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All other aspects of the book, such as ils purpose (a textbook), intended
audience (juniors, seniors, first-year graduate students), level, and style of presen-
tation, remain as before.

I ' would like to thank D. I Starry for her excellent work in typing the manu-
script and the University of Florida for making her services available. Finally, 1
am again indebted to my wife, Barbara, for her selfless efforts in helping mec

proofread the book. If the number of in-print errors is small, it is greatly due to
her work.

Peyton Z. Peebles, Jr.

TYREUTLORTLTS

PREFACE TO THE
FIRST EDITION

This book has been written specifically as a textbook with the purpose of intro-
ducing the principles of probability, random variables, and random signals to
either junior or senior engineering students,

The level of material included in the book has been selected to apply to a
typical undergraduate program, However, a small amount of more advanced
material is scattered throughout to serve as stimulation for the more advanced
student, or to fill out course content in schools where students are at a more
advanced level. (Such topics are keyed by a star *) The amount of material
included has been determined by my desire to fit the tex} to courscs of up to onc
semester in length. (More is said below about course structure.)

The need for the book is easily established. The engineering applications of
probability concepts have historically been taught at the graduate level, and
many excellent texts exist at that level. In recent times, however, many colleges
and universities are introducing these concepts into the undergraduate curricula,
especially in electrical engineering. This fact is made possible, in part, by refine-
ments and simplifications in the theory such that it can now be grasped by junior
or senior engineering students. Thus, there is a definite need for a text that is
clearly written in a manner appealing to such students. [ have tried to respond to
this need by paying careful attention to the organization of the contents, the
development of discussions in simple language, and the inclusion of text examples
and many problems at the end of each chapter. The book contains over 400
problemis and a solutions manual for all problems is available to instructors from
the publisher.

Many of the examples and problems have purposely been made very simple
in an effort to instill a sense of accomplishment in the student, which, hopefully,
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Xvi PREFACE TO THE FIRST EDITION

will provide the encouragement to go on to the more challenging problems.
Although emphasis is placed on examples and problems of electrical engincering,
the concepts and theory arc applicable to all arcas of engincering,

The International System of Units (SI) has been used primarily throughout
the text. However, because technology is presently in a transitional stage with
regard to mcasurcments, some of the more cstablished customary units (gallons,
°F, clc,) are also utilized; in such instances, values in SI units follow in paren-
theses. '

The student background required to study the book is only that typical of
junior or senior engincering students. Specifically, it is assumed the student has
been introduced to multivariable calculus, Fourier scries, Fouricr transforms,
impulse functions, and some lincar system theory (transfer function concepls,
especially). 1 recognize, however, that students tend to forget a fair amount of
what is initially taught in many of these arcas, primarily through lack of
opportunity to apply the material in later courses. Therefore, T have inserted
short reviews of some of these required topics. These reviews are occasionally
included in the text, but, for the most part, exist in appendixes at the end of the
book.

The order of the material is dictated by the main topic. Chapter | introduces
probability from the axiomatic definition using set theory, In my opinion this
approach is more modern and mathematically correct than other definitions. 1t
also has the advantage of creating a better base for students desiring to go on (o
graduate work, Chapter 2 introduces the theory of a single random variable,
Chapter 3 introduces opcrations on onc random variable that are based on sta-
tistical expectation. Chapter 4 cxtends the theory to several random variables,
while Chapter 5 defines operations with several variables. Chapters 6 and 7 intro-
duce random processes. Definitions based on temporal charactcrizations arc
developed in Chapter 6. Spectral characterizations are included in Chapter 7.

The remainder of the text is concerncd with the response of linear systems
with_random inputs, Chapler 8 contains the general theory, mainly for lincar
time-invariant systems; while Chapter 9 considers specific optimum systems that
cither maximize system output signal-lo-noise ralio or minimize a suitably
defined average error.

Finally, the book closcs with a number of appendixes that contain material
helpful to the student in working problems, in reviewing background topics, and
in the interpretation of the text.

The bodk can profitably be used in curricula based on cither the quarter or
the semester system. At the University of Tennessce, i one-quarter undergraduate
course at the junior level has becn successfully taught that covers Chapters 1
through 8, except for omitting Scctions 2.6, 3.4, 4.4, 8.7 through 89, and all
starred malerial. The class met three hours per week,

A one-semester undergraduate course (three hours per week) can readily be
structured to cover Chapters 1 through 9, omitting all starred material except
that in Sections 3.3, 5.3, 7.4, and 8.6.

Although the text is mainly developed for the undergraduate, 1 have also
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successfully used it in a one-quarter graduate course (frst-year, three hours per
week) that covers Chapters 1 through 7, including all starred matcrial,

It should be possible to cover the entire book, including all starred material,
in a one-semester graduate course (first-year, three hours per week).

I am indebted to many people who have helped make the book possible. Drs.
R. C. Gonzalez and M. O. Pace read portions of the manuscript and suggested a
number of improvements. Dr. T. V. Blalock taught from an early version of the
manuscript, independently worked ‘a number of the problems, and provided
various improvements. 1 also extend my appreciation to the Advanced Book
Program of Addison-Wesley Publishing Company for allowing me to adapt and
use several of the figures from my earlier book Communication System Principles
(1976), and to Dr. J. M. Googe, head of the clectrical engineering department of
the University of Tennessce, for his support and encouragement of this project.
Typing of the bulk of the manuscript was ably done by Ms. Belinda Hudgens;
other portions and various corrections were typed by Kymberly Scott, Sandra
wilson, and Denise Smiddy. Finally, I thank my wife, Barbara, for her aid in
proofrcading the entire book.

Peyton Z. Peebles, Jr.
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1.0 INTRODUCTION TO BOOK AND CHAPTER

The primary goals of this book are to introduce the reader to the principles of
random signals and to provide tools whereby one can deal with systems involv-
ing such signals, Toward these goals, perhaps the first thing that should be done
is define what is meant by random signal. A random signal is a time waveformt
that can be characterized only in some probabilistic manner, In general, it can be 4
either a desired or undesired waveform. A

The reader has no doubt heard background hiss while listening to an ordi- .
nary broadcast radio recciver. The waveform causing the hiss, when observed on ‘
an oscilloscope, would appear as a randomly fluctuating voltage with time. 1t is
undesirable, since it interferes with our ability to hear the radio program, and is
called noise.

Undesired random wavelorms (noise) also appear in the outputs of other
types of systems. In a radio astronomsr’s receiver, noisc interferes with the
desired signal from outer space (which itself is a random, but desirable, signal). In
a television system, noise shows up in the form of picture interference often called
“snow.” In a sonar system, randomly generated sea sounds give rise to a noisc
that interferes with the desired echocs. .

The number of desirable random signals is almost limitless. For example, the
bits in a computer bit stream appear to fluctuate randomly with time between the
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; t We shall usually assume random signals to be voltage-time waveforms. However, the theory to . /’TF
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2 PRODADILITY, RANDOM VARIABLES, AND RANDOM SIGNAL PRINCIPLES

zero and one states, thereby creating a random signal. In another example, the
output vollage of a wind-powered generator would be random because wind
speed fuctuates randomly. Similarly, the voltage from a solar detcctor varics ran-
domly duc to the randomness of cloud and weather conditions. Still other cxam-
ples arc: the signal from an instrument designed to measure instantancous ocean
wave heights the space-originated signal at the output of the radio astronomer’s
antenna (the relative intensity of this signal from spacc allows the astronomer (o
form radio maps of the heavens); and the voltage from a vibration analyzer
attached to an automobile driving over rough terrain.

In Chapters 8§ and 9 we shall study methods of characterizing systems having
random input signals. However, from the above examples, it is obvious that
random signals only represent the behavior of morc fundamental underlying
random phenomena. Phenomena associated with the desired signals of the last
paragraph arc: information source for computer bit stream; wind speed; various
weather conditions such as cloud density and size, cloud specd, elc.; occin wave
height; sources of outer space signals; and terrain roughness. All these phenom-
enit must be deseribed in some probabilistic way.

Thus, there are actuaily (wo things to be considered in characlerizing
random signals. One is how Lo describe any one of a varicty of random phenom-
ena: another is how to bring time into the problem so as to create the random
signal of interest. To accomplish the first item, we shall introduce mathematical
coneepts in Chapters 2, 3, 4, and 5 (random variables) that are sufficiently general
they can apply to any suitably defined random phenomena. To accomplish the
second item, we shall introduce another mathematical concept, called a random
process, in Chapters 6 and 7. All these concepls are based on probability theory.

‘The purpose of this chapler is to introduce the clementary aspects of prob-
ability theory on which all of our later work is bascd. Several approaches exist
for the definition and discussion of probability. Only two of these are worthy of
modern-day consideration, while all others are mainly of historical interest and
are not commented on further here. Of the more modern approaches, onc uses
the relative frequency definition of probability. It gives a degree of physical
insight which is popular with engincers, and is often used in texts having prin-
cipal topics other than probability theory itself (for cxample, sce Pecbles, 1976).t

The second approach to probability uscs the axiomatic definition. It is the
most mathematically sound of all approaches and is most appropriate for a text
having its lopics based principally on probability theory. The axiomatic
approach also scrves as the best basis for readers wishing to proceed beyond the
scope of this book to more advanced theory. Because of these facts, we adopt the
axiomatic approach in this book.

Prior to the introduction of the axioms of probability, it is necessary (hat we
first develop certain clements of set theory.t

t Referenves are quated by name and date of publication. They are listed at the end of the hook.
£ Our treatment is limited to the fevel required 1o introduce the desited probability concepts. For
additional details the reader is referred 1o MeFadden (1963), or Milton and Tsokos (1976).
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PROBABILITY 3

1.1 SET DEFINITIONS .

A set is a collection of objects. The objects are called elements of the set and may

. » be anything whatsoever, We may have a st of vollages, a set of airplanes, a set of

chairs, or even a sct of sets, called a class of scts. A set is usually denoted by a
capital letter while an element is represented by a lower-case letter. Thus, if a is
an clement of st A4, then we write

ae A (1.1-1)
If « is not an clement of 4, we write
ad¢ A (1.1-2)

A set is specified by the content of two braces: {-}. Two methods exist for
specilying content, the tabular method and the rule method. In the tabular
method the clements are enumerated explicitly. For example, the set of all in-
tegers between 5 and 10 would be {6, 7, 8, 9}. In the rulc method, a set's content
is determined by some rule, such as: {integers .between 5 and 10}.1 The rule
method is usually more convenient to use when the set is large. For example,
{intcgers from | to 1000 inclusive} would be cumbersome to write explictly using
the tabular method.

A sel is said to be countable if its elements can be put in one-to-one corre-
spondence with the natural numbers, which are the integers 1, 2, 3, etc. If a set is
not countable it is called uncountable. A set is said to be empty il it has no ele-
ments. The emply sct is given the symbol & and is often called the null set.

A finite set is onc that is cither empty or has elements that can be counted,
with the counting process terminating. In other words, it has a finite number of

_ clements. If a set is not finite it is called infinite. An infinite set having countable

clements is called countably infinite.
If every element of a set A is also an element in another sct B, A is said to be
contained in B. A is known as a subset of B and we write

! AcB (1.1-3)

If at least one element exists in B which is not in A, then A is a proper subset of B,
denoted by (Thomas, 1969)

AcB (1.1-4)

The null set is clearly a subsct of all other sets.
Two sets, A and B, are called disjoint or mutually exclusive if they have no

common clements. . - - \
[ SV TN '\,‘.L-J': biss) —e 413 - (;//(

t Somectimes notations such as {/{S </ <10, an integer) or {I: S <1< 10, ] an integer} are
seen in the literature.
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4 ?RODAUIL.ITY, RANDOM VARIABLES, AND RANDOM SIGNAL PRINCIPLES

Example 1.1-1 To illustrate the topics discussed above, we identify the sets
listed below.

A={1,3,517)
B={1,23,..}
C={0.5<c<8.5)

D = {0.0}
E={24,68, 10, 12, 14}
F={-50<f<120}

The sct A is tabularly.specified, countable, and finite. B is also tabularly
specified and countable, but is infinite, Set C is rule-specified, uncountable,
and infinite, since it contains all numbers greater than 0.5 but not exceeding
8.5. Similarly, sets D and E are countably finite, while set F is uncountably
infinite. It should be noted that D is not the null set; it has one element, the
number zero, !

.Set A is contained in sets B, C, and F. Similarly, C < F, D < F, and
E < B. Sets B and F are not subsets of any of the other sets or of each other.
Sets 4, D, and E are mutually exclusive of each other. The reader may wish
to identify which of the remaining sets are also mutually exclusive.

The largest or all-cncompassing st of objects under discussion in a given
situation is called the universal set, denoted S. All sets (of the situation

considered) are subsets of the universal set. An example will help clurify the
concept of a universal set,

Example 1,1-2 Suppose we consider the problem of rolling a die. We are
interested in the numbers that show on the upper face. Here the universal set
is §$={1,2, 3,4, 5, 6}. In a gambling game, suppose a person wins il the
number comes up odd. This person wins for any number in the set 4 =

{1, 3, 5}. Another person might win if the number shows four or less; that is,

for any number in the set B = {1, 2, 3, 4}.

Observe that both A and B are subsets of S. For any universal set with N
clements, there are 2" possible subsets of §. (The reader should check this for -

a few values of N.) For the present example, N = 6 and 2" = 64, so that there
are 64 ways one can define “ winning” with one die.

It should be noted that winning or losing in the above gambling game is
related to a set. The game itsclf is partially specified by its universal sct (other
games typically have a different universal sct). These facts are not just coin-
cidence, and we shall shortly find that sets form the basis on which our study of
probability is constructed.

¢
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Figure 1.2-1 Venn diagrams. (a) Illustration
G of subsets and mutually exclusive seis, and
(b) illustration of intersection and union of
®) sets. ([Adapted from Peebles,(1976) with permis-
@ sion of publishers Addison-Wesley, Advanced
N\ Book Program.]

1.2 SET OPERATIONS

In working with sets, it is helpful to introduce a geometrical representation that
cnables us to associate a physical picture with sets.

VYenn Diagram

Such a representation is the Venn diagram.t Here scts are represented by closed-
plane figures. Elements of the sets are represented by the enclosed points (area).
Theé universal set S is represented by a rectangle as illustrated in Figure 1.2-1a.
Three sets 4, B, and C are shown. Set C is disjoint from both A and B, while set

B is a subset of A.
Equality and Difference

Two scts A and B arc equal if all elements in A are present in B and all elements
in B arc present in A; that is, if A € B and B < A. For cqual sets we write 4 = B.
The difference of two sets A and B, denoted 4 — B, is the set containing all

t After John Venn (1834-1923), an Englishman.

e
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clements of 4 that are not present in B. For example, with 4 = {06 <a < 1.6}
and B={1.0<b<25), then A= B={06<c< 10)or B=A= {1.6<dS
2.5). Note that A = B # B — 4.

Union and Intersection
The union (calt it C) of two sets A and B is written
C=AuB

It is the set of all elements of A or B or both. The union is sometimes called the
stm of two sets.
The intersection {call it D) of two sets A and B is written

D=ANB (1.2-2)

1t is the set of all elements common to both A and B. Interscction is sometimes
called the product of two scts. For mutually exclusive sets 4 and B, A 0 B=g.
Figure 1.2-1b illustrates the Venn diagram area to be associated with the intersce-
tion and union of scts.

By rcpeated application of (1.2-1) or (1.2-2), the union and intersection of N
sets A, n=1,2,..., N, become

N
C=d,udyu--udy=1J4, (1.2-3)

N
D=A,nAyn-nAy= ()4, (1.2-4)

n=l

Complement

The complement of a sct A, denoted by A, is the set of all elements not in A. Thus,
A=85—-A (1.2-5)

It is also casy to sce that F =8, 8§ = &, 4 U A=Sand AnA=(.

Example 1.2-1 We illustrate interscction, union, and complement by taking
an example with the four scts

B=1{2671809 10,11}
C=1{1,3,467138)

y = {1 < integers < 12)
A=1{1,3512}
Applicable unions and interscctions here are:
AubB=1{1,23567285910 11, 12}
AuC={1,34567178 12}
Buc=({,234 6,7, 8,9 10, 11}

AnB=g
AnC={1,3}
BnC={6738)

(12-1)

| £
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Figure 1.2-2 Venn diagram applicable to
Example 1.2-1.

Complements are:
: A={2,46712829, 10, 11}

B=1{1,3,4,512}

C=1{25291011, 12}

The various sets are illustrated in Figure 1.2-2.

Algebra of Sets

All subsets of the universal set form an algebraic system for which a number of
thcorems may be stated (Thomas, 1969). Three of the most important of these
relate to laws involving unions and intersections. The commutative law stales that

AnB=Bn A (1.2-6)
AuB=BuUA (1.2-7)

- The distributive law is written as
An(BuC)=(AnB)u(AnC) (1.2-8)
AUBAC)=(AuUBAn(Av() (1.29)

The associative lals‘v is written as
'.‘(AuB)uC=Au(BuC)=AuBuC (1.2-10)
'(Ar\B)r\C=An(BnC)=AnBr\C (1.2-11)

These are just restatements of (1.2-3) and (1.2-4).

De Morgan’s Laws

By use of a Venn diagram we may readily prove De Morgan's lawst, which state
that the complement of a union (intersection) of two sets A and B cquals the
intersection (union) of the complements A and B. Thus,

Mum%JnB
(AnB=AUB

(1.2-12)
(1.2-13)

t After Augustus De Morgan (1806-1871), an English mathematician.
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From the last two expressions one can show that if in an identity we replace,

unions by intersections, intersections by unions, and sets by their complements,
then the identity is preserved (Papoulis, 1965, p. 23).

Example 1.2-2 We verify De Morgan's law (1.2-13) by using the example scts
A={2<a<16)and B={5<b <22} when § = {2 <s < 24}, First, if we
define C= A n B, the reader can readily see from Venn diagrams that
C=AnB={S<cs16}soC=AnB={2<cxsS5 16 <c<24}. This
result is the left side of (1.2-13).

Second, we compute A=S—A={l6<a<24) and B=5S-B=
{2<b<5 22<b<24), Thus, C=AUuB={2<e¢<5 16<c<24).
This result is the right side of (1.2-13) and De Morgan’s law is verified.

Duality Principle

Thi§ prinf:iple (Papoulis, 1965) states: if in an identity we replace .unions by inler-
sections, intersections by unions, $ by &, and & by S, then the identity is pre-
served. For example, since

An(BuC=ANnBudn O (1.2-14)
is a valid identity from (1.2-8), it follows that
AuBnNnC=(AuBn(duC) (1.2-15)

is also valid, which is just (1.2-9).

1.3 PROBABILITY INTRODUCED THROUGH SETS

Basic to our study of probability is the idea of a physical experiment. In this
section we develop a mathematical model of an experiment, Of course, we arc
interested only in cxperiments that are regulated in some probabilistic way, A
single performance of the experiment is called a trial for which there is an
outcone.

Experiments and Sample Spaces

Although there exists a precise mathematical procedure for defining an experi-.
ment, we shall rely on reason and examples. This simplified approach will ulti-
mately lead us to a valid mathematical model for any real experiment.t To

t Most of our carly definitions involving probability are rigorously established only through con-
cepts beyond our scope. Although we ndopt u simplified development of the theory, our final results
are no less valid or useful than il we had used the advanced concepts.

rroOuAMLITY 9

illustrate, one experiment might consist of rolling a single die and obscerving the
number that shows up. There are six such numbers and they form all the possible
outcomes in the experiment. If the dic is “unbiased " our intuition (ells us thal
each outcome is equally likely to occur and the likelihood of any one oceurring is
Y, (later we call this number the probability of the outcome). This experiment is
seen Lo be governed, in part, by two sefs. One is the set of all possible outcomes,
and the other is the set of the likelihoods of the outcomes. Each set has six cle-
ments. For the present, we consider only the set of outcomes,

The set of all possible outcomes in any given experiment is called the sample
space and it is given the symbol S. In effect, the sample space is a universal set for
the given experiment. § may be different for different experiinents, but all experi-
ments are governed by some sample space. The definition of sample space forms
the first of three clements in our mathematical model of experiments. The remain-
ing clements arc events and probability, as discussed below.

Discrete and Continuous Sample Spaces

In the earlier dic-tossing cxperiment, S was a finite set with six clements. Such
sumple spaces are said to be diserete and finite, The sample space cnn also be dis-
crete and infinite for some cxperiments, For cxample, § in the experiment
“choose randomly a positive integer ” is the countably infinite set {1,2,3,...).

Some experiments have an uncountably infinite sample space. An illustration
would be the experiment * obtain a number by spinning the pointer on a wheel of
chance numbered from 0 to 12" Here any number s from 0 to 12 can result and
§ = {0 < s < 12}. Such a sample space is called continuous.

Events

In most situations, we arc interested in some characteristic of the outcomes of our
experiment as opposed to the outcomes themselves, In the experiment “draw a
card from a deck of 52 cards,” we might be more interested in whether we draw a
spude as opposed (o having any interest in individual cards. To handle such situ-
ations we define the concept of an evenl,

An event is defined as a subset of the sample space. Because an cvent is a set,
all the carlier definitions and operations applicable to sets will apply to events.
For example, il two evenls have no common outcomes they arc mutually
exclusive.

In the above card experiment, 13 of the 52 possible outcomes arc spades.
Since any one of the spade outcomes salisfies the event “draw a spade,” this
event is a sel with 13 clements. We have carlier stated that a set with N clement(s
can have as many as 2¥ subscts (events defined on a sample space having N
possible outcomes). In the present example, 2% = 2°2 = 4.5(10'%) events.

As with the sample space, events may be either discrete or continuous. The
card even! “draw a spade” is a discrete, finite event. An example of a discrete,
countably infinite cvent would be “sclect an odd integer™ in the experiment




50

10 PROBABILITY, RANDOM VARIABLES, AND RANDOM SIGNAL PRINCIPLES

“randomly scleet a positive intcger.” The cvent has a countably infinite number
of clements: {1, 3,5, 7, ...} However, cvents defincd on a coutably infinite sample
space do not have to be countably infinite. The event {1, 3,5 7 is clearly not
infinite but applies to the integer sclection experiment.

Events defined on continuous sample spaces arc usually continuous. In the
cxperiment *choose randomly a number a from 6 to 13, the sample spacc is
S = {6 <5< 13} An event of interest might correspond to the chosen number
falling between 7.4 and 7.6; that is, the event {call it A)is 4 = (74 < a < 7.6}

Discrete events may also be defined on continuous sample spaces. An
example of such an cventis A = {6.13692} for the sumple space S = {6 S5 S 13}
of the previous paragraph. We comment later on this type of event.

The above definition of an cvent as @ subset of the sample space forms the
sccond of three elements in our mathematical model of experiments. The third
clement involves defining probability.

Probability Definition and Axioms

To cach cvent defined on a sample space S, we shall assign a nonnegalive number
called probability. Probability is thercfore a function: it is a function of the events
defined. We adopt the notation P(A)f for “the probability of event A" When an
cvent is stated explicitly as a set by using braces, we employ the notation P{-}
instead of P({*}).

The assigned probabilitics are chosen so as o salisfy three axionis. Let A be
any event defined on a sample spacc S. Then the first two axioms are

P(A) =0
P(S)y =1

The lirst only represents our desire to work with nonnegative numbers. The
sccond axiom recognizes that the sample space itsell is an event, and, since it is
the all encompassing event, it should have the highest possible probability, which
is selected as unity. For this reason, S is known as the certain event. Alternatively,
the null set & is an event with no elements; it is known as the impossible event
and its probability is 0.

“The third axiom applics to N events A, n =12, ..., N, where N may possi-
bly be infinite, defined on a sample space S, and having the property A, O A, =
G forallm#n 1t is

N N
axiom 3: l’( U A,,) = E P(A,) if

n=1 LR}

(1.3-1a)
(1.3-1h)

axiom 1:

axiom 2@

A, A =D (1.3-1¢)

for all m#n=1,2 ..., N, with N possibly infinite. The axiom states that the

t Oceasionally it will be convenient to use brackets, such as (4] when A is itself an cvent such as
C (B

| et e——
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probability of the event equallo the union of any number of mutually exclusive
cvents is cqual to the sum of tie individual event grobabilitics. ,

An example should help ive a physical pictire of the meaning of the above
axioms.

Example 1.3-1 Let an eiperiment consist o obtaining a number x by spin-
ning the pointer on a “fair” wheel of chiirce thal is labeled from O to 100
points. The sample spac is § = {0 < x < 100}, We reason that probability of
the pointer falling between any two number X3 = X, should be (x5 — x)/100
since the wheel is fair.As a check on this assignmenl, we sce that the evenl
A={x<x= x,} safisfies axiom 1 for all x; and X3, and axiom 2 when
x, =100 and x, =0.

Now suppose we¢ break the wheel's periphery into N contiguous scg-
ments A, = {x,-1 <X S X} x, = (MOON, n = 1, 2, ..., N, with xo = 0.
Then P(4,) = I/N, and, for any N,

{()a)= $rua-

nwl nwl nm= |

!
5 =1="

from axiom 3.

Example 1.3-1 allows us to return to our earlier discussion of discrete events
defined on continuous sample spaces. I the interval X, = Xp-1 is allowed to
approach zero (= 0), the probability P(A)- P(x,); that is, P(A,) becomes the
probability of the pointer falling exactly on the point X,. Since N — oo in this
situation, P(4,)— 0. Thus, the probability ofa discrete cvent defined on a contin-
uous sample space is 0. This fact is true in general.

A conscquence of the above statement is that events can accur even if their
probability is 0. Intuitively, any number can be obtaincd from the wheel of
chance, but that precise number may never occur again. The infinite sample space
has only one outcome satisfying such a discrete event, so its probability is 0. Such
cvents are not the same as the impossible event which has no clements and cannot
occur. The converse situation can also happen where events with probability 1
may not occur. Aniexample for the wheel of chance experiment would be the
event A = {all numbers exccpt the number x,}. Events with probability 1 (that
may not occur) are not the same as the certain event which must occur.

Mathematical Model of Experiments

The axioms of probability, introduced above, complete our mathematical model
of an experiment. We pause to summarizc. Given some real physical experiment
having a sct of particular outcomes possible, we first defincd a sample space to
mathematically represent the physical outcomes. Second, it was recognized that
certain characteristics of the outcomes in the real experiment were of interest, as
oppused to the outcomes themselves; events were defined to mathematically

o=
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represent these characteristics. Finally, probablities were assigned to the defined
events to mathematically account for the randon nature of the experiment,

Thus, a real experiment is defined mathemaically by three things: (1) assign-
me‘n‘t of a _samplc space; (2) definition of events of interest; and (3) making prob-
ability assignments to the events such that the aioms are satisfied. Establishing

the correct mo_dcl for an expriment is probably the single most difficult step in
solving probability problems.

Exanllple L1.3-2 An experiment consists of obstrving the sum of the numbers
showxpg up when two dice are thrown. W develop a model for this
experiment, '
The sample space consists of 6% = 36 poinis as shown in Figure 1.3-1.
Each possible outcome corresponds to a sum hasing values from 2 to 12,
Suppose we urc mainly interested in thre events defined by 4=
{sum =7}, B={8 <sum 511}, and C = (10 <sum}.:In assigning proba-
bilities to these events, it is first convenient to define 36 elementary events
Ay = {sum for outcome (i, j} = i + j}, where i represents the row and j repre-
sents the column locating a particular possible outcome in Figure 1.3-1. An
clementary event has only one element. ‘
For probability assignments, intuition indicates that each possible out-
f°”.‘° has the same likelihood of occurrence if the dice are fair, so P(A)) =
36 Itlow because the evenls Ay, iand j=1,2, ..., N =6, are mutually
e.xcluswc. they must satisfy axiom 3. But since the events A, B, and C are
snm'ply the unions of appropriate elementary events, their probabilities are
derived from axiom 3, From Figure 1.3-1 we easily find

. . )
P(A) = = = ,l_ !
(A) P(Igl A,J_,) ‘; P4, 4-) 6(36) =<

p.-

ES NSRRI

g e
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Figure 1.3-1 Sample space applicuble 1o Exumple 1,3-2,
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As a matter of interest, we also obscrve the probabilitics of the events
BAC and BUC to be P(B n C)= 2(*he)="s and P(BUC)=

10('/.\6)=5/|s-

1.4 JOINT AND CONDITIONAL PROBABILITY

In some experiments, such as in Example 1.3-2 above, it may be that some events
are not mutually exclusive because of common elements in the sample space.
These elements correspond to the simultaneous or joint occurrence of (he non-
exclusive events. For two events A and B, the common elements from the event
AN B

Joint Probability

The probability P(4 n B) is called the joint probability for two events A and B
which intersect in the sample space. A study of a Venn diagram will readily show
that

P(A n B) = P(A) + P(B) — P(A v B) (1.4-1)
Equivalently,
P(A U B) = P(4) + P(B) — P(A n B) < P(A) + P(B) (1.4-2)

In other words, the probability of the union of two events never exceeds the sum
of the event probabilities. The equality holds only for mutually exclusive events
because A N B = ¥, and therefore, P(4 n B) = P(J) = 0.

Conditional Probability

Given some event B with nonzero probability

P(B)>0 (1.4-3)
we define the conditional probability of an event A, given 3, by
P(A n B)
(A | B) = — 1.4-4
P(A| B) 7)) (1.4-4)

The probubility P(4] B) simply reficcts the fact that the probability of an cvent A4
may depend on a second event B. If 4 and B are mutually exclusive, A N B = &,
and P(A|B) = 0. :

Conditional probability is a defined quantity and cannot be proven.
However, as a probability it must satisfy the three axioms given in (1.3-1). P(4| B)
obviously satisfies axiom | by its definition because P(4 n B) and P(B) are non-
negative numbers. The second axiom is shown to be satisfied by letting $ = A4:

P(S|B) = LGk == | (1.4-5)
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The third axiom may be shown to hold by considering the union of Awithan = " Table 1.4-1 Numbers of resistors
event C, where A4 and C arc mutually exclusive. If P(A U C| By = P(A|DB) + i in a box having given resistance and
P(C| B) is true, then axiom 3 holds. Since A A C = & then cvents A n B and tolerance.
B A C are mutually exclusive (use a Yenn diagram to verify this fact) and " Tolerance
P4 uC)n B] = P{(A n By v (CnBl= P(A ~ B) + P(C ~ B) ' Resistance () 5% 10% Totat
. (1.4-6) . 2 10 14 24 e
S 47 28 16 44 /|
Thus, on substitution into (1.4-4) 100 24 8 32 A
%
P C B P(A B P B Total 62 38 100 ff}
b o ooy <AL Cn B _HALE  HELD 2
P(B) P(B) P(B) K
= P(A|B) + P(C|B) (1.4-7) ."4 By using (1.4-4) the conditional probabilities become
and axiom 3 holds. b P(AnB) 28
i : P(A|B) = ———— =
] (415) P(B) 62
y P(A A C)
Example 1.4-1 In a box there are 100 resistors having resistance and toler-  f PA|C) = 0 0
ance as shown in Table 1.4-1. Let a resistor be selected from the box and . .
assume each resistor has the same likelihood of being chosen. Define three P(B|C) ~ PBnC) _ 24
cvents: A as “draw a 47-Q resistor,” B as “draw a resistor with 5% toler- ST
ance,” as “d 100-Q resistor.” F th ble, tt licabl . , . .
:):;;ab;?t?escar::fr raw a 100-Q2 resistor.” From the table, the appiieabic P(A|B) = P(47 Q|5%) is the probability of drawing a 47-Q resistor given
that the resistor drawn is 5%. P(4|C) = P(47 Q]100 Q) is the probability
of drawing a 47-Q resistor given that the resistor drawn is 100 Q; this is

clearly an impossible event so the probability of it is 0. Finally,
P(B|C) = P(5% 100 Q) is the probability of drawing a resistor of 5% toler-

ance given that the resistor is 100 Q.

44
P(A) = P47 Q) = 100

62
P(B) = P(5%) = 100

Total Probability

The probability i P(A) of any event A defined on a sample space § can be
expressed in terms of conditional probabilities. Suppose we are given N mutually
exclusive events B,, n =1, 2,..., N, whose union equals S as illustrated in Figure e

1.4-1, These events satisfy 'Ac \.

2
P(C) = P(100 Q) = 1—366

The joint probabilitics are

28
P(An B)=P@41Qn 5%) = 100

) PAnC)=PE1QA1000Q)=0 ByAB,=@ m#n=12...N (1.4-8) P
N 4
24 - 4 J
P(B A C) = P(5% 100 Q) = 70 UB.=S (1.4-9) i
We shall prove that .
" .
P(4)= Y. P(A|B)P(B,) (1.4-10) k
am{ t

1 1t is reasonable thut probabilitics are related to the mumher of resistors in the box that satisly an
event, since each resistor is equally likely to be selected. An alternative approach would be based on
clementary events similar to that used in Example 1.3-2. The reader may view the laticr approach as

more rigorous but less readily applied.

which is known as the total probability of event A.

5y
.f-:;o:n“’-ﬁt?:r:' '
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'

Figure 1.4-1 Venn dingram of N
" mutually exclusive events B, and
another event A,

N
”k'.',ﬂ,,'S. BuNBy= @ foralilmun

Since A n § = A, we may start the proof using (1.4-9) and (1.2-8):

N N
AnS=An(UB,,)= UAnBy

n=1 LES?

(1.4-11)

N<?w the events A N B, are mutually exclusive as seen from the Venn diagram
(Fig. 1.4-1). By applying axiom 3 to these events, we have

N
P(A}y=P(A4 n S5)= PI: U n B,,):l = iP(A A B) (1.4-12)

n=1 n=]

(wl/l;crco)(m-l 1) has been used. Finally, (1.4-4) is substituted into (1.4-12) to obtain
4-10).

Bayes' Theorem?

The definition of conditional probability, as given by (1.4-4), applies to any two
events. In particular, let B, be one of the events defined above in the subscction
on total probability, Equation (1.4-4) can be written

F(B,,IA)=P—“%(—I%-4-2 (14-13)
il P(A) # O, or, alternatively,
P
P(AIB,)T—-(%-H-’Q (14-14)

if P(B,) #0. One form of Bayes' theorem is obtained by equating these two
expressions:

P(A|B,)F(B,)

P(B,| 4) = Pid)

(1.4-15)

t The theorem is numed for Thomas Bayes (1702-1761), an English philosopher.
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Another form derives from a substitution of P(d) as given by (1.4-10),

P(A4]B,)P(B,)

1.4-16
FAIBYPBY) + - + PAIBy)P(BY (1.4-16)

P(B,1A4) =

forn=1,2...,N,
An cxample will serve to illustrate Bayes’ theorem and conditional proba-
bility.

Example 1.4-2 An elementary binary communicalion system “consists of i
transmitter that sends one of two possible symbols (a | or a 0) over a channel
to a receiver. The channel occasionally causes errors to occur so that a 1
shows up at the receiver as a 0, and vice versa.

The sample space has two elements (0 or 1). We denote by B,,i=12,
the events “ the symbol before the channel is 1,” and “ the symbol before the
channel is 0,” respectively, Furthermore, define 4, i = 1, 2, as the cvents “the
symbol after the channel is 1,” and “the symbol after the channel is 0,"
respectively. The probabilities that the symbols 1 and O are selected for trans-

mission are assumed to be
P(B,) =06 and P(B,) =04

Conditional probabilities describe the effect the channel has on the trans-
mitted symbols, The reception probabilities given a 1 was transmilted are
assumed to be

P(A4,|B,)=09
P(A,|B,) = 0.1
The channel is presumed to affect Os in the same manner so
P(A;|B;) = 0.1
P(4,]|B;) = 0.9

In either case, P(4,|B) + P(A;|B) =1 because 4, and 4, arc mutually
exclusive and are the only “recciver” events (other than the uninteresting

evenls &F and S) possible. The channel is often shown diagrammatically as

illustrated in Figurc 1.4-2. Because of its form it is usually called a hinary
symmetric channel.
From (1.4-10) we obtain the “reccived " symbol probabilitics

P(A)) = P(A| B,)P(By) + P(A,| B;)P(B,)
= 0.9(0.6) + 0.1(0.4) = 0.58

P(Ay) = P(A| B)P(B) + P(Ay| By)P(By)
= 0.1(0.6) + 0.9(0.4) = 0.42
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0.9

O Ny

ra |\"|)
PRy =06

Figure 1.4-2 Binary synunetric
communication  system  dia-

P(AqB
grammatical model applicable

0.9 to Example 1.4-2.

P(By) = 0.4

From cither (1.4-15) or (1.4-16) we have
P(A, | BOP(BY) _ 0.9(0.6) _ .54

PBIAD =50 ) 058 =058~ 00
P(B,| A = PM’,‘,&‘K(B’) = 0'(1).(:'26) = g—'j% ~ 0.143
1y - HLEIE) Q109004 o0

These last two numbers are probabilitics of system error while P(B,14y)
and P(B,| A,) are probabilitics of correct system transmission of symbols.

In Bayes' theorem (1.4-16), the probabilities P(B,) are usually referred to as a
priori probabilities, since they apply to the events B, before the performance of
the experiment. Similarly, the probabilitics P(A| B,) are numbers typically known
prior to conducting the cxperiment. Example 1.4-2 described such a casc. The
conditional probabilitics arc sometimes called transition probabilities in a com-
munications context. On the other hand, the probabilitics P(B,| A) are called a
poxlurl’m'i'/n'nlmhili{ics, since they apply after the experiment's performance when
some event A is obtained.

1.5 INDEPENDENT EVENTS
In this section we introduce the concept of statistically independent events.

Although a given problem may involve any number of cvents in general, it is
most instructive to consider first the simplest possible case of two events.
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Two Events

Let two events 4 and B have nonzero probabilities of occurrence; that is, assume
P(4) # 0 and P(B) # 0. We call the events statistically independent if the probabil-
ity of occurrence of one event is not affected by the occurrence of the other event,
Mathematically, this statement is equivalent to requiring

P(A| B) = P(A) (1.5-1)
]
for statistically independent events. We also have
P(B| A) = P(B) (1.5-2)

for statistically independent events. By substitution of (1.5-1) into (1.4-4), inde-
pendencet also means that the probability of the joint occurrence (intersection) of
two events must cqual the product of the two cvent probabilitics:

P(A ~ B) = P(AP(D) (1.5-3)
Not only is (1.5-3) [or (1.5-1)] nccessary for two cvents to be independent but it is
suficient. As a consequence, (1.5-3) can, and often does, serve as a lest of

independence.
Statistical independence is fundamental to much of our later work, When

_cvents are independent it will often be found that probability problems are

greatly simplified.
It has already been stated that the joint probability of two mutually exclusive
cvents is 0:
PANB)=0 (1.5-4)
I the two events have nonzero probabilities of occurrence, then, by comparison
of (1.5-4) with (1.5-3), we easily establish that two events cannot be both mutually
exclusive and statistically independent. Hence, in order for two events to be inde-
pendent they must have an intersection 4 N B # .
If a problem involves more than two cvents, those cvents satisfying either
(1.5-3) or (1.5-1) are said to be independent by pairs.

