the MATLAB randn function to generate a large number of sam-
ples according to a Gaussian distribution. Let A be the event A = {the
sample is greater than 1.5}. Of those samples that are members of the
event A, what proportion (relative frequency) is greater than 2. By com-
puting this proportion you will have estimated the conditional probability
Pr(X > 2|X > 1. 5). Calculate the exact conditional probability analytically
and compare it with the numerical results obtained through your MATLAB
program.



Operations on a Single
Random Variable 4

In our study of random variables we use the probability density function or the
cumulative distribution function to provide a complete statistical description of
the random variable. From these functions we could, in theory, determine just
about anything we might want to know about the random variable. In many cases,
it is of interest to distill this information down to a few parameters that describe
some of the important features of the random variable. For example, we saw in
Chapter 3 that the Gaussian random variable is described by two parameters, which
were referred to as the mean and variance. In this chapter, we will look at these
parameters as well as several others that describe various characteristics of ran-
dom variables. We will see that these parameters can be viewed as the results of
performing various operations on a random variable.

4.1 Expected Value of a Random Variable

To begin, we introduce the idea of an average or expected value of a random
variable. This is perhaps the single most important characteristic of a random
variable and is also a concept very familiar to most students. After taking a test, one
of the most common questions a student will ask after they see their grade is, What
was the average? On the other hand, how often does a student ask, What was the
probability density function of the exam scores? While the answer to the second
question would provide the student with more information about how the class
performed, the student may not want all that information. Just knowing the average
may be sufficient to tell the student how he or she performed relative to the rest of
the class.

87
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DEFINITION 4.1: The expected value of a random variable X which has a PDF,
fX(x), is

E[X] =
∫ ∞

−∞
xfX(x) dx. (4.1)

The terms average, mean, expectation, and first moment are all alternative names for
the concept of expected value and will be used interchangeably throughout the text.
Furthermore, an overbar is often used to denote expected value so that the symbol
X is to be interpreted as meaning the same thing as E[X]. Another commonly used
notation is to write µX = E[X].

For discrete random variables, the PDF can be written in terms of the probability
mass function,

fX(x) =
∑

k

PX(xk)δ(x − xk). (4.2)

In this case, using the properties of delta functions, the definition of expected values
for discrete random variables reduces to

E[X] =
∑

k

xkPX(xk). (4.3)

Hence, the expected value of a discrete random variable is simply a weighted aver-
age of the values that the random variable can take on, weighted by the probability
mass of each value. Naturally, the expected value of a random variable exists only
if the integral in Equation 4.1 or the series in Equation 4.3 converges. One can dream
up many random variables for which the integral or series does not converge and
thus their expected values don’t exist (or less formally, their expected value is infi-
nite). To gain some physical insight into this concept of expected value, we may
think of fX(x) as a mass distribution of an object along the x-axis; then Equation 4.1
calculates the centroid or center of gravity of the mass.

EXAMPLE 4.1: Consider a random variable that has an exponential

PDF given by fX(x) = 1
b

exp
(
−x

b

)
u(x). Its expected value is calculated

as follows:

E[X] =
∫ ∞

0

x
b

exp
(
−x

b

)
dx = b

∫ ∞

0
yexp(−y)dy = b.

The last equality in the series is obtained by using integration by parts
once. It is seen from this example that the parameter b that appears in
this exponential distribution is, in fact, the mean (or expected value) of
the random variable.
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EXAMPLE 4.2: Next, consider a Poisson random variable whose prob-
ability mass function is given by PX(k) = αke−α/k!, k = 0, 1, 2, . . . . Its
expected value is found in a similar manner.

E[X] =
∞∑

k=0

k
αke−α

k! = e−α
∞∑

k=1

αk

(k − 1)! = αe−α
∞∑

k=1

αk−1

(k − 1)!

= αe−α
∞∑

m=0

αm

m! = αe−αeα = α

Once again, we see that the parameter α in the Poisson distribution is
equal to the mean.

EXAMPLE 4.3: In the last two examples, we saw that a random variable
whose PDF or PMF was described by a single parameter in both cases
turned out to be the mean. We work one more example here to show that
this does not always have to be the case. Consider a Rayleigh random
variable with PDF

fX(x) = x
σ 2 exp

(
− x2

2σ 2

)
u(x).

The mean is calculated as follows:

E[X] =
∫ ∞

0

x2

σ 2 exp

(
− x2

2σ 2

)
dx = √

2σ

∫ ∞

0
y1/2exp(−y)dy

= √
2 σ�(3/2) =

√
π

2
σ .

The last equality is obtained using the fact that �(3/2) = √
π/2. Alter-

natively (for those students not familiar with the properties of gamma
functions), one could obtain this result using integration by parts once
on the original integral (setting u = x and dv = (x/σ 2) exp(−x2/(2σ 2))).
In this case, neither the parameter σ nor σ 2 is equal to the expected
value of the random variable. However, since the mean is proportional
to σ , we could, if we wanted to, rewrite the Rayleigh PDF in terms of
its expected value, µX , as follows:

fX(x) = πx

2µ2
X

exp

(
− πx2

4µ2
X

)
u(x).
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4.2 Expected Values of Functions of
Random Variables

The concept of expectation can be applied to functions of random variables as well
as to the random variable itself. This will allow us to define many other parameters
that describe various aspects of a random variable.

DEFINITION 4.2: Given a random variable X with PDF fX(x), the expected value
of a function, g(X), of that random variable is given by

E[g(X)] =
∫ ∞

−∞
g(x)fX(x) dx. (4.4)

For a discrete random variable, this definition reduces to

E[g(X)] =
∑

k

g(xk)PX(xk). (4.5)

To start with, we demonstrate one extremely useful property of expectations in
the following theorem.

THEOREM 4.1: For any constants a and b,

E[aX + b] = aE[X] + b. (4.6)

Furthermore, for any function g(x) that can be written as a sum of several other
functions (i.e., g(x) = g1(x) + g2(x) + · · · + gN(x)),

E

[ N∑
k=1

gk(X)

]
=

N∑
k=1

E[gk(X)] (4.7)

In other words, expectation is a linear operation and the expectation operator can
be exchanged (in order) with any other linear operation.

PROOF: The proof follows directly from the linearity of the integration operator.

E[aX + b] =
∫ ∞

−∞
(ax + b)fX(x) dx

= a
∫ ∞

−∞
xfX(x) dx + b = aE[X] + b. (4.8)

The second part of the theorem is proved in an identical manner:

E

[ N∑
k=1

gk(X)

]
=

∫ ∞

−∞

[ N∑
k=1

gk(x)

]
fX(x) dx =

N∑
k=1

∫ ∞

−∞
gk(x)fX(x) dx =

N∑
k=1

E[gk(X)].

(4.9)

�
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Table 4.1 Expected Values of Various Functions of Random Variables

Name Function of X Expected value, notation

Mean, average, expected
value, expectation, first
moment

g(x) = x µX = X = E[X]

nth moment g(x) = xn Xn = E[Xn]
nth central moment g(x) = (x − µX)n (X − µX)n = E[(X − µX)n]
Variance g(x) = (x − µX)2 σ 2

X = E[(X − µX)2]

Coefficient of skewness g(x) =
(

x − µX
σX

)3
cs = E

[(
X − µX

σX

)3
]

Coefficient of kurtosis g(x) =
(

x − µX
σX

)4
ck = E

[(
X − µX

σX

)4
]

Characteristic function g(x) = ejωx �X(ω) = E[ejωX]
Moment generating function g(x) = esx MX(s) = E[esX]
Probability generating
function

g(x) = zx HX(z) = E[zX]

Different functional forms of g(X) lead to various different parameters that
describe the random variable and are known by special names. A few of the more
common ones are listed in Table 4.1. In the following sections, selected parameters
will be studied in more detail.

4.3 Moments

DEFINITION 4.3: The nth moment of a random variable X is defined as

E[Xn] =
∫ ∞

−∞
xnfX(x) dx. (4.10)

For a discrete random variable, this definition reduces to

E[Xn] =
∑

k

xn
k PX(xk). (4.11)

The zeroth moment is simply the area under the PDF and hence must be 1 for
any random variable. The most commonly used moments are the first and second
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moments. The first moment is what we previously referred to as the mean, while
the second moment is the mean squared value. For some random variables, the
second moment might be a more meaningful characterization than the first. For
example, suppose X is a sample of a noise waveform. We might expect that the
distribution of the noise is symmetric about zero (i.e., just as likely to be positive
as negative) and hence the first moment will be zero. So if we are told that X has a
zero mean, this merely says that the noise does not have a bias. On the other hand,
the second moment of the random noise sample is in some sense a measure of the
strength of the noise. In fact, in a later Chapter 10, we will associate the second
moment of a noise process with the power in the process. Hence, specifying the
second moment can give us some useful physical insight into the noise process.

EXAMPLE 4.4: Consider a discrete random variable that has a binomial
distribution. Its probability mass function is given by

PX(k) =
(

n
k

)
pk(1 − p)n−k, k = 0, 1, 2, . . . , n.

The first moment is calculated as follows:

E[X]=
n∑

k=0

k
(

n
k

)
pk(1−p)n−k =

n∑
k=1

kn!
k!(n−k)!pk(1−p)n−k

=
n∑

k=1

n!
(k−1)!(n−k)!pk(1−p)n−k =np

n∑
k=1

(n−1)!
(k−1)!(n−k)!pk−1(1−p)n−k

=np
n∑

k=1

(
n−1
k−1

)
pk−1(1−p)n−k =np

n−1∑
m=0

(
n−1

m

)
pm(1−p)n−1−m.

In this last expression, the summand is a valid probability mass function
(i.e., that of a binomial random variable with parameters p and n − 1)
and hence must sum to unity. Therefore, E[X] = np. To calculate the
second moment, we employ a helpful little trick. Note that we can write
k2 = k(k − 1) + k. Then

E[X2] =
n∑

k=0

k2
(

n
k

)
pk(1 − p)n−k

=
n∑

k=0

k(k − 1)
(

n
k

)
pk(1 − p)n−k +

n∑
k=0

k
(

n
k

)
pk(1 − p)n−k.
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The second sum is simply the first moment, which has already been
calculated. The first sum is evaluated in a manner similar to that used
to calculate the mean.

n∑
k=0

k(k − 1)
(

n
k

)
pk(1 − p)n−k =

n∑
k=2

n!
(k − 2)!(n − k)!pk(1 − p)n−k

= n(n − 1)p2
n∑

k=2

(n − 2)!
(k − 2)!(n − k)!pk−2(1 − p)n−k

= n(n − 1)p2
n∑

k=2

(
n − 2
k − 2

)
pk−2(1 − p)n−k

= n(n − 1)p2
n−2∑
m=0

(
n − 2

m

)
pm(1 − p)n−2−m = n(n − 1)p2

Putting these two results together gives

E[X2] = n(n − 1)p2 + np = n2p2 + np(1 − p).

EXAMPLE 4.5: Consider a random variable with a uniform probability
density function given as

fX(x) =
{

1/a 0 ≤ x ≤ a

0 otherwise

The mean is given by

E[X] =
∫ a

0

x
a

dx = x2

2a

∣∣∣∣
a

0
= a

2
,

while the second moment is

E[X2] =
∫ a

0

x2

a
dx = x3

3a

∣∣∣∣
a

0
= a2

3
.

In fact, it is not hard to see that in general, the nth moment of this uniform
random variable is given by

E[Xn] =
∫ a

0

xn

a
dx = xn+1

(n + 1)a

∣∣∣∣
a

0
= an

n + 1
.
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4.4 Central Moments

Consider a random variable Y which could be expressed as the sum, Y = a+X of a
deterministic (i.e., not random) part a and a random part X. Furthermore, suppose
that the random part tends to be very small compared to the fixed part. That is, the
random variable Y tends to take small fluctuations about a constant value, a. Such
might be the case in a situation where there is a fixed signal corrupted by noise.
In this case, we might write Yn = (a + X)n ≈ an. In this case, the nth moment of
Y would be dominated by the fixed part. That is, it’s difficult to characterize the
randomness in Y by looking at the moments. To overcome this, we can use the
concept of central moments.

DEFINITION 4.4: The nth central moment of a random variable X is defined as

E[(X − µX)n] =
∫ ∞

−∞
(x − µX)nfX(x) dx. (4.12)

In this equation, µX is the mean (first moment) of the random variable. For discrete
random variables, this definition reduces to

E[(X − µX)n] =
∑

k

(xk − µX)kPX(xk). (4.13)

With central moments, the mean is subtracted from the variable before the moment
is taken in order to remove the bias in the higher moments due to the mean. Note
that, like regular moments, the zeroth central moment is E[(X − µX)0] = E[1] = 1.
Furthermore, the first central moment is E[X − µX] = E[X] − µX = µX − µX = 0.
Therefore, the lowest central moment of any real interest is the second central
moment. This central moment is given a special name, the variance, and we quite
often use the notation σ 2

X to represent the variance of the random variable X. Note
that

σ 2
X = E[(X − µX)2] = E[X2 − 2µXX + µ2

X] = E[X2] − 2µXE[X] + µ2
X

= E[X2] − µ2
X . (4.14)

In many cases, the best way to calculate the variance of a random variable is to
calculate the first two moments and then form the second moment minus the first
moment squared.

EXAMPLE 4.6: For the binomial random variable in Example 4.4, recall
that the mean was E[X] = np and the second moment was E[X2] =
n2p2 + np(1 − p). Therefore, the variance is given by σ 2

X = np(1 − p).
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Similarly, for the uniform random variable in Example 4.5, E[X] = a/2,
E[X2] = a2/3, and hence σ 2

X = a2/3 − a2/4 = a2/12. Note that if the
moments have not previously been calculated, it may be just as easy
to compute the variance directly. In the case of the uniform random
variable, once the mean has been calculated, the variance can be
found as

σ 2
X =

∫ a

0
(x − a/2)2 1

a
dx =

∫ a/2

−a/2

x2

a
dx = x3

3a

∣∣∣∣
a/2

−a/2
= a2

12
.

Another common quantity related to the second central moment of a ran-
dom variable is the standard deviation, which is defined as the square root of the
variance,

σX =
√

E[(X − µX)2].

Both the variance and the standard deviation serve as a measure of the width of
the PDF of a random variable. Some of the higher order central moments also
have special names, although they are much less frequently used. The third central
moment is known as the skewness and is a measure of the symmetry of the PDF
about the mean. The fourth central moment is called the kurtosis and is a measure
of the peakedness of a random variable near the mean. Note that not all random
variables have finite moments and/or central moments. We give an example of
this later for the Cauchy random variable. Some quantities related to these higher
order central moments are given in Definition 4.5.

DEFINITION 4.5: The coefficient of skewness is

cs = E[(X − µX)3]
σ 3

X

. (4.15)

This is a dimensionless quantity that is positive if the random variable has a PDF
skewed to the right and negative if skewed to the left. The coefficient of kurtosis is
also dimensionless and is given as

ck = E[(X − µX)4]
σ 4

X

. (4.16)

The more the PDF is concentrated near its mean, the larger the coefficient of
kurtosis. In other words, a random variable with a large coefficient of kurtosis
will have a large peak near the mean.
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EXAMPLE 4.7: An exponential random variable has a PDF given by

fX(x) = b exp(−bx)u(x).

The mean value of this random variable is µX = 1/b. The nth central
moment is given by

E[(X − µX)n] =
∫ ∞

0
(x − 1/b)nb exp(−bx)dx

= b
e

∫ ∞

− 1
b

yn exp(−by)dy

= 1
bn

n∑
m=0

n!
m! (−1)m.

In the preceding expression, it is understood that 0! = 1. As expected,
it is easily verified from the expression that the zeroth central moment
is 1 and the first central moment is 0. Beyond these, the second central
moment is σ 2

X = 1/b2, the third central moment is E[(X−1/b)3] = −2/b3,
and the fourth central moment is E[(X − 1/b)4] = 9/b4. The coefficients
of skewness and kurtosis are given by

cs = E[(X − µX)3]
σ 3

X

= −2/b3

1/b3 = −2,

ck = E[(X − µX)4]
σ 4

X

= 9/b4

1/b4 = 9.

The fact that the coefficient of skewness is negative shows that the
exponential PDF is skewed to the left of its mean.

EXAMPLE 4.8: Next consider a Laplace (two-sided exponential) ran-
dom variable with a PDF given by

fX(x) = b
2

exp(−b|x|).
Since this PDF is symmetric about zero, its mean is zero, and hence in
this case the central moments are simply the moments

E[(X − µX)n] = E[Xn] =
∫ ∞

−∞
bxn

2
exp(−b|x|) dx.
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Since the two-sided exponential is an even function and xn is an odd
function for any odd n, the integrand is then an odd function for any
odd n. The integral of any odd function over an interval symmetric about
zero is equal to zero, and hence all odd moments of the Laplace random
variable are zero. The even moments can be calculated individually:

σ 2
X =E[X2]=

∫ ∞

−∞
bx2

2
exp(−b|x|)dx=

∫ ∞

0
bx2 exp(−bx)dx= 2

b2 ,

E[(X−µX)4]=E[X4]=
∫ ∞

−∞
bx4

2
exp(−b|x|)dx=

∫ ∞

0
bx4 exp(−bx)dx= 24

b4 .

The coefficient of skewness is zero (since the third central moment is
zero) and the coefficient of kurtosis is

ck = E[(X − µX)4]
σ 4

X

= 24/b4

4/b4 = 6.

Note that the Laplace distribution has a sharp peak near its mean as
evidenced by a large coefficient of kurtosis. The fact that the coefficient
of skewness is zero is consistent with the fact that the distribution is
symmetric about its mean.

EXAMPLE 4.9: It is often the case that the PDF of random vari-
ables of practical interest may be too complicated to allow us to
compute various moments and other important parameters of the
distribution in an analytic fashion. In those cases, we can use a

computer to calculate the needed quantities numerically. Take, for example,
a Rician random variable whose PDF is given by

fX(x) = x
σ 2 exp

(
−x2 + a2

2σ 2

)
Io

( ax
σ 2

)
u(x).

Suppose we wanted to know the mean of this random variable. This requires
us to evaluate:

µX =
∫ ∞

0

x2

σ 2 exp

(
−x2 + a2

2σ 2

)
Io

( ax
σ 2

)
dx.

Note that the parameter σ 2 that shows up in the Rician PDF is not the variance
of the Rician random variable. While analytical evaluation of this integral
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looks formidable, given numerical values for a and σ 2, this integral can
be evaluated (at least approximately) using standard numerical integra-
tion techniques. In order to use the numerical integration routines built
into MATLAB, we must first write a function that evaluates the integrand.
For evaluating the mean of the Rician PDF, this can be accomplished as
follows: (see Appendix D, (D.52) for the analytic expression for the mean.)

function pdf=Rician_mean(x,a,sigma)

% Evaluate the integrand needed for calculating the mean of a

% Rician random variable with parameters a and sigma.

pdf=(x./sigma).∧2.*exp(-(x.∧2+a∧2)/(2*sigma∧2));
pdf=pdf.*besseli(0,a*x/sigma∧2);

Once this function is defined, the MATLAB function quad8 can be called
upon to perform the numerical integration. For example, if a = 2 and σ = 3,
the mean could be calculated as follows:

a=2; sigma=3; % set parameters

limit1=0; limit2=20; % set limits of integration.

mean=quad8(‘Rician_mean’,limit1,limit2,[],[],a,sigma);

Executing this code produced an answer of µX = 4. 1665. Note that in order
to calculate the mean, the upper limit of the integral should be infinite.
However, using limit2=Inf in the preceding code would have led MAT-
LAB to produce a result of NaN (“not a number”). Instead, we must use an
upper limit sufficiently large that for the purposes of evaluating the inte-
gral it is essentially infinite. This can be done by observing the integrand
and seeing at what point the integrand dies off. The reader is encouraged
to execute the code in this example using different values of the upper inte-
gration limit to see how large the upper limit must be to produce accurate
results.

4.5 Conditional Expected Values

Another important concept involving expectation is that of conditional expected
value. As specified in Definition 4.6, the conditional expected value of a random
variable is a weighted average of the values the random variable can take on,
weighted by the conditional PDF of the random variable.
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DEFINITION 4.6: The expected value of a random variable X, conditioned on
some event A is

E[X|A] =
∫ ∞

−∞
xfX|A(x) dx. (4.17)

For a discrete random variable, this definition reduces to

E[X|A] =
∑

k

xkPX|A(xk). (4.18)

Similarly, the conditional expectation of a function, g(·), of a random variable,
conditioned on the event A is

E[g(X)|A] =
∫ ∞

−∞
g(x)fX|A(x) dx or E[g(X)|A] =

∑
k

g(xk)PX|A(xk), (4.19)

depending on whether the random variable is continuous or discrete.

Conditional expected values are computed in the same manner as regular expected
values with the PDF or PMF replaced by a conditional PDF or conditional PMF.

EXAMPLE 4.10: Consider a Gaussian random variable of the form

fX(x) = 1√
2π

exp

(
−x2

2

)
.

Suppose the event A is that the random variable X is positive,
A = {X > 0}. Then

fX|A(x) = fX(x)
Pr(X > 0)

u(x) =
√

2
π

exp

(
−x2

2

)
u(x).

The conditional expected value of X given that X > 0 is then

E[X|X > 0] =
∫ ∞

−∞
xfX|X>0(x) dx =

√
2
π

∫ ∞

0
x exp

(
−x2

2

)
dx

= −
√

2
π

exp

(
−x2

2

) ∣∣∣∣
∞

0
=

√
2
π

.
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4.6 Transformations of Random Variables

Consider a random variable X with a PDF and CDF given by fX(x) and FX(x),
respectively. Define a new random variable Y such that Y = g(X) for some function
g(·). What is the PDF, fY(y) (or CDF), of the new random variable? This problem
is often encountered in the study of systems where the PDF for the input random
variable X is known and the PDF for the output random variable Y needs to be
determined. In such a case, we say that the input random variable has undergone
a transformation.

A. Monotonically Increasing Functions To begin our exploration of transformations
of random variables, let’s assume that the function is continuous, one-to-one,
and monotonically increasing. A typical function of this form is illustrated in
Figure 4.1(a). This assumption will be lifted later when we consider more general
functions, but for now this simpler case applies. Under these assumptions, the
inverse function, X = g−1(Y), exists and is well behaved. In order to obtain the
PDF of Y, we first calculate the CDF. Recall that FY(y) = Pr(Y ≤ y). Since there is a
one-to-one relationship between values of Y and their corresponding values of X,
this CDF can be written in terms of X according to

FY(y) = Pr(g(X) ≤ y) = Pr(X ≤ g−1(y)) = FX(g−1(y)). (4.20)

Note that this can also be written as

FX(x) = FY(g(x)). (4.21)

x

y = g(x)

(a) (b)

y = g(x)

x

Y Y

X X

Figure 4.1 A monotonic increasing function (a) and a monotonic decreasing function (b).
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Differentiating Equation 4.20 with respect to y produces

fY(y) = fX(g−1(y))
dg−1(y)

dy
= fX(x)

dx
dy

∣∣∣∣
x=g−1(y)

, (4.22)

while differentiating Equation 4.21 with respect to x gives

fX(x) = fY(g(x))
dy
dx

⇒ fY(y) = fX(x)
dy
dx x=g−1(y)

(4.23)

Either Equation 4.22 or 4.23 can be used (whichever is more convenient) to compute
the PDF of the new random variable.

EXAMPLE 4.11: Suppose X is a Gaussian random variable with
mean, µ, and variance, σ 2. A new random variable is formed according
to Y = aX + b, where a > 0 (so that the transformation is monotonically
increasing). Since dy/dx = a, then applying Equation 4.23 produces

fY(y) = 1
a

fX

(
y − b

a

)
.

Furthermore, plugging in the Gaussian PDF of X results in

fY(y) = 1

a
√

2πσ 2
exp


−

(
y − b

a
− µ

)2

2σ 2




= 1√
2π (aσ 2)

exp

(
− (y − (b + aµ))2

2(aσ 2)

)
.

Note that the PDF of Y still has a Gaussian form. In this example, the
transformation did not change the form of the PDF; it merely changed
the mean and variance.

EXAMPLE 4.12: Let X be an exponential random variable with fX(x) =
2e−2xu(x) and let the transformation be Y = X3. Then dy/dx = 3x2 and
hence,

fY(y) = fX(x)
3x2

∣∣∣∣
x= 3√y

= 2
3

y−2/3 exp(−2y1/3)u(y).
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EXAMPLE 4.13: Suppose a phase angle � is uniformly distributed over
(−π/2, π/2), and the transformation is Y = sin(�). Note that in gen-
eral, y = sin(θ ) is not a monotonic transformation, but under the
restriction −π/2 < θ < π/2, this transformation is indeed monotoni-
cally increasing. Also note that with this transformation the resulting
random variable, Y, must take on values in the range (−1, 1). Therefore,
whatever PDF is obtained for Y, it must be understood that the PDF is
zero outside (−1, 1). Applying Equation 4.23 gives

fY(y) = f�(θ )
cos (θ )

∣∣∣∣
θ=sin−1(y)

= 1

π cos(sin−1(y))
= 1

π

√
1 − y2

, −1 < y < 1.

This is known as an arcsine distribution.

B. Monotonically Decreasing Functions If the transformation is monotonically
decreasing rather than increasing, a simple modification to the previous deriva-
tions can lead to a similar result. First, note that for monotonic decreasing functions,
the event {Y ≤ y} is equivalent to the event X ≥ g−1(y), giving us

FY(y) = Pr(Y ≤ y) = Pr(X ≥ g−1(y)) = 1 − FX(g−1(y)). (4.24)

Differentiating with respect to y gives

fY(y) = −fX(x)
dx
dy x=g−1(y)

. (4.25)

Similarly, writing FY(g(x)) = 1−FX(x) and differentiating with respect to x results in

fY(y) = − fX(x)
dy
dx x=g−1(y)

. (4.26)

Equations 4.22, 4.23, 4.25, and 4.26 can be consolidated into the following compact
form:

fY(y) = fX(x)
∣∣∣∣dx
dy

∣∣∣∣
∣∣∣∣
x=g−1(y)

= fX(x)∣∣∣∣dy
dx

∣∣∣∣ x=g−1(y)

, (4.27)

where now the sign differences have been accounted for by the absolute value
operation. This equation is valid for any monotonic function, either monotonic
increasing or monotonic decreasing.
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x1  x1+ dx1 x2 + dx2 x2 x4 + dx4
x4

 
x3  x3 + dx3

y + dy
y

Figure 4.2 A nonmonotonic function; the inverse function may have multiple roots.

C. Nonmonotonic Functions Finally, we consider a general function that is not nec-
essarily monotonic. Figure 4.2 illustrates one such example. In this case, we cannot
associate the event {Y ≤ y} with events of the form {X ≤ g−1(y)} or {X ≥ g−1(y)}
because the transformation is not monotonic. To avoid this problem, we calculate
the PDF of Y directly, rather than first finding the CDF. Consider an event of the
form {y ≤ Y < y + dy} for an infinitesimal dy. The probability of this event is
Pr(y ≤ Y < y + dy) = fY(y)dy. In order to relate the PDF of Y to the PDF of X,
we relate the event {y ≤ Y < y + dy} to events involving the random variable X.
Because the transformation is not monotonic, there may be several values of x that
map to the same value of y. These are the roots of the equation x = g−1(y). Let
us refer to these roots as x1, x2, . . . , xN . Furthermore, let X+ be the subset of these
roots at which the function g(x) has a positive slope, and similarly let X− be the
remaining roots for which the slope of the function is negative. Then

{y ≤ Y < y + dy} =

 ⋃

i:xi∈X+
{xi ≤ X < xi + dxi}


 ∪


 ⋃

i:xi∈X−
{xi + dxi < X ≤ xi}


 .

(4.28)

Since each of the events on the right-hand side is mutually exclusive, the probability
of the union is simply the sum of the probabilities, so that

fY(y) dy =
∑

xi∈X+
Pr(xi ≤ X < xi + dxi) +

∑
xi∈X−

Pr(xi + dxi < X ≤ xi)

=
∑

xi∈X+
fX(xi)dxi +

∑
xi∈X−

fX(xi)(−dxi) (4.29)
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Again, invoking absolute value signs to circumvent the need to have two separate
sums and dividing by dy, the following result is obtained:

fY(y) =
∑

xi

fX(x)
∣∣∣∣dx
dy

∣∣∣∣
∣∣∣∣
xi=g−1(y)

. (4.30)

When it is more convenient, the equivalent expression

fY(y) =
∑

xi

fX(x)∣∣∣∣dy
dx

∣∣∣∣ xi=g−1(y)

, (4.31)

can also be used. The following theorem summarizes the general formula for
transformations of random variables.

THEOREM 4.2: Given a random variable X with known PDF, fX(x), and a
transformation Y = g(X), the PDF of Y is

fY(y) =
∑

xi

fX(x)
∣∣∣∣dx
dy

∣∣∣∣
∣∣∣∣
xi=g−1(y)

=
∑

xi

fX(x)∣∣∣∣dy
dx

∣∣∣∣ xi=g−1(y)

, (4.32)

where the xi are the roots of the equation y = g(x). The proof precedes the theorem.

EXAMPLE 4.14: Suppose X is a Gaussian random variable with zero
mean and variance σ 2 together with a quadratic transformation, Y = X2.
For any positive value of y, y = x2 has two real roots, namely x = ±√

y
(for negative values of y, there are no real roots). Application of
Equation 4.32 gives

fY(y) =
[

fX(+√
y)

2
∣∣+√

y
∣∣ + fX(−√

y)

2
∣∣− √

y
∣∣
]

u(y) = fX(+√
y) + fX(−√

y)
2√

y
u(y).

For a zero mean Gaussian PDF, fX(x) is an even function so that
fX(+√

y) = fX(−√
y). Therefore,

fY(y) = 1√
y

fX(
√

y)u(y) =
√

1
2πyσ 2 exp

(
− y

2σ 2

)
u(y).

Hence, Y is a gamma random variable.
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EXAMPLE 4.15: Suppose the same Gaussian random variable from
the previous example is passed through a half-wave rectifier which is
described by the input-output relationship

y = g(x) =
{

x x ≥ 0

0 x ≤ 0
.

For x > 0, dy/dx = 1 so that fY(y) = fX(y). However, when x < 0,
dy/dx = 0, which will create a problem if we try to insert this directly into
Equation 4.32. To treat this case, we note that the event X < 0 is equiv-
alent to the event Y = 0; hence Pr(Y = 0) = Pr(X < 0). Since the input
Gaussian PDF is symmetric about zero, Pr(X < 0) = 1/2. Basically, the
random variable Y is a mixed random variable. It has a continuous part
over the region y > 0 and a discrete part at y = 0. Using a delta function,
we can write the PDF of Y as

fY(y) = 1√
2πσ 2

exp

(
− y2

2σ 2

)
u(y) + 1

2
δ(y).

Example 4.15 illustrates how to deal with transformations that are flat over
some interval of nonzero length. In general, suppose the transformation y = g(x)
is such that g(x) = yo for any x in the interval x1 ≤ x ≤ x2. Then the PDF of
Y will include a discrete component (a delta function) of height Pr(Y = yo) =
Pr(x1 ≤ x ≤ x2) at the point y = yo. One often encounters transformations that
have several different flat regions. One such “staircase” function is shown in
Figure 4.3. Here, a random variable X that may be continuous will be converted
into a discrete random variable. The classical example of this is analog-to-
digital conversion of signals. Suppose the transformation is of a general staircase
form,

y =




y0 x < x1

yi xi ≤ x < xi+1, i = 1, 2, . . . , N − 1

yN x ≥ xN

. (4.33)

Then Y will be a discrete random variable whose PMF is

P(Y = yi) =




Pr(X < x1) i = 0

Pr(xi ≤ x < xi+1) i = 1, 2, . . . , N − 1

Pr(X ≥ xN) i = N

. (4.34)
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y5

y4

y3

y2

y1

x1 x2 x3 x4 x5

y = g(x)

x

Figure 4.3 A staircase (quantizer) transformation: a continuous random variable will be
converted into a discrete random variable.

EXAMPLE 4.16: Suppose X is an exponential random variable with a
PDF fX(x) = exp(−x)u(x) and we form a new random variable Y by
rounding X down to the nearest integer. That is,

Y = g(X) = floor(X) = k, k ≤ X < k + 1.

Then, the PMF of Y is

P(Y = k) = Pr(k ≤ X < k + 1) =
∫ k+1

k
e−xdx = e−k − e−(k+1)

= e−k(1 − 1/e), k = 0, 1, 2, . . . .

Hence, quantization of an exponential random variable produces a
geometric random variable.

EXAMPLE 4.17: Let X be a random variable uniformly distributed
over (−a/2, a/2). Accordingly, its PDF is of the form

fX(x) = 1
a

(
u
(

x + a
2

)
− u

(
x − a

2

))
.
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A new random variable is to be formed according to the square law transfor-
mation Y = X2. By applying the theory developed in this section you should
be able to demonstrate that the new random variable has a PDF given by

fY(y) = 1
a
√

y
(u(y) − u(y − a2/4)).

Using MATLAB, we create a large number of samples of the uniform ran-
dom variable, pass these samples through the square law transformation,
and then construct a histogram of the resulting probability densities. The
MATLAB code to do so follows and the results of running this code are shown
in Figure 4.4. These are then compared with the analytically determined PDF.

clear

N=10000;

a=5; ymax=a∧2/4; % Set parameters.

x=a*(rand(1,N)-0.5); % Generate uniform RVs.

y=x.∧2; % Square law transformation.

bw=0.25; % Bin width.

bins=[bw/2:bw:ymax]; % Histogram bins.

[yvals,xvals]=hist(y,bins); % Compute histogram values.

pdf_est=yvals/(N*bw); % Convert to probability densities.

bar(xvals,pdf_est) % Plot histogram.

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6
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y

f Y
(y

)

Figure 4.4 Comparison of estimated and true PDF for Example 4.17.



108 Chapter 4 Operations on a Single Random Variable

% Compare true PDF with histogram.

y=[0.01:0.01:ymax];

pdf=1./(a*sqrt(y));

hold on

plot(y,pdf)

xlabel(‘y’); ylabel(‘f_Y(y)’)

hold off

4.7 Characteristic Functions

In this section we introduce the concept of a characteristic function. The charac-
teristic function of a random variable is closely related to the Fourier transform
of the PDF of that random variable. Thus, the characteristic function provides
a sort of “frequency domain” representation of a random variable, although in
this context there is no connection between our frequency variable ω and any
physical frequency. In studies of deterministic signals, it was found that the use of
Fourier transforms greatly simplified many problems, especially those involving
convolutions. We will see in future chapters the need for performing convolution
operations on PDFs of random variables and hence frequency domain tools will
become quite useful. Furthermore, we will find that characteristic functions have
many other uses. For example, the characteristic function is quite useful for find-
ing moments of a random variable. In addition to the characteristic function, two
other related functions, namely, the moment-generating function (analogous to
the Laplace transform) and the probability-generating function (analogous to the
z-transform), will also be studied in the following sections.

DEFINITION 4.7: The characteristic function of a random variable, X, is given by

�X(ω) = E[e jωX] =
∫ ∞

−∞
e jωxfX(x) dx. (4.35)

Note the similarity between this integral and the Fourier transform. In most of
the electrical engineering literature, the Fourier transform of the function fX(x)
would be �(−ω). Given this relationship between the PDF and the characteristic
function, it should be clear that one can get the PDF of a random variable from its
characteristic function through an inverse Fourier transform operation:

fX(x) = 1
2π

∫ ∞

−∞
e−jωx�X(ω) dω. (4.36)
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The characteristic functions associated with various random variables can be easily
found using tables of commonly used Fourier transforms, but one must be careful
since the Fourier integral used in Equation 4.35 may be different from the defini-
tion used to generate common tables of Fourier transforms. In addition, various
properties of Fourier transforms can also be used to help calculate characteristic
functions as shown in the following example.

EXAMPLE 4.18: An exponential random variable has a PDF given by
fX(x) = exp(−x)u(x). Its characteristic function is found to be

�X(ω) =
∫ ∞

−∞
ejωxfX(x) dx =

∫ ∞

0
e jωxe−xdx = − e−(1−jω)x

1 − jω

∣∣∣∣
∞

0
= 1

1 − jω
.

This result assumes that ω is a real quantity. Now suppose another
random variable Y has a PDF given by fY(y) = a exp(−ay)u(y). Note
that fY(y) = afX(ay), thus using the scaling property of Fourier trans-
forms, the characteristic function associated with the random variable
Y is given by

�Y(ω) = a
1
|a|�X

(ω

a

)
= 1

1 − jω/a
= a

a − jω
,

assuming a is a positive constant (which it must be for Y to have
a valid PDF). Finally, suppose that Z has a PDF given by fZ(z) =
a exp(−a(z − b))u(z − b). Since fZ(z) = fY(z − b), the shifting property of
Fourier transforms can be used to help find the characteristic function
associated with the random variable Z:

�Z(ω) = �Y(ω)e−jωb = ae −jωb

a − jω
.

The next example demonstrates that the characteristic function can also be com-
puted for discrete random variables. In Section 4.8, the probability-generating
function will be introduced and is preferred by some when dealing with discrete
random variables.

EXAMPLE 4.19: A binomial random variable has a PDF that can be
expressed as

fX(x) =
n∑

k=0

(
n
k

)
pk(1 − p)n−kδ(x − k).
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Its characteristic function is computed as follows:

�X(ω)=
∫ ∞

−∞
e jωx

( n∑
k=0

(
n
k

)
pk(1−p)n−kδ(x−k)

)
dx

=
n∑

k=0

(
n
k

)
pk(1−p)n−k

∫ ∞

−∞
δ(x−k)e jωxdx=

n∑
k=0

(
n
k

)
pk(1−p)n−ke jωk

=
n∑

k=0

(
n
k

)
(pejω)k(1−p)n−k = (1−p + pejω)n.

Since the Gaussian random variable plays such an important role in so many
studies, we derive its characteristic function in Example 4.20. We recommend that
the student commit the result of this example to memory. The techniques used
to arrive at this result are also important and should be carefully studied and
understood.

EXAMPLE 4.20: For a standard normal random variable, the charac-
teristic function can be found as follows:

�X(ω)=
∫ ∞

−∞
1√
2π

e− x2
2 e jωxdx=

∫ ∞

−∞
1√
2π

exp

(
− (x2−2jωx)

2

)
dx.

To evaluate this integral, we complete the square in the exponent.

�X(ω) = exp

(
−ω2

2

)∫ ∞

−∞
1√
2π

exp

(
− (x2 − 2jωx − ω2)

2

)
dx

= exp

(
−ω2

2

)∫ ∞

−∞
1√
2π

exp

(
− (x − jω)2

2

)
dx

The integrand in this expression looks like the properly normalized
PDF of a Gaussian random variable, and since the integral is over all
values of x, the integral must be unity. However, close examination
of the integrand reveals that the “mean” of this Gaussian integrand is
complex. It is left to the student to rigorously verify that this integral still
evaluates to unity even though the integrand is not truly a Gaussian PDF
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(since it is a complex function and hence not a PDF at all). The resulting
characteristic function is then

�X(ω) = exp

(
−ω2

2

)
.

For a Gaussian random variable whose mean is not zero or whose stan-
dard deviation is not unity (or both), the shifting and scaling properties
of Fourier transforms can be used to show that

fX(x) = 1√
2πσ 2

e− (x−µ)2

2σ2 ↔ �X(ω) = exp

(
jµω − ω2σ 2

2

)
.

THEOREM 4.3: For any random variable whose characteristic function is differ-
entiable at ω = 0,

E[X] = −j
d

dω
�X(ω)

∣∣∣∣
ω=0

. (4.37)

PROOF: The proof follows directly from the fact that the expectation and differ-
entiation operations are both linear and consequently the order of these operations
can be exchanged.

d
dω

�X(ω) = d
dω

E
[
e jωX

]
= E

[
d

dω
e jωX

]
= E

[
jXe jωX

]
= jE

[
Xe jωX

]
.

Multiplying both sides by −j and evaluating at ω = 0 produces the desired
result. �

Theorem 4.3 demonstrates a very powerful use of the characteristic function.
Once the characteristic function of a random variable has been found, it is gen-
erally a very straightforward thing to produce the mean of the random variable.
Furthermore, by taking the kth derivative of the characteristic function and evaluat-
ing at ω = 0, an expression proportional to the kth moment of the random variable
is produced. In particular,

E[Xk] = (−j)k dk

dωk
�X(ω)

∣∣∣∣
ω=0

. (4.38)

Hence, the characteristic function represents a convenient tool to easily determine
the moments of a random variable.
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EXAMPLE 4.21: Consider the exponential random variable of
Example 4.18 where fY(y) = a exp(−ay)u(y). The characteristic function
was found to be

�Y(ω) = a
a − jω

.

The derivative of the characteristic function is

d
dω

�Y(ω) = ja
(a − jω)2 ,

and thus the first moment of Y is

E[Y] = −j
d

dω
�Y(ω)

∣∣∣∣
ω=0

= a
(a − jω)2

∣∣∣∣
ω=0

= 1
a

.

For this example, it is not difficult to show that the kth derivative of the
characteristic function is

dk

dωk
�Y(ω) = jkk!a

(a − jω)k+1
,

and from this, the kth moment of the random variable is found to be

E[Yk] = (−j)k dk

dωk
�Y(ω)

∣∣∣∣
ω=0

= k!a
(a − jω)k+1

∣∣∣∣
ω=0

= k!
ak

.

For random variables that have a more complicated characteristic function,
evaluating the kth derivative in general may not be an easy task. However,
Equation 4.38 only calls for the kth derivative evaluated at a single point (ω = 0),
which can be extracted from the Taylor series expansion of the characteristic func-
tion. To see this, note that from Taylor’s Theorem, the characteristic function can
be expanded in a power series as

�X(ω) =
∞∑

k=0

1
k!

(
dk

dωk
�X(ω)

∣∣∣∣
ω=0

)
ωk. (4.39)

If one can obtain a power series expansion of the characteristic function, then
the required derivatives are proportional to the coefficients of the power series.
Specifically, suppose an expansion of the form

�X(ω) =
∞∑

k=0

φkω
k (4.40)
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is obtained. Then the derivatives of the characteristic function are given by

dk

dωk
�X(ω)

∣∣∣∣
ω=0

= k!φk. (4.41)

The moments of the random variable are then given by

E[Xk] = (−j)kk!φk. (4.42)

This procedure is illustrated using a Gaussian random variable in the next example.

EXAMPLE 4.22: Consider a Gaussian random variable with a mean of
µ = 0 and variance σ 2. Using the result of Example 4.20, the character-
istic function is �X(ω) = exp(−ω2σ 2/2). Using the well-known Taylor
series expansion of the exponential function, the characteristic function
is expressed as

�X(ω) =
∞∑

n=0

(−ω2σ 2/2)n

n! =
∞∑

n=0

(−1)nσ 2n

2nn! ω2n.

The coefficients of the general power series as expressed in Equation 4.40
are given by

φk =




jk(σ/
√

2)k

(k/2)! k even

0 k odd
.

Hence the moments of the zero-mean Gaussian random variable are

E[Xk] =




k!
(k/2)!

(
σ√

2

)k

k even

0 k odd
.

As expected, E[X0] = 1, E[X] = 0 (since it was specified that µ = 0), and
E[X2] = σ 2 (since in the case of zero-mean variables, the second moment
and variance are one and the same). Now, we also see that E[X3] = 0
(i.e., all odd moments are equal to zero), E[X4] = 3σ 4, E[X6] = 15σ 6,
and so on. We can also conclude from this that for Gaussian random
variables, the coefficient of skewness is cs = 0, while the coefficient of
kurtosis is ck = 3.

In many cases of interest, the characteristic function has an exponential form.
The Gaussian random variable is a typical example. In such cases, it is convenient
to deal with the natural logarithm of the characteristic function.
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DEFINITION 4.8: In general, we can write a series expansion of ln[�X(ω)] as

ln[�X(ω)] =
∞∑

n=1

λn
(jω)n

n! . (4.43)

where the coefficients, λn, are called the cumulants and are given as

λn = dn

d(jω)n {ln[�X(ω)]}
∣∣∣∣
ω=0

, n = 1, 2, 3, . . . . (4.44)

The cumulants are related to the moments of the random variable. By taking
the derivatives specified in Equation 4.44 we obtain

λ1 = µX , (4.45)

λ2 = E[X2] − µ2
X = σ 2

X , (4.46)

λ3 = E[X3] − 3µXE[X2] + 2µ3
X = E[(X − µX)3]. (4.47)

Thus, λ1 is the mean, λ2 is the second central moment (or the variance), and λ3
is the third central moment. However, higher order cumulants are not as simply
related to the central moments.

4.8 Probability Generating Functions

In the world of signal analysis, we often use Fourier transforms to describe
continuous time signals, but when we deal with discrete time signals, it is
common to use a z-transform instead. In the same way, the characteristic func-
tion is a useful tool for working with continuous random variables, but when
discrete random variables are concerned, it is often more convenient to use a
device similar to the z-transform which is known as the probability generating
function.

DEFINITION 4.9: For a discrete random variable with a probability mass func-
tion, PX(k), defined on the nonnegative integers1, k = 0, 1, 2, . . . , the probability

1Note that this definition assumes that the discrete random variable, X, is defined on
nonnegative integer values, k. One could also define a probability generating function based
on a bilateral z-transform that would allow for random variables that can take on negative
integer values as well. However, since this is less common, we do not consider it further
here.
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generating function, HX(z), is defined as

HX(z) =
∞∑

k=0

PX(k)zk. (4.48)

Note the similarity between the probability generating function and the unilateral
z-transform of the probability mass function.

Since the PMF is seen as the coefficients of the Taylor series expansion of HX(z),
it should be apparent that the PMF can be obtained from the probability generating
function through

PX(k) = 1
k!

dk

dzk
HX(z)

∣∣∣∣
z=0

. (4.49)

The derivatives of the probability generating function evaluated at zero return
the PMF and not the moments as with the characteristic function. However, the
moments of the random variable can be obtained from the derivatives of the
probability generating function at z = 1.

THEOREM 4.4: The mean of a discrete random variable can be found from its
probability generating function according to

E[X] = d
dz

HX(z)
∣∣∣∣
z=1

. (4.50)

Furthermore, the higher order derivatives of the probability generating function
evaluated at z = 1 lead to quantities known as the factorial moments,

hk = dk

dzk
HX(z)

∣∣∣∣
z=1

= E[X(X − 1)(X − 2) · · · (X − k + 1)]. (4.51)

PROOF: The result follows directly from differentiating Equation 4.48. The details
are left to the reader. �

It is a little unfortunate that these derivatives don’t produce the moments
directly, but the moments can be calculated from the factorial moments. For
example,

h2 = E[X(X − 1)] = E[X2] − E[X] = E[X2] − h1,

⇒ E[X2] = h2 + h1. (4.52)

Hence, the second moment is simply the sum of the first two factorial moments. If
we were interested in the variance as well, we would obtain

σ 2
X = E[X2] − µ2

X = h2 + h1 − h2
1. (4.53)
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EXAMPLE 4.23: Consider the binomial random variable of Example 4.4
whose PMF is

PX(k) =
(

n
k

)
pk(1 − p)n−k, k = 0, 1, 2, . . . , n.

The corresponding probability generating function is

HX(z)=
n∑

k=0

(
n
k

)
pk(1−p)n−kzk =

n∑
k=0

(
n
k

)
(pz)k(1−p)n−k = (1−p+pz)n.

Evaluating the first few derivatives at z = 1 produces

h1 = d
dz

HX(z)
∣∣∣∣
z=1

= np(1 − p + pz)n−1
∣∣∣∣
z=1

= np,

h2 = d2

dz2 HX(z)
∣∣∣∣
z=1

= n(n − 1)p2(1 − p + pz)n−2
∣∣∣∣
z=1

= n(n − 1)p2.

From these factorial moments, we calculate the mean, second moment,
and variance of a binomial random variable as

µX = h1 = np, E[X2] = h1 + h2 = (np)2 + np(1 − p), σ 2
X = h2 + h1 − h2

1

= np(1 − p).

In order to gain an appreciation for the power of these “frequency domain” tools,
compare the amount of work used to calculate the mean and variance of the bino-
mial random variable using the probability generating function in Example 4.23
with the direct method used in Example 4.4.

As was the case with the characteristic function, we can compute higher order
factorial moments without having to take many derivatives by expanding the prob-
ability generating function into a Taylor series. In this case, the Taylor series must
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be about the point z = 1.

HX(z) =
∞∑

k=0

1
k!

(
dk

dzk
HX(z)

∣∣∣∣
z=1

)
(z − 1)k =

∞∑
k=0

1
k!hk(z − 1)k (4.54)

Once this series is obtained, one can easily identify all of the factorial moments.
This is illustrated using a geometric random variable in Example 4.24.

EXAMPLE 4.24: A geometric random variable has a PMF given by
PX(k) = (1 − p)pk, k = 0, 1, 2, . . . . The probability generating function is
found to be

HX(z) =
∞∑

k=0

(1 − p)(pz)k = 1 − p
1 − pz

.

In order to facilitate forming a Taylor series expansion of this func-
tion about the point z = 1, it is written explicitly as a function of z − 1.
From there, the power series expansion is fairly simple:

HX(z) = 1 − p
1 − p − p(z − 1)

= 1

1 − p
1 − p

(z − 1)
=

∞∑
k=0

(
p

1 − p

)k

(z − 1)k.

Comparing the coefficients of this series with the coefficients given in
Equation 4.54 leads to immediate identification of the factorial moments,

hk = k!pk

(1 − p)k
.

4.9 Moment Generating Functions

In many problems, the random quantities we are studying are often inherently
nonnegative. Examples include the frequency of a random signal, the time between
arrivals of successive customers in a queueing system, or the number of points
scored by your favorite football team. The resulting PDFs of these quantities are
naturally one-sided. For such one-sided waveforms, it is common to use Laplace
transforms as a frequency domain tool. The moment generating function is the
equivalent tool for studying random variables.
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DEFINITION 4.10: The moment generating function, MX(u), of a nonnegative2

random variable, X, is

MX(u) = E[euX] =
∫ ∞

0
fX(x)eux dx. (4.55)

Note the similarity between the moment generating function and the Laplace
transform of the PDF.

The PDF can in principle be retrieved from the moment generating function
through an operation similar to an inverse Laplace transform,

fX(x) = 1
2π j

∫ c+j∞

c−j∞
MX(u)e−uxdu. (4.56)

Because the sign in the exponential term in the integral in Equation 4.55 is the
opposite of the traditional Laplace transform, the contour of integration (the so-
called Bromwich contour) in the integral specified in Equation 4.56 must now be
placed to the left of all poles of the moment generating function. As with the
characteristic function, the moments of the random variable can be found from the
derivatives of the moment generating function (hence, its name) according to

E[Xk] = dk

duk
MX(u)

∣∣∣∣
u=0

. (4.57)

It is also noted that if the moment generating function is expanded in a power series
of the form

MX(u) =
∞∑

k=0

mkuk, (4.58)

then the moments of the random variable are given by E[Xk] = k!mk.

EXAMPLE 4.25: Consider an Erlang random variable with a PDF of the
form

fX(x) = xn−1 exp(−x)u(x)
(n − 1)! .

2One may also define a moment generating function for random variables that are not
necessarily nonnegative. In that case, a two-sided Laplace transform would be appropriate.
This would be identical to the characteristic function with the association u = jω.
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The moment generating function is calculated according to

MX(u) =
∫ ∞

0
fX(x)euxdx =

∫ ∞

0

xn−1 exp(−(1 − u)x)
(n − 1)! dx.

To evaluate this function, we note that the integral looks like the
Laplace transform of the function xn−1/(n − 1)! evaluated at s = 1 − u.
Using standard tables of Laplace transforms (or using integration by
parts several times), we get

MX(u) = 1
(1 − u)n .

The first two moments are then found as follows:

E[X] = d
du

(1 − u)−n
∣∣∣∣
u=0

= n(1 − u)−(n+1)
∣∣∣∣
u=0

= n,

E[X2] = d2

du2 (1 − u)−n
∣∣∣∣
u=0

= n(n + 1)(1 − u)−(n+2)
∣∣∣∣
u=0

= n(n + 1).

From this, we could also infer that the variance is σ 2
X = n(n+1)−n2 = n.

If we wanted a general expression for the kth moment, it is not hard to
see that

E[Xk] = dk

duk
(1 − u)−n

∣∣∣∣
u=0

= n(n + 1) · · · (n + k − 1) = (n + k − 1)!
(n − 1)! .

4.10 Evaluating Tail Probabilities

A common problem encountered in a variety of applications is the need to compute
the probability that a random variable exceeds a threshold, Pr(X > xo). Alterna-
tively, we might want to know, Pr(|X−µx| > xo). These quantities are referred to as
tail probabilities. That is, we are asking, what is the probability that the random vari-
able takes on a value that is in the tail of the distribution? While this can be found
directly from the CDF of the random variable, quite often the CDF may be diffi-
cult or even impossible to find. In those cases, one can always resort to numerical
integration of the PDF. However, this involves a numerical integration over a semi-
infinite region, which in some cases may be problematic. Then, too, in some situa-
tions we might not even have the PDF of the random variable, but rather the random
variable may be described in some other fashion. For example, we may know only
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the mean or the mean and variance, or the random variable may be described by
one of the frequency domain functions described in the previous sections.

Obviously, if we are given only partial information about the random variable,
we would not expect to be able to perfectly evaluate the tail probabilities, but
we can obtain bounds on these probabilities. In this section, we present several
techniques for obtaining various bounds on tail probabilities based on different
information about the random variable. We then conclude the section by showing
how to exactly evaluate the tail probabilities directly from one of the frequency
domain descriptions of the random variables.

THEOREM 4.5 (Markov’s Inequality): Suppose that X is a nonnegative random
variable (i.e., one whose PDF is nonzero only over the range [0, ∞)). Then

Pr(X ≥ xo) ≤ E[X]
xo

. (4.59)

PROOF: For nonnegative random variables, the expected value is

E[X] =
∫ ∞

0
xfX(x) dx =

∫ xo

0
xfX(x) dx +

∫ ∞

xo

xfX(x) dx ≥
∫ ∞

xo

xfX(x) dx

≥ xo

∫ ∞

xo

fX(x) dx. (4.60)

Dividing both sides by xo gives the desired result.
Markov’s inequality provides a bound on the tail probability. The bound

requires only knowledge of the mean of the random variable. Because the bound
uses such limited information, it has the potential of being very loose. In fact, if
xo < E[X], then the Markov inequality states that Pr(X ≥ xo) is bounded by a
number that is greater than 1. While this is true, in this case the Markov inequality
gives us no useful information. Even in less extreme cases, the result can still be
very loose as shown by the next example. �

EXAMPLE 4.26: Suppose the average life span of a person was 75
years. The probability of a human living to be 110 years would then
be bounded by

Pr(X ≥ 110) ≤ 75
110

= 0. 6818.

Of course, we know that in fact very few people live to be 110 years old,
and hence this bound is almost useless to us.
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If we know more about the random variable than just its mean, we can obtain
a more precise estimate of its tail probability. In Example 4.26, we know that the
bound given by the Markov inequality is ridiculously loose because we know
something about the variability of the human life span. The next result allows us
to use the variance as well as the mean of a random variable to form a different
bound on the tail probability.

THEOREM 4.6 (Chebyshev’s Inequality): Suppose that X is a random variable
with mean µX and variance σ 2

X . The probability that the random variable takes on
a value that is removed from the mean by more than xo is given by

Pr(|X − µX| ≥ xo) ≤ σ 2
X

x2
o

. (4.61)

PROOF: Chebyshev’s inequality is a direct result of Markov’s inequality. First,
note that the event {|X − µX| ≥ xo} is equivalent to the event {(X − µX)2 ≥ x2

o}.
Applying Markov’s inequality to the later event results in

Pr((X − µX)2 ≥ x2
o ) ≤ E[(X − µX)2]

x2
o

= σ 2
X

x2
o

. (4.62)

Note that Chebyshev’s inequality gives a bound on the two-sided tail probabil-
ity, whereas the Markov inequality applies to the one-sided tail probability. Also,
the Chebyshev inequality can be applied to any random variable, not just to those
that are nonnegative. �

EXAMPLE 4.27: Continuing the previous example, suppose that in
addition to a mean of 75 years, the human life span had a standard
deviation of 5 years. In this case,

Pr(X ≥ 110) ≤ Pr(X ≥ 110) + Pr(X ≤ 40) = Pr(|X − 75| ≥ 35).

Now the Chebyshev inequality can be applied to give

Pr(|X − 75| ≥ 35) ≤
(

5
35

)2

= 1
49

.

While this result may still be quite loose, by using the extra piece of
information provided by the variance, a better bound is obtained.
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u(x–xo)

xxo

exp(s(x–xo))

Figure 4.5 The unit step function and an exponential upper bound.

THEOREM 4.7 (Chernoff Bound): Suppose X is a random variable whose
moment generating function is MX(s). Then

Pr(X ≥ xo) ≤ min
s≥0

e−sxo MX(s). (4.63)

PROOF: First, note that

Pr(X ≥ xo) =
∫ ∞

xo

fX(x) dx =
∫ ∞

−∞
fX(x)u(x − xo) dx. (4.64)

Next, upper bound the unit step function in the integrand by an exponential func-
tion of the form u(x − xo) ≤ exp(s(x − xo)). This bound is illustrated in Figure 4.5.
Note that the bound is valid for any real s ≥ 0. The tail probability is then upper
bounded by

Pr(X ≥ xo) ≤ e−sxo

∫ ∞

−∞
fX(x)esxdx = e−sxo MX(s). (4.65)

Since this bound is valid for any s ≥ 0, it can be tightened by finding the value
of s that minimizes the right-hand side. In this expression, a two-sided Laplace
transform must be used to obtain the moment generating function if the random
variable is not nonnegative (see footnote 2 associated with Definition 4.10). �

EXAMPLE 4.28: Consider a standard normal random variable whose
moment generating function is given by MX(u) = exp(u2/2) (see result
of Example 4.20, where the characteristic function is found, and replace
ω with −ju). The tail probability, Pr(X ≥ xo), in this case is simply the
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Q-function, Q(xo). According to Equation 4.65, this tail probability can
be bounded by

Q(xo) ≤ exp

(
−uxo + u2

2

)

for any u ≥ 0. Minimizing with respect to u, we get

d
du

exp

(
−uxo + u2

2

)
= (−xo + u) exp

(
−uxo + u2

2

)
= 0 ⇒ u = xo.

Hence, the Chernoff bound on the tail probability for a standard
normal random variable is

Q(xo) ≤ exp

(
−x2

o

2

)
.

The result of this example provides a convenient upper bound on the
Q-function.

Evaluating the Chernoff bound requires knowledge of the moment generat-
ing function of the random variable. This information is sufficient to calculate the
tail probability exactly since, in theory, one can obtain the PDF from the moment
generating function, and from there the exact tail probability can be obtained.
However, in cases where the moment generating function is of a complicated ana-
lytical form, determining the PDF may be exceedingly difficult. Indeed, in some
cases, it may not be possible to express the tail probability in closed form (as with
the Gaussian random variable). In these cases, the Chernoff bound will often pro-
vide an analytically tractable expression that can give a crude bound on the tail
probability. If a precise expression for the tail probability is required, the result of
Theorem 4.8 will show how this can be obtained directly from the moment
generating function (without having to explicitly find the PDF).

THEOREM 4.8: For a random variable, X, with a moment generating function,
MX(u), an exact expression for the tail probability, Pr(X ≥ xo), is given by

Pr(X ≥ xo) = 1
2π j

∫ c+j∞

c−j∞
MX(u)

u
e−uxo du, (4.66)

where the contour of integration is to the right of the origin but to the left of all
singularities of the moment generating function in the right half-plane.
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PROOF: The right tail probability is given in general by

Pr(X ≥ xo) =
∫ ∞

xo

fX(x) dx. (4.67)

Then, replace the PDF in this integral with an inverse transform of the moment
generating function as specified in Equation 4.56.

Pr(X ≥ xo) =
∫ ∞

xo

1
2π j

∫ c+j∞

c−j∞
MX(u)e−uxdudx

= 1
2π j

∫ c+j∞

c−j∞
MX(u)

∫ ∞

xo

e−uxdxdu (4.68)

Evaluating the inner integral results in

Pr(X ≥ xo) = 1
2π j

∫ c+j∞

c−j∞
MX(u)

u
e−uxo du, for Re[u] > 0. (4.69)

The integral specified in Equation 4.66 can be evaluated numerically or, when
convenient to do so, it can also be evaluated by computing the appropriate
residues3. For xo > 0, the contour of integration can be closed to the right. The
resulting closed contour will encompass all the singularities of the moment gen-
erating function in the right half-plane. According to Cauchy’s residue theorem,
the value of the integral will then be −2π j times the sum of the residues of all the
singularities encompassed by the contour. Hence,

Pr(X ≥ xo) =
∑

right half-plane

Residues
{

MX(u)
u

e−uxo

}
. (4.70)

If a precise evaluation of the tail probability is not necessary, several approx-
imations to the integral in Equation 4.66 are available. Perhaps the simplest and
most useful is known as the saddle point approximation. To develop the saddle point
approximation, define ψ(u) = ln(MX(u)) and

λ(u) = ln
(

MX(u)
u

e−uxo

)
= ψ(u) − uxo − ln(u). (4.71)

Furthermore, consider a Taylor series expansion of the function λ(u) about some
point u = uo,

λ(u) = λ(uo) + λ′(uo)(u − uo) + 1
2
λ′′(uo)(u − uo)2 + · · · . (4.72)

3The remainder of this section assumes a familiarity with the concepts of contour inte-
gration and residue calculus. For those unfamiliar with these topics, the remainder of this
section can be skipped without any loss in continuity.
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In particular, if uo is chosen so that λ′(uo) = 0, then near the point u = uo, the
integrand in Equation 4.66 behaves approximately like

MX(u)
u

e−uxo = eλ(u) ≈ exp(λ(uo)) exp
(

1
2
λ′′(uo)(u − uo)2

)
. (4.73)

In general, the point u = uo will be a minima of the integrand as viewed along
the real axis. This follows from the fact that the integrand is a concave function of
u. A useful property of complex (analytic) functions tells us that if the function has
a minima at some point uo as u passes through it in one direction, the function will
also have a maxima as u passes through the same point in the orthogonal direction.
Such a point is called a “saddle point” since the shape of the function resembles a
saddle near that point. If the contour of integration is selected to pass through the
saddle point, the integrand will reach a local maximum at the saddle point. As just
seen in Equation 4.73, the integrand also has a Gaussian behavior at and around
the saddle point. Hence, using the approximation of Equation 4.73 and running
the contour of integration through the saddle point so that u = uo + jω along the
integration contour, the tail probability is approximated by

Pr(X ≥ xo) ≈ exp(λ(uo))
2π j

∫ uo+j∞

uo−j∞
exp

(
1
2
λ′′(uo)(u − uo)2

)
du

= exp(λ(uo))
2π

∫ ∞

−∞
exp

(
−1

2
λ′′(uo)ω2

)
dω

= exp(λ(uo))√
2πλ′′(uo)

= MX(uo) exp(−uoxo)

uo
√

2πλ′′(uo)
. (4.74)

The third step is accomplished using the normalization integral for Gaussian PDFs.
The saddle point approximation is usually quite accurate provided that

xo � E[X]. That is, the farther we go out into the tail of the distribution, the bet-
ter the approximation. If it is required to calculate Pr(X ≥ xo) for xo < E[X], it is
usually better to calculate the left tail probability, in which case the saddle point
approximation is

Pr(X ≥ xo) ≈ −MX(uo) exp(−uoxo)

uo
√

2πλ′′(uo)
, (4.75)

where in this case the saddle point, uo, must be negative. �
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EXAMPLE 4.29: In this example, we will form the saddle point approx-
imation to the Q-function that is the right tail probability for a stan-
dard normal random variable. The corresponding moment generating
function is MX(u) = exp(u2/2). To find the saddle point, we note that

λ(u) = u2

2
− ln(u) − uxo.

We will need the first two derivatives of this function:

λ′(u) = u − 1
u

− xo, λ′′(u) = 1 + 1
u2 .

The saddle point is the solution to λ′(uo) = 0 that results in a quadratic
equation whose roots are

uo = xo ± √
x2

o + 4
2

.

When calculating the right tail probability, the saddle point must be to
the right of the imaginary axis, hence the positive root must be used:

uo = xo + √
x2

o + 4
2

.

The saddle point approximation then becomes

Q(xo) ≈ Mx(uo) exp(−uoxo)

uo
√

2πλ′′(uo)
=

exp

(
−u2

o

2
− uoxo

)

√
2π (1 + u2

o )
.

The exact value of the Q-function and the saddle point approximation
are compared in Figure 4.6. As long as xo is not close to zero, this
approximation is quite accurate.

4.11 Engineering Application: Scalar
Quantization

In many applications, it is convenient to convert a signal that is analog in nature
to a digital one. This is typically done in three steps. First, the signal is sampled,
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Figure 4.6 The Q-function and its saddle point approximation.

which converts the signal from continuous time to discrete time. Then samples of
the signal are quantized. This second action converts the signal from one with a
continuous amplitude to one whose amplitude can only take on discrete values.
Once the signal is converted to discrete time/discrete amplitude, the signal can then
easily be represented by a sequence of bits. In this third step, each discrete ampli-
tude level is represented by a binary code word. While the first step (sampling)
and the third step (encoding) are invertible, the second step (quantization) is not.
That is, we can perfectly recover the analog signal from its discrete time samples
(provided the samples are taken at a rate above the Nyquist rate), and the discrete
amplitude levels can easily be recovered from the code words that represent them
(provided a lossless source code is used). However, the act of quantization causes
distortion of the signal that cannot be undone. Given the discrete amplitude of a
sample, it is not possible to determine the exact value of the original (continuous
amplitude) sample. For this reason, careful attention is paid to the quantization
process to minimize the amount of distortion.

In order to determine efficient ways to quantize signals, we must first quantify
this concept of signal distortion. Suppose a signal is sampled and we focus attention
on one of those samples. Let the random variable X represent the value of that
sample, which in general will draw from a continuous sample space. Now suppose
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that sample is quantized (using some quantization function q(x)) to form a new
(discrete) random variable Y = q(X). The difference between the original sample
value and its quantized value, X − q(X), is the error caused by the quantizer, or
the quantizer noise. It is common to measure signal distortion as the mean squared
quantizer error,

d = E[(X − q(X))2] =
∫ ∞

−∞
(x − q(x))2fX(x) dx. (4.76)

We will see Chapter 10 in the text, that the mean square value of a signal has the
physical interpretation of the signal’s power. Thus, the quantity d can be interpreted
as the quantization noise power. Often the fidelity of a quantized signal is measured
in terms of the ratio of the original signal power, E[X2], to the quantization noise
power. This is referred to as the signal–to–quantization noise power ratio (SQNR):

SQNR = E[X2]
E[(X − q(X))2] . (4.77)

The goal of the quantizer design is to choose a quantization function that minimizes
the distortion, d. Normally, the quantizer maps the sample space of X into one of
M = 2n levels. Then each quantization level can be represented by a unique n-bit
code word. We refer to this as an n-bit quantizer. As indicated in Equation 4.76,
the expected value is with respect to the PDF of X. Hence, the function q(x) that
minimizes the distortion will depend on the distribution of X.

To start with, consider a random variable X that is uniformly distributed over
the interval (−a/2, a/2). Since the sample X is equally likely to fall anywhere in the
region, it would make sense for the quantizer to divide that region into M equally
spaced subintervals of width  = a/M. For each subinterval, the quantization level
(i.e., the value of q(x) for that subinterval) should be chosen as the midpoint of the
subinterval. This is referred to as a uniform quantizer. A 3-bit uniform quantizer
is illustrated in Figure 4.7. For example, if X ∈ (0, a/8), then q(X) = a/16. To
measure the distortion for this signal together with the uniform quantizer, assume
that the signal falls within one of the quantization intervals, given that quantization
interval, and then use the theorem of total probability:

d = E[(X − q(X))2] =
8∑

k=1

E[(X − q(X))2|X ∈ Xk] Pr(X ∈ Xk), (4.78)

where Xk refers to the kth quantization interval. Consider, for example, X5 =
(0, a/8), so that

E[(X − q(X))2|X ∈ X5] = E[X − a/16)2|X ∈ (0, a/8)]. (4.79)
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Figure 4.7 A 3-bit uniform quantizer on the interval (−a/2, a/2)

To calculate this conditional expected value requires the conditional PDF of X.
From Equation 3.41 this is

fX(x|X ∈ (0, a/8)) = fX(x)
Pr(X ∈ (0, a/8))

= 1/a
1/8

= 8
a

, x ∈ (0, a/8). (4.80)

Not surprisingly, conditioned on X ∈ (0, a/8), X is uniformly distributed over
(0, a/8). The conditional expected value is then

E[(X − a/16)2|X ∈ (0, a/8)] = 8
a

∫ a/8

0
(x − a/16)2dx = a2

768
. (4.81)

Due to the symmetry of the uniform distribution, this conditional distortion is
the same regardless of what quantization interval the signal falls in. Hence,
Equation 4.81 is also the unconditional distortion. Note that the power of the
original signal is

E[X2] = 1
a

∫ a/2

−a/2
x2dx = a2

12
. (4.82)

The resulting SQNR is then

SQNR = E[X2]
d

= a2/12
a2/768

= 64 = 18. 06 dB. (4.83)

The preceding result for the 3-bit uniform quantizer can be generalized to
any uniform quantizer. In general, for an n-bit uniform quantizer, there will
be M = 2n quantization intervals of width  = a/M. Consider the quantization
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interval (0, ) and suppose that quantization level for that interval is chosen to be
the midpoint, /2. Then the distortion for that interval (and hence the distortion
for the quantizer) is

E[(X − q(X))2|X ∈ (0, )] = 1


∫ 

0
(x − /2)2dx = 2/12. (4.84)

The SQNR for an n-bit uniform quantizer with a uniformly distributed input is

SQNR = E[X2]
d

= a2/12
2/12

= M2 = 22n or SQNR(dB) = 2nlog10(2) = 6. 02n dB.

(4.85)

This is the so-called 6 dB rule whereby the SQNR is increased by approximately 6 dB
for each extra bit added to the quantizer. For example, in wireline digital telephony,
8-bit quantization is used that would result in an SQNR of approximately 48 dB.

The previous results assumed that the input to the quantizer followed a uniform
probability distribution. This is rarely the case. Speech signals, for example, are
commonly modeled using a Laplace (two-sided exponential) distribution. For such
signals, small sample values are much more frequent than larger values. In such a
situation, it would make sense to use finer resolution (i.e., narrower quantization
intervals) for the more frequent smaller amplitudes in order to keep the distortion
minimized in those regions, at the cost of more distortion in the less frequent larger
amplitude regions.

Given that an n-bit quantizer is to be used, the design of an optimum quantizer
involves two separate problems. First, the ranges for each quantization interval
must be specified; then the quantization level for each interval must be chosen. The
following theorem specifies how each of these two tasks should be accomplished.

THEOREM 4.9: A random variable X with PDF fX(x) is to be quantized with an
M-level quantizer that produces a discrete random variable Y according to

y = q(x) = yi, for xi−1 < x < xi, i = 1, 2, . . . , M, (4.86)

where it is assumed that the lower limit of the first quantization interval is x0 = −∞
and the upper limit of the last quantization interval is xM = ∞. The (mean-squared)
distortion is minimized by choosing the quantization intervals (i.e., the xi) and the
quantization levels (i.e., the yi) according to

(i) yi = E[X|xi−1 < X < xi], i = 1, 2, . . . , M, (the conditional mean criterion),

(4.87)

(ii) xi = yi + yi+1

2
, i = 1, 2, . . . , M − 1 (the midpoint criterion). (4.88)
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These two criteria provide a system of 2M − 1 equations with which to solve
for the 2M − 1 quantities (x1, x2, . . . , xM−1, y1, y2, . . . , yM) that specify the optimum
M-level quantizer.

PROOF: The distortion is given by

d =
M∑

i=1

∫ xi

xi−1

(x − yi)2fX(x) dx. (4.89)

To minimize d with respect to yj,

∂d
∂yj

= −2
∫ xi

xi−1

(x − yi)fX(x) dx = 0. (4.90)

Solving for yj in this equation establishes the conditional mean criterion. Similarly,
differentiating with respect to xj gives

∂d
∂xj

= (xj − yj)2fX(xj) − (xj − yj+1)2fX(xj) = 0. (4.91)

Solving for xj produces the midpoint criterion. �

EXAMPLE 4.30: Using the criteria set forth in Theorem 4.9, an ideal
nonuniform 2-bit quantizer will be designed for a signal whose samples
have a Laplace distribution, fX(x) = (1/2) exp(−|x|). A 2-bit quantizer
will have four quantization levels, {y1, y2, y3, y4}, and four correspond-
ing quantization intervals that can be specified by three boundary
points, {x1, x2, x3}. The generic form of the 2-bit quantizer is illustrated
in Figure 4.8. Due to the symmetry of the Laplace distribution, it seems
reasonable to expect that the quantizer should have a negative sym-
metry about the y-axis. That is, x1 = −x3, x2 = 0, y1 = −y4, and
y2 = −y3. Hence, it is sufficient to determine just three unknowns, such
as {x3, y3, y4}. The rest can be inferred from the symmetry. Application
of the conditional mean criterion and the midpoint criterion leads to the
following set of three equations:

y3 = E[X|0 < X < x3] =

∫ x3

0

x
2

exp(−x) dx
∫ x3

0

1
2

exp(−x) dx
= 1 − x3

ex3 − 1
,
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Figure 4.8 A 2-bit quantizer.

y4 = E[X|X > x3] =

∫ ∞

x3

x
2

exp(−x) dx
∫ ∞

x3

1
2

exp(−x) dx
= x3 + 1,

x3 = y3 + y4

2
.

Plugging the expressions for y3 and y4 into the last equation results in a
single equation to solve for the variable x3. Unfortunately, the equation
is transcendental and must be solved numerically. Doing so results in the
solution {x1, y3, y4} = {1.5940, 0.594, 2.594}. The (mean-square) distortion
of this 2-bit quantizer is given by

d = 2
∫ x3

0
(x − y3)2fX(x) dx + 2

∫ ∞

x3

(x − y4)2fX(x) dx = 0.3524.

Note that the power in the original (unquantized) signal is E[X2] = 2
so that the SQNR of this quantizer is

SQNR = E[X2]
d

= 2
0.3524

= 5.675 = 7.54 dB.

EXAMPLE 4.31: In this example, we generalize the results of the
last example for an arbitrary number of quantization levels. When
the number of quantization levels gets large, the number of equa-
tions to solve becomes too much to do by hand, so we use MATLAB

to help us with this task. Again, we assume that the random variable X
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follows a Laplace distribution given by fX(x) = (1/2) exp(−|x|). Because of
the symmetry of this distribution, we again take advantage of the fact that the
optimum quantizer will be symmetric. We design a quantizer with M levels
for positive X (and hence M levels for negative X as well, for a total of 2M
levels). The M quantization levels are at y1, y2, . . . yM , and the quantization bin
edges are at x0 = 0, x1, x2, . . . , xN−1, xN = ∞. We compute the optimum quan-
tizer in an iterative fashion. We start by arbitrarily setting the quantization
bins in a uniform fashion. We choose to start with xi = 2i/M. We then iter-
ate between computing new quantization levels according to Equation 4.87
and new quantization bin edges according to Equation 4.88. After going back
and forth between these two equations many times, the results eventually
converge toward a final optimum quantizer. For the Laplace distribution, the
conditional mean criterion results in

yi = (xi−1 + 1) exp(−xi−1) − (xi + 1) exp(−xi)
exp(−xi−1) − exp(−xi)

.

At each iteration stage (after computing new quantization levels), we also
compute the SQNR. By observing the SQNR at each stage, we can verify
that this iterative process is in fact improving the quantizer design at each
iteration. For this example, the SQNR is computed according to

SQNR = 1

1 − 1
2

M∑
i=1

piy2
i

, pi = exp(−xi−1) − exp(−xi).

The MATLAB code we used to implement this process (see Exercise 4.51)
follows. Figure 4.9 shows the results of running this code for the case of
M = 8 (16-level, 4-bit quantizer).

M=8;

x=[0 2*[1:M-1]/M]; % Initialize quantization bin edges.

iterations=50;

for k=1:iterations

% Update quantization levels.

x1=x(1:M-1);

x2=x(2:M);

y=(x1+1).*exp(-x1)-(x2+1).*exp(-x2);

y=y./(exp(-x1)-exp(-x2));

y=[y x(length(x))+1];

% Calculate SQNR.

p=exp(-x1)-exp(-x2);
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Figure 4.9 SQNR measurements for the iterative quantizer design in Example 4.31.

p=[p exp(-x(length(x)))];

SQNR(k)=1/(1-(y.∧2)*p’/2);
% Update quantization bin edges.

y1=y(1:M-1);

y2=y(2:M);

x=[0 (y1+y2)/2];

end

plot(10*log 10(SQNR), ‘o’)

4.12 Engineering Application: Entropy and
Source Coding

The concept of information is something we hear about frequently. After all, we
supposedly live in the “information age” with the Internet often referred to as the
“information superhighway.” But, what is information? In this section, we will give
a quantitative definition of information and show how this concept is used in the
world of digital communications. To motivate the forthcoming definition, imagine
a situation in which we have a genie who can tell us about certain future events.
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Suppose that this genie tells us that on July 15 of next year, the high temperature
in the state of Texas will be above 90◦F. Anyone familiar with the weather trends
in Texas would know that our genie has actually given us very little information.
Since we know that the temperature in July in Texas is above 90◦F with probability
approaching 1, the statement made by the genie does not tell us anything new. Next,
suppose that the genie tells us that on July 15 of next year, the high temperature
in the state of Texas will be below 80◦F. Since this event is improbable, in this case
the genie will be giving us a great deal of information.

To define a numerical quantity that we will call information, we note from the
previous discussion that

• Information should be a function of various events. Observing (or being
told) that some event A occurs (or will occur) provides a certain amount of
information, I(A).

• The amount of information associated with an event should be inversely related
to the probability of the event. Observing highly probable events provides very
little information, while observing very unlikely events gives a large amount
of information.

At this point, there are many definitions which could satisfy these two bullet items.
We include one more observation that will limit the possibilities:

• If it is observed that two events, A and B, have occurred and if these two events
are independent, then we expect that the information I(A ∩ B) = I(A) + I(B).

Since we observed that information should be a function of the probability of
an event, the last bullet item requires us to define information as a function of
probability that satisfies

I(pApB) = I(pA) + I(pB). (4.92)

Since a logarithmic function satisfies this property, we obtain the following
definition.

DEFINITION 4.11: If some event A occurs with probability pA, then observing the
event A provides an amount of information given by

I(A) = − log(pA). (4.93)

The units associated with this measure of information depend on the base of the
logarithm used. If base 2 logs are used, then the unit of information is a “bit”; if
natural logs are used, the unit of information is the “nat.”

Note that with this definition, an event that is sure to happen (pA = 1) provides
I(A) = 0 bits of information. This makes sense since if we know the event must
happen, observing that it does happen provides us with no information.
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Next, suppose we conduct some experiment that has a finite number of out-
comes. The random variable X will be used to map these outcomes into the set of
integers, 0, 1, 2, . . . , n−1. How much information do we obtain when we observe
the outcome of the experiment? Since information is a function of the probability
of each outcome, the amount of information is random and depends on which
outcome occurs. We can, however, talk about the average information associated
with the observation of the experiment.

DEFINITION 4.12: Suppose a discrete random variable X takes on the values
0, 1, 2, . . . , n − 1 with probabilities p0, p1, . . . , pn−1. The average information or (Shan-
non) entropy associated with observing a realization of X is

H(X) =
n−1∑
k=1

Pr(X = k)I(X = k) =
n−1∑
k=1

pk log
(

1
pk

)
. (4.94)

Entropy provides a numerical measure of how much randomness or uncertainty
there is in a random variable. In the context of a digital communication system, the
random variable might represent the output of a data source. For example, suppose
a binary source outputs the letters X = 0 and X = 1 with probabilities p and 1 − p,
respectively. The entropy associated with each letter the source outputs is

H(X) = p log
(

1
p

)
+ (1 − p) log

(
1

1 − p

)
= H(p). (4.95)

The function H(p) is known as the binary entropy function and is plotted in
Figure 4.10. Note that this function has a maximum value of 1 bit when p = 1/2.
Consequently, to maximize the information content of a binary source, the source
symbols should be equally likely.

Next, suppose a digital source described by a discrete random variable X peri-
odically outputs symbols. Then the information rate of the source is given by H(X)
bits/source symbol. Furthermore, suppose we wish to represent the source sym-
bols with binary code words such that the resulting binary representation of the
source outputs uses r bits/symbol. A fundamental result of source coding, which
we will not attempt to prove here, is that if we desire the source code to be lossless
(that is, we can always recover the original source symbols from their binary rep-
resentation), then the source code rate must satisfy r ≥ H(X). In other words, the
entropy of a source provides a lower bound on the average number of bits needed
to represent each source output.

EXAMPLE 4.32: Consider a source that outputs symbols from a four-
letter alphabet. That is, suppose X ∈ {a, b, c, d}. Let pa = 1/2, pb = 1/4,
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Figure 4.10 The binary entropy function.

and pc = pd = 1/8 be the probability of each of the four source symbols.
Given this source distribution, the source has an entropy of

H(X) = 1
2 log(2) + 1

4 log(4) + 2 ∗ 1
8 log(8) = 1. 75 bits/source symbol.

Table 4.2 shows several different possible binary representations of this
source. This first code is the simplest and most obvious representation.
Since there are four letters, we can always assign a unique 2-bit code
word to represent each source letter. This results in a code rate of r1 = 2
bits/symbol, which is indeed greater than the entropy of the source. The
second code uses variable length code words. The average code word
length is

r2 = 1
2 ∗ 1 + 1

4 ∗ 2 + 1
4 ∗ 3 = 1. 75 bits/symbol.

Table 4.2 Three Possible Codes for a Four-Letter Source

Source letters

a b c d

Code 1 00 01 10 11
Code 2 0 10 110 111
Code 3 0 1 10 01



138 Chapter 4 Operations on a Single Random Variable

Hence, this code produces the most efficient representation of any loss-
less source coded since the code rate is equal to the source entropy. Note
that Code 3 from Table 4.2 produces a code rate of

r3 = 3
4 ∗ 1 + 1

4 ∗ 2 = 1. 25 bits/symbol,

which is lower than the entropy, but this code is not lossless. This can
easily be seen by noting that the source sequences “d” and “a, b” both
lead to the same encoded sequence “01.”

Exercises
4.1 Calculate the mean value, second moment, and variance of each of the

following random variables:

(a) binomial, PX(k) =
(

n
k

)
pk(1 − p)n−k, k = 0, 1, 2, . . . , n;

(b) Poisson, PX(k) = αk

k! e−α , k = 0, 1, 2, . . . ;

(c) Laplace, fX(x) = 1
2b

exp
(

−|x|
b

)
;

(d) gamma, fX(x) =
(x/b)c−1 exp

(
−x

b

)

b�(c)
u(x).

4.2 Imagine that you are trapped in a circular room with three doors symmet-
rically placed around the perimeter. You are told by a mysterious voice
that one door leads to the outside after a two-hour trip through a maze.
However, the other two doors lead to mazes that terminate back in the
room after a two-hour trip, at which time you are unable to tell through
which door you exited or entered. What is the average time for escape
to the outside? Can you guess the answer ahead of time? If not, can you
provide a physical explanation for the answer you calculate?

4.3 A communication system sends data in the form of packets of fixed length.
Noise in the communication channel may cause a packet to be received
incorrectly. If this happens, then the packet is retransmitted. Let the prob-
ability that a packet is received incorrectly be q. Determine the average
number of transmissions that are necessary before a packet is received
correctly.
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4.4 In Exercise 4.3 let the transmission time be Tt seconds for a packet. If
the packet was received incorrectly, then a message is sent back to the
transmitter that states that the message was received incorrectly. Let the
time for sending such a message be Ti. Assume that if the packet is received
correctly, we do not send an acknowledgment. What is the average time
for a successful transmission?

4.5 For a Gaussian random variable, derive expressions for the coefficient of
skewness and the coefficient of kurtosis in terms of the mean and variance,
µ and σ 2.

4.6 Prove that all odd central moments of a Gaussian random variable are
equal to zero. Furthermore, develop an expression for all even central
moments of a Gaussian random variable.

4.7 Show that the variance of a Cauchy random variable is undefined (infinite).

4.8 Let cn be the nth central moment of a random variable and µn be its nth
moment. Find a relationship between cn and µk, k = 0, 1, 2, . . . , n.

4.9 Let X be a random variable with E[X] = 1 and var(X) = 4. Find the
following:

(a) E[2X − 4],
(b) E[X]2,

(c) E[(2X − 4)2].

4.10 Suppose X is a Gaussian random variable with a mean of µ and a variance
of σ 2 (i.e., X ∼ N(µ, σ 2)). Find an expression for E[|X|].

4.11 A random variable X has a uniform distribution over the interval
(−a/2, a/2) for some positive constant a.

(a) Find the coefficient of skewness for X.

(b) Find the coefficient of kurtosis for X.

(c) Compare the results of (a) and (b) with the same quantities for a
standard normal random variable.

4.12 Suppose a random variable X has a PDF which is nonzero on only the
interval [0, ∞). That is, the random variable cannot take on negative values.
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Prove that

E[X] =
∫ ∞

0
[1 − FX(x)] dx.

4.13 Show that the concept of total probability can be extended to expected
values. That is, if {Ai}, i = 1, 2, 3, . . . , n is a set of mutually exclusive and
exhaustive events, then

E[X] =
n∑

k=1

E[X|Ak] Pr(Ak).

4.14 Prove Jensen’s Inequality, which states that for any convex function g(x) and
any random variable X,

E[g(X)] ≥ g(E[X]).

4.15 Suppose � is a random variable uniformly distributed over the interval
[0, 2π ).

(a) Find the PDF of Y = sin(�).

(b) Find the PDF of Z = cos(�).

(c) Find the PDF of W = tan(�).

4.16 Suppose X is uniformly distributed over (−a, a), where a is some positive
constant. Find the PDF of Y = X2.

4.17 Suppose X is a random variable with an exponential PDF of the form
fX(x) = 2e−2xu(x). A new random variable is created according to the
transformation Y = 1 − X.

(a) Find the range for X and Y.

(b) Find fY(y).

4.18 Let X be a standard normal random variable (i.e., X ∼ N(0, 1)). Find the
PDF of Y = |X|.

4.19 Repeat Exercise 4.18 if the transformation is

Y =
{

X X > 0,

0 X ≤ 0.
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4.20 Suppose a random variable, X, has a Gaussian PDF with zero mean and
variance σ 2

X . The random variable is transformed by the device whose
input/output relationship is shown in the accompanying figure. Find and
sketch the PDF of the transformed random variable, Y.

1−1

2

−2

x

y = g(x)

4.21 Let X be a Gaussian random variable with zero mean and arbitrary
variance, σ 2. Given the transformation Y = X3, find fY(y).

4.22 A real number between 0 and 100 is randomly selected according to a
uniform distribution and rounded off to the nearest integer. For example,
36.5001 is rounded off to 37;

√
3 is rounded off to 2; and 69.49 is rounded

off to 69. Define a random variable to be X = (number selected) − (nearest
integer).

(a) What is the range of this random variable?
(b) Determine the PDF for X.
(c) Determine the mean square value of X.

4.23 A Gaussian random variable with zero mean and variance σ 2
X is applied

to a device that has only two possible outputs, 0 or 1. The output 0 occurs
when the input is negative, and the output 1 occurs when the input is 0 or
positive.

(a) What is the probability mass function of the output?
(b) Rework the problem when µX = 1/2 and σ 2

X = 1.

4.24 Let X be a Cauchy random variable whose PDF is given by

fX(x) = b/π

b2 + x2 .