Fxample 1.5-1 In an experiment, one card is sclected from an ordinary
52-card deck. Define events A as “sclect a king,” B as “select a jack or
queen,” and C as “sclect a heart,” From intuition, these cvents have probabil-
ies PA) = Yz, P(B) = Yoz, and PC) = s -

It is also easy to state joint probabilities. P(4 A B) = 0 (it is not possible
lo simultancously select & king and a juck or queen), P4 n €)= "oy, and
PB ~ C) =Y

t ‘We shall often use only the word independence to mean statistical independence.
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We determine whether 4, 8, and C arc independent by pairs by applying

(1.5-3):

P(A A B) =0 # P(A)P(B) = %27

P(A~C)= % = P(A)P(C) = é

2
P(B €)= = P(BIP(C) = %

Thus, A and C are independent as a pair, as are B and C, However, 4 and B ° I

are not independent, as we might have guessed from the fact that 4 and B
are mutually exclusive. :

In many practical problems, statistical independence of events is often
assumed. The justification hinges on there being no apparent physical connection
between the mechanisms leading to the events. In other cases, probabilities
assumed for elementary events may lead to independence of other events defincd
from them (Cooper and McGillem, 1971, p. 24)

Multiple Events

When more than two events are involved, independence by pairs is not sufficient
to establish the events as statistically independent, even if every pair satislies
(1.5-3). '

In the'case of three events A}, A,, and 4,, they are said to be independent if,
arfd only if, they are independent by all pairs and are also independent as a
triple; that is, they must satisfy the four equations:

P(Ay n 4;) = P(4,)P(4,) (1.5-5a)
P(A; n Ay) = P(4,)P(4;) (1.5-5b)
P(A; n Ay) = P(4,)P(4,) (1.5-5¢)
P(A; n Ay 1 Ay) = P(A,)P(A,)P(A3) (1.5-5d)

Tl1c reader may wonder if satisfaction of (1.5-5d) might be sufficient to guarantee
independence by pairs, and therefore, satisfaction of all four conditions? The

answer is no, and supporting examples are relatively easy to construct. The
reader might try this exercise.
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More generally, for N events A,, 4,, ..., Ay to be called statistically inde-

pendent, we require that all the conditions

PlA N A)= P(Al)P(Aj)

P(A; A Ay - P(A)P(A)P(AY) (1.5-6)

P(Ay N Ay o v Ay = P(A)P(A,y) - -+ P(AY)

be satisfied for all 1 Si<j<k<-- < N.Therecare 28 = N — | ofthese condi-
tions (Davenport, 1970, p. 83).

Example 1.5-2 Consider drawing four cards {rom an ordinary 52-card deck.
Let events A,, A,, A5, A, define drawing an ace on the first, second, third,
and fourth cards, respectively, Consider two cases. First, draw the cards
assuming each is replaced after the draw. Intuition tells us that these events
are independent so P(A, n A; 0 Ay N A) = P(A)P(A3)P(A3)P(A,) =
(4/52)* =~ 3.50(107%). :

On the other hand, suppose we kecp each card after it is drawn. We now
expect these are not independent events. In the general case we may write

PA, nA;n Ay n AY
= P(A,)P(A; " A3 N A4 A))
= P(A)P(A2| A)P(A; N AJAL N Ay)
= P(A)P(A;|A)P(A3| Ay N AP(A Ay N Ay N A4;)

4 3 2 1
=— e — — ~ 3.69(107¢
52751 50 a9~ YN0
Thus, we have approximately 9.5-times better chance of drawing four aces
when cards are replaced than when kept. This is an intuitively satisfying
result since replacing the ace drawn raises chances for an ace on the suc-

ceeding draw,

Properties of Independent Events

Many properties of independent events may be summarized by the statement: If
N evenls A,, 4,, ..., Ay are independent, then any one of them is independent of
any event formed by unions, interscctions, and complements of the others
(Papoulis, 1965, p. 42). Scveral examples of the application of this statement are
worth listing for illustration.
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For two independent cvents A, and 4, it results that A4, is independent of™
A,, A, is indcpendent of 4,, and 4, is independent of A,. These statements arc
proved as a problem at the end of this chapter.

For three independent events A,, 4,, and 4; any onc is independent of the
joint occurrence of the other two. For example

P[A, A (A A A3)] = PANP(A)P(A) = P(AYP(Ay 0 Ay (153-7)

with similar statements possible for the other cascs Ay 0 (A4, " A;) and
Ay (A4, N A,y). Any one event is also independent of the union of the other
two. For example

PlA, N (4, U Ay)] = P(A)P(A; L A)) (1.5-8)

This result and (1.5-7) do not nccessarily hold if the events arc only independent
by pairs.

*1.6 COMBINED EXPERIMENTS

Al of our work up to this point is rclated to oulcomes from a single cxperiment.
Many practical problems arisc where such a constrained approach docs not
apply. One example would be the simultaneous measurement of wind speed and
barometric pressurc at some location and instant in time. Two cxperiments are
actually being conducted; one has the outcome “speed”; the other outcome is
“ pressure.” Still another type of problem involves conducting the same experi-
ment several times, such as flipping a coin N times. In this case there are N per-
formances of the same experiment. To handle these situations we introduce the
concept of a combined experiment.

A combined experiment consists of forming a single experiment by suitably
combining individual experiments, which we now call subexperiments. Recall that
an cxperiment is defined by specifying three quantitics. They are: (1) the applic-
able sample space, (2) the events defined on the sample space, and (3) the prob-
abilities of the events. We specily thesc three quantities below, beginning with the
sample space, for a combined experiment.

*Combined Sample Space

Consider only two subexperiments first. Let S, and S, be the sample spaces of
the two subexperiments and let s, and s, represent the clements of §, and §,
respectively. We form a new space S, called the combined sample space,t whose
clements arc all the ordered pairs (s, 52} Thus, if S, has M elements and S, has
N clements, then S will have MN clements. The combined sample spacce is
denoted

§=8,x8, (1.6-1)

t Also called the cartesian product space in some lexts.
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Example 1.6-1 1f S, corresponds to flipping a coin, then Sy = {H, T}, where
H is the element “heads” and T represents “tails.” Let §; = {1, 2, 3,4, 5, 6}
corresponding to rolling a single dic. The combined sample space S =
S, % S, becomes

S = {(H, 1), (H, 2), (H, 3), (1, 4, (11, 5), (11, 6),
(T, 1), (T, 2), (T, 3 (T, 4, (T, 5). (T, 6)

In the ncw space, elements are considered (o be single objects, each object
being a pair of ilems.

Example 1.6-2 We flip a coin twice, each flip being taken as one sub-
experiment. The applicable sample spaccs are now

S| = {H, T}
S, ={H, T}
S = {(4, H), (H, T), (T, ), (T, D}’

In this last example, observe that the clement (H, T) is considered different
from the element (T, H); this fact emphasizes the elements of S are ordered pairs
of objects.

The more general situation of N subexperiments is a direct extension of the
above concepls. For N sample spaces S,, n = 1,2,..., N, having elements s,, the
combined sample space S is denoted

S=8, xSy x xSy (1.6-2)
and it is the set of all ordercd N-tuples
(Sys S24 000 SK) (1.6-3)

*Events on the Combined Space

Events may be defined on the combined sample space through their relationship
with events defined on the subexperiment sample spaces. Consider two sub-
experiments with sample spaces S, and §,. Let A4 be any event defined on S, and
B be any event defined on S,, then

' C=AxB (1.6-4)
is an event defined on § consisting of all pairs (54, 52) such that .
s,€d and s, €8 (1.6-5)

Since elements of A correspond to clements of the cvent A x §, defined on S, and
clements of B correspond to the event §; x B defined on S, we easily find that

Ax B=(4x%xS5)n (S xB) (1.6-6)

RO SR

— SR

P

R e

U S S Y



e 4 8T
o -

e e e e W ST

- .;,:;*«a*r”“mm -

g - P -

24 PROBABI.UTY.. RANDOM YARIABLES, AND RANDOM SIGNAL PRINCIPLES

Thus, the event defined by the subset of S given by A x B is the inlersection of -

the subsets 4 x S, and S, x B. We consider all subsets of § of the form A4 x B as

events. All intersections and unions of such events are also events (Papoulis, 1965,
p. 50).

Example 1.6-3 Let S, = {0 < x < 100} and S, ={0 <y <50}. The com-

bined sample space is the set of all pairs of numbers (x, y) with 0 < x < 100 . .

and 0 < y < 50 as illustrated in Figure 1.6-1. For events
A={x, <x<x,)
B={y, <y<y} i
where 0 < x, < x; <100 and 0 < y, < y, < 50, the events S; x B and 4 x
S, are horizontal and vertical strips as shown. The event

AxB={x <x<x})x{yy<y<yi)

is the rectangle shown. An event S; x {y = y;} would be a harizontal line,

.In the more general case of N subexperiments with sample spaces S, on
which events A, are defined, the events on the combined sample space S will all
be sets of the form

Ay x Ay x v x Ay (1.6-7)

and unions and intersections of such sets (Papoulis, 1965, pp. 53-54).

§Axs, @AXB
50
/ s

N
{”W//& .
S, 8 " /;

X3 100 x
%_J
_J

A
~
Sy

N

Figure 1.6-1 A combined sample space for two subexperiments.
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*Probabilities

To complete the definition of a combined experiment we must assign probabil-
ities 1o the evenls defined on the combined sample space S. Consider only two
subexperiments first, Since all events defined on § will be unions and intersections
of events of the form A x B, where A < S, and B < S,, we only nced to deter-
mine P(A4 x B) for any A and B. We shull only consider the case where

P(A x B) = P(A)P(B) (1.6-8)

Subexperiments for which (1.6-8) is valid are called independent experiments.
To sce whal clements of S correspond Lo elements of A and B, we only need
substitute S, for Bor §, for 4 in (1.6-8):

P(A x §,) = P(A)P(S,;) = P(A) (1.6-9)
P(S, x B) = P(S,)P(B) = P(B) . (1.6-10)

Thus, elements in the set 4 x S, correspond to elements of A4, and thosc of
S, % B correspond to those of B.
For N independent experiments, the generalization of (1.6-8) becomes

P(A, x Ay x +++ % Ay) = P(A)P(Ay) -+ P(Ay) (1.6-11)

where 4, = S,,n=1,2,...,N.

With independent experiments, the above results show that probabilities for
events defined on S arc completely determined from probabilitics of events
defined in the subexperiments.

1.7 BERNOULLI TRIALS

We shall close this chapter on probability by considering a very practical
problem. It involves any experiment for which there are only two possible oul-
comes on any trial. Examples of such an experiment are numerous: flipping a
coin, hilling or missing the target in artillery, passing or failing an exam, re-
ceiving & 0 or a | in a computer bit stream, or winning or losing in a gamec of
chance, are just a few,

For this type of experiment, we let 4 be the elementary cvent having one of
the two possible outcomes as its element. 4 is the only other possible clementary
event. Specifically, we shall repeat the basic experiment N times and determine
the probability that 4 is observed exactly k times out of the N trials. Such re-
peated experiments are called Bernoulli trials.t Those readers familiar with com-
bined experiments will rccognize this expcrimcm'as the combination of N
identical subexperiments. For readers who omitted the section on combined
experiments, we shall develop the problem so that the omission will not impair
their understanding of the material.

t Alter the Swiss mathematician Jucob Bernoulli (1654-1705).
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Assume that clemenlary cvents arc statistically independent for every trial.
Let event A occur on any given trial with probability

P(A) = p (1.7-1)
The event A then has probability
PAy=1~-p (1.7-2)

After N trials of the basic experiment, one particular sequence of outcomes has A
occurring k times, followed by A occurring N — k times.t Because of assumed
statistical independence of trials, the probability of this one scquence is

P(AYP(A) -+ P(A) PLAPA) -+ PA) = pL = )" (1.7-3)

—_—

k terms N — k termis

Now there are clearly other particular sequences that will yicld k cvents A
and N — k cvenls A1 The probability of cach of these sequences is given by
(1.7-3). Since the sum of all such probabilitics will be the desired probability of 4
occurring cxactly k times in N trials, we only need find the number of such
sequences. Some thought will reveal that this is the number of ways of taking k
objeets at a time from N objects. From combinatorial analysis, the number is

known to be
N N!
= — -4
<k> kYN — k)! (17-4)

The quantity () is called the binomial coefficient. 1t is sometimes given the symbol
cy.
From the product of (1.7-4) and (1.7-3) we finally obtain

N
P{A oceurs exactly k times} = <k>p"(l —pNt (1.7-5)

Example 1.7-1 A submarine attempts to sink an aircraft carrier. It will be
success{ul only if two or more torpcdocs hit the carrier. If the sub fires three
torpedocs and the probability of a hit is 0.4 for each torpedo, what is the
probability that the carricr will be sunk?

t This particular sequence corresponds to one N-dimensional clement in the combined sample

space S, ) )
1 All such sequences define &l the elements of § that satisfy the event {A occurs exacily k times in

N trials) defined on the combined sample space.
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Define the event A = {torpedo hits}. Then P(A) = 0.4, and N = 3. Prob-
avilitics are found from (1.7-5):

0

3
1

P{cxactly no hits} = <3>(0.4)°(1 —0.4)} = 0216

P{cxactly one hit >(0.4)‘(1 —0.4)* =0.432
2>(O.4)2(l —0.4)! =0.288
3

Joor

P{exactly three hits 0.4)%(1 — 0.4)° = 0.064

-
P{exactly two hits} = <3
-

3
The answer we desire is

P{carrier sunk} = P{two or more hits}
P{cxactly two hits} + P{cxactly three hits}
= 0352

Example 1.7-2 In a culture used for biological research the growth of un-
avoidable bacteria occasionally spoils results of an experiment that requires
at least three out of four cultures to be unspoiled to obtain a single datum
point. Experience has shown that about 6 of every 100 cultures are randomly
spoiled by the bateria. If the experiment requires three simultaneously
derived, unspoiled data points for success, we find the probability of success
for any given sct of 12 cultures (three data points of four cultures each).

We treat individual datum points first as a Bernoulli trial problem with
N = 4 and p = P{good culture} = *%,50 = 0.94. Herc

P{valid délum point} = (3 good cultures} + P{4 good cultures}
4 4
= <j>(0.94)3(l - 0.94)" + <4)(0.94)‘(1 — 0.94)° ~ 0.98

Finally, we treat the required threc data points as a Bernoulli trial
problem with N = 3 and p = P{valid datum point} = 0.98. Now

P{successful experiment} = P{3 valid data points}

- (i)(o.gs)ﬂ(x — 0.98)° ~ 0.941,

Thus, the given experiment will be successful about 94.1 percent of the time.

i
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PROBLEMS {-14 Usc Venn diagrams to show that the following identities are true: ‘t
: , @ @ATBAC=C-[(AnCUBAC] _ 3
v -1 Specify the following sets by the rule method. DAUBUC—=—(ANBNC)= AnBuBACu (CnA) T
1k A={1,2,3},B=1{810,12,14},C={1,3,57,...} () AnBNC=4dvBuC o .
. 1-15 Use Venn diagrams to prove De Morgan's laws (4 U B)=An B and 4
B 1-2 Use the tabular method to specify a class of sets for the sets of Problem 1-1. (A~ B)=AuB. '
1-3 State whether the following sets are countable or uncountable, or, finite or 1-16 A universal set is S={=20<s< —4), Il A={-105s<5 -5} and
infinite. 4 = {1}, B = {x = 1}, C = {0 < integers}, D = {children in public school ", B={(=7<s< —4), find:
0 No. 5}, E = {girls in public school No. 5}, F = {girls in class in public school ' @ AuUB ' .
hd No. 5 at 3:00 aM}, G={all lengths not exceeding one meter}, H = ) AnB .
¢ (=25sxs =3 I={-2-L1sx<2} . (c) A third set C such that the sets A n C and B n C are as large as possible )
! ‘,; 1-4 For each set of Problem 1-3, determine if it is equal t{), or a subset of, any of * while the smallest element in Cis —9. )
H the other sets. i (d) Whatistheset A n B~ C? i
?lx- 1-5 State every possible subset of the set of letters {a, b, ¢, d}. @ Use De Morgan's laws to show that: :.!_'!
b - = - W
gi: 1-6 A thermomeler measures temperatures from —40 to 130°F (—40 to 54.4°C). (@ An(BUC)= (AvBn(dv ) f};
3 (a) State a universal set to describe temperature measurements. Specify * ) @ABAC)=AuBuC . .
g subsets for: In each case check your results using a Yenn diagram.

ot

& (b) Temperature measurements not exceeding water’s freezing point, and 1-18 A die is tossed. Find the probabilities of the events A = {odd number shows ]
% (cg: Measurements exceeding the freezing point but not exceeding 100°F up), B = {number larger than 3 shows up}, 4 U B,and A N B. :Pii
37.8°C). ight i il
,5_4 *( ) . _ 1-19 An a game of dice, a “ shooter” can win outright if the sum of the two if*
% 1-7 Prove that a set with N elements has 2" subsets. fabers showing up is either 7 or 11 when two dice are thrown. What is his |
-1 e . . .
1§ 1-8 A random noise voltage at a given time may have any value from —10 to prebability of winning outright? T
G 10 V. . ' ) 1-20/A pointer is spun on a fair wheel of chance having its periphery labeled &
:[As () What is the universal set describing noise voltage? . ¥om 0 to 100. ' o
§; (b) Find a set to describe the voltages available from a half-wave rectifier for - (¢) What is the sample space for this experiment? ‘g

positive voltages that has a linear output-input voltage characteristic,

- (c) Repeat parts (a) and (b) il a dc voltage of —3 V is'added to the rundom
E noise.
1-9 Showthat Cc AifC < Band B < A.

(b) What is the probability that the pointer will stop between 20 and 357
—(¢) What is the probability that the wheel will stop on 58?7
@ An experiment has a sample space with 10 equally likely elements § = {a,,
..., a,0). Three events are defined as A = {a,, as, ag}, B = {a,, a5, a5, ao},
and C = {ag, ay}. Find the probabilitics of:

STEITTR

By S e

Y 1-10 T i ={~6, ~4, — ={- -
| i} N Fin(\jv.o sets are given by A = {~6, ~4, ~0.5,0, 1.6, 8} and B = {-05,0, I, 2,..“ (@ AuC
L ) ) »nBul
P A—B (b B- (
-‘v (a) ‘ ( ). A (c) AuB d) AnB © An(BuC)
1-11 A univeral set is given as S = {2, 4, 6, 8, 10, 12}. Define two subsets as () AOB :
A= {2,4,10} and B = {4, 6, 8, 10}. Determine the following: € (AuBnC Y
A=S—-A (b)) A—Band B~ , f
Eg)) AnB (b) 4 an A € 4v B and 1-22 Let A be an arbitrary event. Show that P(A) = L — P(A). L
. ) 1-23 An experiment consists of rolling a single dic. Two cvents are defined as: 1‘
1-12 Using Venn diagrams for threc sets 4, B, and C, shade the areas corre- A = {a 6 shows up) and B = {a 2 or a 5 shows up}. el

sponding to the sets: o
@AuB-C BBAnAd ()AABAC (H(AuBnC

1-13 Sketch a Venn diagram for threc events where A n B# &, Bn C# &,
CnA#g,butdAnBnC=g.

(a) Find P(A) and P(B).

‘\,-?) Define a third event C so that P(C) = | — P(A) — P(B). MBL

{ 1-24/1n a box there are 500 colored balls: 75 black, 150 green, 175 red, 70 white,
arrd 30 blue. What are the probabilitics of sclecting a ball of cach color?
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1-25 A single card is drawn {rom a 52-card deck.
(a) Whatis the probability that the card is a jack?
(h) What is the probability the card will be a 5 or smaller?
(¢) Whatis the probability that the card is a red 107

1-26>Two cards arc drawn from a 52-card deck (the first is not replaced).

(a) Given the first card is a queen, what is the probability that the sccond is
also a queen? '

(b) Repeat part () for the first card a queen and the second carda 7,

_~{c) What is the probability that both cards will be a queen?

1-27//An ordinary 52-card deck is thoroughly shuffled. You are dealt four cards
Up. What is the probability that all four cards are scvens?

1-28 For the resistor selection experiment of Example 1.4-1, define event D as
wdraw a 22-Q resistor,” and E as “draw a resistor with 10% tolcrance.” Find
P(D), P(E), P(D n E), P(D]E), and P(E| D).

1-29 For the resistor selection experiment of Example 1.4-1, define two mutually
cxclusive evenls B, and B, such that By v By =S.

{a) Usc the total probability theorem to find the probability of the event
wselect a 22-02 resistor,” denoted D.

(b) Use Bayes’ theorem to find the probability that the resistor sclected had
5% tolerance, given it was 22 Q.

/1-_33 In three boxes there are capacitors as shown in Table P1-30. An cxperiment
Sonsists of first randomly selecting a box, assuming each has the same likelihood
of sclection, and then selecting a capacitor from the chosen box.

(a) What is the probability of selecting a 0.01-uF capacitor, given that box 2
is sclected?

(b) 112 0.01-uF capacitor is sclected, what is the probability it came from box
37 (Hint: Usc Bayes' and total probability theorems.)

Table P1-30 Capacitors

Number in box

Value (uF) { 2 3 Totals
0.01 v 20 95 25 140
0.1 55 kH 75 165
1.0 70 80 145 295
Totals 145 210 245 600

1-31 For Problem 1-30, list the nine conditional probabilitics of capacitor sclee-
iay, given certain box sclections.

\
Q‘I;—Z/Rcwork Example 1.4-2if P(B,) = 0.6, P(B;) = 04, P(A4,1B,) = P41 B,) =
0% and P(A, | B,) = P(A, | By) = 0.05.
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' @cwork Example 1.4-2 if P(B,) = 0.7, P(B,) =03, P(4,1B}) = P(A,]B;) =

J./,_%nd P(A,) B)) = P(A,1B3) = 0. What type of channcl docs this system have?
{1-34 /A company sclls high fidelity amplificrs capable of gencrating 10, 25, and
W of audio power. It has on hand 100 of the 10-W units, of which 15% are
defective, 70 of the 25-W units with 10% defective, and 30 of the 50-W units with
10% defective.

(a) What is the probability that an amplifier sold from the 10-W units is
defective? !

(b) If cach wattage amplifier sells with equal likelihood, what is the probabil-
ity of a randomly selected unit being 50 W and defective?

(¢) What is the probability that a unit randomly sclected for sale is defective?

Qﬁfx missile can be accidentally launched if two relays A and B both have

¢d. The probabilities of A and B failing are known to be 0.01 and 0.03 respec-

tively. It is also known that B is more likely to fail (probability 0.06) if A has
failed.

(@) What is the probability of an accidental missile launch?

(by What is the probability that A will fail if B has failed?

{c) Are the events “A fails” and * B fails ™ statistically indcpendent?
1-36 Determine whether the three events A, B, and C of Example 1.4-1 are sta-
tistically independent.
1-37 List the various equations that four events Ay, Ay, Ay, and A, must satisly

i are Lo be statistically independent.
Given that two events A, and A, are statistically independent, show that:

.,.' ' {a) A, is independent of A,

(b) A, is independent of 4,

(¢) A, isindependent of A,
*1.39 An experiment consists of randomly selecting one of five cities on Florida’s
west coast for a vacation. Another experiment consists of selecting at random one
of four acceptable motels in which to stay. Define sample spaces S, and S, for the

two experiments and a combined space S = S, x S, for the combined experiment :

having the two suqupcrimcn{s.

%1.40 Sketch the area in the combined sample space of Example 1.6-3 correspond-
ing to the event A x: B where:

(@) A={10<x's15}and B= {20 < y < 50}
O] A={x=40}andB={5<y540}

A production line manufactures 5-gal (18.93-liter) gasoline cans to a volume
tolerance of 5%. The probability of any one can being out of tolerance is 0.03. If
{our cans are selected at random:

{(a) Whatis the probability they are all out of tolerance?

(h) What is the probability of exactly two being out?

(¢) What is the probability that all are in tolerance?
1-42 Spacecraft arc expected to land in a prescribed recovery zone 80% of the
time. Over a period of time, six spacccraft land.

]
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(¢) Find the probability that none lands in the prescribed zone.

(b) Find the probability that at least one will land in the prescribed zone.

(¢) The landing program’is-called successful if the probability is 0.9 thal three
or n;orc out of six spacccralt will land in the prescribed zone. Is the program suc-
cessful?

1-43 In the submarine problem of Example 1.7-1, find the probabilities of sinking
the carrier when fewer (N = 2) or more (N = 4) torpedoes are fired.

ADDITIONAL PROBLEMS

1-44 Use the tabular method to define a set 4 that contains all integers with
magnitudes not exceeding 7. Define a second set B having odd integers larger
than —2 and not larger than 5. Determine if A <« Band if B < A.

I-{45 A set 4 has three elements a,, a,, and ay. Determine all possible subsets
of A. '

1-46 Shudc Venn diagrams to illustrate each of the following sets: (a) (4 U B)yn
COEANBUC(MAUVBUIECADMDMANBAC) VB ACAD)
1-47 A universal set S is comprised of all points in a rectangular area defined by
O0<x<3 and 05y<4. Define three sets by A= {y<3(x— 1)/2}, B=

{y21}, and C=(y 23 —x}. Shade in Venn diagrams corresponding to the . .

sets(@)ANBnCand(b)C A Bn A
1-48 The take-off-roll distance for aircralt at a certain airport can be any number
from 80 m to 1750 m. Propeller aircraft require from 80 m to 1050 m while jets
use from 950 m to 1750 m, The overall runway is 2000 m.

(a) Determine sets A4, B, and C defined as “propeller aircraft take-ofl dis-

”n o

tances,” “jet aircraft take-off distances,” and “runway length safety margin,”
respectively.

(b) Determine the set A N B and give its physical significance.
(c) What is the meaning of the set-A U B?
(d) What are the meanings of thesets A U B U.C and A U B? .
1-49 Prove that DeMorgan’s law (1.2-13) can be extended to N events A i=1,
2,..., N asfollows :
(AinAyn-nd={A v A, v ud

1-50 Work Problem 1-49 for (1.2-12) to prove
(AyvAyu-vd)=A,nA; A~ 4y

1-51 A pair of fuir dice are thrown in a gambling problem. Person A wins if the

sum of numbers showing up is six or less and one of the dice shows four. Person -

B wins if the sum is five or more and one of the dice shows a four. Find: (a) The

probability that 4 wins, (b) the probability of B winning, and (c) the probability

that both 4 and B win.

1-52 You (person A) and two others (B and C) each toss a fair coin in a two-step *
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gambling game. In step | the person whose toss is not a match to either of the
other two is *odd man oul.” Only the remaining two whose coins match go on
to step 2 to resolve the ultimate winner,

(a) What is the probability you will advance to step 2 after the first toss?
(h) What is the probability you will be out after the first toss?
(c) What is the probability that no one will be out after the first toss?

*1-53 The communication systcm of Example 1.4-2 is to be extended to the casc
of three transmitted symbols 0, 1, and 2. Define appropriate events 4; and B;,
i=1, 2, 3, to represent symbols after and beforc the channel, respectively.
Assume channel transition probabilities are all equal at P(4,]B)) = 8.1, i # j, and
are P(A)|B)=08fori=j=1,23, while symbol transmission probabilities are
P(B,) = 0.5, P(B;) = 0.3, and P(B;) = 0.2.

(a) Sketch the diagram analogous to Fig. 1.4-2,

(h) Compule received symbol probabilitics P(A,), P(4,), and P(4,).

(¢) Compule the a posteriori probabilities for this system.

(d) Repeat parts (b) and (c) for all transmission symbol probabilitics equal.
Note the eflect,
1-54 Show that there arc 2% — N — | equations required in (1.5-6). (Hint: Recall
that the binomial coefficient is the number of combinations of N things taken »
at a time.)
1-55 A student is known to arrive late for a class 40% of the time. If the class
meets five times each week find: (a) the probability the student is late for at least
threc classes in a given week, and (b) the probability the student will not be late
at all during a given week.
1-56 An airline in a small city has five départurcs each day. It is known that any
given flight has a probability of 0.3 of departing late. For any given day find the
probabilities that: (a) no flights depart late, (b) all flights depart late, and (c) three
or more depart on time.
1-57 The local manager of the airline of Problem 1-56 desires to make sure that
90% of flights leave on time. What is the largest probability of being late that the
individual flights can have if the goal is to be achicved? Will the operation have
to be improved significantly?
1-58 A man wins in a gambling game if he gets two heads in five Nlips of a biased
coin. The probability of getting a head with the coin is 0.7.

(@) Find the probability the man will win, Should he play this game?

(b)y What is his probability of winning if he wins by getting at least four
heads in five flips? Should he play this new game?

*1-59 A rifleman can achieve a “marksman” award if he passes a lesl. He is
allowed to fire six shots at a target’s bull's eye. If he hits-the bull's cye with at
least five of his six shots he wins a set. He becomes a marksman only if he can
repeat the feat three times straight, that is, if he can win three straight sets. If his
probability is 0.8 of hitting a bull’s eye on any one shot, find the probabilitics of
his: (a) winning a sct, and (b) becoming a marksman.
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CHAPTER

TWO
THE RANDOM VARIABLE

2.0 INTRODUCTION

In the previous chapter we introduced the concept of an event to describe charac-
teristics of outcomes of an experiment. Events altowed us more flexibility in
determining properties of an cxperiment than could be obtained by considering
only the outcomes themselves. An cvent could be almost anything from
 descriptive,” such as *draw a spade,” 10 numerical, such as “ the outcome is 3.”

In this chapter, we introduce a new concept that will allow events to be
defined in @ more consistent manner; they will always be numerical, The new
coneept is that of a random variable, and it will constitute a powerful tool in the
solution of practical probabilistic problems.

2.1 THE RANDOM VARJABLE CONCEPT

Definition of a Random Yariable

We definc a rcal random variablet as a real function of the elements of a sample
space 5. We shall represent a random variable by a capital letter (such as w, X,
or Y)and any particular value of the random variable by a Jowercase letter (such

t Complex random variables are considered in Chapter .

M
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as w, x, or y). Thus, given an experiment defined by a sample space S with ele-
menls s, we assign to every sa real number

X(s) (2.1-1)

»

according to some rule and call X(s) a random variable.

A random variable X can be considered to be a function that maps all ele-
ments of the sample space into points on the real line or some parts thercof. We
illustrale, by two examples, the mapping of a random variable.

cxample 2.1-1 An cxperiment consists of rolling a dic and flipping a coin.
The applicable sample space is illustrated in-Figure 2.1-1. Let the random
variable be a function X chosen such that (1) a coin head (H) outcome corre-
sponds to positive values of X that are equal to the numbers that show up on
the die, and (2) a coin tail (T) outcome corresponds to negative values of X
that are equal in magnitude to twice the number that shows on the die. Here
X maps the sample space of 12 elements into 12 values of X from —12t0 6
s shown in Figure 2.1-1.

Example 2.1-2 Figure 2.1-2 illustrates an experiment where the pointer on a
whec! of chance is spun. The possible outcomes are the numbers from 0 to 12
marked on the wheel. The sample space consists of the numbers in the set
(0 <s<12). We define a random variable by the function

X =X(s) =5

Points in § now map onto the real line as the st {0 < x < 144},

(7.6
L. oas)
ey UL
L, UL
) "
T

\ 1131 Figure 2.1-1 A random variable map-
0 6 125 ping of a sample space.
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12

L 1
09 36 100 144 200 x  to Example 2.1-2,

As seen in these two examples, a random variable is a function that maps

each point in S into some point on the real line. It is not necessary that the
sample-space points map uniquely, however. More than one point in § may map
into a single value of X, For example, in the extreme case, we might map all six
points in the sample space for the experiment “throw a die and observe the
number that shows up” into the one point X = 2. ’

Conditions for a Function to be a Random Variable

Thus, a random variable may be almost any function we wish. We shall, however,

require that it not be multivalued. That is, every point in S must correspond to - .

only one value of the random variable,

Moreover, we shall require that two additional conditions be satisfied in
order that a function X be a random variable (Papoulis, 1965, p. 88). First, the
set {X < x} shall be an event for any real number x. The satisfaction of this con-
ditfon will be no trouble in practical problems. This set corresponds to those
points s in the sample space for which the random variable X(s) does not exceed
the number x. The probability of this event, denoted by P{X < x}, is equal to the
sum of the probubilitics of all the clementary events corresponding (o {X < x}.

The second condition we require is that the probabilities of the events
{X = 0} and {X = — o0} be 0: :

P(X=-00}=0 P{X=00)=0 2.1-2) 4

This condition does not prevent X from being either — o0 or o for some values
of s; it only requires that the probability of the set of those s be zero.

L - Figure 2.1-2 Mapping applicable
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Discrete and Continuous Random Variables

A discrete random variable is one having only discrete values. Example 2.1-1 ilus-
trated a discrete random variable. The sample space for a discrele random vari-
able can be discrete, continuous, or cven a mixturc of discrete and continuous
points. FFor example, the * wheel of chance” of Example 2.1-2 has a continuous
sample space, but we could define a discrete random variable as having the value
1 for the set of outcomes {0 < s < 6} and —1 for {6 < s < 12}, The result is a
discrete random variable defined on a continuous sample space.

A continuous random variable is one having a continuous range of valucs. It
cannot be produced from a discrete sample space because of our requircment
that all-random variables be single-valued functions of all sample-space points.
Similarly, a purely continuous random variable cannol result from a mixed
sample space because of the presence of the discrete portion of the sample space.
The random variable of Example 2.1-2 is continuous.

Mixed Random Variable

A mixed random variable is one for which some of its values are discrete and some
are continuous. The mixed case is usually the least important type of random
variable, but it occurs in some problems of practical significance.

2.2 DISTRIBUTION FUNCTIONM

The probability P{X < x} is the probability of the event {X < x}. It is a number
that depends on x; that is, it is a function of x, We call this function, denoted
Fx(x), the cumulative probability distribution function of the random variable X,
Thus,

Fy(x) = P{X < x) (2.2-1)

We shall often call Fy(x) just the distribution function of X, The argument x is any
real number ranging from — 00 to 0.

The distribution function has some specific propertics derived from the fact
that Fy(x) is a probability, These are:t

(1) Fx(—o0)=0 (2.2-2q)
(2) Fxloo) =1 (2.2-2h)
(3) 0 Fyx) s (2.2-2¢)
(d) Fx(x,) < Fxlxy)) if  x,<x, (2.2-2d)
() P{x, <X < x;} = Fy(xs) = Fx(x,) (2.2-2¢)
(6) Fy(x*) = Fxlx) (2.2-2f)

t We use the notation x* to imply x -+ ¢ where ¢ > 0 is infinitesimaily small; that is, ¢ — 0,
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The first three of these properties arc casy (0 justify, and the reader should justify
them as an exercise. The fourth states that Fx(x) is a nondecreasing function of x.
The fifth property states that the probability that X will have values larger than
some number x; but not exceeding another number x, is equal (0 the difference
in Fy(x) cvaluated at the two points, It is justificd from the fact that the cvents
{X < x,} and {x, < X S x,} are mutually exclusive, so the probability of the
event {X Sx)={X< X} U {x, <X $x5) 0 the sum of the probabilitics
P{X £ x,} and P{x, < X < x,}. The sixth property states that Fy(x) is a func-
tion continuous from the right.

Propertics 1, 2, 4, and 6 may be uscd as tests to determine if some function,
say Gyx) could be a valid distribution function. Il so, all four tests musl be
passcd.

If X is a discrete random variable, consideration of its distribution function
defined by (2.2-1) shows that Fy(x) must have a stairstep form, such as shown in
Figure 2.2-1a. The amplitude of a step will cqual the probability of occurrence of
the value of X where the step occurs. if the values of X arc denoted x;, we may
write Fy(x) as

N
Fy(x) = lzx)’{x = xJulx — X)) (2.2-3)

where (-} is the unit-step function defined byt

u(x) = {10

and N may be infinitc for some random variables. By introducing the shortened
notation

x20

2.2-4
x<0 @2:4)

P(x) = P{X = x} (2.2-5)

(2.2-3) can be written as

N
Falx) = T Plxdulx = x) (2.2-6)
i=1

We next consider an example that illustrates the distribution function of a
discrete random variable.

Example 2.2-1 Let X have the discrete values in the sct (-1, -0.5, 0.7, 1.5,
3}. The corresponding probabilitics are assumed to be {0.1, 0.2, 0.1, 0.4, 0.2}.
Now P{X < —1}=0 because there arc no sample space points in the set
(X < -1} Ounly when X = —1 do we obtain onc outcome. Thus, there is an
immediate jump in probability of 0.1 in the function Fy(x) at the point
y=—1For=l<yx< —0.5, therc arc no additional sample space points so
F(x) remains constant at the value 0.1. At x = —0.5 there is another jump of

t This definition dillers slightly from (A-5) by including the equality so that 1) savisfics (2.2-2)
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F,r(X)

]
|
r—r '
1 [ L L
-y { 0 L 2 3 P
) .
-0.5 0.7 1.5
(@)
/x(X)
0.6
0.4 0.4
0.2 0.2
01 t“ 0.1 1
A b ;
-1 0 | 2 3 x
)

Figure 2.2-1 Distribution function {(a) and density function (b) applicable to the dscrete random vari-
able of Example 2.2-1. [Adapted from Peebles (1976) with permission of publishers Addison-Wesley,
Advanced Book Program.)

0.2 in Fy(x). This process continues until all points are included. Fx(x) then
equals 1.0 for alt x above the last point. Figure 2.2-1a illustrates Fy(x) for this
discrete random variable.

A continuous random variable will have a continuous distribution function.

We consider an cxample for which Fy(x) is the continuous function shown in
Figurc 2.2-2a.

Example 2.2-2 We return to the fair wheel-of-chance experiment, Let the
wheel be numbered from 0 to 12 as shown in Figure 2.1-2. Clearly the prob-
ability of the event {X < 0} is O because there are no sample space points in
this set. For 0 < x < 12 the probability of {0 < X < x} will increase linearly
with x for a fair wheel. Thus, F x(x) will behave as shown in Figure 2.2-2a.

The distribution function of a mixed random variable will be a sum of two
parts, one of stairstep form, the other continuous. ’

o
¢




n AARTIETII0 2 2 e

TT,

Tl

f‘%

33

o
tores

v

Bl Y

Lo

£

- 40 PROBABILITY, RANDOM VARIABLES, AND RANDOM SIGNAL PRINCIPLES

Fylx)
1.0 S—
0.5
>"' .
1
0 6 12 x
(@)
/x(X)\
L
12
Figure 2.2-2 Distribution function (@) and
density function (b) applicable to the continuous
t random variable of Example 2.2.2. [Adapted
0 6 12 x  from Peebles (1976) with permission of publishers
) Addison-Wesley, Advanced Book Program.]

2,3 DENSITY FUNCTION ;

The probability density finction, denoted by fy(x), is defined as the derivative of
the distribution function:

Sy = 202

™ (2.3-1)

We often call fy(x) just the density function of the random variable X,

Existence

If the derivative of Fy(x) exists then fy(x) exists and is given by (2.3-1). There may,
however, be places where dFy(x)/dx is not defined. For example, a continpous
random variable will have a conlinuous distribution Fy(x), but Fy{(x) may have
corners (points of abrupt change in slope). The distribution shown in Figure
2.2-2a is such a function. For such cases, we plot fi(x) as a function with step-
type discontinuities (such as in Figure 2.2-2b). We shall assume that the number
of points where Fy(x) is not differentiable is countable. '
For discrete random variables having a stairstep form of distribution func-
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tion, we introduce the concept of the unit-impulse function 3(x) to describe the
derivative of Fy(x) at its stairstep points. The unit-impulse function and its
properties are reviewed in Appendix A, 1t is shown there that 3(x) may be defined
by its integral property

Plxo) = Jw P(x)(x — xo) dx (2.3-2)

where ¢(x) is any function continuous at the point x = Xo; §(x) can bc'igterpretcd
as a “function” with infinite amplitude, area of unity, and zero duration, The
unit-impulse and the unit-step functions are related by

o dulx) .
39 =05 (2.3-3)

or

r 5(8) dE = u(x) 23-4)

-
l
The more general impulse function is shown symbolically as a vertical arrow
occurring at the point x = x, and having an amplitude cqual to the amplitude of
the step function for which it is the derivative.
We return to the case of a discrete random variable and differentiate Fy(x),
as given by (2.2-6), lo obtain

N

Sxlx) = Z P(x)3(x — xy)

i=

(2.3-5)

Thus, the density function for a discrete random variable exists’in the sense that
we use impulse functions to describe the derivative of Fy(x) at its stairstep points.
Figure 2.2-1b is an example of the density function for the random variable
having the function of Figure 2.2-1a as its distribution.

A physical interpretation of (2.3-5) is readily achicved. Clearly, the probabil-
ity of X having onc of its particular valucs, say x;, is a number P(x,). If this prob-
ability is assigned to the point x;, then the density of probability is infinite
because a point has no “width™ on the x axis. The infinite “amplitude ™ of the
impulse function describes this infinite density. The “size " of the density of prob-
ability at x = x, is accounted for by the scale factor P(x,) giving P(x;)é(x — x;) for
the density at the point x = x,.
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Propertics of Density Functions

Several properties that fx(x) satisfics may be stated:

() 0<flx) allx (2.3-6a)."

2 r ) dx = 1 o) [
() Fix)= J: &) 48 (2.3-6¢)

@) Plx, <X Sx}= r Jlx) dx (2.3-6d)

Proofs of these properties are left to the rcader as exercises. Propertics 1 and 2
require that the density function be nonnegative and have an area of unity. These
two propertics may also be used as tests to see il some function, say gx{(x), can be
a valid probability density function. Both tests must be satisfied for validity.
Property 3 is just another way of writing (2.3-1) and serves as the link between
Fy(x) and fx(x). Properly 4 relates the probability that X will have values from X,
{0, and including, X, to the density function.

Example 2.3-1 Let us test the function gx{x) shown in Figure 2.3-1a to sce if
it can be a valid density function. 1t obviously satisfies properly { since it is
nonncgative. Its area is ax which must equal unity to satisfy property 2.
Therefore a = 1/a is necessary if gx(x)is to bea density.

Suppose a = 1/a. To find the applicable distribution function we first

wrile
0 Xog—a> X2 Xg+ &

1
?(x—-xo+<x) Xo—a S X <X

gxlx) =

1 1

——=x—-x XoSX<Xotd
o ol o

Next, by using (2.3-6¢), we obtain
0 Xg— 0> X

* 1
J gx(&) d&""i&i(-"“-“o"‘“)’ Xo— &S X <X
xg~a

Gulx) =41 x ’ 1+1 1 2
§+ xo.(lx(i)‘f =3 a(x—x°)—2a’ (x — xo
XgSXx<Xgta
i XotasSXx

This function is plotted in Figure 2.3-1b.

KTEN
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<o

Xo - & Xo Xxq to X

. |
Gylx){fora=2

|
1
I'
1.0 |
1
|
1

0.5
Figure 2.3-1 A possible probability
0 Xo =& Xo X ta % density function (a) and a distribution
) function () applicable to Example 2.3-1.

Example 2.3-2 Supposc a random variable is known to have the triangular
probability density of the preceding example with xo = 8, o = 5 and a=
1/a = !/,. From the earlier work

0 I>x=13
Sxx) = {(x = 3)/25 Igx<8
0.2 — (x — 8)/25 . g<sx< 13

We shall use this probability density in (2.3-6d) to find the probability that X
has values greater than 4.5 but not greater than 6.7. The probability is

P45 <X <67} = J‘M[(x — 3)/25] dx
4.5

) 1 T2 6.7
: -] =3 =0.
.. 75 [ 2 3{] » 2288

Thus, the event {45 < X < 6.7) has a probability of 0.2288 or 22.88%.

L&

L v
SaTNT

2.4 THE GAUSSIAN RANDOM VARIABLE

A random variable X is called gaussiant if its density function has the form

1
Sx(x) = m e

t After the German mathemalician Johann Friedrich Carl Gauss (1777-1855). The gaussian
density is often calied the normal density.

~(x=ax)}/20x? (24-1)

PEATIEYN
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Ly (%)

Figure 24-1 Density (¢) and
distribution (h) functions of o’
gaussian rundom variable,

where oy > 0 and — 00 < ay < o0 are real constants. This function is sketched in
Figure 2.4-1a. Its maximum value (2no})™!/? occurs at x = ay. Its “spread”
abogt the point x = ay is related to gy. The function decreases to 0.607 times its
maximum at x = ay + 0y and x = ay — oy,

The gaussian density is the most important ot all densities. It enters into
nearly all areas of engineering and science. We shall encounter the gaussian
r:;ndc?m variable frequently in later work when we discuss some important types
of noise.

The distribution function is found from (2.3-6¢) using (2.4-1). The integral is

Folx) =

This integral has no known closed-form solution and must be evaluated by
numerical methods. To make the results generally available, we could develop a
set of tables of Fy(x) for various x with ay and o, as parameters. However, this
approach has limited value because there is an infinite number of possible com-

L[ -
e~ W-ax2ex? R
ool J_w d¢ (2.4-2)
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binations of ay and ay, which requires an infinite number of tables. A better
approach is possible where only one table of Fy(x) is developed that carresponds
to normalized (specific) values of ay and oy, We then show that the one table can
be used in the general case where ay and gy can be arbitrary.

We start by first selecting the normalized case where ay =0 and gy = L.
Denote the corresponding distribution function by F(x). From (2.4-2), F(x) is

F(x) =
¥4

Jx PRAAN 4 (2.4-3)

-

which is a function of x only. This function is tabularized in Appendix B for .

x > 0. For negative values of x we use the relationship
F(—x)= 1= F(x) (2.4-4)

To show that the general distribution function Fx(x) of (2.4-2) can be found
in terms of F(x) of (2.4-3), we make the variable change

u=(&—ay)foy (2.4-5)
in (2.4-2) to obtain
Fylx) = . 'rm""”«-"‘/’ du (2.4-0)
SRRV

From (2.4-3), this expression is clearly cquivalent to

Fiy(x) = 1(5—;—'-'-’5) (2.4-7)
X

Figure 2.4-1b depicts the behavior of Fy(x).
Wwe consider two examples to illustrate the application of (2.4-7).

Example 2.4-1 We find the probability of the event {X < 5.5} for a gaussian

random variable having ay = 3 and oy = 2.
Here (x — ay)/oy = (5.5-3)/2 = 1.25. From (2.4-7) and tie definition of
Fylx) .

P{X < 5.5) = Fy(5.5) = FF(1.25)
By using the table in Appendix B

P{X < 5.5) = F(1.25) = 0.8944

—
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Example 2.4-2 Assume that the height of clouds above the ground at some
location is a gaussian random variable X with a, = 1830 m and gy = 460 n.
We find the probability that clouds will be higher than 2750 m (about

9000 ft). From (2.4-7) and Appendix B:

i

P{X > 2750}

i

The probability that clouds are higher than 2750 m is therefore about 2.20

1 — P{X <2150} =1 — F4(2750)
3 F(zvso — 1830

460

1 — 09772 = 0.0228

percent if their behavior is as assumed.

) =1 - FQ20)

2.5 OTHER DISTRIBUTION AND DENSITY EXAMPLES

Many distribution functions are important enou
give five examples. The first two are for discrete r
three arc for continuous random variables. O

Appendix F.

Binomial

LetO<p<land N = 1,2,..., then the function

N (N
H=1 (k>l”‘(1 — p)¥r(x = k) @51

k=0

is called the binomial density Junction. The quantity (1 is the binomial coefMicient

defined in (1.7-4) as

N!

(4)-mw=m
k) kYN = K)!

“The binomial density can be applic

1. It applics to many games of chance,

and many experiments having only two

By intcgration of (2.5-1), the binomial dis

gh to have been given names. We
andom variables; the remaining
ther distributions arc listed in

(2.5-2)

d to the Bernoulli trial experiment of Chapter

detection problems in radar and sonar,
possible outcomes on any given trial.

tribution function is found:

N (N
Fy)= Y. ( k),:*(\ — PRl — k) (2.5-3)

k=0

Figure 2.5-1 illustraies the binomi
N = 6and p =025

al density

and distribution functions for

ity
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0.3560
0.2966
03}
0.1780 0.1318
0.0330
A 0.0044 0.0002
. I ]
0 1 2 3 4 S 6 x
(a)
Fyix)
1ok 0.9624 0.9954 0.9998 1,0000
0.8306
0.5340
0.5}
J.1780
5 .l ; L 1 L 1 Figure 2.5-1 Binomial density (a) and
3 4 s 6 x  distribution (b) functions for the casc
®) N = 6and p =025,
Poisson

The Poissont random variable X has a density and distribution given by

© bk
f)=e Y ,—(—,‘6(x - k) (2.5-4)
k=0 ™
o0 bk
Fyx)=eY, W u(x — k) (2.5-5)
k=Q &

where b > 0 is a rcal constant. When plotted, these functions appear quite similar
to those for the binomial random variable (Figure 2.5-1). In fact, it N— o0 and
p— 0 for the binomial case in such a way that Np = b, a constant, the Poisson
casc results. ;

The Poisson random variable applies to a wide variety of counting-type
applications. It describes the number of defective units in a sample taken from a
production line, the number of telephone calls made during a period of time, the

t After the French mathematician Siméon Denis Poisson (1781-1840).

~
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number of electrons emitted from a small section of a cathode in a given time
interval, etc. If the time interval of interest has duration T, and the events being

counted are known to occur at an average rate A and have a Poisson distribu- .

tion, then b in (2.5-4) is given by
b=AT (2.5-6)

We illustrate these points by means of an example.

Thy

Example 2.5-1 Assume automobile arrivals at a gasoline station are Poisson
and occur at an average rate of 50/h. The station has only one gasoline
pump. If all cars are assumed to require one minute td_ obtain fuel, what is
the probability that a waiting line will occur at the pump?

A waiting line will occur if two or more cars arrive in any one-minute
interval. The probability of this event is one minus the probability that either
none or one car arrives. From (2.5-6), with 1 = *%/, cars/minute and T = |
minute, we have b = 3. On using (2.5-5)

Probability of a waiting line = 1 — Fy(1) — Fy(0)
=] - e"’“l:l + -é-] = 0.2032

We therefore expect a line at the pump about 20.32% of the time.

Uniform

The uniform probability density and distribution functions are defined by:

_Jib~a) asx<b
Slx) = {0 elsewhere @5-7) ]
0 x<a
F(x)={(x—a)fb—a) a<x<b (2.5-8)
1 bsx

for real constants —o0 < a < oo and b > a. Figure 2.5-2 illustrates the behavior
of the above two functiohs.

The uniform density finds a number of practical uses. A particularly impor-
tant application is in the quantization of signal samples prior to encoding in
digital communication systems. Quantization amounts to “rounding off * the
actual sample to the nearest of a large number of discrete * quantum levels.” The
errors introduced in the round-off process are uniformly distribuled.

P s
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Jite)

(b = a)

(a)

|
|
|
!
|
1
1
b

Figure 2.5-2 Uniform probability density
0 a X function (a) and its distribution function
(b) (h).
Exponential

The exponential density and distribution functions are:

|
— g~ ly—ayb x>
Jix) =< ° (2:59)
0 x<da
~(x=a)/b
Fyf) = {(‘) e x> (2.5-10)
X a

for real numbers — o0 < a < 0 and b > 0, These functions are plotted in Figure
2.5-3. . . ' ’

The cxponential density is useful in describing raindrop sizes when a large
number of rainstorm measurements are made. It is also known to appr‘oxxmulcly
describe the fluctuations in signal strength received by radar from certain types of
aircraft as illustrated by the following example.

Example 2.5-2 The power reflected from an aircraft of complicated shape

that is received by a radar can be described by an exponential random vari- -

able P. The density of P is therefore

1
__e"PI"o p>0
Jup) =9 Po
0 p<0

3

il
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f,\‘(.\"

\h —1

LIy

e

b

(@)

X Figure 2.5-3 Exponential density
(12} {a) and distribution (b) funciions.

where P is the average amount of reccived power. At some given time P
may have a valuc different from its average value and we ask: what is the
probability that the received power is larger than the power received on the

average?
We must find P{P > Po} =1 — PP P}=1- Fy(Po). From (2.5-10)

PP >Po}=1—(1— e~ PoiPoy = ¢~ = 0.368

In other words, the received power is larger than its average value about 36.8

per cent of the time.

Rayleigh
The Rayleigh‘T density and distribution functions are:
2
- - —{x=a)}/b
f =45 T xza @5-11)
0 x<a
1 - e—(x-«-i’lh x=a
Fylx) = (2.5-12)
0 x<a

t+ Named for the English physicist John William Steutt, Lord Rayleigh (1842-1919).
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Figure 2.5-4 Rayleigh density (a)

) and distribution (b) functions.

for real constants —c0 <a@ <@ and b > 0. These functions are plotted in

Figure 2.5-4.
The Rayleigh density describes the envelope of one type of noise when passed

through a bandpass filter. It also is important in analysis of errors in various
measurement systems.

2.6 CONDITIONAL DISTRIBUTION AND
DENSITY FUNCTIONS

The concept of conditional probability was introduced in Chapter 1. Recall that,

for two cvents A and B wherc P(B) # 0, the conditional probability of A given B

had occurred was

P(A A B)

—_— 2.6-1
PBY (26-1)

ability concept lo include random

P(A|B) =

In this section we extend the conditional prob
variables.
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Conditional Distribution Propertics of Conditional Density I

Lel 4 in (2.6-1) be identified as the event {X < x} for the random variatle X. The.

resulting probability P{X < x|B} is defined as the conditional distribution func-
tion of X, which we denote Fy(x|B). Thus

Because conditional density is related to condilion_ul distribu_tion lhr_ough llhc
derivative, it satisfies the same properties as the ordinary density function. They

are N ]
P{X ) (1) Sx(x1B)=0 , (2.6-60)
. _ _ <xnB ®
3 Flx|B) = P(X < x| B} = 5 (2.6-2). @ J‘ x| B) dx = 1 (2.6-6b) |
' where we use the notation {X < x ~ B} to imply the joint event {X < x} A B, ¥ x . 2.6-6¢ ‘j
This joint event consists of all outcomes s such that () Fxx|B)= _pfx(é 18) d¢ ' ( )
x3
X@) s x | and seB (2.6-3) @) Plx,<X<x;|B) =1 [flx]|B)dx (2.6-6d) ‘
' The conditional distribution (2.6-2) applies to discrc(c._ continuous, or mixed -

random variables. We take an example to illustrate conditional density and distribution.

Properties of Conditional Distribution Example 2.6-1 Two boxes have red, green, and blue balls in them; the num-

ber of balls of each color is given in Table 2.6-1, Our experiment will be to
All the properties of ordinary distributions apply to Fy(x] B). In other words, it

select a box and then a ball from the selected box. One box (number 2) is J
has the following characteristics: slightly larger than the other, causing it to be sclcctf:d more frcq‘lfcmly. Let 1
B, be the event “select the larger box™ while B, is the event “select the
W P-eol8)=0 (2.6-4a) smaller box.” Assume P(B,) = %, and P(B;) = % 0- (B, and B, are mutual])(
@ FyeolB)=1 (2.6-4b) exclusive and B, U B, is the certain event, since some box must be sclected; { l
" therefore, P(B,) + P(B,) must equal unity.) -
D 9sBbiB s (2.6-4c) crNow dt‘fﬁl‘llt): a disc:ctc random variable X to have values x; = 1, x, = 2,
@ Fxxi|B)S F(xa|B) il x, <x, (2.6-4d) and x; = 3 when a red, green, or blu; !;ail is selected, and let B be an event i ]
(5) P{x, <X < x;]B} = Fy(x,]| B) — Fy(x,| B) (2.6-4¢) equal to either B, or B,. From ’I‘a:lc 6-1: o .
(6) Fx(x™|B) = Fy(x|B) (2.6-4f) P(X=”B=Bl)=m P(X=1|B=BZ)=1_SO |
These characteristics have the same general meanings as described earlier follow- 15 . ~ _ ﬂ }J
ing (2.2-2), ' P(X=2|B=B')=T66, P(X =2|B = By) =15
60 - 10 3
it i PX =3 B=B)=——_ P(X=3[B=Bz)=-——- }_l
Conditional Density ( | D= 7% % '

In a manner similar to the ordinary density function, we define conditional density
Junction of the random variable X as the derivative of the conditional distribution

Table 2.6-1 Numbers of colored
function. If we denote this density by fy(x| B), then

balls in two boxes

o

. Box
Sx(x|B) = d_deEB) (2.6-5) x, Ballcolor 1 2 Totals
* . 1 Red 5 80 85 ‘H
Il Fx(x| B) contains step discontinuities, as when X is a discrete or mixed random 2 Green 3 60 95 i
s * variable, we assume that impulse functions are present in Jx(x] B) to account for 3 Blue 6o 10 0
Z the derivatives at the discontinuitics. Totals 100 150 250

- =
fererd

L it A
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The conditional probability density fx(x| B,) becomes
5 35 60
) = — j(x — —_— - -— -3
Sx(x|1By) loob(x 1)+l006(x 2)+1006(x )
By direct integration of fx{x1B,):

5 3 60
FX(X\B‘)='W)—OH(X- l)+T()ST)ll(x—2)+-l—()(—)ll(x—3)

Fytx) or Pxxiy)

1.000
1.0
0.827 !
1 Fx{x}
!
0.437 0.400 Jl
1 S Fetxihy)
1
0.050 |
e 1
0 1 2 3 x
(@)
Sxlx10y)
0.600
0.6 {
04 0.350
0.2
0.050
0 1 2 3 x
(2]
Sx(x)
T 0437
04 0.390
0.2 0.173
Figure 2.6-1 Distributions (a)and den-
[} ! 2 3 X sities (h) and (c) applicable to fxame
() ple 2.6-1.
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For comparison, we may find the density and distribution of X by deter-
mining the probabilities P(X = 1), P(X =2), and P(X = 3). These are found
from the total probability theorem embodied in (1.4-10):

P(X = 1) = P(X = 1| B)P(B,) + P(X = 1] B,)P(B1)

s (2 80 (8
=100 (10) * Ts0 (10) = 0437
35 (2 60 (8
PX=2)= 100 (ﬁ) + 150 (’1—0> = 0.390
60 (2 10 (8
PX=3)= 100 (‘1—0> + 150 <—l-(-)> =0.173
Thus
Sx(x) = 0437 8(x — 1) + 0.390 §(x — 2) + 0.173 (x — 3)
and '

F () = 0.437u(x — 1) + 0.390u(x = 2) + 0.173u(x = 3)

These distributions and densities are plotted in Figure 2.6-1.

*Methods of Defining Conditioning Event

The preceding example illustrates how the conditioning event B can be defined
{rom some characteristic of the physical experiment. There are several other ways
of defining B (Cooper and McGillem, 1971, p. 61). We shall consider two of these

in detail.
In one method, event B is defined in terms of the random variable X. We

discuss this case further in the next paragraph. In another method, cvent B may
depend on some random variable other than X. We Jiscuss this casc further in

Chapter 4. .
One way to defineevent B in terms of X is to let
o B={X <b) (2.6-7)

where b is some real number —o0 < b < co. After substituting (2.6-7) in (2.6-2),

\—y?:—gct*r
P{XanXsb! (2.6-8)

F‘x(xleb)=P{X5x|Xsb}= PX <b)

1 Notation used has allowed for deletion of some braces for convenicnce. Thus, Fy(x]{X < b)) is
writien Fylx] X < b)and P{X < x} A {X < b)) becomes PXsxn XSh)

RS R (R

s
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for all events {X < b} for which P{X < b} # 0. Two cases must be considered;
one is where b < x; the second is where x < b 11 b < x, the cvent (X < D) is a
subsel of The evenT {X T xJ, 50 (X < x} N {X < b} = {X < b). Bquation (2.6-8)
becomes

_PX<xnX<b) P{X <b}
Fy(x1X <b) =~ P(X <) =P{Xsb)—l b<x (26-9)

When x <b the event {X <x} is a subset of the event {X <b}, so .

{X < x} n {X <b} = {X < x} and (2.6-8) becomes
PXSxnX<b) PX<x} Fyx

Fyx|X <b) = = = <b (2.6-10
(X1 X <) P{X < b} PX<b) " Fup) 0 @610
By combining the last two expressions, we obtain
Fy() |
—— x<b
Fy(x] X < b) = { Fx(b) (2.6-11)
1 bsx
Fx(x|X &) or Fx(x)
O e S ————t T
™ Felix <)
——
0 b X
(a)
Sx(xtX < b)or fxix)
Sx(x[X <b)
[x(x)
/
0 b x

)

Figure 2.6-2 Possible distribution functions (a) and density functions (b) applicable to a conditioning
event B = (X < b).

TIHE RANDOM VARIABLE 87

I'he conditional density function derives from (he derivative of (2.6-11):
[i(v) Tylx) )
: oy S T N b 26-12
S X S by = {Fub) [ flx) dx (2.6-12)
0 xzhb
Figure 2.6-2 sketches possible functions representing (2.6-11) and (2.6-12).
From our assumplion that the conditioning event has nonzero probability,

we have 0 < Fy(b) < 1, so the expression of (2.6-11) shows that the conditional
distribution function is never smaller than the ordinary distribution function:

Fy(x]X < b) 2 Fx(x) (2.6-13)

A similar statement holds for the conditional density function of (2.6-12)
wherever it is nonzero:

HxIX sb) = fulx) x<b C(2.6-14)

The principal results (2.6-11) and (2.6-12) can readily be extended to the more
general event B = {a < X < b} (sce Problem 2-39).

Example 2.6-2 The radial “'miss-distance” of landings from parachuling sky
divers, as measured from a target's center, is a Rayleigh random variable
with b = 800 m? and « = 0. From (2.5-12) we have
Fo(x) = [1 = e~ *8007(v)
The target is a circle of 50-m radius with a bull’'s eye of 10-m radius. We find
the probability of a parachuter hitting the bull’s eye given that the landing is
on the target,
The required probability is given by (2.6-11) with x = 10 and b = 50:
P(bull’s cyc|landing on target) = Fy(10)/F x(50)
= (l - IOOIHOO)/(I - c-lﬂ)()/u()()) = 0.1229
Parachuter accuracy is such that about 12.29% of landings falling on the
target will actually hit the bull’s cye.

PROBLEMS

2-1 The sample space for an experiment is S = {0,-1, 2.5, 6}. List all possible
values of the following random variables:

(@) X =25

(b) X =55~ |

(¢) X = cos Ins)

(d) X =(1=35)""
2-2 Work Problem 2-1 for § = {~2 < s < 5}.
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2-3 Given that a random variable X has the following possible valucs, state il X
is discrete, continuous, or mixed.

(@) {-20<x< -5}

by {10,12 < x < 14,15, 17}

(c) {—10fors>2and 5fors< 2, where | <5 <6}

() {4,3.1,1, -2}
2-4 A random variable X is a function. So is probability P. Recall that the
domain of a function is the set of values its argument may take on while its range
is the set of corresponding values of the function. In terms of scls, cvents, and
sample spaces, statc the domain and range for X and P,

2-5 A man matches coin {lips with a friend. He wins $2 if coins match and loscs
$2 if they do not match. Sketch a sample space showing possible outcomes for
this experiment and illustrate how the points map onto the real linc x that defines
the values of the random variable X = *“dollars won on a trial.” Show a sccond
mapping for a random variable Y = “dollars won by the fricnd on a trial”

2-6 Temperaturc in a given city varics randomly during any year from —-21 to
49°C. A housc in the city has a thermostat that assumes only three positions: 1
represents “eall for heat below 18.3°C," 2 represents «dead or idle zone,” and 3
represents “call for air conditioning above 21.7°C." Draw a sample space for
this problem showing the mapping nccessary (0 define a random variable
X =" thermostat setting.”

2.7 A random voltage can have any valuc defined by theset S ={a<s s b} A
quantizer divides S into 6 equal-sized contiguous subsets and gencrales a voltage
random variable X having values {—4, —=2,0,2, 4, 6}. Each value of X is equal
to the midpoint of the subset of S from which it is mapped.

() Sketch the sample space and the mapping to the linc x that dcfines the
values of X.

(b) Find aand b.

+2.8 A random signal can have any voltage value (at a given time) defined by the

set S={ao<s< ay}, where aq and ay are real numbers and N is any integer
N > 1. A voltage quantizer divides S into N equal-sized contiguous subsets and
converls the signal level into one of a set of discrete levels a,, n = 1,2,..., N, that
correspond to the “input” subsets {a,-1 <SS a,). The set {ay, G2, - ay) can
be taken as the discrete values of an “output” random variable X of the quan-
tizer. 1 the smallest *input” subsct is defined by A =a; — do and other subsets
by a, = a1 = o= 1A, determine A and the quantizer levels a, in terms of ag, n,
and N.
2-9 An honest coin is tossed three times.

(a) Sketch the applicable sample spacc S showing all possible clements.
Let X be a random variable that has valucs representing the number of
heads obtlained on any triple toss. Sketch the mapping of § onto the real linc
delining X.

(b) Find the probabilitics of the values of X.

2-10 Work Problem 2-9 for a biased coin for which P{hcad} = 0.6.
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2-11 F{gsislor R, in Figure P2-11 is randomly selected from a box of resistors
conlaining 180-Q, 470-Q, 1000-Q, and 2200-Q resistors. All resistor values have
the same likelihood of being selected. The voltage E, is a discrete random vari-

f « able. Find the set of values E, can have and give their probabilities.

R,=8200

"l' Fa
Figure P2-11

——0

2-12 Bolts made on a production line are nominally designed to have a 760-mm
length. A’ g0-no-go testing device climinates all bolts less than 650 mm and over
920 mm in length. The surviving bolts are then made available for sale and their
lengths are known to be described by a uniform probability density function.
A certain buyer orders all bolts that can be produced with a +5% tolerance
about the nominal length. What fraction of the production line’s output is he
purchasing?

2-13 Find and sketch the density and distribution functions for the random vari-
ables of parts (a), (b), and () in Problem 2-1 if the sample space elements have
cqual likelihoods of occurrence.

2-14 1f temperature in Problem 2-6 is uniformly distributed, sketch the density
and distribution functions of the random variable X.

2-15 For the uniform random variable defincd by (2.5-7) find:

(a) P{0.9a + 0.1b < X £0.7a + 0.3b}

(b) Pla+b)2<X =< b}

2-16 Determine which of the following are valid distribution functions:

] — e x20
(a) Gx(x) =
, x<0
0 x<0
(b) Gy(x) = 1{0.5 + 0.5 sin [n(x — 1)/2] 0<x<2

1 x22
N .
(€) Gylx) = - [1(x — a) — u(x — 2a)]
2-17 Determine the real constant a, for arbitrary real constants m and 0 < b,

such that
Sulx) = ae”lx=mit

is a valid density function (called the Laplacet density).

1 After the French mathematician Marquis Picrre Simon de Laplace (1749-1827).
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-

2-27 For the gaussian density function of (2.4-1), show that

j " (x = ay)¥(x) dx = 0}

- o

v 2-18 An inlercom system master station provides music to six hospital rooms,
: The probability that any one room will be switched on and draw power at any *
time is 0.4, When on, a room draws 0.5 W,
(@) Find and plot the density and distribution functions for the random vari-
able " power delivered by the master station.”

2-28 A production line manufactures 1000-Q resistors that must satisfy a 10%

L (b) If the master-station amplifier is overloaded when more than 2 W is tolerance.
w demanded, whal is its probability of overload? _ {a) If resistance is adequately described by a gaussian random variable X for
W *2-19 The amplifier in the master station of Problem 2-18 is replaced by a 4-W which ay = 1000 Q and g, = 40 (, what [raction of the resistors is expected to be

rejected?

(b) if a machine is not properly adjusted, the product resistancés change (o
the case where ay = 1050 Q (5% shift). What fraction is now rejected?
2-29 Cannon shell impact position, as measured along the line of fire f[rom the
target point, can be described by a gaussian random variable X, It is found that
15.15% of shells fall 11.2 m or farther from the target in a direction toward the
cannon, while 5.05% fall farther than 95.6 m beyond the target. What arc ay and
ayfor X1
2-30 (a) Use the exponential density of (2.5-9) and solve for I, defined by .

«©
L= J. x*fx(x) dx
(h) Solve for I, defined by
I, = J xfx(x) dx

unit that must now supply 12 rooms. Is the probability of overload better than if
two independent 2-W units supplied six rooms each?
2-20 Justify that a distribution function Fy(x) satisfies (2.2-2a, b, c).
2-21 Use the definition of the impulse function to evaluate the following
integrals. !

(Hint: Refer to Appendix A.)

(a) J (3x? + 2x — 4)8(x — 3.2) dx
3

(b) fw €cos (6mx)d(x ~ 1) dx

i “ 248(x — 2) dx
e X4 3x2 42
{c) Verify that I, and I, satisly the cquation I, — I? = b2,

2-31 Verify that the maximum value of fy(x) for the Rayleigh density function of
(2.5-11) occurs at x =a + \/172' and is equal to J?T/E exp (= h) =~ 0.607\/573.
This value of x is called the mode of the random variable. (In general, a random
variable may have more than one such value—explain.)

2-32 Find the value x=x, of a Rayleigh random variable for which
P{X < xo} = P{xo < X}. This value of x is called the median of the random vari-
able.

2-33 The lifetime of a system expressed in weeks is a Rayleigh random variable

)t f ® 8x = xg)e I dx

3
(e) J. u(x — 2)8(x — 3) dx
-3

2-22 Show that the properties of a density function fy(x), as given by (2.3-6), arc
valid.

2-23 For the random variable defined in Example 2.3-1, find:
(a) P{xo —0.60 < X < x4 + 0.3a)
(b) P{X = x,}

, , o for whict
: ‘(_::: 2-24 A random variable X is gaussian with ay = O and o, = I, X for which (x/200)e=*1490 (< x
i} (a) What is the probability that | X| > 27 Sx(x) = {0 ’
5 (b) What is the probability that X > 27 i x<0
; 225 Work Problem 224 if ay = 4 and o = 2, (a) thxt is the prob'abflfly that the syst.cm.wﬂl npt last a full week?
5 226 For th it foneti (b) What is the probability the system lifetime will exceed one year?
= . #-26 For the gaussian density function of (2.4-1), show that 2-34 The Cauchyt rapdom variable has the probability density function
£} f' J‘w | b/T[
b Xfx(x)dx = a e I Y]
& cw X Jxx) b* + (x - a)?

t The quantity J is the unit-imuginary; that is, j = /=1, t After the French mathematician Augustin Louis Cauchy (1789-1857).
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for real numbers 0 < b and —o0 < a < 00. Show that the distribution function of

Xis
. It fx—a
Fy(x) = 2 + - tan < ; )
2-35 The Log-Normal density function is given by
exp {—[In (x — b) — ay)*/20}}

Jxlx) = J2nax(x ~ b)
0 x<b

x=b

for real constants 0 <oy, —® < ay < o0, and —o0 < b < oo, where In (x)
denotes the natural logarithm of x. Show that the corresponding distribution

function is
In (x - b) — ax]
F| —————— x2b
Fy(x) = [: Ox

0 x<b

where F(+) is given by (2.4-3). ,
2-36 A random variable X is known to be Poisson with b = 4.
(a) Plot the density and distribution functions for this random variable.
() What is the probability of the event {0sX <51
2-37 The number of cars arriving at a certain bank drive-in window during any
10-min period is a Poisson random variable X with b = 2. Find:
(@) The probability that more than 3 cars will arrive during any 10-min

period.
i(b) The probability that no cars will arrive.

2.38 Rework Example 2.6-1 to find S+(x|By) and Fy(x|B,). Sketch the two
functions.

*2.39 Extend the analysis of the text, that leads to (2.6-11) and (2.6-12), to the
more general event B={a < X' < b}. Specifically, show that now

0 x<a

. F — Fy(a
. Fx(xin<Xsb)= ;i((ib;—_—-—}‘-:zt’l% asx<b
1 b<x

and
0 x<a

Sx(x) L)
fxla<X gh) = l"x(b)x— Fy(a) b filx) dx

0 b < x

ag<x<h

\
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*2.40 Consider the system having a lifetime defined by the random variable X in
Problem 2-33. Given that the system will survive beyond 20 weeks, find the prob-
ability that it will survive beyond 26 wecks.

ADDITIONAL PROBLEMS

2-41 A sample space is defined by S = {1,2<s< 3, 4, 5}. A random variable is
defined by: X =2 for 0<s<25 X =3 for 25<s5<35 and X =35 for
155ss<6.

(@) Is X discrete, continuous, or mixed?

(b) Give a set that defines the values X can have.

2-42 A gambler flips a fair coin three times.

(a) Draw a sample space S for this experiment. A random variable X rep-
resenting his winnings is defined as follows: He loses $1 if he gets no heads in
three flips; he wins $1, $2, and $3 if he obtains 1, 2, or 3 heads, respectively. Show
how elements of § map to values of X. -

(b) What are the probabilities of the various values of X?

2-43 A function Gx(x) = a[l + (2/m) sin™" (x/c)] rect (x/2¢) + (¢ + b)u{x — ¢) is
defined for all —o0 < x < o0, where ¢ > 0, b, and a are real constants and rect (-)
is defined by (E-2). Find any conditions on a, b, and ¢ that will make Gx(x) a
valid probability distribution function. Discuss what choices of constants corre-
spond to a continuous, discrete, or mixed random variable.

2-44 (a) Generalize Problem 2-16(a) by finding values of real constants a and b
such that

Gulx) = [1 — @ exp'(—x/b)]u(x)
is a valid distribution function. '
(b) Are there any values of a and b such that Gy(x) corresponds to a mixed
random variable X7
2.45 Find a constant b > 0 so that the function

: 4 0<sx<b
\'- S = {O / clsscwhfrc
is a valid probability density.
2.46 Given the function
- gx(x) = 4 cos (mx/2b) rect (x/2b)

find a valuc of b so that gy(x) is a valid probability density.
2-47 A random variable X has the density function
J3(x) = (hlu(x). exp (—x/2)

Definc cvents A = {1 < X <3}, B={X <25}, and C=A n B. Find the prob-
abilitics of events (a) 4, (b) B, and (c) C.
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*2-48 Let ¢(x) be a continuous, but otherwise arbitrary real function, and lct a
and b be real constants. Find G(a, b) defined by

«©

Gla, b) = J. ¢(x) d(ax + b) dx

(Hint: Use the definition of the impulse function.)

2-49 For r'eal constants b>0, ¢>0, and any a, find a condition on constant a
and a relationship between ¢ and a (for given b) such that the function

all —~ {x/b 0
fx(X)'-'-'{[ (/b)) Osxs<e
0 elsewhere
is a valid probability density. :
2-50 A gaussian random variable X has ay = 2, and oy = 2
(@) Find P{X > 1.0}.
(b) Find P{X < —1.0}.
T, i .
?-51 In a certain “junior olympics, javelin throw distances are well approx-
m'mlcd by u guussiun distribution for which ay = 30 m and o, = 5 m. In u qunli-
fying round, contestants must throw farther than 26 m lo qualify. In the main
event the record throw is 42 m.
{a) What is the probability of being disqualified in the qualifying round?
(b) In the main event what is the probability the record will be broken?
2-5? Suppose height to the bottom of clouds is a gaussian random variable X for
w!nch ay = 4000 m, and gy = 1000 m. A person bets that cloud height tomorrow
will fall in the set A = {1000 m < X < 3300 m} while a second person bets that
height will be satisfied by B = {2000 m < X < 4200 m}. A third person bets they
are both correct. Find the probabilities that each person will win the bel.
2-53 Let X be a Rayleigh random variable with a = 0. Find the probability that
X will have values larger than its mode (see Problem 2-31),
2-54 A certain large city averages three murders per week and their occurrences
follow a Poisson distribution. '
(@) What is the probability that there will be five or more murders in a given
week?
{b) On the average, how many weeks a year can this city expect to have no
murders?
(c) How many weeks per year (average) can the city expect the number of
murders per week (0 equal or exceed the average number per week?

" 2-55 A certain military radar is set up at a remote site with no repair facilities. If
the radar is known (o have a mean-time-between-failures (MTBF) of 200 h find
the probability that the radar is still in operation one week later when picked up
for maintenance and repairs.

2-56 If the radar of Problem 2:55-is permanently located at the remote site, find
the probability that it will be operational as a function of time since its st up.

i ame e Q0 e -
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2-57 A computer undergoes down-time if a certain critical component fails. T'his
componcnt is known to fail at an average rale of once per four wecks. No signifi-
cant down-time occurs if replacement components are on hand because repair
can be made rapidly. There arc three components on hand and ordered replace-
ments are not due for six wecks.

(@) What is the probability of significant down-time occurring before the
ordered components arrive?

(b) If the shipment is delayed two weeks what is the probability of significant
down-time occurring before the shipment arrives? .

*2.58 Assume the lifetime of a laboratory rasearch animal is defined by a Rayleigh
density with a = 0 and b = 30 weeks in (2.5-11) and (2.5-12). If for some clinical
reasons it is known that the animal will live at most 20 weeks, what is the prob-
ability it will live 10 weeks or less?

*2.59 Supposc the depth of water, measured in meters, behind a dum is described
by an exponcntial random variable having a density

[2(x) = (1/13.5) exp (—x/13.5)

There is an cmergency overflow at the top of the dam that prevents the depth
from cxceeding 40.6 m, There is a pipe placed 32.0 m below the overflow {ignore
the pipe’s finite diameter) that feeds water to a hydroelectric generator.

(a) What is the probability that water is wasted through emergency over-
flow?

() Given that water is not wasted in overflow, what is the probabilily the
generator will have water to drive it?

(¢) What is the probability that water will be too low to produce powe

*2.60 In Problem 2-59 find and sketch the distribution and density functions of
waler depth given that water will be deep enough to generale power but no water
is wasled by emergency overflow. Also sketch for comparisons (he distribution
and densily of water depth without any conditions?

*2-61 In Example 2.6-2 a parachuter is an “expert™ il he hits the bull’s eye. If he
falls outside the bull's eye but within a circle of 25-m radius he is called
“qualified ” for competition, Given that a parachuter is not an expert but hits the
target what is the probability of being *“ qualified?”
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OPERATIONS ON
ONE RANDOM_VARIABLE—EXPECTATION

3.0 INTRODUCTION

The random variablc was introduced in Chapter 2 as a means of providing a sys-
tematic definition of events defined on a sample space. Specifically, it formed a
mathematical model for describing characteristics of some real, physical world
random phenomenon. In this chapter we extend our work to include some
important operations that may be pegformed on a random variable. Most of these
operations are based on a single concept—expectation.