Find the PDF of Y = 1/X.
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4.25 Let X be a chi-square random variable with a PDF given by

fX(x) = xc−1 exp(−x/2)u(x)
2c�(c)

,

where c = n/2 for any positive integer n. Find the PDF of Y = √
X.

4.26 Suppose a random variable has some PDF given by fX(x). Find a function
g(x) such that Y = g(X) is a uniform random variable over the interval
(0, 1). Next, suppose that X is a uniform random variable. Find a function
g(x) such that Y = g(X) has some specified PDF, fY(y).

4.27 Suppose X is uniformly distributed over (0, 1). Using the results of the
previous problem, find transformations Y = g(X) to produce random
variables with the following distributions:

(a) exponential,

(b) Rayleigh,

(c) Cauchy,

(d) geometric,

(e) Poisson.

4.28 A random variable X has a characteristic function, φX(ω). Write the char-
acteristic function of Y = aX + b in terms of φX(ω) and the constants a
and b.

4.29 Prove that the characteristic function of any random variable must satisfy
the following properties.

(a) φ∗
X(ω) = φX(−ω).

(b) φX(0) = 1.

(c) For real ω, |φX(ω)| ≤ 1.

(d) If the PDF is symmetric about the origin (i.e, an even function), then
φX(ω) is real.

(e) φX(ω) cannot be purely imaginary.

4.30 Suppose X is an integer-valued random variable. Show that in this case,
φX(2πn) = 1 for any integer, n. Likewise, prove the reverse is also true.
That is, show that if φX(2πn) = 1 for any integer, n, the random variable
X must be integer-valued.
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4.31 For a Laplace random variable whose PDF is given by fX(x) =
1
2b

exp
(

−|x|
b

)
, find the following:

(a) the characteristic function, φX(ω),

(b) the Taylor series expansion of φX(ω),

(c) a general expression for the kth moment of X.

4.32 Derive a formula expressing the variance of a random variable in terms of
its factorial moments.

4.33 Derive a relationship between the kth factorial moment for a nonnegative,
integer-valued random variable and the coefficients of the Taylor series
expansion of its probability generating function, HX(z), about the point
z = 1.

4.34 Use the characteristic function (or the moment generating function or the
probability generating function) to show that a Poisson PMF is the limit
of a binomial PMF with n approaching infinity and p approaching zero in
such a way that np = µ = constant.

4.35 For a Poisson random variable whose PMF is given by PX(k) = αk

k! e−α ,

k = 0, 1, 2, . . ., find the following:

(a) the probability generating function, HX(z),

(b) the Taylor series expansion of HX(z) about the point z = 1,

(c) a general expression for the kth factorial moment.

4.36 A certain random variable has a probability generating function given by

HX(z) = 1
n

1 − zn

1 − z
.

Find the PMF for this random variable.

4.37 Derive an expression for the moment generating function of a Rayleigh
random variable whose PDF is

fX(x) = x exp

(
−x2

2

)
u(x).
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4.38 Suppose X is a Rician random variable with a PDF given by

fX(x) = x exp

(
−x2 + a2

2

)
Io(ax)u(x).

Derive an expression for E
[
euX2

]
. Note that this is not quite the moment

generating function, but it can be used in a similar way.

4.39 Prove that for a random variable X with mean µX ,

Pr(|X − µX| > ε) <
E [|X − µX|n]

εn .

where n is any positive integer.

4.40 Suppose we are interested in finding the left tail probability for a random
variable, X. That is, we want to find Pr(X ≤ xo). Re-derive an expression
for the Chernoff bound for the left tail probability.

4.41 Suppose X is a Poisson random variable with PMF, PX(k) = αk

k! exp(−α),

k = 0, 1, 2, . . . . Find the Chernoff bound for the tail probability, Pr(X ≥ no).

4.42 Suppose X is a gamma random variable with PDF, fX(x) =
(x/b)c−1 exp(−x/b)

b�(c)
u(x). Find the Chernoff bound for the tail probability,

Pr(X > xo).

4.43 Let X be a Erlang random variable with PDF, fX(x) = xn−1e−xu(x)
(n − 1)! .

Derive a saddle point approximation for the left tail probability, Pr(X < xo).
Compare your result with the exact value for 0 ≤ x0 < E[X].

4.44 In Exercise 4.38, an expression was derived for E[euX2 ] for a Rician random
variable. Use this function to obtain a saddle point approximation for the
tail probability of a Rician random variable, Pr(X ≥ xo).
Hint: For one-sided random variables, Pr(X ≥ xo) = Pr(X2 ≥ x2

o ).

4.45 Suppose a source sends symbols from a three-letter alphabet with
X ∈ {a, b, c}, and pa = 1/2, pb = 1/4, pc = 1/4 are the source symbol proba-
bilities.

(a) Determine the entropy of this source.
(b) Give a source code that has an average code word length that matches

the entropy.
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MATLAB Exercises
4.46 Let X be a random variable that is uniformly distributed over the interval

(0,100). Form a new random variable Y by rounding X to the nearest inte-
ger. In MATLAB code, this could be represented by Y=round(X). Finally,
form the random roundoff error according to Z = X − Y.

(a) Using analytical methods, find the PDF of Z as well as the mean squared
value, E[Z2].

(b) Using MATLAB, create a histogram for the probability densities for
the random variable Z. Compare with the PDF found analytically in
part (a).

4.47 Suppose you have a random variable X with PDF, fX(x) = 2x(u(x)−u(x−1))
and that this random variable is transformed as Y = 2−X. Calculate fY(y).
Repeat this problem using MATLAB. Compare the estimate of the PDF
from MATLAB with the analytically determined PDF. Note that for this
problem there is no function in MATLAB that provides a sequence of
data samples that has the PDF specified in this problem for X. Thus, you
must find an appropriate way to transform a uniform random variable to
produce the desired X. The results of Exercise 4.26 will be helpful here.

4.48 Use MATLAB to generate a large number of samples from a Gaussian
distribution with mean µ = 20 and variance σ = 4. Hint: the MATLAB
command sigma*randn(1,N)+mu will create N such numbers with
mean mu and standard deviation sigma. Let x1, x2, . . . , xN represent
the samples you generated. Compute each of the following “mean”
values:

(a) sample mean, µ̂s.m. = 1
N

N∑
k=1

xk;

(b) geometric mean, µ̂g.m. =
(

N∏
k=1

xk

)1/N

;

(c) harmonic mean, µ̂h.m. =
(

1
N

N∑
k=1

1
xk

)−1

;

(d) quadratic mean (root mean square), µ̂s.m. =
√

1
N

N∑
k=1

x2
k .

Which of these “estimates” give a decent estimate of the true mean?
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4.49 Write a MATLAB program to simulate the problem described in
Exercise 4.2. Estimate the average time until escape. Do your MATLAB
results agree with your analytically determined results in Exercise 4.2?

4.50 Copy a segment of text into MATLAB as a string (you choose the source of
the text). Then write a MATLAB program to count the relative frequency
of each character (ignore all characters that do not correspond to one of the
26 letters and do not make a distinction between upper and lower case).
Using the results of your program, calculate the entropy of a source that
outputs the 26 English characters with the probabilities you calculated.

4.51 Suppose a random variable has a PDF given by

fX(x) =




1 + x −1 < x < 0

1 − x 0 ≤ x < 1

0 |x| ≥ 1

.

Following the procedure laid out in Example 4.31, write a MATLAB pro-
gram to design an optimum 4-bit (16-level) quantizer for this random
variable. Compute the SQNR in decibels of the quantizer you designed.
How does this SQNR compare with that obtained in Example 4.31. Can
you explain any differences?



Pairs of Random Variables 5

The previous two chapters dealt with the theory of single random variables.
However, many problems of practical interest require the modeling of random phe-
nomena using two or maybe even more random variables. This chapter extends the
theory of Chapters 3 and 4 to consider pairs of random variables. Chapter 6 then
generalizes these results to include an arbitrary number of random variables. A
common example that involves two random variables is the study of a system with
a random input. Due to the randomness of the input, the output will naturally be
random as well. Quite often it is necessary to characterize the relationship between
the input and the output. A pair of random variables can be used to characterize
this relationship; one for the input and another for the output.

Another class of examples involving random variables is one involving spatial
coordinates in two dimensions. A pair of random variables can be used to proba-
bilistically describe the position of an object that is subject to various random forces.
There are endless examples of situations in which we are interested in two random
quantities that may or may not be related to one another, for example, the height
and weight of a student, the grade point average and GRE scores of a student, or
the temperature and relative humidity at a certain place and time.

To start with, consider an experiment E whose outcomes lie in a sample space, S.
A two-dimensional random variable is a mapping of the points in the sample space
to ordered pairs {x, y}. Usually, when dealing with a pair of random variables, the
sample space naturally partitions itself so that it can be viewed as a combination of
two simpler sample spaces. For example, suppose the experiment was to observe
the height and weight of a typical student. The range of student heights could
fall within some set, which we’ll call sample space S1, while the range of student
weights could fall within the space S2. The overall sample space of the experiment
could then be viewed as S = S1 × S2. For any outcome s ∈ S of this experiment, the
pair of random variables (X, Y) is merely a mapping of the outcome s to a pair of
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numerical values (x(s), y(s)). In the case of our height/weight experiment, it would
be natural to choose x(s) to be the height of the student (in inches perhaps) while
y(s) is the weight of the student (in pounds). Note that it is probably not sufficient to
consider two separate experiments, one in which the student’s height is measured
and assigned to the random variable X and another in which a student’s weight is
measured and assigned to the random variable Y.

While the density functions fX(x) and fY(y) do partially characterize the experi-
ment, they do not completely describe the situation. It would be natural to expect
that the height and weight are somehow related to each other. While it may not be
rare to have a student 74 inches tall, nor unusual to have a student weighing nearly
120 pounds, it is probably rare indeed to have a student who is both 74 inches tall
and weighs 120 pounds. A careful reading of the wording in the previous sentence
makes it clear that in order to characterize the relationship between a pair of random
variables, it is necessary to look at the joint probabilities of events relating to both
random variables. We accomplish this through the joint cumulative distribution
function and the joint probability density function in the next two sections.

5.1 Joint Cumulative Distribution
Functions

When introducing the idea of random variables in Chapter 3, we started with the
notion of a cumulative distribution function. In the same way, to probabilistically
describe a pair of random variables, {X, Y}, we start with the notion of a joint
cumulative distribution function.

DEFINITION 5.1: The joint cumulative distribution function of a pair of random
variables, {X, Y}, is FX,Y(x, y) = Pr(X ≤ x, Y ≤ y). That is, the joint CDF is the joint
probability of the two events {X ≤ x} and {Y ≤ y}.

As with the CDF of a single random variable, not any function can be a joint
CDF. The joint CDF of a pair of random variables will satisfy properties similar
to those satisfied by the CDFs of single random variables. First of all, since the
joint CDF is a probability, it must take on a value between 0 and 1. Also, since the
random variables X and Y are real-valued, it is impossible for either to take on a
value less than −∞ and both must be less than ∞. Hence, FX,Y(x, y) evaluated at
either x = −∞ or y = −∞ (or both) must be zero and FX,Y(∞, ∞) must be one.
Next, for x1 ≤ x2 and y1 ≤ y2, {X ≤ x1} ∩ {Y ≤ y1} is a subset of {X ≤ x2} ∩ {Y ≤ y2}
so that FX,Y(x1, y1) ≤ FX,Y(x2, y2). That is, the CDF is a monotonic, nondecreasing



5.1 Joint Cumulative Distribution Functions 149

function of both x and y. Note that since the event X ≤ ∞ must happen, then
{X ≤ ∞} ∩ {Y ≤ y} = {Y ≤ y} so that FX,Y(∞, y) = FY(y). Likewise, FX,Y(x, ∞) =
FX(x). In the context of joint CDFs, FX(x) and FY(y) are referred to as the marginal
CDFs of X and Y, respectively.

Finally, consider using a joint CDF to evaluate the probability that the pair
of random variables (X, Y) falls into a rectangular region bounded by the points
(x1, y1), (x2, y1), (x1, y2), and (x2, y2). This calculation is illustrated in Figure 5.1;
the desired rectangular region is the lightly shaded area. Evaluating FX,Y(x2, y2)
gives the probability that the random variable falls anywhere below or to the left
of the point (x2, y2); this includes all of the area in the desired rectangle, but it also
includes everything below and to the left of the desired rectangle. The probability
of the random variable falling to the left of the rectangle can be subtracted off using
FX,Y(x1, y2). Similarly, the region below the rectangle can be subtracted off using
FX,Y(x2, y1); these are the two medium-shaded regions in Figure 5.1. In subtracting
off these two quantities, we have subtracted twice the probability of the pair falling
both below and to the left of the desired rectangle (the dark-shaded region). Hence,
we must add back this probability using FX,Y(x1, y1). All of these properties of joint
CDFs are summarized as follows:

(1) FX,Y(−∞, −∞) = FX,Y(−∞, y) = FX,Y(x, −∞) = 0; (5.1a)

(2) FX,Y(∞, ∞) = 1; (5.1b)

(x1,y2)
(x2,y2)

(x1,y1)
(x2,y1)

Figure 5.1 Illustrating the evaluation of the probability of a pair of random variables falling
in a rectangular region.
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(3) 0 ≤ FX,Y(x, y) ≤ 1; (5.1c)

(4) FX,Y(x, ∞) = FX(x), FX,Y(∞, y) = FY(y); (5.1d)

(5) Pr(x1 < X1 ≤ x2, y1 < Y1 ≤ y2)

= FX,Y(x2, y2) − FX,Y(x1, y2) − FX,Y(x2, y1) + FX,Y(x1, y1) ≥ 0. (5.1e)

With the exception of property (4), all of these properties are analogous to the ones
listed in Equation 3.3 for CDFs of single random variables.

Property (5) tells us how to calculate the probability of the pair of random vari-
ables falling in a rectangular region. Often, we are interested in also calculating
the probability of the pair of random variables falling in a region that is not rect-
angular (e.g., a circle or triangle). This can be done by forming the required region
using many infinitesimal rectangles and then repeatedly applying property (5). In
practice, however, this task is somewhat overwhelming, and hence we do not go
into the details here.

EXAMPLE 5.1: One of the simplest examples (conceptually) of a pair
of random variables is one that is uniformly distributed over the unit
square (i.e., 0 < x < 1, 0 < y < 1). The CDF of such a random variable is

FX,Y(x, y) =






0 x < 0 or y < 0

x 0 ≤ x ≤ 1, y > 1

y x > 1, 0 ≤ y ≤ 1

xy 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

1 x > 1, y > 1

Even this very simple example leads to a rather cumbersome function.
Nevertheless, it is straightforward to verify that this function does
indeed satisfy all the properties of a joint CDF. From this joint CDF,
the marginal CDF of X can be found to be

FX(x) = FX,Y(x, ∞) =






0 x < 0

x 0 ≤ x ≤ 1

1 x > 1

Hence, the marginal CDF of X is also a uniform distribution. The same
statement holds for Y as well.



5.2 Joint Probability Density Functions 151

5.2 Joint Probability Density Functions

As seen in Example 5.1, even the simplest joint random variables can lead to CDFs
that are quite unwieldy. As a result, working with joint CDFs can be difficult. In
order to avoid extensive use of joint CDFs, attention is now turned to the two-
dimensional equivalent of the PDF.

DEFINITION 5.2: The joint probability density function of a pair of random variables
(X, Y) evaluated at the point (x, y) is

fX,Y(x, y) = lim
εx→0, εy→0

Pr(x ≤ X < x + εx, y ≤ Y < y + εy)
εxεy

. (5.2)

Similar to the one-dimensional case, the joint PDF is the probability that the pair
of random variables (X, Y) lies in an infinitesimal region defined by the point (x, y)
normalized by the area of the region.

For a single random variable, the PDF was the derivative of the CDF. By
applying Equation 5.1e to the definition of the joint PDF, a similar relationship
is obtained.

THEOREM 5.1: The joint PDF fX,Y(x, y) can be obtained from the joint CDF
FX,Y(x, y) by taking a partial derivative with respect to each variable. That is

fX,Y(x, y) = ∂2

∂x∂y
FX,Y(x, y). (5.3)

PROOF: Using Equation 5.1e,

Pr(x ≤ X < x + εx, y ≤ Y < y + εy)

= FX,Y(x + εx, y + εy) − FX,Y(x, y + εy) − FX,Y(x + εx, y) + FX,Y(x, y)

= [FX,Y(x + εx, y + εy) − FX,Y(x, y + εy)] − [FX,Y(x + εx, y) − FX,Y(x, y)]. (5.4)

Dividing by εx and taking the limit as εx → 0 results in

lim
εx→0

Pr(x ≤ X < x + εx, y ≤ Y < y + εy)
εx

= lim
εx→0

FX,Y(x + εx, y + εy) − FX,Y(x, y + εy)
εx

− lim
εx→0

FX,Y(x + εx, y) + FX,Y(x, y)
εx

= ∂

∂x
FX,Y(x, y + εy) − ∂

∂x
FX,Y(x, y). (5.5)
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Then dividing by εy and taking the limit as εy → 0 gives the desired result:

fX,Y(x, y) = lim
εx→0, εy→0

Pr(x ≤ X < x + εx, y ≤ Y < y + εy)
εxεy

= lim
εy→0

∂

∂x
FX,Y(x, y + εy) − ∂

∂x
FX,Y(x, y)

εy
= ∂2

∂x∂y
FX,Y(x, y). (5.6)

�

This theorem shows that we can obtain a joint PDF from a joint CDF by differ-
entiating with respect to each variable. The converse of this statement would be
that we could obtain a joint CDF from a joint PDF by integrating with respect to
each variable. Specifically,

FX,Y(x, y) =
∫ y

−∞

∫ x

−∞
fX,Y(u, v) dudv. (5.7)

EXAMPLE 5.2: From the joint CDF given in Example 5.1, it is easily
found (by differentiating the joint CDF with respect to both x and y)
that the joint PDF for a pair of random variables uniformly distributed
over the unit square is

fX,Y(x, y) =
{

1 0 < x < 1, 0 < y < 1
0 otherwise

.

Note how much simpler the joint PDF is to specify than is the joint CDF.

From the definition of the joint PDF in Equation 5.2 as well as the relationships
specified in Equation 5.3 and 5.7, several properties of joint PDFs can be inferred.
These properties are summarized as follows:

(1) fX,Y(x, y) ≥ 0; (5.8a)

(2)
∫ ∞

−∞

∫ ∞

−∞
fX,Y(x, y) dxdy = 1; (5.8b)

(3) FX,Y(x, y) =
∫ y

−∞

∫ x

−∞
fX,Y(u, v) dudv; (5.8c)

(4) fX,Y(x, y) = ∂2

∂x∂y
FX,Y(x, y); (5.8d)x
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(5) fX(x) =
∫ ∞

−∞
fX,Y(x, y) dy, fY(y) =

∫ ∞

−∞
fX,Y(x, y) dx; (5.8e)

(6) Pr(x1 < X1 ≤ x2, y1 < Y1 ≤ y2) =
∫ y2

y1

∫ x2

x1

fX,Y(x, y) dxdy. (5.8f)

Property (1) follows directly from the definition of the joint PDF in Equation
5.2 since both the numerator and denominator there are nonnegative. Prop-
erty (2) results from the relationship in Equation 5.7 together with the fact that
FX,Y(∞, ∞) = 1. This is the normalization integral for joint PDFs. These first two
properties form a set of sufficient conditions for a function of two variables to be
a valid joint PDF. Properties (3) and (4) have already been developed. Property
(5) is obtained by first noting that the marginal CDF of X is FX(x) = FX,Y(x, ∞).
Using Equation 5.7 then results in FX(x) = ∫∞

−∞
∫ x
−∞ fX,Y(u, y) dudy. Differentiating

this expression with respect to x produces the expression in property (5) for the
marginal PDF of x. A similar derivation produces the marginal PDF of y. Hence,
the marginal PDFs are obtained by integrating out the unwanted variable in the
joint PDF. The last property is obtained by combining Equations 5.1e and 5.7.

EXAMPLE 5.3: Suppose a pair of random variables is jointly uniformly
distributed over the unit circle. That is, the joint PDF fX,Y(x, y) is constant
anywhere such that x2 + y2 < 1:

fX,Y(x, y) =
{

c x2 + y2 < 1

0 otherwise
.

The constant c can be determined using the normalization integral for
joint PDFs:

∫∫

x2+y2<1

cdxdy = 1 ⇒ c = 1
π

.

The marginal PDF of X is found by integrating y out of the joint PDF:

fX(x)=
∫ ∞

−∞
fX,Y(x,y)dy =

∫
√

1−x2

−
√

1−x2

1
π

dy = 2
π

√
1−x2, for −1≤x≤1.

By symmetry, the marginal PDF of Y would have the same functional
form:

fY(y) = 2
π

√

1 − y2, for − 1 ≤ x ≤ 1.
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Although X and Y were jointly uniformly distributed, the marginal dis-
tributions are not uniform. Stated another way, suppose we are given
just the marginal PDFs of X and Y as just specified. This information
alone is not enough to determine the joint PDF. One may be able to form
many joint PDFs that produce the same marginal PDFs. For example,
suppose we form

fX,Y(x, y) =





4
π2

√

(1 − x2)(1 − y2) −1 ≤ x ≤ 1, −1 ≤ y ≤ 1

0 otherwise
.

It is easy to verify that this is a valid joint PDF and leads to the same
marginal PDFs. Yet, this is clearly a completely different joint PDF than
the uniform distribution with which we started. This reemphasizes the
need to specify the joint distributions of random variables and not just
their marginal distributions.

Property (6) of joint PDFs given in Equation 5.8f specifies how to compute the
probability that a pair of random variables takes on a value in a rectangular region.
Often we are interested in computing the probability that the pair of random vari-
ables falls in a region that is not rectangularly shaped. In general, suppose we wish
to compute Pr((X, Y) ∈ A), where A is the region illustrated in Figure 5.2. This gen-
eral region can be approximated as a union of many nonoverlapping rectangular
regions as shown in the figure. In fact, as we make the rectangles ever smaller, the
approximation improves to the point where the representation becomes exact in
the limit as the rectangles get infinitely small. That is, any region can be represented
as an infinite number of infinitesimal rectangular regions so that A = ∪Ri, where
Ri represents the ith rectangular region. The probability that the random pair falls
in A is then computed as

Pr((X, Y) ∈ A) =
∑

i

Pr((X, Y) ∈ Ri) =
∑

i

∫∫

Ri

fX,Y(x, y) dxdy. (5.9)

The sum of the integrals over the rectangular regions can be replaced by an integral
over the original region A:

Pr((X, Y) ∈ A) =
∫∫

A

fX,Y(x, y) dxdy. (5.10)

This important result shows that the probability of a pair of random variables
falling in some two-dimensional region A is found by integrating the joint PDF of
the two random variables over the region A.
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x

y

Figure 5.2 Approximation of an arbitrary region by a series of infinitesimal rectangles.

EXAMPLE 5.4: Suppose a pair of random variables has the joint PDF
given by

fX,Y(x, y) = 1
2π

exp

(

− (x2 + y2)
2

)

The probability that the point (X, Y) falls inside the unit circle is given by

Pr(X2 + Y2 < 1) =
∫∫

x2+y2<1

1
2π

exp

(

− (x2 + y2)
2

)

dx dy.

Converting this integral to polar coordinates results in

Pr(X2 + Y2 < 1) =
∫ 2π

0

∫ 1

0

r
2π

exp

(

− r2

2

)

dr dθ =
∫ 1

0
r exp

(

− r2

2

)

dr

= −exp

(

− r2

2

) ∣
∣
∣
∣

1

0
= 1 − exp

(

−1
2

)

.
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EXAMPLE 5.5: Now suppose that a pair of random variables has the
joint PDF given by

fX,Y(x, y) = c exp
(
−x − y

2

)
u(x)u(y).

First, the constant c is found using the normalization integral
∫ ∞

0

∫ ∞

0
c exp

(
−x − y

2

)
dxdy = 1 ⇒ c = 1

2
.

Next, suppose we wish to determine the probability of the event
{X > Y}. This can be viewed as finding the probability of the pair (X, Y)
falling in the region A that is now defined as A = {(x, y) : x > y}. This
probability is calculated as

Pr(X > Y) =
∫∫

x>y

fX,Y(x, y) dxdy =
∫ ∞

0

∫ ∞

y

1
2

exp
(
−x − y

2

)
dxdy

=
∫ ∞

0

1
2

exp
(

−3y
2

)

dy = 1
3

.

EXAMPLE 5.6: In many cases, evaluating the probability of a pair
of random variables falling in some region may be quite diffi-
cult to calculate analytically. For example, suppose we modify
Example 5.4 so that the joint PDF is now of the form

fX,Y(x, y) = 1
2π

exp

(

− ((x − 2)2 + (y − 3)2)
2

)

.

Again, we would like to evaluate the probability that the pair (X, Y) falls in
the unit circle. To do this analytically we must evaluate

∫∫

x2+y2<1

1
2π

exp

(

− ((x − 2)2 + (y − 3)2)
2

)

dxdy.

Converting to polar coordinates, the integral becomes

∫ 1

0

∫ 2π

0

r
2π

exp

(

− ((r cos(θ ) − 2)2 + (r sin(θ ) − 3)2)
2

)

dθdr.
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Either way, the double integral looks formidable. We can enlist MATLAB to
help in one of two ways. First, we could randomly generate many samples
of the pair of random variables according to the specified distribution and
count the relative frequency of the number that fall within the unit circle.
Alternatively, we could get MATLAB to calculate one of the preceding double
integrals numerically. We will take the latter approach here and evaluate
the double integral in polar coordinates. First, we must define a MATLAB
function to evaluate the integrand:

function out=dblintegrand(q,r)

out=r.*exp(-((r*cos(q)-2).∧2+(r*sin(q)-3).∧2)/2);

MATLAB will then evaluate the integral by executing the command

dblquad(‘dblintegrand’,0,2*pi,0,1)/(2*pi).

By executing these MATLAB commands, we find the value of the integral to
be 0.002072.

5.3 Joint Probability Mass Functions

When the random variables are discrete rather than continuous, it is often more
convenient to work with probability mass functions rather than PDFs or CDFs. It
is straightforward to extend the concept of the probability mass function to a pair
of random variables.

DEFINITION 5.3: The joint probability mass function for a pair of discrete random
variables X and Y is given by PX,Y(x, y) = Pr({X = x} ∩ {Y = y}).

In particular, suppose the random variable X takes on values from the
set {x1, x2, . . . , xM} and the random variable Y takes on values from the set
{y1, y2, . . . , yN}. Here, either M and/or N could be potentially infinite, or both could
be finite. Several properties of the joint probability mass function analogous to those
developed for joint PDFs should be apparent.

(1) 0 ≤ PX,Y(xm, yn) ≤ 1; (5.11a)

(2)
M∑

m=1

N∑

n=1

PX,Y(xm, yn) = 1; (5.11b)
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(3)
N∑

n=1

PX,Y(xm, yn) = PX(xm),
M∑

m=1

PX,Y(xm, yn) = PY(yn); (5.11c)

(4) Pr((X, Y) ∈ A) =
∑

(x,y)

∑

∈ A

PX,Y(x, y). (5.11d)

Furthermore, the joint PDF or the joint CDF of a pair of discrete random vari-
ables can be related to the joint PMF through the use of delta functions or step
functions by

fX,Y(x, y) =
M∑

m=1

N∑

n=1

PX,Y(xm, yn)δ(x − xm)δ(y − ym), (5.12)

FX,Y(x, y) =
M∑

m=1

N∑

n=1

PX,Y(xm, yn)u(x − xm)u(y − ym). (5.13)

Usually, it is most convenient to work with PMFs when the random variables are
discrete. However, if the random variables are mixed (i.e., one is discrete and one
is continuous), then it becomes necessary to work with PDFs or CDFs since the
PMF will not be meaningful for the continuous random variable.

EXAMPLE 5.7: A pair of discrete random variables N and M have a
joint PMF given by

PN,M(n,m)= (n+m)!
n!m!

anbm

(a + b + 1)n+m+1 , m=0,1,2,3, . . . , n=0,1,2,3, . . . .

The marginal PMF of N can be found by summing over m in the
joint PMF:

PN(n) =
∞∑

m=0

PN,M(n, m) =
∞∑

m=0

(n + m)!
n!m!

anbm

(a + b + 1)n+m+1 .

To evaluate this series, the following identity is used:

∞∑

m=0

(n + m)!
n!m! xm =

(
1

1 − x

)n+1

.
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The marginal PMF then reduces to

PN(n) = an

(a + b + 1)n+1

∞∑

m=0

(n + m)!
n!m!

bm

(a + b + 1)m

= an

(a + b + 1)n+1







1

1 − b
a + b + 1







n+1

= an

(1 + a)n+1 .

Likewise, by symmetry, the marginal PMF of M is

PM(m) = bm

(1 + b)m+1 .

Hence, the random variables M and N both follow a geometric
distribution.

5.4 Conditional Distribution, Density,
and Mass Functions

The notion of conditional distribution functions and conditional density functions
was first introduced in Chapter 3. In this section, those ideas are extended to the case
where the conditioning event is related to another random variable. For example,
we might want to know the distribution of a random variable representing the
score a student achieves on a test given the value of another random variable
representing the number of hours the student studied for the test. Or, perhaps we
want to know the probability density function of the outside temperature given
that the humidity is known to be below 50 percent.

To start with, consider a pair of discrete random variables X and Y with a PMF,
PX,Y(x, y). Suppose we would like to know the PMF of the random variable X
given that the value of Y has been observed. Then, according to the definition of
conditional probability:

Pr(X = x|Y = y) = Pr(X = x, Y = y)
Pr(Y = y)

= PX,Y(x, y)
PY(y)

. (5.14)

We refer to this as the conditional PMF of X given Y. By way of notation we write
PX|Y(x|y) = PX,Y(x, y)/PY(y).
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EXAMPLE 5.8: Using the joint PMF given in Example 5.7, along with
the marginal PMF found in that example, it is found that

PN|M(n|m) = PM,N(m, n)
PM(m)

= (n + m)!
n!m!

anbm

(a + b + 1)n+m+1
(1 + b)m+1

bm

= (n + m)!
n!m!

an(1 + b)m+1

(a + b + 1)n+m+1 .

Note that the conditional PMF of N given M is quite different than
the marginal PMF of N. That is, knowing M changes the distribu-
tion of N.

The simple result developed in Equation 5.14 can be extended to the case of
continuous random variables and PDFs. The following theorem shows that the
PMFs in Equation 5.14 can simply be replaced by PDFs.

THEOREM 5.2: The conditional PDF of a random variable X given that Y = y is

fX|Y(x|y) = fX,Y(x, y)
fY(y)

. (5.15)

PROOF: Consider the conditioning event A = y ≤ Y < y + dy. Then

fX|A(x) dx = Pr(x ≤ X < x + dx|y ≤ Y < y + dy)

= Pr(x ≤ X < x + dx, y ≤ Y < y + dy)
Pr(y ≤ Y < y + dy)

= fX,Y(x, y) dxdy
fY(y) dy

= fX,Y(x, y) dx
fY(y)

.

Passing to the limit as dy → 0, the event A becomes the event {Y = y}, producing
the desired result. �

Integrating both sides of this equation with respect to x produces the appropriate
result for CDFs:

FX|Y(x|y) =
∫ x
−∞ fX,Y(x′, y) dx′

fY(y)
. (5.16)

Usually, the conditional PDF is much easier to work with, so the conditional CDF
will not be discussed further.
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EXAMPLE 5.9: A certain pair of random variables has a joint PDF
given by

fX,Y(x, y) = 2abc
(ax + by + c)3 u(x)u(y)

for some positive constants a, b, and c. The marginal PDFs are easily
found to be

fX(x) =
∫ ∞

0
fX,Y(x, y) dy = ac

(ax + c)2 u(x)

and

fY(y) =
∫ ∞

0
fX,Y(x, y) dx = bc

(by + c)2 u(y).

The conditional PDF of X given Y then works out to be

fX|Y(x|y) = fX,Y(x, y)
fY(y)

= 2a(by + c)2

(ax + by + c)3 u(x).

The conditional PDF of Y given X could also be determined in a
similar way:

fY|X(y|x) = fX,Y(x, y)
fX(x)

= 2b(ax + c)2

(ax + by + c)3 u(y).

EXAMPLE 5.10: This example involves two Gaussian random vari-
ables. Suppose X and Y have a joint PDF given by

fX,Y(x, y) = 1

π
√

3
exp

(

−2
3

(x2 − xy + y2)
)

.

The marginal PDF is found as follows:

fX(x) =
∫ ∞

−∞
fX,Y(x, y) dy = 1

π
√

3
exp

(

−2
3

x2
)∫ ∞

−∞
exp

(

−2
3

(y2 − xy)
)

dy.

In order to evaluate the integral, complete the square in the exponent:

fX(x) = 1

π
√

3
exp

(

−2
3

x2
)

exp

(
x2

6

)∫ ∞

−∞
exp

(

−2
3

(

y2 − xy + x2

4

))

dy

= 1

π
√

3
exp

(

−x2

2

)∫ ∞

−∞
exp

(

−2
3

(
y − x

2

)2
)

dy.
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Now the integrand is a Gaussian-looking function. If the appropriate
constant is added to the integrand, the integrand will be a valid PDF
and, hence, must integrate out to one. In this case, the constant we need
to add to the integrand to make the integral unity is

√
2/(3π ). Stated

another way, the integral as just written must evaluate to
√

3π/2. Hence,
the marginal PDF of X is

fX(x) = 1√
2π

exp

(

−x2

2

)

,

and we see that X is a zero-mean, unit-variance, Gaussian (i.e., standard
normal) random variable. By symmetry, the marginal PDF of Y must
also be of the same form. The conditional PDF of X given Y is

fX|Y(x|y)= fX,Y(x,y)
fY(y)

=
1

π
√

3
exp

(

−2
3

(x2−xy+y2)
)

1√
2π

exp

(

−y2

2

)

=
√

2
3π

exp

(

−2
3

(

x2−xy+ y2

4

))

=
√

2
3π

exp
(

−2
3

(
x− y

2

)2
)

.

So, the conditional PDF of X given Y is also Gaussian. But, given that it
is known that Y = y, the mean of X is now y/2 (instead of zero), and
the variance of X is 3/4 (instead of one). In this example, knowledge of
Y has shifted the mean and reduced the variance of X.

In addition to conditioning on a random variable taking on a point value such
as Y = y, the conditioning can also occur on an interval of the form y1 ≤ Y ≤ y2. To
simplify notation, let the conditioning event A be A = {y1 ≤ Y ≤ y2}. The relevant
conditional PMF, PDF, and CDF are then given respectively by:

PX|A(x) =
∑y2

y=y1 PX,Y(x, y)
∑y2

y=y1 PY(y)
; (5.17)

fX|A(x) =
∫ y2

y1
fX,Y(x, y) dy

∫ y2
y1

fY(y) dy
; (5.18)

FX|A(x) = FX,Y(x, y2) − FX,Y(x, y1)
FY(y2) − FY(y1)

. (5.19)

It is left as an exercise for the reader to derive these expressions.
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EXAMPLE 5.11: Using the joint PDF of Example 5.10, suppose we want
to determine the conditional PDF of X given that Y > yo. The numerator
in Equation 5.18 is calculated according to
∫ ∞

yo

fX|Y(x|y) dy =
∫ ∞

yo

1

π
√

3
exp

(

−2
3

(x2 − xy + y2)
)

dy

= 1√
2π

exp

(

−x2

2

)∫ ∞

yo

√
2

3π
exp

(

−2
3

(
y − x

2

)2
)

dy

= 1√
2π

exp

(

−x2

2

)

Q
(

2yo − x√
3

)

Since the marginal PDF of Y is a zero-mean, unit-variance Gaussian
PDF, the denominator of Equation 5.18 becomes

∫ ∞

yo

fY(y) dy =
∫ ∞

yo

1√
2π

exp

(

−y2

2

)

dy = Q(yo).

Therefore, the PDF of X conditioned on Y > yo is

fX|Y>yo (x) = 1√
2π

exp

(

−x2

2

) Q
(

2yo − x√
3

)

Q(yo)
.

Note that when the conditioning event was a point condition on Y, the
conditional PDF of X was Gaussian; yet, when the conditioning event
is an interval condition on Y, the resulting conditional PDF of X is not
Gaussian at all.

5.5 Expected Values Involving Pairs
of Random Variables

The notion of expected value is easily generalized to pairs of random variables.
To begin, we define the expected value of an arbitrary function of two random
variables.
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DEFINITION 5.4: Let g(x, y) be an arbitrary two-dimensional function. The
expected value of g(X, Y), where X and Y are random variables, is

E[g(X, Y)] =
∞∫∫

−∞
g(x, y)fX,Y(x, y) dxdy. (5.20)

For discrete random variables, the equivalent expression in terms of the joint PMF is

E[g(X, Y)] =
∑

m

∑

n

g(xm, yn)PX,Y(xm, yn). (5.21)

If the function g(x, y) is actually a function of only a single variable, say x, then
this definition reduces to the definition of expected values for functions of a single
random variable as given in Definition 4.2.

E[g(X)]=
∞∫∫

−∞
g(x)fX,Y(x,y)dxdy =

∫ ∞

−∞
g(x)

[∫ ∞

−∞
fX,Y(x,y)dy

]

dx=
∫ ∞

−∞
g(x)fX(x)dx.

(5.22)

To start with, consider an arbitrary linear function of the two variables g(x, y) =
ax + by, where a and b are constants. Then

E[aX + bY] =
∞∫∫

−∞
[ax + by]fX,Y(x, y) dxdy

= a

∞∫∫

−∞
xfX,Y(x, y) dxdy + b

∞∫∫

−∞
yfX,Y(x, y) dxdy

= aE[X] + bE[Y]. (5.23)

This result merely states that expectation is a linear operation.
In addition to the functions considered in Chapter 4 that led to such statistics

as means, variances, and the like, functions involving both variables x and y will
be considered here. These new functions will lead to statistics that will partially
characterize the relationships between the two random variables.

DEFINITION 5.5: The correlation between two random variables is defined as

RX,Y = E[XY] =
∞∫∫

−∞
xyfX,Y(x, y) dxdy. (5.24)

Furthermore, two random variables that have a correlation of zero are said to be
orthogonal.
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One instance in which the correlation appears is in calculating the second
moment of a sum of two random variables. That is, consider finding the expected
value of g(X, Y) = (X + Y)2:

E[(X + Y)2] = E[X2 + 2XY + Y2] = E[X2] + E[Y2] + 2E[XY]. (5.25)

Hence, the second moment of the sum is the sum of the second moment plus twice
the correlation.

DEFINITION 5.6: The covariance between two random variables is

Cov(X, Y) = E[(X − µX)(Y − µY)] =
∞∫∫

−∞
(x − µX)(y − µY)fX,Y(x, y) dxdy. (5.26)

If two random variables have a covariance of zero, they are said to be uncorrelated.

The correlation and covariance are strongly related to one another as shown by the
following theorem.

THEOREM 5.3: Cov(X, Y) = RX,Y − µXµY . (5.27)

PROOF: Cov(X, Y) = E[(X − µX)(Y − µy)] = E[XY − µXY − µYX + µXµY]
= E[XY] − µXE[Y] − µYE[X] + µXµY = E[XY] − µXµY .

�
As a result, if either X or Y (or both) has a mean of zero, correlation and covariance
are equivalent. The covariance function occurs when calculating the variance of
a sum of two random variables:

Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y). (5.28)

This result can be obtained from Equation 5.25 by replacing X with X − µX and Y
with Y − µY .

Another statistical parameter related to a pair of random variables is the
correlation coefficient, which is nothing more than a normalized version of the
covariance.

DEFINITION 5.7: The correlation coefficient of two random variables X and Y, ρXY ,
is defined as

ρXY = Cov(X, Y)
√

Var(X)Var(Y)
= E[(X − µX)(Y − µY)]

σXσY
. (5.29)

The next theorem quantifies the nature of the normalization. In particular, it shows
that a correlation coefficient can never be more than 1 in absolute value.
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THEOREM 5.4: The correlation coefficient is less than 1 in magnitude.

PROOF: Consider taking the second moment of X+aY, where a is a real constant:

E[(X + aY)2] = E[X2] + 2aE[XY] + a2E[Y2] ≥ 0.

Since this is true for any a, we can tighten the bound by choosing the value of a that
minimizes the left-hand side. This value of a turns out to be

a = −E[XY]
E[Y2] .

Plugging in this value gives

E[X2] + (E[XY])2

E[Y2] − 2(E[XY])2

E[Y2] ≥ 0

⇒ (E[XY])2 ≤ E[X2]E[Y2].
If we replace X with X − µX and Y with Y − µY , the result is

(Cov(X, Y))2 ≤ Var(X)Var(Y).

Rearranging terms then gives the desired result:

|ρXY | =
∣
∣
∣
∣
∣

Cov(X, Y)
√

Var(X)Var(Y)

∣
∣
∣
∣
∣
≤ 1. (5.30)

�
Note that we can also infer from the proof that equality holds if Y is a constant
times X. That is, a correlation coefficient of 1 (or −1) implies that X and Y are com-
pletely correlated (knowing Y determines X). Furthermore, uncorrelated random
variables will have a correlation coefficient of zero. Hence, as its name implies,
the correlation coefficient is a quantitative measure of the correlation between two
random variables. It should be emphasized at this point that zero correlation is not
to be confused with independence. These two concepts are not the same (more on
this later).

The significance of the correlation, covariance, and correlation coefficient will
be discussed further in the next two sections. For now, we present an example
showing how to compute these parameters.

EXAMPLE 5.12: Consider once again the joint PDF of Example 5.10.
The correlation for these random variables is

E[XY] =
∫ ∞

−∞

∫ ∞

−∞
xy

π
√

3
exp

(

−2
3

(x2 − xy + y2)
)

dydx.
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In order to evaluate this integral, the joint PDF is rewritten as fX,Y(x, y) =
fY|X(y|x)fX(x) and those terms involving only x are pulled outside the
inner integral over y:

E[XY] =
∫ ∞

−∞
x√
2π

exp

(

−x2

2

)[∫ ∞

−∞
y

√
2

3π
exp

(

−2
3

(
y − x

2

)2
)

dy

]

dx.

The inner integral (in square brackets) is the expected value of a
Gaussian random variable with a mean of x/2 and a variance of 3/4
which thus evaluates to x/2. Hence,

E[XY] = 1
2

∫ ∞

−∞
x2

√
2π

exp

(

−x2

2

)

dx.

The remaining integral is the second moment of a Gaussian random
variable with zero-mean and unit variance, which thus integrates to 1.
The correlation of these two random variables is therefore E[XY] = 1/2.
Since both X and Y have zero means, Cov(X, Y) is also equal to 1/2.
Finally, the correlation coefficient is also ρXY = 1/2 due to the fact that
both X and Y have unit variance.

The concepts of correlation and covariance can be generalized to higher order
moments as given in the following definition.

DEFINITION 5.8: The (m, n)th joint moment of two random variables X and Y is

E[XmYn] =
∞∫∫

−∞
xmynfX,Y(x, y) dxdy. (5.31)

The (m, n)th joint central moment is similarly defined as

E[(X − µX)m(Y − µY)n] =
∞∫∫

−∞
(x − µX)m(y − µY)nfX,Y(x, y) dxdy (5.32)

These higher order joint moments are not frequently used and therefore are not
considered further here.

As with single random variables, a conditional expected value can also be
defined for which the expectation is carried out with respect to the appropriate
conditional density function.

DEFINITION 5.9: The conditional expected value of a function g(X) of a random
variable X given that Y = y is

E[g(X)|Y] =
∫ ∞

−∞
g(x)fX|Y(x|y) dx. (5.33)
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Conditional expected values can be particularly useful in calculating expected
values of functions of two random variables that can be factored into the prod-
uct of two one-dimensional functions. That is, consider a function of the form
g(x, y) = g1(x)g2(y). Then

E[g1(X)g2(Y)] =
∞∫∫

−∞
g1(x)g2(y)fX,Y(x, y) dxdy. (5.34)

From Equation 5.15, the joint PDF is rewritten as fX,Y(x, y) = fY|X(y|x)fX(x),
resulting in

E[g1(X)g2(Y)] =
∫ ∞

−∞
g1(x)fX(x)

[∫ ∞

−∞
g2(y)fY|X(y|x) dy

]

dx

=
∫ ∞

−∞
g1(x)fX(x)EY[g2(Y)|X] dx = EX[g1(X)EY[g2(Y)|X]]. (5.35)

Here the subscripts on the expectation operator have been included for clarity to
emphasize that the outer expectation is with respect to the random variable X,
while the inner expectation is with respect to the random variable Y (conditioned
on X). This result allows us to break a two-dimensional expectation into two one-
dimensional expectations. This technique was used in Example 5.12, where the
correlation between two variables was essentially written as

RX,Y = EX[XEY[Y|X]]. (5.36)

In that example, the conditional PDF of Y given X was Gaussian, and hence finding
the conditional mean was trivial. The outer expectation then required finding the
second moment of a Gaussian random variable, which is also straightforward.

5.6 Independent Random Variables

The concept of independent events was introduced in Chapter 2. In this section,
we extend this concept to the realm of random variables. To make that extension,
consider the events A = {X ≤ x} and B = {Y ≤ y} related to the random variables X
and Y. The two events A and B are statistically independent if Pr(A, B) = Pr(A)Pr(B).
Restated in terms of the random variables, this condition becomes

Pr(X ≤ x, Y ≤ y) = Pr(X ≤ x)Pr(Y ≤ y) ⇒ FX,Y(x, y) = FX(x)FY(y). (5.37)

Hence, two random variables are statistically independent if their joint CDF factors
into a product of the marginal CDFs. Differentiating both sides of this equation with
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respect to both x and y reveals that the same statement applies to the PDF as well.
That is, for statistically independent random variables, the joint PDF factors into
a product of the marginal PDFs:

fX,Y(x, y) = fX(x)fY(y). (5.38)

It is not difficult to show that the same statement applies to PMFs as well. The
preceding condition can also be restated in terms of conditional PDFs. Dividing
both sides of Equation 5.38 by fX(x) results in

fY|X(y|x) = fY(y). (5.39)

A similar result involving the conditional PDF of X given Y could have been
obtained by dividing both sides by the PDF of Y. In other words, if X and Y are
independent, knowing the value of the random variable X should not change the
distribution of Y and vice versa.

EXAMPLE 5.13: Returning once again to the joint PDF of Example 5.10,
we saw in that example that the marginal PDF of X is

fX(x) = 1√
2π

exp

(

−x2

2

)

,

while the conditional PDF of X given Y is

fX|Y(x|y) =
√

2
3π

exp
(

−2
3

(
x − y

2

)2
)

.

Clearly, these two random variables are not independent.

EXAMPLE 5.14: Suppose the random variables X and Y are uniformly
distributed on the square defined by 0 ≤ x, y ≤ 1. That is

fX,Y(x, y) =
{

1 0 ≤ x, y ≤ 1

0 otherwise
.

The marginal PDFs of X and Y work out to be

fX(x) =
{

1 0 ≤ x ≤ 1

0 otherwise
, fY(y) =

{
1 0 ≤ y ≤ 1

0 otherwise
.

These random variables are statistically independent since fX,Y(x, y) =
fX(x)fY(y).
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THEOREM 5.5: Let X and Y be two independent random variables and consider
forming two new random variables U = g1(X) and V = g2(Y). These new random
variables U and V are also independent.

PROOF: To show that U and V are independent, consider the events A = {U ≤ u}
and B = {V ≤ v}. Next, define the region Ru to be the set of all points x such that
g1(x) ≤ u. Similarly, define Rv to be the set of all points y such that g2(y) ≤ v. Then

Pr(U ≤ u, V ≤ v) = Pr(X ∈ Ru, Y ∈ Rv) =
∫

Rv

∫

Ru

fX,Y(x, y) dxdy.

Since X and Y are independent, their joint PDF can be factored into a product of
marginal PDFs resulting in

Pr(U ≤ u, V ≤ v) =
∫

Ru

fX(x) dx
∫

Rv

fY(y) dy

= Pr(X ∈ Ru) Pr(Y ∈ Rv) = Pr(U ≤ u)Pr(V ≤ v).

Since we have shown that FU,V (u, v) = FU(u)FV (v), the random variables U and V
must be independent. �

Another important result deals with the correlation, covariance, and correlation
coefficients of independent random variables.

THEOREM 5.6: If X and Y are independent random variables, then E[XY] =
µXµY , Cov(X, Y) = 0, and ρX,Y = 0.

PROOF:
E[XY] =

∞∫∫

−∞
xyfX,Y(x, y) dxdy =

∫ ∞

−∞
xfX(x) dx

∫ ∞

−∞
yfY(y) dy = µXµY .

The conditions involving covariance and correlation coefficient follow directly
from this result. �

Therefore, independent random variables are necessarily uncorrelated, but the
converse is not always true. Uncorrelated random variables do not have to be
independent as demonstrated by the next example.

EXAMPLE 5.15: Consider a pair of random variables X and Y that are
uniformly distributed over the unit circle so that

fX,Y(x, y) =





1
π

x2 + y2 ≤ 1

0 otherwise
.
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The marginal PDF of X can be found as follows:

fX(x) =
∫ ∞

−∞
fX,Y(x, y) dy =

∫
√

1−x2

−
√

1−x2

1
π

dy = 2
π

√
1 − x2, −1 ≤ x ≤ 1.

By symmetry, the marginal PDF of Y must take on the same functional
form. Hence, the product of the marginal PDFs is

fX(x)fY(y) = 4
π2

√

(1 − x2)(1 − y2), −1 ≤ x, y ≤ 1.

Clearly, this is not equal to the joint PDF, and hence the two random
variables are dependent. This conclusion could have been determined in
a simpler manner. Note that if we are told that X = 1, then necessarily
Y = 0, whereas if we know that X = 0, then Y can range anywhere
from −1 to 1. Therefore, conditioning on different values of X leads to
different distributions for Y.

Next, the correlation between X and Y is calculated.

E[XY] =
∫∫

x2+y2≤1

xy
π

dx dy = 1
π

∫ 1

−1
x





∫
√

1−x2

−
√

1−x2
y dy



 dx

Since the inner integrand is an odd function (of y) and the limits of inte-
gration are symmetric about zero, the integral is zero. Hence, E[XY] = 0.
Note from the marginal PDFs just found that both X and Y are zero-
mean. So, it is seen for this example that while the two random variables
are uncorrelated, they are not independent.

EXAMPLE 5.16: Suppose we wish to use MATLAB to generate
samples of a pair of random variables (X, Y) that are uniformly
distributed over the unit circle. That is, the joint PDF is

fX,Y(x, y) =





1
π

x2 + y2 < 1

0 otherwise
.

If we generated two random variables independently according to the
MATLAB code X=rand(1); Y=rand(1); this would produce a pair of
random variables uniformly distributed over the square 0 < x < 1, 0 < y < 1.
One way to achieve the desired result is to generate random variables
uniformly over some region that includes the unit circle, and then keep only
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those pairs of samples which fall inside the unit circle. In this case, it is straight-
forward to generate random variables that are uniformly distributed over the
square −1 < x < 1, −1 < y < 1, which circumscribes the unit circle. Then we
keep only those samples drawn from within this square that also fall within
the unit circle. The code that follows illustrates this technique. We also show
how to generate a three-dimensional plot of an estimate of the joint PDF from
the random data generated. To get a decent estimate of the joint PDF, we
need to generate a rather large number of samples (we found that 100,000
worked pretty well). This requires that we create and perform several oper-
ations on some very large vectors. Doing so tends to make the program run
very slowly. In order to speed up the operation of the program, we choose to
create shorter vectors of random variables (1,000 in this case) and then repeat
the procedure several times (100 in this case). Although this makes the code
a little longer and probably a little harder to follow, by avoiding the creation
of very long vectors, it substantially speeds up the program. The results of
this program are shown in Figure 5.3.
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Figure 5.3 Estimate of the joint PDF of a pair of random variables uniformly distributed
over the unit circle from the data generated in Example 5.16.
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clear

N=1000; % Number of samples per

iteration.

bw=0.1; % Bin widths for histogram.

xbins=[-1.4:bw:1.4];

ybins=[-1.4:bw:1.4]; % Histogram bins.

iterations=100; % Number of iterations.

M=length(xbins);

Nsamples=zeros(M); % Initialize matrix for

storing data.

count=0; % Initialize counter.

for ii=1:iterations

x=2*rand(1,N)-1; y=2*rand(1,N)-1; % Generate variables over

square.

% Keep only those within the unit circle.

X=[]; Y=[];

for k=1:N

if x(k)∧2+y(k)∧2<1
X=[X x(k)];

Y=[Y y(k)];

end % End if statement.

end % End k loop.

count=count+length(X); % Count random samples

generated.

% Compute number of samples that fall within each bin.

for m=1:length(xbins)

for n=1:length(ybins)

temp1=(abs(X-xbins(m))<bw/2);

temp2=(abs(Y-ybins(n))<bw/2);

Nsamples(m,n)=Nsamples(m,n)+sum(temp1.*temp2);

end % End n loop.

end % End m loop.

end % End iterations.

PDFest=Nsamples/(count*bw∧2); % Convert to probability

densities.

mesh(xbins,ybins,PDFest) % Plot estimate of joint

PDF.

xlabel(‘x’); ylabel(‘y’); % Label plot axes.

zlabel(‘Joint PDF’);
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5.7 Jointly Gaussian Random Variables

As with single random variables, the most common and important example of a
two-dimensional probability distribution is that of a joint Gaussian distribution.
We begin by defining what is meant by a joint Gaussian distribution.

DEFINITION 5.10: A pair of random variables X and Y are said to be jointly
Gaussian if their joint PDF is of the general form

fX,Y(x,y)= 1

2πσXσY

√

1−ρ2
XY

×exp








−








(
x−µX

σX

)2

−2ρXY

(
x−µX

σX

)(
y−µY

σY

)

+
(

y−µY

σY

)2

2(1−ρ2
XY)















(5.40)

where µX and µY are the means of X and Y, respectively; σX and σY are the standard
deviations of X and Y, respectively; and ρXY is the correlation coefficient of X and Y.

It is left as an exercise for the reader to verify that this joint PDF results in marginal
PDFs that are Gaussian. That is

fX(x) =
∫ ∞

−∞
fX,Y(x, y) dy = 1

√

2πσ 2
X

exp

(

− (x − µX)2

2σ 2
X

)

,

fY(y) =
∫ ∞

−∞
fX,Y(x, y) dx = 1

√

2πσ 2
Y

exp

(

− (y − µY)2

2σ 2
Y

)

.

(5.41)

It is also left as an exercise for the reader (see Exercise 5.15) to demonstrate that if
X and Y are jointly Gaussian, then the conditional PDF of X given Y = y is also
Gaussian, with a mean of µX + ρXY(σX/σY)(y − µY) and a variance of σ 2

X(1 − ρ2
XY).

An example of this was shown in Example 5.10 and the general case can be proven
following the same steps shown in that example.

Figure 5.4 shows the joint Gaussian PDF for three different values of the corre-
lation coefficient. In Figure 5.4(a), the correlation coefficient is ρXY = 0, and hence
the two random variables are uncorrelated (and as we will see shortly, indepen-
dent). Figure 5.4(b) shows the joint PDF when the correlation coefficient is large
and positive, ρXY = 0. 9. Note how the surface has become taller and thinner and
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Figure 5.4 (a) The joint Gaussian PDF: µX = µY = 0, σX = σY = 1, ρXY = 0; (b) the
joint Gaussian PDF: µX = µY = 0, σX = σY = 1, ρXY = 0. 9; (c) the joint Gaussian PDF:
µX = µY = 0, σX = σY = 1, ρXY = −0. 9.
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largely lies above the line y = x. In Figure 5.4(c), the correlation is now large
and negative, ρXY = −0. 9. Note that this is the same image as in Figure 5.4(b),
except that it has been rotated by 90◦. Now the surface lies largely above the line
y = −x. In all three figures, the means of both X and Y are zero and the variances
of both X and Y are 1. Changing the means would simply translate the surface
but would not change the shape. Changing the variances would expand or con-
tract the surface along either the X or Y axis, depending on which variance was
changed.

EXAMPLE 5.17: The joint Gaussian PDF is given by

fX,Y(x, y) = 1

2πσXσY

√

1 − ρ2
XY

exp

(

− 1

2(1 − ρ2
XY)

[(
x − µX

σX

)2

−2ρXY

(
x − µX

σX

)(
y − µY

σY

)

+
(

y − µY

σY

)2
])

.

Suppose we equate the portion of this equation that is within the square
brackets to a constant. That is

(
x − µX

σX

)2

− 2ρXY

(
x − µX

σX

)(
y − µY

σY

)

+
(

y − µY

σY

)2

= c2.

This is the equation for an ellipse. Plotting these ellipses for different values
of c results in what is known as a contour plot. Figure 5.5 shows such plots
for the two-dimensional joint Gaussian PDF. The following code can be used
to generate such plots. The reader is encouraged to try creating similar plots
for different values of the parameters in the Gaussian distribution.

clear

[X,Y]=meshgrid(-8:0.1:8); % Generate x and y array to

% be used for contour plot.

mux=0; muy=0; % Set means.

stdx=3; stdy=3; % Set standard deviations.

varx=stdx∧2; vary=stdy∧2; % Compute variances.

rho=0.5; % Set correlation coefficient.

% Compute exponent of two-dimensional Gaussian PDF.

X1=(X-mux)/stdx;

Y1=(Y-muy)/stdy;

Z=X1.∧2-2*rho*X1.*Y1+Y1.∧2;
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Figure 5.5 Contour plots for Example 5.17.

c=[1/16 1/4 1 2 4]; % Set contour levels.

contour(X,Y,Z,c) % Produce contour plot grid.

% Turn on grid lines.

xlabel(‘x’); ylabel(‘y’) % Label axes.

THEOREM 5.7: Uncorrelated Gaussian random variables are independent.

PROOF: Uncorrelated Gaussian random variables have a correlation coefficient
of zero. Plugging ρXY = 0 into the general joint Gaussian PDF results in

fX,Y(x, y) = 1
2πσXσY

exp








−








(
x − µX

σX

)2

+
(

y − µY

σY

)2

2















.

This clearly factors into the product of the marginal Gaussian PDFs.

fX,Y(x, y) = 1
√

2πσ 2
x

exp

(

− (x − mx)2

2σ 2
x

)
1

√
2πσ 2

y

exp

(

− (y − my)2

2σ 2
y

)

= fX(x)fY(y)

�
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Figure 5.6 Interpretation of the correlation coefficient for jointly Gaussian random
variables.

While Example 5.15 demonstrates that this property does not hold for all random
variables, it is true for Gaussian random variables. This allows us to give a stronger
interpretation to the correlation coefficient when dealing with Gaussian random
variables. Previously it was stated that the correlation coefficient is a quantitative
measure of the amount of correlation between two variables. While this is true, it is
a rather vague statement. After all, what does “correlation” mean? In general, we
cannot equate correlation and statistical dependence. Now, however, we see that
in the case of Gaussian random variables, we can make the connection between
correlation and statistical dependence. Hence, for jointly Gaussian random vari-
ables, the correlation coefficient can indeed be viewed as a quantitative measure
of statistical dependence. This relationship is illustrated in Figure 5.6.

5.8 Joint Characteristic and Related
Functions

When computing the joint moments of random variables, it is often convenient to
use characteristic functions, moment generating functions, or probability generat-
ing functions. Since a pair of random variables is involved, the “frequency domain”
function must now be two-dimensional. We start with a description of the joint
characteristic function, which is similar to a two-dimensional Fourier transform of
the joint PDF.

DEFINITION 5.11: Given a pair of random variables X and Y with a joint PDF,
fXY(x, y), the joint characteristic function is

�X,Y(ω1, ω2) = E
[
e j(ω1X+ω2Y)] =

∞∫∫

−∞
e j(ω1x+ω2y)fX,Y(x, y) dxdy. (5.42)
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The various joint moments can be evaluated from the joint characteristic function
using techniques similar to those used for single random variables. It is left as an
exercise for the reader to establish the following relationship:

E[XmYn] = (−j)m+n ∂m

∂ωm
1

∂n

∂ωn
2
�X,Y(ω1, ω2)

∣
∣
∣
∣
ω1=ω2=0

. (5.43)

EXAMPLE 5.18: Consider a pair of zero-mean, unit-variance, jointly
Gaussian random variables whose joint PDF is

fX,Y(x, y) = 1

2π
√

1 − ρ2
exp

(

− (x2 − 2ρxy + y2)
2(1 − ρ2)

)

.

One way to calculate the joint characteristic function is to break the
problem into two one-dimensional problems:

�X,Y(ω1, ω2) = E
[
e j(ω1X+ω2Y)] = EY

[
e jω2YEX

[
e jω1X∣∣Y

]]
.

Conditioned on Y, X is a Gaussian random variable with a mean of ρY

and a variance of 1 − ρ2. The general form of the characteristic function
(one-dimensional) of a Gaussian random variable with mean µX and
variance σ 2

X (see Example 4.20) is

�X(ω) = exp

(

jµXω − ω2σ 2
X

2

)

.

Hence, the inner expectation evaluates to

EX

[
e jω1X∣∣Y

]
= exp

(

jρYω1 − ω2
1(1 − ρ2)

2

)

.

The joint characteristic function is then

�X,Y(ω1, ω2) = EY

[

exp

(

jω2Y + jρYω1 − ω2
1(1 − ρ2)

2

)]

= exp

(

−ω2
1(1 − ρ2)

2

)

EY

[
e j(ρω1+ω2)Y

]
.

The remaining expectation is the characteristic function of a zero-mean,
unit-variance Gaussian random variable evaluated at ω = ρω1 + ω2.
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The resulting joint characteristic function is then found to be

�X,Y(ω1, ω2) = exp

(

−ω2
1(1 − ρ2)

2

)

exp

(

− (ρω1 + ω2)2

2

)

= exp

(

−ω2
1 + 2ρω1ω2 + ω2

2
2

)

.

From this expression, various joint moments can be found. For example,
the correlation is

E[XY] = − ∂

∂ω1

∂

∂ω2
exp

(

−ω2
1 + 2ρω1ω2 + ω2

2
2

) ∣
∣
∣
∣
ω1=ω2=0

= ∂

∂ω2
ρω2exp

(

−ω2
2

2

) ∣
∣
∣
∣
ω2=0

= ρ.

Since the two random variables were zero-mean, Cov(X, Y) = ρ.
Furthermore, since the two random variables were unit variance, ρ

is also the correlation coefficient. We have therefore proved that the
parameter ρ that shows up in the joint Gaussian PDF is indeed the
correlation coefficient.

We could easily compute higher order moments as well. For exam-
ple, suppose we need to compute E[X2Y2]. It can be computed in a
similar manner to the preceding:

E[X2Y2] = ∂2

∂ω2
1

∂2

∂ω2
2

exp

(

−ω2
1 + 2ρω1ω2 + ω2

2
2

) ∣
∣
∣
∣
ω1=ω2=0

= − ∂2

∂ω2
2

[1 − (ρω2)2]exp

(

−ω2
2

2

) ∣
∣
∣
∣
ω2=0

= 1 + 2ρ2.

DEFINITION 5.12: For a pair of discrete random variables defined on a two-
dimensional lattice of nonnegative integers, one can define a joint probability
generating function as

HX,Y(z1, z2) = E
[
zX

1 zY
2

]
=

∞∑

m=0

∞∑

n=0

PX,Y(m, n)zm
1 zn

2 . (5.44)

The reader should be able to show that the joint partial derivatives of the joint
probability generating function evaluated at zero are related to the terms in the
joint probability mass function, whereas those same derivatives evaluated at 1 lead
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to joint factorial moments. Specifically,

PX,Y(k, l) = 1
k!l!

∂k

∂zk
1

∂ l

∂zl
2

HX,Y(z1, z2)
∣
∣
∣
∣
z1=z2=0

, (5.45)

E[X(X − 1) · · · (X − k + 1)Y(Y − 1) · · · (Y − l + 1)] = ∂k

∂zk
1

∂ l

∂zl
2

HX,Y(z1, z2)
∣
∣
∣
∣
z1=z2=1

.

(5.46)

EXAMPLE 5.19: Consider the joint PMF given in Example 5.7:

PN,M(n, m) = (n + m)!
n!m!

anbm

(a + b + 1)n+m+1 .

It is not too difficult to work out the joint probability generating func-
tion for this pair of discrete random variables.

HN,M(z1z2)=
∞∑

n=0

∞∑

m=0

(n+m)!
n!m!

(az1)n(bz2)m

(a+b+1)n+m+1

=
∞∑

n=0

(az1)n

(a+b+1)n+1

∞∑

m=0

(n+m)!
n!m!

(
bz2

a+b+1

)m

=
∞∑

n=0

(az1)n

(a+b+1)n+1







1

1− bz2

a+b+1







n+1

=
∞∑

n=0

(az1)n

(a+b(1−z2)+1)n+1

= 1
a+b(1−z2)+1

∞∑

n=0

(
az1

a+b(1−z2)+1

)n

= 1
1+a(1−z1)+b(1−z2)

It should be noted that the closed form expression used for the various
preceding series limits the range in the (z1, z2) plane for which these
expressions are valid; thus, care must be taken when evaluating this
function and its derivatives at various points. However, for this exam-
ple, the expression is valid in and around the points of interest (i.e.,
(z1, z2) = (0, 0) and (z1, z2) = (1, 1)).

Now that the joint probability generating function has been found,
joint moments are fairly easy to compute. For example,

E[NM] = ∂

∂z1

∂

∂z2

1
1 + a(1 − z1) + b(1 − z2)

∣
∣
∣
∣
z1=z2=1

= ∂

∂z1

b
[1 + a(1 − z1)]2

∣
∣
∣
∣
z1=1

= 2ab,
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E[N(N − 1)M] = ∂2

∂z2
1

∂

∂z2

1
1 + a(1 − z1) + b(1 − z2)

∣
∣
∣
∣
z1=z2=1

= ∂2

∂z2
1

b
[1 + a(1 − z1)]2

∣
∣
∣
∣
z1=1

= 6a2b.

Putting these two results together, it is found that

E[N2M] = E[N(N − 1)M] + E[NM] = 6a2b + 2ab.

By symmetry, we can also conclude that E[NM(M − 1)] = 6ab2 and
E[NM2] = 6ab2 + 2ab. As one last example, we note that

E[N(N − 1)M(M − 1)] = ∂2

∂z2
1

∂2

∂z2
2

1
1 + a(1 − z1) + b(1 − z2)

∣
∣
∣
∣
z1=z2=1

= ∂2

∂z2
1

2b2

[1 + a(1 − z1)]3

∣
∣
∣
∣
z1=1

= 24a2b2.

From this and the previous results, we can find E[N2M2] as follows:

E[N2M2] = E[N(N − 1)M(M − 1)] + E[NM2] + E[N2M] − E[NM]
= 24a2b2 + 6ab2 + 6a2b + 2ab.

The moment generating function can also be generalized in a manner virtually
identical to what was done for the characteristic function. We leave the details of
this extension to the reader.

5.9 Transformations of Pairs of Random
Variables

In this section, we consider forming a new random variable as a function of a pair
of random variables. When a pair of random variables is involved, there are two
classes of such transformations. The first class of problems deals with the case where
a single new variable is created as a function of two random variables. The second
class of problems involves creating two new random variables as two functions of
two random variables. These two distinct but related problems are treated in this
section.
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Consider first a single function of two random variables, Z = g(X, Y). If the joint
PDF of X and Y is known, can the PDF of the new random variable Z be found? Of
course, the answer is yes, and there are a variety of techniques to solve these types
of problems depending on the nature of the function g(·). The first technique to be
developed is an extension of the approach we used in Chapter 4 for functions of
a single random variable.

The CDF of Z can be expressed in terms of the variables X and Y as

FZ(z) = Pr(Z ≤ z) = Pr(g(X, Y) ≤ z) =
∫∫

g(x,y)≤z

fX,Y(x, y) dxdy. (5.47)

The inequality g(x, y) ≤ z defines a region in the (x, y) plane. By integrating the
joint PDF of X and Y over that region, the CDF of Z is found. The PDF can then be
found by differentiating with respect to z. In principle, one can use this technique
with any transformation; however, the integral to be computed may or may not be
analytically tractable, depending on the specific joint PDF and the transformation.

To illustrate, consider a simple yet very important example where the transfor-
mation is just the sum of the random variables, Z = X + Y. Then

FZ(z) =
∫∫

x+y≤z

fX,Y(x, y) dxdy =
∫ ∞

−∞

∫ z−y

−∞
fX,Y(x, y) dxdy. (5.48)

Differentiating to form the PDF results in

fZ(z) = d
dz

∫ ∞

−∞

∫ z−y

−∞
fX,Y(x, y) dxdy =

∫ ∞

−∞
fX,Y(z − y, y) dy. (5.49)

The last step in Equation 5.49 is completed using Liebnitz’s rule1. An important
special case results when X and Y are independent. In this case, the joint PDF
factors into the product of the marginals, producing

fZ(z) =
∫ ∞

−∞
fX(z − y)fY(y) dy. (5.50)

Note that this integral is a convolution. Thus, the following important result has
been proved:

THEOREM 5.8: If X and Y are statistically independent random variables, then
the PDF of Z = X + Y is given by the convolution of the PDFs of X and Y, fZ(z) =
fX(z) ∗ fY(z).

1Liebnitz’s rule states that

∂

∂x

∫ b(x)

a(x)
f (x, y) dy = ∂b

∂x
f (x, b(x)) − ∂a

∂x
f (x, a(x)) +

∫ b(x)

a(x)

∂

∂x
f (x, y) dy.
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EXAMPLE 5.20: Suppose X and Y are independent and both have
exponential distributions,

fX(x) = a exp(−ax)u(x), fY(y) = b exp(−by)u(y).

The PDF of Z = X + Y is then found by performing the necessary
convolution:

fZ(z)=
∫ ∞

−∞
fX(z−y)fY(y)dy =ab

∫ ∞

−∞
exp(−a(z−y))exp(−by)u(z−y)u(y)dy

=abe−az
∫ z

0
exp((a−b)y)dyu(z)

= ab
a−b

[

e−aze(a−b)y
∣
∣
∣
∣

y=z

y=0

]

u(z)= ab
a−b

[
e−by −e−az

]
u(z).

This result is valid assuming that a �= b. If a = b, then the convolution
works out to be

fZ(z) = a2ze−azu(z).

Students familiar with the study of signals and systems should recall that the
convolution integral appears in the context of passing signals through linear time-
invariant systems. In that context, most students develop a healthy respect for the
convolution and will realize that quite often the convolution can be a cumbersome
operation. To avoid difficult convolutions, these problems can often be solved using
a frequency domain approach in which a Fourier or Laplace transform is invoked
to replace the convolution with a much simpler multiplication. In the context of
probability, the characteristic function or the moment generating function can fulfill
the same role. Instead of finding the PDF of Z = X + Y directly via convolution,
suppose we first find the characteristic function of Z:

�Z(ω) = E
[
e jωZ] = E

[
e jω(X+Y)] = E

[
e jωXe jωY]. (5.51)

If X and Y are independent, then the expected value of the product of a function of
X times a function of Y factors into the product of expected values:

�Z(ω) = E
[
e jωX]E

[
e jωY] = �X(ω)�Y(ω). (5.52)

Once the characteristic function of Z is found, the PDF can be found using an
inverse Fourier transform.
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Again, the characteristic function can be used to simplify the amount of com-
putation involved in calculating PDFs of sums of independent random variables.
Furthermore, we have also developed a new approach to find the PDFs of a gen-
eral function of two random variables. Returning to a general transformation of
the form Z = g(X, Y), one can first find the characteristic function of Z according to

�Z(ω) = E
[
e jωg(X,Y)] =

∞∫∫

−∞
e jωg(x,y)fX,Y(x, y) dxdy. (5.53)

An inverse transform of this characteristic function will then produce the desired
PDF. In some cases, this method will provide a simpler approach to the problem,
while in other cases the direct method may be easier.

EXAMPLE 5.21: Suppose X and Y are independent, zero-mean, unit
variance Gaussian random variables. The PDF of Z = X2 + Y2

can be found using either of the methods described thus far. Using
characteristic functions,

�Z(ω) = E
[
e jω(X2+Y2)] = E

[
e jωX2]

E
[
e jωY2]

.

The expected values are evaluated as follows:

E
[
e jωX2] =

∫ ∞

−∞
1√
2π

e jωx2
e−x2/2 dx

= 1
√

1 − 2jω

∫ ∞

−∞

√
1 − 2jω

2π
e−(1−2jω)x2/2 dx = 1

√
1 − 2jω

.

The last step is accomplished using the normalization integral for
Gaussian functions. The other expected value is identical to the first
since X and Y have identical distributions. Hence,

�Z(ω) =
(

1
√

1 − 2jω

)2

= 1
1 − 2jω

.

The PDF is found from the inverse Fourier transform to be

fZ(z) = 1
2

exp
(
−x

2

)
u(x).

The other approach is to find the CDF as follows:

FZ(z) = Pr(X2 + Y2 ≤ z) =
∫∫

x2+y2≤z

1
2π

exp

(

−x2 + y2

2

)

dxdy.
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Converting to polar coordinates,

FZ(z) =
∫ √

z

0

∫ 2π

0

r
2π

exp

(

− r2

2

)

dθdru(z)

=
∫ √

z

0
r exp

(

− r2

2

)

dru(z) =
[
1 − exp

(
− z

2

)]
u(z).

Finally, differentiating with respect to z results in

fZ(z) = d
dz

[
1 − exp

(
− z

2

)]
u(z) = 1

2
exp

(
− z

2

)
u(z).

Another approach to solving these types of problems uses conditional distribu-
tions. Consider a general transformation, Z = g(X, Y). Next, suppose we condition
on one of the two variables, say X = x. Conditioned on X = x, Z = g(x, Y) is
now a single variable transformation. Hence, the conditional PDF of Z given X can
be found using the general techniques presented in Chapter 4. Once fZ|X(z|x) is
known, the desired (unconditional) PDF of Z can be found according to

fZ(z) =
∫ ∞

−∞
fZ,X(z, x) dx =

∫ ∞

−∞
fZ|X(z|x)fX(x) dx. (5.54)

EXAMPLE 5.22: Suppose X and Y are independent zero-mean, unit-
variance Gaussian random variables and we want to find the PDF of
Z = Y/X. Conditioned on X = x, the transformation Z = Y/x is a
simple linear transformation and

fZ|X(z|x) = |x|fY(xz) = |x|√
2π

exp

(

−x2z2

2

)

.

Multiplying the conditional PDF by the marginal PDF of X and
integrating out x gives the desired marginal PDF of Z.

fZ(z)=
∫ ∞

−∞
fZ|X(z|x)fX(x)dx=

∫ ∞

−∞
|x|√
2π

exp

(

−x2z2

2

)
1√
2π

exp

(

−x2

2

)

dx

= 1
2π

∫ ∞

−∞
|x|exp

(

−
(
1+x2)z2

2

)

dx

= 1
π

∫ ∞

0
xexp

(

−
(
1+z2)x2

2

)

dx= 1
π

1
1+z2
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Evaluating the integral in the last step can be accomplished by mak-
ing the substitution u = (1 + z2)x2/2. Hence, the quotient of two
independent Gaussian random variables follows a Cauchy distribution.

Up to this point, three methods have been developed for finding the PDF of
Z = g(X, Y) given the joint PDF of X and Y; they can be summarized as follows.

5.9.1 Method 1, CDF Approach

Define a set R(z) = {(x, y): g(x, y) ≤ z}. The CDF of Z is the integral of the joint
PDF of X and Y over the region R(z). The PDF is then found by differentiating the
expression for the CDF:

fZ(z) = d
dz

∫∫

R(z)

fX,Y(x, y) dx dy. (5.55)

5.9.2 Method 2, Characteristic Function Approach

First, find the characteristic function of Z according to

�Z(ω) = E
[
e jωg(X,Y)]. (5.56)

Then compute the inverse transform to get the PDF of Z.

5.9.3 Method 3, Conditional PDF Approach

Fix either X = x or Y = y (whichever is more convenient). The conditional PDF of
Z can then be found using the techniques developed for single random variables
in Chapter 4. Once the conditional PDF of Z is found, the unconditional PDF is
given by

fZ(z) =
∫ ∞

−∞
fZ|Y(z|y)fY(y) dy or fZ(z) =

∫ ∞

−∞
fZ|X(z|x)fX(x) dx. (5.57)

Next, our attention moves to solving a slightly more general class of problems.
Given two random variables X and Y, suppose we now create two new random
variables W and Z according to some 2 × 2 transformation of the general form

Z = g1(X, Y),

W = g2(X, Y). (5.58)
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The most common example of this type of problem involves changing coordinate
systems. Suppose, for example, that the variables X and Y represent the random
position of some object in Cartesian coordinates. In some problems, it may be
easier to view the object in a polar coordinate system, in which case two new
variables R and 
 could be created to describe the location of the object in polar
coordinates. Given the joint PDF of X and Y, how can we find the joint PDF of
R and 
?

The procedure for finding the joint PDF of Z and W for a general transformation
of the form given in Equation 5.58 is an extension of the technique used for a 1 × 1
transformation. First, recall the definition of the joint PDF given in Equation 5.2,
which states that for an infinitesimal region Ax,y = (x, x + εx) × (y, y + εy), the joint
PDF, fX,Y(x, y), has the interpretation

Pr((X, Y) ∈ Ax,y) = fX,Y(x, y)εxεy = fX,Y(x, y)(Area of Ax,y). (5.59)

Assume for now that the transformation is invertible. In that case, the transfor-
mation maps the region Ax,y into a corresponding region Az,w in the (z, w)-plane.
Furthermore,

Pr((X, Y) ∈ Ax,y) = Pr((Z, W ) ∈ Az,w) = fZ,W (z, w)(Area of Az,w). (5.60)

Putting the two previous equations together results in

fZ,W (z, w) = fX,Y(x, y)
Area of Ax,y

Area of Az,w
. (5.61)

A fundamental result of multivariable calculus states that if a transformation of
the form given in Equation 5.58 maps an infinitesimal region Ax,y, to a region Az,w,
then the ratio of the areas of these regions is given by the absolute value of the
Jacobian of the transformation:

Area of Ax,y

Area of Az,w
=
∣
∣
∣
∣J
(

x y
z w

)∣
∣
∣
∣ =

∣
∣
∣
∣
∣
∣
∣
∣

det







∂x
∂z

∂y
∂z

∂x
∂w

∂y
∂w







∣
∣
∣
∣
∣
∣
∣
∣

. (5.62)

The PDF of Z and W is then given by

fZ,W (z, w) = fX,Y(x, y)
∣
∣
∣
∣J
(

x y
z w

)∣
∣
∣
∣ . (5.63)
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If it is more convenient to take derivatives of z and w with respect to x and y rather
than vice versa, we can alternatively use

Area of Az,w

Area of Ax,y
=
∣
∣
∣
∣J
(

z w
x y

)∣
∣
∣
∣ =

∣
∣
∣
∣
∣
∣
∣
∣
∣

det








∂z
∂x

∂z
∂y

∂w
∂x

∂w
∂y








∣
∣
∣
∣
∣
∣
∣
∣
∣

, (5.64)

fZ,W (z, w) = fX,Y(x, y)
∣
∣
∣
∣J
(

z w
x y

)∣
∣
∣
∣

. (5.65)

Whether Equation 5.63 or 5.65 is used, any expressions involving x or y must
be replaced with the corresponding functions of z and w. Let the inverse
transformation of Equation 5.58 be written as

X = h1(Z, W ),

Y = h2(Z, W ).
(5.66)

Then these results can be summarized as

fZ,W (z, w) = fX,Y(x, y)
∣
∣
∣
∣J
(

z w
x y

)∣
∣
∣
∣ x = h1(z, w)

y = h2(z, w)

= fX,Y(x, y)
∣
∣
∣
∣J
(

x y
z w

)∣
∣
∣
∣

x = h1(z, w)
y = h2(z, w)

(5.67)

If the original transformation is not invertible, then the inverse transformation may
have multiple roots. In this case, as with transformations involving single random
variables, the expression in Equation 5.67 must be evaluated at each root of the
inverse transformation and the results summed together. This general procedure
for transforming pairs of random variables is demonstrated next through a few
examples.

EXAMPLE 5.23: A classical example of this type of problem involves
the transformation of two independent Gaussian random variables
from Cartesian to polar coordinates. Suppose

fX,Y(x, y) = 1
2πσ 2 exp

(

−x2 + y2

2σ 2

)

.

We seek the PDF of the polar magnitude and phase given by

R =
√

X2 + Y2,


 = tan−1(Y/X).
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The inverse transformation is

X = R cos(
),

Y = R sin(
).

In this case, the inverse transformation takes on a simpler functional
form and so we elect to use this form to compute the Jacobian.

J
(

x y
r θ

)

= det







∂x
∂r

∂x
∂θ

∂y
∂r

∂y
∂θ





 = det

[
cos(θ ) −r sin(θ )

sin(θ ) r cos(θ )

]

= r cos2(θ ) + r sin2(θ ) = r

The joint PDF of R and 
 is then

fR,
(r, θ ) = fX,Y(x, y)
∣
∣
∣
∣J
(

x y
r θ

)∣
∣
∣
∣

x = h1(r, θ )
y = h2(r, θ )

= r
2πσ 2 exp

(

−x2 + y2

2σ 2

)

x = r cos(θ )
y = r sin(θ )

= r
2πσ 2 exp

(

− r2

2σ 2

)

,
r ≥ 0

0 ≤ θ < 2π
.

Note that in these calculations, we do not have to worry about taking
the absolute value of the Jacobian since for this problem the Jacobian
(= r) is always nonnegative. If we were interested, we could also find
the marginal distributions of R and 
 to be

fR(r) = r
σ 2 exp

(

− r2

2σ 2

)

u(r) and f
(θ ) = 1
2π

, 0 ≤ θ < 2π .

The magnitude follows a Rayleigh distribution while the phase is
uniformly distributed over (0, 2π ).

EXAMPLE 5.24: Suppose X and Y are independent and both uniformly
distributed over (0, 1), so that

fX,Y(x, y) =
{

1 0 ≤ x, y < 1

0 otherwise
.
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Consider forming the two new random variables

Z =
√

−2 ln(X) cos(2πY),

W =
√

−2 ln(X) sin(2πY).

The inverse transformation in this case is found to be

X = exp

(
Z2 + W 2

2

)

,

Y = 1
2π

tan−1
(

W
Z

)

.

In this example, we will compute the Jacobian by taking derivatives of
z and w with respect to x and y to produce

J
(

z w
x y

)

= det








∂z
∂x

∂z
∂y

∂w
∂x

∂w
∂y








= det








−1
x

cos(2πy)
√−2 ln(x)

−2π
√−2 ln(X) sin(2πY)

−1
x

sin(2πy)
√−2 ln(x)

2π
√−2 ln(X) cos(2πY)








= −2π

x

[
cos2(2πy) + sin2(2πy)

]
= −2π

x
.

Note that since x is always nonnegative, the absolute value of the
Jacobian will just be 2π/x. The joint PDF of Z and W is then found
to be

fZ,W (z, w) = fX,Y(x, y)
∣
∣
∣
∣J
(

z w
x y

)∣
∣
∣
∣ x = h1(z, w)

y = h2(z, w)

= x
2π x = exp

(

− z2+w2
2

)

y = 1
2π

tan−1(w
z
)

= 1
2π

exp

(

−z2 + w2

2

)

.

This transformation is known as the Box-Muller transformation. It trans-
forms a pair of independent uniform random variables into a pair of
independent Gaussian random variables. This transformation has appli-
cation in the world of computer simulations. Techniques for generating
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uniform random variables are well known. This transformation then
allows us to generate Gaussian random variables as well. More material
on this subject is given in Chapter 12, Simulation Techniques.

EXAMPLE 5.25: Suppose X and Y are independent Gaussian random
variables, both with zero mean and unit variance. Two new random
variables, Z and W, are formed through a linear transformation of
the form

Z = aX + bY,

W = cX + dY.

The inverse transformation is given by

X = d
ad − bc

Z − b
ad − bc

W ,

Y = − c
ad − bc

Z + a
ad − bc

W .

With this general linear transformation, the various partial derivatives
are trivial to compute and the resulting Jacobian is

J
(

z w
x y

)

= det
[

a b
c d

]

= ad − bc.

Plugging these results into the general formula results in

fZ,W (z, w) = fX,Y(x, y)
∣
∣
∣
∣J
(

z w
x y

)∣
∣
∣
∣ x = h1(z, w)

y = h2(z, w)

=
1

2π
exp

(
− x2+y2

2

)

|ad − bc|
x = d

ad−bc z − b
ad−bc w

y = c
ad−bc z + a

ad−bc w.

= 1

2π
√

(ad − bc)2
exp

(

− (c2 + d2)z2 − 2(bd + ac)zw + ((a2 + b2)w)2

2(ad − bc)2

)

With a little algebraic manipulation, it can be shown that this joint PDF
fits the general form of a joint Gaussian PDF. In particular,

fZ,W (z, w) = 1

2πσZσW

√

1 − ρ2
ZW

× exp

(

− (z/σZ)2 − 2ρZW (z/σZ)(w/σw) + (w/σw)2

2(1 − ρ2
ZW )

)

,
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where σ 2
Z = a2 + b2, σ 2

W = c2 + d2, and ρ2
ZW = (ac + bd)2(a2 + b2)−1

(c2 + d2)−1.

A few remarks about the significance of the result of Example 5.25 are appropriate.
First, we have performed an arbitrary linear transformation on a pair of indepen-
dent Gaussian random variables and produced a new pair of Gaussian random
variables (which are no longer independent). In the next chapter, it will be shown
that a linear transformation of any number of jointly Gaussian random variables
always produces jointly Gaussian random variables. Second, if we look at this
problem in reverse, two correlated Gaussian random variables Z and W can be
transformed into a pair of uncorrelated Gaussian random variables X and Y using
an appropriate linear transformation. More information will be given on this topic
in the next chapter as well.

5.10 Complex Random Variables

In engineering practice, it is common to work with quantities that are complex.
Usually, a complex quantity is just a convenient shorthand notation for work-
ing with two real quantities. For example, a sinusoidal signal with amplitude, A,
frequency, ω, and phase, θ , can be written as

s(t) = A cos(ωt + θ ) = Re
[
Ae jθ e jωt

]
, (5.68)

where j = √−1. The complex number Z = Ae jθ is known as a phasor rep-
resentation of the sinusoidal signal. It is a complex number with real part of
X = Re[Z] = A cos(θ ) and imaginary part of Y = Im[Z] = A sin(θ ). The phasor Z
can be constructed from two real quantities (either A and θ or X and Y).

Suppose a complex quantity that we are studying is composed of two real quan-
tities that happen to be random. For example, the preceding sinusoidal signal might
have a random amplitude and/or a random phase. In either case, the complex num-
ber Z will also be random. Unfortunately, our formulation of random variables does
not allow for complex quantities. When we began to describe a random variable via
its CDF in the beginning of Chapter 3, the CDF was defined as FZ(z) = Pr(Z ≤ z).
This definition makes no sense if Z is a complex number: what does it mean for a
complex number to be less than another number? Nevertheless, the engineering
literature is filled with complex random variables and their distributions.

The concept of a complex random variable can often be the source of great
confusion to many students, but it doesn’t have to be as long as we realize that



194 Chapter 5 Pairs of Random Variables

a complex random variable is nothing more than a shorthand representation of
two real random variables. To motivate the concept of a complex random variable,
we use the most common example of a pair of independent, equal variance, jointly
Gaussian random variables X and Y. The joint PDF is of the form

fX,Y(x, y) = 1
2πσ 2 exp

(

− (x − µX)2 + (y − µY)2

2σ 2

)

. (5.69)

This joint PDF (of two real random variables) naturally lends itself to be written
in terms of some complex variables. Define Z = X + jY, z = x + jy, and µZ =
µX + jµY . Then

fX,Y(x, y) = fZ(z) = 1
2πσ 2 exp

(

−|z − µZ|2
2σ 2

)

. (5.70)

We reemphasize at this point that this is not to be interpreted as the PDF of a
complex random variable (since such an interpretation would make no sense);
rather, this is just a compact representation of the joint PDF of two real random
variables. This density is known as the circular Gaussian density function (since the
contours of fZ(z) = constant form circles in the complex z-plane).

Note that the PDF in Equation 5.70 has two parameters, µZ and σ . The para-
meter µZ is interpreted as the mean of the complex quantity, Z = X + jY:

µZ = E[Z] = E[X + jY] =
∫ ∞

−∞
(x + jy)fX,Y(x, y) dxdy = µX + jµY . (5.71)

But what about σ 2? We would like to be able to interpret it as the variance of
Z = X + jY. To do so, we need to redefine what we mean by variance of a complex
quantity. If we used the definition we are used to (for real quantities), we would
find

E[(Z − µZ)2] = E{[(X − µX) + j(Y − µY)]2} = Var(X) − Var(Y) + 2j Cov(X, Y).
(5.72)

In the case of our independent Gaussian random variables, since Cov(X, Y) = 0
and Var(X) = Var(Y), this would lead to E[(Z − µZ)2] = 0. To overcome this
inconsistency, we redefine the variance for a complex quantity as follows.

DEFINITION 5.13: For a complex random quantity, Z = X + jY, the variance is
defined as

Var(Z) = 1
2

E
[
|Z − µZ|2

]
= 1

2
Var(X) + 1

2
Var(Y). (5.73)
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We emphasize at this point that this definition is somewhat arbitrary and was
chosen so that the parameter σ 2 that shows up in Equation 5.70 can be interpreted as
the variance of Z. Many textbooks do not include the factor of 1/2 in the definition,
while many others (besides this one) do include the 1/2. Hence, there seems to be
no way to avoid a little bit of confusion here. The student just needs to be aware
that there are two inconsistent definitions prevalent in the literature.

DEFINITION 5.14: For two complex random variables Z1 = X1 + jY1 and Z2 =
X2 + jY2, the correlation and covariance are defined as

R1,2 = 1
2

E[Z1Z∗
2] = 1

2
{E[X1X2] + E[Y1Y2] − jE[X1Y2] + jE[X2Y1]}, (5.74)

C1,2 = 1
2

E[(Z1 − µZ1 )(Z2 − µZ2 )∗]. (5.75)

As with real random variables, complex quantities are said to be orthogonal if their
correlation is zero, whereas they are uncorrelated if their covariance is zero.

5.11 Engineering Application: Mutual
Information, Channel Capacity,
and Channel Coding

In Section 4.12, we introduced the idea of the entropy of a random variable that
is a quantitative measure of how much randomness there is in a specific random
variable. If the random variable represents the output of a source, the entropy
tells us how much mathematical information there is in each source symbol. We
can also construct similar quantities to describe the relationships between random
variables. Consider two random variables X and Y that are statistically dependent
upon one another. Each random variable has a certain entropy associated with it,
H(X) and H(Y), respectively. Suppose it is observed that Y = y. Since X and Y
are related, knowing Y will tell us something about X, and hence the amount of
randomness in X will be changed. This could be quantified using the concept of
conditional entropy.

DEFINITION 5.15: The conditional entropy of a discrete random variable X given
knowledge of a particular realization of a related random variable Y = y is

H(X|Y = y) =
∑

x

Pr(X = x|Y = y) log
(

1
Pr(X = x|Y = y)

)

. (5.76)
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Averaging over all possible conditioning events produces

H(X|Y) =
∑

x

∑

y

Pr(Y = y)Pr(X = x|Y = y) log
(

1
Pr(X = x|Y = y)

)

=
∑

x

∑

y

Pr(X = x, Y = y) log
(

1
Pr(X = x|Y = y)

)

. (5.77)

The conditional entropy tells how much uncertainty remains in the random variable
X after we observe the random variable Y. The amount of information provided
about X by observing Y can be determined by forming the difference between the
entropy in X before and after observing Y.

DEFINITION 5.16: The mutual information between two discrete random variables
X and Y is

I(X; Y) = H(X) − H(X|Y) =
∑

x

∑

y

Pr(X = x, Y = y) log
(

Pr(X = x|Y = y)
Pr(X = x)

)

.

(5.78)

We leave it as an exercise for the reader to prove the following properties of mutual
information:

• Nonnegative: I(X; Y) ≥ 0.
• Independence: I(X; Y) = 0 if and only if X and Y are independent.
• Symmetry: I(X; Y) = I(Y; X).

Now we apply the concept of mutual information to a digital communication
system. Suppose we have some digital communication system that takes digital
symbols from some source (or from the output of a source encoder) and transmits
them via some modulation format over some communications medium. At the
receiver, a signal is received and processed and ultimately a decision is made as
to what symbol(s) was most likely sent. We will not concern ourselves with the
details of how the system operates, but rather we will model the entire process in a
probabilistic sense. Let X represent the symbol to be sent, which is randomly drawn
from some n-letter alphabet according to some distribution p = (p0, p1, . . . , pn−1).
Furthermore, let Y represent the decision made by the receiver, with Y taken to be
a random variable on an m-letter alphabet. It is not unusual to have m �= n, but
in order to keep this discussion as simple as possible, we will consider only the
case where m = n so that the input and output of our communication system are
taken from the same alphabet. Also, we assume the system to be memoryless so
that decisions made on one symbol are not affected by previous decisions, nor do
they affect future decisions. In this case, we can describe the operation of the digital



5.11 Engineering Application: Mutual Information, Channel Capacity, and Channel Coding 197

0

1

2

0

1

2

q0, 0

q1,0
q2,0

0,2

q0, 1

q1, 1

q2,1

q

q1,2

q2, 2

Q

q0, 0 q0, 1 q0, 2

q1, 0 q1, 1 q1, 2

q2, 0 q2, 1 q2, 2

=

Figure 5.7 A transition diagram for a ternary (three-letter) communication channel.

communication system using a transition diagram as illustrated in Figure 5.7 for a
three-letter alphabet. Mathematically, the operation of this communication system
can be described by a matrix Q whose elements are qi,j = Pr(Y = i|X = j).

We can now ask ourselves how much information the communication system
can carry. Or, in other words, if we observe the output of the system, how much
information does this give us about what was really sent? The mutual information
answers this question. In terms of the channel (as described by Q) and the input
(as described by p), the mutual information is

I(X, Y) =
∑

i

∑

j

pjqi,j log

(
qi,j

pj

)

. (5.79)

Note that the amount of information carried by the system is a function not only of
the channel but also of the source. As an extreme example, suppose the input dis-
tribution were p = (1, 0, . . . , 0). In that case it is easy to show that I(X, Y) = 0; that
is, the communication system carries no information. This is not because the com-
munication system is incapable of carrying information, but because what we are
feeding into the system contains no information. To describe the information car-
rying capability of a communication channel, we need a quantity that is a function
of the channel only and not of the input to the channel.

DEFINITION 5.17: Given a discrete communications channel described by a
transition probability matrix Q, the channel capacity is given by

C = max
p

I(X; Y) = max
p

∑

i

∑

j

pjqi,j log

(
qi,j

pj

)

. (5.80)

The maximization of the mutual information is with respect to any valid probability
distribution p.



198 Chapter 5 Pairs of Random Variables

EXAMPLE 5.26: As a simple example, consider the so-called binary
symmetric channel (BSC) described by the transition probability matrix

Q =
[

1 − q q
q 1 − q

]

.

The BSC is described by a single parameter q, which has the interpreta-
tion of the probability of bit error of the binary communications system.
That is, q is the probability of the receiver deciding a 0 was sent when a
1 was actually sent, and it is also the probability of the receiver deciding
a 1 was sent when a 0 was actually sent. Since the input to this channel
is binary, its distribution can also be described by a single parameter.
That is, p = (p, 1 − p). The mutual information for the BSC is

I(X; Y) = p(1 − q) log
(

1 − q
p

)

+ pq log
(

q
p

)

+ (1 − p)(1 − q) log
(

1 − q
1 − p

)

+ (1 − p)q log
(

q
1 − p

)

.

Some straightforward algebraic manipulations reveal that this expres-
sion can be simplified to I(X; Y) = H(p) − H(q), where H(·) is
the binary entropy function. Maximization with respect to p is now
straightforward. The mutual information is maximized when the input
distribution is p = (0. 5, 0. 5) and the resulting capacity is

C = 1 − H(q).

This function is illustrated in Figure 5.8.

The channel capacity provides a fundamental limitation on the amount of infor-
mation that can reliably be sent over a channel. For example, suppose we wanted
to transmit information across the binary symmetric channel of Example 5.26.
Furthermore, suppose the error probability of the channel was q = 0. 1. Then the
capacity is C = 1 − H(0. 1) = 0. 53 bit. That is, every physical bit that is transmitted
across the channel must contain less than 0.53 bit of mathematical information. This
is achieved through the use of redundancy via channel coding. Consider the block
diagram of the digital communication system in Figure 5.9. The binary source pro-
duces independent but identically distributed (i.i.d., or IID) bits that are equally
likely to be 0 or 1. (We will discuss IID random variables further in Chapter 7.)
This source has an entropy of 1 bit/source symbol. Since the channel has a capac-
ity of 0.53 bit, the information content of the source must be reduced before these
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Figure 5.8 Capacity of a binary symmetric channel.
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Figure 5.9 A functional block diagram of a digital communications system.

symbols are sent across the channel. This is achieved by the channel coder, which
takes blocks of k information bits and maps them to n-bit code words where n > k.
Each code word contains k bits of information and so each coded bit contains k/n
bits of mathematical information. By choosing the code rate, k/n, to be less than
the channel capacity, C, we can assure that the information content of the symbols
being input to the channel is no greater than the information-carrying capability of
the channel.

Viewed from a little more concrete perspective, the channel used to transmit
physical bits has an error rate of 10 percent. The purpose of the channel code is to
add redundancy to the data stream to provide the ability to correct the occasional
errors caused by the channel. A fundamental result of information theory known
as the channel coding theorem states that as k and n go to infinity in such a way
that k/n < C, it is possible to construct a channel code (along with the appropriate
decoder) that will provide error-free communication. That is, the original informa-
tion bits will be provided to the destination with an arbitrarily small probability of
error. The channel coding theorem does not tell us how to construct such a code,
but significant progress has been made in recent years toward finding practical
techniques to achieve what information theory promises is possible.
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Exercises
5.1 For positive constants a and b, a pair of random variables has a joint PDF

specified by

fX,Y(x, y) = abe−(ax+by) u(x) u(y).

(a) Find the joint CDF, FX,Y(x, y).

(b) Find the marginal PDFs, fX(x) and fY(y).

(c) Find Pr(X > Y).

(d) Find Pr(X > Y2).

5.2 For positive constants a, b, c, and positive integer n, a pair of random
variables has a joint PDF specified by

fX,Y(x, y) = d
(ax + by + c)n u(x) u(y).

(a) Find the constant d in terms of a, b, c, and n.

(b) Find the marginal PDFs, fX(x) and fY(y).

(c) Find Pr(X > Y).

5.3 A pair of random variables has a joint PDF specified by

fX,Y(x, y) = d exp(−(ax2 + bxy + cy2)).

(a) Find the constant d in terms of a, b, and c. Also find any restrictions
needed for a , b, and c themselves for this to be a valid PDF.

(b) Find the marginal PDFs, fX(x) and fY(y).

(c) Find Pr(X > Y).

5.4 A pair of random variables has a joint PDF specified by

fX,Y(x, y) =





c
√

1 − x2 − y2 x2 + y2 ≤ 1

0 otherwise
.

(a) Find the constant c.

(b) Find Pr(X2 + Y2 > 1/4).

(c) Find Pr(X > Y).
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5.5 A pair of random variables has a joint PDF specified by

fX,Y(x, y) = 1
8π

exp

(

− (x − 1)2 + (y + 1)2

8

)

.

(a) Find Pr(X > 2, Y < 0).
(b) Find Pr(0 < X < 2, |Y + 1| > 2).
(c) Find Pr(Y > X). Hint: Set up the appropriate double integral and then

use the change of variables: u = x − y, v = x + y.

5.6 For some integer L and constant c, two discrete random variables have a
joint PMF given by

PM,N(m, n) =
{

c m ≥ 0, n ≥ 0, m + n < L

0 otherwise
.

(a) Find the value of the constant c in terms of L.
(b) Find the marginal PMFs, PM(m) and PN(n).
(c) Find Pr(M + N < L/2).

5.7 A pair of random variables has a joint PDF specified by

fX,Y(x, y) = 1

2π
√

3
exp

(

−x2 + 2xy + 4y2

6

)

.

(a) Find the marginal PDFs, fX(x) and fY(y).
(b) Based on the results of part (a), find E[X], E[Y], Var(X), and Var(Y).
(c) Find the conditional PDF, fX|Y(x|y).
(d) Based on the results of part (c), find E[XY], Cov(X, Y), and ρX,Y .

5.8 A pair of random variables is uniformly distributed over the ellipse
defined by x2 + 4y2 ≤ 1.

(a) Find the marginal PDFs, fX(x) and fY(y).
(b) Based on the results of part (a), find E[X], E[Y], Var(X), and Var(Y).
(c) Find the conditional PDFs, fX|Y(x|y) and fY|X(y|x).
(d) Based on the results of part (c), find E[XY], Cov(X, Y), and ρX,Y .

5.9 Prove that if two random variables are linearly related (i.e., Y = aX + b for
constants a �= 0 and b), then

ρX,Y = sgn(a) =
{

1 if a > 0

−1 if a < 0
.
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Also, prove that if two random variables have
∣
∣ρX,Y

∣
∣ = 1, then they are

linearly related.

5.10 Prove the triangle inequality that states that
√

E[(X + Y)2] ≤
√

E[X2] +
√

E[Y2].

5.11 Two random variables X and Y have, µX = 2, µY = −1, σX = 1, σY = 4,
and ρX,Y = 1/4. Let U = X + 2Y and V = 2X − Y. Find the following
quantities:

(a) E[U] and E[V];
(b) E[U2], E[V2], Var(U), and Var(V);
(c) E[UV], Cov(U, V), and ρU,V .

5.12 Suppose two random variables are related by Y = aX2 and assume that
fX(x) is symmetric about the origin. Show that ρX,Y = 0.

5.13 Find an example (other than the one given in Example 5.15) of two random
variables that are uncorrelated but not independent.

5.14 Starting from the general form of the joint Gaussian PDF given in Equation
5.40, show that the resulting marginal PDFs are both Gaussian.

5.15 Starting from the general form of the joint Gaussian PDF given in Equation
5.40 and using the results of Exercise 5.14, show that conditioned on Y = y,
X is Gaussian with a mean of µX + ρXY(σX/σY)(y − µY) and a variance of
σ 2

X(1 − ρ2
XY).

5.16 Let X and Y be random variables with means µX and µY , variances σ 2
X and

σ 2
Y , and correlation coefficient ρX,Y .

(a) Find the value of the constant a which minimizes [E(Y − aX)2].
(b) Find the value of [E(Y − aX)2] when a is given as determined in

part (a).

5.17 Let X and Y be zero-mean random variables with a correlation coefficient
of ρ and unequal variances of σ 2

X and σ 2
Y .

(a) Find the joint characteristic function, �X,Y(ω1, ω2).
(b) Find the correlation, covariance, and correlation coefficient.
(c) Find E[X2Y2].
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5.18 Find the general form of the joint characteristic function of two jointly
Gaussian random variables.

5.19 A quarterback throws a football at a target marked out on the ground 40
yards from his position. Assume that the PDF for the football’s hitting the
target is Gaussian within the plane of the target. Let the coordinates of the
plane of the target be denoted by the x and y axes. Thus, the joint PDF of
(X, Y) is a two-dimensional Gaussian PDF. The average location of the hits
is at the origin of the target, and the standard deviation in each direction
is the same and is denoted as σ . Assuming X and Y are independent, find
the probability that the hits will be located within an annular ring of width
dr located a distance r from the origin; that is, find the probability density
function for hits as a function of the radius from the origin.

5.20 Let X and Y be independent and both exponentially distributed with

fX(v) = fY(v) = be−bv u(v).

Find the PDF of Z = X − Y.

5.21 Let X and Y be jointly Gaussian random variables. Show that Z = aX + bY
is also a Gaussian random variable. Hence, any linear transformation of
two Gaussian random variables produces a Gaussian random variable.

5.22 Let X and Y be jointly Gaussian random variables with E[X] = 1, E[Y] =
−2, Var(X) = 4, Var(Y) = 9, and ρX,Y = 1/3. Find the PDF of Z =
2X − 3Y − 5. Hint: To simplify this problem, use the result of Exercise 5.21.

5.23 Let X and Y be independent Rayleigh random variables such that

fX(v) = fY(v) = v exp

(

−v2

2

)

u(v).

(a) Find the PDF of Z = max(X, Y).
(b) Find the PDF of W = min(X, Y).

5.24 Suppose X and Y are independent and exponentially distributed both with
unit-mean. Consider the roots of the quadratic equation z2 + Xz + Y = 0.

(a) Find the probability that the roots are real.
(b) Find the probability that the roots are complex.
(c) Find the probability that the roots are equal.
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5.25 Suppose X is a Rayleigh random variable and Y is an arcsine random
variable, so that

fX(x) = x
σ 2 exp

(

− x2

2σ 2

)

u(x) and fY(y) = 1

π

√

1 − y2
|y| < 1.

Furthermore, assume X and Y are independent. Find the PDF of Z = XY.

5.26 Let X and Y be independent and both uniformly distributed over (0, 2π ).
Find the PDF of Z = (X + Y) mod 2π .

5.27 Let X be a Gaussian random variable, and let Y be a Bernoulli random
variable with Pr(Y = 1) = p and Pr(Y = −1) = 1 − p. If X and Y are
independent, find the PDF of Z = XY. Under what conditions is Z a
Gaussian random variable?

5.28 Let X and Y be independent zero-mean, unit-variance Gaussian random
variables. Consider forming the new random variable U, V according to

U = X cos(θ ) − Y sin(θ ),

V = X sin(θ ) + Y cos(θ ).

Note that this transformation produces a coordinate rotation through an
angle of (θ ). Find the joint PDF of U and V. Hint: The result of Example
5.25 will be helpful here.

5.29 Let X and Y be zero-mean, unit-variance Gaussian random variables with
correlation coefficient, ρ. Suppose we form two new random variables
using a linear transformation:

U = aX + bY,

V = cX + dY.

Find constraints on the constants a, b, c, and d such that U and V are
independent.

5.30 Suppose X and Y are independent and Gaussian with means of µX and
µY , respectively, and equal variances of σ 2. The polar variables are formed
according to R =

√
X2 + Y2 and 
 = tan−1(Y/X).

(a) Find the joint PDF of R and 
.
(b) Show that the marginal PDF of R follows a Rician distribution.
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5.31 Suppose X and Y are independent, zero-mean Gaussian random variables
with variances of σ 2

X and σ 2
Y , respectively. Find the joint PDF of

Z = X2 + Y2 and W = Z2 − Y2.

5.32 Suppose X and Y are independent, Cauchy random variables. Find the
joint PDF of

Z = X2 + Y2 and W = XY.

5.33 A complex random variable is defined by Z = Ae j
, where A and 
 are
independent and 
 is uniformly distributed over (0, 2π ).

(a) Find E[Z].
(b) Find Var(Z). For this part, leave your answer in terms of the moments

of A.

5.34 Suppose Q =



0. 8 0. 1 0. 1
0. 1 0. 8 0. 1
0. 1 0. 1 0. 8



 in Figure 5.7 and pi = 1/3, i = 1, 2, 3.

Determine the mutual information for this channel.

5.35 Repeat the previous problem if Q =



0. 9 0. 1 0
0 0. 9 0. 1
0 0. 1 0. 9



.

5.36 Repeat Exercise 5.35 if Q =



1/3 1/3 1/3
1/3 1/3 1/3
1/3 1/3 1/3



. Can you give an interpre-

tation for your result?

MATLAB Exercises
5.37 Provide contour plots for the ellipses discussed in Example 5.17. Consider

the following cases:

(a) σX = σY and ρXY = 0;
(b) σX < σY and ρXY = 0;
(c) σX > σY and ρXY = 0;
(d) σX = σY and ρXY �= 0.
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Let c2 be the same for each case. Discuss the effect that σX , σY , and ρXY ,
have on the shape of the contour. Now select one of the cases and let c2

increase and decrease. What is the significance of c2?

5.38 Let X and Y have a joint PDF given by

fX,Y(x, y) = 1
2π

exp

(

− ((x − 2)2 + (y − 3)2)
2

)

as in Example 5.6. Write a MATLAB program to generate many samples of
this pair of random variables. Note that X and Y are independent, Gaussian
random variables with unit variances and means of 2 and 3, respectively.
After a large number of sample pairs have been generated, compute the
relative frequency of the number of pairs that fall within the unit circle,
X2 + Y2 < 1. Compare your answer with that obtained in Example 5.6.
How many random samples must you generate in order to get a decent
estimate of the probability?

5.39 Let X and Y have a joint PDF given by

fX,Y(x, y) = 1
2π

exp

(

− ((x − 1)2 + y2)
2

)

.

Write a MATLAB program to evaluate Pr((X, Y ∈ �)), where � is the
shaded region bounded by the lines y = x and y = −x, as shown in the
accompanying figure. You should set up the appropriate double integral
and use MATLAB to evaluate the integral numerically. Note in this case
that one of the limits of integration is infinite. How will you deal with this?

x

y

ℜ

y = −x

y = x

5.40 Write a MATLAB program to generate pairs of random variables that are
uniformly distributed over the ellipse x2 + 4y2 < 1. Use the technique
employed in Example 5.16. Also, create a three-dimensional plot of an
estimate of the PDF obtained from the random data you generated.
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In many applications, it is necessary to deal with a large number of random vari-
ables. Often, the number of variables can be arbitrary. In this chapter, the concepts
developed previously for single random variables and pairs of random variables
are extended to allow for an arbitrary number of random variables. Much of the
focus of this chapter is on multidimensional Gaussian random variables, since most
non-Gaussian random variables are difficult to deal with in many dimensions. One
of our main goals here is to develop a vector/matrix notation that will allow us to
represent potentially large sequences of random variables with a compact notation.
Many of the concepts developed in Chapter 5 can be extended to multiple dimen-
sions in a very straightforward manner; thus we will devote minimal time to those
concepts in our current discussion. Rather, attention is focused on those ideas that
require more than a trivial extension to the work done in previous chapters.

6.1 Joint and Conditional PMFs, CDFs,
and PDFs

The concepts of probability mass function, conditional distribution function, and
probability density function are easily extended to an arbitrary number of random
variables. Their definitions follow.

DEFINITION 6.1: For a set of N random variables X1, X2, . . . , XN , the joint PMF,
CDF, and PDF are given respectively by

PX1, X2, ..., XN (xk1 , xk2 , . . . , xkN ) = Pr(X1 = xk1 , X2 = xk2 , . . . , XN = xkN ); (6.1)

207
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FX1, X2, ..., XN (x1, x2, . . . , xN) = Pr(X1 ≤ x1, X2 ≤ x2, . . . , XN ≤ xN); (6.2)

fX1, X2, ..., XN (x1, x2, . . . , xN) = ∂N

∂x1∂x2 . . . ∂xN
FX1, X2,..., XN (x1, x2, . . . , xN). (6.3)

When large numbers of random variables are involved, this notation can get cum-
bersome, so it is convenient to introduce a vector notation to write these quantities
in a more compact fashion. Let X = [X1, X2, . . . , XN]T be a column vector1consisting
of the N random variables and similarly define x = [x1, x2, . . . , xN]T . Then the
preceding functions can be expressed respectively as PX(x), FX(x), and fX(x).

Marginal CDFs can be found for a subset of the variables by evaluating the joint
CDF at infinity for the unwanted variables. For example,

FX1, X2, ..., XM (x1, x2, . . . , xM) = FX1, X2, ..., XN (x1, x2, . . . , xM , ∞, ∞, . . . , ∞). (6.4)

Marginal PDFs are found from the joint PDF by integrating out the unwanted
variables. Similarly, marginal PMFs are obtained from the joint PMF by summing
out the unwanted variables:

fX1, X2, ...,XM (x1,x2, . . . , xM)=
∫ ∞∫

−∞
. . .
∫

fX1,X2, ...,XN (x1,x2, . . . ,xN)dxM+1dxM+2 . . . dxN ,

(6.5)

PX1, X2, ..., XM (xk1 , xk2 , . . . , xkM ) =
∑
kM+1

∑
kM+2

. . .
∑
kN

PX1, X2,..., XN (xk1 , xk2 , . . . , xkN ). (6.6)

Similar to that done for pairs of random variables in Chapter 5, we can also
establish conditional PMFs and PDFs.

DEFINITION 6.2: For a set of N random variables X1, X2, . . . , XN , the conditional
PMF and PDF of X1, X2, . . . , XM conditioned on XM+1, XM+2, . . . , XN are given by

PX1,..., XM |XM+1,..., XN (xk1 , . . . , xkM | xkM+1 , . . . , xkN ) = Pr(X1 = xk1 , . . . , XN = xkN )
Pr(XM+1 = xkM+1 , . . . , XN = xkN )

,

(6.7)

fX1,..., XM |XM+1,..., XN (x1, . . . , xM|xM+1, . . . , xN) = fX1, . . . , XN(x1, . . . , xN)
fXM+1 , . . . , XN(xM+1, . . . , xN)

. (6.8)

1We use T to represent the matrix transpose operation so that if v is a row vector, then vT

is a column vector. Also, to avoid confusion throughout the text, we use boldface variables
to represent vector and matrix quantities and regular face variables for scalar quantities.
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Using conditional PDFs, many interesting factorization results can be established
for joint PDFs involving multiple random variables. For example, consider four
random variables, X1, X2, X3, X4:

fX1, X2, X3, X4 (x1, x2, x3, x4) = fX1|X2, X3, X4 (x1 | x2, x3, x4)fX2, X3, X4 (x2, x3, x4)

= fX1|X2, X3, X4 (x1 | x2, x3, x4)fX2|X3, X4 (x2 | x3, x4)fX3, X4 (x3, x4)

= fX1|X2, X3,X4 (x1 | x2, x3, x4)fX2|X3, X4 (x2 | x3, x4)fX3|X4 (x3 | x4)fX4 (x4). (6.9)

Almost endless other possibilities exist as well.

DEFINITION 6.3: A set of N random variables is statistically independent if any
subset of the random variables are independent of any other disjoint subset. In
particular, any joint PDF of M ≤ N variables should factor into a product of the
corresponding marginal PDFs.

As an example, consider three random variables, X, Y, Z. For these three random
variables to be independent, we must have each pair independent. This implies
that

fX, Y(x, y) = fX(x)fY(y), fX, Z(x, z) = fX(x)fZ(z), fY, Z(y, z) = fY(y)fZ(z). (6.10)

In addition, the joint PDF of all three must also factor into a product of the marginals,

fX, Y, Z(x, y, z) = fX(x)fY(y)fZ(z). (6.11)

Note that all three conditions in Equation 6.10 follow directly from the single condi-
tion in Equation 6.11. Hence, Equation 6.11 is a necessary and sufficient condition
for three variables to be statistically independent. Naturally, this result can be
extended to any number of variables. That is, the elements of a random vector
X = [X1, X2, . . . , XN]T are independent if

fX(x) =
N∏

n = 1

fXn (xn). (6.12)

6.2 Expectations Involving Multiple
Random Variables

For a vector of random variables X = [X1, X2, . . . , XN]T , we can construct a cor-
responding mean vector that is a column vector of the same dimension and
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whose components are the means of the elements of X. Mathematically, we say
µ = E[X] = [E[X1], E[X2], . . . , E[XN]]T . Two other important quantities associ-
ated with the random vector are the correlation and covariance matrices. (To be
consistent, the vector µ should be bold; however, we have elected not to do so.)

DEFINITION 6.4: For a random vector X = [X1, X2, . . . , XN]T , the correlation
matrix is defined as RXX = E[XXT ]. That is, the (i, j)th element of the N × N
matrix RXX is E[XiXj]. Similarly, the covariance matrix is defined as CXX =
E[(X − µ)(X − µ)T ] so that the (i, j)th element of CXX is Cov(Xi, Xj).

THEOREM 6.1: Correlation matrices and covariance matrices are symmetric and
positive definite.

PROOF: Recall that a square matrix, RXX, is symmetric if RXX = RT
XX. Equiva-

lently, the (i, j)th element must be the same as the (j, i)th element. This is clearly the
case here since E[XiXj] = E[XjXi]. Recall that the matrix RXX is positive definite if
zTRXXz > 0 for any vector z such that ||z|| > 0.

zTRXXz = zTE[XXT ]z = E[zTXXTz] = E[(zTX)2]. (6.13)

Note that zTX is a scalar random variable (a linear combination of the components
of X). Since the second moment of any random variable is positive (except for
the pathological case of a random variable that is identically equal to zero), then
the correlation matrix is positive definite. As an aside, this also implies that the
eigenvalues of the correlation matrix are all positive. Identical steps can be followed
to prove the same properties hold for the covariance matrix. �

Next, consider a linear transformation of a vector random variable. That is,
create a new set of M random variables, Y = [Y1, Y2, . . . , YM]T , according to

Y1 = a1, 1X1 + a1, 2X2 + · · · + a1, NXN + b1,

Y2 = a2, 1X1 + a2, 2X2 + · · · + a2, NXN + b2,

· · ·
YM = aM, 1X1 + aM, 2X2 + · · · + aM, NXN + bM .

(6.14)

The number of new variables, M, does not have to be the same as the number
of original variables, N. To write this type of linear transformation in a compact
fashion, define a matrix A whose (i, j)th element is the coefficient ai,j and a col-
umn vector, b = [b1, b2, . . . , bM]T . Then the linear transformation of Equation 6.14
is written in vector/matrix form as Y = AX + b. The next theorem describes
the relationship between the means of X and Y and the correlation matrices of
X and Y.
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THEOREM 6.2: For a linear transformation of vector random variables of the form
Y = AX + b, the means of X and Y are related by

µY = AµX + b. (6.15)

Also, the correlation matrices of X and Y are related by

RYY = ARXXAT + AµXbT + bµT
XAT + bbT , (6.16)

and the covariance matrices of X and Y are related by

CYY = ACXXAT . (6.17)

PROOF: For the mean vector,

µY = E[Y] = E[AX + b] = AE[X] + b = AµX + b. (6.18)

Similarly, for the correlation matrix,

RYY = E[YYT ] = E[(AX + b)(AX + b)T ]
= E[AXXTAT ] + E[bXTAT ] + E[AXbT ] + E[bbT ]
= AE[XXT ]AT + bE[XT ]AT + AE[X]bT + bbT

= ARXXAT + AµXbT + bµT
XAT + bbT . (6.19)

To prove the result for the covariance matrix, write Y − µY as

Y − µY = (AX + b) − (AµX + b) = A(X − µX). (6.20)

Then,

CYY = E[(Y − µY)(Y − µY)T ] = E[{A(X − µX)}{A(X − µX)}T ]
= E[A(X − µX)(X − µX)TAT ] = AE[(X − µX)(X − µX)T ]AT = ACXXAT .

(6.21)

�

6.3 Gaussian Random Variables in
Multiple Dimensions

Recall from the study of two-dimensional random variables in the previous chap-
ter that the functional form of the joint Gaussian PDF was fairly complicated.
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It would seem that the prospects of forming a joint Gaussian PDF for an arbitrary
number of dimensions are grim. However, the vector/matrix notation developed
in the previous sections make this task manageable and, in fact, the resulting joint
Gaussian PDF is quite simple.

DEFINITION 6.5: The joint Gaussian PDF for a vector of N random variables, X,
with mean vector µX and covariance matrix CXX is given by2

fX(x) = 1√
(2π )Ndet(CXX)

exp
(

−1
2

(x − µX)TC−1
XX(x − µX)

)
. (6.22)

EXAMPLE 6.1: To demonstrate the use of this matrix notation, suppose
X is a two-element vector and the mean vector and covariance matrix
are given by their general forms

µX =
[
µ1
µ2

]
and CXX =

[
σ 2

1 ρσ1σ2
ρσ1σ2 σ 2

2

]
.

The determinant of the covariance matrix is

det(CXX) = σ 2
1 σ 2

2 − (ρσ1σ2)2 = σ 2
1 σ 2

2 (1 − ρ2),

while the inverse is

C−1
XX =

[
σ 2

2 −ρσ1σ2
−ρσ1σ2 σ 2

1

]

σ 2
1 σ 2

2 (1 − ρ2)
=

[
σ−2

1 −ρσ−1
1 σ−1

2
−ρσ−1

1 σ−1
2 σ−2

2

]

(1 − ρ2)
.

The quadratic form in the exponent then works out to be

(x − µX)TC−1
XX(x − µX)

= [
x1 − µ1x2 − µ2

]
[

σ−2
1 −ρσ−1

1 σ−1
2

−ρσ−1
1 σ−1

2 σ−2
2

]

(1 − ρ2)

[
x1 − µ1
x2 − µ2

]

=

(
x1 − µ1

σ1

)2

− 2ρ

(
x1 − µ1

σ1

)(
x2 − µ2

σ2

)
+
(

x2 − µ2

σ2

)2

(1 − ρ2)
.

2The notation det(A) refers to the determinant of the matrix A, while A−1 is the inverse
of A.
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Plugging all these results into the general form for the joint Gaussian
PDF gives

fX1, X2 (x1, x2) = 1√
(2π )2σ 2

1 σ 2
2 (1 − ρ2)

× exp


−

(
x1 − µ1

σ1

)2

− 2ρ

(
x1 − µ1

σ1

)(
x2 − µ2

σ2

)
+
(

x2 − µ2

σ2

)2

2(1 − ρ2)


 .

This is exactly the form of the two-dimensional joint Gaussian PDF given
in the previous chapter.

EXAMPLE 6.2: As a special case, suppose a vector of N jointly Gaus-
sian random variables are all mutually uncorrelated. This means that
Cov(Xi, Xj) = 0 for all i �= j. A direct result of this is that all of the
off-diagonal elements of the covariance matrix of X are zero. In other
words, CXX is a diagonal matrix of the general form

CXX =




σ 2
1 0 . . . 0
0 σ 2

2 . . . 0
. . . . . . . . .
0 0 . . . σ 2

N


 .

The determinant of a diagonal matrix is the product of the diagonal
entries so that in this case det(CXX) = σ 2

1 σ 2
2 . . . σ 2

N . The inverse is also
trivial to compute and takes on the form

C−1
XX =




σ−2
1 0 . . . 0
0 σ−2

2 . . . 0
. . . . . . . . .
0 0 . . . σ−2

N


 .
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The quadratic form that appears in the exponent of the Gaussian PDF
becomes

(x − µX)TC−1
XX(x − µX)

= [
x1 − µ1x2 − µ2 . . . xN − µN

]



σ−2
1 0 . . . 0
0 σ−2

2 . . . 0
. . . . . . . . .
0 0 . . . σ−2

N







x1 − µ1
x2 − µ2

. . .
xN − µN




=
N∑

n=1

(
xn − µn

σn

)2

.

The joint Gaussian PDF for a vector of uncorrelated random variables
is then

fX(x) = 1√
(2π )nσ 2

1 σ 2
2 . . . σ 2

N

exp

(
−1

2

N∑
n=1

(
xn − µn

σn

)2
)

=
N∏

n=1

1√
2πσ 2

n

exp

(
− (xn − µn)2

2σ 2
n

)
.

This shows that for any number of uncorrelated Gaussian random vari-
ables, the joint PDF factors into the product of marginal PDFs, and
hence uncorrelated Gaussian random variables are independent. This
is a generalization of the same result that was proved in Chapter 5 for
two Gaussian random variables.

EXAMPLE 6.3: In this example, we use MATLAB’s symbolic
capabilities to compute the form of a three-dimensional Gaussian
PDF. Suppose we have three jointly Gaussian random variables
[X, Y, Z]T with a mean vector µ = [1, 2, 3]T and covariance matrix

C =

9 4 1

4 9 4
1 4 9


 .
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The three-dimensional joint PDF, fX, Y, Z(x, y, z), can be found with the
following MATLAB code:

x=sym(’x’,’real’); % Define x, y, and z as symbolic.

y=sym(’y’,’real’);

z=sym(’z’,’real’);

pi=sym(’pi’); % Disable numeric definition of pi.

C=[9 4 1; 4 9 4; 1 4 9]; % Covariance matrix.

mu=[1; 2; 3]; % Mean vector.

% Compute PDF symbolically.

v=[x; y; z]-mu;

f=exp(-v’*(inv(C))*v/2)/sqrt((2*pi)∧3*det(C));
simplify(f)

Executing this program, MATLAB finds the joint PDF to be

fX, Y, Z(x, y, z) = 1

464
√

58π3
exp

(
− 65

928
x2 + 11

232
x − 125

232
+ 2

29
xy

+ 2
29

y − 7
464

xz + 69
232

z − 5
58

y2 + 2
29

yz − 65
928

z2
)

.

The reader is encouraged to try different mean vectors and covariance
matrices in the preceding program.

6.4 Transformations Involving Multiple
Random Variables

In this section, we discuss various transformations of vector random variables. To
exhaustively cover this topic would require much more space than we can devote
to it here. Instead, we chose to cover some of the more common transformations
encountered in engineering practice. To start with, we extend the formula for 2 × 2
transformations developed in the previous chapter to the case of N ×N transforms.
Let Y = g(X) be a vector transformation,

Y1 = g1(X1, X2, . . . , XN),

Y2 = g2(X1, X2, . . . , XN),

. . . (6.23)

YN = gN(X1, X2, . . . , XN),



216 Chapter 6 Multiple Random Variables

and let X = h(Y) be the inverse transformation. Given the PDF of X, the PDF of Y
is found by

fY(y) = fX(x)∣∣∣∣det
[

J
(

y1 y2 . . . yN

x1 x2 . . . xN

)] ∣∣∣∣

∣∣∣∣∣∣∣∣∣
x = h(y)

= fX(x)
∣∣∣∣det

[
J
(

x1 x2 . . . xN

y1 y2 . . . yN

)] ∣∣∣∣
∣∣∣∣
x = h(y)

. (6.24)

As in Chapter 5, it needs to be understood that if the transformation is not one-to-
one, the preceding expression must be evaluated at each root and summed together.
This result can be proved using the same sort of derivation that was used for the
case of 2 × 2 transformations.

6.4.1 Linear Transformations

Perhaps the single most important class of transformations is that involving linear
transformations of Gaussian random variables. Consider a linear transformation
of the general form Y = AX+b when the random vector X has a joint Gaussian PDF
as given in Equation 6.22. To begin, consider the case where the dimensionality
of X and Y are the same (i.e., both are N-element vectors). In that case, the matrix
A is a square matrix. Furthermore, it is assumed that the matrix A is invertible
(det(A) �= 0). In this case, the Jacobian of the linear transformation is

J
(

y1 y2 . . . yN

x1 x2 . . . xN

)
=




∂y1

∂x1

∂y1

∂x2
. . .

∂y1

∂xN

∂y2

∂x1

∂y2

∂x2
. . .

∂y2

∂xN
. . . . . . . . .
∂yN

∂x1

∂yN

∂x2
. . .

∂yN

∂xN




=




a1, 1 a1, 2 . . . a1, N

a2, 1 a2, 2 . . . a2, N

. . . . . . . . .

aN, 1 aN, 2 . . . aN, N


 = A.

(6.25)

Also, the inverse transformation is linear and can be written as X = A−1(Y − b).
The joint PDF for the vector Y is then

fY(y) = fX(x)
|det(A)|

∣∣∣∣
x = A−1(y−b)

. (6.26)
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Plugging in the form of the Gaussian PDF for fX(x) results in

fY(y) = 1

|det(A)|√(2π )Ndet(CXX)
exp

(
−1

2
(x − µX)TC−1

XX(x − µX)
) ∣∣∣∣∣

x = A−1(y−b)

.

(6.27)

To simplify this result, write

x − µX|x=A−1(y−b) = A−1(y − b) − µX = A−1(y − (b + AµX)) = A−1(y − µY).

(6.28)

The quadratic form in the exponent is then

(x − µX)TC−1
XX(x − µX)

∣∣∣∣
x=A−1(y−b)

= [A−1(y − µY)]TC−1
XX[A−1(y − µY)]

= (y − µY)T (A−1)TC−1
XXA−1(y − µY). (6.29)

In addition, we can write

|det(A)|
√

det(CXX) =
√

[det(A)]2det(CXX)

=
√

det(A)det(CXX)det(AT ) =
√

det(ACXXAT ). (6.30)

These steps are carried out using the fact that for a square matrix, det(A) = det(AT )
and also that the determinant of a product of matrices is equal to the product of
the determinants. At this point we have established that

fY(y)= 1√
(2π )Ndet(ACXXAT )

exp
(

−1
2

(y−µY)T (A−1)TC−1
XXA−1(y−µY)

)
. (6.31)

Finally, recall that for a linear transformation, CYY =ACXXAT . Furthermore, from
this relationship, we can also determine that C−1

YY =(ACXXAT )−1 =(AT )−1C−1
XXA−1 =

(A−1)TC−1
XXA−1. Hence, the PDF for Y can be written as

fY(y)= 1√
(2π )Ndet(CYY)

exp
(

−1
2

(y−µY)TC−1
YY(y−µY)

)
. (6.32)

This is the general form of a joint Gaussian PDF. Thus, we have shown that any
linear transformation of any number of jointly Gaussian random variables produces
more jointly Gaussian random variables. Note that this statement applies to more
than just N×N linear transformations. Suppose we wanted to transform N jointly
Gaussian random variables to M(M <N) new random variables through a linear
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transformation. We could always form an N×N transformation producing N new
jointly Gaussian random variables. Any subset of M out of N of these random
variables will also be jointly Gaussian. In summary, we have proved the following
theorem.

THEOREM 6.3: Given a vector X of N jointly Gaussian random variables, any
linear transformation to a set of M(M ≤N) new variables, Y, will produce jointly
Gaussian random variables.

Next, suppose we want to create a set of N jointly Gaussian random variables,
Y, with a specified covariance matrix, C. We could start with a set of uncorrelated
Gaussian random variables (as might be generated by a typical Gaussian random
number generator) and then perform a linear transformation to produce a new
set of Gaussian random variables with the desired covariance matrix. But, how
should the transformation be selected to produce the desired covariance matrix?
To answer this question, recall that any covariance matrix is symmetric and any
symmetric matrix can be decomposed into

C=Q�QT , (6.33)

where � is a diagonal matrix of the eigenvalues of C, and Q is an orthogonal matrix
whose columns are the corresponding eigenvectors of C. Note also that C is positive
definite and hence its eigenvalues are all positive. Thus, the matrix � is not only
diagonal, but its diagonal elements are all positive and as a result, the matrix �

is a valid covariance matrix. That is, suppose we create a set of N uncorrelated
Gaussian random variables, X, with a covariance matrix CXX =�. Then, the matrix
Q will transform this set of uncorrelated Gaussian random variables to a new set of
Gaussian random variables with the desired covariance matrix. If we form Y=QX,
then according to Theorem 6.2, the covariance matrix of Y will be of the form

CYY =QCXXQT =Q�QT =C. (6.34)

At this point, the problem has been reduced from creating a set of random
variables with an arbitrary covariance matrix to creating a set of random variables
with a diagonal covariance matrix. Typical Gaussian random number generators
create random variables with a unit variance. To create random variables with
unequal variances, simply scale each component by the appropriate value. In par-
ticular, suppose3 �=diag(λ1,λ2, . . . ,λN). Given a set of unit variance uncorrelated

3The notation A=diag(a1,a2, . . . ,aN ) means that A is a diagonal matrix with diagonal
elements a1,a2, . . . ,aN .
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Gaussian random variables Z=[Z1,Z2, . . . ,ZN]T , one could form X with the desired
variance according to Xi =

√
λiZi, i=1,2, . . . ,N. In matrix notation we write

X=√
�Z, (6.35)

where
√

� is understood to mean
√

�=diag(
√

λ1,
√

λ2, . . . ,
√

λN).
In summary, we have a two-step linear transformation. Given a vector of

uncorrelated, unit variance Gaussian random variables, we form X=√
�Z and

then Y=QX to produce the vector of Gaussian random variables with the desired
covariance matrix. Naturally, these two consecutive linear transformations can be
combined into a single transformation,

Y=QX=Q
√

�Z. (6.36)

It is common to write the matrix A=Q
√

� as
√

C since AAT =Q
√

�
√

�
T

QT =
Q�QT =C.

Finally, note that if Z is zero-mean, then Y will be zero-mean as well. If it is
desired to create Y with a nonzero mean, then a constant term can be added to
the transformation to shift the mean to the specified value. This will not alter the
covariance matrix of Y. In summary, we have the result shown in Theorem 6.4.

THEOREM 6.4: Given a vector Z of zero-mean, unit variance, uncorrelated ran-
dom variables, then a new set of random variables, Y, with arbitrary mean vector,
µ, and covariance, matrix C can be formed using the linear transformation

Y=√
CZ+µ. (6.37)

Furthermore, if Z is a Gaussian random vector, then Y will be as well.

If a Gaussian random number generator is not available4, one can always use a
uniform random number generator together with the Box-Muller transformation
described in Example 5.24 to produce Gaussian random variables.

Sometimes it is desirable to transform a set of correlated random variables into
a new set of uncorrelated random variables. Later in the text, when studying noise,
this process will be referred to as “whitening.” For now, it is seen that this process
is the opposite of the problem just solved. That is, given a random vector Y with
mean, µ, and covariance matrix, C, then a vector of zero-mean, unit-variance,
uncorrelated random variables can be formed according to

Z= (
√

C)−1(Y−µ). (6.38)

4Many high-level programming languages come with a built-in uniform random number
generator, but not a Gaussian random number generator. See Chapter 12 for more details
on random number generators.
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Here, the expression (
√

C)−1 is interpreted as5

(
√

C)−1 = (Q
√

�)−1 = (
√

�)−1Q−1 =�−1/2QT . (6.39)

EXAMPLE 6.4: Let’s suppose we desire to create a vector of
four random variables with a mean vector of µ=[1,0,3,−2]T and
covariance matrix of

C=




30 −10 −20 4
−10 30 4 −20
−20 4 30 −10

4 −20 −10 30


 .

The eigenvalue matrix and eigenvector matrix are calculated (in this instance
using MATLAB) to be

�=




4 0 0 0
0 16 0 0
0 0 36 0
0 0 0 64


 and Q= 1

2




1 −1 1 1
1 1 1 −1
1 −1 −1 −1
1 1 −1 1


 .

Hence, the appropriate transformation matrix is

A=Q
√

�= 1
2




1 −1 1 1
1 1 1 −1
1 −1 −1 −1
1 1 −1 1







2 0 0 0
0 4 0 0
0 0 6 0
0 0 0 8


=




1 −2 3 4
1 2 3 −4
1 −2 −3 −4
1 2 −3 4


 .

Thus, given a vector of zero-mean, unit-variance, and uncorrelated random
variables, Z, the required transformation is

Y=




1 −2 3 4
1 2 3 −4
1 −2 −3 −4
1 2 −3 4


Z+




1
0
3

−2


 .

5Since Q is an orthogonal matrix, Q−1 = QT . Also, �−1/2 = diag(λ−1/2
1 ,λ−1/2

2 , . . . ,

λ
−1/2
N ).
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The MATLAB code to perform the necessary eigendecomposition of our
example is very straightforward and is as follows:

C = [30 -10 -20 4; -10 30 4 -20; -20 4 30 -10; 4 -20 -10 30]

[Q,lambda]=eig(C)
A=Q*sqrt(lambda)

6.4.2 Quadratic Transformations of Gaussian
Random Vectors

In this section, we show how to calculate the PDFs of various quadratic forms of
Gaussian random vectors. In particular, given a vector of N zero-mean Gaussian
random variables, X, with an arbitrary covariance matrix, CXX, we form a scalar
quadratic function of the vector X of the general form

Z=XTBX, (6.40)

where B is an arbitrary N×N matrix. We would then like to find the PDF of the
random variable, Z. These types of problems occur frequently in the study of
noncoherent communication systems.

One approach to this problem would be first to form the CDF, FZ(z)=Pr(XTBX≤
z). This could be accomplished by computing

FZ(z)=
∫

A(z)
fX(x)dx, (6.41)

where A(z) is the region defined by xTBx≤z. While conceptually straightfor-
ward, defining the regions and performing the required integration can get quite
involved. Instead, we elect to calculate the PDF of Z by first finding its characteristic
function. Once the characteristic function is found, the PDF can be found through
an inverse transformation.

For the case of Gaussian random vectors, finding the characteristic function of
a quadratic form turns out to be surprisingly straightforward:

�Z(ω)=E[ejωXT BX]=
∞∫

−∞

1√
(2π )Ndet(CXX)

exp
(

−1
2

(xT [C−1
XX−2jωB]x)

)
dx. (6.42)

This integral is understood to be over the entire N-dimensional x-plane. To
evaluate this integral, we simply manipulate the integrand into the standard
form of an N-dimensional Gaussian distribution and then use the normalization
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integral for Gaussian PDFs. Toward that end, define the matrix F according to
F−1 =C−1

XX−2jωB. Then

�Z(ω)=
∞∫

−∞

1√
(2π )Ndet(CXX)

exp
(

−1
2

(xTF−1x)
)

dx

=
√

det(F)
det(CXX)

∞∫

−∞

1√
(2π )Ndet(F)

exp
(

−1
2

(xTF−1x)
)

dx=
√

det(F)
det(CXX)

(6.43)

where the integral in unity because the integral is a Gaussian distribution.
Using the fact that det(F−1)= (det(F))−1, this can be rewritten in the more

convenient form

�Z(ω)=
√

det(F)
det(CXX)

= 1√
det(F−1)det(CXX)

= 1√
det(F−1CXX)

= 1√
det(I−2jωBCXX)

. (6.44)

To get a feel for the functional form of the characteristic function, note that the
determinant of a matrix can be written as the product of its eigenvalues. Further-
more, for a matrix of the form A= I+cD for a constant c, the eigenvalues of A,
{λA}, can be written in terms of the eigenvalues of the matrix D, {λD}, according to
λA =1+cλD. Hence,

�Z(ω)=
N∏

n=1

1√
1−2jωλn

, (6.45)

where the λns are the eigenvalues of the matrix BCXX. The particular functional
form of the resulting PDF depends on the specific eigenvalues. Two special cases
are considered as examples next.

6.4.2.1 Special Case #1: B= I⇒Z=∑N
n=1 X2

n
In this case, let’s assume further that the Xn are uncorrelated and equal variance
so that CXX =σ 2I. Then the matrix BCXX has N repeated eigenvalues all equal to
σ 2. The resulting characteristic function is

�Z(ω)= (1−2jωσ 2)−N/2. (6.46)

This is the characteristic function of a chi-square random variable with N degrees
of freedom. The corresponding PDF is

fZ(z)= z(N/2)−1

(2σ 2)N/2	(N/2)
exp

(
− z

2σ 2

)
u(z). (6.47)
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6.4.2.2 Special Case #2: N=4, B= 1
2




0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0


⇒Z=X1X2 +X 3X4

Again, we take the Xi to be uncorrelated with equal variance so that CXX =σ 2I.
In this case, the product matrix BCXX has two pairs of repeated eigenvalues of
values ±σ 2/2. The resulting characteristic function is

�Z(ω)= 1
1+jωσ 2

1
1−jωσ 2 = 1

1+(ωσ 2)2 . (6.48)

This is the characteristic function of a two-sided exponential (Laplace) random
variable,

fZ(z)= 1
2σ 2 exp

(
−|z|

σ 2

)
. (6.49)

6.4.3 Order Statistics

Suppose a vector of random variables has elements that are independent and iden-
tically distributed. In many applications, we need to find the PDF of the largest
element in the vector. Or, as a more general problem, we might be interested in
the PDF of the mth largest element. Let X1,X2, . . . ,XN be a sequence of random
variables. We create a new set of random variables Y1,Y2, . . . ,YN such that Y1 is
the smallest of the Xns, Y2 is the second smallest, and so on. The sequence of Yns
are referred to as order statistics of the sequence of Xns. Given that each of the Xns
follows a common PDF, fX(x), we seek to find the PDF of the Yns.

First, we find the PDF of Y1 by finding its CDF.

FY1 (y)=Pr(Y1 ≤y)=1−Pr(Y1 ≥y)=1−Pr(X1 ≥y,X2 ≥y, . . . ,XN ≥y). (6.50)

This expression follows from the observation that if the smallest of a sequence is
larger than some threshold, then all elements in the sequence must be above that
threshold. Next, using the fact that the Xn are independent and all have the same
distribution, our expression simplifies to

FY1 (y)=1−Pr(X1 ≥y)Pr(X2 ≥y) . . .Pr(XN ≥y)=1−(1−FX(y))N . (6.51)

Differentiating with respect to y then produces the desired PDF,

fY1 (y)=NfX(y)(1−FX(y))N−1. (6.52)
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A similar procedure can be followed to determine the PDF of the mth smallest,
Ym. First, we work out an expression for the CDF.

FYm (y)=Pr(Ym ≤y)=Pr(m or more of the Xns are less than y)

=
N∑

k=m

Pr(k of the Xns are less than y) (6.53)

To evaluate the probability of the event {k of the Xns are less than y}, it is noted that
one way for this event to occur is if X1 ≤y, X2 ≤y, . . . , Xk ≤y, Xk+1 >y, . . . ,XN >y.
The probability of this event is

Pr(X1 ≤y, X2 ≤y, . . . , Xk ≤y, Xk+1 >y, . . . ,Xn >y)= (FX(y))k(1−FX(y))N−k. (6.54)

Of course, we don’t have to have the first k elements of the sequence smaller than y.
We are looking for the probability that any k of the N elements are below y. Hence,
we need to count the number of combinations of k out of N variables. This is merely
the binomial coefficient. Hence,

Pr(k of the Xns are less than y)=
(

N
k

)
(FX(y))k(1−FX(y))N−k. (6.55)

Summing over k gives the desired CDF:

FYm (y)=
N∑

k=m

(
N
k

)
(FX(y))k(1−FX(y))N−k. (6.56)

Differentiating with respect to y then gives the expression

fYm (y)= fX(y)
N∑

k=m

(
N
k

)
k(FX(y))k−1(1−FX(y))N−k

−fX(y)
N∑

k=m

(
N
k

)
(N−k)(FX(y))k(1−FX(y))N−k−1. (6.57)

It is left as an exercise for the reader (see Exercise 6.14) to show that this expression
reduces to the form

fYm (y)= N!
(m−1)!(N−m)! fX(y)(FX(y))m−1(1−FX(y))N−m. (6.58)

An alternative approach to deriving this expression is outlined in Exercise 6.15.
The next example illustrates one possible use of order statistics.
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EXAMPLE 6.5: Suppose we observe a sequence of N =2k−1 inde-
pendent and identically distributed (i.i.d or IID) random variables,
X1, . . . ,X2k−1, and we wish to estimate the mean of the common dis-
tribution. One method to do this would be to use the median (middle)
element in the sequence as an estimate of the mean. In terms of order
statistics, the median is simply Yk:

fYk (y)= (2k−1)!
[(k−1)!]2 fX(y)[FX(y)]k−1[1−FX(y)]k−1.

For example, if the Xn are all uniformly distributed over (0, 1), then

fYk (y)= (2k+1)!
[(k−1)!]2 [y(1−y)]k−1, 0≤y ≤1.

Some straightforward calculations reveal that this distribution has a
mean of E[Yk]=1/2 and a variance of σ 2

Yk
=1/(4(2k+1)). Note that,

“on the average,” the median is equal to the true mean of the distri-
bution. We say that this estimator is unbiased. Furthermore, we also
see that as we observe more samples (k gets larger), the variance of the
median gets smaller. In other words, as the sample size increases, the
median becomes increasingly more precise as an estimator of the mean.
In fact, in the limit as k →∞, the variance goes to zero, which means that
the median becomes equal to the mean. We will discuss this problem
of estimating means of sequences of IID random variables in the next
chapter.

6.4.4 Coordinate Systems in Three Dimensions

Coordinate system transformations in three dimensions follow the same procedure
as was derived for the two-dimensional problems. Given a random vector X and
a corresponding joint PDF fX(x), the joint PDF of Y= (g(X)) is given by the general
formula expressed in Equation 6.24. An example is included next to illustrate the
procedure.

EXAMPLE 6.6 (Cartesian-to-Spherical Coordinates): Let the random
variables X, Y, and Z in Cartesian coordinates be transformed to
spherical coordinates according to

R=
√

X2+Y2+Z2
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=cos−1

(
Z√

X2+Y2+Z2

)
.

�= tan−1
(

Y
X

)

The reverse transformation is probably more familiar to most readers
and is given by

X =Rsin(
)cos(�)

Y =Rsin(
)sin(�).

Z=Rcos(
)

The Jacobian of this transformation is

J
(

x y z
r θ φ

)
=

 sin(θ )cos(φ) sin(θ )sin(φ) cos(θ )

r cos(θ )cos(φ) r cos(θ )sin(φ) −r sin(θ )
−r sin(θ )sin(φ) r sin(θ )cos(φ) 0


 ,

and the determinant of this matrix works out to be

det
[

J
(

x y z
r θ φ

)]
= r2 sin(θ ).

Suppose, X, Y, and Z are jointly Gaussian with a joint PDF given by

fX,Y,Z(x,y,z)= 1
(2πσ 2)3/2

exp

(
−x2+y2+z2

2σ 2

)
.

Then, the joint PDF of R, 
, and � is found to be

fR,
,�(r,θ ,φ)= fX,Y,Z(x,y,z)
∣∣∣∣det

[
J
(

x y z
r θ φ

)]∣∣∣∣ x=r sin(θ )cos(φ)

y=r sin(θ )sin(φ)

z=r cos(θ )

= r2 sin(θ )
(2πσ 2)3/2

exp

(
− r2

2σ 2

)
,

r ≥0
0≤θ ≤π

0≤φ ≤2π

.

The marginal PDFs are found by integrating the unwanted variables
out of this joint PDF. In this case, the required integrations are fairly
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Figure 6.1 PDFs of spherical coordinate variables for Example 6.6.

straightforward, resulting in

fR(r)=
√

2
π

r2

σ 3 exp

(
− r2

2σ 2

)
u(r),

f
(θ )= 1
2

sin(θ ), 0≤θ ≤π ,

f�(φ)= 1
2π

, 0≤φ ≤2π .

Note also that for this example, fR,
,�(r,θ ,φ)= fR(r)f
(θ )f�(φ) so that R,

, and � are all independent. These PDFs are plotted in Figure 6.1.

6.5 Engineering Application: Linear
Prediction of Speech

In many applications, we are interested in predicting future values of a waveform
given current and past samples. This is used extensively in speech coders where the
signal-to-quantization noise associated with a quantizer can be greatly increased
if only the prediction error is quantized. A fairly simple speech coder that utilizes
this idea is illustrated in Figure 6.2. In Section 4.11, we introduced the idea of scalar
quantization. The process of sampling (at or above the Nyquist rate), quantizing,
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Figure 6.2 Block diagram of a simple speech coder using differential pulse code
modulation.

and then encoding each quantization level with some binary code word is known
as pulse code modulation (PCM). In Figure 6.2, we consider a slight modification to
the basic PCM technique known as differential PCM (or DPCM). The basic idea here
is that if we can reduce the range of the signal that is being quantized, then we
can either reduce the number of quantization levels needed (and hence reduce the
bit rate of the speech coder) or reduce the amount of quantization noise and hence
increase the SQNR.

A typical speech signal has a frequency content in the range from about 300–
3500 Hz. In order to be able to recover the signal from its samples, a typical sampling
rate of 8 KHz is used, which is slightly higher than the Nyquist rate. However, most
of the energy content of a speech signal is below 1 kHz; hence when sampled at
8 kHz, a great deal of the speech signal does not change substantially from one
sample to the next. Stated another way, when the speech signal is sampled at 8
kHz, we should be able to predict future sample values from current and past
samples with pretty good accuracy. The DPCM encoder does exactly that and then
only quantizes and encodes the portion of the signal that it is not able to predict.

In Figure 6.2, the Xn represent samples of a speech waveform. These sam-
ples are input to the predictor whose job is to make its best estimate of Xn given
Xn−1,Xn−2,Xn−3, . . . as inputs. It is common to use linear prediction, in which case
the predictor output is a linear combination of the inputs. That is, assuming the
predictor uses the last m samples to form its estimate, the predictor output is of the
form

Yn =
m∑

i=1

aiXn−i, (6.59)

where the ai are constants that we select to optimize the performance of the pre-
dictor. The quantity Zn =Xn−Yn is the predictor error, which we want to make
as small as possible. This error is quantized with a scalar quantizer that uses 2b

levels, and each level is encoded with a b bit code word. The overall bit rate of the
speech coder is b∗fs bits/second, where fs is the rate (in Hz) at which the speech
is sampled. For example, if a 16-level quantizer were used with a speech sampling
rate of 8 kHz, the DPCM speech coder would have a bit rate of 32 kbits/second.
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An important question is, Can the original samples be recovered from the binary
representation of the signal? Given the encoded bit stream, we can construct the
sequence of quantizer outputs, Qn. As with any quantization scheme, we can never
recover the exact quantizer input from the quantizer output, but if we use enough
levels in the quantizer, the quantization noise can be kept fairly small. The speech
samples are reconstructed according to Xn =Yn+Zn. Since we don’t have Zn, we
use Qn in its place and form

X̂n =Yn+Qn =Xn+εn, (6.60)

where ε=Qn−Zn is the quantization noise in the nth sample. To complete the
process of recovering the sample values, the decoder must also form the Yn. It can
do this by employing an identical predictor as used at the encoder. Unfortunately,
the predictor at the decoder does not have access to the same input as the predictor
at the encoder. That is, at the decoder, we cannot use the true values of the past
speech samples, but rather must use the quantized (noisy) versions. This can be
problematic since the predictor at the decoder will now form

Ŷ =
m∑

i=1

aiX̂n−1. (6.61)

If the X̂n are noisy versions of the Xn, then the Ŷn will also be noisy. Now, not
only do we have quantization noise, but that noise propagates from one sample
to the next through the predictor. This leads to the possibility of a snowballing
effect, where the noise in our recovered samples gets progressively larger from
one sample to the next.

This problem is circumvented using the modified DPCM encoder shown in
Figure 6.3; the corresponding decoder is shown in the figure as well. The difference
between this DPCM system and the one in Figure 6.2 is that now the predictor used
in the encoder bases its predictions on the quantized samples rather than on the
true samples. By doing this, the predicted value may be slightly degraded (but
not much if the number of quantization levels is sufficient), but there will be no
propagation of errors in the decoder, since the predictor at the decoder now uses
the same inputs as the predictor at the encoder.

Now that we have the design of the speech encoder and decoder squared away,
we shift our attention to the problem of designing the predictor. Assuming a linear
predictor, the problem is essentially to choose the coefficients ai in Equation 6.59
to minimize the prediction error:

Zn =Xn−Yn =Xn−
m∑

i=1

aiXn−i. (6.62)
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Figure 6.3 Block diagram of a modified speech coder using differential pulse code
modulation.

In this example, we choose to minimize the second moment of the error:

E[Z2
n]=E

[(
Xn−

m∑
i=1

aiXn−i

)2
]

. (6.63)

Differentiating the preceding expression with respect to aj and setting it equal to
zero provides the following set of equations that the predictor coefficients should
satisfy:

m∑
i=1

aiE[Xn−iXn−j]=E[XnXn−j], j=1,2, . . . ,m. (6.64)

Define the correlation parameter rk to be the correlation between two samples
spaced by k sampling intervals. Then our system of equations can be expressed in
matrix form as




r0 r1 r2 . . . rm−1
r1 r0 r1 . . . rm−2
r2 r1 r0 . . . rm−3
. . . . . . . . . . . .

rm−1 rm−2 rm−3 . . . r0




=




a1
a2
a3
. . .
am




=




r1
r2
r3
. . .
rm




. (6.65)
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Figure 6.4 Speech segment used in Example 6.7.

EXAMPLE 6.7: Figure 6.4 shows a segment of speech that has a dura-
tion of about 2 seconds, which was sampled at a rate of 8kHz. From this
data, (using MATLAB) we estimated the correlation parameters rk =
E[XnXn+k]; found the linear prediction coefficients, ai, i=1,2, . . . ,m; and
then calculated the mean squared estimation error, MSE=E[Xn−Yn)2].
The results are shown in Table 6.1. We should note a couple of observa-
tions. First, even with a simple one-tap predictor, the size of the error
signal is much smaller than the original signal (compare the values of
MSE with r0 in the table). Second, we note that (for this example) there
does not seem to be much benefit gained from using more than two
previous samples to form the predictor.

Finally, we compare the quality of the encoded speech as measured
by the SQNR for PCM and the DPCM scheme of Figure 6.3 using the
two-tap predictor specified in Table 6.1. For an equal number of bits per
sample, the DPCM scheme improves the SQNR by more than 20 dB.
Alternatively, the DPCM scheme can use 3 bits/sample fewer than the
PCM scheme and still provide better SQNR.

Note that the SQNR is an objective measure of speech quality and is
poorly correlated with speech quality. For example, one can introduce
a time delay to the estimated signal and obtain a very low SQNR value,
yet the speech quality will be good.
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Table 6.1 Results of Linear Prediction of Speech Segment from Figure 6.4

r0 =0.0591 r1 =0.0568 r2 =0.0514 r3 =0.0442 r4 =0.0360

m=1 a1 =0.9615 MSE = 0.004473
m=2 a1 =1.6564 a2 =−0.7228 MSE = 0.002144
m=3 a1 =1.7166 a2 =−0.8492 a3 =0.0763 MSE = 0.002132
m=4 a1 =1.7272 a2 =−1.0235 a3 =0.4276 a4 =−0.2052 MSE = 0.002044
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Figure 6.5 SQNR comparison of PCM and DPCM speech coders for the speech segment
in Figure 6.4.

Exercises
6.1 Suppose we flip a coin three times, thereby forming a sequence of heads

and tails. Form a random vector by mapping each outcome in the sequence
to 0 if a head occurs or to 1 if a tail occurs.

(a) How many realizations of the vector may be generated? List them.
(b) Are the realizations independent of one another?

6.2 Let X=[X1,X2,X3]T represent a three-dimensional vector of random
variables that is uniformly distributed over the unit sphere. That is,

fX(x)=
{

c ||x||≤1
0 ||x||>1

.
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(a) Find the constant c.
(b) Find the marginal PDF for a subset of two of the three random variables.

For example, find fX1,X2 (x1,x2).
(c) Find the marginal PDF for one of the three random variables. That is,

find fX1 (x1).
(d) Find the conditional PDFs fX1|X2,X3 (x1|x2,x3) and fX1,X2|X3 (x1,x2|x3).

Extra: Can you extend this problem to N-dimensions?

6.3 Let X=[X1,X2, . . .XN]T represent an N-dimensional vector of random vari-
ables that is uniformly distributed over the region x1+x2+···+xN ≤1,
xi ≥0, i=1,2, . . . ,N. That is,

fX(x)=
{

c
∑N

i=1 xi ≤1,xi ≥0

0 otherwise
.

(a) Find the constant c.
(b) Find the marginal PDF for a subset of M of the N random variables.
(c) Are the Xi independent? Are the Xi identically distributed?

6.4 Consider a vector of N random variables, X=[X1,X2, . . . ,XN]T . Suppose
we form a new random variable Z by performing a weighted average of
the components of X. That is,

Z=
N∑

i=1

biXi, where bi ≥0 and
N∑

i=1

bi =1.

Find the values of the constants bi such that the variance of Z is minimized.

6.5 Show that all correlation matrices are nonnegative definite.

6.6 A random vector is generated by rolling a die and observing the outcome.
The components of the random vector are determined by successive rolls
of the die. If the die is rolled two times:

(a) list the possible realizations of the random vector;
(b) determine the probability of each realization;
(c) determine the mean vector;
(d) determine the covariance matrix.

6.7 Repeat parts (c) and (d) of Exercise 6.6 if a three-element vector is formed
from three rolls of a die.
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6.8 Let X be a two-element, zero-mean random vector. Suppose we construct
a new random vector Y according to a linear transformation, Y=TX. Find
the transformation matrix, T, such that Y has a covariance matrix of

C=
[

5 1
1 2

]
.

6.9 A three-dimensional vector random variable, X, has a covariance matrix of

C=

 3 1 −1

1 5 −1
−1 −1 3


 .

Find a transformation matrix A, such that the new random variables Y=AX
will be uncorrelated.

6.10 Let X1, X2, and X3 be a set of three zero-mean Gaussian random variables
with a covariance matrix of the form

C=σ 2


1 ρ ρ

ρ 1 ρ

ρ ρ 1


 .

Find the following expected values:

(a) E[X1|X2 =x2,X3 =x3],
(b) E[X1X2|X3 =x3],
(c) E[X1X2X3].

6.11 Define the N-dimensional characteristic function for a random vector X=
[X1,X2, . . . ,XN]T , according to �X(�)=E[ej�T X] where �=[ω1,ω2, . . . ,ωN]T .
Show that the N-dimensional characteristic function for a zero-mean
Gaussian random vector is given by

�X(�)=exp

(
−�TCXX�

2

)
.

6.12 For any four zero-mean Gaussian random variables X1,X2,X3, and X4,
show that

E[X1X2X3X4]=E[X1X2]E[X3X4]+E[X1X3]E[X2X4]+E[X1X4]E[X2X3].

Hint: You might want to use the result of Exercise 6.11.
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6.13 Suppose Xm, m=1,2, . . . ,n are a sequence of independent and exponentially
distributed random variables with

fXm (x)= 1
µ

exp(−x/µ)u(x).

Assume that n is an odd number (n=2k−1 for some integer k).

(a) Find the PDF of the median of the sequence.
(b) Find the expected value of the median of the sequence. Is the median

an unbiased estimate of the mean of the underlying exponential
distribution?

(c) Find the variance of the median of the sequence.

6.14 Show that the derivative of

FYm (y)=
N∑

k=m

(
N
k

)
(FX(y))k(1−FX(y))N−k

reduces to the form

fYm (y)= N!
(m−1)!(N−m)! fX(y)(FX(y))m−1(1−FX(y))N−m.

6.15 In this problem we formulate an alternative derivation of Equation 6.58
that gives the PDF of the order statistic, Ym, which is the mth largest of a
sequence of N random variables, X1,X2, . . . ,XN . Start by writing fYm (y)dy =
Pr(y <Ym <y+dy). Then note that

Pr(y <Ym <y+dy)=Pr({m−1 of the Xs are less than y}∩
{1 X is between y and y+dy}∩{n−m of the Xs are greater than y}).

Find the probability of this event and by doing so, prove that the PDF of
Ym is as given by Equation 6.58.

6.16 The traffic managers of toll roads and toll bridges need specific information
to properly staff the toll booths so that the queues are minimized (i.e., the
waiting time is minimized).

(a) Assume that there is one toll booth on a busy interstate highway and
that the number of cars per minute approaching the toll booth follows a
Poisson PMF with α=10. The traffic manager wants you to determine
the probability that exactly 11 cars will approach this toll booth in the
minute from noon to one minute past noon.
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(b) Now assume there are N toll booths at a toll plaza and that the num-
ber of cars per minute approaching the plaza follows a Poisson PMF
with α=30. The traffic manager wants you to calculate the minimum
number of toll booths that need to be staffed if the probability is at
least 0.05 that not more than five cars approach each toll booth in one
minute. For this part, assume the traffic approaching the plaza divides
itself among the N booths such that the traffic approaching each booth
is independent and follows a Poisson PMF with α=30/N.

6.17 A sequence of zero mean unit variance independent random variables, Xn,
n=0,1,2, . . . ,N−1 are input to a filter that produces an output sequence
according to Yn = (Xn+Xn−1)/2 for n=0,1,2, . . . ,N−1. For initialization
purposes, X−1 is taken to be zero.

(a) Find the covariance (correlation) matrix of the Yn.
(b) Now let the variance of the Xn be σ 2

X . Find the covariance (correlation)
matrix of the Yn.

6.18 Repeat Exercise 6.17 with the filter changed to Yn =Xn−Xn−1.

6.19 Suppose a zero-mean random sequence Xn has correlation parameters
given by rk =E[XnXn+k]= c|k|. An estimate of a future value of Xn is
X̂n =a1Xn−1+a2Xn−2, which is a special case of Equation 6.59.

(a) Use Equation 6.65 to find the ai.
(b) What is the mean squared error, E[(Xn−X̂n)2]?

MATLAB Exercises
6.20 Three jointly Gaussian random variables [X,Y,Z]T have a mean vector

µ=[1,0,−1]T and covariance matrix

C=

 4 2 −1

2 4 2
−1 2 4


 .

Use MATLAB to help you find the form of the three-dimensional joint PDF,
fX,Y,Z(x,y,z).

6.21 For each of the following matrices, determine if the matrix is a valid cor-
relation matrix. In some cases, you may want to use MATLAB to check if
the matrix is positive definite.
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(a) Ca =

 3 −2 1

2 6 0
−1 0 2


 , (b) Cb =


 3 −2 3

−2 6 0
3 0 2


 ,

(c) Cc =

 3 −2 1

−2 6 0
1 0 2


 , (d) Cd =




1 −1
2

1
4

−1
8

−1
2

1 −1
2

1
4

1
4

−1
2

1 −1
2

−1
8

1
4

−1
2

1




,

(e) Ce =




11 −3 7 5
−3 11 5 7
7 5 11 −3
5 7 −3 11


 , (f) Cf =




5 1 3 −1
1 5 −1 3
3 −1 5 1

−1 3 1 5


 .

6.22 For each matrix in the previous problem that is a valid correlation matrix,
find a transformation matrix that will transform a set of independent unit
variance random variables into a set of random variables with the specified
correlation matrix.

6.23 Given a random sequence X=[X1,X2,X3,X4] with a covariance matrix

CX =




1 0.3 0.09 0.027
0.3 1 0.3 0.027

0.09 0.3 1 0.3
0.0027 0.09 0.3 1


 ,

find a linear transformation that will produce a random sequence Y=
[Y1,Y2,Y3,Y4] with a covariance matrix

CY =




1 0.1 0.2 0.3
0.1 1 0.1 0.2
0.2 0.1 1 0.1
0.3 0.2 0.1 1


 .



Random Sequences and
Series 7

This chapter forms a bridge between the study of random variables in the previous
chapters and the study of random processes to follow. A random process is simply
a random function of time. If time is discrete, then such a random function could
be viewed as a sequence of random variables. Even when time is continuous, we
often choose to sample waveforms (whether they are deterministic or random) in
order to work with discrete time sequences rather than continuous time waveforms.
Hence, sequences of random variables will naturally occur in the study of random
processes. In this chapter, we’ll develop some basic results regarding both finite
and infinite sequences of random variables and random series.

7.1 Independent and Identically
Distributed Random Variables

In many applications, we are able to observe an experiment repeatedly. Each new
observation can occur with an independent realization of whatever random phe-
nomena control the experiment. This sort of situation gives rise to independent and
identically distributed (i.i.d. or IID) random variables.

DEFINITION 7.1: A sequence of random variables X1, X2, . . . , Xn is IID if

FXi (x) = FX(x) ∀ i = 1, 2, . . . , n (identically distributed), (7.1)

239
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and

FX1, X2, ... ,Xn (x1, x2, . . . , xn) =
n∏

i=1

FXi (xi) (independent). (7.2)

For continuous random variables, the CDFs can be replaced with PDFs in
Equations 7.1 and 7.2, while for discrete random variables the CDFs can be replaced
by PMFs.

Suppose, for example, we wish to measure the voltage produced by a certain
sensor. The sensor might be measuring the relative humidity outside. Our sensor
converts the humidity to a voltage level that we can then easily measure. However,
as with any measuring equipment, the voltage we measure is random due to noise
generated in the sensor as well as in the measuring equipment. Suppose the voltage
we measure is represented by a random variable X given by X = v(h) + N, where
v(h) is the true voltage that should be presented by the sensor when the humidity
is h, and N is the noise in the measurement. Assuming that the noise is zero-mean,
then E[X] = v(h). That is, on the average, the measurement will be equal to the
true voltage v(h). Furthermore, if the variance of the noise is sufficiently small,
then the measurement will tend to be close to the true value we are trying to
measure. But what if the variance is not small? Then the noise will tend to distort
our measurement making our system unreliable. In such a case, we might be able
to improve our measurement system by taking several measurements. This will
allow us to “average out” the effects of the noise.

Suppose we have the ability to make several measurements and observe a
sequence of measurements X1, X2, . . . , Xn. It might be reasonable to expect that
the noise that corrupts a given measurement has the same distribution each time
(and hence the Xi are identically distributed) and is independent of the noise in
any other measurement (so that the Xi are independent). Then the n measurements
form a sequence of IID random variables. A fundamental question is then How do
we process an IID sequence to extract the desired information from it? In the pre-
ceding case above, the parameter of interest, v(h), happens to be the mean of the
distribution of the Xi. This turns out to be a fairly common problem, so we start by
examining in some detail the problem of estimating the mean from a sequence of
IID random variables.

7.1.1 Estimating the Mean of IID Random Variables

Suppose the Xi have some common PDF, fX(x), which has some mean value, µX .
Given a set of IID observations, we wish to form some function

µ̂ = g(X1, X2, . . . , Xn), (7.3)
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which will serve as an estimate of the mean. But what function should we choose?
Even more fundamentally, what criterion should we use to select a function?

There are many criteria that are commonly used. To start with, we would like
the average value of the estimate of the mean to be equal to the true mean. That is,
we want E[µ̂] = µX . If this criterion is met, we say that µ̂ is an unbiased estimate of
µX . Given that the estimate is unbiased, we would also like the error in the estimate
to be as small as possible. Define the estimation error to be ε = µ̂−µX . A common
criterion is to choose the estimator that minimizes the second moment of the error
(mean-square error), E

[
ε2] = E

[
(µ̂ − µX)2]. If this criterion is met, we say that µ̂

is an efficient estimator of µX . To start with a relatively simple approach, suppose
we desire to find a linear estimator. That is, we will limit ourselves to estimators
of the form

µ̂ = a1X1 + a2X2 + · · · + anXn =
n∑

i=1

aiXi. (7.4)

Then, we seek to find the constants a1, a2, . . . , an such that the estimator (1) is unbi-
ased and (2) minimizes the mean-square error. Such an estimator is referred to as
the best linear unbiased estimator (BLUE).

To simplify notation in this problem, we write X = [X1, X2, . . . , Xn]T and a =
[a1, a2, . . . , an]T . The linear estimator µ̂ can then be written as µ̂ = aTX. First, for
the estimator to be unbiased, we need

µX = E[µ̂] = E
[
aTX

] = aTE[X]. (7.5)

Since the Xi are all IID, they all have means equal to µX . Hence, the mean vector
for X is just µX1n, where 1n is an n-element column vector of all 1s. The linear
estimator will then be unbiased if

n∑

i=1

ai = aT1n = 1. (7.6)

The mean square error is given by

E
[
ε2] = E

[(
aTX − µX

)2] = aTE
[
XXT]a − 2µXaTE[X] + µ2

X

= aTRa − 2µ2
XaT1n + µ2

X . (7.7)

In this expression, R = E[XXT ] is the correlation matrix for the vector X. Using the
constraint of Equation 7.6, the mean square error simplifies to

E[ε2] = aTRa − µ2
X . (7.8)

The problem then reduces to minimizing the function aTRa subject to the constraint
aT1n = 1.
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To solve this multidimensional optimization problem, we use standard
Lagrange multiplier techniques. Form the auxiliary function

h(λ) = aTRa + λaT1n. (7.9)

Then solve the equation ∇h = 0. It is not difficult to show that the gradient of the
function h works out to be ∇h = 2Ra + λ1n. Hence, the optimum vector a will
satisfy

Ra =
(

−λ

2

)
1n. (7.10)

Solving for a in this equation and then applying the constraint aT1n = 1 results in
the solution

a = R−11n

1T
n R−11n

. (7.11)

Due to the fact that the Xi are IID, the form of the correlation matrix can easily
be shown to be

R = µ2
X1nxn + σ 2

XI, (7.12)

where 1nxn is an nxn matrix consisting of all 1s and I is an identity matrix. Also,
σ 2

X is the variance of the IID random variables. It can be shown using the matrix
inversion lemma1 that the inverse of this correlation matrix is

R−1 = σ−2
X

[
I − µ2

X/σ 2
X

1 + nµ2
X/σ 2

X

1nxn

]
. (7.13)

From here, it is easy to demonstrate that R−11n is proportional to 1n, and hence the
resulting vector of optimum coefficients is

a = 1
n

1n. (7.14)

In terms of the estimator µ̂, the best linear unbiased estimator of the mean of an
IID sequence is

µ̂ = 1
n

1T
n X = 1

n

n∑

i=1

Xi. (7.15)

1The matrix inversion lemma gives a formula to find the inverse of a rank one update of
another matrix whose inverse is known. In particular, suppose A = B + xxT , where x is a
column vector and the inverse of B is known. Then

A−1 = B−1 − B−1xxT B−1

1 + xT B−1x
.
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This estimator is commonly referred to as the sample mean. The preceding derivation
proves Theorem 7.1, which follows.

THEOREM 7.1: Given a sequence of IID random variables X1, X2, . . . , Xn, the
sample mean is BLUE.

Another common approach to estimate various parameters of a distribution is
the maximum likelihood (ML) approach. In the ML approach, the distribution parame-
ters are chosen to maximize the probability of the observed sample values. Suppose,
as in the preceding discussion, we are interested in estimating the mean of a distri-
bution. Given a set of observations, X1 = x1, X2 = x2, . . . , Xn = xn, the ML estimate
of µX would be the value of µX that maximizes fX(x). A few examples will clarify
this concept.

EXAMPLE 7.1: Suppose the Xi are jointly Gaussian so that

fX(x) = 1
(2πσ 2)n/2

exp

(
− 1

2σ 2

n∑

i=1

(xi − µ)2

)
.

The value of µ that maximizes this expression will minimize
n∑

i=1

(xi − µ)2.

Differentiating and setting equal to zero gives the equation

−2
n∑

i=1

(xi − µ) = 0.

The solution to this equation works out to be

µ̂ML = 1
n

n∑

i=1

xi.

Hence, the sample mean is also the ML estimate of the mean when the
random variables follow a Gaussian distribution.

EXAMPLE 7.2: Now suppose the random variables have an exponen-
tial distribution,

fX(x) =
n∏

i=1

1
µ

exp
(

−xi

µ

)
u(xi) = 1

µn exp

(
− 1

µ

n∑

i=1

xi

) n∏

i=1

u(xi).
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Differentiating with respect to µ and setting equal to zero results in

− n
µn+1 exp

(
− 1

µ

n∑

i=1

xi

)
+ 1

µ2

( n∑

i=1

xi

)
1
µn exp

(
− 1

µ

n∑

i=1

xi

)
= 0.

Solving for µ results in

µ̂ML = 1
n

n∑

i=1

xi.

Once again, the sample mean is the maximum likelihood estimate of the
mean of the distribution.

Since the sample mean occurs so frequently, it is beneficial to study this esti-
mator in a little more detail. First, we note that the sample mean is itself a random
variable since it is a function of the n IID random variables. We have already seen
that the sample mean is an unbiased estimate of the true mean; that is, E[µ̂] = µX .
It is instructive also to look at the variance of this random variable.

Var(µ̂) = E




(

1
n

n∑

i=1

Xi − µX

)2


 = E




(

1
n

n∑

i=1

(Xi − µX)

)2




= 1
n2

n∑

i=1

n∑

j=1

E[(Xi − µX)(Xj − µX)]

= 1
n2

n∑

i=1

n∑

j=1

E[(Xi − µX)(Xj − µX)] = 1
n2

n∑

i=1

n∑

j=1

Cov(Xi, Xj) (7.16)

All terms in the double series in the previous equation are zero except for the ones
where i = j since Xi and Xj are uncorrelated for all i �= j. Hence, the variance of the
sample mean is

Var(µ̂) = 1
n2

n∑

i=1

Var(Xi) = 1
n2

n∑

i=1

σ 2
X = σ 2

X
n

. (7.17)

This means that if we use n samples to estimate the mean, the variance of the
resulting estimate is reduced by a factor of n relative to what the variance would
be if we used only one sample.

Consider what happens in the limit as n → ∞. As long as the variance of each of
the samples is finite, the variance of the sample mean approaches zero. Of course,
we never have an infinite number of samples in practice, but this does mean that
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the sample mean can achieve any level of precision (i.e., arbitrarily small variance)
if a sufficient number of samples is taken. We will study this limiting behavior
in more detail in section 7.3. For now, we turn our attention to estimating other
parameters of a distribution.

7.1.2 Estimating the Variance of IID Random
Variables

Now that we have a handle on how to estimate the mean of IID random variables,
suppose we would like also to estimate the variance (or equivalently, the standard
deviation). Since the variance is not a linear function of the random variables, it
would not make much sense to try to form a linear estimator. That is, to talk about
an estimator of the variance being BLUE does not make much sense. Hence, we
take the ML approach here. As with the problem of estimating the mean, we seek
the value of the variance that maximizes the joint PDF of the IID random variables
evaluated at their observed values.

EXAMPLE 7.3: Suppose that the random variables are jointly Gaussian
so that

fX(x) = 1
(2πσ 2)n/2

exp

(
− 1

2σ 2

n∑

i=1

(xi − µ)2

)
.

Differentiating the joint PDF with respect to σ results in

d
dσ

fX(x)=
(

− n
σ

+ 1
σ 3

n∑

i=1

(xi−µ)2

)
1

(2πσ 2)n/2
exp

(
− 1

2σ 2

n∑

i=1

(xi−µ)2

)
.

Setting this expression equal to zero and solving results in

σ̂ 2
ML = 1

n

n∑

i=1

(xi − µ)2.

The result of Example 7.3 seems to make sense. The only problem with this
estimate is that it requires knowledge of the mean in order to form the estimate.
What if we don’t know the mean? One obvious approach would be to replace the
true mean in the previous result with the sample mean. That is, one could estimate
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the variance of an IID sequence using

ŝ2 = 1
n

n∑

i=1

(xi − µ̂)2, µ̂ = 1
n

n∑

i=1

xi. (7.18)

This approach, however, can lead to problems. It is left as an exercise for the reader
to show that this estimator is biased; that is, in this case, E[σ̂ 2] �= σ 2. To overcome
this problem, it is common to adjust the previous form. The following estimator
turns out to be an unbiased estimate of the variance:

ŝ2 = 1
n − 1

n∑

i=1

(xi − µ̂)2. (7.19)

This is known as the sample variance and is the most commonly used estimate for
the variance of IID random variables. In the previous expression, µ̂ is the usual
sample mean.

In summary, given a set of IID random variables, the variance of the distribution
is estimated according to

ŝ2 =






1
n

n∑

i=1

(xi − µ)2 if µ is known

1
n − 1

n∑

i=1

(xi − µ̂)2 if µ is unknown

(7.20)

EXAMPLE 7.4: Suppose we form a random variable Z accord-
ing to Z =

√
X2 + Y2 where X and Y are independent Gaussian

random variables with means of µ and variances of σ 2. In this
example, we will estimate the mean and variance of Z using the

sample mean and sample variance of a large number of MATLAB-generated
realizations of the random variable Z. The MATLAB code to accomplish this
follows. Upon running this code, we obtain a sample mean of µ̂ = 5. 6336 and
a sample variance of ŝ2 = 8. 5029. Note that the true mean and variance of the
Rician random variable Z can be found analytically (with some effort). For
this example, the PDF of the random variable Z is found to take on a Rician
form

fZ(z) = z
σ 2 exp

(
−z2 + 2µ2

2σ 2

)
I0

(√
2µz
σ 2

)
u(z).



7.1 Independent and Identically Distributed Random Variables 247

Using the expressions given in Appendix D, Summary of Common Random
Variables (see Equations D.52 and D.53), for the mean and variance of a Rician
random variable, it is determined that the true mean and variance should be

µZ =
√

πσ 2

2
exp

(
− µ2

2σ 2

)[(
1 + µ2

σ 2

)
Io

(
µ2

2σ 2

)
+ µ2

σ 2 I1

(
µ2

2σ 2

)]
,

σ 2
Z = 2σ 2 + 2µ2 − µ2

Z.