3.1 EXPECTATION

Expectation is the name given to the process of averaging when a random vari-
able is involved. For a random variable X, we usc the notation E[X], which may
be read * the mathematical expectation of X" “the expected value of X,” “the
mean valuc of X," or “the statistical average of X." Occasionally we also use the
notation ¥ which is read the same way as E[X]; thatis, X = E[X]1

Nearly cveryone is familiar with averaging procedures. An example that
scrves Lo tic a familiar problem to the new concept of expectation may be the
casicst way to proceed.

t Up to this point in {his book an overbar represented the complement of a sct or event, Hence-
forth, unless specifically stated otherwise, the overbar will always represent a mean value,
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Exzample 3.1-1 Ninety people are randomly sclected and the fractional dollar

value of coins in their pockets is counted. If the count goces above a dollar,

the dollar value is discarded and only the portion from 0¢ (0 99¢ is accepted.

It ic found that 8, 12, 28,22, 15, and 5 people had 18¢, 45¢, 64¢, 72¢, 77¢, and

95¢ in their pockets, respectively. !
Our everyday experiences indicate that the average of these values is

8 12 28 22
Average $ = 0.18(5—()) + 0,45(§—o> + 0.64(5—0) + 0’72<§6>

15 5
+ 0.77(-9—6> + 0.95(-9—0)

~ $0.632

Expected Value of a Random Variable

The everyday averaging procedure used in the above example carries over
directly to random variables. In fact, if X is the discrete random variable
“fractional dollar value of pocket coins,” it has 100 discrete values x, that occur
with probabilities P(x)), and its expected value E[X] is found in the same way as
in the example:

100

E[X] = lle, P(x)) (3.1-1)

The values x, identify with the fractional dollar values in the cxample, while P(x;)
is identified with the ratio of the number of people for the given dollar value to
the total number of people. If a large number of people had been used in the
“sample™ of the example, all fractional dollar values would have shown up and
the ratios would have approached P(x). Thus, the average in the example would
have become more like (3.1-1) for many more than 90 people.

In general, the expected value of any random variable X is defined by

L
E[X]=X= J xfx(x) dx (3.1-2)
If X happens to be discrete with N possiblc values x; having probabilities P(x,) of
occurrence, then i

N
Sxlx) = 'ZtP(x,)é(x - x) (3.1-3)

from (2.3-5). Upon substitution of (3.1-3) into (3.1-2), we have
N
E[X]= Y xP(x)  discrete random variable (3.1-4)
=1

Hence, (3.1-1) is a special case of (3.1-4) when N = 100. For some discrete
random variables, N may be infinite in (3.1-3) and (3.1-4).

i
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Example 3.1-2 We determine the mean value of the continuous, exponen-
tially distributed random variable for which (2.5-9) applies:

|
=(x~-a)b
- xX>a
Jx(x) = {b
0 x<a

From (3.1-.2) and an inicéral from Appendix C: .

@ x ea/b ©
E[(X] = J 5 el Iy = e xe P dx=a4b

If a random variable's density is symmetrical about a line x =a, then
E[X] = a; that is, ‘

EX]=a if fix+a)=fi—x+ ;1) (3.1-5)

Expected Value of a Function of a Random Variable

As will be evident in the next section, many useful parameters relating to a
random varinble X can be derived by finding the expected value of & real func-

tion g(+) of X. 1t can be shown (Papoulis, 1965, p. 142) that this expeeted valug is
given by

«

E[y(X)] = j 9(x)fx(x) dx (3.1-6)

I£ X is a discrete random varjable, (3.1-3) applies and (3.1-6) reduces to

N
E[g(X)] = Y g(x)P(x) discrete random variable (3.1-7)
(R

where N may be infinite for some random variables.

Example 3.1-3 It is known that a particular random voltage can be rep-
resented as a Rayleigh random variable V having a density function given by
(2.5-11) with a = 0 and b = 5. The voltage is applied to a device that gener-
ates a voltage Y = g(V) = V2 (hat is equal, numerically, to the power in V (in
a 1-Q resistor). We find the average power in ¥ by means of (3.1-6):

Power in V = E[g(V)] = E[V?] = fw 2—? e~y
By letting & = v?/5, d¢ = 2v dv/S, we obtain '
Powerin ¥V =5 JQC e fdE=5W
after using (C-46). ’
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*Conditional Expected Value

I, in (3.1-2), fx(x) is replaced by the conditional density fy(x|8), where B is :m’y
event defined on the sample space, we have the conditional expected value of X,
denoted E(X | B]:

©

E[X|B] = J xfx(x| B) dx (3.1-8)

One way to define event B, as shown in Chapter 2, is to let it dc;:)cnd on the
random variable X by defining

B={X g b} —ow<b<o (3.1-9)
We showed there that
Sx(x)
—_— b
HEIX <) =T fnde T (3.1-10)
0 xzb

Thus, by substituting (3.1-10) into (3.1-8):

[ ) d)
E[X]X < b) =& Xfylx) dx

' Sylx) dx

which is the mean value of X when X is constrained to the set {X < b}.

3.1-1n

3.2 MOMENTS

An immediate application of the expected value of a function g(-) of a random
variable X is in calculating moments. Two types of moments are of interest, those
about the origin and those about the mean,

Moments About the Origin
The function
giX)=X" n=012,.. (3.2-1)

when used in (3.1-6) gives the moments about the origin of the random variable
X. Denote the nth moment by m,. Then,

m, = E[X"] = r Xx(x) dx (3:2:2)

Clearly my = 1, the area of the function f(x), whilc m, = X, the expected value
of X.

-

(R e )

i Avas

—




70 PROBABILITY, RANDOM VARIATLES, AND RANDOM SIGNAL PRINCIPLES

Central Moments

Moments about the mean value of X arc called central moments and arc given the

symbol i, They arc defined as the expected value of the function
gX)=(X - Xy n=0,1,2.. (3.2-3)

which is
t, = E[X — X)) = Jm (x = X)fx(x) dx (3.2-4)

The moment gto = 1, the arca of f(x), while pty = 0.(Why?)

Variance and Skew

The sccond central moment jt; is so important we shall give it the name variance
and the special notation ¢%. Thus, variance is given by

al =gy = BN = X)) = j'm (x = R)Y(x) dx (3.2-5)

The posilive square root ay of variance is called the standard deviation of X it is
2 measure of the spread in the function fx(x) about the mean.

Variance can be found from a knowlcdge of first and sccond moments. By
expanding (3.2-5), we have}

ot = E[X? = 2XX + X%} = E(X?) — 2RE[X) + X?
= E[X¥) = XP=my —m] (3.2-6)

Example 3.2-1 Let X have the exponential density function given in Example
3.1-2. By substitution into (3.2-5), the variance of X is

-]
al = j (x—X)? —I-’ et ix

By making the change of variable E=x— £ we obtain

o\ T-an (o ’ ~
a§'=—_1—_.[. Cze"“' dc=(ﬂ+b—z\')l+b1
h -¥

+ The subscript indicates thal al is the variance ofa ranfdom variable X. For a random variable ¥
it variance would be a}.

1 We use the fact that the expected value of a sum of functions of X equals the sum of expected
vatues of individoal functions, as the reader can readily verify as an cxereise,
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after using an integral from Appendix C. However, from Example 3.1-2, X =
E[X] = (a + b).so

al=0h?

The reader may wish to verily this result by finding the sccond moment
E[X?] and using (3.2-6).

The third central moment jty = E[(X — X)*] is a mcasurc of the asymmetry
of fy(x) about x = X =m,. 1t will be called the skew of the density function. If a
density is symmetric about x = X, it has zero skew. In fact, for this case j, = 0
for all odd values of n. (Why?) The normalized third central moment fi,/0% is
known as the skewness of the density function, or, alternatively, as the coefficient
of skewness.

Example 3.2-2 We continue Example 3.2-1 and compute the skew and cocfli-
cient of skewness for the exponcntial density. From (3.2-4) with n= 3 we
have
y = E[(X = 0= E[X - agXt 4+ 38 - X%
S0 —3RXE 428 = X0 3R} + RH) +28°

~ X386 - X

Next, we have
—_ ® 3
=\ o=l dx = a® + 3a%h + Gab® + 6b°

after using (C-48). On substituting X = a + b and ol = b?* from the carlicr
example, and reducing the algebra we find

pty = 2b°
i
ox

This density has a relatively large cocflicient of skewness, as can be scen intu-
itively from Figure 2.5-3.

x33 FUNCTIONS THAT GIVE MOMENTS

Two [unctions can be defined that allow moments to be calculated for a random
variable X. They are the characteristic function and the moment gencrating
function.
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* Characteristic Function
The characteristic function of a random variable X is defined by
Oy(w) = E[e™X] (33-1)
where | = \/—_l It is a function of the real number —o00 < w < 00, If (3.3-1) is

written in terms of the density function, ®y{(w) is seen to be the Fourier transformt
(with the sign of w reversed) of fy(x):

Oy(w) = Jm Sx(x)ele* dx (3.3-2)

Because of this fact, if ©(w) is known, fy(x) can be found from the inverse Fourier
transform (with sign of x reversed)

Ji(x) = :,l’; f B ylw)e "I dw (3.3-3)

By formal differentiation of (3.3-2) n times with respect to w and setting w = 0 in
the derivative, we may show that the nth moment of X is given by

4" y(w)

m, = (—j)" To"

(3.3-4)

w=0

A major advantage of using ®4(w) to find moments is that @,(w) always
exists (Davenport, 1970, p. 426), so the moments can always be found if @y(w) is
known, provided, of course, the derivatives of ®,(w) exist.

It can be shown that the maximum magnitude of a characteristic function is
unity and occurs at w = 0; that is,

[Px(w)| < ®x(0) =1 (3.3-5)
(See Problem 3-24.)

Example 3.3-1 Again we consider the random variable with the exponential
density of Example 3.1-2 and find its characteristic function and first
moment,

t Readers unfumiliar with Fourier trunsforms should interpret @, (w) as simply the expected value

of the function g(X) = exp (jwX). Appendix D is included as a review for others wishing tc refresh
their background in Fourier transform theory,
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By substituting the density function into (3.3-2), we get

«@ l L,n/h @ (b Juoks
-(x- s=lUb=Jwls g
(l)‘y((ﬂ) = — el a)lbelw.g dx = ; ety dx
a b 7 e

Evaluation of the integral follows the use of an integral from Appendix C:
ellb e—(llb-jm)x

o= [T ]

e Jton .

1= jwb

The derivative of ®y(w) is

o —_—
dw L —jwb (I —jwb)?
so the first moment becomes

d®y(w)

dw

=qa+bh,

wsa0

my = (=)

in agreement with m, found in Example 3.1-2.

*Moment Generating Function

Another statistical average closely related to the characteristic function is the
moment generating function, defined by

My(v) = E[e"*] (3.3-6)

where v is a real number — o < v < 00, Thus, M (v) is given by

My(v) = JW Jx(x)e™ dx (3.3-7)

The main advantage of the moment generating function derives from its
ability to give the moments. Moments are related to M y(v) by the cxpression:
d"M x(v)

m, = ——==— (3.3-8)
"

va(

The main disadvantage of the moment generating function, as opposed to the
characteristic function, is that it may not exist for all random variables. In fact,
M 4(v) exists only if all the moments exist (Davenport and Root, 1958, p. 52).

.
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continuous. Note that the transformation in all three cases is assumed contin-
uous. The concepts introduced in these three situations are broad enough that
(he reader should have no difficulty in extending them to other cases (sce
Problem 3-32).

Example 3.3-2 To illustrate the calculation ind use of thc moment geners

ating function, let us reconsider the exponential densily of the carlier cxam- . B
ples. On usc of (3.3-7) we have o

w
M x(v) = [ - g dx
o

b Monotonic Transformations of a Continuous Random Variable

RILEN A i

- j. Ar=ami e 'f A transformation T is called monotonically increasing if T(x) < T(x,) for any
b Ja X, € Xy 1tis monotonically decreasing if T(x,) > T(xj) for any x, < Xa.

o Consider first the increasing tr. atign. We assume that T'is continuous
=Ty and differentiable at all values of x for which fx(x) # 0. Let ¥ have a particular

value y, corresponding to the particular value xo of X as shown in Figure 34-2a.
The two numbers are related by s

yo=Tlxo) of Xo=T" '(yo) (34-2)

where T-! represents the inverse of the transformation T. Now the probability
of the event {Y < yo} must equal the probability of the event {X < xo} because
of the one-to-one correspondence between X and Y. Thus,

Fylyo) = P{Y < 9o} = P{X S xo} = Fx(Xo) (3.4-3)

. - -

In evaluating M y(v) we have used an integral from Appendix C.
By difterentiation we have the first moment

= 220

TR,

v=0
el = + b]

= =a+b
(1 —bv)? v=0

which, of course, is the same as previously found.

34 'I'RANSFORMA'HONS OF A RANDOM VARIABLI
i

. . { . .
Quite often one may wish to transform (change) one random variable X into a
new random variable Y by means of a transformation

y = T(X) (3.4-1)

Typically, the density function fx(x) of distribution function F(x) of X is known,
and the problem is to determine either the density function Sily) or distribution
function Fy(y) of Y. The problem can be viewed as a “black box » with input X,
output Y, and *transfer characteristic” ¥ = T(X), as illustrated in Figure 34-1.

Th.general, X can be a discrete, continuous, 0f a mixed random variable. In

sformation T° can be lincar, nonlincar, scgmcmcd. staircase, clc.

turn, the tran
pending on the

Clearly, therc arc many cascs to consider in a general study, de
form of X and T. In this section we shall consider only three cases: (1) X contin-
uous and T continuous and cither monotonically increasing or decreasing with
X: (2) X continuous and T continuous but nonmonotonic; (3) X discrete and T

,\‘ Y Figure 3.4-1 Transformation of a random variable X
fely)  loanew random variable V.

fel)

Figure 3.4-2 Monotonic trans-
formations: (a) increasing, and (b)
decreasing, [Adapted from Peebles
(1976) with permission of publi-
shers Addison-Wesley, Advanced
() Book Program.)
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% o Example 3.4-1 If we lake T to be the linear lr.um(nrm.\(mn Y=T(\)= T
: x0 =T~ yo) aX + b, where a and b are any real constants, thea X = “HY) = (Y - DYu e
E j Sy dy = j Sx(x) dx (3.4-4) and dx/dy = 1/a. From (3.4-9)

s ®©

y—b\|1
) =fx(—u—>} - l

Il X is assumed to be gaussian with the density function given by (2.4-1),

| Next, we differentiate both sides of (3.4-4) with respect to y, using Leibniz's rulct
to get

dT"!
Siyo) = /[T~ (vo)] y‘“’ (3.4-5) we get
" (]
, . " . Sy = ¢~y —b)a=ax)}2ox? l -
: Since this result applies for any y,, we may now drop the subscript and write Y nol a .
s =parmion 9 (346 Lyt eomrzeten
. . . B dy 2natay
or, more compactly, which is the density function of another gaussian random variable having
dx ay = aday + b and ol = a%c
) =fit) 64 . -
Y Thus, a linear transformation of a gaussian random variable produces another

gaussian random variable. A linear amplifier having a random voltage X as ils

In (3.4-7) it is understood that x is a function of y through (3.4-2). . :
input is one example of a linear transformation,

A consideration of Figure 3.4-2b for the decreasing transformation verifies
that

Frlyal = PLY < yob = P{X 2 x0} = 1| = Fylxo). (3.4-8) Nonmonotonic Transformations of a Continuous Random Variable

A rc{)ctition of the steps leading to (3.4-6) will again produce (3.4-6) except that
the right side is negative. However, since the slope of T~!(y) is also negative, we
conclude that for either type of monotonic transformation

dT (y) ’

A transformation may not be monotonic in the more general case, Figure 3.4-3
illustrates one such transformation. There may now be more than one interval of
values of X that correspond to the event {Y < yo}. For the value of y, shown
in the figure, the event {Y < yo} corresponds to the event {X < xy and x, <
X < x,). Thus, the probubility of the event {Y < y,} now cquals the probability

';g‘

L) =LHLT7HN (3.4-9)

e

A St Sva

or simply
y =T

Jr(y) = fx(%)

d_x 3.4-10
dy (')

X,

DA

a

1 Leibniz's rule, after the great German mathematician Gottfried Wilhelm von Leibniz (1646-
1716), states that, if H(x, ) is continuous in x and u angd

Hiw)
Glu) = -[ H(x, u) dx
a(w)’

Figure 3.4-3 A nonmonotonic

N

then the derivative of the intcgral with respect to the parameter u is transformation. [Adapted from I
‘ ‘ N ) ~ Pecbles (1976) with permission I

dG(u) da(u) w) all(x ll) / Xy Xy ; b of publishers Addison-Wesley, ‘ -

du e “] - et 1 =5 du ¥ .[m 0 t Advanced Book Program.) R




78 PRODABILITY, RANDOM VARIABLES, AND RANDOM SIGNAL 1INCIPLES

of the event {x values yielding Y < yo}, which we shall writc as {x|Y < yo}. In
other words

Fylyo) = P{Y S ¥o} = P{x|Y S yo} = [ Sx(x) dx (3.4-11)
(1Y < yo)

Formally, one may differentiate to obtain the density function of Y

t d i
Sxlyo) = 7 j Sx(x) dx (3.4-12)
dyo Jixit syo)
Although we shall not give a proof, the density function is also given by
(Papoulis, 1965, p. 126)

= Z

fx(xn)
el \ (3.4-19)

dx
where the sum is taken so as to include all the roots x,,
the real solutions of the cquationt

n=1,2,..., which arc

y = T(x) (3.4-14)

We illustrate the above concepts by an example.

Example 3.4-2 We find fy(y) for the squarc-law transformation
Y = T(X) = cX?

shown in Figure 3.4-4, where ¢ is a real constant ¢ > 0. We shall use both the

procedure leading to (3.4-12) and that leading to (3.4-13).
in the former case, the event (Y <y} occurs when {—/ye£Xxs

\/37(_‘} ={x|Y gy} (3.4-12) becomes

{ (7
fy(y)=;;;j_nfx(x) dx  yz0

Upon use of Leibniz's rule we obtain

d (-~
AN bg’_i) — = f‘—ﬁyﬁ@

Il yje) + fx{= y/c) 0
2/ey ’=

Ly =

110y = T(x) has no real roots for a given value of y, then fy(y) = 0.

OPEKA $ IONS ON ONE RANDOM VARIA“LE—EXPECTATION 79

y-tx’

Figure 34-4 A square-law trans-
formation. [Adapted from Peehles
(1976) with permission of publishers
Addison-Wesley, Advanced  Book

 Program.]

In the latter case where we use (3.4-13), we have X=+JYY2Z 0, so
x, = —Jyl¢ and x, = J/y/c Furthermore, dT(x)/dx = 2¢x SO

dT(x) _ _ y_
Ix lios, =2cx, = —ZC\/—Z— —2\/5
dT(x)

dx  |cmx - 2\/:;

From (3.4-13) we again have

S0+ L= /IC)
y 0
2./cy

Hy) =

Transformation of a Discrete Random variable

If X is a discrete random variable while Y = T(X) is a continuous transfor-
mation, the problem is cspecially simple. Here

[x) =T P(x)3(x — ) (3.4-15)

Fy(x) = ¥, PlxJulx = Xa) (1;-4-16)

where the sum is taken to include all the possible values x,,n=1,2,..0s of X.

If the transformation is monotonic, there is a one-to-one correspondence
between X and Y so that a set {y,} corresponds to the set {x,} through the equa-
tion y, = T(x,). The probability P(y,) equals P(x,). Thus,

Sy0) = L PO = ) (34-17)

Fyl) =T POty = ya) (3.4-18)

e
=
i

4:}: 3
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where
Yo = T(x,) (3.4-19)
P(y,) = P(x,) (3.4-20)

' I Tis not mgnotonic. the above procedure remains valid except there now
exists the possibility that more than one value x, corresponds to a value y,. In
suc.h a case P(y,) will equal the sum of the probabilities of the various x, for
which y, = T(x,). '

PROBLEMS

3-1. A discrete random variable X has possible values x, =i, i=1, 2, 3, 4, 5,
which occur with probabilities 0.4, 0.25, 0.15, 0.1, and 0.1, respectively. Find the
mean value £ = E[X] of X.
3-2 The natural numbers are the possible values of a random variable X; that is
Xy=n,n=1,2,.... These numbers occur with probabilities P(x ) = (LY. Fi ’
the expected value of X, g (x) = (A Find
3-3 ll!' l.hc probabilities in Problem 3-2 are P(x,)=p", 0<p <1, show that
p= '/2 is the only value of p that is allowed for the problem as formulated.
(Hint: Use the fact that f2, fi(x) dx = I is necessary.)
3-4 Give an example of a random variable where its mean value might not equal
any of its possible values. .
3-5 Find:

(a) the expected value, and

(b) the variance of the random variable with the triangular density of Figure
23-laifa = 1/a.
3-§ Show that the mean value and variance of the random variable having the
uniform density function of (2.5-7) are:

X =E[X]=(a+b)2
and
ox =(b—a)¥/12

3-7 A pointer is spun on a fair wheel of chance numbered from 0 to 100 around
its circumference,

(a) What is the average value of all possible pointer positions?

(b) What d’cvmtlon f.rom its average value will pointer position take on the
average; that is, what is the pointer's root-mean-squared deviation from its
mean? (Hint: Use results of Problem 3-6.) .

3-8 Find:

(a) the mean value, and

(b) the variance of the random variable X defined by Problems 2-6 and 2-14
of Chapter 2.

OPERATIONS ON ONE RANDOM VARIABLE—EXPECTATION i

*3.9 For the binomial density of (2.5-1), show that
E[X]=X=Np
and
ak = Np(l = p)
3-10 (a) Let resistance be a random variable in Problem 2-11 of Chapter 2. Find

the mean value of resistance.

(b) What is the output voltage E, il an average resistor were used in the
circuit? ' .

(¢) For the resistors specified, what is the mean value of E,7-Does the
voltage of part (b) equal this value? Explain your results.
3-11 (a) Use the symmetry of the density function given by (2.4-1) to justify that
the parameter ay in the gaussian density is the mean value of the random vari-
able: X = ay.

(b) Prove that the parameter o is the variance. (fint; Use an cquation from
Appendix C.)
3-12 Show that the mean value E[X] and variance ¢ of the Rayleigh random
variable, with density given by (2.5-11), are

E[X]=a+ /nb/4

and
ok = b4 — m)/4
3-13 What is the expected lifetime of the system defined in Problem 2-33 of
Chapter 2?
3-14 Find:

(a) the mean value, and
(b) the variance for a random variable with the Laplace density

1
= — —lx=m|/b
Sx(x) 2be

where b and m are real constants, b > 0and —c0o <m < 0.
3-15 Determine the mean value of the Cauchy random variable in Problem 2-34
of Chapter 2. What can you say about the variance of this random variable?
*3.16 For the Poisson random variable defined in (2.5-4) show that:
(a) the mean value is b and
(b) the variance also equals b.
3-17 (a) Use (3.2-2) to find the first three moments my, my, and my for the expo-

nential density of Example 3.1-2.
(b) Find m,, m,, and my from the characteristic function found in Example

3.3-1. Verify that they agree with those of part (a).
3-18 Find expressions for all the moments about the origin and central moments
for the uniform density of (2.5-7).
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3-19 Definc a function g(*) of a random variable X by *3.28 The characteristic function for a gaussian random variable X, having a

1 X = Xo N mean value of 0, is

where xg is a real number — 00 < Xo < 00, Show that

E[g(X)] = 1 = Fx(xo)
3-20 Show that the sccond moment of any random variable X about an arbi-
trary point @ is minimum when a = X; that is, show that E[(X —a)*] is
minimum for a = X.

0y(@) = exp (o} 01)

Find all the moments of X using Ox(w).
*3.29 Work Problem 3-28 using the moment generating function

M x(v) = exp (@%v'/2)

for the zero-mean gaussian random variable.

*3.30 A discrete random variable X can have N + 1 values x, = k&, k =0, | P
N, where A>0is 2 real number. Its values occur with equal probability. Show

that the characteristic function of X is

1 sin [(N + Dwb/2] (Hosi2
N+1 sin (wA/2)
3-31 A random variable X is uniformly distributed on the interval (—n/2, 7/2). X
is transformed to the new random variable Y = T(X) = atan (X), where a > 0.
Find the probability density function of Y.
3.32 Work Problem 3.31 if X is uniform on the interval (—1, 7).
3-33 A random variable X undergoes the transformation ¥ = afX, where a is a
real number. Find the density function of Y.
2.34 A random variable X is uniformly distributed on the interval (—a, a). It is
transformed to a new variable Y by the transformation Y = cX? defined in
Example 3.4-2. Find and sketch the density function of Y.
3-35 A zero-mean gaussian random variable X is transformed to the random
variable Y determined by

3-21 For any discrete random variable X with values x having probabilities of
occurrence P(x)), show that the moments of X are

m= LAPCD Oyfw) =

i=1
N
o = ‘Zl(x( — XyP(x)

where N may be infinite for some X.

322 Prove that central moments f, arc related to moments Mg about the
origin by

o = )": (2)(—;?)""‘»1,‘
k=0

3.23 A random variable X has a density function fx(x) and moments 1, . If the
density is shifted higher in x by an amount & > 0 to a new origin, show that the .
moments of the shifted density, denoted miy, are related to the moments nt, by

m, = Z (;:)an_kmk
k=0

*3.24 Show that any characteristic function O, (w) satisfies
| Dx(w)} < Ox(0) = 1

3-25 A random variable X is uniformly distributed on the interval (=5, 15).
Another random variable ¥ = - X3 is formed. Find E[Y].

=cX X>0
0 X<0

where ¢ is a real constant, ¢ > 0. Find and sketch the density function of Y.

336 If the transformation of Problem 3-35 is applied to 2 Rayleigh random vari-
able with a = 0, what is its effect?

*3.37 A random variable @ is uniformly distributed on the interval (8,, 8,) where
0, and 0, are real and satisly

. . 0g0,<0,<m

3.26 A gaussian voltage random variable X [sce (2.4-1)] has a mean value X =
ay =0 and variance o} = 9. The voltage X is applied to a square-law, full-wave
diode detector with a (ransfer characteristic Y = 5X2. Find the mean value of the
output voltage Y.

Find and sketch the probability density function of the transformed random vari-
able Y = cos (@)
3-38 A random variable X can have values —4, = 1,2, 3, and 4, each with prob-
ability '/s. Find:

(@) the density function,

(b) the mean, and

(c) the variance of the random variable Y = k) &2

*1.27 For the system having a lifetime specified in Problem 2-33 of Chapter 2,
determine the expected lifetime of the system given that the system has survived
20 wecks. .
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ADDITIONAL PROBLEMS

3-39 (a) Find the average amount the gambler in Problem 2-42 can expect to
win. (b) What is his probability of winning on any given playing of the game?
3-40 The arcsine probability density is defined by

rect (x/2a)

OPERATIONS ON ONLE RANDOM VARIABLE —EXPECTATION ¥

3-49 The chi-square density with N degrees of freedom is defined by
pOTORE

S = SRRR(N )

where I(+) is the gamma function

u(x)e = *?

Iz) = Jmﬁ"‘e“ dé  real partofz>0
0

- P v

X) = ~
e NCE and N =1,2,....Show that (@) X = N, () X* = N(N +2), and (c) o} = 2N for .
for any real constant a > 0, Show that ¥ =0and X2 = a*/2 for this density. “this density. ' ) = i
*3-41 For the animal described in Problem 2-58 find its expected lifetime given 3-50 For the density of Problem 3-49 find its arbitrary moment X", n= ':|':‘.*:
that it will not live beyond 20 weeks. ! 01,2... ' . . form )
3-42 Find the expected value of the function g(X) = X where X is a random 3-51 A random variable X is called Weibullt if its de'nsxly has the forn 2
variable defined by the density ‘ fxlx) = abx®~1 exp (—ax")u(x) i

Sx(x) = (l/z)"(x) exp (—x/2)

3-43 Continue.Problem 3-25 by finding all moments of Y. (Hint: Treat Y" as a
function of Y, not as a transformation.)

where a>0 and b >0 are real constants. Use the definition of the gamma

function of Problem 3-49 to find (a) the mean value, (b) the second moment,
* and (c) the variance of X. ' . '
*3.52 Show that the characteristic function of a random variable having the bino-

=

3-44 Reconsider the production line that manufactures bolts in Problem 2-12.

(a) What is the average length of bolts that are placed up for sale?
(b) What is the standard deviation of length of bolts sold?

(c) What percentage of all bolts sold are expected to have a length within
one standard deviation of the average length?

(d) By what tolerance (as a percentage) does the average length of bolts sold
match the nominally desired length.of 760 mm?

3-45 A random variable X has a probability density

_ }(=/16) cos (nx/8) -4<x<4
Jux) = {0 elsewhere
Find: (a) its mean value X, (b) its second moment F,and (c) its variance.

3-46 A certain meter is designed to measure small dc voltages but makes errors
because of noise. The errors are accurately represented as a gaussian random
variable with a mean of zero and a standard deviation of 10~2 V. When the dc
voltage is disconnected it is found that the probability is 0.5 that the meter

reading is positive due to noise. With the dc voltage present this probability
becomes 0.2514. What is the dc voltage?

3-47 Find the skew and coefficient of skewness for a Rayleigh random variable
for which a = 0in (2.5-11)

3-48 A random variable X has the density

mial density of (2.5-1) is
Dyw) = [1 = p + pe)"
*3.53 Show that the characteristic function of a Poisson random variable defined
by (2.5-4) is
D y(w) = exp [~b(1 — )]

*3.54 The Erlang} random variable X has a characteristic function

a
Oylw) = [a —jw]

for a>0 and N=1, 2, .... Show that X = N/a, X% = N(N + 1)/a?, and
2 2
gy = N/a . _ . '

3-55 A random variable X has X = —-3,_«1\" =11, nznd ol =2 For a new
random variable Y =2X — 3, find (a) ¥, (b) Y, an_d (c) o}. , '
*3.56 For any real random variable X with mean X and variance oy, Chebychev's

inequality§ is

P{1X = X| = 4oy} < YA?
i i i int: Define a new random
- where 2 > 0 is a real constant, Prove the inequality. (Hint:
variable Y =0 for | X — X| < Aoy and ¥ = A%0% for [ X — X| > Aoy, observe
that Y < (X — X)? and find E[Y])

. »C‘-’

. ChiX—x'+8x—12) 2<x<6 . . - . U
M \ Jx) = {0 elsewhere 1 After Ernst Hjalmar Waloddi Weibull (1887- « ), a Swedish applied physicist. .
b 1 A, K. Erlng (1878-1929) was u Danish cngincer. 1821-1894) o
. ?; Find the following moments: (a) mq, (b) m,, () my,and (d) u,. § After the Russian mathematicinn Pafnuty Lvovich Chebychev (1821-1894). i
o ot
.y . |
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3-57 A gaussian random variable, for which

Sx) = @/3/n) exp (—4x7)
is applicd to a square-law device to produce a ncw (outpul) random variable
Y = X?2. (a) Find the density of Y. () Find the moments m, = E[Y"), n =
0, 1, .... (Hint: Put your answer in terms of the gamma function defined in
Problem 3-49.)
3.58 A gaussian random variable, for which £ = 0.6 and oy = 0.8, is trans-
formed to a new random variable by the transformation

4 10 X<
2 0<X<l10
= T(X)=
Y (X) -2 —10<X <0
—4 —m<X<-10

(a) Find the density function of Y.

(b) Find the mean and variance of Y.
3-59 Work Problem 3-31 cxcept assume a transformation Y = T(X) = a sin (X)
witha > 0.
3-60 Let X be a gaussian random variable with density given by (24-1). If X is
transformed to a new random variable Y = b + €%, where b is a rcal constant,
show that the density of Y is log-normal as defined in Problem 2-35. This trans-
formation allows log-normal random numbers to be generated from gaussian
random numbers by a digital computer.
3.61 A random variable X is uniformly distributed on (0, 6). if X is transformed
to a new random variable ¥ = 2(X — 3)2 — 4, find: (a) the density of Y, (b) ?,
(c) oi-

CHAPTER

FOUR

'MULTIPLE RANDOM VARIABLES

4.0 INTRODUCTION

In Chapters 2 and 3, various aspects of the theory of a single random variable
were studied. The random variable was found to be a powerful concept. It
cnabled many realistic problems to be described in a probabilistic way such that
practical measures could be applied to the problem even though it was random.
For example, we have seen that shell impact position along the line of fire from a
cannon to a target can be described by a random variable (Problem 2-29). From
knowledge of the probability distribution or density function of impact position,
we can solve for such practical measures as the mean value of impact position, its
variance, and skew, These measures are not, however, a complcte enough descrip-
tion of the problem in most cases.

Naturally, we may also be interested in how much the impact positions
deviate from the line of fire in, say, the perpendicular (cross-fire) direction."In
other words, we prefer to describe impact position as a point in a plane as
opposed to being a point along a line. To handle such situations it is necessary
that we extend our theory to include two random variables, one for each coordi-
nate axis of the plane in our example. In other problems it may be necessary to
extend the theory to include several random variables, We accomplish these
extensions in this and the next chapter.

Fortunately, many situations of interest in engineering can be handled by the
theory of two random variables.t Because of this fact, we emphasize the two-
variable case, although the more general theory is also stated in most discussions
to follow. o - :

t In particular, it will be found in Chapter 6 that such important concepls as autocorrelation,
cross-correlation, and covariance functions, which apply to random processes, are based on two
random variables.
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4.1 VECTOR RANDOM VARIABLES

Suppose two random variables X and Y are defined on a sample space S, where
spgcific values of X and Y are denoted by x and y, respectively. Then any ordered
pair of numbers (x, y) may be conveniently considered to be a random point in the
xy plane. The point may be taken as a specific value of a vector random variable

or a random vector.t Figure 4.1-1 illustrates the mapping involved in going from , ;

S to the xy plane.

The plane of all points (x, y) in the ranges of X and Y may be considered a
new sample space. It is in reality a vector space where the components of any
vector are the values of the random variables X and Y. The new space has been

called the range sample space (Davenport, 1970) or the two-dimensional product

space. We shall just call it a joint sample space and give it the:symbol S;.
As in the casc of one random variable, let us define an event 4 by

A={X<x) (4.1-1)
A similar event B can be defined for Y:

B={Y <y} (4.1-2)

Events A and B refer (o the sample space S, while cvents {X < x} and {Yy <y
refer to the joint sample space S,.1 Figure 4.1-2 illustrates the correspondences

T There are some specific conditions that must be satisfied in a complete definition of a random
vector (Davenport, 1970, Chapter 5). They are somewhat advanced for our scope and we shall simply
assume the validity of our random vectors.

Do not forget that elements s of § form the link between the two events since by writing {X < x}
we really refer to the set of those s such that X(s) < x for some real number x. A similar statement
holds for the event {Y £ y).

S,
————— 4 (Xt52), Y51)
|

Function X

Figure 4.1-1 Mapping from the sample spuce S to the joint sample spuce S, (xy plunc).

MULTIPLE RANDOM VARIANLES 89

Figure 4.1-2 Comparisons of events in § with those in §,.

between events in the two spaces. Event A corresponds to all points in S, for
which the X coordinate values are not greater than x. Similarly, event B corre-
sponds to the Y coordinate values in S, not exceeding y. Of special interest is
to observe that the event A N B dclined on § corresponds to the joint em"u{
{X < x and Y <y} defined on S, which we write {X < x, Y <y}. This joint
event is shown crosshatched in Figure 4.1-2,

In the more general case where N random variables X,, X,, ..., Xy are
defined on a sample space S, we consider them to be components of an N-
dimensional random vector or N-dimensional random variable. The joint sample

space S, is now N-dimensional.

4.2 JOINT DISTRIBUTION AND ITS PROPERTIES

The probabilities of the two cvents A = {X < x} and B={Y s'y‘} have z}lrcz}dy
been defined as functions of x and y, respectively, called probability distribution
functions:

Fy(x) = P{X < x) 4.2-1)
Fy(y) = P{Y < y} (4.2-2)

We must introduce a new concept to include the probability of the joint event
(¥ sx, Y <y

Joint Distribution Function

We define the probability of the joint event {X < x, Y < p}, which is a functiop
of the numbers x and y, by a joint probability distribution function and denote it
by the symbol Fy y(x, y). Hence,

Fy o, p)=P{X <x, Y <y} (4.2-3)

Rl )

[}
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1t should be clear that P{X < x, Y Sy} = P(4 ~ B), where the joint cvent
A n Bisdefined on S.

To illustrate joint distribution, we take an example where both random vari-
ables X and Y are discrete. '

Example 4.2-1 Assume that the joint sample space S, has only three possible
clements: (1, 1), (2, 1), and (3, 3). The probabilities of these clements are
assumed to be P(1,1)=02, P(2, )= 0.3, and P(3,3)=05. We find
FX. Y(xv ,V)-

In constructing the joint distribution function, we obscrve that the event
{X <x, Y <y) has no clements for any x < | and/or y < 1. Only at the
point (1, 1) does the function assumc a step value. So long as x 2 { and
y = 1, this probability is maintained so that Fy y(x, y) has a stair step
holding in the region x 2 1 and y 2 1 as shown in Figurc 4.2-1a. For larger x
and y, the point (2, 1) produces a sccond stair step of amplitude 0.3 which
holds in the region x 22 and y 2 1. The second step adds do the first.
Finally, a third stair step of amplitude 0.5 is added to the first two when x
and y are in the region x =3 and y = 3. The final function is shown in
Figure 4.2-1a.

The preceding example can be used to identify the form of the joint distribu-
tion function for two general discrete random variables. Let X have N possible
values x, and Y have M possible values y,, then

N M

Fy v y) = Z‘ ZlP(X.., yulti(x = XJu(y = ') (4.2-4)
where P(x,, y) is the probability of the joint event {X = x,, Y = ¥} and u(*) is
the unit-step function. As seen in Example 4.2-1, some couples {(Xn» Ym) may have
zero probability. In some cases N or M, or both, may be infinite.

If Fy, y(x, y) is plotted for continuous random variables X and Y, the same
general behavior as shown in Figurc 4.2-1a is obtained except the surface
becomes smooth and has no stairstep discontinuitics.

For N random variables X,,n=1,2, ..., N, the gencralization of (4.2-3) is
direct. The joint distribution function, denoted by Fx, x,, XXy X2s e Xy 18
defined as the probability of the joint event {X; < Xy, X;S x5, Xy S xy}

Fxy X1 xulXts X204 000 xy) = P{X, < xy, X; < X300 Xy S xy} (42-5)

For a single random variable X, we found in Chapter 2 that Fy{(x) could be
expressed in general as the sum of a function of stairstep form (duc to the discrete
portion of a mixed random variable X) and a function that was continuous (due
{o the continuous portion of X). Such a simple decomposition of the joint dis-
tribution when N > 1 is not generally true [Cramér, 1946, Scction 8.4]. However,

)
(2)
)
@
®)

Fy, v(x, »)

Ix, vlx.y)
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Flgure 4.2-1 A joint distribution function
(a), and its corresponding joint density
function (b), that apply to Examples
(2] 4.2-1 and 4.2-2.

it is true that joint density functions in practice often correspond to all random
- variables being either discrete or continuous. Therefore, we shall limit our con-
sideration in this book almost entirely to these two cases when N > L.