For the values of µ = 2 and σ = 4 used in the following program, the resulting
mean and variance of the Rician random variable should be µZ = 5. 6211 and
σ 2

Z = 8. 4031.

N=10000;

mu=2; sigma=4; % Set mean and standard

deviation of X and Y.

X=sigma*randn(1,N)+mu; % Generate samples of X.

Y=sigma*randn(1,N)+mu; % Generate samples of Y.

Z=sqrt(X.∧2+Y.∧2); % Create Z (Rician RVs).

mu_hat=sum(Z)/N % Sample mean.

s_hat2=sum((Z-mu_hat).∧2)/(N-1) % Sample variance.

7.1.3 Estimating the CDF of IID Random Variables

Suppose instead of estimating the parameters of a distribution, we were interested
in estimating the distribution itself. This can be done using some of the previous
results. The CDF of the underlying distribution is FX(x) = Pr(X ≤ x). For any
specific value of x, define a set of related variables Y1, Y2, . . . , Yn such that

Yi =
{

1 if Xi ≤ x

0 if Xi > x
. (7.21)

It should be fairly evident that if the Xi are IID, then the Yi must be IID as well.
Note that for these Bernoulli random variables, the mean is E[Yi] = Pr(Xi ≤ x).
Hence, estimating the CDF of the Xi is equivalent to estimating the mean of the Yi,
which is done using the sample mean:

F̂X(x) = 1
n

n∑

i=1

Yi = 1
n

n∑

i=1

[1 − u(Xi − x)]. (7.22)
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This estimator is nothing more than the relative frequency interpretation of prob-
ability. To estimate FX(x) from a sequence of n IID observations, we merely count
the number of observations that satisfy Xi ≤ x.

EXAMPLE 7.5: To illustrate this procedure of estimating the CDF
of IID random variables, suppose the Xi are all uniformly dis-
tributed over (0, 1). The plot in Figure 7.1 shows the results of one
realization of estimating this CDF using n IID random variables

for n = 10, n = 100, and n = 1000. Clearly, as n gets larger, the estimate gets
better. The MATLAB code that follows can be used to generate a plot similar
to the one in the figure. The reader is encouraged to try different types of
random variables in this program as well.

N=100; % Set number of samples.

z=[-0.5:0.01:1.5]; % Define variable for horizontal axis.

x=rand(1,N); % Generate uniform random samples.

F=zeros(1,length(z)); % Initialize CDF estimate.

for n=1:N % Estimate CDF.

F=F+(x(n)<z);

end

−0.5 0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
X
(x

)

x

n=10  
n=100 
n=1000

Figure 7.1 Estimate of the CDF of a uniform random variable obtained from n IID random
variables, n = 10, 100, and 1000.
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F=F/N;

plot(z,F) % Plot results.

xlabel(‘x’); ylabel(‘F_X(x)’)

7.2 Convergence Modes of Random
Sequences

In many engineering applications, it is common to use various iterative procedures.
In such cases, it is often important to know under what circumstances an iterative
algorithm converges to the desired result. The reader is no doubt familiar with
many such applications in the deterministic world. For example, suppose we wish
to solve for the root of some equation g(x) = 0. One could do this with a variety of
iterative algorithms (e.g., Newton’s method). The convergence of these algorithms
is a quite important topic. That is, suppose xi is the estimate of the root at the ith
iteration of Newton’s method. Does the sequence x1, x2, x3, . . . converge to the true
root of the equation? In this section, we study the topic of random sequences and
in particular the issue of convergence of random sequences.

As an example of a random sequence, suppose we started with a set of IID
random variables, X1, X2, . . . , Xn, and then formed the sample mean according to

Sn = 1
n

n∑

i=1

Xi. (7.23)

The sequence S1, S2, S3, . . . is a sequence of random variables. It is desirable that this
sequence converge to the true mean of the underlying distribution. An estimator
satisfying this condition is called consistent. But in what sense can we say that the
sequence converges? If a sequence of deterministic numbers s1, s2, s3, . . . were being
considered, the sequence would be convergent to a fixed value s if

lim
i→∞

si = s. (7.24)

More specifically, if for any ε > 0, there exists an iε such that |si − s| < ε for all
i > iε, then the sequence is said to converge to s.

Suppose an experiment, E, is run resulting in a realization, ζ . Each realization is
mapped to a particular sequence of numbers. For example, the experiment might
be to observe a sequence of IID random variables X1, X2, X3, . . . and then map
them into a sequence of sample means S1, S2, S3, . . .. Each realization, ζ , leads to
a specific deterministic sequence, some of which might converge (in the previous
sense) while others might not converge. Convergence for a sequence of random
variables is not straightforward to define and can occur in a variety of manners.
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7.2.1 Convergence Everywhere

The first and strictest form of convergence is what is referred to as convergence
everywhere (a.k.a. sure convergence). A sequence is said to converge everywhere
if every realization, ζ , leads to a sequence, sn(ζ ), that converges to s(ζ ). Note that
the limit may depend on the particular realization. That is, the limit of the random
sequence may be a random variable.

7.2.2 Convergence Almost Everywhere

In many examples, it may be possible to find one or several realizations of the
random sequence that do not converge, in which case the sequence (obviously) does
not converge everywhere. However, it may be the case that such realizations are
so rare that we might not want to concern ourselves with such cases. In particular,
suppose that the only realizations that lead to a sequence that does not converge
occur with probability zero. Then we say the random sequence converges almost
everywhere (a.k.a. almost sure convergence or convergence with probability 1).
Mathematically, let A be the set of all realizations that lead to a convergent sequence.
Then the sequence converges almost everywhere if Pr(A) = 1.

7.2.3 Convergence in Probability

A random sequence S1, S2, S3, . . . converges in probability to a random variable S
if for any ε > 0,

lim
n→∞ Pr

(∣∣Sn − S
∣∣ > ε

) = 0. (7.25)

7.2.4 Convergence in the Mean Square (MS)
Sense

A random sequence S1, S2, S3, . . . converges in the MS sense to a random vari-
able S if

lim
n→∞ E

[∣∣Sn − S
∣∣2
]

= 0. (7.26)
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7.2.5 Convergence in Distribution

Suppose the sequence of random variables S1, S2, S3, . . . has CDFs given by FSn (s),
and the random variable S has a CDF, FS(s). Then, the sequence converges in
distribution if

lim
n→∞ FSn (s) = FS(s) (7.27)

for any s that is a point of continuity of FS(s).

7.3 The Law of Large Numbers

Having described the various ways in which a random sequence can converge, we
return now to the study of sums of random variables. In particular, we look in
more detail at the sample mean. The following very well known result is known
as the weak law of large numbers.

THEOREM 7.2 (The Weak Law of Large Numbers): Let Sn be the sample mean
computed from n IID random variables, X1, X2, . . . , Xn. The sequence of sam-
ple means, Sn, converges in probability to the true mean of the underlying
distribution, FX(x).

PROOF: Recall that if the distribution FX(x) has a mean of µ and variance σ 2,
then the sample mean, Sn, has mean µ and variance σ 2/n. Applying Chebyshev’s
inequality,

Pr(
∣∣Sn − µ

∣∣ > ε) ≤ Var(Sn)
ε2 = σ 2

nε2 . (7.28)

Hence, limn→∞ Pr(
∣∣Sn − µ

∣∣ > ε) = 0 for any ε > 0. Thus, the sample mean
converges in probability to the true mean. �

The implication of this result is that we can estimate the mean of a random variable
with any amount of precision with arbitrary probability if we use a sufficiently
large number of samples. A stronger result known as the strong law of large numbers
shows that the convergence of the sample mean is not just in probability but also
almost everywhere. We do not give a proof of this result in this text.

As was demonstrated in Section 7.2.3, the sample mean can be used to estimate
more than just means. Suppose we are interested in calculating the probability that
some event A results from a given experiment. Assuming that the experiment is
repeatable and that each time the results of the experiment are independent of all
other trials, then Pr(A) can easily be estimated. Simply define a random variable Xi
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that is an indicator function for the event A on the ith trial. That is, if the event A
occurs on the ith trial, then Xi = 1; otherwise, Xi = 0. Then

Pr(A) = Pr(Xi = 1) = E[Xi]. (7.29)

The sample mean,

µ̂n = 1
n

n∑

i=1

Xi, (7.30)

will give an unbiased estimate of the true probability, Pr(A). Furthermore, the law of
large numbers tells us that as the sample size gets large, the estimate will converge
to the true value. The weak law of large numbers tells us that the convergence is
in probability while the strong law of large numbers tells us that the convergence
is also almost everywhere.

The technique we’ve described for estimating the probability of events is known
as the Monte Carlo simulation. It is commonly used, for example, to estimate the
bit error probability of a digital communication system. A program is written to
simulate transmission and detection of data bits. After a large number of data bits
have been simulated, the number of errors is counted and divided by the total
number of bits transmitted. This gives an estimate of the true probability of bit
error of the system. If a sufficiently large number of bits are simulated, arbitrary
precision of the estimate can be obtained.

EXAMPLE 7.6: This example shows how the sample mean and
sample variance converge to the true mean for a few different
random variables. The results of running the MATLAB code that
follows are shown in Figure 7.2. Plot (a) shows the results for a

Gaussian distribution, whereas plot (b) shows the same results for an arcsine
random variable. In each case, the parameters have been set so that the true
mean is µ = 3 and the variance of each sample is 1. Since the variance of the
sample mean depends on only the variance and the number of the samples,
crudely speaking the “speed” of convergence should be about the same in
both cases.

N=100;

% Create Gaussian random variables.
mu1=3; sigma1=1;
X1=sigma1*randn(1,N)+mu1;
mu_hat1=cumsum(X1)./[1:N]; % sample means.

% Create Arcsine random variables.
mu2=3; b=sqrt(2); sigma2=b∧2/2;
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Figure 7.2 Convergence of the sample mean for Gaussian (a) and Arcsine (b) random
variables.

X2=b*cos(2*pi*rand(1,N))+mu2;

mu_hat2=cumsum(X2)./[1:N]; % sample means.

subplot(2,1,1)

plot([1:N],mu_hat1,‘-’,[1:N], mu1, ‘–’)

xlabel(‘n’); ylabel(‘S_n’); title(‘Gaussian’)

axis([0,N,0,2*mu1])

subplot(2,1,2)

plot([1:N],mu_hat2,‘-’,[1:N], mu2, ‘–’)

xlabel(‘n’); ylabel(‘S_n’); title(‘Arcsine’)

axis([0,N,0,2*mu2])

7.4 The Central Limit Theorem

Probably the most important result dealing with sums of random variables is the
central limit theorem, which states that under some mild conditions, these sums
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converge to a Gaussian random variable in distribution. This result provides the
basis for many theoretical models of random phenomena. It also explains why
the Gaussian random variable is of such great importance and why it occurs so
frequently. In this section, we prove a simple version of the central limit theorem
and then discuss some of the generalizations.

THEOREM 7.3 (The Central Limit Theorem): Let Xi be a sequence of IID random
variables with mean µX and variance σ 2

X . Define a new random variable, Z, as a
sum of the Xi:

Z = 1√
n

n∑

i=1

Xi − µX

σx
. (7.31)

Note that Z has been constructed such that E[Z] = 0 and Var(Z) = 1. In the limits
as n approaches infinity, the random variable Z converges in distribution to a
standard normal random variable.

PROOF: The most straightforward approach to prove this important theorem is
using characteristic functions. Define the random variable X̂i as X̂i = (Xi −µX)/σX .
The characteristic function of Z is computed as

�Z(ω) = E[ejωZ] = E

[
exp

(
jω√

n

n∑

i=1

X̂i

)]
= E

[ n∏

i=1

exp

(
jωX̂i√

n

)]

=
n∏

i=1

E

[
exp

(
jωX̂i√

n

)]
=

n∏

i=1

φX̂

(
ω√
n

)
=
[
φX̂

(
ω√
n

)]n

. (7.32)

Next, recall Taylor’s theorem2, which states that any function g(x) can be expanded
in a power series of the form

g(x) = g(xo) + dg
dx

∣∣∣∣
x=xo

(x − xo) + · · · + 1
k!

dkg
dxk

∣∣∣∣
x=xo

(x − xo)k + rk(x, xo), (7.33)

where the remainder rk(x, xo) is small compared to (x − xo)k as x → xo. Applying
the Taylor series expansion about the point ω = 0 to the characteristic function of
X̂ results in

φX̂(ω) = φX̂(0) + φ
′
X̂

(0)ω + 1
2
φ

′′
X̂

(0)ω2 + r3(ω), (7.34)

2See, for example, Marsden, J. and A. Tromba, Vector Calculus, 5th ed., New York:
W. H. Freeman, 2004.
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where r3(ω) is small compared to ω2 as ω → 0. Furthermore, we note that φX̂(0) = 1,
φ

′
X̂

(0) = jE[X̂] = 0, and φ
′′
X̂

(0) = −E[X̂2] = −1. Hence Equation 7.34 reduces to

φX̂(ω) = 1 − ω2

2
+ r3(ω). (7.35)

The characteristic function of Z is then

�Z(ω) =
(

1 − ω2

2n
+ r3

(
ω√
n

))n

. (7.36)

Note that as n → ∞, the argument of r3( ) goes to zero for any finite ω. Hence, as
n → ∞, r3(ω/

√
n) becomes negligible compared to ω2/n. Therefore, in the limit,

the characteristic function of Z approaches3

lim
n→∞ �Z(ω) = lim

n→∞

(
1 − ω2

2n

)n

= exp

(
−ω2

2

)
. (7.37)

This is the characteristic function of a standard normal random variable. �

Several remarks about this theorem are in order at this point. First, no restric-
tions were put on the distribution of the Xi. The preceding proof applies to any
infinite sum of IID random variables, regardless of the distribution. Also, the cen-
tral limit theorem guarantees that the sum converges in distribution to Gaussian,
but this does not necessarily imply convergence in density. As a counterexample,
suppose that the Xi are discrete random variables. Then the sum must also be a dis-
crete random variable. Strictly speaking, the density of Z would then not exist and
it would not be meaningful to say that the density of Z is Gaussian. From a prac-
tical standpoint, the probability density of Z would be a series of impulses. While
the envelope of these impulses would have a Gaussian shape to it, the density is
clearly not Gaussian. If the Xi are continuous random variables, the convergence
in density generally occurs as well.

The proof of the central limit theorem just given assumes that the Xi are IID.
This assumption is not needed in many cases. The central limit theorem also applies
to independent random variables that are not necessarily identically distributed.

3Here we have used the well-known fact that lim
n→∞(1 + (x/n))n = ex. To establish this

result, the interested reader is encouraged to expand both sides in a Taylor series and show
that in the limit the two expansions become equivalent.
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Loosely speaking4, all that is required is that no single term (or small number of
terms) dominate the sum and the resulting infinite sum of independent random
variables will approach a Gaussian distribution in the limit as the number of terms
in the sum goes to infinity. The central limit theorem also applies to some cases of
dependent random variables, but we will not consider such cases here.

From a practical standpoint, the central limit theorem implies that for the
sum of a sufficiently large (but finite) number of random variables, the sum is
approximately Gaussian distributed. Of course, the goodness of this approximation
depends on how many terms are in the sum and also on the distribution of the
individual terms in the sum. The next examples show some illustrations to give
the reader a feel for the Gaussian approximation.

EXAMPLE 7.7: Suppose the Xi are all independent and uniformly
distributed over (−1/2, 1/2). Consider the sum

Z =
√

12
n

n∑

i=1

Xi.

The sum has been normalized so that Z has zero-mean and unit variance.
It was shown previously that the PDF of the sum of independent random
variables is just the convolution of the individual PDFs. Hence, if we
define Y to be Y = X1 + X2 + · · · + Xn, then

fY(z) = fX(z) ∗ fX(z) ∗ · · · ∗ fX(z), and fZ(z) =
√

n
12

fY

(
z
√

n
12

)
.

The results of performing this n-fold convolution are shown in Figure 7.3
for several values of n. Note that for as few as n = 4 or n = 5 terms
in the series, the resulting PDF of the sum looks very much like the
Gaussian PDF.

EXAMPLE 7.8: In this example, suppose the Xi are now discrete
Bernoulli distributed random variables such that Pr(Xi = 1) =
Pr(Xi = 0) = 0. 5. In this case, the sum Y = X1 + X2 + · · · + Xn is

4Formal conditions can be found in Papoulis, A. and Pillai, S. Unnikrishna, Probability,
Random Variables, and Stochastic Processes, 4th ed., New York: McGraw-Hill, 2001.
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Figure 7.3 (a) PDF of the sum of independent uniform random variables, n = 2, 3; (b) PDF
of the sum of independent uniform random variables, n = 4, 5.

a binomial random variable with PMF given by

Pr(Y = k) =
(

n
k

)(
1
2

)n

, k = 0, 1, 2, . . . , n.

The corresponding CDF is

FY(y) =
n∑

k=0

(
n
k

)(
1
2

)n

u(y − k).

The random variable Y has a mean of E[Y] = n/2 and a variance
of Var(Y) = n/4. In Figure 7.4, this binomial distribution is com-
pared to a Gaussian distribution with the same mean and variance.
It is seen that for this discrete random variable, many more terms are
needed in the sum before good convergence to a Gaussian distribution is
achieved.
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Figure 7.4 CDF of the sum of independent Bernoulli random variables, n = 5, 25.

7.5 Confidence Intervals

Consider once again the problem of estimating the mean of a distribution from
n IID observations. When the sample mean µ̂ is formed, what have we actually
learned? Loosely speaking, we might say that our best guess of the true mean is
µ̂. However, in most cases, we know that the event {µ̂ = µ} occurs with zero
probability (since if µ̂ is a continuous random variable, the probability of it taking
on any point value is zero). Alternatively, it could be said that (hopefully) the true
mean is “close” to the sample mean. While this is a vague statement, with the help
of the central limit theorem, we can make the statement mathematically precise.

If a sufficient number of samples is taken, the sample mean can be well
approximated by a Gaussian random variable with a mean of E[µ̂] = µx and
Var(µ̂) = σ 2

X/n. Using the Gaussian distribution, the probability of the sample
mean being within some amount ε of the true mean can be easily calculated:

Pr
(∣∣µ̂ − µX

∣∣ < ε
) = Pr

(
µX − ε < µ̂ < µX + ε

) = 1 − 2Q
(
ε
√

n/σX
)

. (7.38)

Stated another way, let εα be the value of ε such that the right-hand side of the
preceding equation is 1 − α; that is,

εα = σX√
n

Q−1
(α

2

)
. (7.39)

where Q−1 is the inverse of Q.
Then, given n samples that lead to a sample mean µ̂, the true mean will fall in

the interval (µ̂ − εα , µ̂ + εα) with probability 1 − α. The interval (µ̂ − εα , µ̂ + εα)
is referred to as the confidence interval while the probability 1 − α is the confidence
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Table 7.1 Constants Used to Calculate Confidence Intervals

Confidence level Level of significance
cα = Q−1

(α

2

)

(1 − α) ∗ 100% α ∗ 100%

90% 10% 1.64
95% 5% 1.96
99% 1% 2.58
99.9% 0.1% 3.29
99.99% 0.01% 3.89

level or, alternatively, α is the level of significance. The confidence level and level of
significance are usually expressed as percentages. The corresponding values of the
quantity cα = Q−1(α/2) are provided in Table 7.1 for several typical values of α.
Other values not included in the table can be found from tables of the Q-function
(such as those provided in Appendix E).

EXAMPLE 7.9: Suppose the IID random variables each have a variance
of σ 2

X = 4. A sample of n = 100 values is taken and the sample mean is
found to be µ̂ = 10. 2. Determine the 95 percent confidence interval for
the true mean µX . In this case, σX/

√
n = 0. 2 and the appropriate value

of cα is c0.05 = 1. 96 from Table 7.1. The 95 percent confidence interval
is then

(
µ̂ − σX√

n
c0.05, µ̂ + σX√

n
c0.05

)
= (9. 808, 10. 592).

EXAMPLE 7.10: Looking again at Example 7.9, suppose we want to be
99 percent confident that the true mean falls within ±0. 5 of the sample
mean. How many samples need to be taken in forming the sample mean?
To ensure this level of confidence, it is required that

σX√
n

c0.01 = 0. 5

and hence,

n =
(c0.01σX

0. 5

)2 =
(

2. 58 ∗ 2
0. 5

)2

= 106. 5.

Since n must be an integer, it is concluded that at least 107 samples must
be taken.
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In summary, to achieve a level of significance specified by α, we note that by
virtue of the central limit theorem, the sum

Ẑn = µ̂ − µX

σX/
√

n
(7.40)

approximately follows a standard normal distribution. We can then easily specify
a symmetric interval about zero in which a standard normal random variable will
fall with probability 1−α. As long as n is sufficiently large, the original distribution
of the IID random variables does not matter.

Note that in order to form the confidence interval as specified, the standard
deviation of the Xi must be known. While in some cases this may be a reasonable
assumption, in many applications the standard deviation is also unknown. The
most obvious thing to do in that case would be to replace the true standard deviation
in Equation 7.40 with the sample standard deviation. That is, we form a statistic

T̂n = µ̂ − µX

ŝ/
√

n
(7.41)

and then seek a symmetric interval about zero (−tα , tα) such that the probability
that T̂n falls in that interval is 1−α. For very large n, the sample standard deviation
will converge to the true standard deviation and thus T̂n will approach Ẑn. Hence,
in the limit as n → ∞, T̂n can be treated as having a standard normal distribution
and the confidence interval is found in the same manner we’ve described. That is, as
n → ∞, tα → cα . For values of n that are not very large, the actual distribution of the
statistic T̂n must be calculated in order to form the appropriate confidence interval.

Naturally, the distribution of T̂n will depend on the distribution of the Xi.
One case where this distribution has been calculated for finite n is when the Xi
are Gaussian random variables. In this case, the statistic T̂n follows the so-called
Student’s t-distribution5 with n − 1 degrees of freedom:

fT̂n
(t) = (1 + t2/n)−(n+1)/2
((n + 1)/2)√

nπ
(n/2)
. (7.42)

where 
 is the gamma function (See Chapter 3 (3.22) and Appendix E (E.39)).
From this PDF one can easily find the appropriate confidence interval for

a given level of significance, α, and sample size, n. Tables of the appropri-
ate confidence interval, tα , can be found in any text on statistics. It is common
to use the t-distribution to form confidence intervals even if the samples are

5The Student’s t-distribution was developed by the English mathematician W. S. Gossett,
who published under the pseudonym A. Student.
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not Gaussian distributed. Hence, the t-distribution is very commonly used for
statistical calculations.

Many other statistics associated with related parameter estimation problems are
encountered and have been carefully expounded in the statistics literature. Indeed,
many freshman- and sophomore-level statistics courses simply list all the cases
and the corresponding statistical distributions without explaining the underlying
probability theory. Left to memorize seemingly endless distributions and statistical
tests, many students have been frightened away from the study of statistics before
they ever have a chance to appreciate it. Rather than take that approach, we believe
that with the probability theory developed to this point, the motivated student can
now easily understand the motivation and justification for the variety of statistical
tests that appear in the literature.

EXAMPLE 7.11: Suppose we wish to estimate the failure proba-
bility of some system. We might design a simulator for our system
and count the number of times the system fails during a long
sequence of operations of the system. Examples might include bit

errors in a communications system, defective products in an assembly line,
or the like. The failure probability can then be estimated as discussed at the
end of Section 7.3. Suppose the true failure probability is p (which of course is
unknown to us). We simulate operation of the system n times and count the
number of errors observed, Ne. The estimate of the true failure probability is
then just the relative frequency,

p̂ = Ne

n
.

If errors occur independently, then the number of errors we observe in n trials
is a binomial random variable with parameters n and p. That is,

PNe (k) =
(

n
k

)
pk(1 − p)n−k, k = 0, 1, 2, . . . , n.

From this we infer that the mean and variance of the estimated failure
probability is E[p̂] = p and Var(p̂) = n−1p(1−p). From this we can develop con-
fidence intervals for our failure probability estimates. The MATLAB code that
follows creates estimates as just described and plots the results, along with
error bars indicating the confidence intervals associated with each estimate.
The plot resulting from running this code is shown in Figure 7.5.
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Figure 7.5 Estimates of failure probabilities along with confidence intervals. The solid line
is the true probability while the circles represent the estimates.

N=1000; % Number of samples generated.

c=1.64; % For 90 percent confidence

level.

points=[0.025:0.025:0.5]; % Values of p.

for k=1:length(points)

p=points(k);

X=rand(1,N)<p; % 1=error, 0=no error.

p_hat(k)=sum(X)/N; % Relative frequency.

sigma=sqrt(p*(1-p)/N);

eps(k)=sigma*c; % Compute confidence interval.

end

% Plot results.

semilogy(points,points,‘-’) % True values.

axis([0 0.55 0.01 0.55])

grid on

xlabel(‘p’)

ylabel(‘p-hat’)

hold on

errorbar(points,p_hat,eps,‘o’) % Estimated values with

hold off % confidence intervals.



7.6 Random Sums of Random Variables 263

7.6 Random Sums of Random Variables

The sums of random variables considered up to this point have always had a fixed
number of terms. Occasionally, one also encounters sums of random variables
where the number of terms in the sum is also random. For example, a node in
a communication network may queue packets of variable length while they are
waiting to be transmitted. The number of bytes in each packet, Xi, might be random
as well as the number of packets in the queue at any given time, N. The total number
of bytes stored in the queue would then be a random sum of the form

S =
N∑

i=1

Xi. (7.43)

THEOREM 7.4: Given a set of IID random variables Xi with mean µX and variance
σ 2

X and an independent random integer N, the mean and variance of the random
sum of the form given in Equation 7.43 are given by

E[S] = µXE[N], (7.44)

Var(S) = E[N]σ 2
X + Var(N)µ2

X . (7.45)

PROOF: To calculate the statistics of S, it is easiest to first condition on N and
then average the resulting conditional statistics with respect to N. To start with,
consider the mean:

E[S] = EN[E[S|N]] = EN

[
E

[ N∑

i=1

Xi

∣∣∣∣∣N
]]

= EN[NµX ] = µXE[N]. (7.46)

The variance is found following a similar procedure. The second moment of S is
found according to

E[S2] = EN[E[S2∣∣N]] = EN



E




N∑

i=1

N∑

j=1

XiXj

∣∣∣∣∣N







 = EN




N∑

i=1

N∑

j=1

E[XiXj]


 .

(7.47)

Note that Xi and Xj are uncorrelated unless i = j. Hence, this expected value works
out to be

E
[
S2] = EN

[
(N2 − N)µ2

X + NE
[
X2

i
]] = E

[
N2]µ2

X + E[N]σ 2
X . (7.48)
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Finally, using Var(S) = E[S2] − (E[S])2 results in

Var(S) = E[N2]µ2
X + E[N]σ 2

X − (E[N])2µ2
X = Var(N)µ2

X + E[N]σ 2
X . (7.49)

One could also derive formulas for higher order moments in a similar manner. �

THEOREM 7.5: Given a set of IID random variables Xi with a characteristic func-
tion �X(ω) and an independent random integer N with a probability generating
function HN(z), the characteristic function of the random sum of the form given in
Equation 7.43 is given by

�S(ω) = HN(�X(ω)). (7.50)

PROOF: Following a derivation similar to the last theorem:

�S(ω) = E[ejωS] = EN[E[ejωS∣∣N]] = EN

[
E

[
exp

(
jω

N∑

i=1

Xi

) ∣∣∣∣∣N
]]

= EN

[
E

[ N∏

i=1

exp(jωXi)

∣∣∣∣∣N
]]

= EN[(�X(ω))N]

=
∑

k

Pr(N = k)(�X(ω))k = HN(�X(ω)). (7.51)

�

EXAMPLE 7.12: Suppose the Xi are Gaussian random variables with
zero mean and unit variance and N is a binomial random variable with
a PMF,

Pr(N = k) =
(

n
k

)
pk(1 − p)n−k.

The mean and variance of this discrete distribution are E[N] = np and
Var(N) = np(1 − p), respectively. From the results of Theorem 7.4 it is
found that

E[S] = µXE[N] = 0 and Var(S) = Var(N)µ2
X + E[N]σ 2

X = np.

The corresponding characteristic function of Xi and probability gener-
ating function of N are given by

�X(ω) = exp

(
−ω2

2

)
and HN(z) = (1 − p + pz)n.
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The characteristic function of the random sum is then

�S(ω) =
(

1 − p + p exp

(
−ω2

2

))n

.

It is interesting to note that the sum of any (fixed) number of Gaussian
random variables produces a Gaussian random variable. Yet, the pre-
ceding characteristic function is clearly not that of a Gaussian random
variable, and hence a random sum of Gaussian random variables is not
Gaussian.

All of the results presented thus far in this section have made the assump-
tion that the IID variables, Xi, and the number of terms in the series, N, are
statistically independent. Quite often these two quantities are dependent. For
example, one might be interested in accumulating terms in the sum until the
sum exhibits a specified characteristic (e.g., until the sample standard devia-
tion falls below some threshold). Then the number of terms in the sum would
clearly be dependent on the values of the terms themselves. In such a case, the
preceding results would not apply and similar results for dependent variables
would have to be developed. The following application section considers such a
situation.

7.7 Engineering Application: A Radar
System

In this section, we consider a simple radar system like that depicted in Figure 1.3.
At known instants of time, the system transmits a known pulse and then waits for
a reflection. Suppose the system is looking for a target at a known range and so
the system can determine exactly when the reflection should appear at the radar
receiver. To make this discussion as simple as possible, suppose that the system
has the ability to “sample” the received signal at the appropriate time instant and,
further, that each sample is a random variable Xj that is modeled as a Gaussian
random variable with variance σ 2. Let A1 be the event that there is indeed a target
present, in which case Xj is taken to have a mean of µ; whereas, A0 is the event
that there is no target present and the resulting mean is zero. That is, our received
sample consists of a signal part (if it is present) that is some fixed voltage, µ, plus a
noise part that we model as Gaussian and zero-mean. As with many radar systems,
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we assume that the reflection is fairly weak (µ is not large compared to σ ), and
hence if we try to decide whether or not a target is present based on a single
observation, we will likely end up with a very unreliable decision. As a result, our
system is designed to transmit several pulses (at nonoverlapping time instants)
and observe several returns, Xj, j = 1, 2, . . . , n, that we take to be IID. The problem
is to determine how to process these returns in order to make the best decision and
also how many returns to collect in order to have our decisions attain a prescribed
reliability.

We consider two possible approaches. In the first approach, we decide ahead
of time how many returns to collect and call that fixed number, n. We then process
that random vector X = (X1, X2, . . . , Xn)T and form a decision. While there are
many ways to process the returns, we will use what is known as a probability ratio
test. That is, given X = x, we want to determine if the ratio Pr(A1|x)/ Pr(A0|x) is
greater or less than 1. Recall that

Pr(Ai|x) = fX(x|Ai) Pr(Ai)
fX(x)

, i = 0, 1. (7.52)

Hence, the probability ratio test makes the following comparison:

Pr(A1|x)
Pr(A0|x)

= fX(x|A1) Pr(A1)
fX(x|A0) Pr(A0)

?
>
<
?

1. (7.53)

This can be written in terms of an equivalent likelihood ratio test:

�(x)
?
>
<
?

�, (7.54)

where �(x) = fX(x|A1)/fX(x|A0) is the likelihood ratio and the threshold � =
Pr(A0)/ Pr(A1) depends on the a priori probabilities. In practice, we may have no
idea about the a priori probabilities of whether or not a target is present. However,
we can still proceed by choosing the threshold for the likelihood ratio test to provide
some prescribed level of performance.

Let the false alarm probability be defined as Pfa = Pr(�(X) > �|A0). This is
the probability that the system declares a target is present when in fact there is
none. Similarly, define the correct detection probability as Pd = Pr(�(X) > �|A1).
This is the probability that the system correctly identifies a target as being present.
These two quantities, Pfa and Pd, will specify the performance of our radar system.
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Given that the Xj are IID Gaussian as described, the likelihood ratio works
out to be

�(x) = fX(x|A1)
fX(x|A0)

=
(2πσ 2)−n/2 exp

(
− 1

2σ 2

n∑
j=1

(xj − µ)2

)

(2πσ 2)−n/2 exp

(
− 1

2σ 2

n∑
j=1

x2
j

)

= exp



nµ

σ 2







1
n

n∑

j=1

xj



 − µ

2







 . (7.55)

Clearly, comparing this with a threshold is equivalent to comparing the sample
mean with a threshold. That is, for IID Gaussian returns, the likelihood ratio test
simplifies to

µ̂ = 1
n

n∑

j=1

xj

?
>
<
?

µ0, (7.56)

where the threshold µ0 is set to produce the desired system performance. Since the
Xj are Gaussian, the sample mean is also Gaussian. Hence, when there is no target
present µ̂ ∼ N(0, σ 2/n) and when there is a target present µ̂ ∼ N(µ, σ 2/n). With
these distributions, the false alarm and detection probabilities work out to be

Pfa = Q
(√

nµ0

σ

)
and 1 − Pd = Q

(√
n(µ − µ0)

σ

)
. (7.57)

By adjusting the threshold, we can trade off false alarms for missed detections. Since
the two probabilities are related, it is common to write the detection probability in
terms of the false alarm probability as

1 − Pd = Q
(√

nµ

σ
− Q−1(Pfa)

)
. (7.58)

From this equation, we can determine how many returns must be collected in order
to attain a prescribed system performance specified by (Pfa, Pd). In particular,

n =
[
Q−1(1 − Pd) + Q−1(Pfa)

]2

µ2/σ 2 . (7.59)

The quantity µ2/σ 2 has the physical interpretation of the strength of the signal
(when it is present) divided by the strength of the noise, or simply the signal-to-
noise ratio.
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Since the radar system must search at many different ranges and many differ-
ent angles of azimuth, we would like to minimize the amount of time it has to
spend collecting returns at each point. Presumably, the amount of time we spend
observing each point in space depends on the number of returns we need to col-
lect. We can often reduce the number of returns needed by noting that the number
of returns required to attain a prescribed reliability as specified by (Pfa, Pd) will
depend on the particular realization of returns encountered. For example, if the
first few returns come back such that the sample mean is very large, we may be
very certain that a target is present and hence there is no real need to collect more
returns. In other instances, the first few returns may produce a sample mean near
µ/2. This inconclusive data would lead us to wait and collect more data before
making a decision. Using a variable number of returns whose number depends on
the data themselves is known as sequential detection.

The second approach we consider will use a sequential detection procedure
whereby after collecting n returns, we compare the likelihood ratio with two
thresholds, �0 and �1, and decide according to

�(x)






≥ �1 decide a target is present

∈ (�0, �1) collect another return

≤ �0 decide no target is present

. (7.60)

The performance of a sequential detection scheme can be determined as follows.
Define the region R(n)

1 to be the set of data points x(n) = (x1, x2, . . . , xn) that lead to
a decision in favor of A1 after collecting exactly n data points. That is, �(x(n)) > �1

and �0 < �(x(j)) < �1 for j = 1, 2, . . . , n − 1. Similarly, define the region R(n)
0 to be

the set of data points x(n) that lead to a decision in favor of A0 after collecting exactly
n data points. Let P(n)

fa be the probability of a false alarm occurring after collecting

exactly n returns and P(n)
d the probability of making a correct detection after collect-

ing exactly n returns. The overall false alarm and detection probabilities are then

Pfa =
∞∑

n=1

P(n)
fa and Pd =

∞∑

n=1

P(n)
d . (7.61)

We are now in a position to establish the fundamental result, shown in Theorem 7.6,
which will instruct us in how to set the decision thresholds in order to obtain the
desired performance.

THEOREM 7.6 (Wald’s Inequalities): For a sequential detection strategy, the
false alarm and detection strategies satisfy

Pd ≥ �1Pfa, (7.62)

(1 − Pd) ≤ �0(1 − Pfa). (7.63)
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PROOF: First note that

P(n)
fa = Pr(x(n) ∈ R(n)

1

∣∣A0) =
∫

R(n)
1

fX (n) (x(n)∣∣A0) dx(n), (7.64)

and similarly,

P(n)
d = Pr(x(n) ∈ R(n)

1

∣∣A1) =
∫

R(n)
1

fX (n) (x(n)∣∣A1) dx(n). (7.65)

For all x(n) ∈ R(n)
1 , fX (n)

(
x(n)

∣∣A1

)
≥ �1 fX (n)

(
x(n)

∣∣A0

)
and hence,

P(n)
d ≥ �1

∫

R(n)
1

fX (n) (x(n)∣∣A0) dx(n) = �1P(n)
fa . (7.66)

Summing over all n then produces Equation 7.62a. Equation 7.63b is derived in a
similar manner. �

Since the likelihood ratio is often exponential in form, it is common to work
with the log of the likelihood ratio, λ(x) = ln(�(x)). For the case of Gaussian IID
data, we get

λ(x(n)) = nµ

σ 2







1
n

n∑

j=1

xj



 − µ

2



 = λ
(

x(n−1)
)

+ µ

σ 2 xn − µ2

2σ 2 . (7.67)

In terms of log-likelihood ratios, the sequential decision mechanism is

λ(x)






≥ λ1 decide a target is present

∈ (λ0, λ1) collect another return

≤ λ0 decide no target is present

, (7.68)

where λj = ln(�j), j = 0, 1. The corresponding versions of Wald’s inequalities are
then

ln(Pd) ≥ λ1 + ln(Pfa), (7.69)

ln(1 − Pd) ≤ λ0 + ln(1 − Pfa). (7.70)

For the case when the signal-to-noise ratio is small, each new datum collected adds
a small amount to the sum in Equation 7.67, and it will typically take a large number
of terms before the sum will cross one of the thresholds, λ0 or λ1. As a result, when
the requisite number of data are collected so that the log-likelihood ratio crosses a
threshold, it will usually be only incrementally above the threshold. Hence, Wald’s
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inequalities will be approximate equalities and the decision thresholds that lead to
(approximately) the desired performance can be found according to

λ1 = ln

(
Pd

Pfa

)
and λ0 = ln

(
1 − Pd

1 − Pfa

)
. (7.71)

Now that the sequential detection strategy can be designed to give any desired
performance, we are interested in determining how much effort we save relative
to the fixed sample size test. Let N be the instant at which the test terminates and
to simplify notation, define

SN = λ(X(N)) =
N∑

i=1

Zi, (7.72)

where from Equation 7.67, Zi = µ(Xi − µ/2)/σ 2. Note that SN is a random sum of
IID random variables as studied in Section 7.6, except that now the random variable
N is not independent of the Zi. Even with this dependence, for this example it is
still true that

E[SN] = E[N]E[Zi]. (7.73)

The reader is led through a proof of this in Exercise 7.17. Note that when the test
terminates:

SN ∼=
{

λ1 if the test terminates in A1

λ0 if the test terminates in A0
, (7.74)

and hence,

E[SN] ∼= λ1 Pr (test terminates in A1) + λ0 Pr (test terminates in A0). (7.75)

Suppose that A0 is true. Then the event that the test terminates in A1 is simply a
false alarm. Combining Equations 7.73 and 7.75 results in

E[N|A0] ∼= E[SN |A0]
E[Zi|A0] = λ1Pfa + λ0(1 − Pfa)

µ2/2σ 2 . (7.76)

Similarly, when A1 is true:

E[N|A1] ∼= E[SN |A1]
E[Zi|A1] = λ1Pd + λ0(1 − Pd)

µ2/2σ 2 . (7.77)

It is noted that not only is the number of returns collected a random variable, but
the statistics of this random variable depend on whether or not a target is present.
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This may work to our advantage in that the average number of returns we need to
observe might be significantly smaller in the more common case when there is no
target present.

EXAMPLE 7.13: Suppose we want to achieve a system performance
specified by Pfa = 10−6 and Pd = 0. 99. Furthermore, suppose the signal-
to-noise ratio for each return is µ2/σ 2 = 0. 1 = −10dB. Then the fixed
sample size test will use a number of returns given by

n = [Q−1(1 − Pd) + Q−1(Pfa)]2

µ2/σ 2 = 2. 326 + 4. 755]2

0. 1
= 501. 4.

Since n must be an integer, 502 samples must be taken to attain the
desired performance. For the sequential test, the two thresholds for the
log-likelihood test are set according to Wald’s inequalities,

λ0 ln

(
1 − Pd

1 − Pfa

)
= −4. 6 and λ1 = ln

(
Pd

Pfa

)
= 13. 8.

With these thresholds set, the average number of samples needed for
the test to terminate is

E[N|A0] = −λ1Pfa + λ0(1 − Pfa)

µ2/2σ 2 = 92. 1

when there is no target present, and

E[N|A1] = λ1Pd + λ0(1 − Pd)
µ2/2σ 2 = 272. 4

when a target is present. Clearly, for this example, the sequential test
saves us significantly in terms of the amount of data that needs to be
collected to make a reliable decision.

Exercises
7.1 A random variable, X, has a normal PDF with mean 5 and unit variance.

We measure 10 independent samples of the random variable.

(a) Determine the expected value of the sample mean.
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(b) Determine the variance of the sample mean.

(c) Determine the expected value of the unbiased sample variance.

7.2 Two independent samples of a random variable X are taken. Determine the
expected value and variance of the estimate of µX if the PDF is exponential,
(i.e., fX(x) = exp(−x)u(x)).

7.3 The noise level in a room is measured N times. The error E for each mea-
surement is independent of the others and is normally distributed with
zero-mean and standard deviation σE = 0. 1. In terms of the true mean, µ,
determine the PDF of the sample mean, µ̂ for N = 100.

7.4 Suppose X is a vector of N IID random variables where each element has
some PDF, fX(x). Find an example PDF such that the median is a better
estimate of the mean than the sample mean.

7.5 Suppose the variance of an IID sequence of random variables is formed
according to

σ̂ 2 = 1
n

n∑

m=1

(Xm − µ̂)2,

where µ̂ is the sample mean. Find the expected value of this estimate and
show that it is biased.

7.6 Find the variance of the sample standard deviation,

ŝ2 = 1
n − 1

n∑

m=1

(Xm − µ̂)2,

assuming that the Xi are IID Gaussian random variables with mean µ and
variance σ 2.

7.7 Show that if Xn, n = 1, 2, 3, . . . is a sequence of IID Gaussian ran-
dom variables, the sample mean and sample variance are statistically
independent.

7.8 A sequence of random variables, Xn, is to be approximated by a straight
line using the estimate X̂n = a + bn. Determine the least squares (i.e.,
minimum mean squared error) estimates for a and b if N samples of the
sequence are observed.
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7.9 (a) Prove that any sequence that converges in the mean square sense must
also converge in probability. Hint: Use Markov’s inequality.

(b) Prove by counterexample that convergence in probability does not
necessarily imply convergence in the mean square sense.

7.10 Suppose X1, X2, . . . , Xn is a sequence of IID positive random variables.
Define

Yn =
n∏

i=1

Xi.

Show that as n → ∞, Yn converges in distribution, and find the distribution
to which it converges.

7.11 Suppose we wish to estimate the probability, pA, of some event, A. We do
so by repeating an experiment n times and observing whether or not the
event A occurs during each experiment. In particular, let

Xi =
{

1 A occurred during ith experiment

0 otherwise
.

We then estimate pA using the sample mean of the Xi,

p̂A = 1
n

n∑

i=1

Xi.

(a) Assuming n is large enough so that the central limit theorem applies,
find an expression for Pr(|p̂A − pA| < ε).

(b) Suppose we want to be 95 percent certain that our estimate is within
±10 percent of the true value. That is, we want Pr(|p̂A −pA| < 0. 1pA) =
0. 95. How large does n need to be? In other words, how many times
do we need to run the experiment?

(c) Let Yn be the number of times that we observe the event A during our
n repetitions of the experiment. That is, let Yn = X1 + X2 + · · · + Xn.
Assuming that n is chosen according to the results of part (b), find an
expression for the average number of times the event A is observed,
E[Yn]. Show that for rare events (i.e., pA � 1), E[Yn] is essential inde-
pendent of pA. Thus, even if we have no idea about the true value of pA,
we can run the experiment until we observe the event A for a predeter-
mined number of times and be assured of a certain degree of accuracy
in our estimate of pA.
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7.12 Suppose we wish to estimate the probability, pA, of some event A as out-
lined in the previous exercise. As motivated by the result of part (c) of
Exercise 7.11, suppose we repeat our experiment for a random number of
trials, N. In particular, we run the experiment until we observe the event
A exactly m times and then form the estimate of pA according to

p̂A = m − 1
N − 1

.

Here, the random variable N represents the number of trials until the mth
occurrence of A.

(a) Find E[p̂A]. Is this estimate unbiased?

(b) Would it be better to use p̂A = m
N

as an estimate?

7.13 Independent samples are taken of a random variable X. If the PDF of X is
uniform with amplitude

√
3 over the interval [−1/

√
12, 1/

√
12) and zero

elsewhere, then approximate the density of the sample mean with a normal
density, assuming the number of samples is large. Write the approximation
as an equation.

7.14 A company manufactures 5-volt power supplies. However, since there
are manufacturing tolerances, there are variations in the voltage design.
The standard deviation in the design voltage is 5 percent. Using a 99 per-
cent confidence level, determine whether or not the following samples fall
within the confidence interval:

(a) 100 samples, the estimate of µX = 4. 7,
(b) 100 samples, the estimate of µX = 4. 9,
(c) 100 samples, the estimate of µX = 5. 4.

Hint: Refer to Equation 7.39.

7.15 You collect a sample size N1 of data and find that a 90% confidence interval
has width, w. What should the sample size N2 be to increase the confidence
level to 99.9% and yet maintain the same interval width, w?

7.16 Company A manufactures computer applications boards. They are con-
cerned with the mean time between (or before) failures (MTBF), which they
regularly measure. Denote the sample MTBF as µ̂M and the true MTBF as
µM . Determine the number of failures that must be measured before µ̂M

lies within 20 percent of the true µM with a 90 percent probability. Assume
the PDF is exponential (i.e., fM(x) = (1/µM) exp(−x/µM)u(x)).
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7.17 In this exercise, a proof of Equation 7.73 is constructed. Write the random
sum as

SN =
N∑

i=1

Zi =
∞∑

i=1

YiZi,

where Yi is a Bernoulli random variable in which Yi = 1 if N ≥ i and Yi = 0
if N < i.

(a) Prove that Yi and Zi are independent and hence,

E[SN] =
∞∑

i=1

E[Yi]E[Zi].

(b) Prove that the equation of part (a) simplifies to

E[SN] = E[Zi]E[N].

MATLAB Exercises
7.18 Let X, Y, and Z be independent Gaussian random variables with equal

means of µ = 3 and variances of σ 2 = 4. Estimate the mean and variance
of W =

√
X2 + Y2 + Z2 by constructing a large number of realizations of

this random variable in MATLAB and then computing the sample mean
and sample variance. How many samples of the random variable were
needed before the sample mean and sample variance seemed to converge
to a fairly accurate estimate? (To answer this, you must define what you
mean by “fairly accurate.”)

7.19 For the random variable W described in Exercise 7.18, form an estimate of
the CDF by following the procedure outlined in Example 7.5. Also, form
an estimate of the PDF of this random variable. Explain the procedure you
used to estimate the PDF.

7.20 A player engages in the following dice tossing game (“craps”). Two dice
are rolled. If the player rolls the dice such that the sum is either 7 or 11,
he immediately wins the game. If the sum is 2, 3, or 12, he immediately
loses. If he rolls a 4, 5, 6, 8, 9, or 10, this number is called the “point” and
the player continues to roll the dice. If he is able to roll the point again
before he rolls a 7, he wins. If he rolls a 7 before he rolls the point again, he



276 Chapter 7 Random Sequences and Series

loses. Write a MATLAB program to simulate this dice game and estimate
the probability of winning.

7.21 Let Xi, i = 1, 2, . . . , n be a sequence of IID random variables uniformly
distributed over (0, 1). Suppose we form the sum Z = ∑n

i=1 Xi. First, find
the mean and variance of Z. Then write a MATLAB program to compute
the exact PDF of Z. Compare the exact PDF with a Gaussian PDF of the same
mean and variance. Over what range of Z is the Gaussian approximation
of the PDF within 1 percent of the true PDF? Repeat this problem for
n = 5, 10, 20, 50, and 100.

7.22 Suppose you are given an observation of sample values of a sequence of
random variables, xn, n = 1, 2, 3, . . . , m. Write a MATLAB program to plot
these data points along with a least squares curve fit to the data (see the
results of Exercise 7.8). Run your program using the following sequence:

(0, 1, 0, −1, 2, −3, 5, 0, −7, 8).



Random Processes 8

This chapter introduces the concept of a random process. Most of the treatment
in this text views a random process as a random function of time. However, time
need not be the independent variable. We can also talk about a random function
of position, in which case there may be two or even three independent variables
and the function is more commonly referred to as a random field. The concept
of a random process allows us to study systems involving signals that are not
entirely predictable. These random signals play a fundamental role in the fields of
communications, signal processing, control systems, and many other engineering
disciplines. This and the following chapters will extend the study of signal and
system theory to include randomness. We introduce some basic concepts, termi-
nologies, notations, and tools for studying random processes in this chapter and
present several important examples of random processes as well.

8.1 Definition and Classification
of Processes

In the study of deterministic signals, we often encounter four types or classes of
signals:

(1) Continuous time and continuous amplitude signals are a function of a continuous
independent variable, time. The range of the amplitude of the function is also
continuous.

(2) Continuous time and discrete amplitude signals are a function of a continuous
independent variable, time—but the amplitude is discrete.

277
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(3) Discrete time and continuous amplitude signals are functions of a quantized
or discrete independent time variable, while the range of amplitudes is
continuous.

(4) Discrete time and discrete amplitude signals are functions where both the indepen-
dent time variable and the amplitude are discrete.

In this text, we write a continuous function of time as x(t), where t is the continuous
time variable. For discrete time signals, the time variable is typically limited to
regularly spaced discrete points in time, t = nt0. In this case, we use the notation
x[n] = x(nt0) to represent the discrete sequence of numbers. Most of the discussion
that follows is presented in terms of continuous time signals, but the conversion to
the discrete time case will be straightforward in most cases.

Recall from Chapter 3 that a random variable, X, is a function of the possible
outcomes, ζ , of an experiment. Now, we would like to extend this concept so
that a function of time x(t) (or x[n] in the discrete time case) is assigned to every
outcome, ζ , of an experiment. The function, x(t), may be real or complex and it can
be discrete or continuous in amplitude. Strictly speaking, the function is really a
function of two variables, x(t, ζ ), but to keep the notation simple, we typically do
not explicitly show the dependence on the outcome, just as we have not in the case
of random variables. The function x(t) may have the same general dependence
on time for every outcome of the experiment or each outcome could produce a
completely different waveform. In general, the function x(t) is a member of an
ensemble (family, set, collection) of functions. Just as we did for random variables, an
ensemble of member functions, X(t), is denoted with an upper case letter. Thus, X(t)
represents the random process, while x(t) is one particular member or realization
of the random process. In summary, we have the following definition of a random
process:

DEFINITION 8.1: A random process is a function of the elements of a sample
space, S, as well as another independent variable, t. Given an experiment, E, with
sample space, S, the random process, X(t), maps each possible outcome, ζ ∈ S, to
a function of t, x(t, ζ ), as specified by some rule.

EXAMPLE 8.1: Suppose an experiment consists of flipping a coin. If the
outcome is heads, ζ = H, the random process takes on the functional
form xH(t) = sin(ωot); whereas, if the outcome is tails, ζ = T, the
realization xT (t) = sin(2ωot) occurs, where ωo is some fixed frequency.
The two realizations of this random process are illustrated in Figure 8.1.
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Figure 8.1 Member functions for the random process of Example 8.1.

The random process in Example 8.1 actually has very little randomness. There
are only two possible realizations of the random process. Example 8.2 illustrates a
property of sinusoids.

EXAMPLE 8.2: Now suppose that an experiment results in a random
variable A that is uniformly distributed over [0, 1). A random process
is then constructed according to X(t) = A sin(ωot). Since the random
variable is continuous, there are an uncountably infinite number of
realizations of the random process. A few are shown in Figure 8.2. Given
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Figure 8.2 Some member functions for the random process of Example 8.2.
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Figure 8.3 One possible realization for the random process of Example 8.3.

two observations of the realization of the random process at points in
time, X(t1) and X(t2) one could determine the rest of the realization (as
long as ωot1 �= nπ and ω0t2 �= nπ ).

EXAMPLE 8.3: This example is a generalization of that given in
Example 8.1. Suppose now that the experiment consists of flipping a
coin repeatedly and observing the sequence of outcomes. The random
process X(t) is then constructed as X(t) = sin(�it), (i − 1)T ≤ t < iT,
where �i = ωo if the ith flip of the coin results in “heads” and �i = 2ωo

if the ith flip of the coin results in “tails.” One possible realization of this
random process is illustrated in Figure 8.3. This is the sort of signal that
might be produced by a frequency shift keying (FSK) modem. In that
application, the frequencies are not determined by coin tosses, but by
random data bits instead.

EXAMPLE 8.4: As an example of a random process that is discrete
in amplitude but continuous in time, we present the so-called
random telegraph process. Let T1, T2, T3, . . . be a sequence of IID
random variables, each with an exponential distribution.

fT (s) = λe−λsu(s).
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Figure 8.4 One possible realization for the random telegraph signal of Example 8.4.

At any time instant, the random telegraph signal, X(t), takes on one of two
possible states, X(t) = 0 or X(t) = 1. Suppose the process starts (at time t = 0)
in the zero state. It then remains in that state for a time interval equal to T1, at
which point it switches to the state X(t) = 1. The process remains in that state
for another interval of time equal in length to T2 and then switches states again.
The process then continues to switch after waiting for time intervals specified
by the sequence of exponential random variables. One possible realization is
shown in Figure 8.4. The MATLAB code for generating such a process follows.

N=10; % Number of switches in

realization.
Fs=100; % Sample rate (samples per second).
lambda=1/2; % Switching rate (switches per

second).
X=[];
S=rand(1,N); % Uniform random variables.
T=-log(S)/lambda; % Transform to exponential RVs.
V=cumsum(T); % Switching times.
state=0; Nsold=1;
for k=1:N
Nsnew=ceil(V(k)*Fs); % New switching time.
Ns=Nsnew-Nsold; % Number of samples in current.

% Switching interval.
X=[X state*ones(1,Ns)];
state=1-state; % Switch state.
Nsold=Nsnew;

end
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t=[1:length(X)]/Fs; % Time axis.

plot(t,X) % Plot results.

xlabel(‘time, t’); ylabel(‘X(t)’)

axis([0 max(t) -0.1 1.1]) % Manual scale of axes.

EXAMPLE 8.5: As an example of a discrete time random pro-
cess, suppose each outcome of an experiment produces a sequence
of IID, zero-mean Gaussian random variables, W1, W2, W3, . . . .
A discrete-time random process X[n] could be constructed

according to

X[n] = X[n − 1] + Wn,

with the initial condition X[0] = 0. The value of the process at each point
in time is equal to the value of the process at the previous point in time
plus a random increase (decrease) which follows a Gaussian distribution.
Note also that X[n] is merely the sum of the first n terms in the sequence
of Wi. A sample realization of this random process is shown in Figure 8.5.
The MATLAB code for generating this process is provided here. The reader
is encouraged to run this program several times to see several different
realizations of the same random process.

N=25; % Number of time instants in process.

W=randn(1,N); % Gaussian random variables.
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Figure 8.5 One possible realization for the discrete-time random process of Example 8.5.
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X=[0 cumsum(W)]; % Samples of X[n].

stem([0:N],X,‘o’) % Plot realization of X[n].

xlabel(‘time, n’); ylabel(‘X[n]’);

8.2 Mathematical Tools for Studying
Random Processes

As with random variables, we can mathematically describe a random process in
terms of a cumulative distribution function, a probability density function, or a
probability mass function. In fact, given a random process, X(t), which is sampled
at some specified point in time, t = tk, the result is a random variable, Xk = X(tk).
This random variable can then be described in terms of its PDF, fX(xk; tk). Note that
an additional time variable has been added to the PDF. This is necessary due to the
fact that the PDF of the sample of the random process may depend on when the
process is sampled. If desired, the CDF or PMF can be used rather than the PDF to
describe the sample of the random process.

EXAMPLE 8.6: Consider the random telegraph signal of Example 8.4.
Since this process is binary-valued, any sample will be a Bernoulli
random variable. The only question is, What is the probability that
Xk = X(tk) is equal to 1 (or 0)? Suppose that there are exactly n switches
in the time interval [0, tk). Then X(tk) = n mod 2. Stated another way,
define Sn = T1 + T2 + · · · + Tn. There will be exactly n switches in the
time interval [0, tk) provided that Sn < tk < Sn+1. Hence,

Pr(n switches in [0, tk)) = Pr(Sn < tk < Sn+1)

=
∫

Pr(Sn < tk < Sn+1|Sn = s)fSn (s) ds

=
∫ tk

0
Pr(tk < Sn+1|Sn = s)fSn (s) ds =

∫ tk

0
Pr(Tn+1 > tk − s)fSn (s) ds.

Since the Ti are IID and exponential, Sn will follow a Gamma
distribution. Using the Gamma PDF for fSn (s) and the fact that
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Figure 8.6 Time dependence of the PMF for the random telegraph signal.

Pr(Tn+1 > tk − s) = exp (−λ(tk − s)) results in

Pr(n switches in [0, tk)) =
∫ tk

0
e−λ(tk−s) λnsn−1

(n − 1)! e−λs ds

= λne−λtk

(n − 1)!
∫ tK

0
sn−1 ds = (λtk)n

n! e−λtk .

So, it is seen that the number of switches in the interval [0, tk) follows
a Poisson distribution. The sample of the random process will be equal
to 0 if the number of switches is even. Hence,

Pr(X(tk) = 0) =
∑

n even

Pr(n switches in [0, tk))

=
∑

n even

(λtk)n

n! e−λtk = e−λtk cosh(λtk) = 1
2 + 1

2 e−2λtk .

Likewise,

Pr(X(tk) = 1) =
∑

n odd

Pr(n switches in [0, tk))

=
∑

n odd

(λtk)n

n! e−λtk = e−λtk sinh(λtk) = 1
2 − 1

2 e−2λtk .

The behavior of this distribution as it depends on time should make
intuitive sense. For very small values of tk, it is most likely that there
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are no switches in the interval [0, tk), in which case Pr(X(tk) = 0) should
be close to 1. On the other hand, for large tk, many switches will likely
occur and it should be almost equally likely that the process will take
on the values of 0 or 1.

EXAMPLE 8.7: Now consider the PDF of a sample of the discrete-time
process of Example 8.5. Note that since X[n] is formed by summing n
IID Gaussian random variables, X[n] will itself be a Gaussian random
variable with mean of E[X[n]] = nµW and variance Var(X[n]) = nσ 2

W .
In this case, since the Wi were taken to be zero mean, the PDF of X[n] is

fX(x; n) = 1√
2πnσ 2

W

exp

(
− x2

2nσ 2
W

)
.

Once again, we see that for this example, the form of the PDF does
indeed depend on when the sample is taken.

The PDF (or CDF or PMF) of a sample of a random process taken at an arbitrary
point in time goes a long way toward describing the random process, but it is
not a complete description. To see this, consider two samples, X1 = X(t1) and
X2 = X(t2), taken at two arbitrary points in time. The PDF, fX(x; t), describes both
X1 and X2, but it does not describe the relationship between X1 and X2. For some
random processes, it might be reasonable to expect that X1 and X2 would be highly
correlated if t1 is near t2, while X1 and X2 might be virtually uncorrelated if t1 and
t2 are far apart. To characterize relationships of this sort, a joint PDF of the two
samples would be needed. Hence, it would be necessary to construct a joint PDF of
the form fX1,X2 (x1, x2; t1, t2). This is referred to as a second order PDF of the random
process X(t).

Continuing with this reasoning, in order to completely describe the random
process, it is necessary to specify an nth order PDF for an arbitrary n. That is, sup-
pose random process is sampled at time instants t1, t2, . . . , tn, producing the random
variables X1 = X(t1), X2 = X(t2), . . . , Xn = X(tn). The joint PDF of the n samples,
fX1,X2,...,Xn (x1, x2, . . . , xn; t1, t2, . . . , tn), for an arbitrary n and arbitrary sampling times
will give a complete description of the random process. In order to make this nota-
tion more compact, the vectors X = (X1, X2, . . . , Xn)T , x = (x1, x2, . . . , xn)T , and
t = (t1, t2, . . . , tn)T are introduced and the nth order joint PDF is written as fX(x;t).

Unfortunately, for many realistic random processes, the prospects of writing
down an nth order PDF is rather daunting. One notable exception is the Gaussian



286 Chapter 8 Random Processes

random process, which will be described in detail in Section 8.5. However, for
most other cases, specifying a joint PDF of n samples may be exceedingly difficult,
and hence it is necessary to resort to a simpler but less complete description of the
random process. The simplest is the mean function of the process.

DEFINITION 8.2: The mean function of a random process is simply the expected
value of the process. For continuous time processes this is written as

µX(t) = E[X(t)] =
∫ ∞

−∞
xfX(x; t) dx, (8.1)

while for discrete time processes, the following notation is used:

µX[n] = E[X[n]] =
∫ ∞

−∞
xfX(x; n) dx. (8.2)

In general, the mean of a random process may change with time, but in many cases,
this function is constant. Also, it is noted that only the first order PDF of the process
is needed to compute the mean function.

EXAMPLE 8.8: Consider the random telegraph process of Example 8.4.
It was shown in Example 8.6 that the first order PMF of this process was
described by a Bernoulli distribution with

Pr(X(t) = 1) = 1
2 − 1

2 exp(−λt).

The mean function then follows as

µX(t) = E[X(t)] = 1∗ Pr(X(t) = 1) + 0∗ Pr(X(t) = 0) = 1
2 − 1

2 exp(−λt).

EXAMPLE 8.9: Next, consider the sinusoidal random process of
Example 8.2 where X(t) = A sin(ωot) and A was a uniform random
variable over [0, 1). In this case,

µX(t) = E[X(t)] = E[A sin(ωot)] = E[A] sin(ωot) = 1
2 sin(ωot).

This example illustrates a very important concept in that quite often it
is not necessary to explicitly evaluate the first order PDF of a random
process in order to evaluate its mean function.
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EXAMPLE 8.10: Now suppose the random process of the previous
example is slightly modified. In particular, consider a sine-wave pro-
cess where the random variable is the phase, �, which is uniformly
distributed over [0, 2π ). That is, X(t) = a sin(ωot +�). For this example,
the amplitude of the sine wave, a, is taken to be fixed (not random). The
mean function is then

µX(t) = E[X(t)] = E[a sin(ωot + �)] = a
∫

f�(θ ) sin(ωot + θ ) dθ

= a
2π

∫ 2π

0
sin(ωot + θ ) dθ = 0,

which is a constant. Why is the mean function of the previous example
a function of time and this one is not? Consider the member functions
of the respective ensembles for the two random processes.

EXAMPLE 8.11: Now consider a sinusoid with a random fre-
quency X(t) = cos(2πFt), where F is a random variable uniformly
distributed over some interval (0, fo). The mean function can be
readily determined to be

µX(t) = E[cos(2πFt)] = 1
fo

∫ fo

0
cos(2π ft) df = sin(2π fot)

2π fot
= sinc (2fot).

We can also estimate the mean function through simulation. We provide some
MATLAB code to produce many realizations of this random process. The
mean function is then found by taking the sample mean of all the realizations
created. The sample mean and the ensemble mean are shown in Figure 8.7.
Naturally, more or less accuracy in the sample mean can be obtained by
varying the number of realizations generated.

fo=2; % Maximum frequency.

N=1000; % Number of realizations.

t=[-4.995:0.01:4.995]; % Time axis.

F=fo*rand(N,1); % Uniform frequencies.

x=cos(2*pi*F*t); % Each row is a

% realization of process.

sample_mean=sum(x)/N; % Compute sample mean.
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Figure 8.7 Comparison of the sample mean and ensemble mean for the sinusoid with
random frequency of Example 8.11. The solid line is the sample mean, while the dashed line
is the ensemble mean.

true_mean=sin(2*pi*fo*t)./(2*pi*fo*t); % Compute ensemble

mean.

plot(t,sample_mean,‘-’,t,true_mean,‘--’) % Plot results.

xlabel(‘t (seconds)’); ylabel(‘mu(t)’);

To partially describe the second order characteristics of a random process, the
autocorrelation function is introduced.

DEFINITION 8.3: The autocorrelation function, RXX(t1, t2), of a continuous time
random process, X(t), is defined as the expected value of the product X(t1)X(t2):

RXX(t1, t2) = E[X(t1)X(t2)] =
∞∫∫

−∞
x1x2fX1,X2 (x1, x2; t1, t2) dx1 dx2. (8.3)

For discrete time processes, the autocorrelation function is

RXX[n1, n2] = E[X[n1]X[n2]] =
∞∫∫

−∞
x1x2fX1,X2 (x1, x2; n1, n2) dx1 dx2. (8.4)

Naturally, the autocorrelation function describes the relationship (correlation)
between two samples of a random process. This correlation will depend on when
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the samples are taken; thus, the autocorrelation function is, in general, a function
of two time variables. Quite often we are interested in how the correlation between
two samples depends on how far apart the samples are spaced. To explicitly
draw out this relationship, define a time difference variable, τ = t2 − t1, and
the autocorrelation function can then be expressed as

RXX(t, t + τ ) = E[X(t)X(t + τ )], (8.5)

where we have replaced t1 with t to simplify the notation even further.

EXAMPLE 8.12: Consider the sine wave process with a uniformly dis-
tributed amplitude as described in Examples 8.2 and 8.9, where X(t) =
A sin(ωot). The autocorrelation function is found as

RXX(t1, t2) = E[X(t1)X(t2)] = E[A2 sin(ωot1) sin(ωot2)]
= 1

3 sin(ωot1) sin(ωot2),

or

RXX(t, t + τ ) = 1
3 sin(ωot) sin(ωo(t + τ )).

EXAMPLE 8.13: Now consider the sine wave process with random
phase of Example 8.10 where X(t) = a sin(ωot + �). Then

RXX(t1, t2) = E[X(t1)X(t2)] = E[a2 sin(ωot1 + θ ) sin(ωot2 + θ )].
To aid in calculating this expected value, we use the trigonometric
identity

sin(x) sin(y) = 1
2 cos(x − y) − 1

2 cos(x + y).

The autocorrelation then simplifies to

RXX(t1, t2) = a2

2
E[cos(ωo(t2 − t1))] + a2

2
E[cos(ωo(t1 + t2 + 2θ ))]

= a2

2
cos(ωo(t2 − t1)),

or

RXX(t, t + τ ) = a2

2
cos(ωoτ ).
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Note that in this case, the autocorrelation function is only a function
of the difference between the two sampling times. That is, it does not
matter where the samples are taken, only how far apart they are.

EXAMPLE 8.14: Recall the random process of Example 8.5, where
X[n] = X[n − 1] + Wn, X[0] = 0 and the Wn were a sequence of IID zero
mean Gaussian random variables. In this case, it is easier to calculate
the autocorrelation function using the alternative expression,

X[n] =
n∑

i=1

Wi.

Then

RXX[n1, n2] = E[X[n1]X[n2]] = E


 n1∑

i=1

Wi

n2∑
j=1

Wj


 =

n1∑
i=1

n2∑
j=1

E[WiWj].

Since the Wi are IID and zero-mean, E[WiWj] = 0 unless i = j. Hence,

RXX[n1, n2] = min(n1, n2)σ 2
W .

DEFINITION 8.4: The autocovariance function, CXX(t1, t2), of a continuous time
random process, X(t), is defined as the covariance of X(t1) and X(t2):

CXX(t1, t2) = Cov(X(t1), X(t2)) = E[(X(t1) − µX(t1))(X(t2) − µX(t2))]. (8.6)

The definition is easily extended to discrete time random processes.

As with the covariance function for random variables, the autocovariance
function can be written in terms of the autocorrelation function and the mean
function:

CXX(t1, t2) = RXX(t1, t2) − µX(t1)µX(t2). (8.7)

Once the mean and autocorrelation functions of a random process have been
computed, the autocovariance function is trivial to find.

The autocovariance function is helpful when studying random processes that
can be represented as the sum of a deterministic signal, s(t), plus a zero-mean noise
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process, N(t). If X(t) = s(t) + N(t), then the autocorrelation function of X(t) is

RXX(t1, t2) = E[(s(t1) + N(t1))(s(t2) + N(t2))] = s(t1)s(t2) + RNN(t1, t2), (8.8)

using the fact that µN(t) = 0. If the signal is strong compared to the noise, the
deterministic part will dominate the autocorrelation function, and hence RXX(t1, t2)
will not tell us much about the randomness in the process X(t). On the other hand,
the autocovariance function is

CXX(t1, t2) = RXX(t1, t2) − s(t1)s(t2) = RNN(t1, t2) = CNN(t1, t2). (8.9)

Hence, the autocovariance function allows us to isolate the noise that is the source
of randomness in the process.

DEFINITION 8.5: For a pair of random processes X(t) and Y(t), the crosscorrela-
tion function is defined as

RXY(t1, t2) = E[X(t1)Y(t2)]. (8.10)

Likewise, the cross-covariance function is

CXY(t1, t2) = E[(X(t1) − µX(t1))(Y(t2) − µY(t2))]. (8.11)

EXAMPLE 8.15: Suppose X(t) is a zero-mean random process with
autocorrelation function RXX(t1, t2). A new process Y(t) is formed by
delaying X(t) by some amount td. That is, Y(t) = X(t − td). Then the
crosscorrelation function is

RXY(t1, t2) = E[X(t1)Y(t2)] = E[X(t1)X(t2 − td)] = RXX(t1, t2 − td).

In a similar fashion, it is seen that RYX(t1, t2) = RXX(t1 − td, t2) and
RYY(t1, t2) = RXX(t1 − td, t2 − td).

8.3 Stationary and Ergodic Random
Processes

From the few simple examples given in the preceding section, we conclude that the
mean function and the autocorrelation (or autocovariance) function can provide
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information about the temporal structure of a random process. We will delve into
the properties of the autocorrelation function in more detail later in the chapter,
but first the concepts of stationarity and ergodicity must be introduced.

DEFINITION 8.6: A continuous time random process X(t) is strict sense stationary
if the statistics of the process are invariant to a time shift. Specifically, for any time
shift τ and any integer n ≥ 1,

fX1,X2,...,Xn (x1, x2, . . . , xn; t1, t2, . . . , tn)

= fX1,X2,...,Xn (x1, x2, . . . , xn; t1 + τ , t2 + τ , . . . , tn + τ ). (8.12)

In general, it is quite difficult to show that a random process is strict sense
stationary since to do so, one needs to be able to express the general nth order PDF.
On the other hand, to show that a process is not strict sense stationary, one needs to
show only that one PDF of any order is not invariant to a time shift. One example
of a process that can be shown to be stationary in the strict sense is an IID process.
That is, suppose X(t) is a random process that has the property that X(t) has an
identical distribution for any t and that X(t1) and X(t2) are independent for any
t1 �= t2. In this case,

fX1,X2,...,Xn (x1, x2, . . . , xn; t1, t2, . . . , tn) =
n∏

i=1

fXi (xi; ti). (8.13)

Since the nth order PDF is the product of first order PDFs and the first order PDF
is invariant to a time shift, then the nth order PDF must be invariant to a time shift.

EXAMPLE 8.16: Consider the sinusoidal process with random ampli-
tude from Example 8.2, where X(t) = A sin(ωot). This process is
clearly not stationary since if we take any realization of the process,
x(t) = a sin(ωot), then a time shift x(t + τ ) = a sin(ωo(t + τ )) would not
be a realization in the original ensemble. Now suppose the process has
a random phase rather than a random amplitude as in Example 8.10,
resulting in X(t) = a sin(ωot + �). It was already shown in Example
8.10 that µX(t) = 0 for this process, and hence the mean function is
invariant to a time shift. Furthermore, in Example 8.13 it was shown
that RXX(t, t + τ ) = (a2/2) cos(ωoτ ), and hence the autocorrelation func-
tion is also invariant to a time shift. It is not difficult to show that the
first order PDF follows an arcsine distribution:

fX(x; t) = 1

π
√

1 − x2
, −1 < x < 1,
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and it is also independent of time and thus invariant to a time shift.
It seems that this process might be stationary in the strict sense, but it
would be rather cumbersome to prove it because the nth order PDF is
difficult to specify.

As was seen in Example 8.16, it may be possible in some examples to determine
that some of the statistics of a random process are invariant to time shifts, but
determining stationarity in the strict sense may be too big of a burden. In those
cases, we often settle for a looser form of stationarity.

DEFINITION 8.7: A random process is wide sense stationary (WSS) if the mean
function and autocorrelation function are invariant to a time shift. In particular,
this implies that

µX(t) = µX = constant, (8.14)

RXX(t, t + τ ) = RXX(τ ) (function only of τ ). (8.15)

All strict sense stationary random processes are also WSS, provided that the mean
and autocorrelation function exist. The converse is not true. A WSS process does
not necessarily need to be stationary in the strict sense. We refer to a process that
is not WSS as nonstationary.

EXAMPLE 8.17: Suppose we form a random process Y(t) by modu-
lating a carrier with another random process, X(t). That is, let Y(t) =
X(t) cos(ωot+�) where � is uniformly distributed over [0, 2π ) and inde-
pendent of X(t). Under what conditions is Y(t) WSS? To answer this,
we calculate the mean and autocorrelation function of Y(t).

µY(t) = E[X(t) cos(ωot + �)] = E[X(t)]E[cos(ωot + �)] = 0;

RYY(t,t+τ )=E[X(t)X(t+τ )cos(ωot)cos(ωo(t+τ ))]
=E[X(t)X(t+τ )]

{
1
2 cos(ωoτ )+ 1

2 E[cos(ωo(2t+τ )+2�)]
}

= 1
2 RXX(t,t+τ )cos(ωoτ )

While the mean function is a constant, the autocorrelation is not neces-
sarily only a function of τ . The process Y(t) will be WSS provided that
RXX(t, t +τ ) = RXX(τ ). Certainly if X(t) is WSS, then Y(t) will be as well.
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EXAMPLE 8.18: Let X(t) = At + B where A and B are independent
random variables, both uniformly distributed over the interval (−1, 1).
To determine whether this process is WSS, calculate the mean and
autocorrelation functions:

µX(t) = E[At + B] = E[A]t + E[B] = 0;

RXX(t, t + τ ) = E[(At + B)(A(t + τ ) + B)]
= E[A2]t(t + τ ) + E[B2] + E[AB](2t + τ ) = 1

3 t(t + τ ) + 1
3 .

Clearly, this process is not WSS.

Many of the processes we deal with are WSS and hence have a constant mean
function and an autocorrelation function that depends only on a single time vari-
able. Hence, in the remainder of the text, when a process is known to be WSS or if
we are assuming it to be WSS, then we will represent its autocorrelation function
by RXX(τ ). If a process is nonstationary or if we do not know if the process is WSS,
then we will explicitly write the autocorrelation function as a function of two vari-
ables, RXX(t, t + τ ). For example, if we say that a process has a mean function of
µX = 1 and an autocorrelation function, RXX(τ ) = exp(−|τ |), then the reader can
infer that the process is WSS, even if it is not explicitly stated.

In order to calculate the mean or autocorrelation function of a random process,
it is necessary to perform an ensemble average. In many cases, this may not be
possible as we may not be able to observe all realizations (or a large number of
realizations) of a random process. In fact, quite often we may be able to observe
only a single realization. This would occur in situations where the conditions of
an experiment cannot be duplicated and hence the experiment is not repeatable.
Is it possible to calculate the mean and/or autocorrelation function from a single
realization of a random process? The answer is, sometimes, depending on the
nature of the process.

To start with, consider the mean. Suppose a WSS random process X(t) has a
mean µX . We are able to observe one realization of the random process, x(t), and
wish to try to determine µX from this realization. One obvious approach would be
to calculate the time average1 of the realization:

〈x(t)〉 = lim
to→∞

1
2to

∫ to

−to

x(t) dt. (8.16)

1Throughout the text, angular brackets 〈 〉 are used as a shorthand notation to represent
the time average operator.
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However, it is not obvious if the time average of one realization is necessarily equal
to the ensemble average. If the two averages are the same, then we say that the
random process is ergodic in the mean.

One could take the same approach for the autocorrelation function. Given a
single realization, x(t), form the time-average autocorrelation function:


xx(τ ) = 〈x(t)x(t + τ )〉 = lim
to→∞

1
2to

∫ to

−to

x(t)x(t + τ ) dt. (8.17)

If 
xx(τ ) = RXX(τ ) for any realization, x(t), then the random process is said to
be ergodic in the autocorrelation. In summary, we have the following definition of
ergodicity:

DEFINITION 8.8: A WSS random process is ergodic if ensemble averages involv-
ing the process can be calculated using time averages of any realization of the
process. Two limited forms of ergodicity are

(1) ergodic in the mean: 〈x(t)〉 = E[X(t)];
(2) ergodic in the autocorrelation: 〈x(t + τ )〉 = E[X(t)X(t + τ )].

EXAMPLE 8.19: As a simple example, suppose X(t) = A, where A is a
random variable with some arbitrary PDF fA(a). Note that this process
is stationary in the strict sense since for any realization, x(t) = x(t + τ ).
That is, not only are the statistics of the process invariant to time shifts,
but every realization is also invariant to any time shift. If we take the
time average of a single realization, x(t) = a, we get 〈x(t)〉 = a. Hence,
each different realization will lead to a different time average and will
not necessarily give the ensemble mean, µA. Although this process is
stationary in the strict sense, it is not ergodic in any sense.

EXAMPLE 8.20: Now consider the sinusoid with random phase X(t) =
a sin(ωot + �), where � is uniform over [0, 2π ). It was demonstrated
in Example 8.13 that this process is WSS. But is it ergodic? Given any
realization x(t) = a sin(ωot + θ ), the time average is 〈x(t)〉 = 〈a sin(ωot +
θ )〉 = 0. That is, the average value of any sinusoid is zero. So this process
is ergodic in the mean since the ensemble average of this process was
also zero. Next, consider the sample autocorrelation function:

〈x(t)x(t + τ )〉 = a2〈sin(ωot + θ ) sin(ωot + ωoτ + θ )〉

= a2

2
〈cos(ωoτ )〉 − a2

2
〈cos(2ωot + ωoτ + 2θ )〉 = a2

2
cos(ωoτ ).
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This also is exactly the same expression obtained for the ensemble aver-
aged autocorrelation function. Hence, this process is also ergodic in the
autocorrelation.

EXAMPLE 8.21: For a process that is known to be ergodic, the
autocorrelation function can be estimated by taking a sufficiently
long time average of the autocorrelation function of a single real-
ization. We demonstrate this via MATLAB for a process that

consists of a sum of sinusoids of fixed frequencies and random phases,

X(t) =
n∑

k=1

cos(2π fkt + θk),

where the θk are IID and uniform over (0, 2π ). For an arbitrary signal x(t), we
note the similarity between the time averaged autocorrelation function and
the convolution of x(t) and x(−t). If we are given a single realization, x(t),
which lasts only for the time interval, (−to, to), then these two expressions are
given by

〈x(t)x(t + τ )〉 = 1
2to − τ

∫ to−τ

−to

x(t)x(t + τ ) dt,

x(t) ∗ x(−t) =
∫ to−τ

−to

x(t)x(t + τ ) dt,

for τ > 0. In general, we have the relationship

〈x(t)x(t + τ )〉 = x(t) ∗ x(−t)
2to − |τ | .

By using the MATLAB convolution function, conv, the time averaged auto-
correlation can easily be computed. This is demonstrated in the code that
follows. Figure 8.8 shows a comparison between the ensemble averaged
autocorrelation and the time averaged autocorrelation taken from a single
realization. From the figure, it is noted that the agreement between the two
is good for τ � to but not good when τ ∼ to. This is due to the fact that when
τ approaches to, the time window over which the time average is computed
gets too small to produce an accurate estimate.

N=4; % Number of sinusoids.

to=5; % Time duration.
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Figure 8.8 Comparison of the time-average autocorrelation and the ensemble-average
autocorrelation for the sum of sinusoids process of Example 8.21. The solid line is the time-
average autocorrelation, while the dashed line is the ensemble-average autocorrelation.

Ts=0.01; % Sample interval.

t=[-to:Ts:to]; % Time axis.

tau=[-2*to:Ts:2*to]; % Tau axis.

theta=rand(1,N); % Random phases.

f=1./[1:N]; % Frequencies (not

random).

x=zeros(size(t));

True_Rxx=zeros(size(tau));

for k=1:N

x=x+cos(2*pi*f(k)*t+2*pi*theta(k)); % Construct process.

True_Rxx=True_Rxx+cos(2*pi*f(k)*tau)/2; % Compute Rxx(tau).

end

z=conv(x,fliplr(x)); % x(t)*x(-t)

Rxx=Ts*z./(2*to-abs(tau)); % Time averaged Rxx.

plot(tau,Rxx,‘-’,tau,True_Rxx,‘--’) % Plot results.

xlabel(‘tau’); ylabel(‘R_X_X(tau)’)

axis([-2*to 2*to -1.1*N/2 1.1*N/2])

The previous examples show two different random processes, one that is
ergodic and one that is not. What characteristics of a random process make it
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ergodic? To get some better insight toward answering this question, consider a
discrete time process, X[n], where each random variable in the sequence is IID and
consider forming the time average:

〈X[n]〉 = lim
m→∞

1
m

m∑
n=1

X[n]. (8.18)

The right-hand side of this equation is nothing more than the sample mean. By
virtue of the law of large numbers, the limit will indeed converge to the ensemble
mean of the random process, µX , and hence this process is ergodic in the mean. In
this case, the time average converges to the ensemble average because each time
sample of the random process gives an independent observation of the underlying
randomness. If the samples were highly correlated, then taking more samples
would not necessarily cause the sample mean to converge to the ensemble mean.
So, it seems that the form of the autocorrelation function will play some role in
determining if a random process is ergodic in the mean.

To formalize this concept, consider the time average of an arbitrary WSS random
process:

〈X(n)〉 = lim
to→∞ Xto where Xto = 1

2to

∫ to

−to

X(t) dt. (8.19)

Note that Xto is a random variable with an expected value given by2

E[Xto ] = E
[

1
2to

∫ to

−to

X(t) dt
]

= 1
2to

∫ to

−to

E[X(t)] dt = 1
2to

∫ to

−to

µX dt = µX . (8.20)

Hence, Xto is an unbiased estimate of the true mean, but for the process to be ergodic
in the mean, it is required that Xto converge to µX as to → ∞. This convergence
will occur (in the mean square sense) if the variance of Xto goes to zero in the limit
as to → ∞. To see under what conditions this occurs, we calculate the variance.

Var(Xto )=E[(Xto −µX)2]=E

[(
1

2to

∫ to

−to

(X(t)−µX)dt
)2]

= 1
4t2

o

∫ to

−to

∫ to

−to

E[(X(t)−µX)(X(s)−µX)]dt ds= 1
4t2

o

∫ to

−to

∫ to

−to

CXX(t,s)dt ds.

(8.21)

2We exchange the order of expectation and integration since they are both linear
operators.
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Since the random process X(t) is WSS, the autocovariance is only a function of
τ = t − s. As a result, the double integral can be converted to a single integral.3 The
result is

Var(Xto ) = 1
2to

∫ 2to

−2to

(
1 − |τ |

2to

)
CXX(τ ) dτ = 1

to

∫ 2to

0

(
1 − τ

2to

)
CXX(τ ) dτ . (8.22)

Thus, the random process will be ergodic in the mean if this expression goes to
zero in the limit as to → ∞. This proves the following theorem.

THEOREM 8.1: A continuous WSS random process X(t) will be ergodic in the
mean if

lim
to→∞

1
to

∫ 2to

0

(
1 − τ

2to

)
CXX(τ ) dτ = 0. (8.23)

One implication of Theorem 8.1 is that if CXX(τ ) tends toward a constant as
τ → ∞, then that constant must be zero for the process to be ergodic. Stated in
terms of the autocorrelation function, a sufficient condition for a process to be
ergodic in the mean is that

lim
τ→∞ RXX(τ ) = µ2

X . (8.24)

Similar relationships can be developed to determine when a process is ergodic in
the autocorrelation, but that topic is beyond the intended scope of this text.

EXAMPLE 8.22: Consider the process X(t) = A of Example 8.19. It is
easily found that the autocovariance function of this process is CXX(τ ) =
σ 2

A for all τ . Plugging this into the left-hand side of Equation 8.23
results in

lim
to→∞

1
to

∫ 2to

0

(
1 − τ

2to

)
CXX(τ ) dτ = lim

to→∞
σ 2

A
to

∫ 2to

0

(
1 − τ

2to

)
dτ

= lim
to→∞

σ 2
A

to
to = σ 2

A.

Since this limit is not equal to zero, the process clearly does not meet
the condition for ergodicity. Next, consider the sinusoidal process of

3The procedure for doing this conversion will be described in detail in Chapter 10,
where a similar integral will be encountered in the proof of the Wiener–Khintchine–Einstein
theorem.
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Example 8.20. In that case, the autocovariance function is CXX(τ ) =
(a2/2) cos(ωoτ ) and the left-hand side of Equation 8.23 produces

lim
to→∞

1
to

∫ 2to

0

(
1 − τ

2to

)
CXX(τ ) dτ = lim

to→∞
a2

2to

∫ 2to

0

(
1 − τ

2to

)
cos(ωoτ ) dτ

= lim
to→∞ a2

(
1 − cos(2ωoto)

(2ωoto)2

)
= 0.

So, even though this autocorrelation function does not approach zero in
the limit at τ → 0 (it oscillates), it still meets the condition for ergodicity.

8.4 Properties of the Autocorrelation
Function

Since the autocorrelation function, along with the mean, is considered to be a
principal statistical descriptor of a WSS random process, we will now consider
some properties of the autocorrelation function. It should quickly become apparent
that not just any function of τ can be a valid autocorrelation function.

PROPERTY 8.4.1: The autocorrelation function evaluated at τ = 0, RXX(0), is the
average normalized power in the random process, X(t).

To clarify this, note that RXX(0) = E[X2(t)]. Now suppose the random process
X(t) was a voltage measured at some point in a system. For a particular realization,
x(t), the instantaneous power would be p(t) = x2(t)/r, where r is the impedance
in Ohms (�). The average power (averaged over all realizations in the ensemble)
would then be Pavg = E[X2(t)]/r = RXX(0)/r. If, on the other hand, X(t) were a
current rather than a voltage, then the average power would be Pavg = RXX(0)r.
From a systems level, it is often desirable not to concern ourselves with whether a
signal is a voltage or a current. Accordingly, it is common to speak of a normalized
power, which is the power measured using a 1-� impedance. With r = 1, the
two expressions for average power are the same and equal to the autocorrelation
function evaluated at zero.

PROPERTY 8.4.2: The autocorrelation function of a WSS random process is an
even function; that is, RXX(τ ) = RXX(−τ ).
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This property can easily be established from the definition of autocorrelation.
Note that RXX(−τ ) = E[X(t)X(t −τ )]. Since X(t) is WSS, this expression is the same
for any value of t. In particular, replace t in the previous expression with t + τ so
that RXX(−τ ) = E[X(t+τ )X(t)] = RXX(τ ). As a result of this property, any function
of τ which is not even cannot be a valid autocorrelation function.

PROPERTY 8.4.3: The autocorrelation function of a WSS random process is
maximum at the origin; that is, |RXX(τ )| ≤ RXX(0) for all τ .

This property is established using the fact that for any two random variables,
X and Y,

(E[XY])2 ≤ E[X2]E[Y2]. (8.25)

This fact was previously demonstrated in the proof of Theorem 5.4. Letting
X = X(t) and Y = X(t + τ ) results in

R2
XX(τ ) = {E[X(t)X(t + τ )]}2 ≤ E[X2(t)]E[X2(t + τ )] = R2

XX(0). (8.26)

Taking square roots of both sides results in Property 8.4.3.