Properties of the Joint Distribution

A joint distribution function for two random variables X and Y has several
properties that follow readily from its definition. We list them:

Fyy(—c0, —0)=0  Fxy(=,))=0 Fyy(x, —0)=0  (4.2:60)

Fy, y(o0, 0) =1 (4.2-6b)
0< Fyyx,y)s1 (4.2-6¢)
Fx.y(x, y)isa nondecreasing function of both x and y (4.2-6d)

Fx, y(x2, ya) + Fx v(x1 y1) = Fx,f(x1, ya) — Fy v(*2 y1)
=P{x; <X Sx3, 9 < Y<y,} =20 (4.2-6e)
Fy.y(x, )= Fx(x)  Fx.fo, y) = Fy(y) (4.2-6f)

197
s one
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The first five of these propertics are just the two-dimensional extensions of ., & Fylx)
the propertics of one random variable given in (2.2-2). Propertics 1,2, and 5 may .’
be used as tests to determine whether some function can be a valid distribution ;
function for two random variables X and Y (Papoulis, 1965, p. 169). Property 6 - &
deserves a few special comments, <

0.5

0.5

B

Marginal Distribution Functions |

3

2

RS

Property 6 above states that the distribution function of one random variable can
be obtained by setting the value of the other variable to infinity in Fy y(x, y). The

- functions Fy(x) or Fy(y) obtained in this manner are called marginal distribution
Junctions, .

To justify property 6, it is easiest to return to the basic events 4 and B, de- .
fined by A = {X < x} and B = {Y <y}, and observe that Fx olx, ) = P{X < x,
Y <y} = P(A ~ B). Now if we set y to co, this is equivalent to making B the cer-
tain event; that is, B= {Y g o} = 8. Furthermore, sincce AN B=A N § = A,
then we have Fy ((x, c0)= P(4 N §) = P(A) = P{X 5 x} = Fy(x). A similar
proof can be stated for obtaining F,(y).

Fy(y)
1.0

T

T

PR

0.5

0.5+

1 ! Figure 4.2-2 Marginal distributions upplicable
o ! 2 3 Y to Figure 4.2-1 und Example 4.2-2: (a) F,(x)
) and (b) F{y).

‘A‘A' >—‘- | M-'

Example 4.2-2 We find explicit expressions for Fx, y(x, y), and the marginal
distributions Fy(x) and Fy(y) for the joint sample space of Example 4.2-1.

The joint distribution derives from (4.2-4) if we recognize that only three
probabilities are nonzero:

From an N-dimensional joint distribution function we may obtain a k-
dimensional marginal distribution function, for any selected group of k (_)f the N
random variables, by setting the values of the other N — k random variables to .
infinity. Here k can be any integer 1,2,3,...,N — L. i

Joominaazin

- : Fxf(x, ) = P(1, Du(x — u(y — 1)
+ P2, Du(x — 2Ju(y — 1)
+ P(3, 3)u(x — 3)u(y — 3)
where P(1, 1) = 0.2, P(2, 1) = 0.3, and P(3, =05 1fwesety = o0:

4.3 JOINT DENSITY AND ITS PROPERTIES

In this section the concept of a probability density function is extended to include 3

multiple random variables.
F«\'('\.)’= FX, Y(x) w)-

= P(1, Du(x ~ 1) -+ P2, Du(x — 2) + P(3, 3)u(x — 3)
= 0.2u(x — 1) + 0.3u(x — 2) + 0.5u(x — 3)

Joint Density Function i

For (wo random variables X and Y, the joint probability density function, dcno'lcd
Jx.y(x, y), is defined by the second derivative of the joint distribution function
wherever it cxists:

If wesel x = oo

F) = Fx, r(c0, y)
=02uly = 1)+ 03uly ~ 1) + 0.5u(y — 3)
=0.5u(y — 1) + 0.5u(y — 3)

2
Sx vlx, y) = ?_i{,_y_(ﬁ_;v_) (4.3-1)

dx dy

2 U]

ol eha e

[ e |

We shall refer often to fy y(x, y) as the joint (Iensuyﬂmclion.' )
If X and Y are discrete random variables, Fy ((x, y) will possess step fhsc_o'n-
tinuities (see Example 4.2-1 and Figure 4.2-1). Derivatives at these discontinuities r

Plots of these marginal distributions are shown in Figure 4.2-2,

fer (N
b
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arc normally undefincd. However, by admitting impulse functions (sce Appendix
A), we arc able to define [y, y{x, ) at these points. Therefore, the joint density
function may be found for any two discrete random variables by substitution of

(4.2-4) into (4.3-1):
N M
fX.Y(‘\.! .V) = 2 Z I’(X,,. ym) (S(X - xn) ‘S(}’ - ym) (43'2)
. 1

n=} m=

An cxamplc of the joint density function of two discrete random variables is
shown in Figurc 4.2-1b.

) when N random variables X, X3,y oons Xy are involved, the joint density
function becomes the N-fold partial derivative of the N-dimensional distribution
function: v

- NF Xy, Xgyeeer X

et o s ) = Bt S D @3

By direct inlcgration this result is equivalent to

Fxy xpoo xnlXan X2aeees XN)

XN X2 xi
k =J e J J fXI.Xj..-..Xn(él-61)'--'€N) dé, dfz""’fu (43’4)
- -0 -0
Properties of the Joint Density
l Several propertics of a joint density function may be listed that derive from its
definition (4.3-1) and the propertics (4.2-6) of the joint distribution function:
I (1) Serx )20 (4.3-5q)
h M jm J Lo vlx, ¥ dy dy =0 (4.3-5h)
y x
() Fxalx )= J. J Sr (& &2) 48y dEy (4.3-5¢)
(4) Fy(x) = ‘[ J‘ fx.y(én &) d§a d¢, (4.3-5(1)
- -0
R ) (e
Fyly) = E j Sl &) d&y dd, (4.3-5¢)

(5) P{xy<XsSx1. )1 <Ys<y)= J“ J‘" S o, y) dx dy (43-3)

bA] x4

o«

(6) fx(X)=I_ S rx, ) dy

Sy = j Sxplx, p) dx (4.3-5h)

>

Marginal Density Functions

The functions fx(x) and fy(y) of property 6 arc called marginal probability density
functions or Just marginal density functions. They arc the density functions of the
single variables X and Y and are defined as the derivatives of the marginal dis-

tribution functions:

By substituting (4.3-5d) and (4.3-5¢) into (4.3-6) and (4.3-7), respectively, we are
able to verify the equations of property 6.

joint density function with an example.
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Properties 1 and 2 may be used as sufficient tests to determine if some function
* can be a valid density function, Both tests must be satisficd (Papoulis, 1965,
p. 169).

“I'he first five of these propertics arc readily verified from carlier work and the
-reader should go (hrough the necessary logic as an exercise. Property 6 intro- g
duces a ncw concepl.

dF

S = ——-d"f‘) | 4.3-6)
dF

i = 22 @37

We shall illustrate the calculation of marginal density functions from a given

(4.3-59)

Example 4.3-1 We find fy(x) and fy(y) when the joint density function is given'
by {(Clarke nnd Disney, 1970, p. 108):

-x(y+ 1)

Jx. %, y) = u(x)u(y)xe

From (4.3;_5g) and the above equalion:

f,‘(x)=J’ u(x)xe~*0+ 4 dy=u(x)xe"‘J‘ e~ % dy
i o 0

= u(x)xe”X(1/x) = u(x)e™”

- ",‘-:‘I)Al 1.

after using an int‘cgral from Appendix C.
From (4.3-5h):

L) = L u(y)xe™+ " dx = (y‘;(-}’)l)2

alter using another intcgral from Appendix C.
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For N random variables X |, X,, ..., Xy, the k-dimensional marginal density
Junction is defined as the k-fold partial derivative of the k-dimensional marginal *,

distribution function. It can also be found from the joint density function by inte-
grating out all variables except the k variables of interest Xy, X,,..., X!

S xa X X200 000, X))

]

=f J Sxi 20 xul X1 X2y oy Xp) dXg gy dXyyq oo dxy (4.3-8) . "
- - 00

4.4 CONDITIONAL DISTRIBUTION AND DEI!\\JSlTY

In Section 2.6, the conditional distribution function of a random variable X, .

given some event B, was defined as

P{X < x n B}

Fx(x|B)= P{X <x|B} = P(B)

(4.4-1)

for any event B with nonzero probability. The corresponding conditional density

function was defined through the derivative

dF (x| B)

" fx(x|B) = dx

(4.4-2)

In this section these two functions arc¢ extended to include a second random vari-

able through suitable definitions of event B.

Conditional Distribution and Density—Point Conditioning

Often in practical problems we are interested in the distribution function of one
random variable X conditioned by the fact that a second random variable Y has

some specific value y. This is called point conditioning and we can handle such B

problems by defining event B by
B={y—~Ay<Y<y+ Ay} (4.4-3)

where Ay is a small quantity that we cventually let approach 0. For this event,
(4.4-1) can be wrilten

y+Ay (x

Fx(x!y— Ay<Y <y+ Ay)=jy-dy ~® fx, (9 éz) dé, d&, (4.4-4) . ”‘ s

28 140 ¢
where we have used (4.3-5/) and (2.3-64d).
Consider two cases of (4.4-4). In the first case, assume X and Y are both dis-
crete random variables with values x;, i=1,2,...,N,and y;, j=1,2, ..., M,
respectively, while the probabilities of these values are denoted P(x;) and P(y)),
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respectively. The probability of the joint occurrence of &, and is denoted
P(x;, y,). Thus,

M

Sy = % P dly = ) HA-5)
j=1
N M . (
Jx. olx, ) = Y, % Plxg, yp) ol — x) oy = y)) (4.4-6)
=1 J=1

Now suppose that the specific value of y of interest is Vi With substitution of
(4.4-5) and (4.4-6) into (4.4-4) and allowing Ay — 0, we obtain

& Plxi, )
= = - X ) (44-7)
Fy(xY =y) 1?1 Py u(x i
b After differentiation we have
& Plxis v
=)= 3 T s x) (4.4-8)
Sxx1Y =y ‘; P() ( [

Example 4.4-1 To illustrate the usc of (4.4-8) assume a joint d(;nsity func!ion
as given in Figure 4.4-l1a. Here P(x,, y,) = ’/‘?. P(xy, y1) = Y5, ete. Since
P(yy) = (is) + (hs) = %5, use of (4.4-8) will give Sx(x1Y = y,) as shown in
Figure 4.4-1b.

The second case of (4.4-4) that is of interest corresponds to X and Y both
continuous random variables. As Ay— 0 the denominator in (4.4-4) bccom.es 0.
However, we can still show that the conditional density fy(x] Y = y) may exist. If
Ay is very small, (4.4-4) can be written as

e Sx (& Y) 4, 28y 4.4-9
Fylxly—8y<Y<y+4y = )24y (4.4-9)
and, in the limit as Ay— 0
oty e SeE N & 4410
FxxlY =y) = 1)

for every y such that fiy(y) # 0. After differentiation of both sides of (4.4-10) with
respect (o X:

fx Y(x! ,V)
=) = M (4‘4-1 1)
Slxl¥ ) 5y
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L vlx, )

Lyt = ay)

Figure 4.4-1 A joinl density function
(a) and a conditional density function
(b) applicable to Example 4.4-1.

Wihien there is no confusion as to meaning, we shall often write (4.4-11) as

fX. Y(xv .V)

= 4.4-12
Sdx1y) 7.0) ( )
1t can also be shown that
, - RS )
Sylx) _L——_fx(-‘) (4.4-13)

Example 4.4-2 We find fy(y]x) for the density functions defined in Example
43-1. Since

s ) = ulxuly)xe ™00

and

Sxlx) = u(x)e”*
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are nonzero only for 0 <y and 0 < x, fy(y!x) is nonzero onlyfor0<y and
0<xItis

Syl x) = ul(x)uly)xe -xr
from (4.4-13).

«Conditional Distribution and Density—Interval Conditioning
It is sometimes convenient to define event B in (4.4-1) and (4.4-2) in terms of a
random variable Y by

B={y.<YSp (4.4-14)

where y, and y, are real numbers and we assume PB)y = Ply. <Y< ya} # 0.
With this definition it is readily shown that (4.4-1) and (4.4-2) become
Fy yl% ) — Fy ylx ya)

Fylys) = Fylya)

= wx o Sl y) 48 dy
nie o frlx, y)dx dy

Fylxlya <Y Sy =
(4.4-15)
and

' 1) , d
Sxlya<Y Sy = 7 Ig;f}xyi’(‘x,yl) ;x dy

(4.4-16)

These last two expressions hold for X and Y either continuous or discrete
random variables. In the discrete case, the joint density is given by (4.3-2). The
resulting distribution and density will be defined, however, only for y, and y,
such that the denominalors of (4.4-15) and (4.4-16) are nonzcro. This requirement
is satisfied so long as the interval y, < y < yy spans at least onc possible valuc of
Y having a nonzero probability of occurrence.

An example will serve to illustrate the application of (4.4-16) when X and Y
are continuous random variables.

Example 4.4-3 We use (4.4-16) to find fx(x| Y < y) for the joint density func-
Lion of Example 4.3-1. Since we have here defined B = {Y < y}, then y, =
— o0 and y, = y. Furthermore, since [y, y(x, y) is nonzcero only for 0 < x and
0 < y, we nced only consider this region of x and y in finding the conditional
density function. The denominator of (4.4-16) can be written as [~ o fy($) d§.
By using results from Example 4.3-1:

¢ o owpde [ _de Y
j—mh(:)dé—j—a(c—i'”l—,[o C+Dy+ y>0

e

K]
b

¥
i
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IxlxlY Sy)

1.0

0.8

0.6

0.4

0.2

and zero for y < 0, after using an integral f A i
15 oo gral from Appendix C. The numerator

y
J‘ S o(x, Q) dE = Jyll(x)xe"“* b ge
. X

¥
= u{x)xe " J e g

0
= u(x)e (1 —e™") y>0
and zero for y < 0, after using another integral from Appendix C, Thus

y+1

fxxlY s y) = u(x)u(y)( >e"‘(l — %)

This function is plotted in Figurc 4.4-2 for several values of y.

4.5 STATISTICAL INDEPENDENCE

l ( . ) A .
“ Wll bc lcca"cd “0”‘ l 5'3 thd( {wo cvents d"d B arc S‘dllsllCd"y “ldcpc“'
dCIIt ” (a“d Ollly ll)

P(A n B) = P(A)P(B) (4.5-1)

MUETIPLE RANDOM VARIADLEY 1ul

This condition can be used to apply to two random variables X and Y by defin-

ing the evenls A = {X < x} and B = (Y <y} for two real numbers x and .

Thus, X and Y are said to be statistically independent random pariables if (and
only if)
P{X<x, Ysy}=P{X< x}P{Y <y} (4.5-2)
From this expression and the definitions of distribution functions, it follows
that
Fy y(x, )= Fx(x)Fy(y) . (4.5-3)

it X and Y are independent. From the definitions of density function.s. (4.5-3)
gives

Jx % y) = S f0) (4.5-4)

by differentiation, if X and Y are independent. Either (4.5-3) or (4.5-4) may serve
as o sullicient definition of, or test for, independence of two random variables.
The form of the conditional distribution function for independent cvents is

" found by usc of (4.4-1) with B = {Y < v}

P(X<sx, Y<y _ Fryxy
=X 4.5-5
P{Y <y} Fy) )

FixlY sy =

By substituting (4.5-3) into (4.5-5), we have

Fylx|Y <) = Fxlx) (4.5-6)

In other words, the conditional distribution ccases to be conditional und simply
equals the marginal distribution for independent random variables. It can also be

shown that
Fy(yl X < x) = Fyly) (4.5-7
Conditional density function forms, for independent X and Y, are found by
differentiation of (4.5-6) and (4.5-7):
Sx1Y S 5) =/x(x) (4.5-8)
1 X < x)=/yly) (4.5-9)

Example 4.5-1 For the densities of Example 43-1:

S % p) = u(x)u(y)xe " *0+Y
S0 ) = u(xu(y) (}'i;:-l)—z # fx, % )

Therefore the random variables X and Y are not independent.

N
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In the more general study of the statistical independence of N random vari-
ables Xy, Xgoooen Xyowe define events A; by

A={Xsx) i=L2..N (4.5-10)

where the x; are real numbers, with these definitions, the random variables X,
are said to be slulisticnlly'indcpcndcnl if (1.5-6) is salislicd.

1t can be shown that if Xy, Xaveens Xy are statistically independent then any
group of these random variables is independent of any other group. Furthermore,
a function of any group is independent of any function of any other group of the
random variabies. For example, with N = 4 random variables: X4 is independent
of Xy+ X+ X3 X is independent of X, + X,, etc. (scc Papoulis, 1965,
p. 238).

4.6 DISTRIBUTION AND DENSITY OF
A SUM OF RANDOM VARIABLES

The problem of finding (he distribution and density functions for a sum of sta-
tistically independent random variables is considered in this scction.

Sum of Two Random variables

Lot W he a random variable cqual to the sum of lwomdom vari-

ables XY and Y:
W=X+Y (4.6-1)

This is a very practical problem because X might represent a random signal

voltage and Y could represent random noise at some instant in time. The sura W

would represent a signal-plus-noisc voltage available to some receiver.
The probability distribution function we seck is defined by

Flw)=P{W swp=P{X+Y< w) (4.6-2)

Figure 4.6-1 illustrates the region in the xy planc where x +y S W Now from
(4.3-5/), the probability corresponding to an clemental area dxdy in the xy plane
Jocated atl the point (X, ¥) is fx. v(x, ¥) dxdy. If we sum all such probabilities over
the region where x + y S W We will obtain Fy(w). Thus

© w-y
Filw) = j.‘ j. S vlx, y) dx dy (4.6-3)
and, after using (4.5-4):
@ W=y
Fyw) = J 5 j' Sulx) dx dy (4.6-4)
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>

<
"®
b3

x+ty=w

x+y<w

X Figure 4.6-1 Region in Xy plane where x +

ysw.

D

DM
\

N

By differentiating (4.6-4), using Leibniz's rule, we get the desired density function

Jwlw) = J‘

o«

Sy Sxlw = ) dy (4.6-5)

This expression is recognized as a convolution integral. Consequently, we have
shown that the density function of the sum of two statistically independent randont
pariables is the convolution of their individual density functions.

Example 4.6-1 We usc (4.6-5) to find the density of W = X + Y where the
densitics of X and Y arc assumed to be

) = - L) - 1x — )]

a

1
M=z [u(y) — u(y — )]

with 0 < a < b, as shown in Figure 4.6-2a and b. Now because 0 < X and
0 < Y, we only need cxamine the case W =X+ Y >0. From (4.6-5) we

write
Swlw) = J_ - ) — u(y — bYJ[u(w — y) — ulw ~ y — a)} dy
l o
=% L (1 = u(y — bYJ[u(w — y) — u(w = y = @) dy
I © L]
== U; uw — y) dy — J; ulw — y —a) dy

—j‘ uly — bl — y) dy + mea(y — bju(w —y —a) dy]
0 0

rane R Ry
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Srix)
1
a
0 a x
(@)
fr(y)
L
b
0 b y
)
Sw(w)
LY S
5 —
(4] a b >
a+d ¥ Figure 4.6-2 Two densily functions (a)
(c) und (b) and their convolution (c).

All these integrands are unity; the values of the integrals are determined by

the .unit’slcp functions through their control over limits of integration. After
straightforward evaluation we get

w/ab E Osw<a
1/b agsw<b
Swlw) =
) (@a+b—w}ab b<sw<a+b
0 w2n+b

which is sketched in Figure 4.6-2c.

*Sum of Several Random Variables

When lt_lc sum Y of N independent random variables X,, X,, ..., X is to
be considered, we_may extend the above analysis for two random variables.
Let Y, =X, + X,. Then we know from the preceding work that fy (y,) =
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Saix2) * Sy (x,). T Next, we know that X, will be independent of ¥, = X, + X,
becuuse X, is independent of both X, and X,. Thus, by applying (4.6-5) to the
two variables X, and Y, to find the density function of Y = Xy + Y,, we get

fh-x|+x3+.\',(}'z) =fx,(x)) *f, -x,#x;(}’x)
= fx,(x3) “fx,(xz) "‘fx.('\'l) (4.6-6)

By continuing the process we find that the density function of Y =X, + X, +
o+ Xy is the (N = D)-fold convolution of the N individual density functions:

5 =fxu(x~) “fx,.-.("'N—x) x o [ xy) - (4.6-7)

The distribution function of Y is found from the integral of fy(y) using
(2.3-6¢).

*47 CENTRAL LIMIT THEOREM

Broudly defined, the central limit_theorem says that the probability distribution
function of the sum of a Targe number of random variables approaches u gaussian
disinibution. Although the theorem is known to apply to some cases of sta-
tistically dependent random variables (Cramér, 1946, p. 219), most applications,
and the largest body of knowledge, are directed toward statistically independent
random variables. Thus, in all succeeding discussions we_assume statistically
independent random variables. —

*Unequal. Distributions

Let X, and o} be the means and variances, respectively, of N random variables
X, i=1,2,..., N, which may have arbilrary probability densitics, The central
fimit theorem states that the sum Yy = X, 4+ X; 4+ -~ + Xy, which has mean
Vy=X,+ X, + - + Xy und variance oy, =0y + 0y, + ' +0x,, has a

probability distribution that asymptotically approaches gaussian as N — o0,
Necessary conditions for the theorem's validity are difficult to state, but sufficient
conditions arc known (o be (Cramér, 1946; Thomas, 1969)

al,>B, >0 i=1,2..,N (4.7-1a)
E[IX, - XM <B, i=12...N (4.7-10)

where B, and B, are positive numbers. These conditions guarantee that no one
random variable in the sum dominates. .

The reader should observe that the central limit theorem guarantees only
that the distribution of the sum_of random variables becomes gaussian, It does
not follow that the probability density is always gaussian, For continuous

t The asterisk denotes convolution.
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random variables there is usually no problem, but certain conditions imposed on
the individual random variables (Cramér, 1946; Papoulis, 1965 and 1984) will
guarantec that the density is gaussian.

For discrete random variables X; the sum Y, will also be discrete so its
density will contain impulscs and is, Therefore, nol gaussian, cven though the dis-
tribution approaches gaussian. When the possible discrete valucs of cach random

varable are kb k== 0, L 1, 42, ..., with b a constanl,t the envelope of the
impulses in the density of 1he sum will be gaussian (with mecan ¥y and variance
a},). This casc is discusscd in some detail by Papoulis (1965).

The practical uscfulness of the central limit thcorem doces not reside so much
in the cxactness of the gaussian JRinbution Tor N — oo becausc the variance of
Y, becomes infinite from (4.7-1a). Usclulncss ives more from the fact that Yy
for finite N may have a distribution that is closely approximated as gaussian, The
approximation can Be quilc accurate, even Tor relatively small values of N, in the
Central region of the gaussian curve neat (hec mean. However, the approximation
can be very inaccurate in the lail regions away from the mean, cven for large
values of N (Davenport, 1970; Melsa and Sage, 1973). Of course, the approx-
imation is madc more accurate by increasing N.

*Equal Distributions

1f all of the statistically independent random variablcs being summed are contin-
Tous and have the same distribution function, and therefore the same density, the
proof ol the central hmit thcorem is rolatively straightforward and is next
developed.

Because the sum Yy =X, + X, 4+ Xy has an infinite variance as

N -» o0, we shall work with the zcro-mean, unit-variance random variable

N N 12
Wy =(Yy— Pov, = L X- X()/['Zl‘,';.]
i=1 =

X B
TX, = X) (4.7-2)

= /Nay i
instead. Here we define X and ol by
X=X all i (4.7-3)

- 2

ol =0k alli (4.7-4)

since all the X have the same distribution.
The theorem's proof consists of showing that the characteristic function of
W, is (hat of a zcro-mean, unit-variance gaussian random variable, which is

Dy (@) = exp (—w?/2) (4.7-5)

t These are called lattice-type discrele random variables (Papoulis, 1965).
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- _from Problem 3-28. If this is proved the density of Wy must be gaussian from
[ "(3.3-3) and the fact that Fourier transforms are unique. The characteristic func-

tion of Wy is

w ja N
Oy, () = E[""] = E[cxp { ¥ ¥ (X, —X)}]

Noyi=1

- <F{cxp[ JO_(x, - ?)]}>N (4.7-6)
’ SNoy -

The last step in (4.7-6) follows from the independence and cqual distribution of
the X,. Next, the exponential in (4.7-6) is expanded in a Taylor polynomial with
a remainder term Ry/N:

ofoo [ 00}
offins
Jo > ( Jo )2 X, =%’ Rn}
= E{1 - i}
E{ +<Jﬁax X =2+ JNox 7 N

=1 — (w?/2N) + E[RNI/N _ 4.7-7)

vgherc E[Ry] approaches zero as N — oo (Davenport, 1970, p. 442). On substitu-
tion of (4.7-7) into (4.7-6) and forming the natural logarithm, we have

In [@y,@)] = N In {1 = (@¥/2N) + E[R/N} (4.7-8)
Sincc
zz 23
l“(1"2')=--[24-—2‘4-—3--%-“':‘ HES! (4.7-9)

we identify z with (@?/2N) — E[Ry)/N and write (4.7-8) as
N 2 EfR 2
In [@y (@)] = —(w?*2) + E[Ry] — > [%’!TJ- - -"'[-N—N]‘] 400 (47-10)

50

lim {In [Oy (@)1} =In {lim mw,‘(w)} = -2 4.7-11)
N=w

N=o

Finally, we have

lim Oy (w) = e~ "2
N-=o

(4.7-12)

which was to be shown. '
We illustrate the use of the central limit theorem through an example.
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Example 4.7-1 Consider the sum of just two independent uniformly distrib-

uted random variables X | and X, having the same density

Si) =1 [ = ulx = a))

where a > 0 is a constant. The means and variances of X, and X,are X =

a/2 and o} = a?/12, respectively. The density of the sum W = X, + X, is .

available from Example 4.6-1 (with b = a):

Swl(w) = % tri (E)

where the .funclion tri (+) is defined in (E-4). The gnussi‘im approximation to
W has variance o}, = 20} = a?/6 and mean W = 2(a/2) = a:

e~ (w=2)/(ad}3)

Vn(a?/3)

Figure 4.7-1 illustrates f,,(w) and its gaussian approximation. Even for the
case of only two rundom variables being summed the gaussian upprox-

Approximation to f(w) =

imation is a fairly good one. For other densities the approximation may be . -}

very poor (see Problem 4-63).

1LOp :
Guussiun approximation
3 -ty
= ¢ =twaie')
ask afy(w
L$ )
Pt 1
1] u 2w

Figure 4.7-1 The triungulur density function of Example 4.7-1 and its gaussian approximation,
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PROBLEMS

4-1 Two events A and B delined on a sample space § are related (0 a joint sam-
ple space through random variables X and Y and are defined by A = {X < v}
and B = {y, < Y < y,}. Make a sketch of the two sample spaces showing areas
corresponding to both cvents and theevent A N B = {X Sx, 0 <Y Sy}
42 Work Problem 4-1 for the two cvents o = {v) <X, and B =
i <Y <yl .
43 Work Problem 4-1 for the two events 4 = {x; < X S x, or x; < X g}
and B={y, <Y <y} . .
4-4 Three events 4, B, and C satisfy Cc Bc A4 and are defined by 4 =
(X<x,, Y<Sp} B={X<x, Y<y) and C={X<x, Y <y} for two
random variables X and Y.
- _{a) Sketch the two sample spaces S and S, and show the regions correspond-
ing to the three events. '
(b) What region corresponds to theevent A N B n C?
4-5 A joint sample space for two random variables X and Y has four clements
(1, 1), (2, 2), (3, 3), and (4, 4). Probabilitics of these elements are 0.1, 0.35, 0.05,
and 0.5 respectively. -
(«) Dctermine through logic and sketch the distribution function Fy y(x, y).
(b) Find the probability of the event {X < 2.5, Y < 6}.
(¢) Find the probability of the event {X < 3}.
.4-6 Writc a mathematical cquation for Iy 4(x, y) of Problem 4-5.

-4-7 The joint distribution function for two random variables X and Y is

Fy p(x, y) = u(xu(p)[1 — ™ — e™" 4 71X )]

where u(+) is the unit-step function and a > 0. Sketch Fy y(x, ¥).
4-8 By use of the joint distribution function in Problem 4-7, and assuming
a = 0.5 in each case, find the probabilities:

(@) P{lX<1,Y<2} (0) P{0.5 < X < 1.5}

(¢) P{—~15<X <2 1<Y <3}
4-9 Find and sketch the marginal distribution functions for the joint distribution
function of Problem 4-5,

4-10 Find and sketch the marginal distribution functions for the joint distribu-
tion function of Problem 4-7,

4-11 Given the function

Gy (X, 1) = w1 — e 4]
“Show that this function satisfies the first four properties of (4.2-6) but fails the
fifth one. The function is therefore not a valid joint probability distribution
function.
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4-12 Random variables X and Y arc components of a two-dimensional random

veetor and have a joint distribution

0 x<0 or y<0

xp  0gx<| and 0<sy<|
Fyvla )= 0gx<! and i<y
0<gsy<li

X
y 1<x and
1 1<x and 1<y

(a) Sketch Fy y(x. y)-

(" Find and sketch the marginal distribution functions Fylx) and Fy(y).
4-13 Show that the function

0 x<y
G.\'.v(x. y) = {‘ x>y

cannot be a valid joint distribution function. [Hint: Use (4.2-6¢).]

4-14 A fair coin is tosscd twicc. Definc random variables by: X = “number of
heads on the first toss” and Y = aumber of heads on the sccond toss” (notc

that X and Y can have only the values 0 or 1).
(a) Find and sketch the joint density function of X and Y.

(b) Find and sketch the joint distribution function,
4-15 A joint probability density function is

) 1/ab 0<x<a and
1} =
Srrx) 0 elsewhere

Find and sketch Fy v(X, ¥).
4-16 1f a < bin Problem 4-15, find:

(@) PIX+Y< 3a/4) (b P{Y = 2bX/a}.

4-17 Find the joint distribution function app!
4-18 Sketch the joint density function fx, v{X, »
an equation for fy, y(%, ).

4-19 Determine the joint density
Problem 47

4-20 Find and sketch the joint density fun
Problem 4-12.

4-21 () Find a censtant b (in tcrms of a) sO th

O<y<h

licable to Example 4.3-1.
applicable to Problem 4-5. Write

and both marginal density functions for

at the function
=tx4) 0<x<a and 0<y<®

clsewhere

be

f.\'.)'(x» }’) = {0

is a valid joint density function.
(h) Find an expression for the joint distribution function.

ction for the distribution function in 4
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4-22 (a) By use of the joint density function of Problem 4-21, find the marginal

density functions.
(h) Whatis P{0.Sa < X' S 0.75a) in terms of a and b?

4-23 Delerminc a constant b such that cach of the following are valid joint

density funclions:

3x 0<x<l and O<y<l
@ Sz =47 y<o

0 elsewhere

bx(l — 0<x<05 and O<y<|
(B) Sx. A, ) = { (=7 y

0 clscwhere

b(x? + 4y? 0<ixl<! and 0 <2
(©) S v, y)={( r) Ixf<t and =)

0 clsewhere

*4.24 Given the function
(x*+yh8n x4 yr<b

Seolx ) = {0

elsewhere

(a) Find a constant b so that this is a valid joint density function.
(h) Find P{0.5b < X* + Y? < 0.8b}. (Hint: Use polar coordinates in both
parts.)
*4.25 On a firing range the coordinates of bullet strikes relative to the target
bull's-cye arc random variables X and Y having a joint density given by
e—(x1+y1)/2«’
X, y) =——T"7"
Sx.r(x ) Y

Here o? is a constant related to the accuracy of manufacturing a gun's barrel.
What value of o2 will allow 80% of all bullets to fall insidc a circle of diameter

6 cm ! (Hint: Use polar coordinates.)
4-26 Given the function

bix + »? —2<x<?2 and ~3<y<3
Sxvx p) = Y Y
0 elsewhere

{a) Find the constant b such that this is a valid joint density function.

(b) Determine the marginal density functions fy(x) and fy(y).
427 Find the conditional density functions fx(x1ys Sx(x[y2): Sylx,), and
fy(y| x,) for the joint density defined in Example 4.4-1.
4-28 Find the conditional density function fx(x | y) applicable to Example 4.4-2.

4-29 By using the results of Example 4.4-2, calculate the probability of the event

(v <21X =1}
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4-30 Random variables X and Y are jointly gaussian and normalized if

x¥ = 2pxy + y?
——————2(1 ~ ) where -l<psgl

1
Sxr(x, y) = 5;—’\/—_—7 exp [—

(a) Show that the marginal density functions are

1
o) = = exp (=) )= = exp (=)

(Hint: Complete the square and use the fa r
Hin ct that the area und i
density is unity.) ‘ peer & gatien

(b) Are X and Y statistically independent?
4-31 By use of the joint density of Problem 4-30, show that

_ ! x—py)?
NN [- 21 - p‘)]

4-32 Given the joint distribution function

Sxx|Y =yp)

Fy v(%, y) = u(xu(y)(l — e — &7 4 ¢74*7]
find:

(a) The conditional density functions fy(x| Y = y) and fy(y| X = x).
(b) Are the random variables X and Y statistically independent?

4-33 For two independent random variables X and Y show that

PlY <X} = Jm Fy(x) fx(x) dx

or
Ply<Xxj=1 -J Fx)fily) dy
4-34 Two random variables X and Y have a joint probability density function
> x? 0 2
= x%y <y<
Je o, y) = 16 yexs
0 elsewhere

(1) Find the marginal density functions of X and Y.
(b) Are X and Y stalistically indépendent?

*4-35 Show, by use of (4.4-13), that the area under fy(y| x) is unity.
4-36 Two random variables R and © have the joint density function

u(r[u(0) = w0 = 2n)]r  _ 4,
i ¢

Jrelr 0) =

(¢) Find P0<R<1,0<© < n/2}.

(h) Find f(r{© = n).
(¢c) Find fy(r|® s 1) and compare to the result found in part {b), and explain
the comparison.
4-37 Random variables X and Y have respective density functions
. 1
Jxlx) = -‘; [u(x) — ulx — a)]
Sy) = bu(y)e™
where a > 0 and b > 0. Find and sketch the density function of W = X+YilX
and Y are statistically independent. :
4-38 Random variubles X and Y have respective density functions
Sylx) = 0.13(x ~ 1) + 0.28(x — 2) + 0.48(x — 3) + 0.33(x = 4)
£(y) = 0.43(y — 5) + 0.53(y — 6) + 0.18(y = 7)
Find and sketch the density function of W =X + Yif X and Y arc independent.
4-39 Find and sketch the density function of W = X 4 Y, where the random
variable X is that of Problem 4-37 with @ = 5 and Y is that of Problem 4-38.
Assume X and Y are independent.
4-40 Find the density function of W = X + Y, wherc the random variable X is
that of Problem 4-38 and Y is that of Problem 4-37. Assume X and Y are inde-
pendent. Sketch the density function for b = L and b = 4,

*4-41 Threc statistically independent random variables X,, X3, and X all have
the same density function ’

1
Jelx) = " (i) = ulx, = a)] i=123

Find and sketch the density function of ¥ = X + X, + X, ila> 0isconstant.

ADDITIONAL PROBLEMS

4-42 In a gambling game two fair dicc arc tossed and the sum-of the numbers
that show up determines who wins among two players. Random variables N and
Y represent the winnings of the first and second numbered players, respectively.
The first wins $3 if the sum is 4, 5, or 6, and loses $2 il the sum is 11 or 12; he
neither wins nor loses for all other sums. The second player wins §2 for a sum of
8 or more, loses $3 for a sum of 5 or less, and neither wins nor loses for other
suins.

(a) Draw sumple spaces S and $, and show how clements of § map to ele-
ments of Sy,

(b) Find the probabilitics of all joint outcomes possible in§,.
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4-43 Discrete random variables X and ¥ have a joint distribution function
Fy y(x, ») = 0.10u(x + Auly — 1) + 0.35u(x + Nuly + 5)
4+ 0.17u(x + Du(y = 3) + 0.05u(x)u(y = 1)
4 0.18u(x — 2uly -+ 2) + 0.23u(x ~ Nu(y ~ 4)
+ 0.12u(x — duly + 3)

JFind: (@) the marginal distributions Fy(x) and Fy(y) and sketeh the two functions,
() X and ¥, and (c) the probability P{—1 < X <4, -3<Y <3
4-44 Random variables X and Y have the joint distribution

5/ ~(x+ 1)y?
5 (Lu_—_ e-w),,(y) 0<x<4

4 x+1
Fyy(x, y)=A0 x<0ory<0
1 +-l-e"‘"’—%c"" 4<xandanyyz0

Find: («) The marginal distribution functions of X and Y, and (b) the probability

P3<X<51<Y<2)
4-45 Find the joint distribution function of the random variables having the joint

density of Problem 4-48.
4-46 Find a valuc of the constant b so that the function
Tx. o, ¥) = bxy? exp (—2xy)ulx — Qu(y ~ 1)

is a valid joint probability density.
4-47 The locations of hits of darts
determined by a vector random v
density of X and Y is uniform, that is,

et xPyr<r?
Srrle )= {0 clsewhere

Find the densitics of X and Y.
4-48 Two random variables X and Y have a joint density
U Lo ) = () — ulx - HJuly)y® exp [—(x + Dy’

Find the marginal densitics and distributions of X and Y.
4-49 Find the marginal densities of X and Y using the joint density

Sx.rlx, y) = 2u(x)u(y) cxp [_(4}, + %)1

isity of Problem 4-49. Find
an twice the values of X for

thrown at a round dartboard of radius r are
ariable with components X and Y. The joint

4-50 Random variables X and Y have the joint der
the probability that the values of Y are not greater th

x<d
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4-51 IFind the conditional densities fx(x|Y =y) and f(y| X = x) applicable to
thé joint density of Problem 4-47.

4-52 For the joint density of Problem 4-48 determine the conditional densities
fx(x| ¥ = y)and fy{y| X = x)

4-53 The time it takes a person to drive to work is a random variable Y, Because
of traflic driving time depends on the (random) time of departure, denoted X,
which occurs in an interval of duration To that begins at 7:30 AM. each day.
There is a minimum driving time T, requircd, regardless of the time of departure.
The joint density of X and Y is known to be

Tx v, y) = cly = Ty uly = T)u(x) — ulx — T exp [—(y = T)x + 1))

wherc
c=(1+ TP20l + Ty — 1]

(a) Find the average driving time that results when it is given that departure
occurs at 7:30 A.M. Evaluate your result for To = i h.

(b) Repeat part (a) given that departure time is at 7:30 AM. plus Ty

(¢) What is the average time of departure if To = 1 h? (Hint: Note that point
conditioning applies.)

*4.54 Start with the expressions

Fyy|B) = P{Y < y1B) =5{-Y—%"—"1
dF B
soin =222

which arc analogous to (4.4-1) and (4.4-2), and derive Fy{y|x, < X < x,) and

[yl x, < X £ x;) which are analogous to (4.4-15) and (4.4-16).

*4.55 Extend the procedures of the text that lcad to (4.4-16) to show that the joint
distribution and density of random variables X and Y, conditional on the event
B={y.<YSphare

0 Y S Ya

Fy y(x y) = Fe vlx, Ya)

Fxalx ylyi<Y Sy =0 Fdly) = Fx0) YesysEh
Fx y(X, y) = Fy, y(x, Ya)
\ , <
F(ys) — Fy(.) <y
and

0 y<y. and  y>y

x Y1y <Y Sy = <,
Jx.r b Sx %, ) Je <Y

Fylys) = Frlya)
4-56 Determinc if random variables X and Y of Problem 4-53 are statistically
indcpendent.
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4-57 Determine if X and Y of Problem 4-49 are statistically independent.
4-58 The joint density of four random variables X,,i = 1,2, 3, and 4, is

4
fx,.x,.x,, x(Xg, X2, X3, Xg) = IH exp (—2]x])
Y

Find densities () fx, x,, 50 X2, X31%6)  (B)  Jfx,. x,(%y, X21%3, X4), and
(C)fx,(xl [x3, X3, Xg).

the probability density of W. Compare the result with (4.6-5). Is the density still a
convolution of the densities of X and Y? Discuss.

4-60 Statistically independent random variables X and Y have respective
densities

Sx(x) = [u(x 4+ 12) — u(x — 12)J[1 — {x/12]7/12

Sr(y) = (1/4)u(y) exp (- y/4)
Find the probabilities of the events:

(@) {Y <8—(2|X1/3)},and () {Y <8 + 2| X|/3)}.
Compare the two results.

4-61 Statistically independent random variables X and Y have respeclive
densities

Jxlx) = Su(x) exp (= 5x)
Sr(y) = 2u(y) exp (~2y)
Find the density of the sum W = X + Y.,

*4-62 N statistically independent random variables X,, i=1, 2, ..., N, all have
the same density

mra CET Y e st meaies

e o i i £ P, E I
e e
T s R s s e Oy LT

Jxlx) = au(x) exp (—ax)

Pl where a > 0 is a constant. Find an expression for the density of the sum W =
i X, + X+ + Xyforany N,

*4-63 Find the exact probuability density for the sum of two statistically indepen-
dent random variables each having the density

e gy e

Jxx) = 3[ulx + a) — ulx — a))x*/2a°

where a >0 is a constant. Plot the density along with the gaussian approx-

imation (to the density of the sum) that has variance 20} and mcan 2X. Is (he
approximation a good onc? '

*4-64 Work Problem 4-63 cxeepl assume
Jx(x) = (1/2) cos (x) rect (x/n).

S 2P AN Y S (A A i i AP 15 E

4-59 If the difterence W = X — Y 1s lormed nstead of the sum in (4.6-1), develop -

CHAPTER

FIVE

OPERATIONS ON
MULTIPLE RANDOM VARIABLES

5.0 INTRODUCTION

After establishing some of the basic theory of sevcral rand'om variab'lcs in the pre-
vious chapter, it is appropriate to now extend the OPCI‘M'IOHS d‘cscnbcd in Chap-
ter 3 to include multiple random variables. This chapter is d.cdlcalcd to these cx-
tensions. Mainly, the concept of expectation is enlarged to mcludg l}vo or more
random variables. Other operations involving moments, c}mmclcnshc functions,
and transformations arc all special applications of expectation.

5.1 EXPECTED YALUE OF A

FUNCTION OF RANDOM VARIABLES

When more than a single random variable is involved, expectation xpusl be taken
with respeet to all the variables involved. For example, if g(X, Y) is some func-

tion of two random variables X and Y the expected value of g(+, ) is given by

§=E[g(X, Y)]= J'aa r 90%, Y fx. v(x, y) dx dy 5.1-1)

~0 Jm®

This expression is the two-variable extension of (3.1-6).

17
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For N random variables X, Xa, ..o Xn and some function of these vari-
ables, denated g(X ..., Xah the expected value of the function becomes

§=E[g(Xy,...r Xn)]

o o

=<[ j ﬂ(xh~'--xn)fx......x~(xu----xﬂ) dx, rdxy (5:1-2)
0 -t

“Thus, expeetation in general involves an N-fold integration when N random vari-

ables arc involved.
We illustrate the application of (5.1-2) with an cxample that will develop an

important point.

Example 5.t-1 We shzlxll find the mean (expected) value of a sum of N
weighted random variables. If we let

N
1710, TR Xn) = ‘Z‘alxl

where the *weights” are the constants a;, the mean value of the weighted
sum becomes

N
E[g(X 1y X)) = E[zalxl]

ial

N w o
= z j I o X _f.\,||.mx,4(x,....,x~) dx, - dxy

.

from (5.1-2). After using (4.3-8), the terms in the sum all reduce to the form

J’“’ a;xp Sy, dx; = Efo X] =« E[X]

-

SO
N N
1;[ za,x,] - SeBX]

which says that the mean value of a weighted sum of random variables equals
the weighted sum of mean values.

The above extensions (5.1-1) and (5.1-2) of expectation do not invalidate any
of our single random variable results. For example, let

gX 1 ees Xn) = 9(X)) (5.1-3)
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and substitute into (5.1-2). After integrating with respect to all random variables
except Xy, (5.1-2) becomes

g= E[g(X,)] = J gl M x,(x1) dx, (5.1-4)

-0

which is the same as previously given in (3.1-6) for onc random variablc. Some
reficetion on the reader's part wifl verify that (5.1-4) also validates such carlicr

" lopics as moments, central moments, characleristic function, ctc., for a single

random variable.

Joint Moments About the Origin

Onc important application of (5.1-1) is in defining joint moments about the origin.
They are denoted by m,, and are defined by

My = E[X"Y*] = J j X"y, v 9) dx dy (5.1-5)
for the case of two random variables X and Y. Clearly m,, = E[X"] are the
moments m, of X, while mg, = E[Y*] are thc moments of Y. The sum n + k is
called the order of the moments, Thus mg,, mye, and myy 8r¢ all second-order
moments of X and Y. The first-order moments moy = E[¥] = ? and myo =
E[X] = X are the expected values of Y and X, respectively, and are the coordi-
nates of the “ center of gravity ” of the function Jx, (%, p).

The sccond-order moment m,; = E[XY] is called the correlation of X and
Y. It is so important to later work that we give it the symbol Ryy.Hence,

Ryp =y, = E[XY]= I J xyfx.olx, ) dx dy (5.1-6)

If correlation can be wrilten in the form
Ryy = E[XJELY] (5.1-7)

then X and Y are said to be uncorrelated. Statistical independence of X and Y is
sufficient to guarantee they are uncorrelated, as is readily proven by (5.1-6) using
(4.5-4). The converse of this statement, that is, that X and Y are independent if X
and Y are uncorrelated, is not necessarily truc in general.t

If

Ryy =0 (5.1-8)

for two random variables X and Y, they are called orthogonal.
A simple example is next developed that illustrates the important new topic

of correlation.

t Uncorrelated gaussian random variables are, however, known to also be independent (sce
Section 5.3).
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Example 5.1-2 Let X be a random variable that has a mean value X =
E[X] =3 and variance o} = 2. From (3.2-6) we easily determine the second
moment of X about the origin: E[X?] = myq = o2 + X? = 11,

Next, let another random variable Y be defined by

= —6X + 22

The mean value of Y is P= E[Y] = E[—6X +22] = —6X + 22 = 4. The
correlation of X and Y is found from (5.1-6)

Ryy =my, = E[XY] = E[-6X* + 22X] = —6E[X?] 4+ 22X
= ~6§(11) + 22(3) =

Since Ryy =0, X and Y are orthogonal from (5.1-8). On the other hand,
Ryy # E[XJE[Y] = 12,50 X and Y are not uncorrelated [see (5.1-7)].

We note that two random variables can be orthogonal even though cor-
related when one, Y, is relaled to the other, X, by the linear function
Y =aX + b. It can be shown that X and Y are always correlated if ja] 5 0,
regardless of the value of b (see Problem 5-9). They are uncorrelated if a = 0,
but this is not a case of much practical interest, Orthogonality can likewise
be shown to occur when a and b are related by b = —aE[X?)/E[X] when-
ever E[X] # 0, If E[X] = 0, X and Y cannot be orthogonal for any value of
aexcepta=0,a nonmlerestmg problem. The reader may wish to vcrlfy these

statements as an exercise.

For N random variables X, X,,..., Xy, the (ny 4+ ny + -+ + ny)-order
moments are defined by

Mping ooy = E[XT X -+ X3N]

o 0
=J' J XT o X xy, e xfXps oo Xp) dxy ooe dxy (5.1-9)

-

where ny, n,, ..., nyare all integers = 0, 1, 2,....

Joint Central Moments

Another important application of (5.1-1) is in defining joint central moments. For
two random variables X and Y, these moments, denoted by g, , are given by

‘ EL(X = RY(Y ~ 7))
R AP (5.1-10

Hoax

-
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The sccond-order central moments
tao = E[X = X)) = o} (5.1-11)
oy = E[(Y — 1)}] = o} (5.1-12)

are just the variances of X and Y.
The second-order joint moment g, is very important. It is called the covari-
ance of X and Y and is given the symbol Cx,. Hence

Cxr =41 = EE(X—X)(Y - 9]

= Jw J'm (x = Ry — V) fx. v(x, p) dx dy (5.1-13)

By direct expansion of the product (x — X)(y — ¥), this integral reduces to the
form

Cxy = Rgy ~ ¥ = Ryy — E[X]E[Y] ¥ (5.1-14)

when (5.1-6) is used. If X and Y arc cither independent or uncorrclated, then
{5.1-7) applics and (5.1-14) shows their covariance is zero:

Cxy=0 X and Y independent or uncorrclated (5.1-15)
If X and Y arc orthogonal random variables, then
Cyy = — E[X]E[Y] X and Y orthogonal (5.1-16)

from use of (5.1-8) with (5.1-14), (_lcarly, Cyy = 0 il cither X or Y also has zero

mean value,
The normalized second-order moment

P =/ o ttey = Cxyloxay (5.1-170)
given by
p= I.(X N =~ ?)J (5.1-17h)
Ox Oy

is known as the correlation coefficient of X and Y. It can be shown (scc Problem
5-10) that

~l<gpsl . (5.1-18)

For N rundom variables X ,, X5, ..., Xy the (n; + ny + +++ + ny)-order joint

central moment is defined by
Haing ooy = "I(Xx - /\71)"'()(2 - 4\—’2)“ e (X'N - f\_’N)"")

@ o _
=J f (x, = X e

(Sn = X ™o X ga o XY iy ey (5.1-19)

An exumple is next developed that involves the usc of covariances.

Loy
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Example 5.1-3 Again let X be a weighted sum of N random variables X
that is, let
N
X =YX
, im1
where the & arc rcal yvcighting constants. The variance of X will be found.
From Example 5.1-1,

N N
E[X] = ‘Za,E[X,] =YX =X
-1 (=1
so wc have

N
Xx-R%=YaX,—X)
I=1

and
N N
o = E[(X - X)) = E[Za,(xl - X)L X, - ’?J)]
1 =1

im

N N N N
=3 Yo EIX — XXX, - =Y LayCux
TIWEL IWEL
Thus, the variance of a weighted sum of N random variables X, (weights &)
equals the weightcd sum of all their covariances Cy,x, (weights a,a)). For the
special case of uncorrelated random variables, where

0 i)
CX{X;'_'-{ 2

oxi i=j
is truc, we get
. N
2 2.2
ox = Z“Nx.
(LD}

In words: the variance of a weighted sum of uncorrelated random variables
(weights a) equals the weighted sum of the variances of the random variables

(weights of).

*52 JOINT CHARACTERISTIC FUNCTIONS

acteristic function of two random variables X and Y is defined by

The joint char
gl X +jm] (5.2-1)

Oy, w2) = E[
where @, and w, arc real numbers. An equivalent form is

Oy, @y, wz)=j’ J fx,,«(x.y)e""“”‘"” dx dy (5.2-2)

= ®
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This expression is recognized as the two-dimensional Fouricr transform (with
signs of o, and w, reversed) of the joint density junction. From the inversc
Fouricr transform we also have

1
fx.r(x- y) =-(-2_ﬂ)—2_[

L

I Oy, (i, wz)e-/"'"_l“’” dw, dw, (5.2-3)

By setting cither w; =0 or @, = 0 in (5.2-2), the characteristic functions of X
or Y arc obtained. They arc called marginal characteristic functions:
Oy(w;) = Dy, ylwy, 0) (5.2-4)
Oy(w,) = Py, (0, w2) (5.2-5)
Joint moments m,, can be found from the joint characteristic function as

follows:

IOy y(wy, @y)

n X
dw] dwy 0, =0.03=0

(5.2-6)

m, = (__j)n+l

This expression is the two-dimensional extension of (3.3-4).

Example 5.2-1 Two random variables X and Y have the joint characteristic
function

Oy, y(@,, ;) = exp (—20] — 8w?)
We show that X and Y are both zero-mean random variables and that they

are uncorrelated.
The means derive from (5.2-6):

X =E[X]=m = _Jw_zl

a(‘ul 0| =0, 02=0
= —j(—4w,) exp (=20} ~ 8w§)l =0
: wym0,w3=0
7 = E[Y] = mg, = —j(—16w;) exp(—2w}—8w§)\ =0
toE w1 =0, 01=0

Also from (5.2-6):

[exp (—2w} — 8w))]

Ryy = E[XY] = =(—j)}
Xy [XY]=my, (- 3w, dw,

w0y =0, w2=0

=0

w;=0,w1=0

= —(—4w,)— 16w,) exp (-2} ".,8‘4’%)

Since means are zcro, Cxy = Ryy from (5.1-14). Thercfore, Cxy = 0 and X
and Y are uncorrclated.

N
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The joint characteristic function for N random variables X, Xay ooty Xy is
defined by

Dxry o xal @1y <o, wy) = E[elorX1t - +Juntn) (5.2-7)

Joint moments are obtained from

K My xpl@y 0y wy)

m oy =
meem = (= =500 Dy - day

(5.2-8)

allwy=0
where

R=n4ny+ 4 ny (5.2-9)

5.3 JOINTLY GAUSSIAN RANDOM VARIABLES

Gaussian random variables are very important because they show up in nearly
every area of science and engineering. In this section, the case of lwo gaussian

random variables is first examined. The more advanced case of N random vari-
ables is then introduced.

Two Random Variables

Two random variables X and Y are said to_be jointly gaussian if their joint
density function is of the form o

Jxorlx, y) = 3
) noyoy /1l —p
-1 x~X)? 2p(x— XXy -7 - P
: P {2(1 =5 [( R 5 ]} 630
vl‘ which is sometimes called the bivariate gaussian density. Here ' -

' X = E[X) (5.3-2)
Y =E[Y] (5.3-3)
ok = E[(X - %)) (5.3-4)
of = E[(Y — 7)) (5.3-5)
p=E[(X = XXY - ¥))fox 0, (5.3-6)

Figure 5.3-1a illustrates the appearance of the joint gaussian density function
(5.3-1). Its maximum is located at the point (X, 7). The maximum valus is
obtained from

el ) Sfe (X, D) =

1
(5.3-7)
2nox oy /1 ~ p?
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{a}
5
/
7/
) 4 T
l .
0 Z | Figure 5.3-1 Sketch of the joint
X * density funclion of two gaussiun
) random variables.

The locus of constant values of fx, y(x, y) will be an ellipscT as shown in Fi,g}xre
5.3-1b. This is equivalent to saying that the line of intersection formed by slicing
, i i is Hipse.
the function fy (x, y) with a plane parallel to the xy planeisane
Obscrve that if p = 0, corresponding to uncorrelated X and Y, (5.3-1) can be
writien as

Sx, %0 y) = [(3) () (5.3-8)
where fy(x) and fy(y) are the margina! density functions of X and Y given by
1 (x — X)=j| 53.9)
Jxx) = JTT} cxp [— 2% (5.
b- B 5.3-10
Sry) = o exp [— 201 (5.3-10)

t When ay = a, and p = 0 the cllipse degencerates into n circle; when p = +1 or — l. the cllipses
degenerale into uxes rotated by angles n/4 and —n/4 respectively that pass through the point (£, 7).
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Now the form of (5.3-8) is sufficicnl to guarantee that X and Y arc statistically
independent. Thercfore we conclude that any two uncorrelated gaussian random
variables are also statistically independent. 1t results (hat a coordinate rotation
(tincar transformation of X and Y) through an angle

0 =% tan™"* [%’M—’] (5.3-11)

2
Ox — Oy

is sufficient to convert corrclated random variables X and Y, having variances o}
and o, respectively, correlation cocflicient p, and the joint density of (5.3-1), into
two statistically independent gaussian random variables.t

By dircct application of (4.4-12) and (4.4-13), the conditional density func-
tions fy(x| Y = y) and fy(y| X = x) can be found from the above cxpressions (scc
Problem 5-29).

Exnmple 5.3-1 We show by example that (5.3-11) applics to arbitrary as well
as gaussian random variables. Consider random variables ¥, and Y, related
to arbitrary random variables X and Y by the coordinate rotation

Y, = X cos (0) -+ Y sin ()

Y, = —X sin (0) + Y cos (0)

It ¥ and ¥ arc the means of X and Y, respectively, {he mecans of ¥, and V)

are clearly ¥, = £ cos (0) + ¥sin (0) and ¥, = — X sin (0) + Ycos (0),

respectively. The covariance of Y, and Y; is

Chh = E[(Yl - }—In)(yz - ?z)]
EC{(X — &) cos (6) + (Y = V) sin (0))
A =(X = R)sin (0) + (Y = V) cos (O)}]
= (o} = o2) sin (0) cos () + Cxylcos® (0) — sin? (0)]
t. = (o} — o)) sin (20) + Cxy cos (20)

Here Cyy = E[(X — XXY — )] = poxoy. If we requirc Y, and Y; to be
uncorrelated, we must have Cyy, = 0. By equating the above equation to
zero we obtain (5.3-11). Thus, (5.3-11) applics to arbitrary as well as gaussian

random variablcs,

1 Wozeneraft and Jacobs (1965), p. 155,
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*N Raidom Variables

N random variables X,, X;, ..., Xy are called jointly gaussian if their joint
density function can be written ast

et o {_ CERGLE Xl}

Sxu o xaXps ooes X0 = 2
(5.3-12)
where we define matrices
x, - X, -
Ix—R1=|" %2 (5.3-13)
xy— X
and
Cy Cip " Cuw
[Cxl = Cf' C?’ C:’” (5.14)
C;n C;n C.NN

We usc the notation [} for the matrix transposc, [-]17! for the matrix inversc,
and |[-]) for the determinant. Elements of IC,), called the covariance matrix of
the N random variables, are given by

2 P
C, = E[(X, - XXX, — R ={"" =) 5.3-15
y= B =20 =R =4c) (5.3-15)
The density (5.3-12) is often called the N-variate gaussian density function.
For the special case where N = 2, the covariance matrix becomes
2
(Cal =[ o P "";“*’] (5.3-16)
POX,Tx, OXs
50 )
' ! Ik,  —ploxox
(Cxl™! = [ : e (5.3-17)
X (l - Pz) "P/"x.“x, l/“}x
HCx ™| = t/o},0%,(1 = p?) (5.3-18)

On substitution of (5.3-17) and (.3-18) into (5.3-12), and letting X, =X and
X, = Y,itis casy to verify that the bivariate density of (5.3-1) results.

t We denote a matrix symbolically by use of heavy brackets [},
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.. *Some Propertics of Gaussian Random Variables

Wc state-without proof some of the propertics exhibited by N jointly gaussian
"random variables X,,..., Xj.

I. Gaussian random variables are completely defined through only their first-
and second-order moments; that is, by their means, variances, and covari-
ances. This fact is readily apparent since only these quantitics are needed to
completely determine (5.3-12).

2. If the random variables are uncorrelated, they are also statistically indepen-
dent. This properly was given earlier for two variables.

3. Random variables produced by a linear transformation of X, ..., X, will also
be gaussian, as proven in Section 5.5.

4. Any k-dimensional (k-variate) marginal density function obtained from the N-
dimensional density function (5.3-12) by integrating out N — k random vari-
ables will be gaussian. I the variables are ordered so that X, ..., X, occur in
the marginal density and X, ,,,..., Xy are integrated out, then the covariance
matrix of Xy, ..., X, is equal to the leading k x k submatrix of the covariance
matrix of Xy, ..., Xy (Wilks, 1962, p. 168).

5. The conditional density fy, v (x), oo, Xl Xaws = Xaats oons Xy =xy) is
gaussian (Papoulis, 1965, p. 257). This holds for any k < N.

*5.4 TRANSFORMATIONS OF
MULTIPLE RANDOM VARIABLES

The function g in either (5.1-1) or (5.1-2) can be considered a transformation
involving more than onc random variable. By defining a new variable Y =
9(X 1, X3, ..., Xy), we see that (5.1-2) is the expected value of Y. In calculating
expected values it was not necessary to determine the density function of the new
random variable Y. It may be, however, that the density function of Y is required
in some praclical problems, and its determination is briefly considered in this
section, '

In fact, one may be more gencrally interested in finding the joint density
function for a set of new random variables

Yl= 'I;(Xl' in [XEEY Xn)

i=1,2..,N (5.4-1)

defined by functional transformations T;. Now all the possible cases described in
Chapter 3 for on¢ random variable carry over to the N-dimensional problem,
That is, the X, can be continuous, discrete, or mixed, while the functions T can
be linear, nonlinear, continuous, segmented, etc. Because so many cases are
possible, many of them being beyond our scope, we shall discuss only one repre-
sentative probiem,

We shall assume that the new random variables Y, given by (5.4-1), are pro-
duced by single-valued continuous functions 7 having continuous partial deriv-

\-. ;

LAy
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atives everywhere. Lt is further assumed that a set of inverse continuous functions

T; ! exists such that the old variables may be expressed as single-valued contin-
Tous functions of (he new variables:

i )
X, =T/, Yo Y J=1L2.,N (5.4-2)
These assumptions mean that a point in the joint sample spacc of the X; maps

int o pontin the space of the new variables ¥).

m(ol(.):tﬂlgnbcpa closed rcgi%n of points in the space of the X; and Ry be lli\cbclo‘r
responding region of mapped points in the space of lhc‘ Y), then the pro rtlnl-l'y
that a point falls in Ry will equal the proba!;u.llty that'ns mapped pointfalls in
R, . These probabilitics, in terms of joint densities, arc given by

J J.f.v.......\'n(xn, co Xp) dxy e dxy

Rx
= J _[frl..,.. Vs oo Ya) dyy oo dyn (5:4-3)

Ry

This cquation may be solved for f,,,r“_,n!(yl;l. ..., y§) by treating it as simply a
iplc integral involving a change of variables. o
mul‘l';;lcwlg:(l:(?ng on the lc%t side of (5.4-3) we change the .variublcs Xi to fu:\:! (\;\::
ables y, by means of the variable changes (5.4-2). The mlegrund is change by
direct functional substitution. The limits change {rom the region Ry to the region
Ry. Finally, the difTerential hypervolume dxy o flx,, will chz’mgc to ll;c \ff\l\lc
|J}dy, -+ dyy (Spicgel, 1963, p. 182), wh(’:rc I‘J is_the magnitude c:’f la'c ‘dco-r
_biant J of the trunsformations. The jacobian is the determinant of a matrix o

derivatives dcfincd by

oT ' -+ AT
2y, 3y,
: : (5.4-4)

oTF' - TR

7Y, Y,

Thus, the left side of (5.4-3) becomes

J"‘ J‘fxl.“" XN(Xl' veey xN) ‘['\.l cer (l.\‘N

Rx

= J {fx‘....‘xn(xl =T Xy = T;')Ul dyy =+ dyy (5.4-5)

Ry

t After the German mathematician Karl Gustav Jukob Jucobi (1804-1851).

;
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Since this result must cqual the right side of (5.4-3), we concludc that

TrvatnWir e ¥ =fxp i = Ti e xn = TaYlJ] (5.4-6)

When N = 1, (5.4-6) reduces to (3.4-9) previously derived for a single random

variable.
The solution (5.4-6) for the joint density of the ncw variables Yj is illustrated

here with an example.

Example 5.4-1 Let the transformalions be lincar and given by
Y, = Ti(X,, X3) = aX, + hX,
Y, = Ty(X1, X3) = cX, +dX,

where a, b, ¢, and d arc rcal constants. The inverse functions arc casy to
obtain by solving thesc two equations for the two variables X, and X,

X, =T (Y, Y)) = (dY, = bYy)/(ad —~ be)
Xy = Ty Ya) = (=c¥, + a¥iad = bo)
where we shall assume (ad ~ bc) # 0. From (5.4-4):

df(ad — bc) ~bf(ad — be)
—cf(ad — be) af{ad — be)

_ 1

J= =@ =59

Finally, from (5.4-6),

ad —be ' ad —be

(d}’| —by, —eyi + "yz)
X1, X2
f)..h()'l')'l)= lad — bel

5.5 LINEAR TRANSFORMATION OF
GAUSSIAN RANDOM VARIABLES

Equation (._5.4-6) can be readily applied to the problem of lincarly transforming a

sct of gaussian random variables X, X, ..., Xy for which the joint density of

(5.3-12) applics. The new variables Yy, Y,..., Yyarc
Yy= Ny bagp Xy oy Xn

Y)'-—-'(lIlX'+n12X2+"'+ﬂ1NX~ (55'1)

Y~=0N|Xl+a~21\’z +"‘+(1~NX~
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where the coeflicients ayy, iand j = 1, 2,..., N, are real numbers. Now if we define
the following matrices:

ayy Ay o AN

(ry=| @2 M (5.5-2)
(yy dyz *°" AN
Y, 7, X, X,
[Yl=1: (71={: X)=1: 1%1=]:
Yy ' Xn Xy
(5.5-3)
then it is clear from (5.5-1) that '
Y] = [THX] Y = 91 =1TIX - X (5.5-4)
X1=[T17YL X =XI=IT17'Y = ¢! (5.5-5)
so long as [T is nonsingular. Thus,
X, =T Y, Y =0 +ad%Y, + a'™Yy (5.5-6)
%’%‘ = 9%;—;—‘ =aY (5.5-7)
X, =X =d'"M- )4 +a™(Yy =Yy (5.5-8)

from (5.5-5). Here a'/ represents the ijth element of [T

The density function of the new variables Y;, ..., Yy is found by solving the
right side of (5.4-6) in two steps. The first step is to determine |J|. By using
(5.5-7) with (5.4-4) we find that J equals the determinant of the matrix {T]7"

Hence,t

Y
Jl=NT1"'Y = 5.5-9)
1= 17" = (
The second step in solving (5.4-6) procecds by using (5.5-8) to obtain
' N N
Cx,x, = E[(X, - XIXX] - /?/)] = z a* Z amE[(Y, — Y XYn — Ym)]
k=) m=]
N N
=y a* }y d"Cyy, (5.5-10)

k=i m=1

Since Cyy, is the ijth element in the covariance matrix [Cyl of (5.3-12) and Cyyy,,

t We represent the magnitude of the determinant of a matrix by 1C-31].
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is the kmth element in the covariance matrix of the new variables Y,

, which we
denote |Cy], (5.5-10) can be written in the form

[Cxl=1T7'cTy) ! (5.5-11)
Here [T represents the transpose of [77. The inverse of (5.5-11)is
1Cx) = TVIC,) T} (5.5-12)
which has a determinant
HCxI™' = 1ICy ' 1T (5.5-13)-

On substitution of (5.5-13) and (5.5-12) into (5.3-12):

Sevxdxi =TT L xy = TR

_ eyt exp {_ Ix = XIITHC,~"ITlx — X)

(zn)N/Z 2 } (5.5-]4)

Finally, (5.5-14) and (5.5-9) are substituted into (5.4-6), and (5.5-4) is used to
obtain

: o NG - PHCH 'y = P
./n....,y,v()'x.....YN)=”—<2Y7'!)TZI—cxp {-'y i ;‘ Ly '} (5.5-15)

This result shows that the new random variables Yi, Vi, ..., Yy are jointly gauss-
l1un because (5.5-15] is of the required form.
In summary, (5.5-15) shows that a linear transformation of gaussian random

variables produces gaussian random variables. The new variables have mean’
values
==

N
V= T auX, (5.5-16)
k=1

from (5.5-1) and covariances given by the elements of the covariance matrix

Gy = [THCHITI (5.5-17)
as found from (5.5-11).

Example 5.5-1 Two gaussian random variables X, and X, have zero means
and variances o, =4 and 0}, = 9. Their covariance Cy,x, cquals 3. 1 X,
and X, are linearly transformed to new variables Yy and Y, according to

Y, =X, -2X,
Y, = 3X, +4X,

we use the above results to find the means, variances, and covariance of Y
and Y;.
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[lere

=2 43
[’[‘]—_-[3 4J and IC,\'I=-3 9

Since X, and X, are zero-mean and gaussian, Y, und Y, will also be zero-
meun and gaussian, thus ¥, =0and Y, = 0. From (5.5-17):

o= 3 3’_[ 28 -ca'J
lc*l=lT"C""T"=l,3 4“3 9][—2 a) = [-66 252

Thus, 0}, = 28, 0}, = 252, and Cy,y, = —66. -

*5.6 COMPLEX RANDOM VARIABLES

A complex random variable Z can be defined in terms of real rzmdqm variables X
and Y by
) Z=X+jY (5.6-1)
where j = /— L. In considering expected values involving Z, the joint density of

X and Y must be used. For instance, if ¢(-) is some function {real or complex) of
Z, the expected value of g(Z) is obtained l[rom

E[y(2)] = r .[ ) 9(z) fx, y(%, ¥) dx dy (5.6-2)

Various important quantities such as the mean value and variance arc
obtained through application of (5.6-2). The mean value of Z is

Z = E[Z) = E[X] + JE[Y] = X +j¥ (5.6-3)

The variance oZ of Z is defined as the mean value of the function ¢(Z) =
|Z — E[Z]?; that is,

o} = E[1Z - E[Z]1"] (5.6-4)

Equation (5.6-2) can be extended to include functions of two random
variables
Zm = Xm +jym (5‘6'5)
and
Zo=X,+]jY, {5.6-0)
i # m, il expectation is taken with respect to four random variables X,,,‘, Y. l.\'"'
Y, through their joint density function fy, v, x.. v.(Xms Ym» Xas Y- 10 this density
satisfies

f.\'n. Y Xn, Y.(xm v Yms Xa» yn) =me. Ym(xm ’ .Vm)fx,,. y.(.‘(,, ’ y") (5'6-7)
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then Z,, and 7, arc called statistically independent. The cxtension to N random
variables is straightforward.
The correlation and covariance of Z,,and Z, arc delined by

Ry.2 = E[(ZNZ,] n#Em (5.6-8)
and
Coors = KU = B2V Z0 = BLZY) st (5.6-9)

respectively, where the superscripted asterisk* represents the complex conjugalte.
If the covariance is 0, Z,, and Z, arc said to be wncorrelated random variables. By
sctting (5.6-9) to 0, we find that

Rj.z. = E[Z2)E(Z,) m#n (5.6-10)
for uncorrclated random variables. Statistical independence is sufficient to guar-

antee that Z,, and Z, arc uncorrclated.
Finally, we notc that two complex random variables are called orthogonal if

their correlation, given by (5.6-8), equals 0.

PROBLEMS

5.1 Random variables X and Y have the joint density

1

- 0<x<6 and 0<y<4
So o) = 24 '

0 clscwhere

What is the expeeted value of the function g(X, ¥) = (X Y)¥?

5.2 Extend Problem 5-1 by finding the cxpected value of g(Xy, X, Xy Xg) =

XXX where g, na, 1y, and n, arc integers 20 and

|
— 0<x, <caand 0 < x;, <band 0 <xy <¢
abed
Jxi xaoxs xaXn X, X3, X4) = and 0 < x4 < d
.
0 clscwhere

5.3 The density function of two random variables X and Y is
’ el ) = ulxu(y)16e 4+

Find the mean value of the function

|
5 0<Xs% and 0<YS§

by = | 1
(OIRE -1 3 <X and/or —2~< Y

0 all other X and Y

&
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5-4 For the random variables in Problem 5-3, find the mean valuc of the
function

gx, Yy =2

5.5 Three statistically independent random variables X, X, and X, have mean
values X, =3, £, =6, and Xy = —2. Find the mean valucs of the following
functions:

(@) o(X 1 X Xa) =X, +3X, +4X,

(b) g(X 1, Xq, X)) = XXy X,y

©) ¢(Xy X3, X3} = —2X, X3 = 3X, X3 + 4X, X,y

@) g(Xy Xa, X3) =X + X3+ X,
5.6 Find the mean value of the function

gx, V)=X*+Y?

where X and Y arc random variables defined by the density function
e-(x“r‘)/za’
fx. Y(xy }’) =

2na?

with #% a constant.

5.7 Two statistically indcpendent random variables X and Y have mecan values
£ = E[X]=2and ¥ = E[Y] = 4. They have sccond moments X*=E[X¥] =8
and Y1 = E[Y?] = 25. Find: ‘

(a) the mcan value (b) the second moment and

(¢) the variance of the random variable W = 3X - Y.

5.8 Two random variables X and Y have means X =1 and ? = 2, variances
o} =4 and o} = 1, and a corrclation cocflicicnt pyy = 0.4. New random variables
I and V are defined by

Ve=—-X+2Y W=X+13Y
Find:
(a) the means (b) the variances (¢) the correlation and
(d) the correlation coefficient pyw of Vand W.

5.9 Two random variables X and Y are related by the expression
Y=aX +b

wherc a and b are any real numbers.
(a) Show that their correlation coeflicient is

_ { ifa> 0 forany b
P=1-1 ifa<Oforanyb

(b} Show that their covariance is
Cyy = ua}

wheic 6% is the variance of X.
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. . .
5-10 Show that the correlation cocflicient satisfies the expression

J
o=l o
Vv Hoz a0

5’,1 ll“d a“ ”lc SCCO"d'OldCI moments a“d Cell“al roment. l()l € dcll ly
n s lh S

1

5-12 Random variables X and Y have the joint density function

Sx. v(x, y) = {(X + )?/40 —l<x<l and
0 elsewhere

~-J<y<3

() Find all the second-order moments of X and Y.
(b) What are the variances of X and Y?
(¢) What is the correlation coefficient?

5-13 Find all the third- , ‘
Problem 5_‘1‘2' ¢ third-order moments by using (5.1-5) for X and Y defined in

5-14 For fiiscre(c random variables X and Y, show that:
(a) Joint moments are
N M
My = Z Z P(x,, Y})x;')’j
i=1 jm)
(b) Joint central moments are
N M
Hm = Z Z Plx;, y)x = X)”(.VJ - P

in1 jmy

where P(x;, y)=P{X =x,, Y = Xh i
rossble et > f »h as N possible values x,;, and Y has M.

5-15 For two random variables X and Y:
SJx, ¥(%, p) = 0.155(x + 1)3(y) + 0.18(x)8(y) + 0.18(x)3(y — 2) + 0.48(x — Doy + 2)
+ 0.28(x — 1)a(y — 1) + 0.056(x — oy = 3)

Find: (a) th i : .
of X and }Ea) ¢ correlation, (b) the covariance, and (c) the correlation coefficient

(d) Are X and Y cither uncorrelated or orthogonal?
5-16 Discretc random variables X and Y have the joint density
Jx, 1%, ¥) = 0.48(x + a)S(y — 2) + 0.38(x — )8y — 2)
+0.18(x — )3y — o) + 0.25(x — 1)5(y — 1)

Determine (hc'ngUe of «, if any, that minimizes the correlation between X and Y
and find the minimum correlation. Are X and Y orthogonal?
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5-17 For two discrete random variables X and Y:
S plx, y) = 033(x — a)d(y — @) + 0.55(x + a)8(y — 4) + 0.28(x + 2)3(y + 2)

Determine the value of «, if any, that minimizes the covariance of X and Y. Find
the minimum covariance. Are X and Y uncorrelated?

5-18 The density function

x U
. I gex< and N<y<d
Serlx, y) =19 }
0 ciscwhere .

applics to two random variables X and Y.
(a) Show, by use of (5.1-6) and (5.1-7), thut X and Y arc uncorrelated.
(h) Show that X and Y are also statistically independent.

5-19 Two random variables X and Y have the density function

2
Ferle y) = E(.\'+0.5y)1 0<x<2 and O<y<3
X, ¥y =

0 elsewhere

(a) Find all the first- and second-order moments.
() Find the covariitnce.
(¢) Are X and Y uncorrelated?

5-20 Dcfine random variables V and W by
V=X+aY
Wa=X-—uaY

where o is o real number and X and Y are random variables. Determine o in
terms of moments of X and Y such that ¥ and W arc orthogonal.

*s$.21 If X and Y in Problems 5-20 are giussian, show that W and V ure sta-
tistically independent if a® = a}/al, where ¢} and o} are the variances of X and
Y, respectively.

5-22 Threc uncorrelated random variables X, X,, and X, have means X, =1,

X,= -3, and £, =15 and sccond moments E[X?] =25 E[X}] =11, and
ELX3] =35 et Y= X, —2X, 4 3X, be a new random variable and find:

() the mean value, (h) the variance ol Y,

5.23 Given W = (aX + 3Y)? where X and Y arc zcro-mean random variables
with variances o2 = 4 and af = 16, Their corrclation cocflicient is p = —0.5.

(@) Find a value for the parameter a that minimizes the mean value of W,

(b) Find the minimum mean value.

*5.24 Find the joint characteristic function for X and Y defined in Problem 5-3.
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*5.25 Show that the joint characteristic function of N independent random vari-

~ ables X, having characteristic functions Dy (w)) is

N
Dy, x @ s ON) = n Oy (@)
(a1

*5.26 For N random variables, show that
[y, e oo ] S Dy Oy 0=

*5.27 For two zcro-mecan gaussian random variables X and Y, show that their
joint characteristic function is

Dy y(w), w) = CxXp {=hlokwl + 2payoy w0,y + ot wil)

*5.28 Zcro-mean gaussian random variables X and Y have variances 0% =3 and
al = 4, respectively, and a correlation cocfficient p = =Y.
(¢) Write an expression for the joint density function.
(/) Show that a rotation of coordinates through the angle given by (5.3-11)
will produce new statistically independent random variables. :
*£.29 Pind the conditional density functions Selx 1Y = p) and fi(p] X = x) nppli-
cable to two gaussian random variables X and Y dcfined by (5.3-1) and show
that they arc also gaussian.

*5.30 Zcro-mean gaussian random variables Xy, X3, and X, having a covariance
matrix

4 205 105
(Cyl=]205 4 205
105 205 4 .

are transformed Lo new variables
Y, =5X, +2X; — X,
Y, ==X, +3X+ X,
¥, = 2X, = X, + 2X,

]

(a) Find the covariance matrix of Y, ¥3,and Y;.
(b) Write an expression for the joint density function of ¥,, Yy,and Y.

*5.31 A complex random variable Z is defined by
7 = cos (X) +j sin (V)

where X and ¥ arc independent real random variables uniformly distributed
from —ntom

(a) Find the mean value of Z.

{h) Find the variance of Z.
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ADDITIONAL PROBLEMS

5.32 Two random variables have a uniform density on a circular region de-
fined by

Ynrr x4 yrsr?

fX.Y(xv ,V) = {0

clsewhere

Find the mean value of the function g(X, ¥) = X* + Y2,
*5.33 Definc the conditional expected value of a function ¢(X, ¥) of random vari-
ables X and Y as
@
Efg(X, Y B] = '[ _[

«©

g(xs N Sx. y(x, 1 B) dx dy

{a) 1f event B is defined as B = {ye < Y < ), where y, <, arc constants,
evaluate E[g(X, Y)| B]. (Hint: Use results of Problem 4-55.)
(b) 1f B is defined by B = {Y = y} what does the conditional expected value

of part {a) become?
5.34 For random variables X and Y having Re=1,?=20}=60}=9 and
pm =3, (nd (a) the covariance of X nnd Y, (b) the correlntion of X nnd Y,
and (c) the moments myq and mo;. ‘
535 X =1, Xi=%, ?=2 Y% =19, and Cyy = —1/2/3 for random vari-
ables X and Y.