PROPERTY 8.4.4: If X(t) is ergodic and has no periodic components, then
limτ→∞ RXX(τ ) = µ2

X .

PROPERTY 8.4.5: If X(t) has a periodic component, then RXX(t) will have a
periodic component with the same period.

From these properties it is seen that an autocorrelation function can oscillate,
can decay slowly or rapidly, and can have a nonzero constant component. As
the name implies, the auto-correlation function is intended to measure the extent
of correlation of samples of a random process as a function of how far apart the
samples are taken.

8.5 Gaussian Random Processes

One of the most important classes of random processes is the Gaussian random
process, which is defined as follows.

DEFINITION 8.9: A random process, X(t), for which any n samples, X1 =
X(t1), X2 = X(t2), . . . , Xn = X(tn), taken at arbitrary points in time t1, t2, . . . , tn,
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form a set of jointly Gaussian random variables for any n = 1, 2, 3, . . . is a Gaussian
random process.

In vector notation, the vector of n samples, X = [X1, X2, . . . , Xn]T , will have a joint
PDF given by

fX(x) = 1√
(2π )n det(CXX)

exp
(
− 1

2 (x − µX)TC−1
XX(x − µX)

)
. (8.27)

As with any joint Gaussian PDF, all that is needed to specify the PDF is the mean
vector and the covariance matrix. When the vector of random variables consists
of samples of a random process, to specify the mean vector, all that is needed
is the mean function of the random process, µX(t), since that will give the mean
for any sample time. Similarly, all that is needed to specify the elements of the
covariance matrix, Ci,j = Cov(X(ti), X(tj)), would be the autocovariance function
of the random process, CXX(t1, t2) or, equivalently, the autocorrelation function,
RXX(t1, t2), together with the mean function. Hence, the mean and autocorrelation
functions provide sufficient information to specify the joint PDF for any number
of samples of a Gaussian random process. Note that since any nth order PDF is
completely specified by µX(t) and RXX(t1, t2), if a Gaussian random process is WSS,
then the mean and autocorrelation functions will be invariant to a time shift and
hence any PDF will be invariant to a time shift. Therefore, any WSS Gaussian
random process is also stationary in the strict sense.

EXAMPLE 8.23: Consider the random process X(t) = A cos(ωot) +
B sin(ωot), where A and B are independent, zero-mean Gaussian random
variables with equal variances of σ 2. This random process is formed as a
linear combination of two Gaussian random variables, and hence sam-
ples of this process are also Gaussian random variables. The mean and
autocorrelation functions of this process are found as

µX(t) = E[A cos(ωot) + B sin(ωot)] = E[A] cos(ωot) + E[B] sin(ωot) = 0,

RXXa(t1, t2) = E[(A cos(ωot1) + B sin(ωot1))(A cos(ωot2) + B sin(ωot2))]
= E[A2] cos(ωot1) cos(ωot2) + E[B2] sin(ωot1) sin(ωot2)

+ E[AB]{cos(ωot1) sin(ωot2) + sin(ωot1) cos(ωot2)}
= σ 2{cos(ωot1) cos(ωot2) + sin(ωot1) sin(ωot2)}
= σ 2 cos(ωo(t2 − t1)).

Note that this process is WSS since the mean is constant and the autocor-
relation function depends only on the time difference. Since the process
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is zero-mean, the first order PDF is that of a zero-mean Gaussian random
variable:

fX(x; t) = 1√
2πσ 2

exp

(
− x2

2σ 2

)
.

This PDF is independent of time as would be expected for a stationary
random process. Now consider the joint PDF of two samples, X1 = X(t)
and X2 = X(t + τ ). Since the process is zero-mean, the mean vector is
simply the all-zeros vector. The covariance matrix is then of the form

CXX =
[

RXX(0) RXX(τ )
RXX(τ ) RXX(0)

]
= σ 2

[
1 cos(ωoτ )

cos(ωoτ ) 1

]
.

The joint PDF of the two samples would then be

fX1,X2 (x1,x2;t,t+τ )= 1
2πσ 2|sin(ωoτ )| exp

(
−x2

1 −2x1x2 cos(ωoτ )+x2
2

2σ 2 sin2(ωoτ )

)
.

Note once again that this joint PDF is dependent only on time difference,
τ , and not on absolute time t. Higher order joint PDFs could be worked
out in a similar manner.

8.6 Poisson Processes

Consider a process X(t) that counts the number of occurrences of some event in
the time interval [0, t). The event might be the telephone calls arriving at a certain
switch in a public telephone network, customers entering a certain store, or the birth
of a certain species of animal under study. Since the random process is discrete (in
amplitude), we will describe it in terms of a probability mass function, PX(i; t) =
Pr(X(t) = i). Each occurrence of the event being counted is referred to as an arrival,
or a point. These types of processes are referred to as counting processes, or birth
processes. Suppose this random process has the following general properties:

• Independent Increments — The number of arrivals in two nonoverlapping inter-
vals are independent. That is, for two intervals [t1, t2) and [t3, t4) such that
t1 ≤ t2 ≤ t3 ≤ t4, the number of arrivals in [t1, t2) is statistically independent of
the number of arrivals in [t3, t4).
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• Stationary Increments — The number of arrivals in an interval [t, t + τ ) depends
only on the length of the interval τ and not on where the interval occurs, t.

• Distribution of Infinitesimal Increments — For an interval of infinitesimal length,
[t, t +
t), the probability of a single arrival is proportional to 
t, and the prob-
ability of having more than one arrival in the interval is negligible compared to

t. Mathematically, we say that for some arbitrary constant λ:4

Pr(no arrivals in [t, t + 
t)) = 1 − λ
t + o(
t), (8.28)

Pr(one arrival in [t, t + 
t)) = λ
t + o(
t), (8.29)

Pr(more than one arrival in [t, t + 
t)) = o(
t). (8.30)

Surprisingly enough, these rather general properties are enough to exactly
specify the distribution of the counting process as shown next.

Consider the PMF of the counting process at time t +
t. In particular, consider
finding the probability of the event {X(t + 
t) = 0}.

PX(0; t + 
t) = Pr(no arrivals in [0, t + 
t))

= Pr(no arrivals in [0, t)) Pr(no arrivals in [t, t + 
t))

= PX(0; t)[1 − λ
t + o(
t)] (8.31)

Subtracting PX(0; t) from both sides and dividing by 
t results in

PX(0; t + 
t) − PX(0; t)

t

= −λPX(0; t) + o(
t)

t

PX(0; t). (8.32)

Passing to the limit as 
t → 0 gives the first order differential equation

d
dt

PX(0; t) = −λPX(0; t). (8.33)

The solution to this equation is of the general form

PX(0; t) = c exp(−λt)u(t) (8.34)

for some constant c. The constant c is found to be equal to unity by using the fact
that at time zero, the number of arrivals must be zero; that is, PX(0; 0) = 1. Hence,

PX(0; t) = exp(−λt)u(t). (8.35)

4The notation o(x) refers to an arbitrary function of x that goes to zero as x → 0 in a faster

than linear fashion. That is, some function g(x) is said to be o(x) if limx→0
g(x)

x = 0.
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The rest of the PMF for the random process X(t) can be specified in a similar manner.
We find the probability of the general event {X(t + 
t) = i} for some integer i > 0.

PX(i; t + 
t) = Pr(i arrivals in [0, t)) Pr(no arrivals in [t, t + 
t))

+ Pr(i − 1 arrivals in [0, t)) Pr(one arrival in [t, t + 
t))

+ Pr(less than i − 1 arrivals in [0, t))

× Pr(more than one arrival in [t, t + 
t))

= PX(i; t)[1 − λ
t + o(
t)] + PX(i − 1; t)[λ
t + o(
t)]

+
i−2∑
j=0

PX(i; t)o(
t) (8.36)

As before, subtracting PX(i; t) from both sides and dividing by 
t results in

PX(i; t + 
t) − PX(i; t)

t

= −λPX(i; t) + λPX(i − 1; t) +
i∑

j=0

PX(i; t)
o(
t)

t

. (8.37)

Passing to the limit as 
 → 0 gives another first order differential equation,

d
dt

PX(i; t) + λPX(i; t) = λPX(i − 1; t). (8.38)

It is fairly straightforward to solve this set of differential equations. For example,
for i = 1, we have

d
dt

PX(1; t) + λPX(1; t) = λPX(0; t) = λe−λtu(t), (8.39)

together with the initial condition that PX(1; 0) = 0. The solution to this equation
can be shown to be

PX(1; t) = λte−λtu(t). (8.40)

It is left as an exercise for the reader (see Exercise 8.21) to verify that the general
solution to the family of differential equations specified in Equation 8.38 is

PX(i; t) = (λt)i

i! e−λtu(t). (8.41)

Starting with the three properties made about the nature of this counting process
at the start of this section, we have demonstrated that X(t) follows a Poisson dis-
tribution, hence this process is referred to as a Poisson counting process. Starting
with the PMF for the Poisson counting process specified in Equation 8.41, one can
easily find the mean and autocorrelation functions for this process. First, the mean
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function is given by

µX(t) = E[X(t)] =
∞∑

i=0

i
(λt)i

i! e−λtu(t) = λtu(t). (8.42)

In other words, the average number of arrivals in the interval [0, t), is λt. This gives
the parameter λ the physical interpretation as the average rate of arrivals or, as it is
more commonly referred to, the arrival rate of the Poisson process. Another obser-
vation we can make from the mean process is that the Poisson counting process is
not stationary.

The autocorrelation function can be calculated as follows:

RXX(t1, t2) = E[X(t1)X(t2)] = E[X(t1){X(t1) + (X(t2) − X(t1))}]
= E[X2(t1)] + E[X(t1){X(t2) − X(t1)}]. (8.43)

To simplify the second expression, we use the independent increments property
of the Poisson counting process. Assuming that t1 < t2, then X(t1) represents the
number of arrivals in the interval [0, t1), while X(t2)−X(t1) is the number of arrivals
in the interval [t1, t2). Since these two intervals are nonoverlapping, the number of
arrivals in the two intervals are independent. Therefore,

RXX(t1, t2) = E[X2(t1)] + E[X(t1)]E[X(t2) − X(t1)]
= Var(X(t1)) + µX(t1)µX(t2) = λt1 + λ2t1t2. (8.44)

This can be written more concisely in terms of the autocovariance function,

CXX(t1, t2) = Var(X(t1)) = λt1. (8.45)

If t2 < t1, then the roles of t1 and t2 need to be reversed. In general for the Poisson
counting process, we have

CXX(t1, t2) = λ min(t1, t2). (8.46)

Another feature that can be extracted from the PMF of the Poisson counting
process is the distribution of the interarrival time. That is, let T be the time at
which the first arrival occurs. We seek the distribution of the random variable T.
The CDF of T can be found as

FT (t) = Pr(T ≤ t) = Pr(at least one arrival in [0, t))

= 1 − Pr(no arrivals in [0, t)) = [1 − e−λt]u(t). (8.47)
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Hence it follows that the arrival time is an exponential random variable with a
mean value of E[T] = 1/λ. The PDF of T is

fT (t) = λe−λtu(t). (8.48)

We could get the same result starting from any point in time. That is, we do not
need to measure the time to the next arrival starting from time zero. Picking any
arbitrary point in time to, we could define T to be the time until the first arrival
after time to. Using the same reasoning as before, we would arrive at the same
exponential distribution. If we pick to to be the time of a specific arrival and then
define T to be the time to the next arrival, then T is interpreted as an inter-arrival
time. Hence, we conclude that the time between successive arrivals in the Poisson
counting process follows an exponential distribution with a mean of 1/λ.

The Poisson counting process can be represented as a sum of randomly shifted
unit step functions. That is, let Si be the time of the ith arrival. Then

X(t) =
∞∑

i=1

u(t − Si). (8.49)

The random variables, Si, are sometimes referred to as points of the Poisson process.
Many other related random processes can be constructed by replacing the unit step
functions with alternative functions. For example, if the step function is replaced
by a delta function, the Poisson impulse process results, which is expressed as

X(t) =
∞∑

i=1

δ(t − Si). (8.50)

A sample realization of this process is shown in Figure 8.9.

x(t)

s1 s2 s3 s4 s5 s6

t

Figure 8.9 A sample realization of the Poisson impulse process.
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8.7 Engineering Application: Shot Noise
in a p-n Junction Diode

Both the Poisson counting process and the Poisson impulse process can be viewed
as special cases of a general class of processes referred to as shot noise processes.
Given an arbitrary waveform h(t) and a set of Poisson points, Si, the shot noise
process is constructed as

X(t) =
∞∑

i=1

h(t − Si). (8.51)

As an example of the physical origin of such a process, consider the operation of
a p-n junction diode. When a forward bias voltage is applied to the junction, a
current is generated. This current is not constant, but actually consists of discrete
holes from the p region and electrons from the n region that have sufficient energy to
overcome the potential barrier at the junction. Carriers do not cross the junction in
a steady deterministic fashion; rather, each passage is a random event that might
be modeled as a Poisson point process. The arrival rate of that Poisson process
would be dependent on the bias voltage across the junction. As a carrier crosses
the junction, it produces a current pulse, which we represent with some pulse
shape h(t), such that the total area under h(t) is equal to the charge in an electron, q.
Hence, the total current produced by the p-n junction diode can be modeled as a
shot noise process.

To start with, we compute the mean function of a shot noise process. However,
upon examining Equation 8.51, it is not immediately obvious how to take the
expected value for an arbitrary pulse shape h(t). There are several ways to achieve
this goal. One approach is to divide the time axis into infinitesimal intervals of
length 
t. Then, define a sequence of Bernoulli random variables Vn such that
Vn = 1 if a point occurred within the interval [n
t, (n + 1)
t) and Vn = 0 if no
points occurred in the same interval. Since the intervals are taken to be infinitesimal,
the probability of having more than one point in a single interval is negligible.
Furthermore, from the initial assumptions that led to the Poisson process, the
distribution of the Vn is given by

Pr(Vn = 1) = λ
t and Pr(Vn = 0) = 1 − λ
t. (8.52)

The shot noise process can be approximated by

X(t) ∼=
∞∑

n=0

Vnh(t − n
t). (8.53)
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In the limit as 
t → 0, the approximation becomes exact. Using this alterna-
tive representation of the shot noise process, calculation of the mean function is
straightforward.

E[X(t)] ∼=
∞∑

n=0

E[Vn]h(t − n
t) = λ

∞∑
n=0

h(t − n
t)
t (8.54)

Note that in this calculation, the fact that E[Vn] = λ
t was used. Passing to the
limit as 
t → 0 results in

µX(t) = λ

∫ ∞

0
h(t − u) du = λ

∫ t

0
h(v) dv. (8.55)

Strictly speaking, the mean function of the shot noise process is not a constant,
and hence the process is not stationary. However, in practice, the current pulse will
be time limited. Suppose the current pulse, h(t), has a time duration of th. That is,
for t > th, h(t) is essentially equal to zero. For the example of the p-n junction diode,
the time duration of the current pulse is the time it takes the carrier to pass through
the depletion region. For most devices, this number may be a small fraction of a
nanosecond. Then for any t > th,

µX(t) = λ

∫ ∞

0
h(v) dv = λq = constant. (8.56)

For example, using the fact that the charge on an electron is 1. 6×10−19 C, if carriers
made transitions at an average rate of 1015 per second (1 per femtosecond), then
the average current produced in the diode would be 0.16 mA.

Next, we seek the autocorrelation (or autocovariance) function of the shot noise
process. The same procedure used to calculate the mean function can also be used
here.

RXX(t, t + τ ) = E[X(t)X(t + τ )] =
∞∑

n=0

∞∑
m=0

E[VnVm]h(t − n
t)h(t + τ − m
t)

=
∞∑

n=0

E[V2
n]h(t − n
t)h(t + τ − n
t)]

+
∞∑

n=0

E[Vn]h(t − n
t)
∞∑

m�=n

E[Vm]h(t + τ − m
t)

= λ

∞∑
n=0

h(t − n
t)h(t + τ − n
t)]
t

+ λ2
∞∑

n=0

h(t − n
t)
t
∞∑

m�=n

h(t + τ − m
t)
t
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=
∞∑

n=0

h(t − n
t)h(t + τ − n
t)[λ
t − (λ
t)2]

+ λ2
∞∑

n=0

h(t − n
t)
t
∞∑

m=0

h(t + τ − m
t)
t (8.57)

Passing to the limit as 
t → 0, we note that the term involving (λ
t)2 is negligible
compared to λ
t. The resulting limit then takes the form

RXX(t, t + τ ) = λ

∫ ∞

0
h(t − u)h(t + τ − u) du + λ2

∫ ∞

0
h(t − u) du

∫ ∞

0
h(t + τ − u) du

= λ

∫ t

0
h(v)h(v + τ ) dv + λ2

∫ t

0
h(v) dv

∫ t+τ

0
h(v) dv. (8.58)

Note that the last term (involving the product of integrals) is just the product of the
mean function evaluated at time t and the mean function evaluated at time t + τ .
Hence, we have

RXX(t, t + τ ) = λ

∫ t

0
h(v)h(v + τ ) dv + µX(t)µX(t + τ ), (8.59)

or equivalently, in terms of the autocovariance function,

CXX(t, t + τ ) = λ

∫ t

0
h(v)h(v + τ ) dv. (8.60)

As with the mean function, it is seen that the autocovariance function is a func-
tion of not only τ but also t. Again, for sufficiently large t, the upper limit in the
preceding integral will be much longer than the time duration of the pulse, h(t).
Hence, for t > th,

CXX(t, t + τ ) = CXX(τ ) = λ

∫ ∞

0
h(v)h(v + τ ) dv, (8.61)

or

RXX(t, t + τ ) = RXX(τ ) = λ

∫ ∞

0
h(v)h(v + τ ) dv + µ2

X . (8.62)

We say that the shot noise process is asymptotically WSS. That is, after waiting
a sufficiently long period of time, the mean and autocorrelation functions will
be invariant to time shifts. In this case, the phrase “sufficiently long time” may
mean a small fraction of a nanosecond! So for all practical purposes, the pro-
cess is WSS. Also, it is noted that the width of the autocovariance function is th.
That is, if h(t) is time limited to a duration of th, then CXX(τ ) is zero for |τ | > th.
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h (t)
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CXX(τ)
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Figure 8.10 A square current pulse (a) and the corresponding autocovariance function (b).

This relationship is illustrated in Figure 8.10, assuming h(t) is a square pulse, and
implies that any samples of the shot noise process that are separated by more than
th will be uncorrelated.

Finally, in order to characterize the PDF of the shot noise process, consider the
approximation to the shot noise process given in Equation 8.53. At any fixed point
in time, the process X(t) can be viewed as the linear combination of a large number
of independent Bernoulli random variables. By virtue of the central limit theorem,
this sum can be very well approximated by a Gaussian random variable. Since
the shot noise process is WSS (at least in the asymptotic sense) and is a Gaussian
random process, then the process is also stationary in the strict sense. Also, samples
spaced by more than th are independent.

EXAMPLE 8.24: Consider a shot noise process in a p-n junction diode
where the pulse shape is square as illustrated in Figure 8.10. The mean
current is µX = λq, which is presumably the desired signal we are
trying to measure. The fluctuation of the shot noise process about the
mean, we view as the unwanted disturbance, or noise. It would be
interesting to measure the ratio of the power in the desired part of the
signal to the power in the noise part of the signal. The desired part has
a time-average power of µ2

X = (λq)2, while the noise part has a power
of σ 2

X = CXX(0) = λq2/th. The signal-to-noise ratio (SNR) is then

SNR = µ2
X

σ 2
X

= (λq)2

λq2/th
= λth.

We write this in a slightly different form,

SNR = λth = λq
(

th

q

)
= µX

(
th

q

)
.
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Figure 8.11 Signal-to-noise ratio in a shot noise process for an example p-n junction diode.

For example, if the pulse duration were th = 10 picoseconds, the SNR
as it depends on the strength of the desired part of the signal would be
as illustrated in Figure 8.11. It is noted that the SNR is fairly strong until
we try to measure signals that are below a microamp.

In Chapter 10, Power Spectral Density, we will view random processes in the
frequency domain. Using the frequency domain tools we will develop in that
chapter, it will become apparent that the noise power in the shot noise process is
distributed over a very wide bandwidth (about 100 GHz for the previous example).
Typically, our measuring equipment would not respond to that wide of a frequency
range, and so the amount of noise power we actually see would be much less than
that presented in Example 8.24 and would be limited by the bandwidth of our
equipment.

EXAMPLE 8.25: In this example, we provide some MATLAB code
to generate a sample realization of a shot noise process. We chose
to use a current pulse shape of the form h(t) = t exp(−t2), but the
reader could easily modify this to use other pulse shapes as well.

A typical realization is shown in Figure 8.12. Note that after a short initial
transient period, the process settles into a steady state behavior.
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Figure 8.12 A typical realization of a shot noise process.

dt=0.001; % Time sample interval.

t=[0:dt:20]; % Time axis.

v=rand(size(t))<0.2; % Impulse process.

h=t.*exp(-t.∧2); % Pulse shape.

x=conv(v,h); % Shot noise process.

plot(t,x(1:length(t))) % Plot results.

xlabel(‘time, t’); ylabel(‘X(t)’)

Exercises
8.1 A random process X(t) consists of three-member functions: x1(t) = 1,

x2(t) = −3, and x3(t) = sin(2π t). Each member function occurs with equal
probability.

(a) Find the mean function, µX(t).
(b) Find the autocorrelation function, RX,X(t1, t2).
(c) Is the process WSS? Is it stationary in the strict sense?
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8.2 A random process X(t) has the following member functions: x1(t) =
−2 cos(t), x2(t) = −2sin(t), x3(t) = 2[cos(t)+sin(t)], x4(t) = [cos(t)−sin(t)],
and x5(t) = [sin(t) − cos(t)].
(a) Find the mean function, µX(t).

(b) Find the autocorrelation function, RX,X(t1, t2).

(c) Is the process WSS? Is it stationary in the strict sense?

8.3 Let a discrete random process X[n] be generated by repeated tosses of a
fair die. Let the values of the random process be equal to the results of each
toss.

(a) Find the mean function, µX[n].
(b) Find the autocorrelation function, RX,X(k1, k2).

(c) Is the process WSS? Is it stationary in the strict sense?

8.4 A discrete random process, X[n], is generated by repeated tosses of a coin.
Let the occurrence of a head be denoted by 1 and that of a tail by −1. A new
discrete random process is generated by Y[2n] = X[n] for n = 0, ±1, ±2, . . .
by and Y[n] = X[n+1] for ±n for n odd. Find the autocorrelation function
for Y[n].

8.5 Let X[n] be a wide sense stationary, discrete random process with
autocorrelation function RXX[n], and let c be a constant.

(a) Find the autocorrelation function for the discrete random process
Y[n] = X[n] + c.

(b) Are X[n] and Y[n] independent? Uncorrelated? Orthogonal?

8.6 A wide sense stationary, discrete random process X[n] has an autocorre-
lation function of RXX[k]. Find the expected value of Y[n] = (X[n + m] −
X[n − m])2, where m is an arbitrary integer.

8.7 A random process is given by X(t) = A cos(ωt) + B sin(ωt), where A and B
are independent zero mean random variables.

(a) Find the mean function, µX(t).

(b) Find the autocorrelation function, RX,X(t1, t2).

(c) Under what conditions (on the variances of A and B) is X(t) WSS?

8.8 Show by example that the random process Z(t) = X(t) + Y(t) may be a
wide sense stationary process even though the random processes X(t) and
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Y(t) are not. Hint: Let A(t) and B(t) be independent, wide sense stationary
random processes with zero means and identical autocorrelation functions.
Then let X(t) = A(t) sin(t) and Y(t) = B(t) cos(t). Show that X(t) and Y(t)
are not wide sense stationary. Then show that Z(t) is wide sense stationary.

8.9 Let X(t) = A(t) cos(ω0t + θ ), where A(t) is a wide sense stationary random
process independent of θ , and let θ be a random variable distributed uni-
formly over [0, 2π ). Define a related process Y(t) = A(t) cos(ω0 +ω1)t + θ ).
Show that X(t) and Y(t) are stationary in the wide sense but that the cross-
correlation RXY(t, t + τ ), between X(t) and Y(t), is not a function of τ only
and, hence, Z(t) = X(t) + Y(t) is not stationary in the wide sense.

8.10 Let X(t) be a modified version of the random telegraph process. The pro-
cess switches between the two states X(t) = 1 and X(t) = −1, with
the time between switches following exponential distributions fT (s) =
λ exp(−λ)u(s). Also, the starting state is determined by flipping a biased
coin so that Pr(X(0) = 1) = p and Pr(X(0) = −1) = 1 − p.

(a) Find Pr(X(t) = 1) and Pr(X(t) = −1).
(b) Find the mean function, µX(t).
(c) Find the autocorrelation function, RX,X(t1, t2).
(d) Is this process WSS?

8.11 Let s(t) be a periodic square wave as illustrated in the accompanying figure.
Suppose a random process is created according to X(t) = s(t − T), where
T is a random variable uniformly distributed over (0, 1).

(a) Find the probability mass function of X(t).
(b) Find the mean function, µX(t).
(c) Find the autocorrelation function, RX,X(t1, t2).
(d) Is this process WSS?

. . .. . .

s(t)

t1 2

1

−1

8.12 Let s(t) be a periodic triangle wave as illustrated in the accompanying
figure. Suppose a random process is created according to X(t) = s(t − T),
where T is a random variable uniformly distributed over (0, 1).
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(a) Find the probability density function of X(t).

(b) Find the mean function, µX(t).

(c) Find the autocorrelation function, RX,X(t1, t2).

(d) Is this process WSS?

. . .. . .

s(t)

t

1

−1 1 2

8.13 Let a random process consist of a sequence of pulses with the following
properties: (i) the pulses are rectangular and of equal duration, 
 (with
no “dead” space in between pulses), (ii) the pulse amplitudes are equally
likely to be ±1, (iii) all pulse amplitudes are statistically independent, and
(iv) the various members of the ensemble are not synchronized.

(a) Find the mean function, µX(t).

(b) Find the autocorrelation function, RX,X(t1, t2).

(c) Is this process WSS?

8.14 A random process is defined by X(t) = exp(−At)u(t), where A is a random
variable with PDF, fA(a).

(a) Find the PDF of X(t) in terms of fA(a).

(b) If A is an exponential random variable, with fA(a) = e−au(a), find µX(t)
and RX,X(t1, t2). Is the process WSS?

8.15 Let Wn be an IID sequence of zero-mean Gaussian random variables with
variance σ 2

W . Define a discrete time random process X[n] = pX[n−1]+Wn,
n = 1, 2, 3, . . ., where X[0] = W0 and p is a constant.

(a) Find the mean function, µX[n].
(b) Find the autocorrelation function, RX,X[n1, n2].

8.16 Let X(t) and Y(t) be two jointly wide sense stationary Gaussian random
processes with zero means and with autocorrelation and crosscorrelation
functions denoted as RXX(τ ), RYY(τ ), RXY(τ ). Determine the crosscorrela-
tion function between X2(t) and Y2(t).
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8.17 If X(t) is a wide sense stationary Gaussian random process, find the cross-
correlation between X(t) and X3(t) in terms of the autocorrelation function
RXX(τ ).

8.18 Two zero mean discrete random processes, X[n] and Y[n], are statistically
independent. Let a new random process be Z[n] = X[n] + Y[n]. Let the
autocorrelation functions for X[n] and Y[n] be

RXX[k] =
(

1
2

)|k|
, RYY[k] =

(
1
3

)|k|
.

Find RZZ[k]. Plot all three autocorrelation functions (you may want to use
MATLAB to help).

8.19 Consider a discrete time wide sense stationary random processes whose
autocorrelation funcion is of the form

RXX[k] = a|k|, where |a| < 1.

Assume this process has zero-mean. Is the process ergodic in the mean?

8.20 Let X(t) be a wide sense stationary random process that is ergodic in the
mean and the autocorrelation. However, X(t) is not zero-mean. Let Y(t) =
CX(t), where C is a random variable independent of X(t) and C is not
zero-mean. Show that Y(t) is not ergodic in the mean or the autocorrelation.

8.21 Prove that the family of differential equations

d
dt

PX(0; t) + λPX(0; t) = 0,

d
dt

PX(i; t) + λPX(i; t) = λPX(i − 1; t), i = 1, 2, 3, . . . ,

leads to the Poisson distribution

PX(i; t) = (λt)i

i! e−λt.

8.22 Consider a Poisson counting process with arrival rate λ.

(a) Suppose it is observed that there is exactly one arrival in the time
interval [0, to). Find the PDF of that arrival time.

(b) Now suppose there were exactly two arrivals in the time interval
[0, to). Find the joint PDF of those two arrival times.

Can you extend these results to an arbitrary number, n, of arrivals?
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8.23 Let X(t) be a Poisson counting process with arrival rate λ. Find Pr(N(t) =
k|N(t + τ ) = m), where τ > 0 and m ≥ k.

8.24 Let X(t) be a WSS random process with mean µX and autocorrelation
function RXX(τ ). Consider forming a new process according to

Y(t) = X(t + to) − X(t)
to

.

(a) Find the mean function of Y(t).

(b) Find the autocorrelation function of Y(t). Is Y(t) WSS?

8.25 Let Xi(t), i = 1, 2, . . . , n be a sequence of independent Poisson counting
processes with arrival rates λi. Show that the sum of all of these Poisson
processes,

X(t) =
n∑

i=1

Xi(t),

is itself a Poisson process. What is the arrival rate of the sum process?

8.26 A workstation is used until it fails and is then sent out for repair. The
time between failures, or the length of time the workstation functions
until it needs repair, is a random variable T. Assume the times between
failures, T1, T2, . . . Tn, of the workstations available are independent ran-
dom variables that are identically distributed. For t > 0, let the number of
workstations that have failed be N(t).

(a) If the time between failures of each workstation has an exponential
PDF, then what type of process is N(t)?

(b) Assume that you have just purchased 10 new workstations and that
each has a 90-day warranty. If the mean time between failures (MTBF)
is 250 days, what is the probability that at least one workstation will
fail before the end of the warranty period?

8.27 Suppose the arrival of calls at a switchboard is modeled as a Poisson
process with the rate of calls per minute being λa = 0. 1.

(a) What is the probability that the number of calls arriving in a 10-minute
interval is less than 10?

(b) What is the probability that the number of calls arriving in a 10-minute
interval is less than 10 if λa = 10?
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(c) Assuming λa = 0. 1, what is the probability that one call arrives during
the first 10-minute interval and two calls arrive during the second
10-minute interval?

8.28 Model lightning strikes to a power line during a thunderstorm as a Poisson
impulse process. Suppose the number of lightning strikes in time interval
t has a mean rate of arrival given by s, which is one strike per 3 minutes.

(a) What is the expected number of lightning strikes in 1 minute? in
10 minutes?

(b) What is the average time between lightning strikes?

8.29 Suppose the power line in the previous problem has an impulse response
that may be approximated by h(t) = te−atu(t), where a = 10 sec−1.

(a) What does the shot noise on the power line look like? Sketch a possible
member function of the shot noise process.

(b) Find the mean function of the shot noise process.

(c) Find the autocorrelation function of the shot noise process.

8.30 A shot noise process with random amplitudes is defined by

X(t) =
∞∑

i=1

Aih(t − Si),

where the Si are a sequence of points from a Poisson process and the Ai
are IID random variables that are also independent of the Poisson points.

(a) Find the mean function of X(t).

(b) Find the autocorrelation function of X(t).

MATLAB Exercises
8.31 You are given a member function of a random process as y(t) = 10 sin(2π t+

π/2 where the amplitude is in volts. Quantize the amplitude of y(t) into
21 levels with the intervals ranging from −10. 5 to 10.5 in 1-volt steps.
Consider 100 periods of y(t) and let t take on discrete values given by nts

where ts = 5 msec. Construct a histogram of y(t).
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8.32 Write a MATLAB program to generate a Bernoulli process X[n] for which
each time instant of the process is a Bernoulli random variable with
Pr(X[n] = 1) = 0. 1 and Pr(X[n] = 0) = 0. 9. Also, the process is IID
(i.e., X[n] is independent of X[m] for all m �= n). Once you have created the
program to simulate X[n], then create a counting process Y[n] that counts
the number of occurrences of X[m] = 1 in the interval m ∈ [0, n]. Plot
member functions of each of the two processes.

8.33 Let Wn, n = 0, 1, 2, 3, . . . be a sequence of IID zero-mean Gaussian random
variables with variance σ 2

W = 1.

(a) Write a MATLAB program to generate the process

X[n] = 1
2 X[n − 1] − 1

4 X[n − 2] − 1
4 X[n − 3] + Wn,

where X[0] = W0 and X[n] = 0 for n < 0.
(b) Estimate the mean function of this process by generating a large num-

ber of realizations of the random process and computing the sample
mean.

(c) Compute the time averaged mean of the process from a single real-
ization. Does this seem to give the same result as the ensemble mean
estimated in part (b)?

8.34 A certain random process is created as a sum of a large number, n, of
sinusoids with random frequencies and random phases,

X(t) =
n∑

k=1

cos(2πFkt + θk),

where the random phases θk are IID and uniformly distributed over
(0, 2π ), and the random frequencies are given by Fk = fo + fd cos(βk),
where the βk are IID and uniformly distributed over (0, 1). (Note: These
types of processes occur in the study of wireless communication systems.)
For this exercise, we will take the constants fo and fd to be fo = 25 Hz and
fd = 10 Hz, while we will let the number of terms in the sum be n = 32.

(a) Write a MATLAB program to generate realizations of this random
process.

(b) Assuming the process is stationary and ergodic, use a single realization
to estimate the first order PDF of the process, fX(x).

(c) Assuming the process is stationary and ergodic, use a single realization
to estimate the mean of the process, µX .
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(d) Assuming the process is stationary and ergodic, use a single realization
to estimate the autocorrelation function of the process, RXX(τ ).

8.35 Write a MATLAB program to generate a shot noise process with

h(t) = b(at) exp(−at)u(t),

where a = 1012 sec−1 and the constant b is chosen so that q = ∫
h(t) dt. For

this program, assume that carriers cross the depletion region at a rate of
1013 per second. Plot a member function of this random process.



Markov Processes 9

In this chapter we study a class of random processes that possess a certain char-
acteristic that could crudely be described as memoryless. These processes appear
in numerous applications, including queuing systems, computer communications
networks, biological systems, and a wide array of other applications. As a result
of their frequent occurrence, these processes have been studied extensively and
a wealth of theory exists to solve problems related to these processes. We make
no attempt to give an exhaustive treatment here, but rather present some of the
fundamental concepts involving Markov processes.

9.1 Definition and Examples of Markov
Processes

DEFINITION 9.1: A random process, X(t), is said to be a Markov process if for
any time instants, t1 < t2 < · · · < tn < tn+1, the random process satisfies

FX(X(tn+1) ≤ xn+1
∣
∣ X(tn) = xn, X(tn−1) = xn−1, . . . , X(t1) = x1)

= FX(X(tn+1) ≤ xn+1
∣
∣ X(tn) = xn). (9.1)

To understand this definition, we interpret tn as the present time so that tn+1 rep-
resents some point in the future and t1, t2, . . . , tn−1 represent various points in the
past. The Markovian property then states that given the present, the future is inde-
pendent of the past. Or, in other words, the future of the random process depends
only on where it is now and not on how it got there.

323
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EXAMPLE 9.1: A classical example of a continuous time Markov pro-
cess is the Poisson counting process studied in the previous chapter. Let
X(t) be a Poisson counting process with rate λ. Then its probability mass
function satisfies

Pr(X(tn+1) = xn+1
∣
∣ X(tn) = xn, X(tn−1) = xn−1, . . . , X(t1) = x1)

=







0 xn+1 < xn

(λ(tn+1 − tn))xn+1−xn

(xn+1 − xn)! e−λ(tn+1−tn) xn+1 ≥ xn

.

Clearly, this is independent of {X(tn−1) = xn−1, . . . , X(t1) = x1}. In fact,
the Markovian property must be satisfied because of the independent
increments assumption of the Poisson process.

To start with, we will focus our attention on discrete-valued Markov processes
in discrete time, better known as Markov chains. Let X[k] be the value of the
process at time instant k. Since the process is discrete-valued, X[k] ∈ {x1, x2, x3, . . .}
and we say that if X[k] = xn, then the process is in state n at time k. A Markov
chain is described statistically by its transition probabilities which are defined as
follows.

DEFINITION 9.2: Let X[k] be a Markov chain with states {x1, x2, x3, . . .}, then the
probability of transitioning from state i to state j in one time instant is

pi, j = Pr(X[k + 1] = j|X[k] = i). (9.2)

If the Markov chain has a finite number of states, n, then it is convenient to define
a transition probability matrix,

P =








p1, 1 p1, 2 · · · p1, n

p2, 1 p2, 2 · · · p2, n

pn, 1 pn, 2 · · · pn, n








. (9.3)

One can encounter processes where the transition probabilities vary with time and
hence need to be explicitly written as a function of k (e.g., pi, j, k), but we do not
consider such processes in this text and henceforth it is assumed that transition
probabilities are independent of time.
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EXAMPLE 9.2: Suppose every time a child buys a kid’s meal at his
favorite fast food restaurant, he receives one of four superhero action
figures. Naturally, the child wants to collect all four action figures and
so he regularly eats lunch at this restaurant in order to complete the
collection. This process can be described by a Markov chain. In this
case, let X[k] ∈ {0, 1, 2, 3, 4} be the number of different action figures
that the child has collected after purchasing k meals. Assuming each
meal contains one of the four superheroes with equal probability and
that the action figure in any meal is independent of what is contained
in any previous or future meals, then the transition probability matrix
easily works out to be

P =











0 1 0 0 0
0 1/4 3/4 0 0
0 0 1/2 1/2 0
0 0 0 3/4 1/4
0 0 0 0 1











.

Initially (before any meals are bought), the process starts in state 0
(the child has no action figures). When the first meal is bought, the
Markov chain must move to state 1 since no matter which action figure
is contained in the meal, the child will now have one superhero. Hence,
p0, 1 = 1 and p0, j = 0 for all j �= 1. If the child has one distinct action
figure, when he buys the next meal he has a 25 percent chance of receiv-
ing a duplicate and a 75 percent chance of getting a new action figure.
Hence, p1, 1 = 1/4, p1, 2 = 3/4, and p1, j = 0 for j �= 1, 2. Similar logic is
used to complete the rest of the matrix. The child might be interested
in knowing the average number of lunches he needs to buy until his
collection is completed. Or, maybe the child has saved up only enough
money to buy 10 lunches and wants to know what his chances are of
completing the set before running out of money. We will develop the
theory needed to answer such questions.

The transition process of a Markov chain can also be illustrated graphically using
a state diagram. Such a diagram is illustrated in Figure 9.1 for the Markov chain
in Example 9.2. In the figure, each directed arrow represents a possible transition
and the label on each arrow represents the probability of making that transition.
Note that for this Markov chain, once we reach state 4, we remain there forever.
This type of state is referred to as an absorbing state.
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0 1 2 3 4
1

1/2 3/4

1/4

1/4

1/23/4

1

Figure 9.1 State diagram for the Markov chain of Example 9.2.

EXAMPLE 9.3: (The Gambler’s Ruin Problem) Suppose a gambler
plays a certain game of chance (e.g., blackjack) against the “house.”
Every time the gambler wins the game, he increases his fortune by one
unit (say, a dollar) and every time he loses, his fortune decreases by one
unit. Suppose the gambler wins each game with probability p and loses
with probability q = 1−p. Let Xn represent the amount of the gambler’s
fortune after playing the game n times. If the gambler ever reaches the
state Xn = 0, the gambler is said to be “ruined” (he has lost all of his
money). Assuming that the outcome of each game is independent of all
others, the sequence xn, n = 0, 1, 2, . . . forms a Markov chain. The state
transition matrix is of the form

P =











1 0 0 0 0 . . .

q 0 p 0 0 . . .

0 q 0 p 0 . . .

0 0 q 0 p . . .

. . . . . . . . .











.

The state transition diagram for the gambler’s ruin problem is shown
in Figure 9.2. One might then be interested in determining how long it

0 1 2 3 4 5 . .  .1
q

q q q q q

p p p p p

(a)

p p p p p p

0 1 2 3 4 5 . .  .1
q

q q q q q

bb-1 1
p

q

(b)

Figure 9.2 State transition diagram for Example 9.3 (The Gambler’s Ruin Problem), with
one absorbing state (a) and with two absorbing states (b).



9.1 Definition and Examples of Markov Processes 327

might take before the gambler is ruined (enters the zero state). Is ruin
inevitable for any p, or if the gambler is sufficiently proficient at the
game, can he avoid ruin indefinitely? A more realistic alternative to
this model is one where the house also has a finite amount of money.
Suppose the gambler starts with d dollars and the house has b−d dollars
so that between the two competitors there is a total of b dollars in the
game. Now if the gambler ever gets to the state 0 he is ruined, while if
he gets to the state b he has “broken the bank” (i.e., the house is ruined).
Now the Markov chain has two absorbing states as shown in part (b) of
the figure. It would seem that sooner or later the gambler must have a
run of bad luck sufficient to send him to the 0 state (i.e., ruin) or a run of
good luck which will cause him to enter the state b (i.e., break the bank).
It would be interesting to find the probabilities of each of these events.

The previous example is one of a class of Markov chains known as random
walks. Random walks are often used to describe the motion of a particle. Of course,
there are many applications that can be described by a random walk that do not
involve the movement of a particle, but it is helpful to think of such a particle when
describing such a Markov chain. In one dimension, a random walk is a Markov
chain whose states are the integers and whose transition probabilities satisfy pi, j = 0
for any j �= i−1, i, i+1. In other words, at each time instant, the state of the Markov
chain can either increase by one, stay the same, or decrease by one. If pi, i+1 = pi, i−1,
then the random walk is said to be symmetric, whereas if pi, i+1 �= pi, i−1 the random
walk is said to have drift. Often the state space of the random walk will be a finite
range of integers, n, n + 1, n + 1, . . . , m − 1, m (for m > n), in which case the states
n and m are said to be boundaries, or barriers. The gambler’s ruin problem is an
example of a random walk with absorbing boundaries, where pn, n = pm, m = 1.
Once the particle reaches the boundary, it is absorbed and remains there forever.
We could also construct a random walk with reflecting boundaries, in which case
pn, n+1 = pm, m−1 = 1. That is, whenever the particle reaches the boundary, it is
always reflected back to the adjacent state.

EXAMPLE 9.4: (A Queueing System) A common example of Markov
chains (and Markov processes in general) is that of queueing systems.
Consider, for example, a taxi stand at a busy airport. A line of taxis,
which for all practical purposes can be taken to be infinitely long, is
available to serve travelers. Customers wanting a taxi enter a queue
and are given a taxi on a first come, first serve basis. Suppose it takes
one unit of time (say, a minute) for the customer at the head of the
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queue to load himself and his luggage into a taxi. Hence, during each
unit of time, one customer in the queue receives service and leaves the
queue while some random number of new customers enter the end of
the queue. Suppose at each time instant, the number of new customers
arriving for service is described by a discrete distribution (p0, p1, p2, . . .),
where pk is the probability of k new customers. For such a system, the
transition probability matrix of the Markov chain would look like

P =











p0 p1 p2 p3 . . .

p0 p1 p2 p3 . . .

0 p0 p1 p2 . . .

0 0 p0 p1 . . .

. . . . . . . . .











.

The manager of the taxi stand might be interested in knowing the
probability distribution of the queue length. If customers have to
wait too long, they may get dissatisfied and seek other forms of
transportation.

EXAMPLE 9.5: (A Branching Process) Branching processes are com-
monly used in biological studies. Suppose a certain species of organism
has a fixed lifespan (one time unit). At the end of its lifespan, the nth
organism in the species produces a number of offspring described by
some random variable, Yn, whose sample space is the set of nonnega-
tive integers. Also, assume that the number of offspring produced by
each organism is independent and identically distributed (IID). Then,
Xk, the number of organisms in the species during the kth generation
is a random variable that depends only on the number of organisms in
the previous generation. In particular, if Xk = i, then Xk+1 = ∑i

n=1 Yn.
The transition probability is then

pi, j = Pr(Xk+1 = j
∣
∣ Xk = i) = Pr





i
∑

n=1

Yn = j



 .

Let HY(z) be the probability generating function of the random variable
Yn (i.e., HY(z) = ∑∞

i=0 Pr(Yn = i)zi). Then, due to the IID nature of the Yn,
∑i

n=1 Yn will have a probability generating function given by [HY(z)]i.
Hence, the transition probability, pi, j, will be given by the coefficient of
zj in the power series expansion of [HY(z)]i.
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EXAMPLE 9.6: (A Genetic Model) Suppose a gene contains n units. Of
these units, i are mutant and n − i are normal. Every time a cell doubles,
the n units double and each of the two cells receives a gene composed
of n units. After doubling, there is a pool of 2n units of which 2i are
mutant. These 2n units are grouped into two sets of n units randomly.
As we trace a single line of descent, the number of mutant units in each
gene forms a Markov chain. Define the kth gene to be in state i (where
Xk = i) if it is composed of i mutant and n − i normal units. It is not
difficult to show that, given Xk = i,

pi, j = Pr(Xk+1 = j
∣
∣ Xk = i) =

(
2i
j

)(
2n − 2i

n − j

)

(
2n
n

) .

9.2 Calculating Transition and State
Probabilities in Markov Chains

The state transition probability matrix of a Markov chain gives the probabilities
of transitioning from one state to another in a single time unit. It will be useful to
extend this concept to longer time intervals.

DEFINITION 9.3: The n-step transition probability for a Markov chain is

p(n)
i, j = Pr(Xk+n = j

∣
∣ Xk = i). (9.4)

Also, define an n-step transition probability matrix P(n) whose elements are the
n-step transition probabilities just described in Equation 9.4.

Given the one-step transition probabilities, it is straightforward to calculate higher
order transition probabilities using the following result.

THEOREM 9.1: (Chapman-Kolmogorov Equation)

p(n)
i, j =

∑

k

p(m)
i, k p(n−m)

k, j , for any m = 0, 1, 2, . . . , n (9.5)
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PROOF: First, condition on the event that in the process of transitioning from
state i to state j, the Markov chain passes through state k at some intermediate
point in time. Then, using the principle of total probability,

Pr(Xl+n = j
∣
∣Xl = i)=

∑

k

Pr(Xl+n = j
∣
∣Xl = i, Xl+m =k)Pr(Xl+m =k

∣
∣Xk = i). (9.6)

Using the Markov property, the expression reduces to the desired form:

Pr(Xl+n = j
∣
∣ Xl = i) =

∑

k

Pr(Xl+n = j
∣
∣ Xl+m = k) Pr(Xl+m = k

∣
∣ Xk = i). (9.7)

�

This result can be written in a more compact form using transition probability
matrices. It is easily seen that the Chapman-Kolmogorov equations can be written
in terms of the n-step transition probability matrices as

P(n) = P(m)P(n−m). (9.8)

Then, starting with the fact that P(1) = P, it follows that P(2) = P(1)P(1) = P2, and
using induction, it is established that

P(n) = Pn. (9.9)

Hence, we can find the n-step transition probability matrix through matrix
multiplication. If n is large, it may be more convenient to compute Pn via eigen-
decomposition. The matrix P can be expanded as P = U�U−1, where � is
the diagonal matrix of eigenvalues and U is the matrix whose columns are the
corresponding eigenvectors. Then

Pn = U� nU−1. (9.10)

Another quantity of interest is the probability distribution of the Markov chain
at some time instant k. If the initial probability distribution of the Markov chain is
known, then the distribution at some later point in time can easily be found. Let
πj(k) = Pr(Xk = j) and π (k) be the row vector whose jth element is πj(k). Then

πj(k) = Pr(Xk = j) =
∑

i

Pr(Xk = j
∣
∣ X0 = i) Pr(X0 = i) =

∑

i

p(k)
i, j πi(0), (9.11)

or in vector form,

π (k) = π (0)Pk. (9.12)

EXAMPLE 9.7: (Continuation of Example 9.2) Recall in Example 9.2
the child who purchased kid’s meals at his favorite restaurant in order
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to collect a set of four superhero action figures. Initially, before any
meals are purchased, the child has no action figures and so the initial
probability distribution is π (0) = 1, 0, 0, 0, 0). Repeated application of
Equation 9.12 with the probability transition matrix given in Example
9.2 results in

π (1) = (0, 1, 0, 0, 0),

π (2) = (0, 1/4, 3/4, 0, 0),

π (3) = (0, 1/16, 9/16, 3/8, 0),

π (4) = (0, 1/64, 21/64, 9/16, 3/32),

π (5) = (0, 1/256, 45/256, 75/128, 15/64),

π (6) = (0, 1/1024, 93/1024, 135/256, 195/512),

and so on. It is to be expected that if the child buys enough meals, he will
eventually complete the collection (i.e., get to state 4) with probability
approaching unity. This can be easily verified analytically by calculating
the limiting form of Pk as k → ∞. Recall that for this example, P is a
triangular matrix and hence its eigenvalues are simply the diagonal
entries. Thus, the diagonal matrix of eigenvalues is

� =











0 0 0 0 0
0 1/4 0 0 0
0 0 1/2 0 0
0 0 0 3/4 0
0 0 0 0 1











.

It should be clear that limk→∞ �k is a matrix with all zero entries except
the one in the lower-right corner, which is equal to one. Using MATLAB
(or some other math package) to calculate the corresponding matrix of
eigenvectors, it is found that

lim
k→∞

Pk = U
(

lim
k→∞

�k
)

U−1 =











0 0 0 0 1
0 0 0 0 1
0 0 0 0 1
0 0 0 0 1
0 0 0 0 1











.

Then, using the initial distribution of π (0) = (1, 0, 0, 0, 0), the state
distribution as k → ∞ works out to be

π = lim
k→∞

π (k) = lim
k→∞

π (0)Pk = [0 0 0 0 1].
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In Example 9.6, it was seen that as k → ∞, the k-step transition probability
matrix approached that of a matrix whose rows were all identical. In that case, the
limiting product limk→∞ π (0)Pk is the same regardless of the initial distribution
π (0). Such a Markov chain is said to have a unique steady state distribution, π .
It should be emphasized that not all Markov chains have a steady state distribu-
tion. For example, the Poisson counting process of Example 9.1 clearly does not,
since any counting process is a monotonic, nondecreasing function of time and,
hence, it is expected that the distribution should skew towards larger values as
time progresses.

This concept of a steady state distribution can be viewed from the perspective
of stationarity. Suppose that at time k, the process has some distribution, π (k). The
distribution at the next time instant is then π (k+1) = π (k)P. If π (k) = π (k+1), then
the process has reached a point where the distribution is stationary (independent
of time). This stationary distribution, π , must satisfy the relationship

π = πP. (9.13)

In other words, π (if it exists) is the left eigenvector of the transition probability
matrix P, that corresponds to the eigenvalue λ = 1. The next example shows that
this eigenvector is not always unique.

EXAMPLE 9.8: (The Gambler’s Ruin Revisited) Suppose a certain
gambler has $5 and plays against another player (the house). The gam-
bler decides that he will play until he either doubles his money or loses
it all. Suppose the house has designed this game of chance so that the
gambler will win with probability p = 0. 45 and the house will win with
probability q = 0. 55. Let Xk be the amount of money the gambler has
after playing the game k times. The transition probability matrix for this
Markov chain is

P =























1 0 0 0 0 0 0 0 0 0 0
0. 55 0 0. 45 0 0 0 0 0 0 0 0

0 0. 55 0 0. 45 0 0 0 0 0 0 0
0 0 0. 55 0 0. 45 0 0 0 0 0 0
0 0 0 0. 55 0 0. 45 0 0 0 0 0
0 0 0 0 0. 55 0 0. 45 0 0 0 0
0 0 0 0 0 0. 55 0 0. 45 0 0 0
0 0 0 0 0 0 0. 55 0 0. 45 0 0
0 0 0 0 0 0 0 0. 55 0 0. 45 0
0 0 0 0 0 0 0 0 0. 55 0 0. 45
0 0 0 0 0 0 0 0 0 0 1























.
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This matrix has (two) repeated eigenvalues of λ = 1, and the corre-
sponding eigenvectors are [1 0 0 0 0 0 0 0 0 0 0] and [0 0 0 0 0 0 0 0 0 0 1].
Note that any linear combination of these will also be an eigenvector.
Hence, any vector of the form [p 0 0 0 0 0 0 0 0 0 1 − p] is a left eigen-
vector of P and therefore there is no unique stationary distribution for
this Markov chain. For this example, the limiting form of the state dis-
tribution of the Markov chain depends on the initial distribution. The
limiting form of Pk can be easily found to be

lim
k→∞

Pk =























1 0 0 0 0 0 0 0 0 0 0
0. 9655 0 0 0 0 0 0 0 0 0 0. 0345
0. 9233 0 0 0 0 0 0 0 0 0 0. 0767
0. 8717 0 0 0 0 0 0 0 0 0 0. 1283
0. 8087 0 0 0 0 0 0 0 0 0 0. 1913
0. 7317 0 0 0 0 0 0 0 0 0 0. 2683
0. 6376 0 0 0 0 0 0 0 0 0 0. 3624
0. 5225 0 0 0 0 0 0 0 0 0 0. 4775
0. 3819 0 0 0 0 0 0 0 0 0 0. 6181
0. 2101 0 0 0 0 0 0 0 0 0 0. 7899

0 0 0 0 0 0 0 0 0 0 1























.

Using the initial distribution π (0) = [0 0 0 0 0 1 0 0 0 0 0] (that is, the
gambler starts off in state 5), then it is seen that the steady state distri-
bution is limk→∞ π (k) = [0.7317 0 0 0 0 0 0 0 0 0 0.2683]. So, when the
gambler starts with $5, he has about a 73 percent chance of losing all of
his money and about a 27 percent chance of doubling his money.

As seen in Example 9.7, with some Markov chains, the limiting form of Pk (as
k → ∞) does not necessarily converge to a matrix whose rows are all identical.
In that case, the limiting form of the state distribution will depend on the starting
distribution. In the case of the gambler’s ruin problem, we probably could have
guessed this behavior. If the gambler had started with very little money, we would
expect him to end up in the state of ruin with very high probability; whereas, if the
gambler was very wealthy and the house had very little money, we would expect
a much greater chance of the gambler eventually breaking the house. Accordingly,
our intuition tells us that the probability distribution of the gambler’s ultimate state
should depend on the starting state.

In general, there are several different manners in which a Markov chain’s state
distribution can behave as k → ∞. In some cases, limk→∞ π (k) does not exist. Such
would be the case when the process tends to oscillate between two or more states.
A second possibility, as in Example 9.7, is that limk→∞ π (k) does in fact converge
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to a fixed distribution, but the form of this limiting distribution depends on the
starting distribution. The last case is when limk→∞ π (k) = π . That is, the state
distribution converges to some fixed distribution, π , and the form of π is inde-
pendent of the starting distribution. Here, the transition probability matrix, P,
will have a single (not repeated) eigenvalue at λ = 1, and the corresponding
eigenvector (properly normalized) will be the steady state distribution, π . Fur-
thermore, the limiting form of Pk will be one whose rows are all identical and
equal to the steady state distribution, π . In the next section, we look at some con-
ditions that must be satisfied for the Markov chain to achieve a unique steady state
distribution.

EXAMPLE 9.9: In this example, we provide the MATLAB code
to simulate the distribution of the queue length of the taxi stand
described in Example 9.4. For this example, we take the number of
arrivals per time unit, X, to be a Poisson random variable whose

PMF is

PX(k) = λke−λ

k! .

Recall that in the taxi stand, one customer is served per time unit (assuming
there is at least one customer in the queue waiting to be served). The following
code can be used to estimate and plot the PMF of the queue length. The
average queue length was also calculated to be 3.36 customers for an arrival
rate of λ = 0. 85 customers per time unit. Figure 9.3 shows a histogram of the
PMF of the queue length for the same arrival rate.

N=10000; % Length of simulation.
a=0.85; % Arrival rate.
k=[0:10];
Poisson=zeros(size(k)); % Calculate Poisson PMF.
for m=k

Poisson(m+1)=a.∧m*exp(-a)./factorial(m);
end
queue(1)=0; % Initial queue size.
for n=1:N

x=rand(1);
arrivals=sum(x>cumsum(Poisson)); % Poisson RV.
departures=queue(n)>0;
queue(n+1)=queue(n)+arrivals-departures; % Current queue length.

end
mean_queue_length=sum(queue)/length(queue) % Compute average queue

length.
bins=[0:25]
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Figure 9.3 Histogram of the queue length for the Taxi stand of Example 9.4 assuming a
Poisson arrival process with an average arrival rate of 0.85 arrivals per time unit.

y=hist(queue,bins);

PMF=y/N; % Estimate PMF.

bar(bins,PMF) % Plot results.

axis([min(bins)-1 max(bins)+1 0 1.1*max(PMF)])

9.3 Characterization of Markov Chains

Using the methods presented in the previous sections, calculating the steady state
distribution of a Markov chain requires performing an eigendecomposition of the
transition probability matrix, P. If the number of states in the Markov chain is large
(or infinite), performing the required linear algebra may be difficult (or impossible).
Hence, it would be useful to seek alternative methods to determine if a steady state
distribution exists, and if so, to calculate it. To develop the necessary theory, we
must first proceed through a sequence of definitions and classifications of the states
of a Markov chain.

DEFINITION 9.4: State j is accessible from state i if for some finite n, p(n)
i, j > 0. This

simply means that if the process is in state i, it is possible for the process to get to
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state j in a finite amount of time. Furthermore, if state j is accessible from state i
and state i is accessible from state j, then the states i and j are said to communicate. It
is common to use the shorthand notation i ↔ j to represent the relationship “state
i communicates with state j.”

The states of any Markov chain can be divided into sets or classes of states where
all the states in a given class communicate with each other. It is possible for the
process to move from one communicating class of states to another, but once that
transition is made, the process can never return to the original class. If it did, the
two classes would communicate with each other and hence would be a part of a
single class.

DEFINITION 9.5: A Markov chain for which all of the states are part of a single
communicating class is called an irreducible Markov chain. Also, the corresponding
transition probability matrix is called an irreducible matrix.

The examples in Section 9.1 can be used to help illustrate these concepts. For
both processes in Examples 9.1 and 9.2, none of the states communicate with any
other states. This is a result of the fact that both processes are counting processes
and it is therefore impossible to go backward in the chain of states. Hence, if j > i,
state j is accessible from state i but state i is not accessible from state j. As a result,
for any counting process, all states form a communication class of their own. That
is, the number of classes is identical to the number of states. In the gambler’s ruin
problem of Example 9.3, the two absorbing states do not communicate with any
other state since it is impossible ever to leave an absorbing state, while all the states
in between communicate with each other. Hence, this Markov chain has three
communicating classes. The two absorbing states each form a class to themselves,
while the third class consists of all the states in between.

The queueing system (i.e., taxi stand) of Example 9.4 represents a Markov chain
where all states communicate with each other, and hence that Markov chain is
irreducible. For the branching process of Example 9.5, all states communicate with
each other except the state 0, which represents the extinction of the species, which
presumably is an absorbing state. The genetic model of Example 9.6 is similar to
the gambler’s ruin problem in that the Markov chain has two absorbing states at
the endpoints, while everything in between forms a single communicating class.

DEFINITION 9.6: The period of state i, d(i), is the greatest common divisor of all
integers n ≥ 1 such that p(n)

i, i > 0. Stated another way, d(i) is the period of state i if
any transition from state i to itself must occur in a number of steps that is a multiple
of d(i). Furthermore, a Markov chain for which all states have a period of d(i) = 1
is called an aperiodic Markov chain.
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Most Markov chains are aperiodic. The class of random walks is an exception.
Suppose a Markov chain defined on the set of integers has transition probabilities
that satisfy

pi, j =







p j = i + 1

1 − p j = i − 1

0 otherwise

. (9.14)

Then each state will have a period of 2. If we add absorbing boundaries to the
random walk, then the absorbing states are not periodic because for the absorbing
states, p(n)

i, i = 1 for all n and hence the period of an absorbing state is 1. It is left as
an exercise for the reader (see Exercise 9.18) to establish the fact that the period is
a property of a class of communicating states. That is, if i ↔ j then d(i) = d(j) and
hence all states in the same class must have the same period.

DEFINITION 9.7: Let f (n)
i, i be the probability that given a process is in state i, the

first return to state i will occur in exactly n steps. Mathematically,

f (n)
i, i = Pr(Xk+n = i, Xk+m �= i for m = 1, 2, . . . , n − 1

∣
∣ Xk = i). (9.15)

Also, define fi, i to be the probability that the process will eventually return to state i.
The probability of eventual return is related to the first return probabilities by

fi, i =
∞
∑

n=1

f (n)
i, i . (9.16)

It should be noted that the first return probability f (n)
i, i is not the same thing as

the n-step transition probability, but the two quantities are related. To develop this
relationship, it is observed that

p(n)
i, i =

n
∑

m=0

Pr({Xk+n = i}, {first return to state i occurs in m steps}
∣
∣ Xk = i) (9.17)

=
n

∑

m=0

Pr(Xk+n = i
∣
∣ Xk+m = i) Pr(first return to state i occurs in m steps

∣
∣ Xk = i)

(9.18)

=
n

∑

m=0

p(n−m)
i, i f (m)

i, i , n = 1, 2, 3, . . . . (9.19)

In the Equations 9.17–9.19, p(0)
i, i is taken to be equal to 1 and f (0)

i, i is taken to be equal

to 0. Given the n-step transition probabilities, p(n)
i, i , one could solve the preceding
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system of equations for the first return probabilities. However, since the previous
system is a convolution, this set of equations may be easier to solve using frequency
domain techniques. Define the generating functions1

Pi, i(z) =
∞
∑

n=0

p(n)
i, i zn, (9.20)

Fi, i(z) =
∞
∑

n=0

f (n)
i, i zn. (9.21)

It is left as an exercise for the reader (see Exercise 9.19) to demonstrate that these
two generating functions are related by

Pi, i(z) − 1 = Pi, i(z)Fi, i(z). (9.22)

This relationship provides an easy way to compute the first return probabilities
from the n-step transition probabilities. Note that if the transition probability matrix
is known, then calculating the generating function, Pi, i(z), is straightforward. Recall
that Pn = U� nU−1, and hence if [U]i, j is the element in the ith row and jth column
of U, then

p(n)
i, i =

∑

j

[U]i, j�
n[U−1]j, i. (9.23)

Forming the generating function from this equation results in

Pi, i(z) =
∞
∑

n=0

p(n)
i, i zn =

∞
∑

n=0

∑

j

[U]i, j(�z) n[U−1]j, i

=
∑

j

[U]i, j

( ∞
∑

n=0

(�z)n

)

[U−1]j, i

=
∑

j

[U]i, j

( ∞
∑

n=0

(�z)n

)

[U−1]j, i

=
∑

j

[U]i, j(I − �z)−1[U−1]j, i. (9.24)

In other words, Pi, i(z) is the element in the ith row and ith column of the matrix
U(I − �z)−1U−1.

1Note that these generating functions are not necessarily probability generating functions
because the sequences involved are not necessarily probability distributions.
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DEFINITION 9.8: The ith state of a Markov chain is transient if fi, i < 1 and recurrent
if fi, i = 1. Since fi, i represents the probability of the process eventually returning
to state i given that it is in state i, the state is transient if there is some nonzero
probability that it will never return, and the state is recurrent if the process must
eventually return with probability 1.

THEOREM 9.2: State i of a Markov chain is recurrent if and only if

∞
∑

n=1

p(n)
i, i = ∞. (9.25)

Since this sum represents the expected number of returns to state i, it follows that
a state is recurrent if and only if the expected number of returns is infinite.

PROOF: First, note that fi, i = ∑∞
n=1 f (n)

i, i = lim z→1 Fi, i(z). From Equation 9.22, this
would imply that

lim
z→1

Pi, i(z) − 1 = lim
z→1

Pi, i(z)fi, i. (9.26)

As a result,

lim
z→1

Pi, i(z) =
∞
∑

n=1

p(n)
i, i = 1

1 − fi, i
. (9.27)

If state i is transient, then fi, i < 1 and hence,

∞
∑

n=1

p(n)
i, i < ∞,

whereas if state i is recurrent,

fi, i = 1 and
∞
∑

n=1

p(n)
i, i = ∞.

�

We leave it to the reader (see Exercise 9.21) to verify that recurrence is a class
property. That is, if one state in a communicating class is recurrent, then all are
recurrent, and if one is transient, then all are transient.

EXAMPLE 9.10: Consider a random walk on the integers (both positive
and negative) that initially starts at the origin (X0 = 0). At each time
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instant, the process either increases by 1 with probability p or decreases
by 1 with probability 1 − p:

pi, j =







p if j = i + 1

1 − p if j = i − 1

0 otherwise

.

First note that this Markov chain is periodic with period 2 and hence
p(n)

i, i = 0 for any odd n. For even n, given the process is in state i, the
process will be in state i again n time instants later if during those time
instants the process increases n/2 times and decreases n/2 times. This
probability follows a binomial distribution so that

p(n)
i, i =

(
n

n/2

)

pn/2(1 − p)n/2, for even n.

To determine if the states of this random walk are recurrent or transient,
we must determine whether or not the series

∞
∑

n=1

p(2n)
i, i =

∞
∑

n=1

(
2n
n

)

(p(1 − p))n

converges. To help make this determination, the identity
∞
∑

n=1

(
2n
n

)

xn = 1√
1 − 4x

− 1, |x| < 1/4

is used. This identity can easily be verified by expanding the binomial on
the right-hand side in powers of x and confirming (after a little algebra)
that the coefficients of the power series expansion do take on the desired
form. Applying this identity results in

∞
∑

n=1

p(2n)
i, i = 1

√

1 − 4p(1 − p)
− 1.

Note that for a probability p, 4p(1 − p) ≤ 1 with equality if and only
if p = 1/2. Hence, the series converges and all states are transient
if p �= 1/2, while if p = 1/2 the series diverges and all states are
recurrent.

DEFINITION 9.9: The mean time to first return for a recurrent state i of a Markov
chain is

µi =
∞
∑

n=1

nf (n)
i, i . (9.28)
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If the state is transient, then the mean time to first return must be infinite, since
with some nonzero probability, the process will never return.

DEFINITION 9.10: A recurrent state is referred to as null recurrent if µi = ∞,
while the state is positive recurrent if µi < ∞.

The mean time to first return of a recurrent state is related to the steady state
probability of the process being in that state. To see this, define a sequence of
random variables T1, T2, T3, . . ., where Tm represents the time between the (m−1)th
and mth returns to the state i. That is, suppose that Xk = i for some time instant k
which is sufficiently large so that the process has pretty much reached steady state.
The process then returns to state i at time instants k+T1, k+T1 +T2, k+T1 +T2 +T3,
and so on. Over some period of time where the process visits state i exactly n times,
the fraction of time the process spends in state i can be written as

fraction of time process is in state i = n
n

∑

j=1

Tj

= 1

1
n

n
∑

j=1

Tj

. (9.29)

As n → ∞ (assuming the process is ergodic), the left-hand side of the previous
equation becomes the steady state probability that the process is in state i, πi.
Furthermore, due to the law of large numbers, the denominator of the right-hand
side converges to µi. This proves the following key result.

THEOREM 9.3: For an irreducible, aperiodic, recurrent Markov Chain, the steady
state distribution is unique and is given by

πi = 1
µi

. (9.30)

Note that if a state is positive recurrent then πi > 0, while if a state is null recurrent
then πi = 0. Note that for any transient state, µi = ∞ and as a result, πi = 0.

EXAMPLE 9.11: Continuing with the random walk from the previous
example, the generating function for the n-step transition probabilities
is found to be

Pi, i(z) =
∞
∑

n=0

p(n)
i, i zn =

∞
∑

n=0

(
2n
n

)

(p(1 − p))nz2n = 1
√

1 − 4p(1 − p)z2
.
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Using the relationship Pi, i(z) − 1 = Pi, i(z)Fi, i(z), the generating function
for the first return probabilities is

Fi, i(z) = 1 −
√

1 − 4p(1 − p)z2.

Since the random walk is recurrent only for p = 1/2, we consider only
that case so that Fi, i(z) = 1 −

√

1 − z2. The mean time to first return can
be found directly from the generating function.

µi =
∞
∑

n=1

nf (n)
i, i = lim

z→1

d
dz

Fi, i(z) = lim
z→1

z
√

1 − z2
= ∞

Thus, when the transition probabilities of the random walk are balanced
so that all states are recurrent, then the mean time to first return is infinite
and, in fact, all states are null recurrent.

9.4 Continuous Time Markov Processes

In this section, we investigate Markov processes where the time variable is continu-
ous. In particular, most of our attention will be devoted to the so-called birth-death
processes which are a generalization of the Poisson counting process studied in
the previous chapter. To start with, consider a random process X(t) whose state
space is either finite or countable infinite so that we can represent the states of the
process by the set of integers, X(t) ∈ {. . . , −3, −2, −1, 0, 1, 2, 3, . . .}. Any process of
this sort that is a Markov process has the interesting property that the time between
any change of states is an exponential random variable. To see this, define Ti to
be the time between the ith and the (i + 1)th change of state and let hi(t) be the
complement to its CDF, hi(t) = Pr(Ti > t). Then, for t > 0, s > 0,

hi(t + s) = Pr(Ti > t + s) = Pr(Ti > t + s, Ti > s) = Pr(Ti > t + s
∣
∣ Ti > s) Pr(Ti > s).

(9.31)

Due to the Markovian nature of the process, Pr(Ti > t + s
∣
∣ Ti > s) = Pr(Ti > t),

and hence the previous equation simplifies to

hi(t + s) = hi(t)hi(s). (9.32)

The only function which satisfies this type of relationship for arbitrary t and
s is an exponential function of the form hi(t) = e−ρit for some constant ρi.
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Furthermore, for this function to be a valid probability, the constant ρi must not be
negative. From this, the PDF of the time between change of states is easily found
to be fTi (t) = ρie−ρitu(t).

As with discrete time Markov chains, the continuous time Markov process can
be described by its transition probabilities.

DEFINITION 9.11: Define pi, j(t) = Pr(X(to + t) = j|X(to) = i) to be the transi-
tion probability for a continuous time Markov process. If this probability does not
depend on to, then the process is said to be a homogeneous Markov process.

Unless otherwise stated, we assume for the rest of this chapter that all continuous
time Markov processes are homogeneous. The transition probabilities, pi, j(t), are
somewhat analogous to the n-step transition probabilities used in the study of
discrete time processes and as a result, these probabilities satisfy a continuous time
version of the Chapman-Kolmogorov equations:

pi, j(t + s) =
∑

k

pi, k(t)pk, j(s), for t, s > 0. (9.33)

One of the most commonly studied class of continuous time Markov processes
is the birth-death process. These processes get their name from applications in
the study of biological systems, but they are also commonly used in the study of
queueing theory, and many other applications. The birth-death process is similar
to the discrete time random walk studied in the previous section in that when the
process changes states, it either increases by 1 or decreases by 1. As with the Poisson
counting process, the general class of birth-death processes can be described by the
transition probabilities over an infinitesimal period of time, �t. For a birth-death
process,

pi, j(�t) =







λi�t + o(�t) if j = i + 1

µi�t + o(�t) if j = i − 1

1 − (λi + µi)�t + o(�t) if j = i

o(�t) if j �= i − 1, i, i + 1

. (9.34)

The parameter λi is called the birth rate, while µi is the death rate when the process
is in state i. In the context of queueing theory, λi and µi are referred to as the arrival
and departure rates, respectively.

Similar to what was done with the Poisson counting process, by letting s = �t
in Equation 9.33 and then applying the infinitesimal transition probabilities, a set
of differential equations can be developed that will allow us to solve for the general
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transition probabilities. From Equation 9.33,

pi, j(t + �t) =
∑

k

pi, k(t)pk, j(�t)

= (λj−1�t)pi, j−1(t) + (1 − (λj + µj)�t)pi, j(t) + (µj+1�t)pi, j+1(t) + o(�t). (9.35)

Rearranging terms and dividing by �t produces

pi, j(t + �t) − pi, j(t)

�t
= λj−1pi, j−1(t) − (λj + µj)pi, j(t) + µj+1pi, j+1(t) + o(�t)

�t
.

(9.36)

Finally, passing to the limit as �t → 0 results in

d
dt

pi, j(t) = λj−1pi, j−1(t) − (λj + µj)pi, j(t) + µj+1pi, j+1(t). (9.37)

This set of equations is referred to as the forward Kolmogorov equations. One can
follow a similar procedure (see Exercise 9.24) to develop a slightly different set of
equations known as the backward Kolmogorov equations:

d
dt

pi, j(t) = λipi+1, j(t) − (λi + µi)pi, j(t) + µipi−1, j(t). (9.38)

For all but the simplest examples, it is very difficult to find a closed form solution
for this system of equations. However, the Kolmogorov equations can lend some
insight into the behavior of the system. For example, consider the steady state
distribution of the Markov process. If a steady state exists, we would expect that
as t → ∞, pi, j(t) → πj independent of i and also that dpi, j(t)/(dt) → 0. Plugging
these simplifications into the forward Kolmogorov equations leads to

λj−1πj−1 − (λj + µj)πj + µj+1πj+1 = 0. (9.39)

These equations are known as the global balance equations. From them, the steady
state distribution can be found (if it exists). The solution to the balance equations
is surprisingly easy to obtain. First, we rewrite the difference equation in the more
symmetric form

λjπj − µj+1πj+1 = λj−1πj−1 − µjπj. (9.40)

Next, assume that the Markov process is defined on the states j = 0, 1, 2, . . .. Then
the previous equation must be adjusted for the end point j = 0 (assuming µ0 = 0
which merely states that there can be no deaths when the population’s size is zero)
according to

λ0π0 − µ1π1 = 0. (9.41)



9.4 Continuous Time Markov Processes 345

Combining Equations 9.40 and 9.41 results in

λjπj − µj+1πj+1 = 0, j = 0, 1, 2, . . . , (9.42)

which leads to the simple recursion

πj+1 = λj

µj+1
πj, j = 0, 1, 2, . . . , (9.43)

whose solution is given by

πj = π0

j
∏

i=1

λi−1

µi
, j = 1, 2, 3, . . . . (9.44)

This gives the πj in terms of π0. In order to determine π0, the constraint that the πj
must form a distribution is imposed.

∞
∑

j=0

πj = 1 ⇒ π0 = 1

1 +
∞
∑

j=1

j
∏

i=1

λi−1

µi

. (9.45)

This completes the proof of the following theorem.

THEOREM 9.4: For a Markov birth-death process with birth rate λn, n = 0, 1, 2, . . .,
and death rate µn, n = 1, 2, 3, . . ., the steady state distribution is given by

πk = lim
t→∞ pi, k(t) =

k
∏

i=1

λi−1

µi

1 +
∞
∑

j=1

j
∏

i=1

λi−1

µi

. (9.46)

If the series in the denominator diverges, then πk = 0 for any finite k. This indicates
that a steady state distribution does not exist. Likewise, if the series converges, the
πk will be nonzero, resulting in a well-behaved steady state distribution.

EXAMPLE 9.12: (The M/M/1 Queue) In this example, we consider the
birth-death process with constant birth rate and constant death rate. In
particular, we take

λn = λ, n = 0, 1, 2, . . . and µ0 = 0, µn = µ, n = 1, 2, 3, . . . .
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This model is commonly used in the study of queueing systems and, in
that context, is referred to as the M/M/1 queue. In this nomenclature,
the first “M” refers to the arrival process as being Markovian, the second
“M” refers to the departure process as being Markovian, and the “1”
is the number of servers. So this is a single server queue, where the
interarrival time of new customers is an exponential random variable
with mean 1/λ and the service time for each customer is exponential
with mean 1/µ. For the M/M/1 queueing system, λi−1/µi = λ/µ for
all i so that

1 +
∞
∑

j=1

j
∏

i=1

λi−1

µi
=

∞
∑

j=0

(
λ

µ

)j

= 1
1 − λ/µ

for λ < µ.

The resulting steady state distribution of the queue size is then

πk = (λ/µ)k

1
1 − λ/µ

= (1 − λ/µ)(λ/µ)k, k = 0, 1, 2, . . . , for λ < µ.

Hence, if the arrival rate is less than the departure rate, the queue size
will have a steady state. It makes sense that if the arrival rate is greater
than the departure rate, then the queue size will tend to grow without
bound.

EXAMPLE 9.13: (The M/M/∞ Queue) Next suppose the last example
is modified so that there are an infinite number of servers available to
simultaneously provide service to all customers in the system. In that
case, there are no customers ever waiting in line, and the process X(t)
now counts the number of customers in the system (receiving service) at
time t. As before, we take the arrival rate to be constant λn = λ, but now
the departure rate needs to be proportional to the number of customers
in service, µn = nµ. In this case, λi−1/µi = λ/(iµ) and

1 +
∞
∑

j=1

j
∏

i=1

λi−1

µi
= 1 +

∞
∑

j=1

j
∏

i=1

λ

iµ
= 1 +

∞
∑

j=1

(λ/µ)j

j! = eλ/µ.

Note that the series converges for any λ and µ, and hence the M/M/∞
queue will always have a steady state distribution given by

πk = (λ/µ)k

k! e−λ/µ.
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EXAMPLE 9.14: This example demonstrates one way to simulate
the M/M/1 queueing system of Example 9.12. One realization of
this process as produced by the code that follows is illustrated
in Figure 9.4. In generating the figure, we use an average arrival

rate of λ = 20 customers per hour and an average service time of 1/µ = 2
minutes. This leads to the condition λ < µ and the M/M/1 queue exhibits
stable behavior. The reader is encouraged to run the program for the case
when λ > µ to observe the unstable behavior (the queue size will tend to
grow continuously over time).

a=20; % Arrival rate (customers/hour).

b=30; % Departure rate (1/b=avg service

time).

N=25; % Number of arrivals in simulation.

X=-log(rand(1,N))/a; % Random interarrival times.

X=cumsum(X); % Random arrival times.

Y=-log(rand(1,N))/b; % Service times for each customer.

serv_start=X(1); % First customer starts service

% immediately upon arrival.
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Figure 9.4 Simulated realization of the birth-death process for M/M/1 queueing system
of Example 9.12.
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Z(1)=serv_start+Y(1); % Departure time of first

customer.

for k=2:N % kth customer.

serv_start=max([Z(k-1), X(k)]); % Beginning of service

time.

Z(k)=serv_start+Y(k); % End of service time.

end

% Construct data to plot graph of queue size vs. time.

xaxis=[0, X(1)]; % Vector of points for

the M/M/1.

% Birth-death process

yaxis=[0, 0]; % Vector of queue sizes at

points in preceding vector.

qs=1; % Current queue size.

X=X(2:length(X));

while length(X)>0

if X(1)<Z(1) % Next point is arrival.

qs=qs+1; % Increase queue size.

xaxis=[xaxis xaxis(length(xaxis)) X(1)];

yaxis=[yaxis qs qs];

X=X(2:length(X));

else % Next point is departure.

qs=qs-1; % decrease queue size

xaxis=[xaxis xaxis(length(xaxis)) Z(1)];

yaxis=[yaxis qs qs];

Z=Z(2:length(Z));

end

end

plot(xaxis,yaxis) % Plot realization of

% birth-death process.

xlabel(‘time (hours)’);

ylabel(‘queue size’)

If the birth-death process is truly modeling the size of a population of some
organism, then it would be reasonable to consider the case when λ0 = 0. That is,
when the population size reaches zero, no further births can occur. In that case, the
species is extinct and the state X(t) = 0 is an absorbing state. A fundamental ques-
tion would then be, Is extinction a certain event, and if not what is the probability
of the process being absorbed into the state of extinction? Naturally the answer to
this question would depend on the starting population size. Let qi be the probabil-
ity that the process eventually enters the absorbing state, given that it is initially
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in state i. Note that if the process is currently in state i, after the next transition, the
birth-death process must be either in state i − 1 or state i + 1. The time to the next
birth, Bi, is a random variable with an exponential distribution with a mean of 1/λi,
while the time to the next death is an exponential random variable, Di, with a mean
of 1/µi. Hence, the process will transition to state i + 1 if Bi < Di, otherwise it will
transition to state i − 1. The reader can easily verify that Pr(Bi < Di) = λi/(λi +µi).
The absorption probability can then be written as

qi = Pr (absorption | in state i)

= Pr (absorption, next state is i + 1|in state i)

+ Pr (absorption, next state is i − 1| in state i)

= Pr (absorption | in state i + 1) Pr (next state is i + 1| in state i)

+ Pr (absorption | in state i − 1) Pr (next state is i − 1| in state i)

= qi+1
λi

λi + µi
+ qi−1

µi

λi + µi
, i = 1, 2, 3, . . . . (9.47)

This provides a recursive set of equations that can be solved to find the absorption
probabilities. To solve this set of equations, we rewrite them as

qi+1 − qi = µi

λi
(qi − qi−1), i = 1, 2, 3, . . . . (9.48)

After applying this recursion repeatedly and using the fact that q0 = 1,

qi+1 − qi = (q1 − 1)
i

∏

j=1

µj

λj
. (9.49)

Summing this equation from i = 1, 2, . . . , n results in

qn+1 − q1 = (q1 − 1)
n

∑

i=1

i
∏

j=1

µj

λj
. (9.50)

Next, suppose that the series on the right-hand side of the previous equation
diverges as n → ∞. Since the qi are probabilities, the left-hand side of the equa-
tion must be bounded, which implies that q1 = 1. Then from Equation 9.49, it is
determined that qn must be equal to one for all n. That is, if

∞
∑

i=1

i
∏

j=1

µj

λj
= ∞, (9.51)
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then absorption will eventually occur with probability 1 regardless of the starting
state. If q1 < 1 (absorption is not certain), then the preceding series must converge
to a finite number. It is expected in that case that as n → ∞, qn → 0. Passing to the
limit as n → ∞ in Equation 9.50 then allows a solution for q1 of the form

q1 =

∞
∑

i=1

i
∏

j=1

µj

λj

1 +
∞
∑

i=1

i
∏

j=1

µj

λj

. (9.52)

Furthermore, the general solution for the absorption probability is

qn =

∞
∑

i=n

i
∏

j=1

µj

λj

1 +
∞
∑

i=1

i
∏

j=1

µj

λj

. (9.53)

EXAMPLE 9.15: Consider a population model where both the birth and
death rates are proportional to the population, λn = nλ, µn = nµ. For
this model,

∞
∑

i=1

i
∏

j=1

µj

λj
=

∞
∑

i=1

i
∏

j=1

µ

λ
=

∞
∑

i=1

(µ

λ

)i = µ/λ

1 − µ/λ
= µ

λ − µ
for λ > µ.

Hence, if λ < µ, the series diverges and the species will eventually reach
extinction with probability 1. If λ > µ,

∞
∑

i=n

i
∏

j=1

µj

λj
=

∞
∑

i=n

(µ

λ

)i = (µ/λ)n

1 − µ/λ
,

and the absorption (extinction) probabilities are

qn =
(µ

λ

)n
, n = 1, 2, 3, . . . .

Continuous time Markov processes do not necessarily need to have a discrete
amplitude as in the previous examples. In the following, we discuss a class of
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continuous time, continuous amplitude Markov processes. To start with, it is noted
that for any time instants t0 < t1 < t2, the conditional PDF of a Markov process
must satisfy the Chapman-Kolmogorov equation

f (x2, t2|x0, t0) =
∫ ∞

−∞
f (x2, t2|x1, t1)f (x1, t1|x0, t0) dx1. (9.54)

This is just the continuous amplitude version of Equation 9.33. Here we use the
notation f (x2, t2|x1, t1) to represent the conditional probability density of the pro-
cess X(t2) at the point x2 conditioned on X(t1) = x1. Next, suppose we interpret
these time instants as t0 = 0, t1 = t, and t2 = t + �t. In this case, we interpret
x2 − x1 = �x as the the infinitesimal change in the process that occurs during the
infinitesimal time instant �t and f (x2, t2|x1, t1) is the PDF of that increment.

Define ��x(ω) to be the characteristic function of �x = x2 − x1:

��x(ω) = E[ejω�x] =
∫ ∞

−∞
ejω(x2−x1)f (x2, t + �t|x1, t) dx2. (9.55)

We note that the characteristic function can be expressed in a Taylor series as

��x(ω) =
∞
∑

k=0

Mk(x1, t)
k! (jω)k, (9.56)

where Mk(x1, t) = E[(x2 − x1)k
∣
∣ (x1, t)] is the kth moment of the increment

�x. Taking inverse transforms of this expression, the conditional PDF can be
expressed as

f (x2, t + �t|x1, t) =
∞
∑

k=0

Mk(x1, t)
k! (−1)k ∂k

∂xk
2

(δ(x2 − x1)). (9.57)

Inserting this result into the Chapman-Kolmogorov equation, Equation 9.54,
results in

f (x2, t + �t|x0, t0) =
∞
∑

k=0

(−1)k

k!
∫ ∞

−∞
Mk(x1, t)

∂k

∂xk
2

δ(x2 − x1)f (x1, t|x0, t0) dx1

=
∞
∑

k=0

(−1)k

k!
∂k

∂xk
2

[Mk(x2, t)f (x2, t|x0, t0)]

= f (x2, t|x0, t0) +
∞
∑

k=1

(−1)k

k!
∂k

∂xk
2

[Mk(x2, t)f (x2, t|x0, t0)]. (9.58)
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Subtracting f (x2, t|x0, t0) from both sides of this equation and dividing by �t
results in

f (x2, t + �t|x0, t0) − f (x2, t|x0, t0)
�t

=
∞
∑

k=1

(−1)k

k!
∂k

∂xk
2

[
Mk(x2, t)

�t
f (x2, t|x0, t0)

]

.

(9.59)

Finally, passing to the limit as �t → 0 results in the partial differential equation

∂

∂t
f (x, t|x0, t0) =

∞
∑

k=1

(−1)k

k!
∂k

∂xk
[Kk(x, t)f (x, t|x0, t0)], (9.60)

where the function Kk(x, t) is defined as

Kk(x, t) = lim
�t→0

E[(X(t + �t) − X(t))k|X(t)]
�t

. (9.61)

For many processes of interest, the PDF of an infinitesimal increment can be accu-
rately approximated from its first few moments, and hence we take Kk(x, t) = 0 for
k > 2. For such processes, the PDF must satisfy

∂

∂t
f (x, t|x0, t0) = − ∂

∂x
(K1(x, t)f (x, t|x0, t0)) + 1

2
∂2

∂x2 (K2(x, t)f (x, t|x0, t0)). (9.62)

This is known as the (one-dimensional) Fokker-Planck equation and is used exten-
sively in diffusion theory to model the dispersion of fumes, smoke, and similar
phenomena.

In general, the Fokker-Planck equation is notoriously difficult to solve and doing
so is well beyond the scope of this text. Instead, we consider a simple special case
where the functions K1(x, t) and K2(x, t) are constants, in which case the Fokker
Planck equation reduces to

∂

∂t
f (x, t|x0, t0) = −2c

∂

∂x
(f (x, t|x0, t0)) + D

∂2

∂x2 (f (x, t|x0, t0)), (9.63)

where in diffusion theory, D is known as the coefficient of diffusion and c is the
drift. This equation is used in models that involve the diffusion of smoke or other
pollutants in the atmosphere, the diffusion of electrons in a conductive medium,
the diffusion of liquid pollutants in water and soil, and the diffusion of plasmas.
This equation can be solved in several ways. Perhaps one of the easiest methods
is to use Fourier transforms. This is explored further in the exercises where the
reader is asked to show that (taking x0 = 0 and t0 = 0) the solution to this diffusion
equation is

f (x, t|x0 = 0, t0 = 0) = 1√
4πDt

exp

(

− (x − 2ct)2

4Dt

)

. (9.64)
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That is, the PDF is Gaussian with a mean and variance that changes with time. The
behavior of this process is explored in the next example.