(a) Find 0%, a}, Rxy,and p.

(b) What is the mean value of the random variable W = (X +3Y)* +

2X + 317

5.36 Let X and Y be statistically independent random variables with X = Y
Xi=4, V=1, and Y? =5 For a random variable W =X —2Y 41 find
(@) Ryy, () Ryw. () Ryw, and (d) Cxy-(e) Arc X and Y uncorrclated?

5-37 Statistically independent random variables X and Y have moments m o =
2, My = 14, mgy = 12,and my, = —6. Find the moment i3

5-38 A joint density is given as

Sx. X, p) = {g(y + 1.5)

Find all the joint moments m,,, n and k=0,1,....
5.39 Find all the joint central moments p, 1 and k =0, 1, ..., for the density of
Problem 5-38.

*5.40 Find the joint characteristic function for random variables X and Y de-
fined by

0O<x<! and O0<y<l
elsewhere

e ¢, ¥) = (1/2n) rect (x/n) rect [(x + y)/n] cos (x + )

Usc the result to find the marginal characteristic functions of X and Y.

Y

PR

LT
L ea e

s




R R T {

e

- 140 PROBABILITY, RANDOM VARIABLES, AND RANDOM SIGNAL PRINCIPLES

*5-41 Random variables X, and X, have the joint charactceristic function
Dy, x)(0y, Wa) = [(I — 2w, X1 = j2w,)]~"?

where N > 0 is an integer.
(¢} Find the correlation and moments m,q and mg, .
(b) Determine the means of X, and X,.
(c) What is the correlation coeflicient?

*5-42 The joint probability density of two discrete random variubles X and ¥
consists of impulses located at all lattice points (mb, nd), where m=0, {, ..., M
and n=1,2,..., N with b> 0and d > 0 being constants. All possible points are
equally probable. Determine the joint characteristic function. |

*543 Let X, k=12, ..., K, be statistically independent Poisson random vari-
ables, each with its own variance b, (Problem 3-16). Show that the sum X =
Xy 4+ Xy 4 Xy is u Poisson random variable, (Hint: Use results of Prob-
lems 5-25 and 3-53.)

. 5-44 Assume gy = gy = o in (5.3-1) and show that the locus of the maximum of

the joint density is a linc passing through the point (X, ) with slope n/4 (or
—n/4) when p = 1 (or —1),

545 Two gaussian random variables X and Y have variances 02 = 9 and ol =
4, respectively, and corrclation coeflicient p, It is known that a coordinate rota-

lion by an angle —n/8 results in new random variables Y, and Y, that are uncor-
related. What is p?

*5-46 Let X and Y be jointly gaussian random variables where o3 =g} and
p = —1. Find a transformation matrix such that new random variables Y, and Y,
are statistically independent,

*5-47 Random variables X and Y having the joint dénsity
Sxorlx, 9) = (hulx — u(y = 1)xy? exp (4 — 2xy)
undergo a transformation
] !
Tl= [1 _ 1]

to generate new random variables Y, and Y,.
(a) Find the joint density of Y, and Y,.

(b) Show what points in the y,y, plane correspond 10 # nonzero value of the

new density,

*5-48 Equation (5.4-5) can sometimes be used to find the density of a single func-
tion of several random variables if auxiliary random variables are used. Apply the
idea to finding the densily function of Z = aXY, where a is a constant and X and
Y are rundom variables, by defining the auxiliary variable W = X.

*5-49 Apply the method of Problem 5-48 to finding the density function of
Z = bY/X, with b a constant, when using the auxiliary variable W = X.

tt Y NAEBANes s eteenie vee s v

ables X, and X, arc defined by the mean and

- i/ﬁ]

2 *6.50 Two gaussinn random varl
F . covariance matrices

I R SS
|x|=[_,] lcxl=[_2/ﬁ

and Y, are formed using the transformaltion

= ¥]

[Cyl. (¢) Also find the corrclation cocfficient of Y,

Two new random variables Y

.. Find matrices (a) | 7] and (b)
i and Y;. o
g ari Z, i Z, hi ero means, The correlation
{ e randOnﬁdV;rlt}bl:S Al:’ldnt(liczczo:"rl::‘ll;l;on of the imaginary parts is 6.
“. the real parts of Z, and Z, is 4, whtle the. nary :

. The rcalppurl of Z, and the imaginary part of Z, are st.\llfucally independent as
a pair, as arc the imaginary part of Z,and (lu.: real partof Z,.

(1) What is the correlation of Z, and Z,? .

(h) Are Z, and Z, statistically independent?

.
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notation x(1) to represent a specific waveform-of a random process denoted by
X(1).

Clcarly, a random process X(¢, s) represents a family or ensemble of time
functions when ¢ and s are variables. Figurc 6.1-1 illustrates a few members of an
cnsemble. Each member time function is called a sample function, ensemble
member, or sometimes a realization of the process. Thus, a random process also
represents a single time function when ¢ is a variable and s is fixed at a specific
value (outcome).

A random process also represents a random variable when ¢ is fixed and s is
a variable, For example, the random variable X(t,, s) = X(1,) is obtained from
the process when time is *frozen » at the valuc t,. We often use the notation X, _
1o denote the random variable associated with the process X(/) at time t;. X, cor- E
. responds to a vertical “slice™ through the ensemble at time ¢, as illustrated in
Figurc 6.1-1, The statistical properties of X, = X(t,) describe the statistical
propertics of the random process at time ,. The expected value of X, is called
the ensemble average as well as the expected or mean valuc of the random process
{at time ¢,). Since t; may have various valucs, th: mean valuc of a process may
not be constant; in general, it may be a function of time. We casily visualize any

CHAPTER

SIX
RANDOM PROCESSES

6.0 INTRODUCTION

Traie
SRk

In the real world of cngineering and science, it is nccessary that we be able to Xanalr) .

deal with time waveforms. Indeed, we [requently encounter random lime wave-
forms in practical systems. More often than not, a desired signal in some system
is random. For example, the bit stream in a binary communication system is a
random message because cach bit in the stream occurs randomly. On the other
hand, a desired signal is often accompanied by an undesired random waveform,
noisc. The noise interferes with the message and ultimately limits the performance
of the system, Thus, any hope we have of determining the performance of systems
with random waveforms hinges on our ability to describe and deal with such
waveforms. In this chapter we introduce concepts that allow the description of
random waveforms in a probabilistic sense.

e
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6.1 THE RANDOM PROCESS CONCEPT

The concept of a random process is based on enlarging the random variable
concept to include time. Since a random variable X is, by its definition, a func-
tion of the possible outcomes s of an cxperiment, it now becomes a function of
both s and time. In other words, we assign, according to some rule, a time

function

(1, 8) (6.1-1)

.\ /-\l\ Figure 6.1-1 A continuous
. + ; - random process, (Reproduced
0 D—J ! I from Peebles (1976) with per-

to cvery outcome s. The family of all such functions, denoted X(t, 8), is callcq a ) . mission of publishers Addison-
random process. As with random variables where x was denoted as a specific . Wesley, Advanced Book Pro-
. gram.)

value of the random variable X, we shall often use the convenicnt short-form

142
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{mmlbt;r of random variables X, derived from a random process X(f) at times ¢,
i=1,2...: '
Xp= X, s)=X(t) (6.1-2)

. dA random process can also represent a mere number when ¢ and s are both
ixed.

Classification of Processes

It is convenient to cl.assify random processes according to the characteristics of ¢
and the random vunflblc X = X(1) at time . We shall consider only four cases
based on r and X having values in the ranges —o0 <t < 0 and — o0 < x < 0 +

t Other cases cun be defined bused on a definition of rundo i
: m processes on a finite time interval
(sec for example: Rosenblatt (1974), p. 91; Prabhu (1965), p. 1; Miller (1974), p. 31; Parzen (1962)

p. 7; Dubes (1968), p. 320; Ross (1972), p. 56). Other recent text 3
(1984) 210 Gray ant Davisson (1956, exis on random;proccsscs are Helstrom

.
Xnea() *
L]
P
0 '
Xy ()
0 f

xat)

-
Figure 6.1-2 A discrete random process formed by heavily limiting the waveforms of Figure 6.1-1.

[Reprodiced fr Peebles bi PrInixy i i
ngmm_] Jrom: Peebles (1976) with permission of publishers Addison-Wesley, Advanced Book
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1T X is continuous and ¢ can have any of a continuum of values, then N(1) is
called a0 continious random process. Figure 6.1-1 is an illustration of this class of
process. Thermal noise generated by uny realizable network is o practical
example of u waveform that is modeled as a sample function of a continuous
random process. In this example, the network is the outcome in the underlying
random cxperiment of selecting a network. (The presumption is that many net-
works are available from which to choose; this may not be the case in the rel
world, but it should not prevent us from imagining a production linc producing
any number of similar nctworks.) Each network establishes o sample function,
and all sample functions form the process.t .

A sccond class of random process, called a discrete random process, corre-
sponds to the random varinble X having only discrete values while ¢ is contin-
uous. Figurc 6.1-2 illustrates such a process derived by heavily limiting the
sample functions shown in Figure 6.1-1. The sample functions have only two dis-

t Note that finding the mean value of the process at any time ¢ is equivalent to finding the average
voltage that would be produced by all the various networks at time .

Xp0alt)
.
.
N
~ \\\; AN
oy =
0 .~ N !
Xaar{1)
N
. ,/’._.." \\v/—a\\‘
N S ]
~———
xall)
N\
/ \\ SN
~ - N - /
~
s W™ 1
o
Xnall)
S~ - Figure 6.1-3 A conti ;
~L - _ igure 6.1- comtinuous ran«
Su 7 ~o s dom sequence formed by sim-
0 \\\_‘"~/' AN ! pling the waveforms of Figure
6.1-1. [Reproduced from Peebles
. (1976).  with  permission  of
. publishers Addison-Wesley, od-

vanced Book Proyram.)
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Figure 6.1-4 A discrele random scquence formed by sampling the wavclorms of Figure 6.1-2. )

[Adapted from Pechles (1976) with permission of publishers Addison-Wesley, Advanced Book Program.)

crete values: the positive level is generated whenever a sample function in Figure
6.1-1 is positive and the negative level gccurs for other times.

A random process for which X is continuous but time has only discrete
values is called a continuous random sequence (Thomas, 1969, p. 80). Such a
sequence can be formed by periodically sampling the enscmble members of
Figure 6.1-1. The result is illustrated in Figure 6.1-3.

A fourth class of random process, called a discrete random Ssequence, corre-
sponds to both time and the random variable being discrete. Figure 6.1-4 illus-
trates a diserete random sequenee developed by sampling the sample functions of
Figure 6.1-2. )

In this text we are concerned almost entirely with discrete and continuous

random processes.
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Decterministic and Nondeterministic Processes

In addition to the classcs described above, a random process can be described by
the form of its sample functions. If future values of any sample function cannot be
predicted exactly from observed past values, the process is called nondeterministic.
"I'he process of Figure 6.1-1 is one example.

A process is called deterministic if future values of any sample function can be
predicted from past values. An example is the random process defined by

X(t) = A cos (wo .+ ©) (6.1-3)

Here A, ©, or w, (or all) may be random variables. Any one sample function cor-
responds to (6.1-3) with particular values of these random variables. Therefore,
knowledge of the sample function prior to any time instant automatically allows
prediction of the sample function's future values because its form is known.

6.2 STATIONARITY AND INDEPENDENCE

As previously staled, a random process becomes a random variable when time is
fixed at some particular value. The random variable will possess statistical
properties, such as a mean value, moments, variance, etc,, that are related to its
density function. If two random variables are oblained from the process for two
time instants, they will have statistical properties (means, variances, joint
moments, etc.) related to their joint density function. More generally, N random
variables will possess statistical properties related to their N-dimensional joint
density function.

Broadly speaking, a random process is said to be stationary il all its sta-
tistical propertics do not change with time. Other processes are called nonsta-
tionary. These statements are not intended as definitions of stationarity but are
meant to convey only a general meaning. More concrete definitions follow.
Indecd, there are scveral “levels™ of stationarity, all of which depend on the
density functions of the random variables of the process.

Distribution and Density Functions

To define stationarity, we must first define distribution and density functions as
they apply to a random process X(1). For a particular time ¢,, the distribu-
tion function associated with the random variable X, = X(t,) will be dcnoted
Fy{x,; ;). Itis defined ast

Fylxyi 1) = P{X(t)) < x,} (6.2-1)

t Fy{x,s 1,)is known as the first-order distribution function of the process X(1).
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tfic: ar;y rcz.tl number x,. This is the same definition used all along for the distribu-
ﬁn unction of one. rando_m variable. Only the notation has been altered to
reflect the fact that it is possibly now a function of time choice t

For two random variables X, = X,
_oor dom 1= X(¢)) and X, = X(t,), the second- joi
distribution function is the two-dimensional extcnsizon of Eéé-l): order joint

Fxlxy x35 00, t3) = P{X(t)) < x,, X(t,) < x5} (6.2-2)

In a similar manner, for N random vari
, variables X, = X(t), i =1, 2 N
order joint distribution function is “ B M the Wil

Falen oo xwitn o 1) = PUX(1) S x40 .0y X(th) < xn} (6.2-3)

Joint density functions of interest a i
are found from appropriat ivati
the above three relationships:t PP p{ © derivatives of

S 0) = dEyx,; 1)/dx,

Sxlx, xy50y, 1) = a? Fylxp, %3514, 1)/(0x, dx,)
Sk ooy xu s vy tn) = O Fylx,, ...

(6.2-4)
(6.2-5)
VXN Ly t0x) 0 Bxy) (6.2-6)

Statistical Independence

Two processes X (1) and Y(1) are statistically independent if the random variable
group X(t,), X(t;), ..., X(t,) is independent of the group Y(6y), Y(t3), ..., Y(t))

for any choice of times ¢,, ¢ 1 L
an ¢ v lay ey by, 84, £, ..., thy. Independenc i
the joint density be factorable by groups: ’ " P ° requires that

Se X1y ey xns ) STRERTS Y P (o A 9

=S Xt WY i B ) (62°7)

First-Order Stationary Processes

A random process is cz.xlled stationary 1o order one if its first-order density func-
tion does not change with a shift in time origin, In other words

Sxlxis ) = falxy; 0, + A) (6.2-8)

must be true for any 1, and any real numbe i i i
. i f er Al X(1) is o (- or sl
fomary promces (1) is to be a first-order sti-
Consequences of (6.2-8) are that Jxlxy; is i
. F al fy(xy; ;) is independen i
process mean value E[ X(1)] is a constant: v P ol tyand the

E[X(1)] = X = constant (6.2-9)

t Analogous 1o distribution functions i
nctions, these are cy -, Se . i
tious,sespectively. ) ve culled first-, second-, und Nth-order densit 3 func-
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To prove (6.2-9), we find mean values of the random variables X, = X(1;) and
X, = X(ty). For X,:

«©

E[X,]=E[X(t,)] = j Xy Sxlxys 1) dxy

-0

(6.2-10)

For X,:

xy Sxlxqi t) dxyf (6.2-11)

E[X,) = E(X(1)] = f

-

.Now by letting f, =, + A in (6.2-11), substituting (6.2-8), and using (6.2-10),

we get

E[X(t, + A)] = E[X(1,)) (6.2-12)

which must be a constant because ¢; and A are arbitrary.

Second-Order and Wide-Sense Stationarity

A process is called stationary to order two if its second-order density function
satisfies

Sx(xy, x5ty 8) = fulxy, xa5 8y + B, 13 + 4) (6.2-13)

for all £, t,, and A. Alter some thought, the reader will conclude that (6.2-13) is a
function of time differences , — 1, and not absolute time (let arbitrary A = —1).
A sccond-order stationary process is also first-order stationary because the
second-order density function determines the lower, first-order, density.

Now the correlation E[X,X,] = E[X((,)X(t;)] of a random process will, in
general, be a function of ¢, and t,. Let us denote this function by Ry (1, {,) and
call it the autocorrelation function of the random process X():

Ryx(ty, 12) = E[X(¢,)X(1,)].

A consequence of (6.2-13), however, is that the autocorrelation function of a
second-order stationary process is a function only of time differences and not
absolute time; that is, if

(6.2-14)

T=1l; — r'} (6.2-15)
then (6.2-14) becomes
Ryxlty, ty + 1) = E[X()X(t, + )] = Ryyl7)

Proof of (6.2-16) uses (6.2-13); it is left as a reader exercise (sec Préblcm 6-6).
Many practical problems requirc that we deal with the autocorrelation
function and mean value of a random process. Problem solutions are greatly

(6.2-16)

t Note that the variable x, of integration has been replaced by the alternative variable x, for con-
venience.
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simplified if thesc quantities are not dependent on absolute time. Of course,
sccond-order stationarity is sufficient to guarantee these characteristics. How-
cver, it is often more restrictive than necessary, and a more relaxed form of sta-
tionarity is desirable. The most useful form is the wide-sense stationary process,
defined as that for which two conditions are true:

E[X(6)] = X = constant (6.2-17a)
E[X(WX( + 1] = Ryx(®) (6.2-17h)

A process stationary to order 2 is clearly wide-sense stationary. Towever, the
converse is not necessarily true,

Example 6.2-1 We show that the random process
X(t) = A cos (wet + ©)

is wide-sense stationary if it is assumed that 4 and g are constants and @ is
a uniformly distributed random variable on the interval (0, 2n). The mean
valuc is '

i |
E[X()] = j A cos (wot +0) —d0 =0
o 2n
The autocorrclation function, from (6.2-14) with ¢, =1t and f, =(+7,
becomes

Ryx{t, t + 1) = E[A cos (ot + ©)A cos (wy! + wo T + O)]
42
= '7 ELcos {mg 1) ++ cos (2wt - wo T + 20)]

A? A? P
- —7- cos (mg 1) -+ > ETcos (2mgt + g1 + 20)]

The second term casily evaluates to 0. Thus, the autocorrelation function
depends only on t and the mean value is a constant, so X(1) is wide-sensc
stationary.

.

When we are concerned with two random processes X(t) and Y(f), we say
they are jointly wide-sense stationary if each satisfies (6.2-17) and their cross-
correlation function, defined in general by

Ryy(tyy 1) = ECX(t,)Y(22)] (6.2-18)
is a function only of time difference t = t, — t, and not absolute time; that is, if
Replt, t + 1) = ELX(OY(t + )] = Reyl0) (62-19)
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" N-Order and Strict-Sense Stationarity

By cxtending the above reasoning to N random variables X; = X(t), i = 1,2, ...,
N, we say a random process is stationary to order N if its Nth-order density func-
tion is invariant to a time origin shift; that is, if

Sx(Xs ceer Xp tyy veen W) =Sx(X1y oo Xp 4y + A, oty + 4)  (6.2-20)

for alt 1,, ..., ty and A. Stationarity of order N implics stationarity to all orders
k < N. A process stationary to all orders N =1, 2, ..., is called strict-sense
stationary.

Time Averages and Ergodicity

The time average of a quantity is defined as

1 T
AL = lim —J []dt (6.2-21)
. T—eo 2T -T

Here A is used to denote time average in a manner analogous to E for the sta-
tistical average. Time average is taken over all time because, as applied to
random processes, sample functions of proccsses are presumed to exist for all
lime, ’ :

Specific averages of interest are the mean value X = A[x(f)] of a sample func-
tion (a lower case letter is used to imply a sample function), and the time autocor-
relation function, denoted R, () = A[x{t)x(t + 1)]. These functions are defined by

- N
%= LX) = im o | X0 de (6.2-22)
‘l“'.u(t) = A['\.(’)X(I + t)l
N I
= TI'I:r; T J‘- Tx(t)x(l + 1) dt (6‘2‘-23)

f‘or any one sumple function of the tprocess X (1), these last two integrals
simply produce two numbers (for a fixed value of 1). Howcver, when all sample
functions arc considered, we see that x and MR, (r) arc actually random variables.
By taking the expected value on both sides of (6.2-22) and (6.2-23), and assuming
the expectation can be brought inside the integrals, we obtaint

E[x} =X (6.2-24)
E[R4x(5)] = Ryx(7) (6.2-25)

Now suppose by some theorem the random variables X and R,,(t) could be
made to have zero variances; that is, ¥ and R,,(r) actually become constants.

t We assume also that X(r) is a stationary process so that the mean and the autocorrelation func-
tion are not time-dependent.

LENORES .
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Then we could write
x=X (6.2-26)
Rex(t) = Ryx(1) (6.2-27)

In other words, the time averages X and R,,(1) equal the statistical averages X
und Ryx(1) respectively. The ergodic theorem allows the validity of (6.2-26) nnd
(6.2-27). Stated in loose terms, it more generally allows all time averages to equal
the corresponding statistical averages. Processes that satisfy the ergodic theorem
are called ergodic processes. .

Ergodicity is u very restrictive form of stationarity and it may be difficult to
prove that it constitutes a reasonable assumption in any physical situation,
Nevertheless, we shall often assume a process is ergodic to'simplify problems. In
the real world, we are usually forced to work with only one sample function of a
process and therefore must, like it or not, derive mean value, correlation func-
tions, etc. from the time waveform., By assuming ergodicity, we may infer the
similar statistical characteristics of the process. The reader may feel that our
theory is on shaky ground based on these comments, However, it must be
remembered that all our theory only serves to model real-world conditions,
Therefore, what difference do our assumptions really make provided the assumed
model docs truly reflect real conditions?

Two random processes are called Jjointly ergodic if they are individually
ergodic and also have a time cross-correlation Junction that equals the statistical
<ross-correlation function:t

Bol®) = lim = Jr X(ONt + 1) dt = Ryy(x) (6.2-28)
T 2T ~-T .

6.3 CORRELATION FUNCTIONS

The autocorrelation and cross-correlation functions were introduced in the pre-
vious section. These functions are examined further in this section, along with
their properties. In addition, other correlation-type functions are introduced that
are important to the study of random processes,

Autocorrelation Function and Its Properties

Recall that the autocorrelation function of a random process X(t) is the correla-
tion E[X,X,] of two random variables X, = X(t,) and X, = X(t,) defined by
the process at times t, and ¢,. Mathematically,

Ryxlty, 12) = ELX(1,)X(¢,)] (6.3-1)

t As in ordinary stationarity, there are various orders of ergodic stationarity. For more detail on
ergodic processes, the reader is referred to Papoulis (1965), pp. 323-332,
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For time assignments, £, = and 1, =1, + 1, with t a real number, (6.3-1)
assumcs the convenient form
Ryylt, t + 1) = E[X(O)X(t + 1)] (6.3-2)
If X(1) is at least wide-sense stationary, it was noted in Section .6.2‘llml
Ryx(t, £ 4 1) must be a function only of time difference 1 =t — 1. Thus, for
wide-sense stulionary processes

Ryx(r) = E[X()X(t + 1)) (6.3-3)

For such processes the autocorrelation function exhibits the following-p‘ropcrtics:
(1) | Ryx(t}] < Rxx(0) (6.3-4)

(2) Rxxl—1) = Ryx(1) {6.3-5)

(3) Ryx(0) = E[X*(1)] (6.3-6)

The first property shows that Ry,(r) is bounded by its value at the origin, while
the third property states that this bound is equal to !hc mean-squared value
called the power in the process. The second property indicates that an autocorre-

lation function has even symmetry. g
Other properties of stationary processes may also be stated [see Cooper an
McGillem (1971), p. 113, and Melsa and Sage (1973), pp. 207-208]:

(4) 1M E[X(1)] = X # 0 and X(t) has no periodic components then
lim R.\’.\'(T) = XZ (6.3’7)
fej = w

(5) I X(r) has a periodic component, then Ry (t) will have a periodic com-

ponent with the same period. o (6.3-8)
(6) If X(t) is ergodic, zero-mean, and has no periodic component, then

lim Ryy(t) =0 (6.3-9)
X
(7) Ryy(1) cannot have an arbitrary shape. (6.3-10)

Properties 4 through 6 arc more or less sclf-cxplam\(olry. Propcfrty 7 si.mply says
that any arbitrary function cannot be an aulocorrc!z\l‘lon funchor.\. This fact will
be more apparent when the power density spectrum is mlrod.uccd in Chapter 7. It
will be shown there that Ry (1) is related to the power density spectrum through
the Fourier transform and the form of the spectrum is not arbitrary,

Example 6.3-1 Given the autocorrelation function for a stationary process is

=2
Rasle) = 25+ 7

we shall find the mean value and variance of the process X(t). From property
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4, the mean value is E[X(0)] = £ = /25 = +5. The variance is given by
(3.2-6), so

a} = E[XX0)] — (E[X(0))?
But E[X3(1)] = Ryx(C) = 25 + 4 = 29 from property 3, s
al=29-25=4

Cross-Correlation Function and Its Propertics

The cross-correlation function of two random processcs X(f) and Y(1) was defincd
in (6.2-18). Setting ¢, = tand t = {; — [, wC may write (6.2-18) as

Ryy(t, t + 1) = ELX(O)Y(t + 1] (63-11)

IF X(f) and Y(1) arc at least jointly wide-sensc stationary, Ryy(t, t 4 1) is indepen-
dent of absolute time and we can write

Ryy(t) = ELX(OY( + 7)) (6.3-12)
I ‘
Rty £ =0 (6.3-13)

then X(1) and Y(1) arc called orthogonal processes. If the two processes are sta-
tistically independent, the cross-correlation function becomes

Ryg(t, t + 1) = ECX(D)ECY (¢ + 7)) (6.3-14)

If, in addition to being indcpendent, X(1) and Y(f) arc at least wide-sense station-
ary, (6.3-14) becomes

Ry(t) = X? (6.3-15)

which is a constant,
We may list some propertics of the cross-correlation function applicable to

processes (hat arc at least wide-sense stationary:
(1) Ryr(=1)= Ryx(1) (6.3-16)
@ R0l S /RexlORi(0) (6.3-17)
(3[R0 S hIRxx(0) + Ryy(0)] (6.3-18)

Property | follows from the definition (6.3-12). It describes the symmetry of
Ryy{t). Property 2 can be proven by expanding the incquality

E[{Y(t + ) + aX()}?] 20 (6.3-19)

where « is a real number (sce Problem 6-27). Properties 2 and 3 both constitute
bounds on the magnitude of Ryy(1). Equation (6.3-17) represents a tighter bound
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than that of (6.3-18), because the geometric mean of two positive numbers cannot
exceed their arithmetic mean; that is

JRxx(O)Ry4(0) < iIRxx(0) + Ryy(0)] (6.3-20)

Example 6.3-2 Let two random processes X{t) and Y(r) be defined by
X() = A cos (wot) + B sin (wy1)
Y(t) = B cos (wot) — A4 sin (wg!)
where A and B are random variables and w, is a constant. It can be shown
(Problem 6-12) that X(t) is wide-sensc stationary if A and B are uncorrelaled,
zero-mean random variables with the same variance (they may have different
density functions, however). With these same constraints on 4 and B, Y(t) is
also wide-sense stationary. We shall now find the cross-correlation function
Ryylt, t + 1) and show that X(1) and Y(r) are jointly wide-sense stationary.
By use of (6.3-11) we have
Ryylt, t + 1) = E[X(OY(t + 1))
= E[AB cos (wg1) cos (wot + wo 1)

+ B2 sin (wqt) cos (wo ! + o 1)

— A2 cos (wet) sin (wot + weT)

— AB sin (wq 1) sin (wo ! + g 1))

= E[AB] cos (2wqt + woT)

+ E[B*] sin (we 1) €08 {wo ! + wo 1)

— E[A?] cos (wot) sin (wo ! + wq 1)
Since A and B are assumed to be zero-mean, uncorrelated random variables,
E[AB] = 0. Also, sincc A and B are assumed to have equal variances,
E[A%] = E[B*] = ¢* and we obtain

' Ryylty t + 1) = —0? sin (W, 1)
Thus, X(t) and Y(t) are jointly widc-scnse stationary because Ryylt, t + 1)
depends only on t.
Note from' the above result that cross-correlation functions are not

necessarily even functions of ¢ with the maximum at t = 0, as is ¢he case with
autocorrelation functions.

Covariance Functions

The concept of the covariance of two random variables, as defined by (5.1-13),
can be extended to random processes. The autocovariance function is defined by

Coalt, t + 1) = E[{X() — ELX(OI}{X(c + ©) — E[X(t + 0]}]  (6.3-21)
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which can also be put in the form
Cxxlty 1+ 1) = Ryult, t + 1) — E[X@)ELX(t + 1)) (6.3-22)
The cross-covariance function for two processes X (1) and Y(r) is defined by
Cxvlt, t 4 1) = E[{X(1) = E[LXOI{Y( + 1) - E[Y(t + 1)) (6.3-23)
or, alternatively,
Cux(t, t + 1) = Ryylt, t + 1) — E[LX()]ECY(t + 1)] (6.3-24)
For processes that are at least jointly wide-sense stationary, (6.3-22) and
(6.3-24) reduce to
Cxx(t) = Ryxlx) — X2 . (6.3-25)
and :
Cxrlt) = Ryy(t) - X7 ) (6.3-26)
The variance of a random process is given in general by (6.3-21) with t =0,

For a wide-sense stationary process, variance does not depend on time and is
given by (6.3-25) with t = 0; :

ok = E[{X()) — E[X(0]}*] = Ryx(0) - X2 (6.3-27)
For two random processes, if
Calt,t+1)=0 (6.3-28)
they are called uncorrelated. From (6.3-24) this means that
Ryolt, t 4 1) = E[X(]ECY (¢ + 1)] (6.3-29)

Since this result is the same as (€.3-14), which applies to independent processes,
we conclude that independent processes are uncorrelated. The converse case is
not necessarily true, although it is true for Jjointly gaussian processes, which we
consider in Section 6.5. o

64 MEASUREMENT OF CORRELATION FUNCTIONS

In the real world, we can never measure the true correlation functions of two
random processes X (1) and Y(1) because we never have all sample functions of the
ensemble at our disposal, Indeed, we may typically have available for measure-
ments only 2 portion of one samplc function from each process. Thus, our only
recourse is (o determine time averuges based on finite time portions of single
sample functions, taken large enough to approximate true results for ergodic pro-
cesses. Because we are able to work only with time functions, we are forced, like
it or not, to presume that given processes are ergodic. This fact should not prove
too disconcerting, however, if we remember that assumptions only reflect the
details of our mathemaltical model of a real-world situation. Provided that the
model gives consistent agreement with the real situation, it is of little importance
whether ergodicity is assumed or not.
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3 ftr,'+27(')dl > Rolr, + 2T)

Figure 6.4-1 A time cross-corretation function measurement system. Autocarrelation function mea-
surement is possible by connecting points A and 8 and applying cither x(1) or j1).

Figure 6.4-1 illustrates the block diagrum'of a possibl_c system for mez'nsurmg
the approximate time cross-correlation function of two jointly ergodic mndf)r’;)‘
processes X(1) and Y(t). Sample functions x(¢) and y(¢) are delayed by :\.mounls
and T — 1, respectively, and the product of the delay‘cd waveforms is formed.
This product is then integrated to form the outpul.whnch f:qunls l‘hc mtcgr;.ll al
time ¢, + 2T, where ¢, is arbitrary and 27T is the integration period. The inte-
grator can be of the integrate-and-dump variety described by Peebles (1976,
p. 361). . _ B N
If we assume x(¢) and y(t) exist at least during the interval =7 < and ¢, is
an arbitrary time except 0 < 1, then the output is easily found to be

1 n+T
Rty +27) = 7= J x(Oy(t + 1) dt (6.4-1)
=T

Now if we choose t; = 0t and assume T is large, then we have

T
RQ2T) = m= | X0yt + 0) di m Ruyfe) = Ry() (64-2)
° 2T |,
Thus, for jointly ergodic processes, the system of Figure 6.4-1 can approximately
measure their cross-correlation function (t is varied to obtain the complete

function). ) ) :
Clearly, by connecting points A4 and B and applying cither x(t) or y(t) to the
system, we can also measure the autocorrelation functions Ryx(tr) and Ryy(t).

Example 6.4-1 We connect points A and B together in Figure 6.4-1 and use
the system to measurc the autocorrelation function of the process X(f) of
Example 6.2-1, From (6.4-2)

)

R(2T) = 517 J rA2 cos (ot + 0) cos (wot + 0 + wq1) dt

2 T ‘
= %— J [cos (wo 1) + €08 (2w t + 20 + o 1)] dt
_"‘
In writing this result 0 represents a specific value of the random variable ©;

t Since the processes are asswmed jointly ergodic and therefore jointly stationary, the integral
(6.4-1) will wend to be independent of ¢, if T is lurge cnough.
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the value that corresponds (o the specific ensemble member being used in
(6.4-2). On straightforward reduction of the above inlegral we obtain
R,(2T) = Ryx(1) + &T)
where
Ryxlt) = {A?]2) cos (0 T)
is the true autocorrelation function of X(¢), and
sin Qwo T)
2w T
is an crror term. If we require the crror term's magnitude to be at least 20

times smaller than the largest valuc of the true autocorrelation function then
16(T)] < 0.05R xx(0) is nccessary. Thus, we must have /2w, T' < 0.05or

T > 10/wq

In other words, if T = 10/w, the crror in using Figure 6.4-1 to mcasurce the
autocorrelation function of the process X(f) = A cos (wo! + ©O) will be 5%
or less of the largest value of the truc autocorrclation function.

{T) = (42/2) cos (wo T + 20)

6.5 GAUSSIAN RANDOM PROCESSES

A number of random processcs arc important cnough to have been given names.
We shall discuss only the most important of these, the gaussian random process.

Consider a continuous random process such as illustrated in Figure 6.1-1
and define N random variables Xy = Xt o Xi= XD o Xy = X(ty) corre-
sponding to N time instants £y, .oy fry oo ty. If, forany N=1,2, ... and any
{imes t,, ..., Iy, thesc random variables are jointly gaussian, that is, they have a
joint density as given by (5.3-12), the process is called gaussian. Equation (5.3-12)
can be written in the form

_ — fre Ny — X
_ o {—(1/2)fx N\’ll(,xl lx — X1} (6.5-1)
_ Jn HCH
where matrices [x — X and [Cyl are defined in (5.3-13) and (5.3-14) and (5.3-15),
respectively. The mean valies £, of X(t))arc
X =_E[Xt] = E[X(1)] (6.5-2)

./:\'(-"l‘ ey ‘YN; ll' ey IN

The elements of the covariance matrix [Cy] arc
Cau=Cyn= E[(X; — XXy~ X0
= EQ{Xx(t) — ELX@NHX (1) — E(X(6)]}]
= Cxxltin ) (6.5-3)

which is the autocovariance of X(t;) and X(1,) from (6.3-21).
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From (6.5-2) and (6.5-3), when used in (6.5-1), we sce that the mean and auto-
covariance functions arc all that arc needed to completely specily a gaussian
random process. By expanding (6.5-3) to get

Cxxlte, 1) = Rxx(ti, 1) — ECX()IELX(1)] (6.5-4)

we sce that an alternative specification using only the mecan and autocorrelation
function Ryx(t;, ty) is possible.

If the gaussian process is not stationary the mean and autocovariance func-
tions will, in general, depend on absolute lime. However, for the important case
where the process is wide-sense stationary, the mean will be constant,

R, =E[X¢t)]=X  (constant) (6.5-5)

while the autocovariance and autocorrelation functions will depend only on time
differcnces and not absolute time,

Cxltis t) = Cxxlte — ) (6.5-6)
Ryx(tis t) = Ryxlte — t) (6.5-7)

It follows from the preceding discussions that a widc-scnse stationary gauss-
jan process is also strictly stationary.
We illustrate some of the above remarks with an cxample.

fixample 6.5-1 A gaussian random proccss is known to be wide-sensc sta-
tionary with a mean of X = 4 and autocorrclation function

Rxx(T) = 25¢” 3l

We seek to specify the joint density function for three random variables X(1)),
i=1,2,3,defined at times ¢; = to + [(i — 1)/2], with t, a constant,
Here t, — 1, = (k — /2, iand k = 1,2, 3,50

Ryxlty — 1) = 250~
and
Cexlty — t) = 25¢~ -2 _ 16

from (6.5-4) through (6.5-7). Elements of the covariance matrix are found
from (6.5-3). Thus,
(25 — 16) (25e~31% — 16) (25e~ %% — 16)
1Cyl =1 (25e™3* — 16) (25 — 16) (25e™* - 16)
(25e~%% — 16) (25¢”* —16) (25— 16)

and X, = 4 completely determine (6.5-1) for this case where N = 3.




£k

s

TR SRR g

160 PROUABILITY, RANDOM VARIABLES, AND RANDOM SIGNAL PRINCIPLES

Two random processes X(t) and Y(t) are said to be Jjointly gaussian if the
random variables X(¢y), ..., X(ty), Y(t}), ..., Y(t},) defined at times ty, ooy by for
X(1) and times 1}, ..., t}, for Y(1), are jointly gaussian for any N, ty,..., ty, M, 1},

cor by

*6.6: COMPLEX RANDOM PROCESSES

Il the complex random variable of Section 5.6 is generalized to include time, the
result is a complex random process Z(t) given by

Z(t) =X\ +JjY() (6.6-1)

where X(1) and Y(t) are real processes. Z(t) is called stationary if X(1) and Y(r) are
jointly stationary. If X(r) and Y(t) arc jointly wide-sense stationary, then Z(1) is
said to be wide-sense stationary.

Two complex processes Z,(1) and Z1) are joinlly wide-sensc stationary if
each is wide-sense stationary and their cross-correlation function (defined below)
is a function of time differences only and not absolute time.

We may extend the operations involving process mean value, autocorrelation

function, and autocovariance function to include complex processes. The mean
value of Z(t) is

E[Z(1)] = ELX(1)] + JELY(1)] (6.6-2)
Autocorrelation function is defined by
Ryt £ + 1) = E[Z¥0Z(t + 1)) (6.6-3)

where the asterisk * denotes the complex conjugate. Autocovariance Sunction is
defined by

Cealty t + 1) = E[{Z()) — E[Z(OD)*{2(¢ + 1) — E[Z(t + 9)}]  (6.6-4)

If Z(1r) is at least wide-sense stationary, the mean value becomes a constant

Z=X+j7 (6.6-5)

and the correlation functions are independent of absolute time: .
Ryslty t + 1) = Ryyfr) ' (6.6-6)
Cualt, 1 + 1) = Cgyl) (6.6-7)

For two complex processes Z(t) and Z{t), cross-correlation and cross--
covariance functions are defined by

Regft, t +1) = E[ZHOZ [t + 1)] i#) (6.6-8)
and
Caft t + 1) = EL{Z(0) — E[ZD*(2ft + 1) = E[Zfc + ¥)]})] i)
(6.6-9)
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respectively. 1f the two processces are at least jointly wide-sense stationary, we

obtain
iy (6.6-10)

Py (0.6-11)

Ry ft 1 + 1) = le(r)
Cpaftst + 1) = Cyylv)

Z(1) and Z 1) are said to be uncorrelated processes if'Cz,.,:'(!, t+1)=0,i#/
Timcy are called orthogonal processes if Ryz(t, t + 1) = 0,i#j.