EXAMPLE 9.16: In this example, we model the diffusion of smoke
from a forest fire that starts in a National Park at time t = 0 and
location x = 0. The smoke from the fire drifts in the positive x
direction due to wind blowing at 10 miles per hour, and the dif-

fusion coefficient is 1 square mile per hour. The probability density function
is given in Equation 9.64. We provide a three-dimensional rendition of this
function in Figure 9.5 using the following MATLAB program.

c=10; % Drift.

D=1; % Diffusion coefficient.

tpoints=[0.25, 0.5, 1, 1.5, 2]; % Time samples.

x=[0:0.1:50]; % x-axis.
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Figure 9.5 Observations of the PDF at different time instants showing the drift and
dispersion of smoke for Example 9.16.
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for k=1:length(tpoints)

t=tpoints(k); % Set t.

pdf(k,:)=exp(-(x-2*c*t).∧2/(4*D*t))/sqrt(4*pi*D*t);
% f(x,t).

subplot(5,1,k)

plot(x,pdf(k,:)) % Plot PDF.

axis([0 max(x) 0 1.1*max(max(pdf))])

s=num2str(t);

leftstr=‘f(x,’;

rightstr=‘)’;

txt=[leftstr s rightstr];

ylabel(txt)

end

xlabel(‘x (miles)’)

9.5 Engineering Application: A Computer
Communication Network

Consider a local area computer network where a cluster of nodes is connected by a
common communications line. Suppose for simplicity that these nodes occasionally
need to transmit a message of some fixed length (or, number of packets). Also,
assume that the nodes are synchronized so that time is divided into slots, each of
which is sufficiently long to support one packet. In this example, we consider a
random access protocol known as slotted Aloha. Messages (packets) are assumed
to arrive at each node according to a Poisson process. Assuming there are a total
of n nodes, the packet arrival rate at each node is assumed to be λ/n so that the
total arrival rate of packets is fixed at λ packets/slot. In slotted Aloha, every time
a new packet arrives at a node, that node attempts to transmit that packet during
the next slot. During each slot, one of three events can occur: (1) no node attempts
to transmit a packet, in which case the slot is said to be idle; (2) exactly one node
attempts to transmit a packet, in which case the transmission is successful; or (3)
more than one node attempts to transmit a packet, in which case a collision is said
to have occurred.

All nodes involved in a collision will need to retransmit their packets, but if
they all retransmit during the next slot, then they will continue to collide and the
packets will never be successfully transmitted. All nodes involved in a collision
are said to be backlogged until their packet is successfully transmitted. In the
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slotted Aloha protocol, each backlogged node chooses to transmit during the next
slot with probability p (and hence chooses not to transmit during the next slot
with probability 1 − p). Viewed in an alternative manner, every time a collision
occurs, each node involved waits a random amount of time until they attempt
retransmission, where that random time follows a geometric distribution.

This computer network can be described by a Markov chain, Xk = number of
backlogged nodes at the end of the kth slot. To start with, we evaluate the transition
probabilities of the Markov chain, pi, j. Assuming that there are an infinite number
of nodes (or a finite number of nodes, each of which could store an arbitrary number
of backlogged packets in a buffer), we note that

Pr(m backlogged nodes attempt to transmit|Xk = n) =
(

n
m

)

pm(1 − p)n−m, (9.65)

Pr(m new arrivals|Xk = n) = λm

m! e−λ. (9.66)

Using these equations, it is straightforward to determine that the transition
probabilities are given by

pi, j =







0 for j < i − 1

ip(1 − p)i−1e−λ for j = i − 1

(1 + λ(1 − p)i − ip(1 − p)i−1)e−λ for j = i

(1 − (1 − p)i)λe−λ for j = i + 1

λj−i

(j − i)! e−λ for j > i + 1

. (9.67)

In order to get a feeling for the steady state behavior of this Markov chain, we
define the drift of the chain in state i as

di = E[Xk+1|Xk = i] − i. (9.68)

Given that the chain is in state i, if the drift is positive, then the number of back-
logged nodes will tend to increase; whereas, if the drift is negative, the number of
backlogged nodes will tend to decrease. Crudely speaking, a drift of zero repre-
sents some sort of equilibrium for the Markov chain. Given the preceding transition
probabilities a, the drift works out to be

di = λ − (1 − p)i−1e−λ[ip + λ(1 − p)]. (9.69)

Assuming that p � 1, then we can use the approximations (1−p) ≈ 1 and (1−p)i ≈
e−ip to simplify the expression for the drift:

di ≈ λ − g(i)e−g(i), where g(i) = λ + ip. (9.70)
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Figure 9.6 Arrival rate and successful transmission rate for a slotted Aloha system.

The parameter g(i) has the physical interpretation of the average number of trans-
missions per slot given that there are i backlogged states. To understand the
significance of this result, the two terms in the expression for the drift are plot-
ted in Figure 9.6. The first term, λ, has the interpretation of the average number
of new arrivals per slot, while the second term, g exp(−g), is the average number
of successful transmissions per slot or the average departure rate. For a very small
number of backlogged states, the arrival rate is greater than the departure rate and
the number of backlogged states tends to increase. For moderate values of i, the
departure rate is greater than the arrival rate and the number of backlogged states
tends to decrease. Hence, the drift of the Markov chain is such that the system
tends to stabilize around the point marked stable equilibrium in Figure 9.6. This is
the first point where the two curves cross. Note, however, that for very large i, the
drift becomes positive again. If the number of backlogged states ever becomes large
enough to push the system to the right of the point marked unstable equilibrium in
the figure, then the number of backlogged nodes will tend to grow without bound
and the system will become unstable.

Note that the value of λ represents the throughput of the system. If we try to
use a value of λ that is greater than the peak value of g exp(−g), then the drift
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will always be positive and the system will be unstable from the beginning. This
maximum throughput occurs when g(i) = 1 and has a value of λmax = 1/e. By
choosing an arrival rate less than λmax, we can get the system to operate near the
stable equilibrium, but sooner or later, we will get a string of bad luck and the
system will drift into the unstable region. The lower the arrival rate, the longer it
will take (on average) for the system to become unstable, but at any arrival rate, the
system will eventually reach the unstable region. Hence, slotted Aloha is inherently
an unstable protocol. As a result, various modifications have been proposed that
exhibit stable behavior.

9.6 Engineering Application: A Telephone
Exchange

Consider a base station in a cellular phone system. Suppose calls arrive at the base
station according to a Poisson process with some arrival rate λ. These calls are
initiated by a mobile unit within the cell served by that base station. Furthermore,
suppose each call has a duration that is an exponential random variable with some
mean, 1/µ. The base station has some fixed number of channels, m, that can be used
to service the demands of the mobiles in its cell. If all m channels are being used,
any new call that is initiated cannot be served and the call is said to be blocked. We
are interested in calculating the probability that when a mobile initiates a call, the
customer is blocked.

Since the arrival process is memoryless and the departure process is memo-
ryless, the number of calls being serviced by the base station at time t, X(t), is a
birth-death Markov process. Here, the arrival rate and departure rates (given there
are n channels currently being used) are given by

λn =
{

λ 0 ≤ n < m

0 n = m
, µn = nµ, 0 ≤ n ≤ m. (9.71)

The steady state distribution of this Markov process is given by Equation 9.46. For
this example, the distribution is found to be

πn =

n
∏

i=1

λi−1

µi

1 +
m

∑

j=1

j
∏

i=1

λi−1

µi

=
1
n!

(
λ

µ

)n

m
∑

j=0

1
j!

(
λ

µ

)j
. (9.72)
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The blocking probability is just the probability that when a call is initiated, it finds
the system in state m. In steady state, this is given by πm and the resulting blocking
probability is the so-called Erlang-B formula,

Pr (blocked call) =
1

m!
(

λ

µ

)m

m
∑

j=0

1
j!

(
λ

µ

)j
. (9.73)

This equation is plotted in Figure 9.7 for several values of m. The horizontal axis
is the ratio of λ/µ which is referred to in the telephony literature as the traffic
intensity. As an example of the use of this equation, suppose a certain base station
had 60 channels available to service incoming calls. Furthermore, suppose each
user initiated calls at a rate of 1 call per 3 hours and calls had an average duration
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Figure 9.7 The Erlang-B formula.
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of 3 minutes (0.05 hours). If a 2 percent probability of blocking is desired, then
from Figure 9.7 we determine that the system can handle a traffic intensity of
approximately 50 Erlangs. Note that each user generates an intensity of

λ

µ
= 1/(3 hour)

1/(0.05 hour)
= 1

60
Erlangs. (9.74)

Hence, a total of 50 ∗ 60 = 3, 000 mobile users per cell could be supported while
still maintaining a 2 percent blocking probability.

Concluding Remarks

This chapter has covered a class of random process that can be described as
memoryless, with emphasis on Markov Processes. While the material is difficult,
it is nonetheless important in that it is applicable to numerous applications such
as queuing systems and computer communications networks, as illustrated by the
last two engineering applications examples. The reader is encouraged to master
this material by completing as many of the exercises that follow as possible.

Exercises
9.1 Consider a two-state Markov chain with a general transition probability

matrix

P =
[

1 − p p
q 1 − p

]

,

where 0 < p, q < 1. Find an expression for the n-step transition probability
matrix, Pn.

9.2 For the general two-state Markov chain of Exercise 9.1, suppose the states
are called 0 and 1. Furthermore, suppose Pr(X0 = 0) = s and Pr(X0 = 1) =
1 − s.

(a) Find Pr(X1 = 0, X2 = 1).
(b) Find Pr(X1 = 1|X0 = 0, X2 = 0).
(c) Find Pr(X2 = X1). Is it the same as Pr(X1 = X0)?

9.3 For a Markov chain, prove or disprove the following statement:

Pr(Xk = ik|Xk+1 = ik+1, Xk+2 = ik+2, . . . , Xk+m = ik+m)

= Pr(Xk = ik|Xk+1 = ik+1).
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9.4 A square matrix P is called a stochastic matrix if all of its elements satisfy
0 ≤ pi, j ≤ 1 and, furthermore,

∑

j

pi, j = 1 for all i.

Every stochastic matrix is the transition probability matrix for some
Markov chain; however, not every stochastic matrix is a valid two-step
transition probability matrix. Prove that a 2 × 2 stochastic matrix is a valid
two-step transition probability matrix for a two-state Markov chain if and
only if the sum of the diagonal elements is greater than or equal to 1.

9.5 A random waveform is generated as follows. The waveform starts at 0
voltage. Every ts seconds, the waveform switches to a new voltage level.
If the waveform is at a voltage level of 0 volts, it may move to +1 volt with
probability p, or it may move to −1 volt with probability q = 1−p. Once the
waveform is at +1 (or −1), the waveform will return (with probability 1)
to 0 volts at the next switching instant.

(a) Model this process as a Markov Chain. Describe the states of the system
and give the transition probability matrix.

(b) Determine whether each state is periodic or aperiodic. If periodic,
determine the period of each state.

(c) For each instant of time, determine the PDF for the value of the
waveform.

9.6 Model the diffusion of electrons and holes across a potential barrier in an
electronic device as follows. We have n black balls (electrons) in urn A and
n whiteballs (holes) in urn B. An experimental outcome selects randomly
one ball from each urn. The ball from urn A is placed in urn B and that
from urn B is placed in A. Let the state of the process be the number of
black balls in urn A. (By knowing the number of black balls in urn A, we
know the composition of both urns.) Let k denote the state of the process.
Find the transition probabilities, pi, j.

9.7 A PCM waveform has the two states +1 and 0. Suppose the transition
matrix is

P =
[

0. 5 0. 5
0. 25 0. 75

]

.

The initial value of the waveform is determined by the flip of a coin, with
the outcome of a head corresponding to +1 and a tail to 0.
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(a) What is the probability that the waveform will be at +1 after one step
if the coin is a fair coin?

(b) Find the same probability if the coin is biased such that a head occurs
with probability 1/3.

(c) Repeat the problem for two steps.

9.8 A student takes this course at period 1 on Monday, Wednesday, and Fri-
day. Period 1 starts at 7:25 A.M. Consequently, the student sometimes
misses class. The student’s attendance behavior is such that she attends
class depending only on whether or not she went to the last class. If she
attended class on one day, then she will go to class the next time it meets
with probability 1/2. If she did not go to one class, then she will go to the
next class with probability 3/4.

(a) Find the transition matrix P.
(b) Find the probability that if she went to class on Wednesday, she will

attend class on Friday.
(c) Find the probability that if she went to class on Monday, she will attend

class on Friday.
(d) Does the Markov chain described by this transition matrix have a

steady state distribution? If so, find that distribution.

9.9 A three-state Markov chain has the following transition matrix:

P =




0. 25 0. 5 0. 25
0. 4 0. 6 0
1 0 0



 .

(a) Does this Markov chain have a unique steady state probability vector?
If so, find it.

(b) What is the approximate value of p(100)
1, 3 ? What interpretation do you

give to this result?
(c) What is the probability that after the third step you are in state 3 if the

initial state probability vector is (1/3 1/3 1/3)?

9.10 The three letters C, A, and T represent the states of a word-generating
system. Let the initial state probability vector be (1/3 1/3 1/3) for the
three letters, respectively. The transition matrix is given as

C A T

P =
C
A
T





0. 1 0. 7 0. 2
0. 6 0. 1 0. 3
0. 1 0. 8 0. 1



 .
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What is the probability of generating a proper three-letter English word
after two transitions from the initial state?

9.11 Two students play the following game. Two dice are tossed. If the sum
of the numbers showing is less than 7, student A collects a dollar from
student B. If the total is greater than 7, then student B collects a dollar from
student A. If a 7 appears, then the student with the fewest dollars collects
a dollar from the other. If the students have the same amount, then no
dollars are exchanged. The game continues until one student runs out of
dollars. Let student A’s number of dollars represent the states. Let each
student start with 3 dollars.

(a) What is the transition matrix, P ?
(b) If student A reaches state 0 or 6, then he stays there with probability 1.

What is the probability that student B loses in 3 tosses of the dice?
(c) What is the probability that student A loses in 5 or fewer tosses?

9.12 A biologist would like to estimate the size of a certain population of fish.
A sequential approach is proposed whereby a member of the population
is sampled at random, tagged, and then returned. This process is repeated
until a member is drawn that has been previously tagged. If desired, we
could then begin tagging again with a new kind of tag. Let M be the trial
at which the first previously tagged fish is sampled and N be the total
population size. This process can be described in terms of a Markov chain
where Xk is the number of successive untagged members observed. That
is, Xk = k for k = 1, 2, . . . , M − 1 and XM = 0.

(a) For a fixed N = n, find the form of the transition probability matrix.
(b) Find Pr(M = m|X0 = 0) for m = 2, 3, 4, . . . , n.

9.13 A person with a contagious disease enters the population. Every day he
either infects a new person (which occurs with probability p) or his symp-
toms appear and he is discovered by health officials (which occurs with
probability 1 − p). Assuming all infected persons behave in the same man-
ner, compute the probability distribution of the number of infected but
undiscovered people in the population at the time of the first discovery of
the disease.

9.14 Let Xn be the sum of n independent rolls of a fair (cubicle) die.

(a) Find lim n→∞ Pr(Xn is a multiple of 3).
(b) Find lim n→∞ Pr(Xn is a multiple of 5).
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9.15 A certain three-state Markov chain has a transition probability matrix
given by

P =




0. 4 0. 5 0. 1
0. 05 0. 7 0. 25
0. 05 0. 5 0. 45



 .

Determine if the Markov chain has a unique steady state distribution or
not. If it does, find that distribution.

9.16 Suppose a process can be considered to be in one of two states (let’s call
them state A and state B), but the next state of the process depends not only
on the current state but also on the previous state. We can still describe
this process using a Markov chain, but we will now need four states. The
chain will be in state (X, Y), X, Y ∈ {A, B} if the process is currently in state
X and was previously in state Y.

(a) Show that the transition probability matrix of such a four-state Markov
chain must have zeros in at least half of its entries.

(b) Suppose that the transition probability matrix is given by

(A, A) (A, B) (B, A) (B, B)

P =
(A, A)
(A, B)
(B, A)
(B, B)







0. 8 0. 2 0 0
0 0 0. 4 0. 6

0. 6 0. 4 0 0
0 0 0. 1 0. 9







.

Find the steady state distribution of the Markov chain.
(c) What is the steady state probability that the underlying process is in

state A?

9.17 For a Markov chain with each of the transition probability matrices shown
in (a)–(c), find the communicating classes and the periodicity of the various
states.

(a)












0 0 1 0
1 0 0 0
1
2

1
2

0 0

1
3

1
3

1
3

0












, (b)










0 1 0 0
0 0 0 1
0 1 0 0
1
3

0
2
3

0










, (c)












0 1 0 0
1
2

0 0
1
2

0 0 0 1

0
1
2

1
2

0












.

9.18 Prove that if i ↔ j, then d(i) = d(j), and hence all states in the same class
must have the same period.
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9.19 Demonstrate that the two generating functions defined in Equations 9.20
and 9.21 are related by

Pi, i(z) − 1 = Pi, i(z)Fi, i(z).

9.20 Define the generating functions

Pi, j(z) =
∞
∑

n=0

p(n)
i, j zn and Fi, j(z) =

∞
∑

n=0

f (n)
i, j zn.

(a) Show that Pi, j(z) = Fi, j(z)Pj, j(z).
(b) Prove that if state j is a transient state, then for all i,

∞
∑

n=1

p(n)
i, j < ∞.

9.21 Verify that recurrence is a class property. That is, if one state in a commu-
nicating class is recurrent then all are recurrent, and if one is transient then
all are transient.

9.22 Suppose a Bernoulli trial results in a success with probability p and a failure
with probability 1 − p. Suppose the Bernoulli trial is repeated indefinitely
with each repitition independent of all others. Let Xn be a “success runs”
Markov chain where Xn represents the number of most recent consecutive
successes that have been observed at the nth trial. That is, Xn = m if trial
numbers n, n − 1, n − 2, . . . , n − m + 1 were all successes but trial number
n − m was a failure. Note that Xn = 0 if the nth trial was a failure.

(a) Find an expression for the one-step transition probabilities, pi, j.
(b) Find an expression for the n-step first return probabilities for state

0, f (n)
0, 0 .

(c) Prove that state 0 is recurrent for any 0 < p < 1. Note that since all states
communicate with one another, this result together with the result of
the previous exercise is sufficient to show that all states are recurrent.

9.23 Find the steady state distribution of the success runs Markov chain
described in Exercise 9.22.

9.24 Derive the backward Kolmogorov equations,

d
dt

pi, j(t) = λipi+1, j(t) − (λi + µi)pi, j(t) + µipi−1, j(t).
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9.25 In this problem, you will demonstrate that the Gaussian PDF in Equa-
tion 9.64 is in fact the solution to the diffusion Equation 9.63. To do this,
we will use frequency domain methods. Define, �(ω, t) = E

[

ejωX(t)] =
∫ ∞
−∞ f (x, t|x0 = 0, t0 = 0)ejωx dx to be the time varying characteristic function

of the random process X(t).

(a) Starting from the diffusion Equation 9.63, show that the characteristic
function must satisfy

∂

∂t
�(ω, t) = (2cjω − Dω2)�(ω, t).

Also, determine the appropriate initial condition for this differential
equation. That is, find �(ω, 0).

(b) Solve the first order differential equation in part (a) and show that the
characteristic function is of the form

�(ω, t) = exp(−Dω2 + 2cjω).

(c) From the characteristic function, find the resulting PDF given by
Equation 9.64.

9.26 A communication system sends data in the form of packets of fixed length.
Noise in the communication channel may cause a packet to be received
incorrectly. If this happens, then the packet is retransmitted. Let the
probability that a packet is received incorrectly be q.

(a) Determine the average number of transmissions that are necessary
before a packet is received correctly. Draw a state diagram for this
problem.

(b) Let the the transmission time be Tt seconds for a packet. If the packet is
received incorrectly, then a message is sent back to the transmitter stat-
ing that the message was received incorrectly. Let the time for sending
such a message be Ta. Assume that if the packet is received correctly
that we do not send an acknowledgment. What is the average time for
a successful transmission? Draw a state diagram for this problem.

(c) Now suppose there are three nodes. The packet is to be sent from
node 1 to node 2 to node 3 without an error. The probability of the
packets being received incorrectly at each node is the same and is q.
The transmission time is Tt and the time to acknowledge that a packet
is received incorrectly is Ta. Draw a state diagram for this problem.
Determine the average time for the packet to reach node 3 correctly.
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MATLAB Exercises
9.27 On the first day of the new year it is cloudy. What is the probability that it

is sunny on 4 July if the following transition matrix applies?

sunny cloudy rainy

sunny
cloudy
rainy





0. 7 0. 2 0. 1
0. 3 0. 2 0. 5
0. 3 0. 3 0. 4





How much does your answer change if it is a leap year?

9.28 Determine which of the transition matrices (a)–(g) represents a regular
Markov chain. Find the steady state distribution for the regular matrices.
Note a Markov chain is regular if some power of the transition matrix has
only positive (nonzero) entries. This implies that a regular chain has no
periodic states.

(a)
[

1/3 2/3
5/6 1/6

]

, (b)
[

0 1
1/4 3/4

]

, (c)
[

0 1
1 0

]

,

(d)
[

1/5 4/5
1 0

]

,
(e)





1/2 1/2 0
0 1/2 1/2

1/3 1/3 1/3



, (f)





1/3 0 2/3
0 1 0
0 1/5 4/5



,

(g)





1/2 1/4 1/4
1/3 2/3 0

0 1/4 3/4



.

9.29 Write a MATLAB program to simulate a three-state Markov chain with
the transition probability matrix

P =




1/2 1/4 1/4
1/2 0 1/2
1/4 1/4 1/2



 .

Assuming that the process starts in the third state, generate a sequence of
500 states. Estimate the steady state probability distribution, π , using the
sequence you generated. Does it agree with the theoretical answer? Does
the steady state distribution depend on the starting state of the process?

9.30 Write a MATLAB program to simulate the M/M/1 queueing system. If
you like, you may use the program provided in Example 9.14. Use your
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program to estimate the average amount of time a customer spends waiting
in line for service. Assume an arrival rate of λ = 15 customers/hour and an
average service time of 1/µ = 3 minutes. Note, that if a customer arrives
to find no others in the system, the waiting time is zero.

9.31 Modify the program of Example 9.14 to simulate the M/M/∞ queue
of Example 9.13. Based on your simulation results, estimate the PMF of
the number of customers in the system. Compare your results with the
analytical results found in Example 9.13.
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In the study of deterministic signals and systems, frequency domain techniques
(e.g., Fourier transforms) provide a valuable tool that allows the engineer to gain
significant insights into a variety of problems. In this chapter, we develop frequency
domain tools for studying random processes. This will prepare us for the study of
random processes in linear systems in the next chapter.

For a deterministic continuous signal, x(t), the Fourier transform is used to
describe its spectral content. In this text, we write the Fourier transform as1

X(f ) = F[x(t)] =
∫ ∞

−∞
x(t)e−j2π ft dt, (10.1)

and the corresponding inverse transform is

x(t) = F−1[X(f )] =
∫ ∞

−∞
X(f )ej2π ft df . (10.2)

For discrete time signals, we could use a discrete Fourier transform (DFT) or
a z-transform. The Fourier transform, X(f ), is referred to as the spectrum of x(t)
since it describes the spectral contents of the signal. In general, X(f ) is a complex
function of frequency, and hence we also speak of an amplitude (magnitude) spec-
trum, |X(f )|, and a phase spectrum, ∠X(f ). In order to study random processes in

1Even though we use an upper case letter to represent a Fourier transform, it is not
necessarily random. Clearly, the Fourier transform of a nonrandom signal is also not random.
While this is inconsistent with our previous notation of using upper case letters to represent
random quantities, this notation of using upper case letters to represent Fourier transforms
is so common in the literature, we felt it necessary to retain this convention. The context
should make it clear whether a function of frequency is random or not.

369
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the frequency domain, we seek a similar quantity that will describe the spectral
characteristics of a random process.

The most obvious thing to do would be to try to define the Fourier transform
of a random process as perhaps

X(f ) =
∫ ∞

−∞
X(t)e−j2π ft dt = F[X(t)]; (10.3)

however, this leads to several problems. First of all, there are problems with exis-
tence. Since X(t) is a random process, there is not necessarily any guarantee that the
integral exists for every possible realization, x(t). That is, not every realization of
the random process may have a Fourier transform. Even for processes that are well-
behaved in the sense that every realization has a well-defined Fourier transform,
we are still left with the problem that X(f ) is itself a random process. In Chapter 8,
we described the temporal characteristics of random processes in terms of deter-
ministic functions such as the mean function and the autocorrelation function. In
a similar way, we seek a deterministic description of the spectral characteristics of
a random process. The power spectral density (PSD) function, which is defined in
the next section, will play that role.

Note that (10.3) uses an uppercase X to denote both the Fourier transform and
the random variable. As noted on the previous page, we have elected to do this
only because it is so common in the literature to use an uppercase letter to denote
the Fourier transform.

10.1 Definition of Power Spectral Density

To start with, for a random process X(t), define a truncated version of the random
process as

Xto (t) =
{

X(t) |t| ≤ to

0 |t| > to
. (10.4)

The energy of this random process is

EXto
=
∫ to

−to

X2(t) dt =
∫ ∞

−∞
X2

to
(t) dt, (10.5)

and hence the time averaged power is

PXto
= 1

2to

∫ ∞

−∞
X2

to
(t) dt = 1

2to

∫ ∞

−∞
∣∣Xto (f )

∣∣2 df . (10.6)
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The last equality is obtained using Parseval’s theorem. The quantity Xto (f ) is the
Fourier transform of Xto (t). Since the random process has been truncated to a finite
time interval, there will generally not be any problem with the existence of the
Fourier transform. Note that PXto

is a random variable and so to get the ensemble
averaged power, we must take an expectation,

PXto
= E

[
PXto

] = 1
2to

∫ ∞

−∞
E
[∣∣Xto (f )

∣∣2] df . (10.7)

The power in the (untruncated) random process X(t) is then found by passing to
the limit as to → ∞,

PX = lim
to→∞

1
2to

∫ ∞

−∞
E
[∣∣Xto (f )

∣∣2] df =
∫ ∞

−∞
lim

to→∞
E
[∣∣Xto (f )

∣∣2]

2to
df . (10.8)

Define SXX(f ) to be the integrand in Equation 10.8. That is, let

SXX(f ) = lim
to→∞

E
[∣∣Xto (f )

∣∣2]

2to
. (10.9)

Then, the average power in the process can be expressed as

PX =
∫ ∞

−∞
SXX(f ) df . (10.10)

Hence, this function of frequency which we have referred to simply as SXX(f ) has
the property that when integrated over all frequency, the total power in the process
is obtained. In other words, SXX(f ) has the units of power per unit frequency
and so it is the power density function of the random process in the frequency
domain. Thus, the quantity SXX(f ) is given the name power spectral density (PSD).
In summary, we have the following definition of PSD.

DEFINITION 10.1: For a random process X(t), the power spectral density (PSD) is
defined as

SXX(f ) = lim
to→∞

E
[∣∣Xto (f )

∣∣2]

2to
, (10.11)

where Xto (f ) is the Fourier transform of the truncated version of the process as
described in Equation 10.4.

Several properties of the PSD function should be evident from Definition 10.1 and
from the development that lead to that definition:

(1) SXX(f ) is a real function. (10.12a)

(2) SXX(f ) is a nonnegative function. (10.12b)
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(3) SXX(f ) is an even function. (10.12c)

(4) The average power in a random process is given by PX =
∫ ∞

−∞
SXX(f ) df .

(10.12d)

EXAMPLE 10.1: As a simple example, consider a sinusoidal process
X(t) = A sin(ωot + �) with random amplitude and phase. Assume
the phase is uniform over [0, 2π ) and independent of the amplitude
that we take to have an arbitrary distribution. Since each realization of
this process is a sinusoid at frequency fo, we would expect that all of
the power in this process should be located at f = fo (and f = −fo).
Mathematically, we have

Xto (t) = A sin(ωot + �) rect
(

t
2to

)
,

where rect(t) is a square pulse of unit height and unit width and centered
at t = 0. The Fourier transform of this truncated sinusoid works out to be

Xto (f ) = −jtoAej�sinc(2(f − fo)to) + jtoAe−j�sinc(2(f + fo)to),

where the “sinc” function is sinc(x) = sin(πx)/(πx). We next calculate
the expected value of the magnitude squared of this function.

E
[∣∣Xto (f )

∣∣2] = E[A2]t2
o {sinc2(2(f − fo)to) + sinc2(2(f + fo)to)}

The PSD function for this random process is then

SXX(f ) = lim
to→∞

E
[∣∣Xto (f )

∣∣2]

2to

= lim
to→∞

E[A2]to

2
{sinc2(2(f − fo)to) + sinc2(2(f + fo)to)}.

To calculate this limit, we observe that as to gets large, the function
g(f ) = tosinc2(2fto) becomes increasingly narrower and taller. Hence,
we could view the limit as an infinitely tall, infinitely narrow pulse. This
is one way to define a delta function. One property of a delta function
that is not necessarily shared by the function under consideration is that∫

δ(f ) df = 1. Hence, the limiting form of g(t) will have to be a scaled (in
amplitude) delta function. To figure out what the scale factor needs to
be, the integral of g(f ) is calculated:∫ ∞

−∞
g(f ) df =

∫ ∞

−∞
tosinc2(2fto) df = 1

2

∫ ∞

−∞
sinc2(u) du = 1

2
.
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Hence,

lim
to→∞ tosinc2(2fto)

1
2
δ(f ).

The resulting PSD is then simplified to

SXX(f ) = E[A2]
4

{δ(f − fo) + δ(f + fo)}.
This is consistent with our intuition. The power in a sinusoid with ampli-
tude A is A2/2. Thus, the average power in the sinusoidal process is
E[A2]/2. This power is evenly split between the two points f = fo and
f = −fo.

One important lesson to learn from the previous example is that even for very
simplistic random processes, it can be quite complicated to evaluate the PSD using
the definition given in Equation 10.11. The next section presents a very important
result that allows us to greatly simplify the process of finding the PSD of many
random processes.

10.2 The Wiener-Khintchine-Einstein
Theorem

THEOREM 10.1 (Wiener-Khintchine-Einstein): For a wide sense stationary
(WSS) random process X(t) whose autocorrelation function is given by RXX(τ ),
the PSD of the process is

SXX(f ) = F(RXX(τ )) =
∫ ∞

−∞
RXX(τ )e−j2π f τ dτ . (10.13)

In other words, the autocorrelation function and PSD form a Fourier transform
pair.

PROOF: Starting from the definition of PSD,

E
[∣∣Xto (f )

∣∣2] = E
[∫ to

−to

∫ to

−to

X(t)X(s)e−j2π f (t−s) dt ds
]

=
∫ to

−to

∫ to

−to

E[X(t)X(s)]e−j2π f (t−s) dt ds =
∫ to

−to

∫ to

−to

RXX(t, s)e−j2π f (t−s) dt ds.

(10.14)
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Using the assumption that the process is WSS, the autocorrelation function is only
a function of a single time variable, t − s. Hence, this expression is rewritten as

E
[∣∣Xto (f )

∣∣2] =
∫ to

−to

∫ to

−to

RXX(t − s)e−j2π f (t−s) dt ds. (10.15)

It is noted that the preceding integrand is a function of only a single variable;
therefore, with the appropriate change of variables, the double integral can be
reduced to a single integral. The details are given in the following.

The region of integration is a square in the s-t plane of width 2to centered at
the origin. Consider an infinitesimal strip bounded by the lines t − s = τ and
t − s = τ + dτ .

This strip is illustrated in Figure 10.1. Let a(τ ) be the area of that strip
that falls within the square region of integration. A little elementary geometry
reveals that

a(τ ) =



2to

(
1 − |τ |

2to

)
dτ for |τ | < 2to

0 for |τ | > 2to

. (10.16)

To obtain the preceding result, one must neglect edge terms that contribute expres-
sions that are quadratic in the infinitesimal dτ . Since the integrand in Equation 10.15
is a function of only t − s, it is constant (and equal to RXX(τ )e−j2πτ ) over the entire
strip. The double integral over the strip can therefore be written as the value of the
integrand multiplied by the area of the strip. The double integral over the entire

t

s

–to

–to to

to
t – s = τ

τ

t – s = τ + dτ

Figure 10.1 Illustration of the change of variables for the double integral in Equation 10.15.
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square can be written as a sum of the integrals over all the strips that intersect the
square:

∫ to

−to

∫ to

−to

RXX(t − s)e−j2π f (t−s) dt ds =
∑

strips

RXX(τ )e−j2πτ a(τ ). (10.17)

Passing to the limit as dτ → 0, the sum becomes an integral resulting in

E
[∣∣Xto (f )

∣∣2] = 2to

∫ 2to

−2to

RXX(τ )e−j2πτ

(
1 − |τ |

2to

)
dτ . (10.18)

The PSD function for the random process X(t) is then

SXX(f ) = lim
to→∞

E
[∣∣Xto (f )

∣∣2]

2to
= lim

to→∞

∫ 2to

−2to

(
1 − |τ |

2to

)
RXX(τ )e−j2πτ dτ . (10.19)

Passing to the limit as to → ∞ then gives the desired result in Equation 10.13. �

While most of the random processes we deal with are WSS, for those that are
not, Theorem 10.1 needs to be adjusted since the autocorrelation function for a
nonstationary process would be a function of two time variables. For nonstationary
processes the Wiener-Khintchine-Einstein theorem is written as

SXX(f ) =
∫ ∞

−∞
〈
RXX(t, t + τ )

〉
e−j2π f τ dτ , (10.20)

where in this case 〈〉 represents a time average with respect to the time variable t.
We leave it as an exercise for the reader to prove this more general version of the
theorem.

EXAMPLE 10.2: Let us revisit the random sinusoidal process, X(t) =
A sin(ωot + �), of Example 10.1. This time the PSD function will be
calculated by first finding the autocorrelation function.

RXX(t, t + τ ) = E[X(t)X(t + τ )] = E[A2 sin(ωot + �) sin(ωo(t + τ ) + �)]

= 1
2

E[A2]E[cos(ωoτ ) − cos(ωo(2t + τ ) + 2�)] = 1
2

E[A2] cos(ωoτ )
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The autocorrelation function is only a function of τ and thus the PSD is
simply the Fourier transform of the autocorrelation function,

SXX(f ) =
∫ ∞

−∞
RXX(τ )e−j2π f τ dτ = 1

2
E[A2]F[cos(ωoτ )]

= 1
4

E[A2]{δ(f − fo) + δ(f + fo)}.

This is exactly the same result that was obtained in Example 10.1 using
the definition of PSD, but in this case the result was obtained with much
less work.

EXAMPLE 10.3: Now suppose we have a sinusoid with a random
amplitude but a fixed phase, X(t) = A sin(ωot + θ ). Here the auto-
correlation function is

RXX(t, t + τ ) = E[X(t)X(t + τ )] = E[A2 sin(ωot + θ ) sin(ωo(t + τ ) + θ )]

= 1
2

E[A2]E[cos(ωoτ ) − cos(ωo(2t + τ ) + 2θ )]

= 1
2

E[A2] cos(ωoτ ) + 1
2

E[A2] cos(ωo(2t + τ ) + 2θ ).

In this case, the process is not WSS and so we must take a time average
of the autocorrelation before we take the Fourier transform.

〈RXX(t,t+τ )〉=
〈

1
2

E[A2]cos(ωoτ )+ 1
2

E[A2]cos(ωo(2t+τ )+2θ )
〉

= 1
2

E[A2]cos(ωoτ )+ 1
2

E[A2]〈cos(ωo(2t+τ )+2θ )〉= 1
2

E[A2]cos(ωoτ )

The time-averaged autocorrelation is exactly the same as the autocorre-
lation in the previous example, and hence the PSD of the sinusoid with
random amplitude and fixed phase is exactly the same as the PSD of the
sinusoid with random amplitude and random phase.

EXAMPLE 10.4: Next, consider a modified version of the random tele-
graph signal of Example 8.4. In this case, the process starts at X(0) = 1
and switches back and forth between X(t) = 1 and X(t) = −1, with the
switching times being dictated by a Poisson point process with rate λ.
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X(t)

t

1

–1

Figure 10.2 A sample realization for the random telegraph signal of Example 10.4.

A sample realization is shown in Figure 10.2. To find the PSD we first
find the autocorrelation function.

RXX(t, t + τ ) = E[X(t)X(t + τ )]
= (1) Pr(even number of switches in [t, t + τ ))

+ (−1) Pr(odd number of switches in [t, t + τ )).

The number of switches in a contiguous interval follows a Poisson
distribution, and hence

RXX(t, t + τ ) =
∑

m even

(λ|τ |)m

m! e−λ|τ | −
∑

m odd

(λ|τ |)m

m! e−λ|τ |

=
∞∑

m=0

(−λ|τ |)m

m! e−λ|τ | = e−2λ|τ |.

Since this is a function of only τ , we directly take the Fourier transform
to find the PSD:

SXX(f ) = F[e−2λ|τ |] = 1/λ

1 + (π f /λ)2 = λ

λ2 + (π f )2 .

The autocorrelation function and PSD for this random telegraph signal
are illustrated in Figure 10.3.

EXAMPLE 10.5: To illustrate how some minor changes in a process can
affect its autocorrelation and PSD, let us return to the random telegraph
process as it was originally described in Example 8.4. As in the previous
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Figure 10.3 Autocorrelation function (a) and PSD (b) for the random telegraph signal of
Example 10.4.

example, the process switches back and forth between two values as
dictated by an underlying Poisson point process; however, now the
two values of the process are X(t) ∈ {0, 1} instead of X(t) ∈ {+1, −1}.
Also, the process starts at X(0) = 0 instead of X(0) = 1. Noting that
the product X(t)X(t + τ ) is equal to zero unless both {X(t) = 1} and
{X(t + τ ) = 1} are true, the autocorrelation function is calculated as

RXX(t,t+τ )=E[X(t)X(t+τ )]=Pr({X(t)=1}∩{X(t+τ )=1})
=Pr(odd number of switches in [0,t))

×Pr(even number of switches in [t,t+τ ))

=
( ∑

m odd

(λt)m

m! e−λt

)( ∑
m even

(λτ )m

m! e−λt

)
=
(

1
2

− 1
2

e−2λt
)(

1
2

+ 1
2

e−2λτ

)
.

The last step was accomplished using some of the results obtained in
Example 8.6 and assumes that τ is positive. If, on the other hand, τ is
negative, then it turns out that

RXX(t, t + τ ) =
(

1
2

− 1
2

e−2λ(t+τ )
)(

1
2

+ 1
2

e2λτ

)
.

Clearly, this process is not stationary since the autocorrelation func-
tion is a function of both t and τ . Hence, before the Fourier transform
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is taken, the time average of the autocorrelation function must be
computed.

〈RXX(t,t+τ )〉=
〈

1
2

− 1
2

e−2λt
〉(

1
2

+ 1
2

e−2λτ

)
= 1

4
+ 1

4
e−2λτ , for τ >0,

〈RXX(t,t+τ )〉=
〈

1
2

− 1
2

e−2λ(t+τ )
〉(

1
2

+ 1
2

e2λτ

)
= 1

4
+ 1

4
e2λτ , for τ <0

In summary, the autocorrelation function can be concisely expressed as

〈RXX(t, t + τ )〉 = 1
4

+ 1
4

e−2λ|τ |.

The PSD function is then found to be

SXX(f ) = F
[

1
4

+ 1
4

e−2λ|τ |
]

= 1
4
δ(f ) + 1

4
λ

λ2 + (π f )2 .

There are two differences between this result and that of the Example
10.4. First the total power (integral of PSD) in this process is 1/2 the
total power in the process of the previous example. This is easy to see
since when X(t) ∈ {0, 1}, E[X2(t)] = 1/2, while when X(t) ∈ {+1, −1},
E[X2(t)] = 1. Second, in this example, there is a delta function in the
PSD which was not present in the previous example. This is due to the
fact that the mean of the process in this example was (asymptotically)
equal to 1/2, whereas in the previous example it was zero. It is left
as an exercise for the reader to determine if the initial conditions of the
random process would have any effect on the PSD. That is, if the process
started at X(0) = 1 and everything else remained the same, would the
PSD change?

DEFINITION 10.2: The cross spectral density between two random processes, X(t)
and Y(t), is the Fourier transform of the cross correlation function:

SXY(f ) = F[RXY(τ )] =
∫ ∞

−∞
RXY(τ )e−j2π f τ dτ . (10.21)

The cross spectral density does not have a physical interpretation nor does it share
the same properties as the PSD function. For example, SXY(f ) is not necessarily
real since RXY(τ ) is not necessarily even. The cross spectral density function does
possess a form of symmetry known as Hermitian symmetry2,

SXY(f ) = SYX(−f ) = S∗
XY(−f ). (10.22)

2Here and throughout the text, the superscript ∗ refers to the complex conjugate.
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This property follows from the fact that RXY(τ ) = RYX(−τ ). The proof of this
property is left to the reader.

10.3 Bandwidth of a Random Process

Now that we have an analytical function that describes the spectral content of a
signal, it is appropriate to talk about the bandwidth of a random process. As with
deterministic signals, there are many definitions of bandwidth. Which definition
is used depends on the application and sometimes on personal preference. Several
definitions of bandwidth are given next. To understand these definitions, it is
helpful to remember that when measuring the bandwidth of a signal (whether
random or deterministic), only positive frequencies are measured. Also, we tend
to classify signals according to where their spectral contents lies. Those signals
for which most of the power is at or near direct current (d.c.) are referred to as
lowpass signals, while those signals whose PSD is centered around some nonzero
frequency, f = fo are referred to as bandpass processes.

DEFINITION 10.3: For a lowpass process, the absolute bandwidth, Babs, is the
largest frequency for which the PSD is nonzero. That is, Babs is the smallest value
of B such that SXX(f ) = 0 for all f > B. For a bandpass process, let BL be the largest
value of B such that SXX(f ) = 0 for all 0 < f < B, and similarly let BR be the smallest
value of B such that SXX(f ) = 0 for all B < f . Then Babs = BR − BL. In summary,
the absolute bandwidth of a random process is the width of the band that contains
all frequency components. The concept of absolute bandwidth is illustrated in
Figure 10.4.

f f

–fo foLowpass process
(a) (b)

Bandpass process

Babs
Babs

SXX(f )SXX(f )

Figure 10.4 Measuring the absolute bandwidth of a lowpass (a) and bandpass (b) process.
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f

Lowpass process
(a) (b)

Bandpass process

Speak/2

SXX(f )

B3 dB

B3 dB

–fo

Speak/2

SXX(f )

fo

f

Figure 10.5 Measuring the 3-dB bandwidth of a lowpass (a) and bandpass (b) process.

DEFINITION 10.4: The 3-dB bandwidth (or half power bandwidth), B3 dB, is the
width of the frequency band where the PSD is within 3 dB of its peak value every-
where within the band. Let Speak be the maximum value of the PSD. Then for a
lowpass signal, B3 dB is the largest value of B for which SXX(f ) > Speak/2 for all
frequencies such that 0 < f < B. For a bandpass process, B3 dB = BR − BL, where
SXX(f ) > Speak/2 for all frequencies such that BL < f < BR and it is assumed that
the peak value occurs within the band. The concept of 3-dB bandwidth is illustrated
in Figure 10.5.

DEFINITION 10.5: The root-mean-square (RMS) bandwidth, Brms, of a lowpass
random process is given by

B2
rms =

∫ ∞

0
f 2SXX(f ) df

∫ ∞

0
SXX(f ) df

. (10.23)

This measure of bandwidth is analogous to using standard deviation as a mea-
sure of the width of a PDF. For bandpass processes, this definition is modified
according to

B2
rms =

4
∫ ∞

0
(f − fo)2SXX(f ) df
∫ ∞

0
SXX(f ) df

, (10.24)

where

fo =

∫ ∞

0
fSXX(f ) df

∫ ∞

0
SXX(f ) df

. (10.25)
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It is left as an exercise for the reader to figure out why the factor of 4 appears in the
preceding definition.

EXAMPLE 10.6: Consider the random telegraph process of Example
10.4 where the PSD was found to be

SXX(f ) = λ

λ2 + (π f )2 .

The absolute bandwidth of this process is Babs = ∞. This can be seen
from the picture of the PSD in Figure 10.2. To find the 3-dB bandwidth,
it is noted that the peak of the PSD occurs at f = 0 and has a value
of Speak = λ−1. The 3-dB bandwidth is then the value of f for which
SXX(f ) = 1/(2λ). This is easily found to be B3 dB = λ/π . Finally, the
RMS bandwidth of this process is infinite since

∫ ∞

0

λf 2

λ2 + (π f )2 df = ∞.

10.4 Spectral Estimation

The problem of estimating the PSD of a random process has been the topic of exten-
sive research over the past several decades. Many books are dedicated to this topic
alone and hence we cannot hope to give a complete treatment of the subject here;
however, some fundamental concepts are introduced in this section that will pro-
vide the reader with a basic understanding of the problem and some rudimentary
solutions. Spectral estimators are generally grouped into two classes, parametric
and nonparametric. A parametric estimator assumes a certain model for the ran-
dom process with several unknown parameters and then attempts to estimate the
parameters. Given the model parameters, the PSD is then computed analytically
from the model. On the other hand, a nonparametric estimator makes no assump-
tions about the nature of the random process and estimates the PSD directly. Since
parametric estimators take advantage of some prior knowledge of the nature of the
process, it would be expected that these estimators are more accurate. However, in
some cases, prior knowledge may not be available, in which case a nonparametric
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estimator may be more appropriate. We start with a description of some basic
techniques for nonparametric spectral estimation.

10.4.1 Nonparametric Spectral Estimation

Suppose we observe a random process, X(t), over some time interval (−to, to) (or
a discrete time process X[n] over some time interval [0, no − 1]) and we wish
to estimate its PSD function. Two approaches immediately come to mind. The
first method we will refer to as the direct method, or the periodogram. It is based
on the definition of PSD in Equation 10.11. The second method we will refer to
as the indirect method, or the correlation method. The basic idea here is to estimate
the autocorrelation function and then take the Fourier transform of the estimated
autocorrelation to form an estimate of the PSD. We first describe the correlation
method. In all of the discussion on spectral estimation to follow, it is assumed that
the random processes are WSS.

An estimate of the autocorrelation function of a continuous time random
process can be formed by taking a time average of the particular realization
observed:

R̂XX(τ ) =
〈
X
(

t − τ

2

)
X
(

t + τ

2

)〉
= 1

2to − |τ |
∫ to−|τ |

2

to+|τ |
2

X
(

t − τ

2

)
X
(

t + τ

2

)
dt.

(10.26)

It is not difficult to show that this estimator is unbiased (i.e., E[R̂XX(τ )] = RXX(τ )),
but at times it is not a particularly good estimator, especially for large values of τ .
The next example illustrates this fact.

EXAMPLE 10.7: Consider the random telegraph process of Example
10.4. A sample realization of this process is shown in Figure 10.6, along
with the estimate of the autocorrelation function. For convenience, the
true autocorrelation is shown as well. Note that the estimate matches
quite well for small values of τ , but as |τ | → to, the estimate becomes
very bad.

In order to improve the quality of the autocorrelation estimate, it is common
to introduce a windowing function to suppress the erratic behavior of the esti-
mate at large values of τ . This is particularly important when estimating the PSD
because the wild behavior at large values of |τ | will distort the estimate of the
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Figure 10.6 A sample realization of the random telegraph signal (a) and the estimate
of the autocorrelation function based on that realization (b). The dotted line is the true
autocorrelation function.

PSD at all frequencies once the Fourier transform of the autocorrelation estimate is
taken.

DEFINITION 10.6: For a WSS random process X(t), the windowed estimate of the
autocorrelation function using a windowing function w(t) is given by

R̂ (w)
XX (τ ) = w(τ )

2to − |τ |
∫ to−|τ |

2

to+|τ |
2

X
(

t − τ

2

)
X
(

t + τ

2

)
dt. (10.27)

There are many possible windowing functions that can be used. The previous
autocorrelation estimate (without the windowing function) can be viewed as a
windowed estimate with a rectangular window,

w(t) = rect
(

t
4to

)
. (10.28)

Another option would be to use a triangular window,

w(t) = tri
(

t
2to

)
=



1 − |t|
2to

|t| < to

0 |t| > to

. (10.29)
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This would lead to the autocorrelation estimate,

R̂ (tri)
XX (τ ) = 1

2to

∫ to−|τ |
2

to+|τ |
2

X
(

t − τ

2

)
X
(

t + τ

2

)
dt. (10.30)

While this estimator is biased, the mean-squared error in the estimate will generally
be smaller than when the rectangular window is used. Much of the classical spectral
estimation theory focuses on how to choose an appropriate window function to
satisfy various criteria.

EXAMPLE 10.8: The autocorrelation function of the random telegraph
signal is once again estimated, this time with the windowed autocorre-
lation estimator using the triangular window. The sample realization,
as well as the autocorrelation estimate, are shown in Figure 10.7. Note
this time that the behavior of the estimate for large values of τ is more
controlled.

Once an estimate of the autocorrelation can be found, the estimate of the PSD
is obtained through Fourier transformation.
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Figure 10.7 A sample realization of the random telegraph signal (a) and the win-
dowed estimate of the autocorrelation function (using a triangular window) based on that
realization (b).
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DEFINITION 10.7: For a WSS random process X(t), the correlation-based estimate
(with windowing function w(t)) of the PSD is given by

Ŝ (w)
XX (f ) = F

[
R̂ (w)

XX (τ )
]

=
∫ ∞

−∞
R̂ (w)

XX (τ )e−j2π f τ dτ =
∫ 2to

−2to

R̂ (w)
XX (τ )e−j2π f τ dτ . (10.31)

EXAMPLE 10.9: The PSD estimates corresponding to the autocorrela-
tion estimates of the previous example are illustrated in Figure 10.8.
There the correlation based PSD estimates are plotted and compared
with the true PSD. Note that when no windowing is used, the PSD esti-
mate tends to overestimate the true PSD. Another observation is that it
appears from these results that the PSD estimates could be improved
by smoothing. We will elaborate on that shortly.
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Figure 10.8 A sample realization of the random telegraph signal (a) and the estimate of
the PSD function (b, c). Plot (b) is for the unwindowed estimator, while plot (c) is for the
triangular windowed estimator. For both PSD plots, the smooth thick line is the true PSD.
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The next approach we consider for estimating the PSD of a random process is
to directly use the definition of PSD in Equation 10.11. This approach is referred to
as the periodogram estimate.

DEFINITION 10.8: Given an observation of the process X(t) over an interval
(−to, to), Xto (t), the periodogram estimate of the PSD is

Ŝ (p)
XX(f ) = 1

2to

∣∣Xto (f )
∣∣2 . (10.32)

THEOREM 10.2: The periodogram estimate of the PSD is equivalent to the
autocorrelation-based estimate with a triangular window. That is,

Ŝ (p)
XX(f ) = Ŝ (tri)

XX (f ). (10.33)

PROOF: The proof of this theorem is a fairly elementary exercise in manipulating
the properties of Fourier transforms. Recall that for any two signals, x(t) and y(t),
the product of their spectra forms a transform pair with the convolution of the two
signals. That is, F[x(t) ∗ y(t)] = X(f )Y(f ). Applying this to Equation 10.32 results in

∣∣Xto (f )
∣∣2 = F [Xto (τ ) ∗ Xto (−τ )] = F

[∫ ∞

−∞
Xto (u)Xto (u − τ ) du

]

= F
[∫ to

−to

Xto (t)Xto (t + τ ) dt
]

,

1
2to

∣∣Xto (f )
∣∣2 = F

[
1

2to

∫ to

−to

Xto (t)Xto (t + τ ) dt
]

= F
[
R̂ (tri)

XX (τ )
]

= Ŝ (tri)
XX (f ). (10.34)

�

An example of the periodogram was given in plot (c) of Figure 10.8. At the time,
it was referred to as the correlation-based estimate with a triangular windowing
function. Now it is clear that the two are the same. It was mentioned in Example 10.9
that the quality of the periodogram might be improved by smoothing the PSD

estimate. This can be accomplished by convolving Ŝ (p)
XX(f ) with some smoothing

function, w̃(f ).

DEFINITION 10.9: The smoothed periodogram with smoothing function w̃(f ) is
given by

Ŝ (wp)
XX (f ) = w̃(f ) ∗ Ŝ (p)

XX(f ). (10.35)
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The smoothed periodogram can be viewed in terms of the correlation-based
estimate as well. Note that if w(τ ) = F−1[w̃(f )], then

Ŝ (wp)
XX (f ) = F[w(τ )] ∗ F[R̂ (tri)

XX (τ )] = F[w(τ )R̂ (tri)
XX (τ )]. (10.36)

Hence, the smoothed periodogram is nothing more than the windowed correlation-
based estimate with a window that is the product of w(t) and the triangular window.
This seems to indicate that there would be some potential benefit to using window-
ing functions other than what has been presented here. The reader is referred to
the many books on spectral estimation in the literature for discussions of other
possibilities.

In all of the spectral estimators presented thus far, an ensemble average was
estimated using a single realization. A better estimate could be obtained if sev-
eral independent realizations of the random process were observed and a sample
average were used to replace the ensemble average. Even though we may be able
to observe only a single realization, it may still be possible to achieve the same
effect. This is done by breaking the observed time waveform into segments and
treating each segment as an independent realization of the random process. The
periodogram is computed on each segment and then the resulting estimates are
averaged.

EXAMPLE 10.10: Figure 10.9 compares the periodogram estimate
of the PSD of the random telegraph signal with and without seg-
mentation. In plot (b) no segmentation is used, while in plot (c) the
data is segmented into M = 8 frames. A periodogram is computed

for each frame and the results are then averaged. Note the improvement in the
PSD estimate when the segmentation is used. Also note that there is a slight
bias appearing in the segmented estimate. This is most noticeable at the higher
frequencies. This bias will get worse as more segments are used. There is a
trade-off in wanting to use a large value of M to reduce the “jitter” in the esti-
mate and wanting to use a small value of M to keep the bias to a minimum.
The following MATLAB functions were used to implement the periodogram
estimates with and without seqmentation. These same functions can be used
to estimate the PSD of any input signal.

function [Shat, f]=Periodogram(x,dx)

% This function computes the periodogram estimate of the PSD

% of the input signal. The vector x contains the samples of the

% input while dx indicates the time interval between samples.

Nx=length(x);
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Figure 10.9 A sample realization of the random telegraph signal (a) and the periodogram
estimate of the PSD function (b, c). Plot (b) is for the unsegmented data, while plot (c) is for
when the data is segmented into M = 8 frames. For both PSD plots, the smooth thick line is
the true PSD.

Rhat=conv(x,fliplr(x))/Nx;

Nr=length(Rhat);

Shat=fft(Rhat);

Shat=fftshift(dx*abs(Shat));

Nf=(Nr-1)/2; df=1/(dx*Nr);

f=[-Nf:Nf]*df;

function [S,f]=EPrdgm(x,dx,M)

% This function computes the periodogram estimate of the PSD

% of the input signal by breaking the signal into M frames and

% and performing a periodogram estimate on each frame and then

% averaging the results. The vector x contains the samples of

% the signal, while dx is the sampling interval. S is the

% estimated PSD and f is a vector of frequency samples that

% gives the frequency scale to be used when plotting S.
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Nx=length(x);

Nframe=floor(Nx/M); % frame length

S=zeros(1,2*Nframe-1);

for m=1:M

xm=x(((m-1)*Nframe+1):(m*Nframe));

[Stemp,f]=Periodogram(xm,dx);

S=S+Stemp;

end

S=S/M;

10.4.2 Parametric Spectral Estimation

In parametric spectral estimation, a general model of the data is assumed, which
usually contains one or more unknown parameters. Given the general model, the
PSD can be calculated analytically. The problem then becomes one of estimating
the unknown parameters and plugging the result into the analytic form of the PSD.
To provide an example of how this general approach works, we present a specific
class of random process models.

DEFINITION 10.10: Given a process X[n] with known statistics, a new process,
Y[n], is formed according to the difference equation:

a0Y[n] =
p∑

i=1

aiY[n − i] +
q∑

i=0

biX[n − i]. (10.37)

This process is referred to as an autoregressive moving average process (ARMA). As
special cases, if all of the ai are equal to zero (except a0, which is usually set equal
to unity), then Equation 10.37 simplifies to

Y[n] =
q∑

i=0

biX[n − i], (10.38)

and the process is referred to as a moving average (MA) process. The notation MA(q)
is used to refer to a qth order moving average process. If all of the bi are equal to
zero except for b0, then the difference equation becomes

a0Y[n] =
p∑

i=0

aiY[n − i] + b0X[n], (10.39)
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and the process is referred to as an autoregressive (AR) process. The notation AR(p)
is used to refer to a pth order autoregressive process. For the general case, the
notation ARMA(p, q) is used.

To demonstrate the basic principles of parametric estimation, suppose it was
determined that a certain random process, Y[n], is well modeled by an AR(1) model,

Y[n] = a1Y[n − 1] + X[n], (10.40)

where X[n] is a IID random process with zero-mean and a variance of σ 2
X . It is noted

that

Y[n + 1] = a1Y[n] + X[n + 1], (10.41)

Y[n + 2] = a2
1Y[n] + a1X[n + 1] + X[n + 2], (10.42)

Y[n + 3] = a3
1Y[n] + a2

1X[n] + a1X[n + 1] + X[n + 2], (10.43)

and in general,

Y[n + k] = ak
1Y[n] +

k−1∑
i=0

ak−1−i
1 X[n + i]. (10.44)

Using this expression, the autocorrelation function of the AR(1) process can be
computed.

RYY[n, n + k] = E[Y[n]Y[n + k]]

= ak
1E[Y2[n]] +

k−1∑
i=0

ak−1−i
1 E[Y[n]X[n + i]] = ak

1RYY[n, n] (10.45)

The last step is accomplished using the fact that Y[n] is independent of X[n + i] for
i > 0. The expression RYY[n, n] is calculated according to

RYY[n, n] = E[(a1Y[n − 1] + X[n])2] = a2
1RYY[n − 1, n − 1] + σ 2

X . (10.46)

Assuming that the process Y[n] is WSS3, this recursion becomes

RYY[0] = a2
1RYY[0] + σ 2

X ⇒ RYY[0] = σ 2
X

1 − a2
1

. (10.47)

3It will be shown in the next chapter that this is the case provided that X[n] is WSS.
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Hence, the autocorrelation function of the AR(1) process is

RYY[k] = σ 2
X

1 − a2
1

a|k|
1 . (10.48)

Assuming that the samples of this discrete time process are taken at a sampling
interval of 	t, the PSD of this process works out to be

SYY(f ) = 	tσ 2
X∣∣1 − a1e−j2π f 	t

∣∣2 . (10.49)

For this simple AR(1) model, the PSD can be expressed as a function of two
unknown parameters, a1 and σ 2

X . The problem of estimating the PSD then becomes
one of estimating the two parameters and then plugging the result into the gen-
eral expression for the PSD. In many cases, the total power in the process may
be known, which eliminates the need to estimate σ 2

X . Even if that is not the case,
the value of σ 2

X is just a multiplicative factor in the expression for PSD and does
not change the shape of the curve. Hence, in the following, we focus attention on
estimating the parameter, a1.

Since we know the AR(1) model satisfies the recursion of Equation 10.40, the
next value of the process can be predicted from the current value according to

Ŷ[n + 1] = â1Y[n]. (10.50)

This is known as linear prediction since the predictor of the next value is a linear
function of the current value. The error in this estimate is

E = Y[n + 1] − Ŷ[n + 1] − Y[n + 1] − â1Y[n]. (10.51)

Typically, we choose as an estimate of a1 the value of â1 that makes the linear
predictor as good as possible. Usually, “good” is interpreted as minimizing the
mean-square error, which is given by

E[E2] = E[(Y[n + 1] − â1Y[n])2] = RYY(0)(1 + â2
1) − 2â1RYY(1). (10.52)

Differentiating the mean-square error with respect to â1 and setting equal to zero
results in

2â1RYY(0) − 2RYY(1) = 0 ⇒ â1 = RYY(1)
RYY(0)

. (10.53)

Of course, we don’t know what the autocorrelation function is. If we did, we
would not need to estimate the PSD. So, the preceding ensemble averages must
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be replaced with sample averages, and the minimum mean-square error (MMSE)
linear prediction coefficient is given by

â1 = R̂YY(1)

R̂YY(0)
=
∑n0−1

n=−n0
y[n]y[n + 1]∑n0

n=−n0
y2[n] . (10.54)

Note that we have used a lower case y[n] in Equation 10.54 since we are dealing
with a single realization rather than the ensemble Y[n].

EXAMPLE 10.11: In this example, we use the AR(1) model to estimate
the PSD of the random telegraph process. Clearly, the AR(1) model does
not describe the random telegraph process; however, the autocorrela-
tion function of the random telegraph signal is a two-sided exponential,
as is the autocorrelation function of the AR(1) process. As a conse-
quence, we expect this model to give good results. The results are
shown in Figure 10.10. Notice how nicely the estimated PSD matches
the actual PSD.

0 2 4 6 8 10 12 14 16
–1

–0.5

0

0.5

1

Time (seconds)(a)

(b)

X
(t

)

−40 −30 −20 −10 0 10 20 30 40

–40

–30

–20

–10

0

Frequency (Hz)

P
S

D
 (

dB
)

Estimated PSD
Actual PSD   

Figure 10.10 A sample realization of the random telegraph signal (a) and the parametric
estimate of the PSD function based on the AR(1) model (b).
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In the previous example, the results were quite good because the functional
form of the PSD of the AR(1) process nicely matched the functional form of the
true PSD. If the fit had not been so good, it might have been necessary to move
to a higher order AR(p) model. In the exercises at the end of the chapter (see
Exercises 10.19 and 10.20), the reader is led through the problem of finding the
MMSE linear prediction coefficients for a general AR(p) model. The problem of
analytically finding the PSD of the AR(p) process is dealt with in the next chapter
(also see Exercise 10.18).

10.5 Thermal Noise

The most commonly encountered source of noise in electronic systems is that
caused by thermal agitation of electrons in any conductive material, which is com-
monly referred to as thermal noise. Unlike shot noise, thermal noise does not require
the presence of a direct current and thus is always present. We will not delve into
the underlying thermodynamics to derive a model for this type of noise, but rather
will just summarize some of the important results. Nyquist’s theorem states that
for a resistive element with an impedance of r ohms (
), at a temperature of tk
(measured in degrees Kelvin), the mean-square voltage of the thermal noise mea-
sured in an incremental frequency band of width 	f centered at frequency f is
found to be

E[V2(t)] = v2
rms = 4ktkr	f

[
h|f |/ktk

exp(h|f |/ktk) − 1

]
volts2, (10.55)

where

h = Planck’s constant = 6. 2 × 10−34 J-sec;
k = Boltzman’s constant = 1. 38 × 10−23 J/◦K;
tk = absolute temperature = 273 +◦C.

Typically, a practical resistor is modeled as a Thevenin equivalent circuit, as
illustrated in Figure 10.11, consisting of a noiseless resistor in series with a noise
source with a mean-square value as specified in the previous equation. If this noisy
resistor were connected to a resistive load of impedance rL, the average power
delivered to the load would be

PL = v2
rmsrL

(r + rL)2 . (10.56)
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vrms ∼

r (noiseless)

Figure 10.11 A Thevenin equivalent circuit for a noisy resistor.

The power delivered to the load is maximized when the source and the load
impedance are matched (i.e., rL = r). It is common to refer to the maximum power
that can be delivered to a load as the available power. For a noisy resistor, the available
power (in a bandwidth of 	f ) is

P = v2
rms
4r

= ktk	f
[

h|f |/ktk

exp(h|f |/ktk) − 1

]
watts. (10.57)

The power spectral density of the thermal noise in the resistor is then

SNN(f ) = 1
2

ktk

[
h|f |/ktk

exp(h|f |/ktk) − 1

]
. (10.58)

The extra factor of 1/2 is due to the fact that our PSD function is a two-sided func-
tion of frequency, and so the actual power in a given frequency band is evenly
split between the positive and negative frequencies. Note that the power avail-
able to a load and the resulting PSD are independent of the impedance of the
resistor, r.

This PSD function is plotted in Figure 10.12 for several different temperatures.
Note that for frequencies that are of interest in most applications (except optical,
infrared, etc.), the PSD function is essentially constant. It is straightforward (and
left as an exercise to the reader) to show that this constant is given by

SNN(f ) = 1
2

ktk = No

2
, (10.59)

where we have defined the constant No = ktf . At tk = 298◦K4, the parameter No

takes on a value of No = 4. 11 × 10−21 W/Hz = −173. 86 dBm/Hz.

4Most texts use tk = 290◦K as “room temperature”; however, this corresponds to a fairly
chilly room (17◦C ≈ 63◦F ). On the other hand tk = 298◦K is a more balmy environment
(25◦C ≈ 77◦F ). These differences would change the value of No by only a small fraction
of a dB.
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Figure 10.12 PSD of thermal noise in a resistor.

It is common to use this simpler function as a model for the PSD of thermal
noise. Because the PSD contains equal power at all frequencies, this noise model is
referred to as white noise (analogous to white light, which contains all frequencies).
The corresponding autocorrelation function is

RNN(τ ) = No

2
δ(τ ). (10.60)

It should be pointed out that the noise model of Equation 10.59 is a mathematical
approximation to the actual PSD. There is no such thing as truly white noise, since
such a process (if it existed) would have infinite power and would destroy any
device we tried to measure it with. However, this mathematical model is simple,
easy to work with, and serves as a good approximation to thermal noise for most
applications.

In addition to modeling thermal noise as having a flat PSD, it can also be shown
that the first order characteristics of thermal noise can be well approximated with
a zero-mean Gaussian process. We say that thermal noise is zero-mean white
Gaussian noise (WGN) with a (two-sided) PSD of No/2. While thermal noise is
the most common source of noise in electronic devices, there are other sources
as well. Shot noise was discussed at the end of Chapter 8. In addition, one may
encounter flicker noise, which occurs primarily in active devices; burst or popcorn
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noise, which is found in integrated circuits and some discrete transistors; avalanche
noise, which is produced by avalanche breakdown in a p-n junction; as well as sev-
eral other types of noise. For the purposes of this text, we will stick with the white
Gaussian model of thermal noise.

10.6 Engineering Application: PSDs of
Digital Modulation Formats

In this section, we evaluate the PSD of a class of signals that might be used in
a digital communications system. Suppose we have a sequence of data symbols
{Bk} that we wish to convey across some communication medium. We can use the
data symbols to determine the amplitude of a sequence of pulses that we would
then transmit across the medium (e.g., a twisted copper pair, or an optical fiber).
This is known as pulse amplitude modulation (PAM). If the pulse amplitudes are
represented by the sequence of random variables {. . . , A−2, A−1, A0, A1, A2, . . .} and
the basic pulse shape is given by the waveform p(t), then the transmitted signal
might be of the form

S(t) =
∞∑

k=−∞
Akp(t − kts − �), (10.61)

where ts is the symbol interval (that is, one pulse is launched every ts seconds)
and � is a random delay, which we take to be uniformly distributed over [0, ts)
and independent of the pulse amplitudes. The addition of the random delay in the
model makes the process S(t) WSS. This is not necessary and the result we will
obtain would not change if we did not add this delay, but it does slightly simplify
the derivation.

If the data symbols are drawn from an alphabet of size 2n symbols, then each
symbol can be represented by an n-bit word, and hence the data rate of the digital
communication system is r = n/ts bits/second. The random process S(t) used to
represent this data has a certain spectral content, and thus requires a communica-
tions channel with a bandwidth adequate to carry that spectral content. It would
be interesting to see how the required bandwidth relates to the data rate. Toward
that end, we seek to determine the PSD of the PAM signal S(t). We will find the
PSD by first computing the autocorrelation function of S(t) and then converting
this to PSD via the Wiener-Khintchine-Einstein theorem.
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Using the definition of autocorrelation, the autocorrelation function of the PAM
signal is given by

RSS(t,t+τ )=E[S(t)S(t+τ )]=E


 ∞∑

k=−∞

∞∑
m=−∞

AkAmp(t−kts−�)(p(t+τ −mts−�))




=
∞∑

k=−∞

∞∑
m=−∞

E[AkAm]E[p(t−kts−�)p(t+τ −mts−�)]

= 1
ts

∞∑
k=−∞

∞∑
m=−∞

E[AkAm]
∫ ts

0
p(t−kts−θ )p(t+τ −mts−θ )]dθ . (10.62)

To simplify notation, we define RAA[n] to be the autocorrelation function of the
sequence of pulse amplitudes. Note that we are assuming the sequence is stationary
(at least in the wide sense). Going through a simple change of variables (v =
t − kts − θ ) then results in

RSS(t, t + τ ) = 1
ts

∞∑
k=−∞

∞∑
m=−∞

RAA[m − k]
∫ t−ks

t−(k+1)ts

p(v)p(v + τ − (m − k)ts) dv.

(10.63)

Finally, we go through one last change of variables (n = m − k) to produce

RSS(t, t + τ ) = 1
ts

∞∑
k=−∞

∞∑
n=−∞

RAA[n]
∫ t−ks

t−(k+1)ts

p(v)p(v + τ − nts) dv

= 1
ts

∞∑
n=−∞

RAA[n]
∞∑

k=−∞

∫ t−kts

t−(k+1)ts

p(v)p(v + τ − nts) dv

= 1
ts

∞∑
n=−∞

RAA[n]
∫ ∞

−∞
p(v)p(v + τ − nts) dv. (10.64)

To aid in taking the Fourier transform of this expression, we note that the integral
in this equation can be written as a convolution of p(t) with p(−t):

∫ ∞

−∞
p(v)p(v + τ − nts) dv = p(t)∗p(−t)|t=τ−nts . (10.65)

Using the fact that convolution in the time domain becomes multiplication in the
frequency domain along with the time reversal and time shifting properties of
Fourier transforms (see Appendix C, Review of Linear Time Invariant Systems),
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the transform of this convolution works out to be

F
[∫ ∞

−∞
p(v)p(v + τ − nts) dv

]
= |p(f )|2e−j2πnfts , (10.66)

where P(f ) = F[p(t)] is the Fourier transform of the pulse shape used. With this
result, the PSD of the PAM signal is found by taking the transform of Equation
10.64, resulting in

SSS(f ) = |P(f )|2
ts

∞∑
n=−∞

RAA[n]e−j2πnfts . (10.67)

It is seen from the previous equation that the PSD of a PAM signal is the product
of two terms, the first of which is the magnitude squared of the pulse shapes
spectrum, while the second term is essentially the PSD of the discrete sequence of
amplitudes. As a result, we can control the spectral content of our PAM signal by
carefully designing a pulse shape with a compact spectrum and also by introducing
memory into the sequence of pulse amplitudes.

EXAMPLE 10.12: To start with, suppose the pulse amplitudes are an
IID sequence of random variables that are equally likely to be +1 or −1.
In that case, RAA[n] = δ[n] and the PSD of the sequence of amplitudes is

∞∑
n=−∞

RAA[n]e−j2πnfts = 1.

In this case, SSS(f ) = |P(f )|2/ts and the spectral shape of the PAM
signal is completely determined by the spectral content of the pulse
shape. Suppose we use as a pulse shape a square pulse of height a and
width ts,

p(t) = arect(t/ts) ←→ P(f ) = atssinc(fts).

The PSD of the resulting PAM signal is then SSS(f ) = a2tssinc2f (ts).
Note that the factor a2ts is the energy in each pulse sent, Ep. A sam-
ple realization of this PAM process along with a plot of the PSD is
given in Figure 10.13. Most of the power in the process is contained in
the main lobe, which has a bandwidth of 1/ts (equal to the data rate),
but there is also a nontrivial amount of power in the sidelobes, which
die off very slowly. The high-frequency content can be attributed to
the instantaneous jumps in the process. These frequency sidelobes can
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Figure 10.13 A sample realization and the PSD of a PAM signal with square pulses.

be suppressed by using a pulse with a smoother shape. Suppose, for
example, we used a pulse that was a half cycle of a sinusoid of height a,

p(t) = a cos
(

π t
ts

)
rect

(
t
ts

)
←→ P(f )

= ats

2

[
sinc

(
fts − 1

2

)
+ sinc

(
fts + 1

2

)]
= ats

2π

cos(π fts)
1
4 − (fts)2

.

The resulting PSD of the PAM signal with half-sinusoidal pulse shapes
is then

SSS(f ) = a2ts

4π2
cos2(π fts)[
1
4 − (fts)2

]2 .

In this case, the energy in each pulse is Ep = a2ts/2. As shown in
Figure 10.14, the main lobe is now 50 percent wider than it was with
square pulses, but the sidelobes decay much more rapidly.

EXAMPLE 10.13: In this example, we show how the spectrum of
the PAM signal can also be manipulated by adding memory to the
sequence of pulse amplitudes. Suppose the data to be transmitted
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Figure 10.14 A sample realization and the PSD of a PAM signal with half-sinusoidal pulses.

{. . . , B−2, B−1, B0, B1, B2, . . .} is an IID sequence of Bernoulli random vari-
ables, Bk ∈ {+1, −1}. In the previous example, we formed the pulse
amplitudes according to Ak = Bk. Suppose instead that we formed
these amplitudes according to Ak = Bk + Bk−1. Now the pulse ampli-
tudes can take on three values (even though each pulse still carries only
1 bit of information. This is known as duobinary precoding. The resulting
autocorrelation function for the sequence of pulse amplitudes is

RAA[n] = E[AkAk+n] = E[(Bk + Bk−1)(Bk+n + Bk+n−1] =




2 n = 0

1 n = ±1

0 otherwise

.

The PSD of this sequence of pulse amplitudes is then

∞∑
n=−∞

RAA[n]e−j2π fts = 2 + ej2π fts + e−j2πnfts

= 2 + 2 cos(2π fts) = 4 cos2(π fts).

This expression then multiplies whatever spectral shape results from
the pulse shape chosen. The PSD of duobinary PAM with square pulses
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Figure 10.15 A sample realization and the PSD of a PAM signal with duobinary precoding
and square pulses.

is illustrated in Figure 10.15. In this case, the duobinary precoding has
the benefit of suppressing the frequency sidelobes without broadening
the main lobe.

EXAMPLE 10.14: The following MATLAB code creates a realiza-
tion of a binary PAM signal where the pulse amplitudes are either
+1 or −1. In this example, a half-sinusoidal pulse shape is used,
but the code is written so that it is easy to change the pulse shape

(just change the sixth line where the pulse shape is assigned to the variable p).
After a realization of the PAM signal is created, the PSD of the resulting signal
is estimated using the segmented periodogram technique given in Example
10.10. The resulting PSD estimate is shown in Figure 10.16. Note the agree-
ment between the estimate and the actual PSD shown in Figure 10.14. The
reader is encouraged to try running this program with different pulse shapes
to see how the pulse shape changes the spectrum of the PAM signal.
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Figure 10.16 An estimate of the PSD of a PAM signal with half-sinusoidal pulse shapes.

N=100; % Number of bit intervals in

realization.

Ns=19; % Number of time samples per bit.

Rb=9600; % Bit rate (bits/sec).

dt=1/(Rb*Ns); % Time between samples.

t=([1:Ns]-0.5)/Ns; % Time axis for pulse shape.

p=sin(pi*t); % Pulse shape.

Ep=p*p’*dt; % Energy per pulse.

X(1:Ns:(Ns*(N-1)+1)) % Random data bits.

=sign(rand(1,N)-0.5);

X=conv(X,p); % PAM signal with pulse shape

added.

M=10; % Number of segments.

[S,f]=EPrdgm(X,dt,M); % (Normalized) PSD estimate.

plot(f/1000,10*log10(abs(S/Ep))) % Plot results.

axis([-5*Rb/1000 5*Rb/1000 -60 10])

xlabel(‘frequency (kHz)’)

ylabel(‘PSD (dB)’)
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Exercises
10.1 Consider a random process of the form

X(t) = b cos(2π�t + �),

where b is a constant, � is a uniform random variable over [0, 2π ), and �

is a random variable that is independent of � and has a PDF, f� (ψ). Find
the PSD, SXX(f ) in terms of f� (ψ). In so doing, prove that for any S(f ) that
is a valid PSD function, we can always construct a random process with
PSD equal to S(f ).

10.2 Let X(t) = A cos(ωt) + B sin(ωt) where A and B are independent, zero-
mean, identically distributed non-Gaussian random variables (IID). Show
that X(t) is wide sense stationary (WSS), but not strict sense stationary.
Hint: For the latter case, consider E[X3(t)]. Recall the discussion prior to
Example 8.23. If A and B are Gaussian, with zero mean and (IID), then X(t)
is strict sense stationary.

10.3 Let X(t) = ∑N
n=1 an cos(ωnt+θn), where all of the ωn are nonzero constants,

the an are constants, and the θn are IID random variables, each uniformly
distributed over [0, 2π ).

(a) Determine the autocorrelation function of X(t).
(b) Determine the power spectral density of X(t).

10.4 Let X(t) = ∑∞
n=1[An cos(nωt) + Bn sin(nωt)] be a random process, where

An and Bn are random variables such that E[An] = E[Bn] = 0, E[AnBm] = 0,
E[AnAm] = δn,mE

[
A2

n
]
, and E[BnBm] = δn,mE

[
B2

n
]

for all m and n, where δn,m

is the Kronecker delta function. This process is sometimes used as a model
for random noise.

(a) Find the time-varying autocorrelation function RXX(t, t + τ ).
(b) If E

[
B2

n
] = E

[
A2

n
]
, is this process WSS?

10.5 Find the power spectral density for a process for which RXX(τ ) = 1
for all τ .

10.6 Suppose X(t) is a stationary, zero-mean Gaussian random process with
PSD, SXX(f ).

(a) Find the PSD of Y(t) = X2(t) in terms of SXX(f ).

(b) Sketch the resulting PSD if SXX(f ) = rect
(

f
2B

)
.

(c) Is Y(t) WSS?
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10.7 Consider a random sinusoidal process of the form X(t) = b cos(2π ft + �),
where � has an arbitrary PDF, f�(θ ). Determine analytically how the PSD
of X(t) depends on f�(θ ). Give an intuitive explanation for your result.

10.8 Let s(t) be a deterministic periodic waveform with period to. A random
process is constructed according to X(t) = s(t − T), where T is a random
variable uniformly distributed over [0, to). Show that the random process
X(t) has a line spectrum and write the PSD of X(t) in terms of the Fourier
Series coefficients of the periodic signal s(t).

10.9 A sinusoidal signal of the form X(t) = b cos(2π fot +�) is transmitted from
a fixed platform. The signal is received by an antenna on a mobile platform
that is in motion relative to the transmitter, with a velocity of V relative to
the direction of signal propagation between the transmitter and receiver.
Hence, the received signal experiences a Doppler shift and (ignoring noise
in the receiver) is of the form.

Y(t) = b cos
(

2π fo

(
1 + V

c

)
t + �

)
,

where c is the speed of light. Find the PSD of the received signal if V is
uniformly distributed over (−vo, vo). Qualitatively, what does the Doppler
effect do to the PSD of the sinusoidal signal?

10.10 Two zero-mean, discrete random processes, X[n] and Y[n], are statistically
independent and have autocorrelation functions given by RXX[k] = (1/2)k

and RYY[k] = (1/3)k. Let a new random process be Z[n] = X[n] + Y[n].
(a) Find RZZ[k]. Plot all three autocorrelation functions.
(b) Determine all three power spectral density functions analytically and

plot the power spectral densities.

10.11 Let SXX(f ) be the PSD function of a WSS discrete time process X[n].
Recall that one way to obtain this PSD function is to compute RXX[n] =
E[X[k]X[k+n]] and then take the DFT of the resulting autocorrelation func-
tion. Determine how to find the average power in a discrete time random
process directly from the PSD function, SXX(f ).

10.12 A binary phase shift keying signal is defined according to

X(t) = cos
(

2π fct + B[n]π
2

)
for nT ≤ t < (n + 1)T,

for all n, and B[n] is a discrete time, Bernoulli random process that has
values of +1 or −1.
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(a) Determine the autocorrelation function for the random process X(t).
Is the process WSS?

(b) Determine the power spectral density of X(t).

10.13 Develop a formula to compute the RMS bandwidth of a random process,
X(t), directly from its autocorrelation function, RXX(τ ).

10.14 A random process has a PSD function given by

S(f ) = 1(
1 +

(
f
B

)2
)3 .

(a) Find the absolute bandwidth.
(b) Find the 3-dB bandwidth.
(c) Find the RMS bandwidth.

Can you generalize your result to a spectrum of the form

S(f ) = 1(
1 +

(
f
B

)2
)N ,

where N is an integer greater than 1?

10.15 A random process has a PSD function given by

S(f ) = f 2

(
1 +

(
f
B

)2
)3 .

(a) Find the absolute bandwidth.
(b) Find the 3-dB bandwidth.
(c) Find the RMS bandwidth.

Can you generalize your result to a spectrum of the form

S(f ) = f 2

(
1 +

(
f
B

)2
)N ,

where N is an integer greater than 2?
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10.16 Let X(t) be a random process whose PSD is shown in the accompanying
figure. A new process is formed by multiplying X(t) by a carrier to produce

Y(t) = X(t) cos(ωot + �),

where � is uniform over [0, 2π ) and independent of X(t). Find and sketch
the PSD of the process Y(t).

f

SXX(f)

fo fo + B

1

10.17 Consider the linear prediction random process X[n] = (1/2)X[n−1]+E[n],
n = 1, 2, 3, . . ., where X[0] = 0 and E[n] is a zero-mean, IID random process.
Find the mean and autocorrelation functions for X[n]. Is X[n] WSS?

10.18 Consider an AR(2) process described by the recursion

Y[n] = a1Y[n − 1] + a2Y[n − 2] + X[n],
where X[n] is an IID random process with zero-mean and variance σ 2

X .

(a) Show that the autocorrelation function of the AR(2) process satisfies
the difference equation,

RYY[k] = a1RYY[k − 1] + a2RYY[k − 2], k = 2, 3, 4, . . . .

(b) Show that the first two terms in the autocorrelation function satisfy

(1 − a2
1 − a2

2)RYY[0] − 2a1a2RYY[1] = σ 2
X ,

and

(1 − a2)RYY[1] = a1RYY[0].
From these two equations, solve for RYY[0] and RYY[1] in terms of a1,
a2, and σ 2

X .
(c) Using the difference equation in part (a) together with the initial con-

ditions in part (b), find a general expression for the autocorrelation
function of an AR(2) process.

(d) Use your result in part (c) to find the PSD of an AR(2) process.
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10.19 Suppose we use an AR(2) model to predict the next value of a random
process based on observations of the two most recent samples. That is,
we form

Ŷ[n + 1] = a1Y[n] + a2Y[n − 1].
(a) Derive an expression for the mean-square estimation error,

E[ε2] = E[(Y[n + 1] − Ŷ[n + 1])2].

(b) Find the values of the prediction coefficients, a1 and a2, that minimize
the mean-square error.

10.20 Extend the results of Exercise 10.19 to a general AR(p) model. That is,
suppose we wish to predict the next value of a random process by forming
a linear combination of the p most recent samples:

Ŷ[n + 1] =
p∑

k=1

akY[n − k + 1].

Find an expression for the values of the prediction coefficients that
minimize the mean-square prediction error.

10.21 A random process Y[n] is found to obey the AR(2) model. That is, Y[n] =
a1Y[n − 1] + a2Y[n − 2] + X[n]. Find expressions for the autocorrelation
function and PSD of Y[n]. Can you generalize your results to an arbitrary
AR(p) model?

10.22

(a) Prove that the expression for the PSD of thermal noise in a resistor
converges to the constant No/2 = ktk/2 as f → 0.

(b) Assuming a temperature of 298◦K, find the range of frequencies over
which thermal noise has a PSD that is within 99 percent of its value
at f = 0.

(c) Suppose we had a very sensitive piece of equipment that was able
to accurately measure the thermal noise across a resistive element.
Furthermore, suppose our equipment could respond to a range of fre-
quencies that spanned 50 MHz. Find the power (in watts) and the root
mean square (RMS) voltage (in volts) that we would measure across a
75 
 resistor. Assume the equipment had a load impedance matched
to the resistor.
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10.23 Suppose two resistors of impedance r1 and r2 are placed in series and held
at different physical temperatures, t1 and t2. We would like to model this
series combination of noisy resistors as a single noiseless resistor, with an
impedance of r = r1 + r2, together with a noise source with an effective
temperature of te. In short, we want the two models shown in the accom-
panying figure to be equivalent. Assuming the noise produced by the two
resistors is independent, what should te, the effective noise temperature,
of the series combination of resistors be? If the two resistors are held at the
same physical temperature, is the effective temperature equal to the true
common temperature of the resistors?

~

~

~

vrms,1 = 4kt1r1∆f

r1 (noiseless)

r = r1 + r2 (noiseless)

r2 (noiseless)

vrms,2 = 4kt2r2∆f

vrms = 4kter∆f

10.24 Repeat Exercise 10.26 for a parallel combination of resistors.

MATLAB Exercises
10.25

(a) Create a random process X[n] where each sample of the random pro-
cess is an IID, Bernoulli random variable equally likely to be ±1. Form
a new process according to the MA(2) model Y[n] = X[n]− 1

2 X[n−1]+
1
4 X[n − 2]. Assume X[n] = 0 for n < 0.

(b) Compute the time average autocorrelation function 〈Y[n]Y[n+k]〉 from
a single realization of this process.
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(c) Compute the ensemble average autocorrelation function E[Y[n]Y ×
[n + k]] from several realizations of this process. Does the process
appear to be ergodic in the autocorrelation?

(d) Estimate the PSD of this process using the periodogram method.

10.26

(a) Create a random process X[n] where each sample of the random pro-
cess is an IID, Bernoulli random variable equally likely to be ±1. Form
a new process according to the AR(2) model Y[n] = 1

2 Y[n − 1] − 1
4 Y ×

[n − 2] + X[n]. Assume Y[n] = 0 for n < 0.
(b) Compute the time average autocorrelation function 〈Y[n]Y[n+k]〉 from

a single realization of this process.
(c) Compute the ensemble average autocorrelation function E[Y[n]Y ×

[n+k]] from several realizations of this process. Does the process appear
to be ergodic in the autocorrelation?

(d) Estimate the PSD of this process using the periodogram method.

10.27

(a) For the process in Exercise 10.29, find a parametric estimate of the PSD
by using an AR(1) model. Compare the resulting PSD estimate with
the nonparametric estimate found in Exercise 10.29(d). Explain any
differences you see.

(b) Again referring to the process in Exercise 10.29, find a parametric
estimate of the PSD this time by using an AR(2) model. Compare
the resulting PSD estimate with the nonparametric estimate found in
Exercise 10.29(d). Explain any differences you see.

10.28

(a) Write a MATLAB program to create a realization of a binary PAM
signal with square pulses. You can accomplish this with a simple
modification to the program as given in Example 10.14. Call this
signal x(t).

(b) We can create a frequency shift keying (FSK) signal according to

y(t) cos
(

2π fct + π

2ts

∫ t

0
x(u) du

)
, (10.68)

where ts is the duration of the square pulses in x(t) and fc is the carrier
frequency. Write a MATLAB program to create a 10-msec realization
of this FSK signal assuming ts = 100 µ sec and fc = 20 kHz.
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(c) Using the segmented periodogram, estimate the PSD of the FSK signal
you created in part (b).

(d) Estimate the 30-dB bandwidth of the FSK signal. That is, find the
bandwidth where the PSD is down 30 dB from its peak value.

10.29 Construct a signal-plus-noise random sequence using 10 samples of

X[n] = cos(2πnf0ts) + N[n],
where N[n] is a sequence of zero-mean, unit variance, IID Gaussian ran-
dom variables, f0 = 0. 1/ts = 100 kHz, and ts = 1 µsec is the time between
samples of the process.

(a) Calculate the periodogram estimate of the PSD, SXX(f ).
(b) Calculate a parametric estimate of the PSD using AR models with p =

1, 2, 3, and 5. Compare the parametric estimates with the periodogram.
In your opinion, which order AR model is the best fit?

(c) Repeat parts (a) and (b) using 100 samples instead of 10.

10.30 Construct a signal-plus-noise random sequence using 10 samples of

X[n] = cos(2πnf1ts) + cos(2πnf2ts) + N[n],
where N[n] is a sequence of zero-mean, unit variance, IID Gaussian
random variables, f1 = 0. 1/ts = 100 kHz, f1 = 0. 4/ts = 400 kHz, and
ts = 1 µsec is the time between samples of the process.

(a) Calculate the periodogram estimate of the PSD, SXX(f ).
(b) Calculate a parametric estimate of the PSD using AR models with

p = 3, 4, 5, 6, and 7. Compare the parametric estimates with the
periodogram. In your opinion, which order AR model is the best fit?

(c) Repeat parts (a) and (b) using 100 samples instead of 10.



Random Processes
in Linear Systems 11

In this chapter, we consider the response of both continuous and discrete linear
systems to random processes, such as a signal plus noise. We develop statistical
descriptions of the output of linear systems with random inputs by viewing the
systems in both the time domain and the frequency domain. Two engineering
application sections at the end of this chapter demonstrate how filters can be opti-
mized for the purpose of enhancing signal-to-noise ratio and also for the purpose
of prediction or smoothing of a signal in noise. It is assumed that the reader is
familiar with the study of linear time invariant (LTI) systems. A brief overview
is provided in Appendix C, Review of Linear Time–Invariant Systems, for those
needing a refresher.

11.1 Continuous Time Linear Systems

Consider an LTI system described by an impulse response h(t) or a transfer function
H(f ). If a random process, X(t), is input to this system, the output will also be
random and is given by the convolution integral

Y(t) =
∫ ∞

−∞
X(u)h(t − u) du. (11.1)

We would like to statistically describe the output of the system. Ultimately, the joint
PDF of any number of samples of the output would be nice. In general, this is a
very difficult problem and hence we have to be satisfied with a simpler description.
However, if the input process is Gaussian, then the output process will also be

413
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Gaussian since any linear processing of Gaussian random variables (processes)
produces new Gaussian random variables (processes). In that case, to completely
describe the output of the system, we need merely to compute the mean and the
autocovariance (or autocorrelation) function of the output. Even if the processes
involved are not Gaussian, the mean and autocorrelation functions will serve as a
good start toward describing the process. Hence, our first goal will be to specify the
mean and autocorrelation functions of the output of an LTI system with a random
input.

To start with, consider the mean function of the output:

µY(t) = E[Y(t)] = E
[∫ ∞

−∞
X(u)h(t − u) du

]

=
∫ ∞

−∞
E[X(u)]h(t − u) du =

∫ ∞

−∞
µX(u)h(t − u) du. (11.2)

Hence the output mean is the convolution of the input mean process with the
impulse response of the system. For the special case when the input is wide sense
stationary (WSS) and the input mean function is therefore constant, the output
mean function becomes

µY(t) = µX

∫ ∞

−∞
h(t − u) du = µX

∫ ∞

−∞
h(s) ds = µXH(0). (11.3)

Note that the mean function of the output is also constant provided the input mean
is constant.

The autocorrelation function of the output is calculated in a similar manner.

RYY(t1, t2) = E[Y(t1)Y(t2)] = E
[(∫ ∞

−∞
X(u)h(t1 − u) du

)(∫ ∞

−∞
X(v)h(t2 − v) dv

)]

=
∫ ∞

−∞

∫ ∞

−∞
E[X(u)X(v)]h(t1 − u)h(t2 − v) du dv

=
∫ ∞

−∞

∫ ∞

−∞
RXX(u, v)h(t1 − u)h(t2 − v) du dv. (11.4)

For WSS inputs, this expression can be simplified a little by using the fact that
RXX(u, v) = RXX(v − u). The output autocorrelation function is then

RYY(t1, t2) =
∫ ∞

−∞

∫ ∞

−∞
RXX(v − u)h(t1 − u)h(t2 − v) du dv. (11.5)

Although it may not appear like it from this expression, here the output autocor-
relation function is also a function of time difference only. To see this, perform the
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change of variables s = t1 − u and w = t2 − v. Then Equation 11.5 becomes

RYY(t1, t2) =
∫ ∞

−∞

∫ ∞

−∞
RXX(t2 − t1 + s − w)h(s)h(w) dw ds. (11.6)

Now it is clear that RYY(t1, t2) = RYY(t2 − t1). To write this result in a more compact
form, note that the inner integral in Equation 11.6 can be expressed as

∫ ∞

−∞
RXX(t2 − t1 + s − w)h(w) dw = RXX(t) ∗ h(t)

∣∣
t=t2−t1+s , (11.7)

where ∗ denotes convolution. Let g(t) = RXX(t) ∗ h(t), then the output autocor-
relation can be expressed as

RYY(t2 − t1) =
∫ ∞

−∞
g(t2 − t1 + s)h(s) ds = g(t) ∗ h(−t)

∣∣
t=t2−t1

. (11.8)

Putting all these results together, we get

RYY(τ ) = RXX(τ ) ∗ h(τ ) ∗ h(−τ ). (11.9)

Hence, the output autocorrelation function is found by a double convolution. The
presence of the double convolution in Equation 11.9 begs for an equivalent fre-
quency domain representation. Taking Fourier transforms of both sides gives an
expression for the power spectral density (PSD) of the output of the filter in terms
of the input PSD:

SYY(f ) = SXX(f )H(f )H ∗ (f ) = SXX(f )|H(f )|2. (11.10)

The term |H(f )|2 is sometimes referred to as the power transfer function because it
describes how the power is transferred from the input to the output of the system.
In summary, we have shown the following results.

THEOREM 11.1: Given an LTI system with impulse response h(t) or transfer func-
tion H(f ) and a random input process X(t), the mean and autocorrelation functions
of the output process, Y(t), can be described by

µY(t) = µX(t) ∗ h(t), (11.11a)

RYY(t1, t2) =
∫ ∞

−∞

∫ ∞

−∞
RXX(u, v)h(t1 − u)h(t2 − v) du dv. (11.11b)
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Furthermore, if X(t) is WSS, then Y(t) is also WSS with

µY = µXH(0), (11.12a)

RYY(τ ) = RXX(τ ) ∗ h(τ ) ∗ h(−τ ), (11.12b)

SYY(f ) = SXX(f )|H(f )|2. (11.12c)

At times it is desirable to specify the relationship between the input and output
of a filter. Toward that end, we can calculate the cross correlation function between
the input and output.

RXY(t1, t2) = E[X(t1)Y(t2)] = E
[

X(t1)
∫ ∞

−∞
X(u)h(t2 − u) du

]

=
∫ ∞

−∞
E[X(t1)X(u)]h(t2 − u) du =

∫ ∞

−∞
RXX(t1, u)h(t2 − u) du

=
∫ ∞

−∞
RXX(t1, t2 − v)h(v) dv (11.13)

If X(t) is WSS, then this simplifies to

RXY(τ ) =
∫ ∞

−∞
RXX(τ − v)h(v) dv = RXX(τ ) ∗ h(τ ). (11.14)

In a similar manner, it can be shown that

RYX(τ ) = RXX(τ ) ∗ h(−τ ). (11.15)

In terms of cross spectral densities, these equations can be written as

SXY(f ) = SXX(f )H(f ) and SYX(f ) = SXX(f )H ∗ (f ). (11.16)

EXAMPLE 11.1: White Gaussian noise, N(t) with a PSD of SNN(f ) =
No/2 is input to an resistor, capacitor (RC) lowpass filter. Such a filter
will have a transfer function and impulse response given by

H(f ) = 1
1 + j2π fRC

and h(t) = 1
RC

exp
(

− t
RC

)
u(t),

respectively. If the input noise is zero-mean, µN = 0, then the output
process will also be zero-mean, µY = 0. Also

SYY(f ) = SNN(f )|H(f )|2 = No/2
1 + (2π fRC)2 .
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Using inverse Fourier transforms, the output autocorrelation is found
to be

RYY(τ ) = No

4RC
exp

(
− |τ |

RC

)
.

EXAMPLE 11.2: Suppose we wish to convert a white noise process from
continuous time to discrete time using a sampler. Since white noise has
infinite power, it cannot be sampled directly and must be filtered first.
Suppose for simplicity we use an ideal lowpass filter of bandwidth B to
perform the sampling so that the system is as illustrated in Figure 11.1.
Let Nf (t) be the random process at the output of the lowpass filter. This
process has a PSD of

SNf Nf (f ) = N0

2
rect

(
f

2B

)
=
{

N0/2 |f | < B

0 otherwise
.

The corresponding autocorrelation function is

RNf Nf (τ ) = NoB sinc(2Bτ ).

If the output of the filter is sampled every to seconds, the discrete time
noise process will have an autocorrelation of RNN[k] = N0B sinc(2kBto).
If the discrete time output process N[n] is to be white, then we want
all samples to be uncorrelated. That is, we want RNN[k] = 0 for all
k �= 0. Recall that the sinc function has nulls whenever its argument is
an integer. Thus, the discrete time process will be white if (and only
if) 2Bto is an integer. In terms of the sampling rate, fo = 1/to, for the
discrete time process to be white, the sampling rate must be fo = 2B/m
for some integer m.

H(f )

–B

f

Ideal LPF

t = nto

N(t) N [n]1

Sampler
B

Figure 11.1 Block diagram of a sampling system to convert white noise from continuous
time to discrete time.
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11.2 Discrete Time Linear Systems

The response of a discrete time linear system to a (discrete time) random process
is found using virtually identical techniques to those used with continuous time
systems. As such, we do not repeat the derivations here, but rather summarize
the relevant results. We start with a linear system described by the difference
equation

p∑
i=0

aiY[n − i] =
q∑

k=0

bkX[n − k], (11.17)

where X[n] is the input to the system and Y[n] is the output. The reader might
recognize this system as producing an autoregressive moving average process
(ARMA) process as described in Section 10.4. This system can be described
by a transfer function expressed using either z-transforms or discrete Fourier
transforms (DFT) as

H(z) =
∑q

k=0 bkz−k

∑p
i=0 aiz−i

or H(f ) =
∑q

k=0 bke−j2πkf

∑p
i=0 aie−j2π if

. (11.18)

If the DFT is used, it is understood that the frequency variable f is actually a normal-
ized frequency (normalized by the sampling rate). The system can also be described
in terms of a discrete time impulse response, h[n], which can be found through
either an inverse z-transform or an inverse DFT. The following results apply to
any discrete time system described by an impulse response, h[n], and transfer
function, H(f ).

THEOREM 11.2: Given a discrete time LTI system with impulse response h[n],
transfer function H(f ), and a random input process X[n], the mean and autocorre-
lation functions of the output process, Y[n], can be described by

µY[n] = µX[n] ∗ h[n], (11.19a)

RYY[n1, n2] =
∞∑

k1=−∞

∞∑
k2=−∞

RXX[k1, k2]h[n1 − k1]h[n2 − k2]. (11.19b)

Furthermore, if X[n] is WSS, then Y[n] is also WSS with

µY = µXH(0), (11.20a)

RYY[n] = RXX[n] ∗ h[n] ∗ h[−n], (11.20b)

SYY(f ) = SXX(f )|H(f )|2. (11.20c)
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Again, it is emphasized, that the frequency variable in the PSD of a discrete time
process is to be interpreted as frequency normalized by the sampling rate.

EXAMPLE 11.3: A discrete time Gaussian white noise process has zero-
mean and an autocorrelation function of RXX[n] = σ 2δ[n]. This process
is input to a system described by the difference equation

Y[n] = aY[n − 1] + bX[n].

Note that this produces an AR(1) process as the output. The transfer
function and impulse response of this system are

H(f ) = b
1 − ae−j2π f

and h[n] = banu[n],

respectively, assuming that |a| < 1. The autocorrelation and PSD
functions of the output process are

RYY[n] = b2a|n|

1 − a2 and SYY(f ) = σ 2b2

∣∣1 − ae−j2π f
∣∣2 = σ 2b2

1 + a2 − 2a cos(2π f )
,

respectively.

11.3 Noise Equivalent Bandwidth

Consider an ideal lowpass filter with a bandwidth B whose transfer function is
shown in Figure 11.2. Suppose white Gaussian noise with PSD No/2 is passed
through this filter. The total output power would be Po = NoB. For an arbitrary
lowpass filter, the output noise power would be

Po = No

2

∫ ∞

−∞
|H(f )|2 df . (11.21)

One way to define the bandwidth of an arbitrary filter is to construct an ideal
lowpass filter that produces the same output power as the actual filter. This results
in the following definition of bandwidth known as noise equivalent bandwidth.
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B

f

H(f )2

Figure 11.2 Power transfer function of an arbitrary and ideal lowpass filter. B = Bneq if
areas under two curves are equal.

DEFINITION 11.1: The noise equivalent bandwidth of a lowpass filter with transfer
function H(f ) is

Bneq = 1
2|H(0)|2

∫ ∞

−∞
|H(f )|2 df = 1

|H(0)|2
∫ ∞

0
|H(f )|2 df . (11.22)

This definition needs to be slightly adjusted for bandpass filters. If the center
of the passband is taken to be at some frequency, fo, then the noise equivalent
bandwidth is

Bneq = 1
2|H(fo)|2

∫ ∞

−∞
|H(f )|2 df = 1

|H(fo)|2
∫ ∞

0
|H(f )|2 df . (11.23)

EXAMPLE 11.4: Consider the RC lowpass filter whose transfer func-
tion is

H(f ) = 1
1 + j2π fRC

.

The noise equivalent bandwidth of this filter is

Bneq =
∫ ∞

0

1
1 + (2π fRC)2 df = 1

2πRC
tan−1(u)

∣∣∣∣
∞

0
= 1

4RC
.

In addition to using the noise equivalent bandwidth, the definitions
in Section 10.3 presented for calculating the bandwidth of a random
process can also be applied to find the bandwidth of a filter. For example,
the absolute bandwidth and the RMS bandwidth of this filter are both
infinite, thus the 3-dB (half power) bandwidth of this filter is

B3dB = 1
2πRC

,
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which for this example is slightly smaller than the noise equivalent
bandwidth.

11.4 Signal-to-Noise Ratios

Often the input to a linear system will consist of signal plus noise, namely,

X(t) = S(t) + N(t), (11.24)

where the signal part can be deterministic or a random process. We can invoke
linearity to show that the mean process of the output can be viewed as a sum of
the mean due to the signal input alone plus the mean due to the noise input alone.
That is,

µY(t) = µS(t) ∗ h(t) + µN(t) ∗ h(t). (11.25)

In most cases, the noise is taken to be zero-mean, in which case the mean at the
output is due to the signal part alone.

When calculating the autocorrelation function of the output, we cannot invoke
superposition since autocorrelation is not a linear operation. First, we calculate the
autocorrelation function of the signal plus noise input.

RXX(t1, t2) = E[(S(t1) + N(t1))(S(t2) + N(t2))]. (11.26)

If the signal and noise part are independent, which is generally a reasonable
assumption, and the noise is zero-mean, then this autocorrelation becomes

RXX(t1, t2) = RSS(t1, t2) + RNN(t1, t2), (11.27)

or, assuming all processes involved are WSS,

RXX(τ ) = RSS(τ ) + RNN(τ ). (11.28)

As a result, the PSD of the output can be written as

SYY(f ) = SXX(f )|H(f )|2 = SSS(f )|H(f )|2 + SNN(f )|H(f )|2, (11.29)

which is composed of two terms, namely that due to the signal and that due to
the noise. We can then calculate the output power due to the signal part and the
output power due to the noise part.
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DEFINITION 11.2: The signal-to-noise ratio (SNR) for a signal comprised of the sum
of a desired (signal) part and a noise part is defined as the ratio of the power of the
signal part to the power (variance) of the noise part. That is, for X(t) = S(t) + N(t),

SNR = E[S2(t)]
E[N2(t)] = RSS(0)

RNN(0)
=

∫ ∞

−∞
SSS(f ) df

∫ ∞

−∞
SNN(f ) df

. (11.30)

EXAMPLE 11.5: Suppose the input to the RC lowpass filter of the pre-
vious example consists of a sinusoidal signal plus white noise. That is,
let the input be X(t) = S(t)+N(t), where N(t) is white Gaussian noise as
in the previous example and S(t) = a cos(ωot +�), where � is a uniform
random variable over [0, 2π ) that is independent of the noise. The out-
put can be written as Y(t) = So(t) + No(t), where So(t) is the output due
to the sinusoidal signal input and No(t) is the output due to the noise.
The signal output can be expressed as

So(t) = a
∣∣H(fo)

∣∣ cos(ωot + ∠H(fo) + �),

and the power in this sinusoidal signal is

RSoSo (0) = a2
∣∣H(fo)

∣∣2
2

.

From the results of Example 11.1, the noise power at the output is

RNoNo (0) = No

4RC
.

Hence, the SNR of the output of the RC lowpass filter is

SNR = 2a2RC
∣∣H(fo)

∣∣2
No

= 2a2RC
No(1 + (2π foRC)2)

.

Suppose we desire to adjust the RC time constant (or, equivalently,
adjust the bandwidth) of the filter so that the output SNR is optimized.
Differentiating with respect to the quantity RC, setting equal to zero and
solving the resulting equation produces the optimum time constant

RCopt = 1
2π fo

.
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Stated another way, the 3-dB frequency of the RC filter is set equal to
the frequency of the input sinusoid in order to optimize output SNR.
The resulting optimum SNR is

SNRopt = a2

2πNofo
.

11.5 The Matched Filter

Suppose we are given an input process consisting of a (known, deterministic) signal
plus an independent white noise process (with a PSD of No/2). It is desired to filter
out as much of the noise as possible while retaining the desired signal. The general
system is shown in Figure 11.3. The input process X(t) = s(t) + N(t) is to be passed
through a filter with impulse response h(t) that produces an output process Y(t).
The goal here is to design the filter to maximize the SNR at the filter output. Due
to the fact that the input process is not necessarily stationary, the output process
may not be stationary and hence the output SNR may be time varying. We must
therefore specify at what point in time we want the SNR to be maximized. Picking
an arbitrary sampling time, to, for the output process, we desire to design the filter
such that the SNR is maximized at time t = to.

Let Yo be the value of the output of the filter at time to. This random variable
can be expressed as

Yo = Y(to) = s(t) ∗ h(t)
∣∣
t=to

+ NY(to), (11.31)

where NY(t) is the noise process out of the filter. The power in the signal and noise
parts, respectively, is given by

signal power =
[
s(t) ∗ h(t)

∣∣
t=to

]2 =
[∫ ∞

0
h(u)s(to − u) du

]2

, (11.32)

noise power = No

2

∫ ∞

−∞
|H(f )|2 df = No

2

∫ ∞

−∞
h2(t) dt. (11.33)

s(t ) + N(t )

t = to

h(t )
Y(t )

Yo = Y(to)

Figure 11.3 Linear system for filtering noise from a desired signal.
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The SNR is then expressed as the ratio of these two quantities,

SNR = 2
N0

[∫ ∞

0
h(u)s(to − u) du

]2

∫ ∞

−∞
h2(t) dt

. (11.34)

We seek the impulse response (or, equivalently, the transfer function) of the filter
that maximizes the SNR as given in Equation 11.34. To simplify this optimization
problem, we use Schwarz’s inequality, which states that

∣∣∣∣
∫ ∞

−∞
x(t)y(t) dt

∣∣∣∣
2

≤
∫ ∞

−∞
|x(t)|2 dt

∫ ∞

−∞
|y(t)|2 dt, (11.35)

where equality holds if and only if x(t) ∝ y(t)1. Applying this result to the expres-
sion for SNR produces an upper bound on the SNR:

SNR ≤ 2
N0

∫ ∞

−∞
|h(t)|2 dt

∫ ∞

−∞
∣∣s(to − t)

∣∣2dt
∫ ∞

−∞
h2(t) dt

= 2
N0

∫ ∞

−∞
∣∣s(to − t)

∣∣2 dt

= 2
N0

∫ ∞

−∞
|s(t)|2 dt = 2Es

No
, (11.36)

where Es is the energy in the signal s(t). Furthermore, this maximum SNR is
achieved when h(t) ∝ s(to − t). In terms of the transfer function, this relationship
is expressed as H(f ) ∝ S∗(f )e−j2π fto . The filter that maximizes the SNR is referred
to as a matched filter since the impulse response is matched to that of the desired
signal. These results are summarized in the following theorem.

THEOREM 11.3: If an input to an LTI system characterized by an impulse
response, h(t), is given by X(t) = s(t) + N(t) where N(t) is a white noise pro-
cess, then a matched filter will maximize the output SNR at time to. The impulse
response and transfer function of the matched filter are given by

h(t) = s(to − t) and H(f ) = S∗(f )e−j2π fto . (11.37)

Furthermore, if the white noise at the input has a PSD of SNN(f ) = No/2 then the
optimum SNR produced by the matched filter is

SNRmax = 2Es

No
, (11.38)

where Es is the energy in the signal s(t).

1The notation x(t) ∝ y(t) means that x(t) is proportional to y(t).
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1

s(t )
Y(t )

t − t0 + t1
t − t0t

(  )du
t

(a)

t1

�

(b) (c)

to– t1               to            to + t1

Figure 11.4 A square pulse (a), the corresponding matched filter (b), and the response of
the matched filter to the square pulse (c).

EXAMPLE 11.6: A certain communication system transmits a square
pulse given by

s(t) =
{

1 0 ≤ t < t1

0 otherwise
.

This signal is received in the presence of white noise at a receiver pro-
ducing the received process R(t) = s(t) + N(t). The matched filter that
produces the optimum SNR at time to for this signal has an impulse
response of the form

h(t) = s(to − t) =
{

1 to − t1 < t ≤ to

0 otherwise
.

The output of the matched filter is then given by

Y(t) = h(t) ∗ R(t) =
∫ ∞

−∞
h(t − u)R(u) du

=
∫ ∞

−∞
s(u + to − t)R(u) du =

∫ t−to+t1

t−to

R(u) du.

Hence, the matched filter for a square pulse is just a finite time integrator.
The matched filter simply integrates the received signal for a period of
time equal to the width of the pulse. When sampled at the correct point
in time, the output of this integrator will produce the maximum SNR.
The operation of this filter is illustrated in Figure 11.4.

EXAMPLE 11.7: In this example, we expand on the results of the
previous example and consider a sequence of square pulses with
random (binary) amplitudes as might be transmitted in a typical
communication system. Suppose this signal is corrupted by white
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Gaussian noise and we must detect the transmitted bits. That is, we must
determine whether each pulse sent has a positive or negative amplitude.
Plot (a) in Figure 11.5 shows both the square pulse train and the same signal
corrupted by noise. Note that by visually observing the signals, it is very diffi-
cult to make out the original signal from the noisy version. We attempt to clean
up this signal by passing it through the matched filter from Example 11.6.
In the absence of noise, we would expect to see a sequence of overlapping
triangular pulses. The matched filter output both with and without noise is
illustrated in plot (b) of Figure 11.5. Notice that a great deal of noise has been
eliminated by the matched filter. To detect the data bits, we would sample
the matched filter output at the end of each bit interval (shown by circles in
the plot) and use the sign of the sample to be the estimate of the transmitted
data bit. In this example, all of our decisions would be correct. The MATLAB
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Figure 11.5 A binary PAM signal with and without additive noise (a) along with the result
of passing both signals through a matched filter (b).
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code used to generate these signals follows. This is just a modified version of
the code used to generate the PAM signal in Example 10.14.

N=10; % Number of bit intervals.

Ns=25; % Number of time samples per bit.

t=([1:Ns]-0.5)/Ns; % Time axis for pulse shape.

p=ones(size(t)); % Square pulse shape.

d=sign(rand(1,N)-0.5); % Random data bits.

X(1:Ns:(Ns*(N-1)+1))=d;

X=conv(X,p); % PAM signal with pulse shape.

sigma=sqrt(Ns/10); % Noise strength.

noise=sigma*randn(size(X)); % Gaussian noise.

R=X+noise;

subplot(2,1,1) % Plot clean and noisy signals.

x_axis=[1:length(R)]/Ns;

plot(x_axis,R, x_axis,X)

axis([0 N -3 3])

h=fliplr(p); % Matched filter impulse response.

z=conv(R,h); % Noisy output of matched filter.

z2=conv(X,h); % Noise-free MF output.

zs=z(Ns*[1:N]); % Sample matched filter outputs.

subplot(2,1,2) % Plot matched filter output.

x_axis=[1:length(z)]/Ns;

plot(x_axis,z,‘-’,x_axis,z2,‘-’,[1:N],zs,‘o’)

11.6 The Wiener Filter

In this section, we consider another filter design problem that involves removing
the noise from a sum of a desired signal plus noise. In this case, the desired signal
is also a random process (rather than a known, deterministic signal as in the last
section) and the goal here is to estimate the desired part of the signal plus noise.
In its most general form, the problem is stated as follows. Given a random process
X(t), we want to form an estimate Y(t) of some other zero-mean process Z(t) based
on observation of some portion of X(t). We require the estimator to be linear. That
is, we will obtain Y(t) by filtering X(t). Hence,

Y(t) =
∫ ∞

−∞
h(t − u)X(u) du. (11.39)
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We want to design the filter to minimize the mean square error

E[ε2(t)] = E[(Z(t) − Y(t))2]. (11.40)

In this section, we will consider the special case where the observation consists
of the process we are trying to estimate plus independent noise. That is X(t) =
Z(t) + N(t). We observe X(t) for some time interval t ∈ (t1, t2) and based on that
observation, we will form an estimate of Z(t). Consider a few special cases:

• Case I. If (t1, t2) = (−∞, t), then we have a filtering problem in which we
must estimate the present based on the entire past. We may also have (t1, t2) =
(t − to, t), in which case we have a filtering problem where we must estimate
the present based on the most recent past.

• Case II. If (t1, t2) = (−∞, ∞), then we have a smoothing problem where we
must estimate the present based on a noisy version of the past, present, and
future.

• Case III. If (t1, t2) = (−∞, t − to), then we have a prediction problem where we
must estimate the future based on the past and present.

All of these cases can be cast in the same general framework and a single result
will describe the optimal filter for all cases. In order to derive the optimal filter, it
is easier to view the problem in discrete time and then ultimately pass to the limit
of continuous time. Hence, we reformulate the problem in discrete time. Given an
observation of the discrete time process X[n] = Z[n]+N[n] over some time interval
n ∈ [n1, n2], we wish to design a filter h[n] such that the linear estimate

Y[n] =
n2∑

k=n1

h[n − k]X[k] (11.41)

minimizes the mean square error E[ε2[n]] = E[(Z[n] − Y[n])2].
The filter h[n] can be viewed as a sequence of variables. We seek to jointly

optimize with respect to each variable in that sequence. This can be done by dif-
ferentiating with respect to each variable and setting the resulting equations equal
to zero:

d
dh[m]E[ε2[n]] = 2E

[
ε[n] d

dh[m]ε[n]
]

= 0, m ∈ [n − n2, n − n1]. (11.42)

Noting that

d
dh[m]ε[n] = d

dh[m] (Z[n] − Y[n]) = − d
dh[m]Y[n] = −X[n − m], (11.43)

the system of equations to solve becomes

E[ε[n]X[n − m]] = 0, for m ∈ [n − n1, n − n2]. (11.44)
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Equivalently, this can be rewritten as

E[ε[n]X[m]] = 0, for m ∈ [n1, n2]. (11.45)

In summary, the filter that minimizes the mean square error will cause the observed
data to be orthogonal to the error. This is known as the orthogonality principle.
Applying the orthogonality principle, we have

E[ε[n]X[m]] = E




Z[n] −

n2∑
k=n1

h[n − k]X[k]

X[m]


 = 0. (11.46)

Assuming all the processes involved are jointly WSS, these expectations can be
written in terms of autocorrelation and cross correlation functions as

n2∑
k=n1

h[n − k]RXX[k − m] = RZX[n − m], m ∈ [n1, n2], (11.47)

or equivalently,

n−n1∑
i=n−n2

h[i]RXX[k − i] = RZX[k], k ∈ [n − n2, n − n1]. (11.48)

These equations are known as the Wiener-Hopf equations, the normal equations,
or the Yule-Walker equations. The resulting filter found by solving this system of
equations is known as the Wiener filter.

A similar result can be found for continuous time systems by applying the
orthogonality principle in continuous time. Given an observation of X(t) over the
time interval (t1, t2), the orthogonality principle states that the filter that minimizes
the mean square prediction error will satisfy

E[ε(t)X(s)] = 0, for s ∈ (t1, t2). (11.49)

This produces the continuous-time version of the Wiener-Hopf equation,
∫ t−t1

t−t2

h(v)RXX(τ − v) dv = RZX(τ ), τ ∈ (t − t2, t − t1). (11.50)

The techniques used to solve the Wiener-Hopf equation depend on the nature of
the observation interval. For example, consider the smoothing problem where the
observation interval is (t1, t2) = (−∞, ∞). In that case, the Wiener-Hopf equation
becomes ∫ ∞

−∞
h(v)RXX(τ − v) dv = RZX(τ ). (11.51)
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The left-hand side of the equation is a convolution and the integral equation can
easily be solved using Fourier transforms. Taking a Fourier transform of both sides
of the equation results in

H(f )SXX(f ) = SZX(f ) ⇒ H(f ) = SZX(f )
SXX(f )

. (11.52)

Note also that if the noise is zero-mean and independent of Z(t), then RZX(τ ) =
RZZ(τ ) and RXX(τ ) = RZZ(τ ) + RNN(τ ). The transfer function of the Wiener filter
for the smoothing problem then becomes

H(f ) = SZZ(f )
SZZ(f ) + SNN(f )

. (11.53)

EXAMPLE 11.8: Suppose the desired signal Z(t) has a spectral den-
sity of

SZZ(f ) = 1
1 + f 2

and the noise is white with a PSD of SNN(f ) = 1. Then the Wiener filter
for the smoothing problem has the form

H(f ) =
1

1 + f 2

1
1 + f 2 + 1

= 1
2 + f 2 .

The corresponding impulse response is

h(t) = π√
2

exp(−√
8π |t|).

Note that this filter is not causal. This is due to the nature of the smooth-
ing problem, whereby we estimate the present based on past, present,
and future.

Next, consider the filtering problem where the observation interval is (t1, t2) =
(−∞, t). In this case, the Wiener-Hopf equation becomes

∫ ∞

0
h(v)RXX(τ − v) dv = RZX(τ ), τ ∈ (0, ∞) (11.54)

It is emphasized now that the left-hand side of the equation is not a convolution
since the lower limit of the integral is not −∞. The resulting integral equation
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is much trickier to solve than in the case of the smoothing problem. In order to
develop a procedure for solving this general equation, consider the special case
when RXX(τ ) = δ(τ ). In that case, the preceding integral equation becomes

h(τ ) = RZX(τ ) for τ > 0. (11.55)

Because we are estimating the present based on observing the past, the filter must
be causal and thus its impulse response must be zero for negative time. Thus, for
the special case when RXX(τ ) = δ(τ ), the Wiener filter is h(τ ) = RZX(τ )u(τ ).

This example in itself is not very interesting since we would not expect X(t) to
be white, but it does help to find the general solution to the Wiener-Hopf equation.
First, before estimating Z(t), suppose we pass the input X(t) through a causal filter
with a transfer function 1/G(f ). Call the output X̃(t). If G(f ) is chosen such that
|G(f )|2 = SXX(f ), then the process X̃(t) will be a white process and the filter is
called a whitening filter. We can then use the result of the previous special case to
estimate Z(t) based on the white process X̃(t). Hence, we are designing the Wiener
filter in two stages as illustrated in Figure 11.6.

To find the impulse response of the second filter, we start with the result that
h2(τ ) = RZX̃(τ )U(τ ). Also, since X̃(t) can be written as X̃(t) = X(t) ∗ h1(t), then

SZX̃(f ) = SZX(f )H∗
1 (f ). (11.56)

The resulting quantities needed to form the second filter are then

SZX̃(f ) = SZX(f )
G∗(f )

←→ RZX̃(τ ) = F−1
{

SZX(f )
G∗(f )

}
. (11.57)

To construct the whitening filter, we need to find a G(f ) such that (1) H1(f ) = 1/G(f )
is causal, and (2) |G(f )|2 = SXX(f ). The procedure for doing this is known as spectral
factorization. Since SXX(f ) is a PSD and thus is an even function of f , it will factor
in the form

SXX(f ) = G(f )G ∗ (f ), (11.58)

Whitening
filter

Wiener filter
for white input

X(t ) X
~

(t ) Y(t )
H1(f ) = 1

G(f )
H2(f )

Figure 11.6 Constructing the Wiener filter for the filtering problem as a cascade of two
filters.
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where half of the poles and zeros are assigned to G(f ) and the other half are assigned
to G∗(f ). In order to be sure that H1(f ) is causal, we assign to G(f ) those zeros in
the upper half-plane. As will be shown in the next example, it is also important to
assign poles from the upper half-plane to G(f ) as well.

EXAMPLE 11.9: For this example, let X(t) = Z(t) + N(t), where N(t) is
white noise with a spectral density of SNN(f ) = 1 and independent of
Z(t), which has a spectral density of

SZZ(f ) = 3
1 + (2π f )2 .

Note also that

SZX(f ) = SZZ(f ) and SXX(f ) = SZZ(f ) + SNN(f ) = 3
1 + (2π f )2 + 1

= 4 + (2π f )2

1 + (2π f )2 = (2 + j2π f )(2 − j2π f )
(1 + j2π f )(1 − j2π f )

.

A pole-zero plot for the PSD function SXX(f ) is shown in Figure 11.7.
We assign the poles and zeros in the upper half-plane to the function
G(f ) (and hence the poles and zeros in the lower half-plane go to G∗(f )).
This results in

G(f ) = 2 + j2π f
1 + j2π f

=⇒ H1(f ) = 1 + j2π f
2 + j2π f

= 1 − 1
2 + j2π f

.

The corresponding impulse response is

h1(t) = δ(t) − e−2tu(t).

*

*

o

o

* = pole
o = zero

Im(f )

Re(f )

Figure 11.7 Pole-zero plot for the PSD function of Example 11.9.
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As desired, the whitening filter is causal. To find the form of the second
filter, we first calculate the cross spectral density between X̃(t) and Z(t):

SZX̃(f ) = SZX(f )H∗
1 (f ) = 3

1 + (2π f )2
1 − j2π f
2 − j2π f

= 3
(1 + j2π f )(2 − j2π f )

= 1
1 + j2π f

+ 1
2 − j2π f

.

Taking an inverse Fourier transform, the cross correlation function is

RZX̃(τ ) = e−τ u(τ ) + e2τ u(−τ ).

The impulse response of the second filter is then given by

h2(τ ) = RZX̃(τ )u(τ ) = e−τ u(τ ).

When the actual Wiener filter is implemented, there is no reason the
filter has to be implemented as a cascade of two filters. We did this
for ease of determining the filter. Combining these two filters into one
produces

H(f ) = H1(f )H2(f ) =
(

1 + j2π f
2 + j2π f

)(
1

1 + j2π f

)

= 1
2 + j2π f

←→ h(t) = e−2tu(t).

It can be easily verified that this filter does indeed satisfy the Wiener-
Hopf equation.

Note, we also could have chosen G(f ) = (2 + j2π f )/(1 − j2π f ), and
H1(f ) = 1/G(f ) would still have been causal:

H1(f ) = 1 − j2π f
2 + j2π f

= −1 + 3
2 + j2π f

←→ h1(t) = −δ(t) + 3e−2tu(t).

In this case,

SZX̃(f ) = SZX(f )H∗
1 (f ) = 3

1 + (2π f )2
1 + j2π f
2 − j2π f

= 3
(1 − j2π f )(2 − j2π f )

= 3
1 − j2π f

+ −3
2 − j2π f

.

←→ RZX̃(τ ) = 3eτ u(−τ ) − 3e2τ u(−τ )

This leads to h2(t) = 0!! Thus, we see it is important to assign both poles
and zeros from the upper half-plane to G(f ).
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Finally, we consider the prediction problem where we wish to estimate the
value of Z(t) based on observing X(t) over the time interval (−∞, t − to). Applying
the orthogonality principle, the appropriate form of the Wiener-Hopf equation for
the prediction problem becomes

∫ ∞

to

h(v)RXX(τ − v) dv = RZX(τ ), τ ∈ (0, ∞) (11.59)

This equation is solved using the same technique as with the filtering problem.
First, the input is passed through a whitening filter and then Equation 11.59 is
solved for the case when the input process is white. The procedure for finding the
whitening filter is exactly the same as before. The solution to Equation 11.59 when
RXX(τ ) = δ(τ ) is

h(τ ) = RZX(τ )u(τ − to). (11.60)

In summary, the solution to the prediction problem is found by following these
steps:

• Step 1. Factor the input PSD according to SXX(f ) = 1/(G(f )G∗(f )), where G(f )
contains all poles and zeros of SXX(f ) that are in the upper half-plane. The
whitening filter is then specified by H1(f ) = 1/G(f ). Call X̃(t) the output of the
whitening filter when X(t) is input.

• Step 2. Calculate the cross correlation function, RZX̃(τ ). The second stage of the
Wiener filter is then specified by h2(τ ) = RZX̃(τ )u(τ − to).

• Step 3. The overall Wiener filter is found by combining these two filters, H(f ) =
H1(f )H2(f ).

It should be noted that the filtering problem can be viewed as a special case of
the prediction problem when to = 0, thus this summary applies to the prediction
problem as well.

EXAMPLE 11.10: In this example, we repeat the filter design of Exam-
ple 11.9 for the case of the prediction problem. As before, we pick the
whitening filter to be of the form

H1(f ) = 1 + j2π f
2 + j2π f

←→ h1(t) = δ(t) − e−2tu(t).

As before, the resulting cross correlation function is then

RZX̃(τ ) = e−τ u(τ ) + e2τ u(−τ ).
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Figure 11.8 Impulse response of the Wiener prediction filter for Example 11.10.

Assuming that to > 0 so that the problem is indeed one of prediction,
the impulse response of the second filter is

h2(t) = RZX̃(t)u(t − to) = e−tu(t − to).

The impulse response of the Wiener prediction filter is then

h(t) = h1(t) ∗ h2(t) = [δ(t) − e−2tu(t)] ∗ [e−tu(t − to)] = e−2t+to u(t − to).

This agrees with the result of the previous example when to = 0.
Figure 11.8 illustrates the impulse response of the Wiener prediction
filter for several values of to.

11.7 Bandlimited and Narrowband
Random Processes

A random processes is said to be bandlimited if all of its frequency components
are limited to some bandwidth, B. Specifically, if a random process X(t) has a PSD
function with an absolute bandwidth of B, then the process is said to be bandlimited
to B Hz. For many bandlimited random processes, the frequency components are
clustered at or near direct current (d.c.). Such a process is referred to as a lowpass
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SXX(f ) SXX(f )

f f

−B

B

(a) (b)

B −fo fo

Figure 11.9 The PSD functions of a lowpass (a), and a bandpass (b) random process.

random process. If, on the other hand, the frequency components of a random
process are removed from d.c. and reside in some nonzero frequency band, the
process is called a bandpass process. These distinctions are illustrated in Figure 11.9.
For a bandpass process, in addition to the bandwidth, the location of the frequency
band where the PSD is nonzero must also be specified. In the figure, the parameter
fo describes that location. While often fo is taken to be the center of the band as
depicted in the figure, this does not have to be the case. The parameter fo can be
chosen to be any convenient frequency within the band. In any event, fo is referred
to as the center frequency of the band (even though it may not really be in the center).
Finally, if a bandpass random process has a center frequency that is large compared
to its bandwidth, fo � B, then the process is said to be narrowband.

Narrowband random processes frequently are found in the study of commu-
nications systems. For example, a commercial FM radio broadcast system uses
channels with bandwidths of 200 kHz, which are located near 100 MHz. Hence the
center frequency of an FM radio signal is about 500 times greater than its band-
width. In the U.S. digital cellular system, 30-kHz channels are used at frequencies
near 900 MHz. In that case, the center frequencies are on the order of 30,000 times
the bandwidth.

From studies of deterministic signals, the reader is probably aware that working
with bandpass signals can be rather cumbersome. Trigonometric functions pop up
everywhere and lead to seemingly endless usage of various identities. On the other
hand, working with lowpass signals is often much simpler. To ease the complexity
of working with bandpass signals, various representations have been formulated
that allow bandpass signals to be decomposed into combinations of related lowpass
signals. In this section, we will focus on the most common of those decompositions,
which is valid for narrowband signals. Generalizations of the following results are
available for signals that are bandpass but not necessarily narrowband but will not
be covered here.



11.7 Bandlimited and Narrowband Random Processes 437

Suppose a random process Z(t) is narrowband. Then Z(t) can be expressed in
terms of two lowpass processes X(t) and Y(t) according to

Z(t) = X(t) cos(ωot) − Y(t) sin(ωot). (11.61)

The two processes X(t) and Y(t) are referred to as the inphase (I) and quadrature (Q)
components of Z(t). Although it is not proven here, the equality in the previous
equation is in the mean-square sense. That is,

E[{Z(t) − (X(t) cos(ωot) − Y(t) sin(ωot))}2] = 0. (11.62)

This Cartesian representation of the narrowband random process can also be
replaced by a polar representation of the form

Z(t) = R(t) cos(ωot + �(t)), (11.63)

where R(t) is called the real envelope of Z(t) and �(t) is the excess phase. We next
describe the relationship between the statistics of the I and Q components and the
statistics of the original random process.

The I and Q components of a signal can be extracted using the system shown
in Figure 11.10. The passbands of the lowpass filters need to be large enough to
pass the desired components (i.e., > B/2 Hz) but not so large as to pass the double
frequency components produced by the mixers (at and around 2fo Hz). For nar-
rowband signals where fo � B, the filters can be very loosely designed, and hence
we do not need to worry too much about the particular forms of these filters. To
see how this network functions, consider the output of the upper mixer:

2Z(t) cos(ωot) = 2{X(t) cos(ωot) − Y(t) sin(ωot)} cos(ωot)

= X(t){1 + cos(2ωot)} − Y(t) sin(2ωot). (11.64)

×

×

Low pass
Filter

Low pass
Filter

Z(t )

–2 sin(ωot )

2 cos(τot )

Y(t )

X(t )

Figure 11.10 Network for decomposing a narrowband process into its I and Q components.
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After passing this through the lowpass filter, the terms involving the double fre-
quencies will be attenuated and the output of the upper LPF is indeed X(t). Similar
calculations reveal that Y(t) is indeed the output of the lower branch.

Next we calculate PSDs involving the I and Q components. Consider first,
multiplication of the process Z(t) by a sinusoid. Let A(t) = 2Z(t) cos(ωot). The
autocorrelation function of A(t) is easily calculated to be

RAA(t, t + τ ) = 2RZZ(τ ){cos(ωoτ ) + cos(2ωot + ωoτ )}. (11.65)

Note that the process A(t) is not WSS. In order to compute the PSD of a process that
is not stationary, we must first take the time average of the autocorrelation function
(with respect to t) so that the result will be a function of τ only. This time-averaged
autocorrelation function works out to be

〈RAA(t, t + τ )〉 = 2RZZ(τ ){cos(ωoτ ) + 〈cos(2ωot + ωoτ )〉} = 2RZZ(τ ) cos(ωoτ ).
(11.66)

At this point, the PSD of A(t) can then be found through Fourier transforma-
tion to be

SAA(f ) = SZZ(f − fo) + SZZ(f + fo). (11.67)

Recall that the process Z(t) was assumed to be narrowband. That is, its PSD has
components near fo and −fo. After shifting by fo, the term SZZ(f −fo) has components
near d.c. and also near 2fo. The components near d.c. will pass through the filter
while those at and around 2fo will be attenuated. Similarly, SZZ(f + fo) will have
terms near d.c. that will pass through the filter and terms near −2fo that will not.
This is illustrated in Figure 11.11. For notational convenience, let LP{} denote the

SAA(f )

f

−

B

LPF

B
2

2f0B
2

–2f0

Figure 11.11 PSD of the input to the LPF in the I branch.
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lowpass part of a quantity. Then the PSD of the inphase component of a narrowband
process can be written in terms of the PSD of the original process as

SXX(f ) = L. P.{SZZ(f − fo) + SZZ(f + fo)}. (11.68)

Following a similar set of steps, the PSD of the Q component is found to be identical
to the I component. That is,

SYY(f ) = SXX(f ) = L. P.{SZZ(f − fo) + SZZ(f + fo)}. (11.69)

The cross spectral density can also be calculated in a manner similar to the PSDs.
The result is

SXY(f ) = j L. P.{SZZ(f − fo) − SZZ(f + fo)}. (11.70)

It is noted that if the PSD function SZZ(f ) is symmetric about f = fo, then the cross
spectral density works out to be zero. In that case, the I and Q components are
orthogonal (since RXY(τ ) = 0). Furthermore, if the process Z(t) is zero-mean, then
the I and Q components will also be zero-mean. In this case, the I and Q components
are then uncorrelated. Finally, if in addition Z(t) is a Gaussian random process, then
the I and Q components are also statistically independent. In summary, we have
proven the results of the following theorem.

THEOREM 11.4: For a narrowband process Z(t), the PSDs involving the I and Q
components X(t) and Y(t) are given by

SYY(f ) = SXX(f ) = L. P.{SZZ(f − fo) + SZZ(f + fo)}, (11.71a)

SXY(f ) = j L. P.{SZZ(f − fo) − SZZ(f + fo)}. (11.71b)

If Z(t) is a zero-mean Gaussian random process and its PSD is symmetric about
f = fo, then the I and Q components are statistically independent.

EXAMPLE 11.11: Suppose zero-mean white Gaussian noise with a PSD
of No/2 is passed through an ideal BPF with a bandwidth of B Hz to
produce the narrowband noise process Z(t) as shown in Figure 11.12.
The I and Q components will then have a PSD that is given by

SYY(f ) = SXX(f ) = No rect(f /B).

The corresponding autocorrelation functions are

RXX(τ ) = RYY(τ ) = NoB sinc(Bτ ).
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Ideal BPF
BW=B
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noise –fo

No / 2

SZZ(f ) SXX(f ) = SYY(f )
B No

B
2

(a) (b) (c)

Z(t )

fo

f f

B
2

–

Figure 11.12 Generation of a narrowband noise process (a), its PSD function (b), and the
PSD function of the I and Q components (c).

Since the PSD of Z(t) is symmetric about f − fo, the cross PSD is zero and
hence the I and Q components are independent.

11.8 Complex Envelopes

When working with narrowband random processes, it is convenient to combine
the I and Q components into a single lowpass random process whose real part is the
I component and whose imaginary part is the Q component. The resulting random
process is a complex lowpass random process.

DEFINITION 11.3: For a narrowband process, Z(t), with I and Q components,
X(t) and Y(t), respectively, the complex envelope, Gz(t), is defined as

Gz(t) = X(t) + jY(t). (11.72)

With this definition, the random process is written in terms of its complex envelope
according to

Z(t) = Re[Gz(t)e jωot]. (11.73)

The properties developed in the previous section for the I and Q components of
a narrowband random process can be used to determine equivalent properties for
the complex envelope. To be consistent with the definitions for complex random
variables given in Chapter 5, we define the autocorrelation function of a complex
random process as follows.
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DEFINITION 11.4: For any complex random process G(t), the autocorrelation
function is defined as2

RGG(t, t + τ ) = 1
2

E[G(t)G∗(t + τ )]. (11.74)

If G(t) represents the complex envelope of a narrowband random process and the
I and Q components are jointly WSS, then this autocorrelation function will be a
function of only τ . Also, the corresponding PSD can be found through Fourier
transformation:

SGG(f ) = F[RGG(τ )]. (11.75)

Using this definition together with the properties developed in the previous section,
the autocorrelation function for a complex envelope is found to be

RGG(τ ) = 1
2

E[(X(t) + jY(t))(X(t + τ ) − jY(t + τ ))]

= 1
2

RXX(τ ) + 1
2

RYY(τ ) + j
2

RYX(τ ) − j
2

RXY(τ ). (11.76)

For the case where the I and Q components are orthogonal, this reduces to

RGG(τ ) = 1
2

RXX(τ ) + 1
2

RYY(τ ) = RXX(τ ) = RYY(τ ). (11.77)

The corresponding PSD is then

SGG(f ) = SXX(f ) = SYY(f ) = L. P.{SZZ(f − fo) + SZZ(f + fo)}. (11.78)

Hence, the complex envelope has the same PSD and autocorrelation function as
the I and Q components. It is left as an exercise for the reader to show that the
autocorrelation and PSD functions of the original narrowband process can be found
from those of the complex envelope according to

SZZ(f ) = 1
2

SGG(f − fo) + 1
2

SGG(−f − fo), (11.79)

RZZ(τ ) = Re[RGG(τ )e jωoτ ]. (11.80)

2The same disclaimer must be made here as in Definition 5.13. Many texts do not include
the factor of 1/2 in the definition of the autocorrelation function for complex random
processes, and hence the reader should be aware that there are two different definitions
prevalent in the literature.
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11.9 Engineering Application: An Analog
Communication System

A block diagram of a simple amplitude modulation (AM) analog communication
system is shown in Figure 11.13. A message (usually voice or music) is represented
as a random process X(t) with some bandwidth B. This message is modulated onto
a carrier using amplitude modulation. The resulting AM signal is of the form

SAM(t) = [Ao + X(t)] cos(ωct + �). (11.81)

In AM, a bias, Ao, is added to the message and the result forms the time-varying
amplitude of a radio frequency (RF) carrier. In order to allow for envelope detection
at the receiver, the bias must satisfy Ao > max |X(t)|. Some example waveforms
are shown in Figure 11.14. Note that due to the process of modulation, the AM
signal now occupies a bandwidth of 2B. The modulated RF signal is transmitted
using an antenna and propagates through the environment to the receiver where
it is picked up with a receiving antenna.

To study the effects of noise on the AM system, we ignore other sources of
corruption (e.g., interference, distortion) and model the received signal as simply
a noisy version of the transmitted signal,

R(t) = SAM(t) + Nw(t), (11.82)

where Nw(t) is a Gaussian white noise process with a PSD of N0/2. To limit the
effects of noise, the received signal is passed through a BPF whose passband is
chosen to allow the AM signal to pass while removing as much of the noise as
possible. This receiver filter is taken to be an ideal bandpass filter whose bandwidth
is 2B. The output of the filter is then modeled as an AM signal plus narrowband
noise:

Z(t) = SAM(t) + Nx(t) cos(ωct + �) − Ny(t) sin(ωct + �)

= [Ao + X(t) + Nx(t)] cos(ωct + �) − Ny(t) sin(ωct + �). (11.83)

Message
source

Modulator
(AM) + Envelope

detector
X(t ) SAM (t )

R (t ) Z (t ) Xd (t )

Nw (t )

Ideal
BPF

Figure 11.13 A block diagram of an amplitude modulation (AM) communications system.
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Figure 11.14 A sample message and the corresponding AM signal.

The envelope detector is a device that outputs the real envelope of the input. Hence,
for the preceding input, the demodulated output will be

Xd(t) =
√

(Ao + X(t) + Nx(t))2 + (Ny(t))2. (11.84)

In its normal operating mode, the desired portion of the filter output will generally
be much stronger than the noise. In this case, we observe that most of the time Ao +
X(t) + Nx(t) � Ny(t) so that the demodulated output can be well approximated by

Xd(t) ≈ Ao + X(t) + Nx(t). (11.85)

The DC component can easily be removed and hence X(t) represents the desired
component of the demodulated output and Nx(t) is the undesired (noise) compo-
nent. The power in the desired component depends on the message and we simply
write it as E[X2(t)]. The I-component of the narrowband noise has a spectral den-
sity equal to N0 for |f | < B (and zero otherwise). Hence, the noise power at the
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demodulator output is 2N0B. The resulting signal-to-noise ratio at the output of
the AM systems is

SNR = E[X2(t)]
2N0B

. (11.86)

It is common to express this SNR in terms of the transmitted power required to
support the AM modulator. For an AM signal of the form in Equation 11.81, the
transmitted power is

PT = E[(Ao + X(t))2 cos2(ωct + �)] = E[(Ao + X(t))2]E[cos2(ωct + �)], (11.87)

assuming the carrier phase is independent of the message. If the message is a
zero-mean random process (which is usually the case), this expression simplifies to

PT = A2
0 + E[X2(t)]

2
. (11.88)

Using this relationship, the SNR of the AM system can then be expressed as

SNR = E[X2(t)]
A2

0 + E[X2(t)]
PT

N0B
. (11.89)

The factor,

ηAM = E[X2(t)]
A2

0 + E[X2(t)] , (11.90)

is known as the modulation efficiency of AM and is usually expressed as a per-
centage. Note that due to the requirement that Ao > max |X(t)|, the modulation
efficiency of AM must be less than 50 percent (which would occur for square wave
messages). For a sinusoidal message, the modulation efficiency would be no more
than 33 percent while for a typical voice or music signal, the modulation efficiency
might be much smaller.

EXAMPLE 11.12: The MATLAB code that follows simulates the
modulation and demodulation of an AM signal. The message sig-
nal is the sum of two sinusoids (one at 100 Hz and one at 250 Hz).
For this example, the carrier frequency is taken to be fc = 100 kHz.

We’ve added noise to the AM signal to produce a typical received signal as
shown in plot (a) of Figure 11.15. To demodulate the signal, we decompose
the received signal into its I and Q components using the technique illustrated
in Figure 11.9. The lowpass filter we used was a second-order Butterworth
filter with a cutoff frequency of 400 Hz, but the particular form of the filter
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Figure 11.15 An AM signal corrupted by noise (a) along with a comparison of the original
message and the demodulated message (b).

is not crucial. Once these components are found, the real envelope is com-
puted according to R(t) = √

X2(t) + Y2(t). Our estimate of the message is then
a scaled version of this envelope with the DC component removed. Plot (b) in
Figure 11.15 shows the original message (dashed) and the recovered message
(solid).

fc=100000; % Carrier frequency.

dt=1/(4*fc); % Sampling interval.

t=[0:dt:0.025];

f1=100; f2=250;

m=sin(2*pi*f1*t)+2*cos(2*pi*f2*t); % Message signal (two

tones).

s=(m+1+max(abs(m))).*cos(2*pi* % AM signal.

(fc*t+rand(1)));

s=s+randn(1,length(s)); % Noisy AM signal.

subplot(2,1,1)

plot(t,s); ylabel(‘AM signal’);
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f0=400;

a=2*pi*f0/sqrt(2);

h=exp(-a*t).*sin(a*t); % Second-order lowpass filter

% with cut-off frequency at f0.

temp=s.*cos(2*pi*fc*t);

x=conv(temp,h)*dt; % I component.

temp=s.*sin(2*pi*fc*t);

y=conv(temp,h)*dt; % Q component.

r=sqrt(x.∧2+y.∧2); % Real envelope.

r=r(1:length(t));

mhat=r-sum(r)/length(r);

subplot(2,1,2)

plot(t,mhat/max(mhat),‘b’,t,m/max(m),‘g--’)

axis([0 max(t) -1.1 1.1])

ylabel(‘Message’); xlabel(‘time (sec)’)

Exercises
11.1 A white noise process, X(t), with a power spectral density (PSD) of

SXX(f ) = No/2 is passed through a finite time integrator whose output
is given by

Y(t) =
∫ t

t−to

X(u) du.

Find the following:

(a) the PSD of the output process,

(b) the total power in the output process,

(c) the noise equivalent bandwidth of the integrator (filter).

11.2 A certain linear time-invariant system has an input/output relationship
given by

Y(t) = X(t) − X(t − to)
to

.

(a) Find the output autocorrelation, RYY(τ ), in terms of the input autocor-
relation, RXX(τ ).
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(b) Find the output PSD, SYY(f ), in terms of the input PSD, SXX(f ).
(c) Does your answer to part (b) make sense in the limit as to → 0?

11.3 The output Y(t) of a linear filter is c times the input X(t). Show that RYY(τ ) =
c2RXX(τ ).

11.4 The output Y(t) of a filter is given in terms of its input X(t) by Y(t) =
X(t) + X(t − to) + X(t − 2to).

(a) Determine RYY(τ ) as a function of RXX(τ ).
(b) Find E[Y2(t)].

11.5 Is the following function a valid discrete-time autocorrelation function?
Justify your answer.

RXX[k] =




1 k = 1
3
4

k = ±3

0 otherwise

.

11.6 A discrete random sequence X[n] is the input to a discrete linear filter h[n].
The output is Y[n]. Let Z[n] = X[n + i] − Y[n]. Find E[Z2[n]] in terms of
the autocorrelation functions for X[n] and Y[n] and the cross correlation
function between X[n] and Y[n].

11.7 The unit impulse response of a discrete linear filter is h[n] = anu[n], where
|a| < 1. The autocorrelation function for the input random sequence is

RXX[k] =
{

1 k = 0

0 otherwise
.

Determine the cross correlation function between the input and output
random sequences.

11.8 Find the PSD of a discrete random sequence with the following autocor-
relation function: RXX[k] = a(b|k|), where |b| < 1.

11.9 A discrete time linear filter has a unit pulse response h[n]. The input to
this filter is a random sequence with uncorrelated samples. Show that the
output power spectral density is real and nonnegative.

11.10 Consider a nonlinear device such that the output is Y(t) = aX2(t), where the
input X(t) consists of a signal plus a noise component, X(t) = S(t) + N(t).
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Determine the mean and autocorrelation function for Y(t) when the signal
S(t) and the noise N(t) are both Gaussian random processes and wide sense
stationary (WSS) with zero mean, and S(t) is independent of N(t).

11.11 Calculate the spectrum for Y(t) in Exercise 11.10 if

SSS(f ) = A2

4
[δ(f + fc) + δ(f − fc)],

and

SNN(f ) =



No

2
fc − B

2
< |f | < fc + B

2
0 otherwise

.

11.12 If the input to a linear filter is a random telegraph process with c zero
crossings per second and an amplitude A, determine the output power
spectral density. The filter impulse response is h(t) = b exp(−at) u(t).

11.13 The input to a linear filter is a random process with the following
autocorrelation function:

RXX(τ ) = Aωo

π

sin(ωoτ )
ωoτ

.

The impulse response of the filter is of the same form and is

h(t) = ω1

π

sin(ω1t)
ω1t

.

Determine the autocorrelation function of the filter output for ωo ≥ ω1 and
for ωo < ω1.

11.14 The power spectrum at the input to an ideal bandpass filter is

SXX(f ) = a
1 + (f /fo)2 .

Let the transfer function for the ideal bandpass filter be

H(f ) =
{

b for f1 < |f | < f2
0 otherwise

.

Determine the autocorrelation function of the output. You may have to
make a reasonable approximation to obtain a simplified form. Assume
that f1 − f2 � fo and (f2 − f1)/f2 � 1.
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11.15 A random process with a PSD of SXX(f ) = 1/(1 + f 2) is input to a filter.
The filter is to be designed so that the output process is white (constant
PSD). This filter is called a whitening filter.

(a) Find the transfer function of the whitening filter for this input process.
Be sure that the filter is causal.

(b) Sketch a circuit that will realize this transfer function.

11.16 White Gaussian noise is input to an RC lowpass filter.

(a) At what sampling instants is the output independent of the input at
time t = t1?

(b) At what sampling instants is the output independent of the output at
time t = t1?

(c) Repeat parts (a) and (b) if the filter is replaced by the finite time
integrator of Exercise 11.1.

11.17

N (t )
h1(t )

h2(t ) Y2(t )

Y1(t )

A white Gaussian noise process, N(t), is input to two filters with impulse
responses, h1(t) and h2(t), as shown in the accompanying figure. The
corresponding outputs are Y1(t) and Y2(t), respectively.

(a) Derive an expression for the cross correlation function of the two
outputs, RY1Y2 (τ ).

(b) Derive an expression for the cross spectral density of the two outputs,
SY1Y2 (τ ).

(c) Under what conditions (on the filters) are the two outputs independent
when sampled at the same instants in time? That is, when are Y1(to) and
Y2(to) independent? Express your constraints in terms of the impulse
responses of the filters and also in terms of their transfer functions.

(d) Under what conditions (on the filters) are the two outputs independent
when sampled at different instants in time? That is, when are Y1(t1) and
Y2(t2) independent for arbitrary t1 and t2? Express your constraints in
terms of the impulse responses of the filters and also in terms of their
transfer functions.

11.18 If the inputs to two linear filters h1(t) and h2(t) are X1(t) and X2(t), respec-
tively, show that the cross correlation between the outputs Y1(t) and Y2(t)
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of the two filters is

RY1Y2 (τ ) =
∫ ∞

−∞

∫ ∞

−∞
h1(α)h2(β)RX1X2 (τ + α − β)(dα) dβ.

11.19 Determine the noise equivalent bandwidth for a filter with impulse
response h(t) = b exp(−at)u(t).

11.20 A filter has the following transfer function:

H(f ) = 4
10 + j2π f

Determine the ratio of the noise equivalent bandwidth for this filter to its
3-dB bandwidth.

11.21 For the highpass RC network in the accompanying figure, let X(t) =
A sin(ωct + �) + N(t), where N(t) is white, WSS, Gaussian noise and �

is a random variable uniformly distributed over [0, 2π ). Assuming zero
initial conditions:

X(t ) Y(t )

+

−

+

−

(a) Find the output mean and variance.
(b) Find and plot the autocorrelation function of the output.
(c) Find and plot the output PSD.
(d) Find the output signal-to-noise ratio.

11.22 A parallel resistor, inductor, capacitor (RLC) network is driven by an input
current source of X(t) = A sin(ωct + �) + N(t), where N(t) is white, WSS
noise with zero mean. The output is the voltage across the network. The
phase � is a random variable uniformly distributed over [0, 2π ).

(a) Find the output power spectrum by first computing the output
autocorrelation function and then transforming.

(b) Check the result of part (a) by using Equation 11.12c.
(c) Determine the output signal-to-noise ratio and optimize the bandwidth

to maximize the signal-to-noise ratio. Assume ωc differs from the center
frequency of the RLC filter.
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Hints: You may have to calculate the autocorrelation function as a function
of t and τ and then let t go to infinity to find the steady state output. There
are several conditions you may want to consider; for example, the filter
may be overdamped, critically damped, or underdamped. It may also have
an initial voltage on the capacitor and a current through the inductor. State
your assumption about these conditions.

11.23 Suppose you want to learn the characteristics of a certain filter. A white
noise source with an amplitude of 15 watts/Hz is connected to the input of
the filter. The power spectrum of the filter output is measured and found
to be

SYY(f ) = 30
(2π f )2 + 102 .

(a) What is the bandwidth (3-dB) of the filter?

(b) What is the attenuation (or gain) at zero frequency?

(c) Show one possible (i.e., real, causal) filter that could have produced
this output PSD.

11.24 A one-sided exponential pulse, s(t) = exp(−t)u(t), plus white noise is
input to the finite time integrator of Exercise 11.1. Adjust the width of the
integrator, to, so that the output SNR is maximized at t = to.

11.25

(a) Determine the impulse response of the filter matched to the pulse
shape in the accompanying figure. Assume that the filter is designed
to maximize the output SNR at time t = 3to.

s (t )

1

−1

to
t

3to

(b) Sketch the output of the matched filter designed in part (a) when the
signal s(t) is at the input.

11.26 Find the impulse response and transfer function of a filter matched to a
triangular waveform as shown in the accompanying figure when the noise
is stationary and white with a power spectrum of No/2.
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to
2

s
o

s (t )

t

to

11.27 A known deterministic signal, s(t), plus colored (not white) noise, N(t),
with a PSD of SNN(f ) is input to a filter. Derive the form of the filter that
maximizes the SNR at the output of the filter at time t = to. To make this
problem simpler, you do not need to insist that the filter is causal.

11.28∗ Suppose we observe a random process Z(t) (without any noise) over a time
interval (−∞, t). Based on this observation, we wish to predict the value of
the same random process at time t + to. That is, we desire to design a filter
with impulse response, h(t), whose output will be an estimate of Z(t + to):

Y(t) = Ẑ(t + to) =
∫ ∞

0
h(u)Z(t − u) du.

(a) Find the Wiener-Hopf equation for the optimum (in the minimum
mean square error (MMSE) sense) filter.

(b) Find the form of the Wiener filter if RZZ(τ ) = exp(−|τ |).
(c) Find an expression for the mean square error E[ε2(t)] = E[(Z(t + to) −

Y(t))2].

11.29 (Adapted form Leon-Garcia, 7.49) Suppose we are allowed to observe a
random process Z(t) at two points in time, t0 and t2. Based on these obser-
vations we would like to estimate Z(t) at time t = t1 where t0 < t1 < t2.
We can view this as an interpolation problem. Let our estimator be a linear
combination of the two observations,

Y(t1) = Ẑ(t1) = aZ(t0) + bZ(t2).

(a) Use the orthogonality principle to find the MMSE estimator.
(b) Find an expression for the mean square error of the MMSE estimator.

11.30 (Roughly adapted from Papoulis 14.1 and 14.5) Suppose we are allowed
to observe a random process Z(t) at two points in time, t0 and t1. Based on

∗Adapted from Leon-Garcia, 7.59
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those observations, we would like to estimate Z(t) at time t = t2 where
t0 < t1 < t2. We can view this as a prediction problem. Let our estimator
be a linear combination of the two observations,

Y(t2) = Ẑ(t2) = aZ(t0) + bZ(t1).

(a) Use the orthogonality principle to find the MMSE estimator.

(b) Suppose that RZZ(τ ) = c exp(−b|τ |) for positive constants b and c. Show
that in this case, the sample at time t = t0 is not useful for predicting
the value of the process at time t = t2 (given we have observed the
process at time t = t1 > t0). In other words, show that a = 0.

11.31 The sum of two independent random processes with power spectral
densities

SSS(f ) = 2
50 + (2π f )2 and SNN(f ) = 40

are input to an linear time invariant (LTI) filter.

(a) Determine the Wiener smoothing filter. That is, find the impulse
response of the filter that produces an output that is an MMSE estimate
of S(t).

(b) Find the PSD of the filtered signal plus noise.

11.32 The sum of two independent random sequences with autocorrelation
functions

RSS[k] = 10

1 −
(

1
10

)2

(
1
10

)|k|
and RNN[k] = 100

1 −
(

1
4

)2

(
1
4

)|k|

are input to an LTI filter.

(a) Determine the Wiener smoothing filter. That is, find the impulse
response of the filter that produces an output that is an MMSE estimate
of S[n].

(b) Find the PSD of the filtered signal plus noise.

(c) Find the input SNR and an estimate of the output SNR. Discuss whether
or not the Wiener filter improves the SNR.
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Hint: Compare the spectra of the Wiener filter, the signal, and the noise by
plotting each on the same graph.

MATLAB Exercises
11.33 (a) Construct a signal plus noise random sequence using 10 samples of

X[n] = cos(2π fonts) + N[n],

where N[n] is generated using randn in MATLAB and fo = 0. 1/ts.
Design a discrete time matched filter for the cosine signal. Filter the
signal plus noise sequence with the matched filter. At what sample
value does the filter output peak?

(b) Construct a signal plus noise random sequence using 10 samples of

X[n] = cos(2π f1nts) + 10 cos(2π f2nts) + N[n],

where N[n] is generated using randn in MATLAB, f1 = 0. 1/ts, and
f2 = 0. 4/ts. Design a discrete time matched filter for the f2 cosine signal.
Filter the signal plus noise sequence with the matched filter. At what
sample value does the filter output peak?

11.34 If a random sequence has an autocorrelation function RXX[k] = 10
(
0. 8|k|),

find the discrete time, pure prediction Wiener filter. That is, find the filter
h[n] such that when X[n] is input, the output, Y[n], will be an MMSE
estimate of X[n+1]. Determine and plot the PSD for the random sequence
and the power transfer function, |H(f )|2, of the filter.

11.35 You have a random process with the correlation matrix




1. 0 0. 3 0. 09 0. 027
0. 3 1. 0 0. 3 0. 09

0. 09 0. 3 1. 0 0. 3
0. 027 0. 09 0. 3 1. 0




Determine the pure prediction Wiener filter. That is, find the coefficients of
the impulse response, h = [h0, h1, h2, 0, 0, 0, . . .]. Then determine the power
spectrum of the Wiener filter. Are the results what you expected?
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11.36 Generate a 100-point random sequence using randn(1,100) in
MATLAB. Use a first-order autoregressive (AR) filter to filter this random
process. That is, the filter is

A(z) = 1
1 + a1z−1 .

Let a1 = −0. 1. Use the filtered data to obtain an estimate for the first-order
prediction Wiener filter. Compare the estimated filter coefficient with the
true value.
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With the increasing computational power of very inexpensive computers, sim-
ulation of various systems is becoming very common. Even when a problem is
analytically tractable, sometimes it is easier to write a quick program to simulate
the desired results. However, there is a certain art to building good simulations,
and many times avoidable mistakes have led to incorrect simulation results. This
chapter aims at helping the reader to build a basic knowledge of some common
techniques used for simulation purposes. Most of the results presented in this
chapter are just applications of material covered in previous chapters, so there is
nothing fundamentally new here. Nevertheless, armed with some of the basic sim-
ulation principles presented in this chapter, the reader should be able to develop
simulation tools with confidence.

12.1 Computer Generation
of Random Variables

In this section, we study techniques used to generate random numbers. However,
we must start with a disclaimer. Most of the techniques used in practice to gen-
erate so-called random numbers will actually generate a completely deterministic
sequence of numbers. So, what is actually random about these random number gen-
erators? Strictly speaking, nothing! Rather, when we speak of computer-generated
random numbers, we are usually creating a sequence of numbers that have certain
statistical properties that make them behave like random numbers, but in fact they
are not really random at all. Such sequences of numbers are more appropriately
referred to as pseudorandom numbers.

457
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12.1.1 Binary Pseudorandom Number Generators

To start with, suppose we would like to simulate a sequence of independent and
identically distributed (IID) Bernoulli random variables, x1, x2, x3, . . . . One way to
do this would be to grab a coin and start flipping it and observe the sequence of
heads and tails, which could then be mapped to a sequence of 1s and 0s. One draw-
back to this approach is that it is very time consuming. If our application demanded
a sequence of length 1 million, not many of us would have the patience to flip the
coin that many times. Naturally, we seek to assign this task to a computer. So, to
simulate an IID sequence of random variables, essentially we would like to create
a computer program that will output a binary sequence with the desired statistical
properties. For example, in addition to having the various bits in the sequence be
statistically independent, we might also want 0s and 1s to be equally likely.

Consider the binary sequence generated by the linear feedback shift register
(LFSR) structure illustrated in Figure 12.1. In that figure, the square boxes repre-
sent binary storage elements (i.e., flip-flops) while the adder is modulo-2 (i.e., an
exclusive OR gate). Suppose the shift register is initially loaded with the sequence
1, 1, 1, 1. It is not difficult to show that the shift register will output the sequence

1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, . . . . (12.1)

If the shift register were clocked longer, it would become apparent that the output
sequence would be periodic with a period of 15 bits. While periodicity is not a
desirable property for a pseudorandom number generator, if we are interested in
generating short sequences (of length less than 15 bits), then the periodicity of this
sequence generator would not come into play. If we are interested in generating
longer sequences, we could construct a shift register with more stages so that the
period of the resulting sequence would be sufficiently long that its periodicity
would not be a concern.

The sequence generated by our LFSR does possess several desirable proper-
ties. First, the number of ones and zeros is almost equal (8 ones and 7 zeros is as
close as we can get to “equally likely” with a sequence of length 15). Second, the
autocorrelation function of this sequence is nearly equal to that of a truly random
binary IID sequence (again, it is as close as we can possibly get with a sequence
of period 15; see Exercise 12.1). Practically speaking, the sequence output by this
completely deterministic device does a pretty good job of mimicking the behavior
of an IID binary sequence. It also has the advantage of being repeatable. That is, if
we load the shift register with the same initial contents, we can always reproduce
the exact same sequence.

It should be noted that not all LFSRs will serve as good pseudorandom number
generators. Consider for example the four-stage LFSR in Figure 12.2. This shift
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Output

Figure 12.1 A four-stage, binary linear feedback shift register.

+

Output

+

Figure 12.2 Another four-stage, binary linear feedback shift register.

register is only a slightly modified version of the one in Figure 12.1, yet when
loaded with the sequence 1, 1, 1, 1, this shift register outputs a repeating sequence
of all 1s (i.e., the period of the output sequence is 1). The only difference between
the two shift registers is in the placement of the feedback tap connections. Clearly,
the placement of these tap connections is crucial in creating a good pseudorandom
sequence generator.

A general N-stage LFSR is shown in Figure 12.3. The feedback tap gains, gi,
i = 0, 1, 2, . . . , N, are each either 0 or 1. A 1 represents the presence of a tap con-
nection, while a 0 represents the absence of a tap connection. It is also understood
that g0 = gN = 1. That is, there must always be connections at the first and last
position. A specific LFSR can then be described by the sequence of tap connections.
For example, the four stage LFSR in Figure 12.1 can be described by the sequence
of tap connections [g0, g1, g2, g3, g4] = [1, 0, 0, 1, 1]. It is also common to further sim-
plify this shorthand description of the LFSR by converting the binary sequence
of tap connections to an octal number. For example, the sequence [1, 0, 0, 1, 1]
becomes the octal number 23. Likewise, the LFSR in Figure 12.2 is described by
[g0, g1, g2, g3, g4] = [1, 0, 1, 1, 1] → 27.

+

Output

++ + . . .

. . .

g0 g1 g2 gN–2 gN–1 gN

Figure 12.3 A general N-stage, binary linear feedback shift register.
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An N-stage LFSR must necessarily generate a periodic sequence of numbers.
At any point in time, the N-bit contents of the shift register can take on only one
of 2N possibilities. Given any starting state, the LFSR could at best cycle through
all possible states, but sooner or later must return to its initial state (or some other
state it has already been in). At that point, the output will then begin to repeat
itself. Also, note that if the LFSR ever gets into the all zero state, it will remain in
that state and output a sequence of all zeros from that point on. Hence, to get the
maximum period out of a LFSR, we would like the shift register to cycle through
all possible nonzero states exactly once before returning to its initial state. This will
produce a periodic output sequence with a period of 2N − 1. Such a sequence is
referred to as a maximal length linear feedback shift register (MLLFSR) sequence, or an
m-sequence, for short.

To study the question of how to connect the feedback taps of an LFSR in order
to produce an m-sequence requires a background in abstract algebra beyond the
scope of this book. Instead, we include a short list in Table 12.1 describing a few
feedback connections, in the octal format described, that will produce m-sequences.
This list is not exhaustive in that it does not list all possible feedback connections
for a given shift register length that lead to m-sequences.

As mentioned, m-sequences have several desirable properties in that they
mimic those properties exhibited by truly random IID binary sequences. Some
of the properties of m-sequences generated by an N-stage LFSR are summarized
as follows:

• m-sequences are periodic with a period of 2N − 1.
• In one period, an m-sequence contains 2N/2 ones and 2N/2 − 1 zeros. Hence,

zeros and ones are almost equally likely.
• The autocorrelation function of m-sequences is almost identical to that of an

IID sequence.
• Define a run of length n to be a sequence of either n consecutive ones or n

consecutive zeros. An m-sequence will have one run of length N, one run of

Table 12.1 LFSR Feedback Connections for m-sequences

SR length, N Feedback connections (in octal format)

2 7
3 13
4 23
5 45, 75, 67
6 103, 147, 155
7 211, 217, 235, 367, 277, 325, 203, 313, 345
8 435, 551, 747, 453, 545, 537, 703, 543
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Output

+

Figure 12.4 A five-stage LFSR with 45 (octal) feedback tap connections.

length N − 1, two runs of length N − 2, four runs of length N − 3, eight runs of
length N − 4, . . . , and 2N−2 runs of length 1.

M-sequences possess many other interesting properties that are not as relevant to
their use as random number generators.

EXAMPLE 12.1: Suppose we wish to construct an m-sequence of
length 31. Since the period of an m-sequence is 2N − 1, we will need
an N = 5 stage shift register to do the job. From Table 12.1, there are
three different feedback connections listed, any of which will work.
Using the first entry in the table, the octal number 45 translates to the
feedback tap connections (1,0,0,1,0,1). This describes the LFSR shown in
Figure 12.4. Assuming this LFSR is initially loaded with the sequence
(1,0,0,0,0), the resulting m-sequence will be

(0 0 0 0 1 0 0 1 0 1 1 0 0 1 1 1 1 1 0 0 0 1 1 0 1 1 1 0 1 0 1).

12.1.2 Nonbinary Pseudorandom Number Generators

Next suppose that it is desired to generate a sequence of pseudorandom num-
bers drawn from a nonbinary alphabet. One simple way to do this is to modify
the output of the binary LFSRs discussed previously. For example, suppose we
want a pseudorandom number generator that produces octal numbers (i.e, from
an alphabet of size 8) that simulates a sequence of IID octal random variables where
the eight possible outcomes are equally probable. One possible approach would be
to take the 5-stage LFSR of Example 12.1, group the output bits in triplets (i.e., three
at a time), and then convert each triplet to an octal number. Doing so (assuming
the LFSR is loaded initially as in Example 12.1), one period of the resulting octal
sequence is

(0 2 2 6 3 7 0 6 7 2 4 1 1 3 1 7 4 3 3 5 2 0 4 5 4 7 6 1 5 6 5). (12.2)
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Note that each of the octal numbers 0, 1, 2, . . . , 7 occurs exactly four times in this
sequence except the number 0, which occurs three times. This is as close as we can
get to equally likely octal numbers with a sequence of length 31. The number of
runs of various lengths in this sequence also matches what we might expect from
a truly random IID sequence of equally likely octal numbers. For example, the
probability of a run of length 2 occurring in a random sequence of octal numbers
is 1/8. Given a random sequence of length 31, the expected number of runs of
length 2 is 31/8 = 3. 875. This pseudorandom sequence has three runs of length 2.
The expected number of runs of length 3 is 31/64 = 0. 4844. The pseudorandom
sequence has no runs of length 3.

It should be noted that since the octal sequence in Equation 12.2 is generated
by the underlying feedback structure of Example 12.1, there should be a recursive
formula that can be used to generate the sequence. In this case, the recursion is
fairly complicated and not very instructive, but this leads us to the idea of gen-
erating pseudorandom sequences of nonbinary numbers using some recursive
formula. One commonly used technique is the power residue method whereby a
pseudorandom sequence is generated through a recursion of the form

xk = axk−1 mod q, k = 1, 2, 3, . . . , (12.3)

where a and q are suitably chosen constants. Due to the modulo-q operation, the
elements of the sequence are from the set {0, 1, 2, . . . , q − 1}. The first element of the
sequence x0 is called the seed and given the set {a, q, x0}, the resulting sequence is
completely deterministic. Note also that the resulting sequence must be periodic
since once any element appears a second time in the sequence, the sequence will
then repeat itself. Furthermore, since the elements of the sequence are from a finite
alphabet with q symbols, the maximum period of the sequence is q − 1 (the period
is not q because the element 0 must never appear or the sequence will produce all
0s after that and hence be of period 1). The next example shows that the desirable
statistical properties of the sequence are dependent upon a careful selection of the
numbers a and q.

EXAMPLE 12.2: First suppose that {a, q} = {4, 7}. Then the sequence
produced has a period of 3 and assuming that the seed is x0 = 1, the
sequence is given by

(x0, x1, x2, . . .) = (1, 4, 2, 1, 4, 2, 1, 4, 2, . . .).

This is not a particularly good result since with the selection of q = 7,
we would hope for a period of q − 1 = 6. However, if we make a slight
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change so that {a, q} = {3, 7}, with the seed of x0 = 1, the sequence
becomes

(x0, x1, x2, . . .) = (1, 3, 2, 6, 4, 5, 1, 3, 2, 6, 4, 5, . . .).

Now, as desired, the sequence has the maximal period of 6 and cycles
through each of the integers from 1 through 6 exactly once each. As
another example of a choice of {a, q} that leads to a bad sequence, sup-
pose we selected {a, q} = {4, 8}. Then the sequence produced (assuming
x0 = 1) would be

(x0, x1, x2, . . .) = (1, 4, 0, 0, 0, . . .).

Clearly, we can get pseudorandom sequences with very different statistical
properties depending on how we choose {a, q}. By choosing the number q to be very
large, the resulting period of the pseudorandom sequence will also be very large,
and hence the periodicity of the sequence will not become an issue. Most math
packages and high-level programming languages have built in random number
generators that use this method. Commonly, the parameters {a, q} = {75, 231 − 1}
are used. This produces a sequence of length 231 − 2, which is over 2 billion.
Furthermore, by normalizing the elements of the sequence by q, the resulting pseu-
dorandom sequence has elements from the set {1/q, 2/q, . . . , (q−1)/q}. With a very
large choice for the value of q, for almost all practical purposes, the elements will
appear to be drawn from the continuous interval (0, 1). Hence, we have constructed
a simple method to simulate random variables drawn from a uniform distribution.

12.1.3 Generation of Random Numbers from a
Specified Distribution

Quite often we are interested in generating random variables that obey some distri-
bution other than a uniform distribution. In this case, it is generally a fairly simple
task to transform a uniform random number generator into one that follows some
other distribution. Consider forming a monotonic increasing transformation g()
on a random variable X to form a new random variable Y. From the results of
Chapter 4, the PDFs of the random variables involved are related by

fY(y) = fX(x)
dg(x)/dx

. (12.4)

Given an arbitrary PDF, fX(x), the transformation Y = g(X) will produce a uniform
random variable Y if dg/dx = fX(x), or equivalently g(x) = FX(x). Viewing this
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result in reverse, if X is uniformly distributed over (0, 1) and we want to create a
new random variable, Y, with a specified distribution, FY(y), the transformation
Y = F−1

Y (X) will do the job.

EXAMPLE 12.3: Suppose we want to transform a uniform random
variable into an exponential random variable with a PDF of the form

fY(y) = a exp(−ay)u(y).

The corresponding CDF is

FY(y) = [1 − exp(−ay)]u(y).

Hence, to transform a uniform random variable into an exponential
random variable, we can use the transformation

Y = F−1
Y = − ln(1 − X)

a
.

Note that if X is uniformly distributed over (0, 1), then 1 − X will be
uniformly distributed as well so that the slightly simpler transformation

Y = − ln(X)
a

will also work.

This approach for generation of random variables works well provided that
the CDF of the desired distribution is invertible. One notable exception where this
approach will be difficult is the Gaussian random variable. Suppose, for example,
we wanted to transform a uniform random variable, X, into a standard normal
random variable, Y. The CDF in this case is the complement of a Q-function,
FY(y) = 1 − Q(y). The inverse of this function would then provide the appro-
priate transformation, y = Q−1(1 − x), or as with the previous example, we could
simplify this to y = Q−1(x). The problem here lies with the inverse Q-function,
which cannot be expressed in a closed form. One could devise efficient numeri-
cal routines to compute the inverse Q-function, but fortunately there is an easier
approach.

An efficient method to generate Gaussian random variables from uniform ran-
dom variables is based on the following 2×2 transformation. Let X1 and X2 be two
independent uniform random variables (over the interval (0,1)). Then if two new



12.2 Generation of Random Processes 465

random variables, Y1 and Y2, are created according to

Y1 =
√

−2 ln(X1) cos(2πX2), (12.5a)

Y2 =
√

−2 ln(X1) sin(2πX2), (12.5b)

then Y1 and Y2 will be independent standard normal random variables (see Exam-
ple 5.24). This famous result is known as the Box-Muller transformation and is
commonly used to generate Gaussian random variables. If a pair of Gaussian ran-
dom variables is not needed, one of the two can be discarded. This method is
particularly convenient for generating complex Gaussian random variables since
it naturally generates pairs of independent Gaussian random variables. Note that
if Gaussian random variables are needed with different means or variances, this
can easily be accomplished through an appropriate linear transformation. That is,
if Y ∼ N(0, 1), then Z = σY + µ will produce Z ∼ N(µ, σ 2).

12.1.4 Generation of Correlated Random Variables

Quite often it is desirable to create a sequence of random variables that are not inde-
pendent, but rather have some specified correlation. Suppose we have a Gaussian
random number generator that generates a sequence of IID standard normal ran-
dom variables, X = (X1, X2, . . . , XN) and it is desired to transform this set of
random variables into a set of Gaussian random variables, Y = (Y1, Y2, . . . , YN),
with some specified covariance matrix, CY. By using a linear transformation of the
form Y = AX, the joint Gaussian distribution will be preserved. The problem of how
to choose the transformation to produce the desired covariance matrix was cov-
ered in Chapter 6, Section 6.4A. Recall that to specify this transformation, an eigen
decomposition of the covariance matrix is performed to produce CY = Q�QT ,
where � is the diagonal matrix of eigenvalues of CY, and Q is the corresponding
matrix of eigenvectors. Then the matrix A = Q

√
� will produce the vector Y with

the correct covariance matrix CY. Once again, if a random vector with a nonzero
mean vector is desired, this approach can be augmented as Y = AX + B, where B
is the vector of appropriate means.

12.2 Generation of Random Processes

Next consider the problem of simulating a random process, X(t), with a desired
PSD, SXX(f ). It is not feasible to create a continuous time random process with
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a computer. Fortunately, we can invoke the sampling theorem to represent the
continuous time random process by its samples. Let Xk = X(kTs) be the kth sample
of the random process taken at a sampling rate of Rs = 1/Ts. Then, provided the
sampling rate is chosen to be at least twice the absolute bandwidth of X(t) (i.e., twice
the largest nonzero frequency component of SXX(f )), the random process can be
reproduced from its samples. Thus, the problem of generating a random process
can be translated into one of creating a sequence of random variables. The question
is how should the random variables be correlated in order to produce the correct
PSD? Of course, the autocorrelation function, RXX(τ ), provides the answer to this
question. If the random process is sampled at a rate of Rs = 1/Ts, then the kth and
mth sample will have a correlation specified by E[XkXm] = RXX((k − m)Ts). Hence,
if X = (X1, X2, . . . , XN) is a sequence of samples of the random process X(t), the
correlation matrix of these samples will have a Toeplitz structure (assuming X(t)
is stationary) of the form

RXX =




RXX(0) RXX(Ts) RXX(2Ts) . . . RXX(NTs)
RXX(−Ts) RXX(0) RXX(Ts) . . . RXX((N−1)Ts)

RXX(−2Ts) RXX(−Ts) RXX(0) . . . RXX((N−2)Ts)
. . . . . . . . . . . .

RXX(−NTs) RXX(−(N−1)Ts) RXX(−(N−2)Ts) . . . RXX(0)




.

(12.6)

Once the appropriate correlation matrix is specified, the procedure developed in
the last section can be used to generate the samples with the appropriate correlation
matrix.

This approach will work fine provided that the number of samples desired is not
too large. However, in many cases, we need to simulate a random process for a large
time duration. In that case, the number of samples, N, needed becomes large and
hence the matrix RXX is also large. Performing the necessary eigendecomposition
on this matrix then becomes a computationally intensive problem. The following
sections look at some alternative approaches to this general problem that offer some
computational advantages.

12.2.1 Frequency Domain Approach

If the random process to be simulated is a Gaussian random process, we can
approach the problem by creating samples of the random process in the frequency
domain. Suppose we wish to create a realization of the random process, X(t), of
time duration Td, say over the interval (0, Td), and that we don’t much care what
happens to the process outside this interval. To start with, we produce a periodic
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Figure 12.5 A realization of the random process X(t) along with its periodic extension X̃(t).

signal X̃(t) by repeating X(t) every Td seconds as illustrated in Figure 12.5. Since
X̃(t) is periodic, it has a Fourier series representation

X̃(t) =
∑

k

Xke j2πkfot, fo = 1
Td

. (12.7)

Note that due to the linearity of the Fourier series construction, if the Xk are zero-
mean Gaussian random variables, then the resulting process X̃(t) will be a zero-
mean Gaussian random process. Furthermore, the periodic random process X̃(t)
has a line spectrum given by

SX̃, X̃(f ) =
∑

k

s2
kδ(f − kfo), s2

k = E
[∣∣Xk

∣∣2
]

. (12.8)

The sk can be chosen to shape the spectrum to any desired form. If the desired PSD
of the random process is SXX(f ), then we could pick s2

k ∝ Sxx(kfo). The constant of
proportionality can be chosen so that the total power in the process X̃(t) matches
that of X(t). In particular, suppose that X(t) is bandlimited so that SXX(f ) = 0
for |f | > W . Then the number of terms in the Fourier series in Equation 12.7 is
finite. Let

M =
⌊

W
fo

⌋
= �WTd�. (12.9)

Then sk will be nonzero only for |k| ≤ M. Hence, we need to generate a total of
2M + 1 random variables, X−M , X−M+1, . . . , X−1, X0, X1, . . . , XM . The variances of
these random variables are chosen such that

s2
k = E

[∣∣Xk
∣∣2

]
= βSXX(kfo), β =

∫ W

−W
SXX(f ) df

∑M
k=−M SXX(kfo)

. (12.10)
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In summary, the random process can be simulated by first generating a sequence
of 2M + 1 zero-mean complex Gaussian random variables. Each random variable
should be scaled so that the variances are as specified in Equation 12.10. Samples
of the random process in the time domain can be constructed for any desired time
resolution, �t, according to

X[i] = X(i�t) =
M∑

k=−M

Xk(e j2π fo�t)ik. (12.11)

If the random process is real, it is sufficient to generate the M + 1 random vari-
ables X0, X1, . . . , XM independently and then form the remaining random variables
X−1, X−2, . . . , X−M using the conjugate symmetry relationship X−k = X∗

k . In this
case, X0 must also be real so that a total 2M +1 real Gaussian random variables are
needed (one for X0 and two each for Xk, k = 1, 2, . . . , M) to construct the random
process, X(t).

EXAMPLE 12.4: Suppose we wish to generate a 5-msec segment
of a real zero-mean Gaussian random process with a PSD given by

SXX(f ) = 1
1 + (f /f3)4 ,

where f3 = 1 kHz is the 3-dB frequency of the PSD. Strictly speaking, this
process has an infinite absolute bandwidth. However, for sufficiently high
frequencies there is minimal power present. For the purposes of this exam-
ple, we (somewhat arbitrarily) take the bandwidth to be W = 6f3 so that
approximately 99.9 percent of the total power in the process is contained
within |f | < W . Since we want to simulate a time duration of Td = 5 msec,
the number of Fourier series coefficients needed is given by M = �WTd� = 30.
Figure 12.6 shows a comparison of the actual PSD, SXX(f ), with the discrete
line spectrum approximation. Also, one realization of the random process
generated by this method is shown in Figure 12.7. The MATLAB code used
to create these plots follows.

% Set parameters.

I=sqrt(-1);

Td=5e-3; fo=1/Td; f3=1e3; dt=1e-5;

M=floor(6*f3*Td); m=[-M:M];

% Construct discrete samples of PSD.

x=[0:0.01:10]; psd=1./(1+x.∧4);
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Figure 12.6 A comparison of the exact PSD along with the discrete approximation for
Example 12.4.
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Figure 12.7 A realization of the random process of Example 12.4.

power=2*f3*sum(psd)*0.01;

s=1./(1+((m*fo)/f3).∧4);
beta=power/sum(s);

s=beta*s;

% Construct "continuous" PSD.

f=[-8:0.01:8]*f3;

psd=1./(1+(f/f3).∧4);

% Plot results.

subplot(2,1,1)

stem(m*fo,s/fo); hold on

plot(f,psd,’g’); hold off

axis([-8*f3 8*f3 0 1.2])

xlabel(‘frequency (Hz)’); ylabel(‘PSD’);
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% Generate frequency domain samples.

z0=randn(1); z0=z0*sqrt(s(M+1));

zplus=sqrt(s(M+2:2*M+1)/2).*(randn(1,M)+I*randn(1,M));

zminus=conj(fliplr(zplus));

z=[zminus z0 zplus];

% Create time domain process.

t=[0:dt:Td];

rp=zeros(1,length(t));

for m=-M:M

rp=rp+z(m+M+1)*exp(I*2*pi*m*fo*t);

end;

% Plot results.

subplot(2,1,2)

plot(t*1000,real(rp))

xlabel(‘t (msec)’); ylabel(‘X(t)’)

12.2.2 Time Domain Approach

A simple alternative to the previous frequency domain approach is to perform time
domain filtering on a white Gaussian noise process as illustrated in Figure 12.8.
Suppose white Gaussian noise with PSD, SXX(f ) = 1 is input to an LTI filter that
can be described by the transfer function, H(f ). Then, from the results in Chapter 11,
it is known that the PSD of the output process is SYY(f ) = |H(f )|2. Hence, in order
to create a Gaussian random process, Y(t), with a prescribed PSD, SYY(f ), we can
construct a white process and pass this process through an appropriately designed
filter. The filter should have a magnitude response that satisfies

|H(f )| =
√

SYY(f ). (12.12)

The phase response of the filter is irrelevant, and hence any convenient phase
response can be given to the filter.

White noise Colored
noise

X(t) Y(t)
h(t)

Figure 12.8 Time domain filtering to create a colored Gaussian random process.
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This technique is particularly convenient when the prescribed PSD, SYY(f ) can
be written as the ratio of two polynomials in f . Then the appropriate transfer
function can be found through spectral factorization techniques. If the desired
PSD is a more complicated function of f , then designing and/or implementing a
filter to produce that PSD may be difficult. In that case, it may be necessary to use
an approximate filter design.

EXAMPLE 12.5: In this example, we design the filter needed to generate
the random process specified in Example 12.4 using the time domain
method. The PSD is factored as follows:

S(f )= 1
1+(f /f3)4 = f 4

3(
f −f3e jπ/4

)(
f −f3e j3π/4

)(
f −f3e j5π/4

)(
f −f3e j7π/4

) .

If the first two poles are associated with H(f ) (and the last two with
H∗(f )), then the filter has a transfer function of

H(f ) = f 2
3(

f − f3e jπ/4
)(

f − f3e j3π/4
) = f 2

3

f 2 − j
√

2f3f − f 2
3

,

which can be represented in the time domain as

h(t) = −2ωoe−ωot sin(ωot)u(t),

where ωo = √
2π f3. For the purposes of creating a random process with

the desired spectrum, the negative sign in front of this impulse response
is irrelevant and can be ignored. Hence, to produce the desired random
process, we start by generating a white Gaussian random process and
then convolve the input with the impulse response specified.

Once an appropriate analog filter has been designed, the filter must be converted
to a discrete time form. If the sampling rate is taken to be sufficiently high, then
the impulse response of the discrete time filter can be found by simply sampling
the impulse response of the continuous time filter. This is the so-called impulse
invariance transformation. However, because of aliasing that occurs in the process
of sampling the impulse response, the frequency response of the digital filter will
not be identical to that of the original analog filter unless the analog filter is abso-
lutely bandlimited. Of course, if the analog filter is approximately bandlimited and
if the sampling rate is sufficiently large, this aliasing can be kept to a minimum and
the resulting digital filter will produce a very good approximation to the desired
frequency response.
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An alternative popular approach for producing a digital filter from an analog
design is to use a bilinear transformation. That is, suppose we have an analog filter
with transfer function Ha(s), a digital approximation to this filter, Hd(z), can be
obtained (assuming a sampling frequency of fs) according to

Hd(z) = Ha(s)
∣∣
s=2fs

(
1−z−1

1+z−1

). (12.13)

One advantage of the bilinear transformation is that if the analog filter is stable,
then the digital filter will be stable as well. Note also that if the analog filter is an
nth-order filter, then the order of the digital filter will be no more than n as well.

EXAMPLE 12.6: In this example, we find the digital approxima-
tion to the analog filter designed in Example 12.5 using the bilinear
approximation. From the results of that example, the analog filter
was a second-order Butterworth filter whose transfer function (in

terms of s) was given by

Ha(s) = ω2
3

s2 + √
2ω3s + ω2

3

,

where ω3 = 2π f3 is the 3-dB frequency of the filter in radians per second. After
a little bit of algebraic manipulation, application of the bilinear transformation
in Equation 12.13 results in

Hd(z) = b0 + b1z−1 + b2z−2

a0 + a1z−1 + a2z−2 ,

where b0 = 1, b1 = 2, b2 = 1, a0 = 1 + √
2γ + γ 2, a1 = 2 − 2γ 2, a2 =

1 − √
2γ + γ 2, and γ = fs/(π f3). Figure 12.9 shows a plot of the impulse

response of this filter as well as one realization of the random process created
by passing white Gaussian noise through this filter. Note that for this example,
the impulse response of the filter lasts for about 1 msec (this makes sense since
the bandwidth was 1 kHz). Therefore, when creating the filtered process, at
least the first millisecond of output data should be discarded since the contents
of the digital filter have not reached a statistical steady state until that point.
The relevant MATLAB code follows.

I=sqrt(-1);

imp_len=150; % Length of impulse response in samples.

sim_len=150; % Length of simulation in samples.
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Figure 12.9 Impulse response and a single realization of the output of the filter designed
in Example 12.6.

f3=1000; % 3-dB frequency of desired PSD.

fs=30000; % Sampling rate.

g=fs/(pi*f3); % Compute filter coefficients.

b0=1; b1=2; b2=1; b=[b0 b1 b2];

a0=1+sqrt(2)*g+g∧2; a1=2-2*g∧2;
a2=1-sqrt(2)*g+g∧2; a=[a0 a1 a2];

x=zeros(1,imp_len); x(1)=1; % Impulse.

y=filter(b,a,x); % Impulse response of filter.

time_scale=[1:length(y)]/fs;

subplot(2,1,1) % Plot impulse response.

stem(time_scale*1000,y,‘o’)

xlabel(‘time(msec)=n/f_s’)

ylabel(‘h[n]’)

x=randn(1,sim_len); % White Gaussian random process.

y=filter(b,a,x); % Filtered process.

time_scale=[1:length(y)]/fs;

subplot(2,1,2) % Plot realization.

plot(time_scale*1000,y);

xlabel(‘time (msec)’); ylabel(‘X(t)’);
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One advantage of the time domain approach is that it is convenient for gener-
ating very long realizations of the random process. Once the filter is designed, the
output process is created by performing a convolution of the impulse response of
the filter with a white input sequence. The complexity of this operation is linear in
the length of the sequence. However, the process of creating a long sequence can
be broken into several smaller sequences. The smaller sequences can then be con-
catenated together to create a long sequence. There will be no discontinuities at the
points of concatenation if the contents of the filter are stored after each realization
and used as the starting contents for the next realization.

Some care must be taken when using the time domain method if the desired
sampling rate of the process is much larger than the bandwidth of the filter. In this
case, the poles of the digital filter will be close to the unit circle and the filter might
exhibit stability problems. This is illustrated in Figure 12.10, where the magnitude
of the poles of the digital filter from Example 12.6 are plotted as a function of the
sampling rate. Note that when the rate at which the process is sampled becomes a
few hundred times the bandwidth of the filter, the poles of the digital filter become
very close to the unit circle. This problem can be easily avoided by creating a digital
filter to create samples of the process at a lower rate (perhaps at several times the
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Figure 12.10 Magnitude of the filter poles as a function of sampling frequency for the
filter designed in Example 12.6.
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bandwidth of the filter so as to avoid aliasing) and then upsampling (through
interpolation) the resulting process to any desired rate.

12.2.3 Generation of Gaussian White Noise

Generation of a white noise process is exceedingly common and also very simple.
However, it is often the source of frequent mistakes among engineers, so we felt
it worth making a few comments about computer generation of white Gaussian
noise processes. The source of confusion in the generation of white noise is that
one cannot represent white noise from its time domain samples. White noise has
infinite power, therefore samples of a white noise process would require infinite
variance. Alternatively, white noise has infinite bandwidth, so the Nyquist rate for
recovering white noise from its samples would be infinite. In order to represent a
“white” process in discrete time, we must invoke some form of prefiltering before
sampling. This will limit the bandwidth such that a finite sampling rate can be used,
and at the same time it will limit the power of the process such that the resulting
samples of the filtered white process will have a finite variance.

Strictly speaking, once we filter the white noise it is no longer white, but this
should not be of too much concern. In practice, there is no such thing as truly
white noise. Recall that the white noise model was an approximation to a noise
process that had a constant PSD over a very large (but not infinite) bandwidth.
Any equipment we use to measure or receive the noise will automatically filter
the process. With this in mind, we imagine a prefilter that has a bandwidth much
larger than any bandwidth we are concerned with in the specific system we are
simulating. The noise we create, although not truly white, will behave as though
it were white for all practical purposes.

In order to simplify the process of creating the samples of the prefiltered white
noise, it is common to employ an ideal lowpass prefilter with bandwidth W as
illustrated in Figure 12.11. Now that the process is bandlimited, it can be repre-
sented by samples at any rate that satisfies fs ≥ 2W . Since the prefilter is ideal, the
autocorrelation function of the filter output is easily calculated to be

R(τ ) = NoW sinc(2W τ ). (12.14)

Ideal LPF
BW=W

Sampler
rate= fs

White
noise

PSD=No/2

Discrete time
noise process

Figure 12.11 A/D conversion process for white noise.
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Note that since this sinc function has nulls at multiples of 1/2W , the samples
of the filtered process will be uncorrelated provided that the samples are spaced
by any integer multiple of 1/2W . In other words, if the sampling rate satisfies
fs = 2W /n for any integer n, then the samples of the prefiltered white noise will be
uncorrelated. By choosing n = 1 so that the sampling rate is exactly the Nyquist rate,
fs = 2W , the process can be recovered from the discrete samples and the samples
are uncorrelated. For Gaussian noise, this implies that the filtered white noise can be
represented by a sequence of independent, zero-mean, Gaussian random variables
with variance of σ 2 = NoW . Note that the variance of the samples and the rate at
which they are taken are related by σ 2 = Nofs/2.

The lesson to be learned here is that if we wish to represent Gaussian white noise
as a sequence of independent Gaussian random variables, then there is an implicit
assumption about the nature of the prefiltering. Furthermore, to be consistent with
this assumption, the variance of the samples must be adjusted when the sampling
rate is changed. The variance and sampling rate cannot be selected independently.

12.3 Simulation of Rare Events

Quite often, we are interested in estimating the probability of some event, A. If ana-
lytically calculating this probability is too cumbersome, we can design a computer
program to simulate the system in question and then observe whether or not the
event occurs. By repeating this procedure many times, we can observe how often
the event A occurs, and hence get an estimate of its probability through a relative
frequency approach. The event A could be a bit error in a digital communications
system—in which case we are interested in calculating bit error probability—or it
could be a buffer overflow in a computer network or even something as extravagant
as breaking the bank at the blackjack table.

12.3.1 Monte Carlo Simulations

In general, suppose we have the ability to recreate (simulate) the experiment an
arbitrary number of times and define a sequence of Bernoulli random variables,
Xi, that are defined according to

Xi =
{

1 if A occurs during the ith experiment

0 otherwise
. (12.15)
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Hence, Xi is simply an indicator function for the event A. If the experiments are
independent, then the probability of the event A, pA, can be estimated according to

p̂A = 1
n

n∑
i=1

Xi. (12.16)

This is nothing more than estimating the mean of an IID sequence of random
variables. From the development of Chapter 7, we know that this estimator is
unbiased and that as n → ∞ the estimate converges (almost everywhere via the
strong law of large numbers) to the true probability.

In practice, we do not have the patience to run our simulation an infinite number
of times nor do we need to. At some point the accuracy of our estimate should be
“good enough,” but how many trials is enough? Some very concrete answers to
this question can be obtained using the theory developed in Chapter 7. If the event
A is fairly probable, then it will not take too many trials to get a good estimate of
the probability, in which case runtime of the simulation is not really too much of
an issue. However, if the event A is rare, then we will need to run many trials to
get a good estimate of pA. In the case where n gets large, we want to be sure not
to make it any larger than necessary so that our simulation runtimes do not get
excessive. Thus, the question of how many trials to run becomes important when
simulating rare events.

Assuming n is large, the random variable p̂A can be approximated as a Gaussian
random variable via the central limit theorem. The mean and variance are E[p̂A] =
pA and σ 2

p̂A
= n−1pA(1−pA), respectively. One can then set up a confidence interval

based on the desired accuracy. For example, suppose we wish to obtain an estimate
that is within 1 percent of the true value with 90 percent probability. That is, we
want to run enough trials to insure that

Pr
(∣∣p̂A − pA

∣∣ < 0. 01pA
) = 0. 9 = 1 − α (12.17)

From the results of Chapter 7, Section 7.5, we get

ε0.1 = 0. 01pA = σX√
n

c0.1 =
√

pA(1 − pA)
n

c0.1, (12.18)

where the value of c0.1 is taken from Table 7.1 as c0.1 = 1. 64. Solving for n gives us
an answer for how long to run the simulation:

n = (100c0.1)2(1 − pA)
pA

= (164)2(1 − pA)
pA

≈ (164)2

pA
. (12.19)

Or in general, if we want the estimate, p̂A, to be within β percent of the true value
(i.e.,

∣∣p̂A − pA
∣∣ < βpA/100) with probability 1 − α, then the number of trials in the
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simulation should be chosen according to

n =

(
100cα

β

)2

(1 − pA)

pA
≈

(
100cα

β

)2

pA
. (12.20)

This result is somewhat unfortunate because in order to know how long to run the
simulation, we have to know the value of the probability we’re trying to estimate in
the first place. In practice, we may have a crude idea of what to expect for pA, which
we could then use to guide us in selecting the number of trials in the simulation.
However, we can use this result to give us very specific guidance in how to choose
the number of trials to run, even when pA is completely unknown to us. Define
the random variable NA to be the number of occurrences of the event A in n trials;
that is,

NA =
n∑

i=1

Xi. (12.21)

Note that E[NA] = npA. That is, the quantity npA can be interpreted as the
expected number of occurrences of the event A in n trials. Multiplying both sides
of Equation 12.20 by pA then produces

E[NA] =
(

100cα

β

)2

(1 − pA) ≈
(

100cα

β

)2

. (12.22)

Hence, one possible procedure to determine how many trials to run is to repeat
the experiment for a random number of trials until the event A occurs some fixed
number of times as specified by Equation 12.22. Let Mk be the random variable that
represents the trial number of the kth occurrence of the event A. Then, one could
form an estimate of pA according to

p̂A = k
Mk

. (12.23)

It turns out that this produces a biased estimate; however a slightly modified form,

p̂A = k − 1
Mk − 1

, (12.24)

produces an unbiased estimate (see Exercise 7.12).

EXAMPLE 12.7: Suppose we wish to estimate the probability of an
event that we expect to be roughly on the order of p ∼ 10−4.
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Assuming we want 1 percent accuracy with a 90 percent confidence
level, the number of trials needed will be

n = 1
p

(
100cα

β

)2

= 104
(

100 ∗ 1. 64
1

)2

= 268, 960, 000.

Alternatively, we need to repeat the simulation experiment until we
observe the event

NA =
(

100cα

β

)2

= 26, 896 times.

Assuming we do not have enough time available to repeat our simula-
tion over 1/4 of a billion times, we would have to accept less accuracy.
Suppose that due to time limitations we decide that we can only repeat
our experiment 1 million times, then we can be sure that with 90 percent
confidence, the estimate will be within the interval (p − ε, p + ε), if ε is
chosen according to

ε =
√

p(1 − p)√
n

cα ≈
√

p√
n

cα = 1. 64
10−2

103 = 1. 64 × 10−5 = 0. 164p.

With one million trials, we can only be 90 percent sure that the estimate
is within 16.4 percent of the true value.

The preceding example demonstrates that using the Monte Carlo approach
to simulating rare events can be very time consuming in that we may need to
repeat our simulation experiments many times to get a high degree of accuracy.
If our simulations are complicated, this may put a serious strain on our computa-
tional resources. The next section presents a novel technique, which when applied
intelligently can substantially reduce the number of trials we may need to run.

12.3.2 Importance Sampling

The general idea behind importance sampling is fairly simple. In the Monte Carlo
approach, we spend a large amount of time with many repetitions of an experiment
while we are waiting for an event to occur that may happen only very rarely. In
importance sampling, we skew the distribution of the underlying randomness in
our experiment so that the “important” events happen more frequently. We can
then use analytical tools to convert our distorted simulation results into an unbiased
estimate of the probability of the event in which we are interested. To help present
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this technique, we first generalize the problem treated in Section 12.3.1. Suppose
the simulation experiment consisted of creating a sequence of random variables,
X = (X1, X2, . . . , Xm) according to some density, fX(x), and then observing whether
or not some event A occurred which could be defined in terms of the Xi. For
example, suppose Xi represents the number of messages that arrive at a certain node
in a computer communications network at time instant i. Furthermore, suppose
that it is known that the node requires a fixed amount of time to forward each
message along to its intended destination and that the node has some finite buffer
capacity for storing messages. The event A might represent the event that the node’s
buffer overflows, and hence a message is lost during the time interval i = 1, 2, . . . , m.
Ideally, the communications network has been designed so that this event is fairly
uncommon, but it is desirable to quantify how often this overflow will occur. While
it may be fairly straightforward to determine whether or not a buffer overflow has
occurred given a specific sequence of arrivals, X = x, determining analytically the
probability of buffer overflow may be difficult, so we decide to approach this via
simulation. Let ηA(X) be an indicator function for the event A. That is, let ηA(x) = 1
if x is such that the event A occurs and ηA(x) = 0 otherwise. Also, let x(i) be the
realization of the random vector X that occurs on the ith trial of the simulation
experiment. Then the Monte Carlo approach to estimating pA is

p̂A, MC = 1
n

n∑
i=1

ηA(x(i)). (12.25)

Now suppose instead that we generate a sequence of random variables, Y =
(Y1, Y2, . . . , Ym) according to a different distribution fY(y), and form the estimate

p̂A, IS = 1
n

n∑
i=1

fX(y(i))
fY(y(i))

ηA(y(i)). (12.26)

It is pretty straightforward (see Exercise 12.11) to establish that this estimator is
also unbiased. By carefully choosing the density function, fY(y), we may be able to
drastically speed up the convergence of the series in Equation 12.26 relative to that
in Equation 12.25.

The important step here is to decide how to choose the distribution of Y. In
general, the idea is to choose a distribution of Y so that the {ηA(Y) = 1} occurs more
frequently than {ηA(X) = 1}. In other words, we want to choose a distribution so
that the “important” event is sampled more often. It is common to employ the
so-called twisted distribution, which calls on concepts taken from large deviation
theory. But using these techniques are beyond the scope of this book. Instead, we
take an admittedly ad hoc approach here and on a case-by-case basis we try to find
a good (but not necessarily optimal) distribution. An example of using importance
sampling is provided in the following application section.



12.4 Engineering Application: Simulation of a Coded Digital Communication System 481

12.4 Engineering Application: Simulation
of a Coded Digital Communication
System

In this section, we demonstrate use of the importance sampling technique out-
lined in the previous section in the simulation of a digital communications system
with convolutional coding. A basic block diagram of the system is illustrated in
Figure 12.12. A source outputs binary data, Xi, which is input to an encoder that
adds redundancy to the data stream for the purposes of error protection. For this
particular example, an encoder with a code rate of 1/2 is used. Simply put, this
means that for every one bit input, the convolutional encoder outputs two coded
bits, {Y2i−1, Y2i}. To keep this example simple, the channel is modeled as one which
randomly inverts bits with some probability p in a memoryless fashion. That is,
what happens to one bit on the channel is independent of any of the other bits.
Given a vector of bits input to the channel, Y = (Y1, Y2, . . . , Yn), the probability of
observing a certain output of the channel R = (R1, R2, . . . , Rn) is given by

Pr(R|Y) =
n∏

i=1

Pr
(
Ri

∣∣Yi
)

, (12.27)

where

Pr
(
Ri

∣∣Yi
) =

{
1 − p if Ri = Yi

p if Ri = Yi
. (12.28)

The decoder then takes the received sequence output from the channel and
determines what was the most likely data sequence.

For this example, it is not necessary to understand the workings of the encoder
and decoder. We will just assume the existence of some computer subroutines
that simulate their functions. Each trial of our simulation experiment will consist
of randomly generating an IID sequence of equally likely data bits, passing them
through the encoder, randomly corrupting some of the encoded bits according to
the channel model we’ve developed, and then decoding the received sequence.

Binary
data

source

Convolutional
encoder Channel

Convolutional
decoder

Xi Yi Ri X
~

i

Figure 12.12 Block diagram of a digital communications system.



482 Chapter 12 Simulation Techniques

The decoded bits are then compared with the original bits to measure the decoded
bit error probability. For the purposes of this example, it is assumed that data
is transmitted in blocks of 50 information bits (which are encoded into blocks of
100 coded bits). We refer to each of these blocks as a frame. The channel is simulated
by creating an error pattern E = (E1, E2, . . . , E100), where the Ei are a sequence of
IID random variables with Pr(Ei = 1) = p and Pr(Ei = 0) = 1 − p. Then

R = Y ⊕ E. (12.29)

The event {Ei = 1} implies that the ith bit is inverted in the process of going through
the channel, while {Ei = 0} means the ith bit is received correctly.

Using the standard Monte Carlo approach, the decoded bit error rate is
estimated according to

P̂e, MC = 1
mn

m∑
j=1

η(x(j), x̂(j), e), (12.30)

where m is the number of packets transmitted in the simulation; n is the number
of bits per packet; and the function η(x(j), x̂(j), e) counts the number of bit errors
that occurred in the jth packet. If the channel error rate, p, is fairly high (e.g., a
noisy channel), then the Monte Carlo approach will work quite nicely. However, if
p � 1, then channel errors will be infrequent and the decoder will usually correct
them. Hence, the decoded error probability will be very small and the Monte Carlo
approach will require us to simulate an astronomical number of packets.

Alternatively, consider a simple importance sampling approach. To avoid sim-
ulating endless packets that ultimately end up error-free, we now create IID error
patterns with Pr(Ei = 1) = q, where q is some suitably chosen value larger than p.
Note that any pattern e = (e1, e2, . . . , e100) that contains exactly w ones and 100 − w
zeros will be generated with probability Pr(e) = qw(1 − q)100−w. Let w(e) be the
number of ones in a particular error pattern, e. Then, our importance sampling
estimate of the decoded error probability will be

P̂e, IS = 1
mn

m∑
j=1

pw(e)(1 − p)100−w(e)

qw(e)(1 − q)100−w(e)
η(x(j), x̂(j), e). (12.31)

Simulation results are shown in Figure 12.13, where the channel bit error prob-
ability is p = 0. 01. Note that there are theoretical bounds that tell us that for
this example, the actual probability of decoded bit error should be bounded by
1. 97 × 10−5 ≤ Pe ≤ 6. 84 × 10−5. To get fairly accurate results via the Monte Carlo
approach, we would expect to have to simulate on the order of several hundred
thousand packets. It is seen in Figure 12.13 that, indeed, even after simulating
10,000 packets, the estimated error probability has still not converged well. For the
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Figure 12.13 Simulation results for a coded digital communications system using standard
Monte Carlo and importance sampling techniques.

importance sampling results, we used q = 0. 05 so that important error events
occurred much more frequently. As seen in the figure, the estimated error prob-
ability has converged rather nicely after simulating only a few thousand packets.
Hence, for this example, using the importance sampling method has sped up the
simulation time by a few orders of magnitude.

Exercises
12.1 Consider the periodic sequence generated by the four-stage shift register

in Figure 12.1. Suppose the sequence is converted to ±1-valued sequence
by mapping all 1s to −1s and all 0s to 1s. One period of the resulting
sequence is

−1, −1, −1, −1, 1, 1, 1, −1, 1, 1, −1, −1, 1, −1, 1.
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Calculate the autocorrelation function of this periodic sequence. Hint: Do
not just treat this sequence as having finite length. The sequence is infinite
in both directions. The finite sequence shown is just one period of the
infinite periodic sequence.

12.2 Sketch the shift register described by the octal number 75. Find the
sequence output by this shift register assuming that the shift register is
initially loaded with all ones.

12.3 A certain N-stage shift register has its tap connections configured so that
it produces an m-sequence. The shift register is initially loaded with the
contents c = (c0, c1, . . . , cN−1), resulting in a periodic sequence of period
2N − 1. Prove that if the shift register is loaded with some other contents
c′ �= 0, the new output sequence will be a cyclic shift of the original output
sequence. Hint: Recall that for an m-sequence, the shift register must cycle
through all nonzero states.

12.4 Suppose we create a binary ±1 valued sequence of length N by drawing N
independent realizations of a Bernoulli random variable to form one period
of the sequence. Compute the autocorrelation function of this random
Bernoulli sequence.

12.5 Suppose a pseudorandom sequence is constructed using the power residue
method as described by

xk = axk−1 mod q, k = 1, 2, 3, . . . .

Find the period and the sequence that results for the following values of
(a, q). For each case, assume the seed is xo = 1.

(a) a = 4, q = 9,

(b) a = 5, q = 9,

(c) a = 2, q = 5,

(d) a = 5, q = 11.

12.6 Suppose a pseudorandom sequence is constructed using the power residue
method as discussed in Exercise 12.5. If q = 11, find a value of a that leads
to a sequence with maximum possible period.

12.7 Find a transformation that will change a uniform random variable
into each of the following distributions (see Appendix D, Summary of
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Common Random Variables, for the definitions of these distributions if
necessary):

(a) arcsine,

(b) Cauchy,

(c) Rayleigh,

(d) geometric.

12.8 Suppose we wish to generate a 10-msec realization of a zero-mean
Gaussian random process with a PSD of

S(f ) = 1
1 + (f /f3)2 .

(a) Find the bandwidth that contains 99 percent of the total power in the
random process.

(b) Determine how many frequency samples are needed for the frequency
domain method described in Section 12.2A.

12.9 Suppose we wanted to generate the random process whose PSD is given
in Exercise 12.8 using the time domain method discussed in Section 12.2B.

(a) Find the transfer function of the analog filter that will produce the
desired output PSD when the input is a zero-mean, white Gaussian
random process.

(b) Use a bilinear transformation to convert the analog filter to a digital
filter.

(c) What is the approximate duration of the impulse response of the digital
filter if the 3-dB frequency of the random process is f3 = 1 kHz?

12.10 Suppose we use a Monte Carlo simulation approach to simulate the prob-
ability of some rare event A. It is decided that we will repeat the simulation
until the event A occurs 35 times. With what accuracy will we estimate pA

to within a 90 percent confidence level?

12.11 Prove that the importance sampling (IS) estimator of Equation 12.26 is
unbiased. That is, show that

E[p̂A, IS] = pA.
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MATLAB Exercises
12.12 We wish to generate a periodic sequence of numbers that cycles through

the integers from 1 to 100 in a pseudorandom fashion. Choose a pair of
integers (a, q) that can be used in the power residue method to produce a
sequence of the desired form. Write a MATLAB program to verify that the
sequence produced does in fact cycle through each of the integers 1 to 100
exactly once each before the sequence repeats.

12.13 Let X ∼ N(2, 1), Y ∼ N(0, 1), Z ∼ N(0, 1), and W =
√

X2 + Y2 + Z2.
We desire to find Pr(W > 3). Write a MATLAB program to estimate this
probability through Monte Carlo simulation techniques. If we want to be
90 percent sure that our estimate is within 5 percent of the true value,
about how many times should we observe the event {W > 3}? Run your
program and provide the estimate of the desired probability. Can you find
the probability analytically?

12.14 Write a MATLAB program to generate a realization of the random process
from Exercise 12.8 (using the frequency domain method). Use a peri-
odogram to estimate the PSD of the process using the realization of the
process you generated. Does your PSD estimate agree with the PSD that
the process is designed to possess?

12.15 Write a MATLAB program to generate a realization of the random process
from Exercise 12.9 (using the time domain method). Use a periodogram
to estimate the PSD of the process using the realization of the process you
generated. Does your PSD estimate agree with the PSD that the process is
designed to possess?



Review of Set Theory A

The purpose for reviewing set theory is to provide a mathematical structure for
organizing methods of counting and grouping objects. Set theory may be used
to define the probabilities of possible outcomes of experiments. There are two
common methods for defining a set. The first method, known as the roster method,
is to list the elements of a set. Synonyms for sets include class, aggregate, and
collection. We will denote sets by capital letters, A, B, C, and so forth. The elements
of a set will be indicated by lowercase letters, such as a, b, c, and so forth. If a is an
element (or object, or member, or point) of A, then we denote this as a ∈ A. If a is
not an element of A, the notation is a ∈ A. A second way of defining a set is called
the property method, which describes some property held by all elements of the set
but not held by objects that do not belong to the set.

DEFINITION A.1: A set A is said to be a subset of another set, B, if all elements of
A are also in B, in which case we write A ⊆ B. With this definition, it is possible that
the two sets are equal (i.e., they have all the same elements), in which case A ⊆ B
and at the same time B ⊆ A. If on the other hand, A is a subset of B and there are
some elements of B that are not in A, then we say that A is a proper subset of B and
we write A ⊂ B.

DEFINITION A.2: The universal set, S, is the set of all objects under consideration
in a given problem, while the empty set, Ø, is the set that contains no elements.

DEFINITION A.3: The complement of a set A, written A, is the set of all elements
in S that are not in A. For two sets A and B that satisfy A ⊂ B, the difference set,
written B − A, is the set of elements in B that are not in A.

Note that for any set A, Ø ⊆ A ⊆ S and A ⊆ A. Also, if A ⊆ B and B ⊆ C, then
A ⊆ C. Finally, we also note the relationship S = Ø.

487



488 Appendix A

S

A B

ABA – AB

A + B

A + B

B – AB

Figure A.1 A Venn diagram illustrating some of the concepts of sets.

DEFINITION A.4: For any two sets A and B the union of the two sets, A ∪ B, is the
set of all elements that are contained in either A or B, and the intersection of the two
sets, A∩B, is the set of all elements that are contained in both A and B. In the algebra
of sets, the union operation plays the role of addition and so sometimes the notation
A + B is used, while the intersection operation plays the role of multiplication and
hence the alternative notations A • B or AB are common.

Some of the concepts just presented are illustrated using a Venn Diagram in
Figure A.1. The set A is contained within the thick solid line; the set B is within
the dashed line; the set A + B is the set of points inside either line, and the set AB
is the set of points inside both. The set A − AB is the set of points inside the solid
line but not inside the dashed line, while the set B − AB is the set of points inside
the dashed line but not inside the solid line. The set A + B is the set of all points
outside of both lines.

DEFINITION A.5: Two sets A and B are said to be mutually exclusive, or disjoint,
if and only if they have no common elements, in which case A ∩ B = Ø. A collec-
tion of sets A1, A2, . . . , An are said to be exhaustive if each element in the universal
set is contained in at least one of the sets in the collection. For exhaustive sets,
A1 ∪ A2 ∪ · · · ∪ An = S.

The following laws are consequences of the definitions we have just introduced.
The reader should verify these laws to gain familiarity with the algebra of sets.

• Idempotent: A ∪ A = A, A ∩ A = A for all sets A.
• Commutative: A ∪ B = B ∪ A, A ∩ B = B ∩ A for all sets A and B.
• Associative: A∪(B∪C) = (A∪B)∪C = A∪B∪C, A∩(B∩C) = (A∩B)∩C = A∩B∩C

for all sets A, B, and C.
• Distributive: A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C), A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C) for

all sets A, B, and C.
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• Consistency: The three conditions A ⊆ B, A ∩ B = A, and A ∪ B = B are all
consistent or mutually equivalent.

• Universal bounds: Ø ⊆ A ⊆ S for all sets A.
• Product: Ø ∩ A = Ø, S ∩ A = A for all sets A.
• Sum: Ø ∪ A = A, S ∪ A = S for all sets A.
• Involution: (A) = A for all sets A.
• Complementarity: A ∪ A = S, A ∩ A = Ø for all sets A.
• DeMorgan’s first law: A ∪ B = A ∩ B for all sets A and B.
• DeMorgan’s second law: A ∩ B = A ∪ B for all sets A and B.

DeMorgan’s laws can be stated as follows: To find the complement of an expression,
replace each set by its complement and interchange additions with multiplications
and multiplications with additions.



Review of Linear Algebra B

The study of probability and random processes draws heavily upon concepts and
results from elementary linear algebra. In the main text, we assume that the reader
has a working knowledge of undergraduate-level linear algebra. The aim of this
appendix is to provide a review for those who need to brush up on these concepts.
This review is not intended to be an exhaustive treatment of the topic, but rather
is a summary of selected concepts that are used within the text.

DEFINITION B.1: A matrix is a two dimensional array of numbers. We say that
a matrix has size m × n if the array has m rows and n columns. If the matrix has
only one row, then we refer to it as a row vector, while if there is only one column
it is a column vector. A matrix with one row and one column is called a scalar. The
elements of a matrix, B, are written as bi,j, where the first subscript represents the
row number and the second subscript gives the column number.

DEFINITION B.2: The transpose of a matrix is obtained by exchanging the row
and column number of each element. That is, if matrix B has elements bi,j, then the
element in the ith row and jth column of BT is bj,i. Hence, if a matrix has size m × n,
then its transpose has size n × m. Also, the transpose of a column vector is a row
vector and the transpose of a row vector is a column vector. A matrix B is said to
be symmetric if BT = B.

DEFINITION B.3: The Hermitian transpose (or just Hermitian) of a matrix B is
written BH and is formed by taking the complex conjugate of the transpose. That
is, if matrix B has elements bi,j, then the element in the ith row and jth column of
BH is b∗

j,i. A matrix B is said to be Hermitian symmetric if BH = B. Sometimes such
a matrix is simply called a Hermitian matrix.
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DEFINITION B.4: Addition and multiplication of matrices is defined as follows.
If two matrices A and B have the same size (i.e., the same number of rows and
columns), then their sum is defined as C = A + B where ci,j = ai,j + bi,j. That is,
matrix addition is done on an element by element basis. If the two matrices do not
have the same dimensions, they cannot be added. If A has size m × k and B has
size k × n, then their product, C = AB, will be an m × n matrix whose elements are
given by

ci,j =
k∑

l=1

ai,lbl,j. (B.1)

In order for the matrix product AB to be defined, the number of columns in A must
equal the number of rows in B.

It is also common to define two different products involving vectors, the so-
called scalar (or dot) product and the matrix (or cross) product. We have no occasion
to use the cross product in this text and so we do not consider it here. For two
column vectors a and b (both with the same number of elements), the dot product
is defined as a • b = aHb, where the standard definition of matrix multiplication
as it applies to vectors is used. Two vectors are said to be orthogonal if their dot

product is zero. Finally, the norm of a vector is ||b|| =
√

bHb.
With these definitions in place, the reader should be able to verify the following

properties of matrix arithmetic.

• Commutative: A + B = B + A for matrices for which the addition is defined.
However, the same property does not usually hold for multiplication. That is,
AB does not necessarily equal BA. In fact, BA may not even be defined.

• Associative: A + (B + C) = (A + B) + C and A(BC) = (AB)C.
• Distributive: A(B + C) = AB + AC.
• Transposes of sums: (A + B)T = AT + BT and (A + B)H = AH + BH .
• Transposes of products: (AB)T = BTAT and (AB)H = BHAH .

In much of this text, many of the matrices we deal with are square. The fol-
lowing definition identifies some characteristics that can be applied to square
matrices.

DEFINITION B.5: A matrix B is diagonal if its elements satisfy bi,j = 0 for all i �= j.
A matrix is upper triangular if bi,j = 0 for all i > j and lower triangular if bi,j = 0 for
all i < j. Note that a diagonal matrix is simultaneously upper and lower triangular.
Finally, a matrix is an m×m identity matrix if it is a diagonal matrix whose diagonal
entries are all equal to 1. The letter I is reserved to represent an identity matrix.
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An identity matrix has the form

I =





1 0 0 . . . 0
0 1 0 . . . 0
0 0 1 . . . 0

. . . . . . . . . . . .
0 0 0 . . . 1




. (B.2)

Sometimes we use a subscript to indicate the dimensions of the identity matrix.
For example, Im×m would represent an identity matrix with m rows and columns.
Note that the identity matrix is the identity with respect to matrix multiplication.
That is, for any m × n matrix B, Im×mB = BIn×n = B. The identity with respect to
matrix addition would be a matrix of all zeros.

DEFINITION B.6: The inverse of a square matrix B, written B−1 (if it exists), is a
matrix that satisfies BB−1 = B−1B = I. If the matrix B is not square, then it may
have a left inverse that satisfies B−1B = I and a different right inverse that satisfies
BB−1 = I. In fact, for nonsquare matrices, the left inverse and right inverse will
not have the same dimensions.

The inverse of a square matrix need not exist, but if it does, it is unique and the left
and right inverses are identical. If the inverse of a matrix does not exist, then the
matrix is said to be singular, while if the inverse exists, the matrix is nonsingular,
or invertible.

The inverse of a matrix plays an important role in the solutions of simulta-
neous linear equations. Consider the following system of n linear equations in n
unknowns, x1, x2, . . . , xn:

a1, 1x1 + a1, 2x2 + · · · + a1, nxn = b1,

a2, 1x1 + a2, 2x2 + · · · + a2, nxn = b2,

. . .

an, 1x1 + an, 2x2 + · · · + an, nxn = bn. (B.3)

By defining A as the n × n matrix of coefficients whose elements are ai,j and
the column vectors x = (x1, x2, . . . , xn)T and b = (b1, b2, . . . , bn)T , this system of
equations can be written in matrix forms as

Ax = b. (B.4)

Multiplying both sides by the inverse of A leads us to the solution

x = A−1b. (B.5)
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Hence, if the coefficient matrix is invertible, the system has a unique solution. On
the other hand, if the coefficient matrix is singular, then A−1 does not exist and the
set of equations does not have a unique solution. This would be the case if some
of the equations in Equation B.3 were linearly dependent (redundant), in which
case the system would have more than one solution, or if some of the equations
were inconsistent, which would lead to no solution. In either case of redundant or
inconsistent equations, the rows of the A matrix will be linearly dependent and the
inverse will not exist. Conversely, if the rows of A are linearly independent, the
matrix will be invertible.

A few properties of matrices that are related to the inverse are

• Inverse of transposes: (AT )−1 = (A−1)T .
• Inverse of Hermitian transposes: (AH)−1 = (A−1)H .
• Inverse of products: (AB)−1 = B−1A−1.
• Inverse of identities: I−1 = I.

A single quantity that is extremely useful in characterizing the invertibility of
a matrix is its determinant. The determinant can be rather difficult to define in a
simple manner, but it has many useful properties. We use a recursive definition,
which may seem rather cryptic, but is probably the simplest definition and is also
consistent with how determinants are often calculated.

DEFINITION B.7: Let B be an n × n matrix with elements bi,j. Define B(i,j) to be
the (n − 1) × (n − 1) matrix obtained by removing the ith row and jth column from
B. Then the determinant of B is defined recursively according to

det(B) =
n∑

j=1

(−1)i+jdet(B(i,j)), for any i = 1, 2, . . . , n. (B.6)

This recursion, together with the definition that for a 1×1 matrix B = [b], det(B) = b,
is sufficient to calculate the determinant of any n × n matrix.

To see how this works, consider a 2 × 2 matrix:

det
([

a b
c d

])
= adet([d]) − bdet([c]) = ad − bc. (B.7)

This result was obtained using i = 1 in Equation B.6. We could also have used i = 2
and achieved the same result:

det
([

a b
c d

])
= −cdet([b]) + ddet([a]) = −cb + da. (B.8)
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For a general 3 × 3 matrix, the determinant works out to be

det








a b c
d e f
g h i







 = adet
([

e f
h i

])
− bdet

([
d f
g i

])
+ cdet

([
d e
g h

])

= a(ei − fh) − b(di − fg) + c(dh − eg). (B.9)

Probably the most important property of determinants is that if det(B) = 0, then
the matrix B is singular, and conversely if det(B) �= 0, then B is invertible. This,
along with some other important properties, is listed next. We will not prove any
of these properties in this review.

• Invertibility: {det(B) = 0} ⇐⇒ {B is singular}.
• Row exchange: If the matrix A is formed by exchanging any two rows in the

matrix B, then det(A) = −det(B).
• Identity matrices: For any identity matrix, det(I) = 1.
• Triangular matrices: If B is a triangular matrix,

det(B) =
n∏

i=1

bi,i.

That is, the determinant is the product of the diagonal elements. Note that
diagonal matrices are a special case and this property applies to them as well.

• Products of matrices: det(AB) = det(A)det(B).
• Inverses: det(B−1) = 1/det(B).
• Transposes: det(BT ) = det(B).
• Hermitian transposes: det(BH) = (det(B))∗.

In addition to computing determinants of matrices, we will also find need
throughout the text to compute eigenvalues and eigenvectors of square matrices.

DEFINITION B.8: For a square matrix B, the scalar λ is an eigenvalue and the
vector x is a corresponding eigenvector if

Bx = λx. (B.10)

Note that the previous equation can be written in the slightly different form
(B − λI)x = 0. The eigenvector x will be nonzero only if the matrix B − λI is
singular. If it were nonsingular, we could multiply both sides by its inverse to
obtain the trivial solution x = 0. Hence, the eigenvalues of the matrix B must be
solutions to the equation

det(B − λI) = 0. (B.11)
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This is the so-called characteristic equation for the matrix B. For an n × n matrix,
B, the characteristic equation will be an nth order polynomial equation in λ, and
hence an n × n matrix will have n eigenvalues (although some of them may be
repeated). Corresponding to each eigenvalue, λk, is an eigenvector, xk. Note that
the eigenvector is not unique since if xk satisfies Equation B.10, then any multiple
of xk will also satisfy the same equation and hence will also be an eigenvector. In
order to resolve this ambiguity, it is common to normalize the eigenvectors so that
||x||2 = 1, but the vector is still an eigenvector even if it is not normalized. In the
case of repeated eigenvalues, there may also be corresponding eigenvectors that
differ by more than just a scale constant.

Before listing the important properties of eigenvalues and eigenvectors, it is
necessary to include one more definition.

DEFINITION B.9: A matrix B is positive definite if zHBz > 0 for any vector z
and it is negative definite if zHBz < 0 for all z. If zHBz ≥ 0 then the matrix is referred
to as positive semi-definite, and if zHBz ≤ 0 the matrix is negative semi-definite.

With this definition in place, we now list the following properties of eigenvalues
and eigenvectors.

• Trace of a matrix: trace(B) = ∑n
k=1 bk, k = ∑n

k=1 λk. That is, the sum of the
eigenvalues is equal to the sum of the diagonal elements of a matrix, also known
as its trace.

• Determinant of a matrix:

det(B) =
n∏

k=1

λk

That is, the product of the eigenvalues is the determinant of a matrix. As a
result, any singular matrix must have at least one eigenvalue that is zero.

• Triangular matrices: If a matrix B is triangular (or diagonal), the eigenvalues
are just the diagonal entries, λk = bk,k.

• Positive and negative definite matrices: If B is positive definite, then its eigen-
values are all real and positive; whereas, if B is positive semi-definite, all its
eigenvalues are nonnegative. Similarly, if B is negative definite, then the eigen-
values are negative; whereas, if B is negative semi-definite, the eigenvalues are
nonpositive.

• Linear independence: If the eigenvectors x1, x2, . . . , xn are nonzero and corre-
spond to distinct (not repeated) eigenvalues λ1, λ2, . . . , λn, then the eigenvectors
are linearly independent.

• Diagonal form: Suppose B is an n × n matrix and has n linearly independent
eigenvectors. Construct a matrix S whose columns are the n eigenvectors and a
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diagonal matrix � whose diagonal entries are the eigenvalues. Then the matrix
B can be factored as B = S�S−1.

• Powers of a matrix: A direct result of the previous property is that for matrices
with linearly independent eigenvectors, Bk = S�kS−1. Furthermore, since � is
diagonal, �k is computed by raising each diagonal entry to the kth power.

In many of the applications encountered in this text, the matrices we are dealing
with are Hermitian. These matrices posess additional properties that are not neces-
sarily shared by all matrices, making Hermitian matrices particularly convenient
to work with.

• Positive semi-definite: Any Hermitian matrix has all real eigenvalues and is at
least positive semi-definite. Furthermore, if the matrix is also nonsingular, then
it will be positive definite.

• Orthogonal eigenvectors: Eigenvectors of a Hermitian matrix that correspond
to different eigenvalues are orthogonal.

• Spectral decomposition: Any Hermitian matrix can be decomposed into the
form

B = U�UH =
n∑

k=1

λkxkxH
k , (B.12)

where U is the matrix whose columns are the eigenvectors (normalized).



Review of Signals
and Systems C

This appendix provides a summary of some important results in the area of
signal representation and linear time–invariant systems. Any engineering student
embarking on a serious study of probability and random processes should be famil-
iar with these concepts and hence a rigorous development is not attempted here.
Rather this review is intended as a brief refresher for those who need it and also
as a quick reference for some important results that are used throughout the text.
In this appendix, attention is focused on deterministic signals and systems in both
continuous and discrete time.

DEFINITION C.1: Consider a periodic signal x(t) whose period is To. That is
x(t) = x(t + To) for all t. The inverse of the period fo = 1/To is called the fundamental
frequency of x(t) and any frequency, fn = nfo, that is a multiple of the fundamental
frequency is called a harmonic.

Any periodic signal (subject to some mild constraints known as the Dirichlet
conditions) can be represented as a linear combination of complex exponential sig-
nals, exp(j2π fnt), whose frequencies are at the harmonics of the signal. That is, if
x(t) is periodic with period To, then

x(t) =
∞∑

k=−∞
xne j2πnfot. (C.1)

This is known as the Fourier series expansion and the series coefficients can be
computed according to

xn = 1
To

∫

To

x(t)e−j2πnfot dt. (C.2)
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Since the signal is periodic, the integral in the previous expression can be taken over
any convenient interval of length To. In general, the series coefficients are complex
numbers and it is common to express them in terms of their magnitude and phase,
xn = ∣∣xn

∣∣ exp(j∠xn). The Fourier series coefficients display the frequency content
of periodic signals.

For signals that are not periodic, the Fourier transform can be used to display
the frequency content of a signal. The Fourier transform of a signal is given by

X(f ) =
∫ ∞

−∞
x(t)e−j2π ft dt, (C.3)

and the inverse Fourier transform is

x(t) =
∫ ∞

−∞
X(f )ej2π ft df . (C.4)

Sometimes we use the notation x(t) ↔ X(f ) to indicate that x(t) and X(f ) are a
Fourier transform pair. A table of some common Fourier transform pairs is pro-
vided in Appendix E, Mathematical Tables, Table E.1. Some of the more important
properties of Fourier transforms are listed next.

• Linearity: If x(t) ↔ X(f ) and y(t) ↔ Y(f ), then ax(t) + by(t) ↔ aX(f ) + bY(f ) for
any constants a and b.

• Symmetry: If x(t) is real-valued, then X(−f ) = X∗(f ). As a result, |X(f )| must
then be an even function of f and ∠X(f ) must be an odd function of f . In addition,
if x(t) is both real and even, then X(f ) will be real and even.

• Time shifting: If x(t) ↔ X(f ), then x(t − to) ↔ e−j2π fto X(f ). As a consequence,
shifting a signal in time does not alter the magnitude of its Fourier transform.

• Differentiation: If x(t) ↔ X(f ), then
dx(t)

dt
↔ j2π fX(f ).

• Integration: If x(t) ↔ X(f ), then
∫ t
−∞ x(u)du ↔ X(f )

j2π f
+ 1

2
X(0)δ(f ). The term X(0)

that appears in this expression is the direct current (DC) value of the signal.

• Time and frequency scaling: If x(t) ↔ X(f ), then x(at) = 1
|a|X

(
f
a

)
for any

constant a �= 0.
• Parseval’s relation: If x(t) ↔ X(f ), then

∫ ∞
−∞ |x(t)|2 dt = ∫ ∞

−∞ |X(f )|2 df . This is a
statement of conservation of energy. That is, the energy in the time domain is
equal to the energy in the frequency domain.

• Convolution: If x(t) ↔ X(f ) and y(t) ↔ Y(f ), then

x(t) ∗ y(t) =
∫ ∞

−∞
x(u)y(t − u) dt ↔ X(f )Y(f ).
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For signals in discrete time, x[n], a discrete-time Fourier transform (DFT) is defined
according to

X(f ) =
∞∑

n=−∞
x[n]e−j2π fn, (C.5)

and the inverse DFT is

x[n] =
∫ 1/2

−1/2
X(f )ej2π fn df . (C.6)

Since X(f ) is periodic with a period of 1, the integral in Equation C.5 can be taken
over any interval of length 1. It is common to view the DFT using discrete frequency
samples as well. In that case, the definition of the DFT and its inverse is modified
to give the N-point DFT:

X[m] =
N−1∑

n=0

x[n]e−j2πmn/N , (C.7)

x[n] = 1
N

N−1∑

m=0

X[m]ej2πmn/N . (C.8)

Alternatively, by replacing exp(j2π f ) with z in the definition of the DFT, we get
the z-transform:

X(z) =
∞∑

n=−∞
x[n]z−n. (C.9)

The inverse z-transform is given by a complex contour integral,

x[n] = 1
2π j

∮
X(z)zn−1 dz, (C.10)

where the contour of integration is any closed contour that encircles the origin in
the counterclockwise direction and is within the region of convergence of X(z).
Because of the complicated nature of the inverse transform, it is common to com-
pute these inverse transforms via tables. A table of some common z-transform pairs
is provided in Appendix E, Mathematical Tables, Table E.2.

These various transform representations of signals are particularly useful when
studying the passage of signals through linear time–invariant (LTI) systems.

DEFINITION C.2: Suppose when x(t) is input to a system, the output is y(t). The
system is said to be time-invariant if the input x(t−to) produces an output of y(t−to).
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That is, a time delay in the input produces the same time delay on the output but no
other changes to the output. Furthermore, suppose the two inputs x1(t) and x2(t)
produce the two outputs y1(t) and y2(t), respectively. Then, the system is linear if
the input ax1(t) + bx2(t) produces the output ay1(t) + by2(t) for any constants a and
b. Identical definitions apply to discrete time systems as well.

A direct consequence of the linearity of a system is the concept of superposition,
which states that if the input can be written as a linear combination of several
terms x(t) = a1x1(t) + a2x2(t) + · · · + anxn(t), then the corresponding output can
be written as the same linear combination of the corresponding outputs y(t) =
a1y1(t) + a2y2(t) + · · · + anyn(t).

Any LTI system can be described in terms of its impulse response, h(t). If the
input is a delta (impulse) function, δ(t), the output is then the impulse response
y(t) = h(t). For any LTI system, the input/output relationship is given in terms of
the impulse response according to the convolution integral

y(t) = x(t) ∗ h(t) =
∫ ∞

−∞
x(u)h(t − u) du =

∫ ∞

−∞
x(t − u)h(u) du. (C.11)

If the input is a complex exponential at some frequency f (i.e., x(t) = exp(j2π ft)),
then the corresponding output is then

y(t) = e j2π ft
∫ ∞

−∞
h(u)e−j2π fudu = ej2π ftH(f ). (C.12)

That is, the output will also be a complex exponential whose magnitude and phase
have been adjusted according to the complex number H(f ). This function of fre-
quency is called the transfer function of the system and is the Fourier transform of
the impulse response. Since complex exponentials form eigenfunctions of any LTI
system, when studying LTI systems, it is convenient to decompose signals into
linear combinations of complex exponentials. If x(t) is a periodic signal it can be
written as a linear combination of complex exponentials through its Fourier series
representation,

x(t) =
∑

k

xke j2πkfot. (C.13)

Using the concept of superposition together with the previous result, we find that
the output of an LTI system when x(t) is input is

y(t) =
∑

k

xkH(kfo)e j2πkfot =
∑

k

yke j2πkfot. (C.14)

Hence, the Fourier series coefficients of the input and output of an LTI system are
related by the simple form

yk = xkH(kfo). (C.15)
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A similar relationship holds for the Fourier transforms of nonperiodic signals.
Taking Fourier transforms of both sides of Equation C.11 and using the convolution
property of Fourier transforms results in

Y(f ) = X(f )H(f ). (C.16)

Identical relationships hold for the DFT and z-transforms as well.
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Random Variables D

This appendix provides a quick reference of some of the most common random
variables. Special functions that are used in this appendix are defined in the
following list.

• Gamma function: �(α) = ∫ ∞
0 uα−1e−u du, Re[α] > 0.

• Incomplete gamma function: γ (α, β) = ∫ β

0 uα−1e−u du, Re[α] > 0.

• Beta function: B(a, b) = ∫ 1
0 ua−1(1 − u)b−1du = �(a)�(b)

�(a + b)
.

• Incomplete beta function: β(a, b, x) = ∫ x
0 ua−1(1 − u)b−1du, 0 < x < 1.

• Modified Bessel function of order m: Im(x) = 1
2π

∫ 2π

0 ex cos(θ ) cos(mθ ) dθ .

• Q-function: Q(x) = ∫ ∞
x

1
2π

exp
(
−u2

2

)
du.

• Marcum’s Q-function: Q(α, β) = ∫ ∞
β

u exp

(

−α2 + u2

2

)

I0(αu) du.

D.1 Continuous Random Variables

D.1.1 Arcsine

For any b > 0,

fX(x) = 1

π
√

b2 − x2
− b < x < b. (D.1)
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FX(x) =






0 x < −b
1
2

+ 1
π

sin−1
(x

b

)
−b ≤ x ≤ b

1 x > b

. (D.2)

µX = 0, σ 2
X = b2

2
. (D.3)

Note:

(1) Formed by a transformation X = b cos(2πU + θ ), where b and θ are constants
and U is a uniform random variable over [0, 1).

D.1.2 Beta

For any a > 0 and b > 0,

fX(x) = 1
B(a, b)

xa−1(1 − x)b−1, 0 < x < 1. (D.4)

FX(x) =






0 x < 0
β(a, b, x)
B(a, b)

0 ≤ x ≤ 1

1 x > 1

. (D.5)

µX = a
a + b

, σ 2
X = ab

(a + b)2(a + b + 1)
. (D.6)

D.1.3 Cauchy

For any b > 0,

fX(x) = b/π

b2 + x2 . (D.7)

FX(x) = 1
2

+ 1
π

tan−1
(x

b

)
. (D.8)

�X(ω) = e−b|ω|. (D.9)

Notes:

(1) Both the mean and variance are undefined.
(2) Formed by a transformation of the form X = b tan(2πU), where U is uniform

over [0, 1).
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D.1.4 Chi-Square

For integer n > 0,

fX(x) = xn/2−1

2n/2�(n/2)
e−x/2, x ≥ 0. (D.10)

FX(x) =





0 x < 0
γ (n/2, x/2)

�(n/2)
x ≥ 0

. (D.11)

�X(ω) = 1
(1 − 2jω)n/2

. (D.12)

µX = n, σ 2
X = 2n. (D.13)

Notes:

(1) The chi-square random variable is a special case of the gamma random
variable.

(2) The parameter n is referred to as the number of degrees of freedom of the
chi-square random variable.

(3) The chi-square random variable is formed by a transformation of the form
X = ∑n

k=1 Z2
k , where the Zk are independent and identically distributed (IID),

zero-mean, unit variance Gaussian random variables.

D.1.5 Erlang

For any integer n > 0 and any b > 0,

fX(x) = bnxn−1e−bx

(n − 1)! , x ≥ 0. (D.14)

FX(x) =





0 x < 0
γ (n, bx)
(n − 1)! x ≥ 0

. (D.15)

�X(ω) = 1
(1 − jω/b)n . (D.16)

µX = n/b, σ 2
X = n/b2. (D.17)
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Notes:

(1) The Erlang random variable is a special case of the gamma random variable.
(2) The Erlang random variable is formed by summing n IID exponential random

variables.
(3) The CDF can also be written as a finite series

γ (n, bx)
(n − 1)! = 1 − ebx

n−1∑

k=0

(bx)k

k! , x ≥ 0. (D.18)

D.1.6 Exponential

For any b > 0,

fX(x) = be−bx, x ≥ 0. (D.19)

FX(x) =
{

0 x < 0

1 − e−bx x ≥ 0
. (D.20)

�X(ω) = 1
1 − jω/b

. (D.21)

µX = 1/b, σ 2
X = 1/b2. (D.22)

Notes:

(1) The exponential random variable is a special case of the Erlang and gamma
random variables.

(2) The exponential random variable possesses the memoryless property,

fX(x|X > a) = fX(x − a). (D.23)

D.1.7 F

For any integers n > 0 and m > 0,

fX(x) =
( n

m

)n/2

B
(n

2
,

m
2

)x
n
2 −1

(
1 + n

m
x
)− n+m

2 , x > 0. (D.24)

µX = m
m − 2

for m > 2, σ 2
X = m2(2n + 2m − 4)

n(m − 2)2(m − 4)
for m > 4. (D.25)
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Notes:

(1) If U and V are independent chi-square random variables with n and m degrees
of freedom, respectively, then F = (U/n)/(V/m) will be an F random variable
with n and m degrees of freedom.

D.1.8 Gamma

For any a > 0 and b > 0,

fX(x) = baxa−1e−bx

�(a)
, x ≥ 0. (D.26)

FX(x) = γ (a, bx)
�(a)

. (D.27)

�X(ω) = 1
(1 − jω/b)a . (D.28)

µX = a/b, σ 2
X = a/b2. (D.29)

Note:

(1) The gamma random variable contains the chi-square, Erlang, and exponential
random variables as special cases.

D.1.9 Gaussian

For any µ and any σ > 0,

fX(x) = 1√
2πσ 2

exp

(

− (x − µ)2

2σ 2

)

. (D.30)

FX(x) = 1 − Q
(

x − µ

σ

)

. (D.31)

�X(ω) = exp
(

jωµ − 1
2
ω2σ 2

)

. (D.32)

µX = µ, σ 2
X = σ 2. (D.33)
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D.1.10 Gaussian-Multivariate

For any n element column vector µ and any valid n × n covariance matrix C,

fX(x) = 1
(2π )n/2det(C)

exp
(

−1
2

(X − µ)TC−1(X − µ)
)

. (D.34)

�X(ω) = exp
(

jµTω − 1
2
ωTCω

)

. (D.35)

E[X] = µ, E[(X − µ)(X − µ)T ] = C. (D.36)

D.1.11 Laplace

For any b > 0,

fX(x) = b
2

exp(−b|x|). (D.37)

FX(x) =






1
2

ebx x < 0

1 − 1
2

e−bx x ≥ 0
. (D.38)

�X(ω) = 1
1 + (ω/b)2 . (D.39)

µX = 0, σ 2
X = 2/b2. (D.40)

D.1.12 Log-Normal

For any µ and any σ > 0,

fX(x) = 1

x
√

2πσ 2
exp

(

− (ln(x) − µ)2

2σ 2

)

, x > 0. (D.41)

FX(x) =





0 x < 0

1 − Q
(

ln(x) − µ

σ

)

x ≥ 0
. (D.42)

µX = exp

(

µ + σ 2

2

)

, σ 2
X = [exp(σ 2) − 1] exp(2µ + σ 2). (D.43)
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Notes:

(1) The log-normal random variable is formed by a transformation of the form
X = exp(Z), where Z is a Gaussian random variable with mean µ and
variance σ 2.

(2) It is common to find instances in the literature where σ is referred to as the
standard deviation of the log-normal random variable. This is a misnomer. The
quantity σ is not the standard deviation of the log-normal random variable, but
rather is the standard deviation of the underlying Gaussian random variable.

D.1.13 Nakagami

For any b > 0 and m > 0,

fX(x) = 2mm

�(m)bm x2m−1 exp
(
−m

b
x2

)
, x ≥ 0. (D.44)

FX(x) =






0 x < 0

γ
(

m,
m
b

x2
)

�(m)
x ≥ 0

. (D.45)

µX = �(m + 1/2)
�(m)

√
b
m

, σ 2
X = b − µ2

X . (D.46)

D.1.14 Rayleigh

For any σ > 0,

fX(x) = x
σ 2 exp

(

− x2

2σ 2

)

, x ≥ 0. (D.47)

FX(x) =






0 x < 0

1 − exp

(

− x2

2σ 2

)

x ≥ 0
. (D.48)

µX =
√

πσ 2

2
, σ 2

X = (4 − π )σ 2

2
. (D.49)

Notes:

(1) The Rayleigh random variable arises when performing a Cartesian to polar
transformation of two independent, zero-mean Gaussian random variables.
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That is, if Y1 and Y2 are independent zero mean Gaussian random variables

with variances of σ 2, then X =
√

Y2
1 + Y2

2 follows a Rayleigh distribution.
(2) The Rayleigh random variable is a special case of the Rician random variable.

D.1.15 Rician

For any a ≥ 0 and any σ > 0,

fX(x) = x
σ 2 exp

(

−x2 + a2

2σ 2

)

Io

( ax
σ 2

)
, x ≥ 0. (D.50)

FX(x) =





0 x < 0

1 − Q
( a
σ

,
x
σ

)
x ≥ 0

. (D.51)

µX =
√

πσ 2

2
exp

(

− a2

4σ 2

) [(

1 + a2

2σ 2

)

Io

(
a2

4σ 2

)

+ a2

2σ 2 I1

(
a2

4σ 2

)]

. (D.52)

σ 2
X = 2σ 2 + a2 − µ2

X . (D.53)

Notes:

(1) The Rician random variable arises when performing a Cartesian to polar trans-
formation of two independent Gaussian random variables. That is, if Y1 and
Y2 are independent Gaussian random variables with means of µ1 and µ2,

respectively, and equal variances of σ 2, then X =
√

Y2
1 + Y2

2 follows a Rician

distribution, with a =
√

µ2
1 + µ2

2.

(2) The ratio a2/σ 2 is often referred to as the Rician parameter or the Rice factor.
As the Rice factor goes to zero, the Rician random variable becomes a Rayleigh
random variable.

D.1.16 Student t

For any integer n > 0,

fX(x) = 1
B(n/2, 1/2)

√
n

(

1 + x2

n

)− n+1
2

. (D.54)

µX = 0, σ 2
X = n

n − 2
for n > 2. (D.55)
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Notes:

(1) This distribution was first published by W. S. Gosset in 1908 under the
pseudonym “A. Student.’‘ Hence, this distribution has come to be known as
the student’s t-distribution.

(2) The parameter n is referred to as the number of degrees of freedom.
(3) If Xi i = 1, 2, . . . , n is a sequence of IID Gaussian random variables and µ̂

and ŝ2 are the sample mean and sample variance, respectively, then the ratio

T = (µ̂ − µ)/
√

ŝ2/n will have a t-distribution with n − 1 degrees of freedom.

D.1.17 Uniform

For any a < b,

fX(x) = 1
b − a

, a ≤ x < b. (D.56)

FX(x) =






0 x < a
x − a
b − a

a ≤ x ≤ b

1 x > b

. (D.57)

�X(ω) = e jbω − e jaω

jω(b − a)
. (D.58)

µx = a + b
2

, σ 2
X = (b − a)2

12
. (D.59)

D.1.18 Weibull

For any a > 0 and any b > 0,

fX(x) = abxb−1 exp(−axb), x ≥ 0. (D.60)

FX(x) =
{

0 x < 0

1 − exp(−axb) x ≥ 0
. (D.61)

µX =
�

(

1 + 1
b

)

a1/b
, σ 2

X =
�

(

1 + 2
b

)

−
[

�

(

1 + 1
b

)]2

a2/b
. (D.62)
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Note:

(1) The Weibull random variable is a generalization of the Rayleigh random
variable and reduces to a Rayleigh random variable when b = 2.

D.2 Discrete Random Variables

D.2.1 Bernoulli

For 0 < p < 1,

PX(k) =






1 − p k = 0

p k = 1

0 otherwise

. (D.63)

HX(z) = 1 − p(1 − z) for all z. (D.64)

µX = p, σ 2
X = p(1 − p). (D.65)

D.2.2 Binomial

For 0 < p < 1 and any integer n > 0,

PX(k) =






(
n

k

)

pk(1 − p)n−k k = 0, 1, 2, . . . , n

0 otherwise

. (D.66)

HX(z) = (1 − p(1 − z))n for any z. (D.67)

µx = np, σ 2
X = np(1 − p). (D.68)

Note:

(1) The binomial random variable is formed as the sum of n independent Bernoulli
random variables.
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D.2.3 Geometric

For 0 < p < 1,

PX(k) =
{

(1 − p)pk k ≥ 0

0 k < 0
. (D.69)

HX(z) = 1 − p
1 − pz

for |z| < 1/p. (D.70)

µX = p
1 − p

, σ 2
X = p

(1 − p)2 . (D.71)

D.2.4 Pascal (or Negative Binomial)

For 0 < q < 1 and any integer n > 0,

PX(k) =






0 k < n
(

k − 1

n − 1

)

(1 − q)nqk−n k = n, n + 1, n + 2, . . .
. (D.72)

HX(z) =
(

(1 − q)z
1 − qz

)n

, for |z| < 1/q. (D.73)

µX = n
1 − q

, σ 2
X = nq

(1 − q)2 . (D.74)

D.2.5 Poisson

For any b > 0,

PX(k) =





bk

k! e−b k ≥ 0

0 k < 0
. (D.75)

HX(z) = exp(b(z − 1)), for all z. (D.76)

µX = b, σ 2
X = b. (D.77)
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E.1 Trigonometric Identities

sin2(x) + cos2(x) = 1. (E.1)

cos(x ± y) = cos(x) cos(y) ∓ sin(x) sin(y). (E.2)

sin(x ± y) = sin(x) cos(y) ± cos(x) sin(y). (E.3)

cos(x) cos(y) = 1
2

cos(x + y) + 1
2

cos(x − y). (E.4)

sin(x) sin(y) = 1
2

cos(x − y) − 1
2

cos(x + y). (E.5)

sin(x) cos(y) = 1
2

sin(x + y) + 1
2

sin(x − y). (E.6)

exp(jx) = cos(x) + j sin(x). (E.7)

cos(x) = e jx + e−jx

2
. (E.8)

sin(x) = e jx − e−jx

2j
. (E.9)

E.2 Series Expansions

1
1 − x

=
∞∑

k=0

xk, for |x| < 1. (E.10)

517
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1 − xn+1

1 − x
=

n∑

k=0

xk, for all x. (E.11)

1
(1 − x)n+1 =

∞∑

k=n

(
k
n

)
xk−n =

∞∑

k=0

(
k + n

n

)
xk, for |x| < 1. (E.12)

(x + y)n =
n∑

k=0

(
n
k

)
xkyn−k, for all x, y. (E.13)

exp(x) =
∞∑

k=0

1
k!xk, for all x. (E.14)

cos(x) =
∞∑

k=0

(−1)k

(2k)! x2k, for all x. (E.15)

sin(x) =
∞∑

k=0

(−1)k

(2k + 1)!x2k+1, for all x. (E.16)

ln(1 − x) = −
∞∑

k=1

1
k

xk, for |x| < 1. (E.17)

Q(x) = 1
2

+ 1√
2π

∞∑

k=0

(−1)k+1

k!2k(2k + 1)
x2k+1, for all x. (E.18)

Im(x) =
∞∑

k=0

1
k!(k + m)!

(x
2

)2k+m
, for all x. (E.19)

E.3 Some Common Indefinite Integrals

Note: For each of the indefinite integrals, an arbitrary constant may be added to the
result.

∫
xndx =






xn+1

n + 1
n �= −1

ln(x) n = −1
. (E.20)

∫
bxdx = bx

ln(b)
b �= 1. (E.21)
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∫
ln(x)dx = x ln(x) − x. (E.22)

∫
sin(x)dx = − cos(x). (E.23)

∫
cos(x)dx = sin(x). (E.24)

∫
tan(x)dx = − ln(| cos(x)|). (E.25)

∫
sinh(x)dx = cosh(x). (E.26)

∫
cosh(x)dx = sinh(x). (E.27)

∫
tanh(x)dx = ln(| cosh(x)|). (E.28)

∫
eax sin(bx)dx = eax

(
a sin(bx) − b cos(bx)

a2 + b2

)
. (E.29)

∫
eax cos(bx)dx = eax

(
b sin(bx) + a cos(bx)

a2 + b2

)
. (E.30)

∫
xnebxdx = ebx

n∑

k=0

(−1)k

bk+1

n!
(n − k)!xn−k (n ≥ 0). (E.31)

∫
xn ln(bx)dx = xn+1

(
ln(bx)
n + 1

− 1
(n + 1)2

)
(n �= −1). (E.32)

∫
1

x2 + b2 dx = 1
b

tan−1
(x

b

)
(b > 0). (E.33)

∫
1

√
b2 − x2

dx = sin−1
(x

b

)
(b > 0). (E.34)

∫
1

√
x2 + b2

dx = log(x +
√

x2 + b2) = sinh−1
(x

b

)
(b > 0). (E.35)

∫
1

√
x2 − b2

dx = log
∣∣∣x +

√
x2 − b2

∣∣∣ = cosh−1
(x

b

)
(b > 0). (E.36)

∫
1

ax2 + bx + c
dx =






1
√

b2 − 4ac
ln

∣∣∣∣∣
2ax + b −

√
b2 − 4ac

2ax + b +
√

b2 − 4ac

∣∣∣∣∣ b2 > 4ac

2
√

4ac − b2
tan−1

(
2ax + b

√
4ac − b2

)
b2 < 4ac

. (E.37)
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∫
1

√
ax2 + bx + c

dx =






1√
a

ln
∣∣∣2ax + b + 2

√
a(ax2 + bx + c)

∣∣∣ a > 0

1√−a
sin−1

(
−2ax − b
√

b2 − 4ac

)
a < 0

. (E.38)

E.4 Some Common Definite Integrals
∫ ∞

0
xne−xdx = �(n + 1) = n! for integer n ≥ 0. (E.39)

∫ ∞

−∞
e−x2

dx =
∫ ∞

0
x−1/2e−xdx = �(1/2) = √

π . (E.40)

∫ ∞

0
xn−1/2e−xdx = �(n + 1/2) = (2n)!

22nn!
√

π , for integer n ≥ 1. (E.41)

∫ ∞

−∞
sinc(x)dx =

∫ ∞

−∞
sinc2(x)dx = 1. (E.42)

1
2π

∫ 2π

0
cosn(x)dx = 1

2π

∫ 2π

0
sinn(x)dx =






0 n odd(
n

n/2

)
1
2n n even

. (E.43)

∫ ∞

−∞
1

x2 + b2 dx = 2
∫ ∞

0

1
x2 + b2 dx = π

b
, b > 0. (E.44)

∫ b

−b

1
√

b2 − x2
dx = 2

∫ b

0

1
√

b2 − x2
dx = π , b > 0. (E.45)

E.5 Definitions of Some Common
Continuous Time Signals

Step function: u(x) =
{

1 x > 0

0 x < 0
. (E.46)
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Rectangle function: rect(x) =
{

1 |x| < 1/2

0 |x| > 1/2
. (E.47)

Triangle function: tri(x) =
{

1 − |x| |x| ≤ 1

0 |x| > 1
. (E.48)

Sinc function: sinc(x) = sin(πx)
πx

. (E.49)

E.6 Fourier Transforms

Table E.1 Common Fourier Transform Pairs

Signal (time domain) Transform (frequency domain)

rect(t/to) tosinc(fto)

tri(t/to) tosinc2(fto)

exp
(

− t
to

)
u(t)

to

1 + j2π fto

exp
(

−|t|
to

)
2to

1 + (2π fto)2

sinc(t/to) torect(fto)

sinc2(t/to) totri(fto)

exp(j2π fot) δ(f − fo)

cos(2π fot + θ )
1
2
δ(f − fo)ejθ + 1

2
δ(f + fo)e−jθ

δ(t − to) exp(−j2π fto)

sgn(t)
1

jπ f

u(t)
1
2
δ(f ) + 1

j2π f

exp(−(t/to)2)
√

π t2
o exp(−(π fto)2)
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E.7 z-Transforms

Table E.2 Common z-Transform Pairs

Signal Transform Region of convergence

δ[n] 1 all z

u[n] 1
1 − z−1 |z| > 1

nu[n] z−1

(
1 − z−1

)2 |z| > 1

n2u[n] z−1(1 + z−1)
(
1 − z−1

)3 |z| > 1

n3u[n] z−1(1 + 4z−1 + z−2)
(
1 − z−1

)4 |z| > 1

bnu[n] 1
1 − bz−1 |z| > |b|

nbnu[n] bz−1

(
1 − bz−1

)2 |z| > |b|

n2bnu[n] bz−1(1 + bz−1)
(
1 − bz−1

)3 |z| > |b|

bn cos[�on]u[n] 1 − b cos(�o)z−1

1 − 2b cos(�o)z−1 + bz−2 |z| > |b|

bn sin[�on]u[n] b sin(�o)z−1

1 − 2b cos(�o)z−1 + bz−2 |z| > |b|

u[n − 1]
n

ln
(

1
1 − z−1

)
|z| > 1

(
n + m

m

)
bnu[n] 1

(
1 − bz−1

)m+1 |z| > |b|

bn

n! u[n] exp(bz−1) all z
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E.8 Laplace Transforms

Table E.3 Common Laplace Transform Pairs

Function Transform Region of convergence

u(t) 1/s Re[s] > 0

exp(−bt)u(t)
1

s + b
Re[s] > −b

sin(bt)u(t)
b

s2 + b2 Re[s] > 0

cos(bt)u(t)
s

s2 + b2 Re[s] > 0

e−at sin(bt)u(t)
b

(s + a)2 + b2 Re[s] > −a

e−at cos(bt)u(t)
s + a

(s + a)2 + b2 Re[s] > −a

δ(t) 1 all s

d
dt

δ(t) s all s

tnu(t), n ≥ 0
n!

sn+1 Re[s] > 0

tne−btu(t), n ≥ 0
n!

(s + b)n+1 Re[s] > −b
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E.9 Q-Function

Table E.4 lists values of the function Q(x) for 0 ≤ x < 4 in increments of 0.05. To
find the appropriate value of x, add the value at the beginning of the row to the
value at the top of the column. For example, to find Q(1. 75), find the entry from the
column headed by 1.00 and the row headed by 0.75 to get Q(1. 75) = 0. 04005916.

Table E.4 Values of Q(x) for 0 ≤ x < 4 (in increments of 0.05)

Q(x) 0.00 1.00 2.00 3.00

0.00 0.50000000 0.15865525 0.02275013 0.00134990
0.05 0.48006119 0.14685906 0.02018222 0.00114421
0.10 0.46017216 0.13566606 0.01786442 0.00096760
0.15 0.44038231 0.12507194 0.01577761 0.00081635
0.20 0.42074029 0.11506967 0.01390345 0.00068714
0.25 0.40129367 0.10564977 0.01222447 0.00057703
0.30 0.38208858 0.09680048 0.01072411 0.00048342
0.35 0.36316935 0.08850799 0.00938671 0.00040406
0.40 0.34457826 0.08075666 0.00819754 0.00033693
0.45 0.32635522 0.07352926 0.00714281 0.00028029
0.50 0.30853754 0.06680720 0.00620967 0.00023263
0.55 0.29115969 0.06057076 0.00538615 0.00019262
0.60 0.27425312 0.05479929 0.00466119 0.00015911
0.65 0.25784611 0.04947147 0.00402459 0.00013112
0.70 0.24196365 0.04456546 0.00346697 0.00010780
0.75 0.22662735 0.04005916 0.00297976 0.00008842
0.80 0.21185540 0.03593032 0.00255513 0.00007235
0.85 0.19766254 0.03215677 0.00218596 0.00005906
0.90 0.18406013 0.02871656 0.00186581 0.00004810
0.95 0.17105613 0.02558806 0.00158887 0.00003908



Numerical Methods for
Evaluating the Q-Function F

In this appendix, we give an overview of several methods available for numerically
evaluating the CDF of a Gaussian random variable and related integrals. Recall
that for a zero-mean unit variance Gaussian random variable, the CDF is given by
the integral

FX(x) =
∫ x

−∞
1√
2π

exp

(
− t2

2

)
dt. (F.1)

The Q-function is the complement of this integral:

Q(x) =
∫ ∞

x

1√
2π

exp

(
− t2

2

)
dt. (F.2)

Many math packages, such as MATLAB, have internal routines for evaluating
related integrals, usually the error function or complementary error function. Given
the most common definitions of these functions,

erf(x) = 2√
π

∫ x

0
exp(−t2) dt, (F.3)

erfc(x) = 2√
π

∫ ∞

x
exp(−t2) dt, (F.4)

the Q-function can then be written in terms of these functions as

Q(x) = 1
2

erfc
(

x√
2

)
= 1

2
− 1

2
erf

(
x√
2

)
. (F.5)
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For situations where internally defined functions are not available, several numer-
ical techniques are available for efficiently evaluating the Q-function. Recall the
symmetry relationship

Q(x) = 1 − Q(−x). (F.6)

Hence, any routine for evaluating the Q-function needs to work only on positive
values of x. To start with, we consider the Taylor series expansion of the Q-function
about the point x = 0,

Q(x) = 1
2

+ 1√
2π

∞∑
k=0

(−1)k+1

k!2k(2k + 1)
x2k+1. (F.7)

This series is convergent for all x ≥ 0 but will converge faster for smaller values
of x. A good approximation can be obtained by truncating the series to a sufficient
number of terms. Since the series is alternating, the truncation error is bounded by
the first term neglected. Figure F.1 shows the Q-function along with its approxima-
tions using the Taylor series truncated to various numbers of terms. It is seen from
this figure that for x > 2, a large number of terms may be needed for the Taylor
series to converge.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

100

x

Q
(x

)

1 term 

2 terms 

3 terms 

4 terms 

5 terms 

Q(x) 

10−1

10−2

Figure F.1 The Q-function and its truncated Taylor series approximation.
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For larger values of x, it is common to use the following asymptotic series
expansion:

Q(x) = 1√
2πx

exp

(
−x2

2

) {
1 +

∞∑
n=1

(−1)n(2n)!
2nn! x−2n

}
, for x > 0. (F.8)

Since the series has negative powers of x, the larger x is, the faster the series will
converge. Also, as with the Taylor series expansion, since this is a convergent
alternating series, the truncation error will be bounded by the first neglected term.
Further, the sign of the error will be the same as that of the first neglected term. As
a result, for large values of x, the Q-function can be upper- and lower-bounded by

1√
2πx

(
1 − 1

x2

)
exp

(
−x2

2

)
≤ Q(x) ≤ 1√

2πx
exp

(
−x2

2

)
. (F.9)

These two bounds are shown in Figure F.2. From the figure as well as from the
expressions in the previous equation, it is clear that as x → ∞, both bounds are
asymptotically tight. Therefore,

Q(x) ∼ 1√
2πx

exp

(
−x2

2

)
. (F.10)

1 1.5 2 2.5 3 3.5 4

100

10−1

10−2

10−3

10−4

10−5

x

Q
(x

)

1 term 
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Figure F.2 Upper and lower bounds on the Q-function.
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From the figure, it appears that this approximation is fairly accurate for x > 4. If
more accuracy is desired, more terms can be included in the asymptotic expansion.

In addition to the Taylor series and asymptotic series expansions, there are also
a few continued fraction expansions for the Q-function as follows.

Q(x) = 1√
2π

exp

(
−x2

2

)




1

x + 1

x + 2

x + 3

x + 4
x + · · ·




, for x > 0, (F.11)

Q(x) = 1
2

− 1√
2π

exp

(
−x2

2

)




x

1 − x2

3 + 2x2

5 − 3x2

7 + 4x2

9 − · · ·




, for x ≥ 0, (F.12)

A number of polynomial and rational approximations of the Q-function are
available. Among them, the following seems to offer the best accuracy:

Q(x) = 1√
2π

exp

(
−x2

2

)
(b1t + b2t2 + b3t3 + b4t4 + b5t5), t = 1

1 + px
, (F.13)

where,

p = 0. 2316419,
b1 = 0. 319381530,
b2 = −0. 35656378,
b3 = 1. 7814779,
b4 = −1. 821256,
b5 = 1. 3302744.

The error in this approximation is less than 7. 5 × 10−8 for all 0 ≤ x < ∞.
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Note that any desired accuracy can be obtained by computing the Q-function
via numerical integration. Using the definition directly, the Q-function has an
infinite limit which is inconvenient for performing numerical integration. For
small to moderate values of x, this problem can be circumvented by rewriting
the Q-function as

Q(x) = 1
2

− 1√
2π

∫ x

0
exp

(
− t2

2

)
dt. (F.14)

For large values of x, it may be more efficient to work with the standard definition
and truncate the upper limit to form the approximation

Q(x) ≈ 1√
2π

∫ x+c

x
exp

(
− t2

2

)
dt. (F.15)

where the constant c is chosen to insure the desired accuracy. For c > 2 and x > 1. 5,
the relative error in this approximation can be shown to be bounded by

ε(x)
Q(x)

= Q(x + c)
Q(x)

≤ exp

(
−

(
c2

2
+ 3

))
. (F.16)

For example, choosing c = 3. 5 will guarantee a relative accuracy of less than 10−4

(i.e., four digits of accuracy). Finally, we note an alternative form of the Q-function
that has finite limits,

Q(x) = 1
π

∫ π/2

0
exp

(
− x2

2 sin2 θ

)
dθ . (F.17)

Since the integrand is fairly well-behaved and the limits of integration are finite,
numerical integration on this form is particularly convenient and can be performed
to any desired accuracy.
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axioms, 11–14
conditional, 20–22
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Probability mass function
(PMF), 28–31

joint, 157–159
random processes and,

283–291
Property method, 487
Pulse amplitude modulation

(PAM), 397–403, 426–427

Q
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Bernoulli, 31–32, 514
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definitions, 28
examples, 29–31
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Pascal, 515
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Random variables, pairs of
(continued)

joint Gaussian, 174–178
joint probability density

functions, 151–157
joint probability generating

function, 180–182
joint probability mass

functions, 157–159
transformations, 182–193

Random walks, 327
Rare events, simulation of,

476–480
Rayleigh random variables,

68, 511–512
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Rician random variables, 69,
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bandwidth, 381–382
Roster method, 487
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Saddle point approximation,
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Sample mean, 243
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defined, 8
examples, 9–10

Scalar quantization, 126–134
Second order PDF, 285
Sequential detection, 268
Series expansions, 517–518
Set theory, 487–489
Shannon entropy, 136
Shot noise, 308–313
Signals

review of, 499–503
types of, 277–278

Signal-to-noise ratios (SNR),
421–423

Signal-to-quantization noise
ratio (SQNR), 128–132

Simulation techniques
application, 481–483

computer generation,
457–465

for random processes,
465–476

for rare events, 476–480
Skewness, 95

coefficient of, 91, 95–97
Source coding, 134–138
Spectral factorization, 431
Speech, linear prediction of,

227–232
Speech recognition system,

3–4
Square law transformation,
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Standard deviation, 57, 95
State diagrams, 325–326
State probabilities, 329–335
Stationary processes, 291–300

Wiener-Khintchine-Einstein
theorem, 373–375

Steady state distribution, 345
Stochastic signals, 7
Student’s t-distribution,

260–261, 512–513
Sums of random variables,

263–265

T
Tail probabilities, evaluating,

119–126
Taylor’s theorem, 112, 254
t-distribution, 260–261,

512–513
Telecommunications, Erlang

random variables and, 67
Telephone exchange

application, 357–359
Thermal noise, 394–397
3-dB bandwidth, 381
Time domain approach,

470–475
Total probability, theorem of,

23
Transfer function, 502
Transformations

Box-Muller, 191–192, 219,
465

coordinate systems in three
dimensions, 225–227

linear, 216–221
of multiple random

variables, 215–227
order statistics, 223–225
of pairs, 182–193
quadratic, 221–223
of single random variables,

100–108
Transition probability matrix,

324, 329–335
Trigonometric identities, 517

U
Unbiased estimate, 241
Uniform random variables,

50, 63–64, 513

V
Variance, 57, 91, 94–95

IID random variables,
245–247

Venn diagram, 13–14, 488

W
Wald’s inequalities, 268–270
Weak law of large numbers,

251–253
Weibull, 513–514
White Gaussian noise (WGN),

396, 475–476
Whitening, 219
Whitening filter, 431
White noise, 396
Wide sense stationary (WSS),

293–300
Wiener filter, 427–435
Wiener-Hopf equations,

429–431
Wiener-Khintchine-Einstein

theorem, 299, 373–380

Y
Yule-Walker equations, 429

Z
z-transforms, 114, 369, 522