Example 6.6-1 A complex random process V(1) is comprised of & sum of N
complex signals:
N Y
V(l) = A"ellonl'fjen
ngl

Here wy/2x is the (constant) frequency of each signn!. A, is a r:n.n,dom glrn‘l‘hl‘c
representing the random amplitude of the nth signal. Similarly, : I:S u
random variable representing a random phusp &'mglc. .Wc assume all (lu.l vxg
ables 4, and ®,, for n = 1,2, ..., N, arc stalistically mdcpend‘cnl und‘l'u. }
are uniformly distributed on (0, 2x). We find the autocorrelation function o
V().

From (6.6-3):

Ryylt, t + 1) = E[V*(O)V(¢ + 1))

N N
L[ YA, eIuot=i8 S 4 el *I'“u'*'/*’ﬂ]

amy m= |

i

i i eJ“"“E[A,,AmeJ(e"—e"] = Ryp(7)

nel mel

From statistical independcence:

N N
RV)'(t) = e}m“' z Z LtAAAm]Etcxp {J(em - en)}]
a=} m=1

However,
Efexp {j(©, — ©))] = E[cos (©,, — ©,)] + jE[sin (@, — ©,)]

x *2n
_ J f _—(2‘)1 [c05 (0 — 0,) +J sin (0, = 0,)] d0, 0,
o Jo T

0 m#n
Rt m=n
S0 N
RVV(T) = plwor Z 'A—"[
nal

]
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PROBLEMS

6-1 A random experiment consists of sclecting a point on some city street that
has two-way automobile traflic. Define and classify a random process for this
experiment that is related to traflic flow.
6-2 A 10-meter section of a busy downtown sidewalk is actually the platform ofa
scale that produces a voltage proportional to the total weight of people on the
scale at any time.

{a) Sketch a typical sample function for this process.

(b) Whatis the underlying random cxperiment for the process?

(¢) Classify the process.

*6.3 An cxperiment consists of measuring the weight 1 of some person cach 10
minutes. The person is randomly male or female (which is not known though)
with equal probability. A two-level discrete random process X(¢) is generated
where

X(t) = +10

The level — 10 is generated in the period following a measurcment if the mea-
sured weight does not exceed W, (some constant), Level + 10 is generated if
weight exceeds Wo. Let the weight of men in kg be a random variable having the
gaussian density

. e =(w—TL1? 2
Sw(w|male) =3 exp [—(w—77.1)7/2(1 1.3)*]

Similarly, for women

fiwlwlfemale) = 75—1;6_8 cxp [—(w - 54.4)%/2(6.8)]

(1) Find 1%, so that P{w > W, | malc} is equal to P{W < W, | femalc}.

(h) 1f the levels £ 10 arc interpreted as * decisions » about whether the weight
measurcment of a person corresponds to a malc or female, give a physical signifi-
cance to their gencration.

(c) Sketch a possible sample function.

6-4 The l}vo-lcvcl semirandom binary process is defined by
(n—1NT <t<nT

X({ty=Aor —4

where the levels 4 and — A occur with equal probability, T is a positive constant,
andn =0, +1, £2,....

{a) Sketch a typical sample function.

(b) Classify the process.

(¢) Is the process deterministic?
6-5 Sample functions ina discrete random process arc constants; that is

X(1) = C = constanl

RANDOM PROCESSES 163

where C is a discrete random variable having possible values ¢, = 1, ¢, = 2, and
¢, = 3 occurring with probabilities 0.6, 0.3, and 0.1 respectively.

(a) 1s X(1) deterministic?

(h) Find the first-order density function of X(f) at any time t.
6-6 Ultilize (6.2-13) to prove (6.2-16).
6.7 A random process X(1) has periodic sample functions as shown in Figure
P6-7 where B, T, and 4t < T are constants but ¢ is a random variable uniformly
distributed on the interval (0, T).

(a) Find the first-order distribution function of X(1).

(h) Find the first-order densily function.

() Find ECX(0), ELX}(0), and o%.

X0
B
se e /\ /\ LI
1 1
0 s —1g t e+ 1o e+ T t
Figure P6-7

*6-8 Work Problem 6-7 for the waveform of Figure P6-8. Assume 2to < T.

x(n
l‘——lo—-‘"
A
se e LR 2
| L
0 ¢ ‘+I; e+ T t

Figure 1'6-8

46.9 Work Problem 6-7 for the waveform of Figure P6-9. Assume 415 < T.
xtny

tlalf-cycle

=1 e+ 1o

Figure 1’6-9

N
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6-10 Given the random process

X(r) = A sin (wot + )

where A and wq are constants and @ is a random variable uniformly distributed

on the interval (= n, 7). Define a new random process Y(1) = X (1)
(a) Find the autocorrelation function of Y(1).
{b) Find the cross-correlation function of X(f) and Y(1).
(¢) Are X(1) and Y(1) wide-sense stationary?
() Are X(1) and Y(1) jointly widc-sense stationary?

6-11 A random process is defined by

Y(1) = X(1) cos (wy t + ©)

where X(t) is a wide-sense stationary random process that arhpli(ude-modulutcs a
carricr of constant angular frequency w, with a random phase ® independent of

X(1) und uniformly distributed on (=, ).
(a) Find ECY(1)].
(b) Find the autocorrelation function of Y(t).
(¢) 1s Y(r) wide-sense stationary?

6-12 Given the random process

X(1) = A cos (wo ) + B sin (wy 1)

where wy is a constant, and 4 and B are uncorrelated zero-mean random vari-
ables having different density functions but the same variances 2. Show that X (1)
is wide-sense stationary but not strictly stationary.

6-13 If X(t) is a stationary random process having a mean value E[X(1)] = 3 and
autocorrelation funclion Ryy(t) = % + 2¢~M, find:

(«) the mean value and

{b) the variance of the random variable

: 2
Y= J X(t) de
(1]

(Hint: Assume expectation and integration operations are interchangeable,)
6-14 Deline a random process by

X(t) = A cos (nt)

where 4 is a gaussian random variable with zero mean and variance a3,
{a) Find the density functions of X(0) and X(1).
{b) Is X(¢) stationary in any sense?
6-15 For the random process of Problem 6-4, calculate:
(a) the mean value E[X()] (h) Ryx(ty = 05T, 1, =077) (0) Ryxlt, =
02T, 1, = 1.27),
6-16 A random process consists of three sample functions X{t, 5,) = 2, X(t, 5,) =

2 cos (1), and X(1, 55) = 3 sin (1), each occurring with equal probability, Is the
process stationary in any sense?

27T

g
e
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6-17 Statistically independent, zero-mean, random processes X(1) and Y1) have
autocorrelation functions
Ryx(t) = e~
and
Ryy(t) = cos (2r1)
respectively. . ’
l (@) Find the autocorrelation function of the sum W (1) = X(1) +’Y(l). )
(b) Find the autocorrelation function of the difference Wiy(1) = ,\(l)_ - Y{).
{¢) Find the cross-correlation function of W(r) and W;(1). .

6-18 Define a random process as X(f) = p(t + ), yvhcrc p(r? is any pcrmdlc‘».v:w‘c-
form with period T and ¢ is a random variable uniformly distributed on the inter-

% val (0, T). Show that

R 1 1

; E[X(X(t + 0] = = I pEPE + 1) d§ = Rxx(1)

) 0

i *6.19 Use the result of Problem 6-18 to find the autocorrelation function of
\1 i random processes having periodic sample function waveforms p(f) defined

~’.‘ {“ (a) by Figure P6-7 with ¢ = 0 and 4t, < T, and

(b) by Figure P6-8 with ¢ = 0 and 2t < T -
i 6-20 Definc two random processes by X(1) = p,(t + &) and Y(1) = py(r + ¢) when

Ay, e T

i eriodic waveforms with period 7" and ¢ is a random vari-
gi)(lg ::idfo[:}rilll)ya:i:s})r?l‘;l\\lll:d on the interval (0, T). Find an cxpression for the cross-
correlation function E[X(0)Y(t + 1)].

6-21 Prove:
(@) (6.3-4) and

>

(b) (6.3-5).

¥ 622 Give arguments to justify (6.3-9). ‘ o .
i 1 6-23 For the random process having the autocorrelation funclion shown in
i} igure P6-23, find:
if. Figure P6-23, fin ,
¥ (@) E[X1)] (b) E[X*1)] and (c) o%.
';; Ryx(r)
: 50
20
o ]
3t -10 0 10 T
:’I Figure P6-23
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6-24 A random process Y(1) = X(1) — X(r + 1) is delined in terms of a process

X (1) that is at lcast wide-sensc stationary.
(a) Show that the mean valuc of Y(1)
value.
(h) Show that

is 0 even il X(t) has a nonzero mean

o} = 2[Ryxx(0) = Ryxl?)]

(&) If Y(6) = X(t) + X(t + 1), find E[Y(t)] and o}. How do these resulls
compare to those of parts () and (b)?

6-25 For two zero-mean, jointly wide-sense st

and Y(t), it is known that o} = 5 and ol = 10. Expl

functions cannot apply to the processes il they have no pe

(h) Ryx(t) = 5 sin (51}

ationary random processes X(1)
ain why cach of the following
riodic componcnts.

(@) Ryy{1) = 6u(z) cxp (=31)
(©) Ryy(t) = 9(1 + 2617 (d) Ryy(®) = —cos (67) exp (~1t)

sin 397 in (10
(@ Rys() = 5[‘”‘3(T ‘)] () Re6) = 6 + 4[“"1‘01 "]

6-26 Given two random processes X(1) and Y(r). Find cxpressions for the auto-
correlation function of W(t) = X (1) + Y(1)il:

(a) X(1) and Y(1) are corrclated.

(b) They arc uncorrelated.

(¢) They arc uncorrelated with zero mcans.

6-27 Usc (6.3-19) to prove (6.3-17).
6-28 Lel X(1) be a stationary continuous random process that is differentiable.
Denote its time-derivative by X(1). :

(a) Show that E[Xny=0.

{h) Find Ryg(r) in terms of Ryx(7).
(¢) Find Rygg(r) in terms of Ryx(1). (Hint: Use the definition of the derivative

X() = lim M
=0 c

and assume the order of the limit and expectation operations can be inter-

changed.)

6-29 A gaussian random process has an autocorrclation function

Ryxlt) = 6 exp (=171/2)

Determine a covarianee matrix for the random variables X(1), X(1 4+ 1), X(t + 2}
and X(1 -+ 3).
6-30 Work Problem 6-29 if

sin (n1)

Ryx(1) =6 Tt
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6-31 An ensemble member of a stationary random, process X(/) is sampled at N
times t;,i=1,2,..., N. By treating the samples as random variables X, = X(t),
an estimate or measurement £ of the mean value X = E[X(1)] of the process is

sometimes formed by averaging the samplcs:

(a) Show that E[X] = X.

(h) 1f the samples are separated far enougl
ables X, can be considered statistically indepen
estimate of the process mean is

) in time so that the random vari-
dent, show that the variance of the

(ag)* = a}/N
6-32 For the random process and samples defined in Problem 6-31, let an esti-
mate of the variance of the process be defined by
{ N
F=g L= &7
(L3}

Show that the mean value of this estimate is
N-1 ,
T
N X

hat X(f) of Problem 6-31 is a zero-mean stationary gaussian

E[73) =

6-33 Assume tl

process and let
1 N

3= 5 ‘Z xi

be an eslimate of the variance o of X(t) formed from the samples. Show that the

variance of the estimate is
4
. A 20
variance of 0% = _ﬁ&

(Iint: Use the facts that E[X?*] = o}, E[X*]=0, and E[X*] = 3% for a
gaussien random variable having mcan zero.)

6-34 How many samples must be taken in Problem 6-33 if the standard devi-
ation of the estimate of the variance of X(1) is to not exceed 5% of a3 ?

*6-35 A complex random proccss Z(1) = X(
ary real processes X(f) and Y(¢). Show that

E[1Z(1)1*] = Ryx(0) + Ryy(0)
*6.36 Let X (1) Xa(0), Ya(0) and Ya(¢) be real random processes and define

Z(0 =X\ +j%(0)  Za) = Xalt) =JV30)

1)+ jY(1) is defined by jointly station-

.
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Find expressions for the cross-correlation function of 2 (1) and Z,(1)il:
(a) All the real processes are correlated, l e
(b) They are uncorrelated.
(c) They are uncorrelated with zero means.

* " 7 T
6-37 Let Z(1) be a stationary complex random process with an autocorrelation

function R,,(1). Deline the random variable

a+T
W= f Z(¢) de

where T > 0 and a are real numbers. Show that

T
ELIW2) - f_r("' = 1T R(x) dr

ADDITIONAL PROBLEMS

6-38 For a random process X(@1) it is known that fi(x,, x,, X,; Ly by, ty) =
{;(x,r, ;\;1, X3 l,’+ b, 1+ 4, 15 + A). for any ¢, t,, ty and A. Indicate wl,n'ch of
¢ ‘ollowing slatemenls ure unequivocably true: X(t) is (a) stationary lo or-
der !, (b) stationary lo order 2, (c) stationary to order 3, (d) strictly stationar
(e) wide-sense stationary, (/) not stationary in any sense, and (y) ergodic, o
6:3? A rapdom process is defined by X (1) = X, + V¢ where X, and V are st
h)s((xcal;l independent random variables uniformly distribut:d on ilnlcrvr:lls-
En(;,,‘,c) 'gzc]az:lr:gcgvf, V,] rcspcc_uvcly. Find (a) the mean, (b) the autocorrelation,
o, Stale e oy variance functions of X.(t). (d) Is X(¢) stationary in any sense? If
*6-40 (a) Find the first-order density of the random process of Problem 6-39
(b) Plot the density for t = k(X,, — Xo)(Va = W) with k=0, Y, 1 d- ;
Assume V; = 3V, in all plots. P band 2
6-41 Assume a wide-sense stationary process ‘X(t) has a known mean ¢
‘;"0""’" 'tm(ocorrcl'auon fun'ction R,x(tr). Now suppose the process is obs)c?r:czda‘:
ime 1, ‘!nd we wish (0 estimate, that is, predict, what the process will be at ti
ty + v with 1 > 0. We assume the estimate has the form Hme

Xy + 1) =ax() + p
where « and f are constants.
(a) Find « and ff so that the mean-squared prediction error
& = E[{X(t, + 1) — Rt 2
is minimum., bt ) AR

(b) Find the minimum mean-sq i

I _ -squared error in terms of R,,{(1). Develop a
alternative form in terms of the autocovariance function. 0l P
6-42 Find the time average and time autocorrelation function of the random

process of Example 6.2-1. Compare these r i isti
. .2-1. ! esults with the statistic: 4
autocorrelation found in the example. el mean and

e e 2 e

A e
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6-43 Assume that an crgodic random process X(1) has an autocorrelation
function

5
Ryg(t) = 18 + Z—;—T—; [ + 4 cos (121)]

(a) Find | X 1.

(b) Docs this process have a periodic component?

(¢) Whatis the average power in X(1)?
6-44 Define a random process X(f) as follows: (1) X (1) assumes only pne of two
possible levels 1 or —1 at any time, (2) X(1) switches back and forth between its
two levels randomty with time, (3) the number of level transitions in any lime
interval 7 is a Poisson random variable, that is, the probability of exactly k tran-
sitions, when the average rate of transitions is 4, is given by [(An)"/kY) exp (—Zit),
(4) transitions oceurring in any time interval are statistically independent of tran-
sitions in any other interval, and (5) the levels at the start of any interval are
cqually probable. X(1) is usually called the random telegraph process. 1Uis an
example of a discrete random process.

(a) Find the autocorrelation function of the process.

(b) Find probabilities P{X(¢) = 1} and P{X(1) = — 1} for any 1.

(c) Whatis E[X(r)]?

(d) Discuss the stationarity of X(1).
6-45 Work Problem 6-44 assuming the random telegraph signal has levels 0
and I,
6-46 X =6 and Ryy(l, t + 1) = 36 + 25 exp (— | t}) for a random process X(1).
Indicate which of the following statements are true based on what is known with
certainty, X(1) (u) is first-order stationary, (h) has total average power of 61 W, (¢)
is ergodic, (d) is wide-sensc stationary, (¢) has a periodic component, and (/) has
an ac power of 36 W.
6-47 A zero-mean random process X(1) is crgodic, has average power of 24 W,
and has no periodic components. Which of the following can be a valid auto-
correlation function? If onc cannot, state at least one reason why.
(a) 16 + 18 cos (37), (b) 24Sa?(27), (¢) [1 + 3¢%17" exp (—61), and (d) 248(1 — 7).

6-48 Use the result of Problem 6-18 to find the autocorrelation function of a
random process with periodic sample function waveform p(r) defined by

p1) = A cos® 2ai/T)
where A and T > 0 arc constants, ‘

6-49 An engineer wants to measure the mean value of a noise signal that can be
well-modeled as a sample function of a gaussian process. He uses the sampling
estimator of Problem 6-31. After 100 samples he wishes his estimate to be within
+0.1 V of the true mean with probability 0.9606. What is the largest variance the
process can have such that his wishes will be true?

A
B
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6-50 Lct X(1) be the sum of a deterministic signal s() and a wide-sensc stationary
noise process N(1). Find the mean value, and autocorrelation and autocovariance
functions of X(1). Discuss the stationarity of X(1).

6-51 Random processes X(f) and Y(1) are defined by
X(t) = A cos (wet + ©)
Y(1) = B cos (mgt + ©)

where A, B, and w, arc constants while © is a random variablc uniform on
(0, 2n). By the procedures of Example 6.2-1 it is easy (o find that X (1) and Y(1) arc
zero-mean, wide-sense stationary with autocorrelation functions

Ryy(1) = (A%/2) cos (mq 1)
Ryy(t) = (132/2) cos (wo T)

(a) Find the cross-corrclation function Ryy(t, ¢ -+ 1) and show that X(1) and
Y(1) arc jointly wide-sensc stationary.

(b} Solve (6.4-2) and show that the responsc of the system of Figure 6.4-1
cquals the true cross-correlation function plus an crror term ¢(T) that decrcascs
as T increascs.

(¢} Sketch [e(T)] versus T o show its behavior. How large must 7" be to make
1&(T)) less than 1% of the largest value the correct cross-correlation function can
have?

6-52 Consider random processcs
X(t) = A cos (wot + ©)
Y(t) = B cos (w,t + D)

where A. B, @, and w, arc constants, while ® and @ are statistically independent
random variables uniform on (0, 2x).

(@) Show that X(1) and Y(1) arc jointly wide-sensc stationary.

(h) 1 © = & show that X(1) and Y(1) arc not jointly widc-sense stationary

unless w = Wg.

6-53 A zcro-mean gaussian random process has an autocorrelation function

- Ry(t ={‘3U—(lr!/6n lt| <6

0 elsewhere

FFind the covariance function nccessary 10 specify the joint density- of random
variables defined at times t; = 2(i — i=12..,35 Give the covariance matrx
for the X; = X(1)).

6-54 1f the gaussian process of Problem 6-53 is shifted to have a constant mean
§ = -2 but all clse is unchanged, discuss how the autocorrelation function and

covariance matrix change. What is the cffect on the joint density of the five
random variables?
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*6.55 Extend Example 6.6-1 to allow the sum of complex-amplitude unequal-
frequency phasors. Let Z,, i = 1,2, ..., N be N complex zero-mean, uncorrelated
random variables with variances ¢%,. Form a random process

N
Z() = Y. Z e

i=1
where w, are the frequencies of the phasors.
(a) Show that E[Z(1)] = 0.
(b) Derive the autocorrelation function and show that Z(1) is wide-sense
stationary.

*6-56 A complex random process is defined by
Z(1) = exp (jQu)

where Q is a zero-mean random variable uniformly distributed on the interval
from w, — Aw to w, + Aw, where w, and Aw are positive constants. Find:

(a) the mcan value, and (b) the autocorrelation function of Z(t).

(¢) Is Z(t) wide-sense stationary?

*6-57 Work Problem 6-56 except assume the process
Z(t) = ! + e/ = 2 cos ()

* - . \
6-58 Let /}’(t) and Y(t) be statistically independent wide-scnse stationary real pro-
cesses having the same autocorrelation function R(z). Define the complex process

2Z(t) = X(t) cos (wq t) + jY () sin (we 1)

w!lcrc w, is a positive constant, Find the autocorrelation function of Z(1). Is Z()
wide-sense stationary?

£33
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7.1 POWER DENSITY SPECTRUM AND ITS PROPERTIES

CHAPTER

SEVEN

SPECTRAL CHARACTERISTICS OF
RANDOM PROCESSES

The spectral properties of a deterministic signal x{(r) arc contained in its Fourier
transform X(w) given by

X(w) = r x(t)e ™ di (7.1-1)

-

L,

The function X{(w), sometimes called simply the spectrum of x(1), has the unit of
volls per hertz and describes the way in which relative signal voltage is distrib-
uted with frequency. The Fourier transform can, therefore, be considered to be a
voltage density spectrum applicable to x(1). Both the amplitudes and phases of the
frequencies present in x(f) are described by X(w). For this reason, if X(w) is
known then x(1) can be recovered by means of the inverse Fourier transform

PRV XIS

x(1) = L J-m X (w)e! dew (7.1-2)
2n

-~

In other words, X(w) forms a complete description of x(t) and vice versa.
In attempting to apply (7.1-1) to n random process, we immediately encoun-

| %
o e

' }:E ter problems, The principal problem is the fact that X(w) may not cxist for most
| & sample functions of the process. Thus, we conclude that a spectral description of

a random process utilizing a voltage density spectrum (Fourier transform) is not
feasible because such a spectrum may not exist, Other problems arise if Luplace
- transforms are considered (Cooper and McGillem, 1971, p. 132).

On the other hand, if we turn our attention to the description of the power in
the random process as a function of frequency, instead of voltage, it results that
such a function does exist. We next proceed to develop this function, called the
power density spectrumt of the random process.

7.0 INTRODUCTION

(RN )

.t}ll of the f'oregoing' discussions concerning random processes have involved the
t!me domain. That is, we have characterized processes by means of autocorrel

tion, cross-corrc_lation, and covariance functions without any considcra(ionc 2!’
spcclrgl properties. As is well known, both time domain and frequency domai

analysis methods exist for analyzing linear systems and deterministic w%'xvefc; ns.
But wl}at about random waveforms? Is there some way to describe r'xn:ion o,
cesses in the frequency domain? The answer is yes, and it is the pur‘posc (:f%?s

porys

Ja -
‘ﬂmmm
CEEEUACRES

e

The Power Density Spectrum

chapter to introduce the most i
important concepts that apply to chs
random processes in the frequency domain.  Apply (o ehanuctericing
. m;l;::;: s!)ccllrlnl dcscnrplion of a deterministic waveform is obtained by Fourier
ansforming the waveform, and the reader wo i

r . uld be correct in concludi
ranst ’ form, a : n concluding that
I”‘mdr(;c: lrfms;orms play an imporlant role in the spectral characterization ‘of

m wavelorms. However, the direct transformation approach is not atlrac-

For a random process X(1), let x4{f) be defined as that portion of a sample func-
tion x(1) that exists between — 1" and 75 that is

x(r) -T<t<T
N (1) = -3
valh) {0 elsewhere (7.1-3)

Now so long as T is finite, x4{t) will satisfy

h 4
;1;:1 R;r ra'pdom waveforms because the transform may not exist, Thus, spectral ¥
é sign'{];s of random processes requires a bit more subtlety than do deterministic . T
g ‘An' appropriate l L J |x 0] dt < w0 (7.1-4)
" ate spec ¢ ussoci Hh L ’ -7
ﬁl‘ duced in hapne p, : ru.m to be associated with a random process is intro- !
raegoin the rol wing ?c_cuon. The concepts rely heavily on theory of Fourier
. Readers i . ]
oo 1o e o wishing to refresh t!wclr background on Fourier theory are £z + Many books call this function u power speciral density, We shall oeeasionally use ulso the names
ppendix D where a short review is given. } &8 power deusity or pawer spectrum.

m
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and will have a Fourier transform (see Appendix D for conditions sufficient for
the existence of Fourier transforms), which we denote X H{w), given by

T T
X)) = J (e~ dr = J x(fe ™4t dt (7.1-5)
-7 LT

The energy contained in x(1) in the interval (=T, T ist

T T
ECTY = j o di = ,[ x2(1) ot (7.1-6)
.

Since x,{1) is Fouricr transformable, its cncrgy must also be related 1o X o{w) by
Parseval's theorem. Thus, from (7.1-6) and (D-21) of Appendix D

T { ©
(T) = J x3(t) dt = — I | X {w)|? dw (7.1-7
-7 2n -

By dividing the cxpressions in (7.1-7) by 2T, we oblain the average power
P(T) in x(t) over the interval (=T, T):

LT L[ [XAw)l
P ") s —— ) 1 == — 1 . -8
(1) ZTJ x () dr = 5= Lo o dw (7.1-8)

At this point we observe that | X {w)}}/2T is a power density spectrum because
power resulls through its intcgration. However, it is not the function that we seck
for two reasons. Onc is the fact that (7.1-8) docs not represent the power in an
entire sample function. There remains (he step of letting T become arbitrarily
Jarge so as to include all power in the cnsemble member. The sccond reason is
that (7.1-8) is only the power in one sample function and does not represent the
process. In other words, P(T) is actually a random variable with respect to the
random process. By taking the expected value in (7.1-8), we can obtain an
average power Pyyfor the random process.}

From the above discussion it is clear that we must still form the limit as
T —» oo and take the expected value of (7.1-8) to obtain a suitable power density
spectrum for the random process. It is important that the limiting operation be
done last (Thomas, 1969, p. 98, or Cooper and McGillem, 1971, p. 134). Alter
these operations are performed, (7.1-8) can be written

. 1 (7 1 (= . E[1XHw)*]
I —_— o 2 = — o S Bekoft A bk 5L 1-
Pyy = lim T J TF[X (0] dt o f lim T doy (7.1-9)

T -0 T~

t We assume a real process X (1) and interpret x{f) as cither the vallage across # 1-0 impedance or
the current through 1 €2 In other words, we shall assume a 1-Q real impedance whenever we discuss
energy or power in subsequent work, unless specifically stated otherwise.

t In taking the expeeted value we replace (1) by X in (7.1-8) since the integral of x*(1) is an
operation performed on all sample functions of X(1).
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Equation (7.1-9) establishes two important facts. First, average power Pyy in
a random process X (1) is given by the time average of its second moment:

N

Pyx = lim — E[XY0] dt = A{E[X*(N]) (7.1-10)
T 2T -T

For a process that is at least wide-sense stationary, E[XY )] = X2, a constant,

and Pyy = %72, Second, Pyy can be obtained by a [requency domain integration.

If we define the power density spectrum for the random process by

_ B[ X))
Syylw) = lim ——=— 7.1-11
X T-m 2T ( )
the applicable integral is
l L]
Pxx=_27r -wSXX(w) dw (7.1-12)

from (7.1-9). Two examples will illustrate the above concepts.’

Example 7.1-1 Consider the random process
X(1) = A cos (wot + ©)

where A and «, are real constants and © is a random variable uniformly dis-
tributed on the interval (0, n/2). We shall find the average power Pyy in X(1)
by use of (7.1-10). Mean-squared value is

2 b3
E[X*(t)] = E[A? cos? (wot + ©)] = E[—AZ— + A—z- cos 2wg t + 2@)]

[

Az Az ®/2 2
=—£-+-7-J. ;cos(2(oot+20)d0
AI

AZ
= —~—sin (2
" sin (2wet)

This process is not even wide-sense stationary, since the above function is
time-dependent. The time average of the above expression is

AL'AX’ im [T (24
{EL (t)]}=rl:rlﬁ -T[—i-——n-sm (2(001):\ dt

which casily evaluates to

Pxx = A{ELX*()]} = A7/

SoemeT

-3,

b
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Example 7.1-2 We reconsider the process of the above example to find

Sxx(w) and average power Pyy by use of (7.1-11) and (7.1-12), respectivel
First we find X {w): X ) ( ), respectively,

T
Xpw) = f A €os (ot + ©) exp (—jwt) dt
T

A r
=3 exp (JO) J . exp [lwo — w)t] dt

A T
+ 5 ¢Xp (—=j®) f exp [—j(we + w)t] dt
e -7

sin {{w — w,)T]

= A j
T exp (jJO) © —ogT
+ AT exp (—jo) Sinl@ + ©q)T]

(w + we)T

Next we determine I.XT(w)[z = X7(w)XHw) and find its expected value, After
some simple algebraic reduction we obtain

E[IXo{0) ") _ A%x T sin? [(@ — wq)T]
2T T2
Now it is known that

T sin? [(w + wo)T]l
1 [0 - wy)T]? r [+ w)T) |

. T[sin @)]?
lim — | —="1| =
rl-?:: R ,: «T :, o)
(Lathi, 1968, p. 24), so (7.1-1 1) and the above result give
Aln
8xx(0) = 5 (80 — o) + 6w + ;)]

Finally, we use this result to obtain average power from (7.1-12):

pooo L[ A A

xx = o= . =5 [3(w = wy) + 8w + wy)] dw = >

Thus, Pyy found here agrees with that of the earlier Example 7.1-1.

Properties of the Power Density Spectrum

The power density spectrum possesses a number of important properties:

(1) Sxx(w)20 (7.1-13) -
(@) Sxx(—w) = Sy4w)  X(t) real (7.1-14)
(3)  Sxx(w) is real (7.1-15)

l ©
4) n j_wsxx(w) do = A{E[X*(1)]) (7.1-16)

ot i

o S
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Property | follows from the definition (7.1-11) and the fact that the expected
vilue of a nonnegative function is nonncgative. Similarly, property 3 is true from
(7.1-11) since | X p{(w) |? is real. Some rellection on the properties of Fourier trans-
forms of real functions will verify property 2 (see Problem 7-9). Property 4 is just
another statement of (7.1-9).

Sometimes another property is included in a list of propertics:

(5) 8zu(w) = W yy(w) (7.1-17)

It says that the power density spectrum of the derivative X(f) = dX()/dt is w?
times the power spectrum of X(r). Proof of this property is left as a-reader exer-
cise (Problem 7-10).

A final property we list is

(6) 5’; r Sxx(w)e™ dw = A[Ryx(t, t + 1)] (7.1-18)
Sxxl(w) = r ALRxx(t, t + T)]e™ 2" dr (7.1-19)

It stutes that the power density spectrum and the time average of the aulocor-
relation function form a Fourier transform pair. We prove this very important
property in Section 7.2. Of course, il X(f) is at least wide-sense stationary,
A[Rxx(1, t + 1)] = Ryx(1), and property 6 indicates that the power spectrum and
the autocorrelation function form a Fourier transform pair. Thus

Sxx(w) = '[ Ryx()e vt dr (7.1-20)
l o

Ryx(r) = o~ J‘ Syalw)e dew (7.1-21)
2n Jo o

for a wide-sense stationary process,

Bandwidth of the Power Density Spectrum

Assume that X(1) is a lowpass process; that is, its spectral components are clus-
tered ncar w = 0 and have decreasing magnitudes at higher frequencies. Except
for the fact that the area of 8yx(w) is not necessarily unity, 8y,(w) has character-
istics similar to a probability density function (it is nonnegaltive and real). Indecd,
by dividing Sy y(w) by its area, a new function is formed with area of unity that is
analogous 1o a density function. :

Recall that standard deviation is a measure of the spread in a density func-
tion. The analogous quantity for the normalized power spectrum is a measure of
its spread that we call rms bundwidth,t which we denote W, (rad/s). Now since
8xx(w) is an even function for a real process, its *“mean value” is zero and its

t The notation rms bandwidth stunds for root-mean-squared bundwidth,
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“standard deviation™ is the squarc rool of its sccond moment. Thus, upon nor-

malization, the rms bandwidth is given by

”/2 . ’:',,‘ (I)IS.\..\.((U) ([(,)

me I"-m H‘\“‘,((l)) dey

(7.1-22)

Lxample 7.1-3 Given the power speetrum
10
Sy e
sxl@) = T (/1))

where the 6-dB bandwidth is 10 radians per sccond, we fin
using (C-28) from Appendix C,

e 10 dw - 10° e ey
T+ 10 (100 + ?)?

= 10° — +-—1—-l'\n"<£—> ? }
- 2000100 + @) |- 2000 10/ |- o

= 50n

d W,.. Firs,,

-

Next, from (C-30) of Appendix C:

” 1000? dw - 10° i w? dw
1+ (/107 - . (100 + @)

10— +—1—l'm'l<2> }
20100 + ©?) - 20 10/ |-

5000

000
“’fl ns =
" 50n

Although W, and the 6-d1 bandwidth of Syl

e not equal in peneral.

[}

Thus

= 10 rad/s

hove concept is readily cxtended to
s, its significant spe
If we assume that the
netry about m = 0. With this

The a

of power spectrum; that i

frequencics Mo and —@q.

real and have cven synu
mean frequency (o by

o Sy () do

O

iy =
O i Sylo) dar

3 0%

are cqual in this cuse, they

e et e

a process that has a bandpass form
ctral componenis cluster near some
process X(f) is real, Syx(w) will be
assumption we definc a

(7.1-23)
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and rms bandwidth by
4 o (w = @) Syxlw) dw
for Sxx(w) dew

“The reader is encouraged to sketch a fow lowpass and bandpass power speetrums
and justify for himsell why the factor of 4 appcars in (7.1-24).

(7.1-24)

"V l‘zll\.‘ =

72 RELATIONSHIP BETWEEN POWER SPECTRUM
AND AUTOCORRELATION FUNCTION

in Section 7.1 it was stated that the inverse Fourier transform of the power
density spectrum is the time average of the autocorrelation function; that is

‘ o)
- J Sexl@)et do = ALR {1, 1 1) (7.2-1)

2n

This cxpression will now be proved.
If we use (7.1-5), which is the definition of X{w), in the defining equation

(7.1-11) for the power spectrum we havet

. e (T T
Sxxlm) = 71‘1_\: h[ﬁ J TX(lx)e""" dr, I 1_X(Iz)e‘1"’” dlz:l

-

. 1 T T

= lim —= J ECX(1)X(0)Je 4= dty dt, (1.2-2)
rew 2T Jor o1

The cxpectation in the integrand of (7.2-2) is identificd as the aulocorrelation

" function of X(1):

ELX()X(t2)]) = Ryxltys l;) ~T<(,and1)<T (7.2-3)
Thus, (7.2-2) becomes
1 T T
8xx(0) = rh-"l T j_ TR“(:,. (e Fona =00 gy dt, (7.2-4)
Suppose we next make the variable changes
L=t dt = dity (7.2-5q)
t=ly—ty=1—1 dr = dt, (7.2-5h)
in (7.2-4); we obtain '
(7.2-6)

. 1 T-t T
Sxxlw) = Iim == J J Ryxlt, t + t) dt et dt
T

1
T=m 2T -T=t

+ We use X(1) in (7.1-5), rather than (1) to imply that the operations performed take place on e
process as opposed to one sumple function,

G

In

P
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Next, taking the limit with respect to the t integral first will allow us to inter-
change the limit and t integral operations to get

w T
Sxxlw) = f {'r“m # J TRxx(l, t+1) d(}e""" dt (1.2-7)

The quantity within braces is recognized as the time average of the process auto-
correlation function

l T
A[Rxx(t, t + 1)) = lim == | Ryxlt, t + 1) dt (7.2-8)
2T J.p

T—ew

Thus, (7.2-7) becomes
Syxlw) = J‘ A[Ryxlt, ¢ + 1)]e 0 dr . (7.2-9)

which shows that Syy(w) and A[Ry(t, ¢ + 1)] form a Fourier transform pair:
A[Ryx(t, t + 1)] e 8xx(w) (7.2-10)

This expression implies (7.2-1), which we started out to prove,
For the important case where X{f) is at least wide-sense stationary,
A[Rxx(t, t + )] = Ryx(t) and we get :

Sxxlw) = J"” Ryx(x)e " dt (7.2-11)
Ryx(r) = ﬁ J:Sxx(w)«‘-"”' dw (7.2-12)

or
Ryx(t) > 8y x(w) (7.2-13)

The expressions (7.2-11) and (7.2-12) are usually called the Wiener-Khinchin rela-
tlons after the great American mathematician Norbert Wiener (1894-1964) and
the German mathematician A. I. Khinchin (1894-1959). They form the basic link
between the time domain description (correlation functions) of processes and
their description in the frequency domain (power spectrum).

From (7.2-13), it is clear that knowledge of the power spectrum of a process
allows complete recovery of the autocorrelation function when X(t) is at least
wide-sense stationary; for a nonstationary process, only the time average of the
autocorrelation function is recoverable from (7.2-10).

Example 7.2-1 The power spectrum will be found for the random process of
Example 6.2-1 that has the autocorrelation function

Ryy(1) = (4%/2) cos (wg 1)
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where 4 and w, are constants. This equation can be written in the form

2

A - 14
Ryx(r) = vy (oot + g7 o)

Now we note that the inverse transform of a frequency domain impulse func-
tion is

! ® Jor g _L
o S(w)e do = >~

from (A-2) of Appendix A. Thus .
| e 2n8(w) )
and, from the frequency-shifting property of Fouricr transforms given by
(D-7) of Appendix D, we get
A o 2r8(0 — W)
By using this last result, the Fourier transform of Ryy(t) becomes
Alr

Sxxlw) = _2"’

This function and Ry,(t) are illustrated in Figure 7.2-1.

(8w — wg) + d(w + wo)]

Rxx(r)

SRy

=T 2N
2w, 2w,
()
Sxx(w)
2 ————————
4
Figure 7.2-1 The autocorrelation
function {a) and power density
spectrum (b) of the wide-sense
~We 0 Wy bad stationary random process of
(3 Example 7.2-1,
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73 CROSS-POWER DENSITY SPECTRUM
AND ITS PROPERTIES

Consider a real random process W() given by the sum of two other rcal pro-
cesses X(1) and Y(1):

W) = X0 + Y (7.3-1)

The autocorrelation function of W()is
Rynlt, 1 + 1) = EQW(OW( + 1)
E{{X () + Y(OILX( + )+ Y+ 0l
Ryxlt, t + 1) + Ryylt, 1 4 7)
+ Rty t + 1) + Ryx(t, ¢ + 1) (1.3-2)

0

Now il we take the lime average of both sides of (7.3-2) and Fouricr transform
the resulting expression by applying (7.2-9), we have

Syplm) = Syxlw) -+ Syp(ow) + F{A[R(L O+ )]} + F{ALRy (1, 1+ o1} (13-

where F{+} represents the Fourier transform. It is clear that the left side of (7.3-3)
is just the power spectrum of W(t). Similarly, the first two right-side terms are the
power spectrums of X(¢) and Y(t), respectively. The second two right-side terms
arc new quantitics that are the subjects of this section. It will be shown that they
arc cross-power density spectrums defined by (7.3-12) and (7.3-14) below.

The Cross-Power Density Spectrum

For two rcal random processes X(¢t) and Y(1), we define xq{t) and y;{1) as trun-
cated ensemble members; that is !

Wy —T<t<T
ll) {O clsewhere (7.3-4)
and
i )10 -T<i1<T 7.3.5)
yalt) = {0 clsewhere (7.3-3

Both x441) and yg{0) arc assumed Lo be magnitude integrable over the interval
(=T, T) as indicated by (7.1-4). As @ conscquence, they will posscss Fourier

transforms that we denote by X {w) and Y{w), respectively:

Xp{t) e X 3{00) (7.3-6)

yod1) = Yalw) (1.3-7)
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We next define the cross power Pyy(T) in the two processes within the inter-
val (—~ T, T) by

1 (7 t (7
PyfT) === ==
w(T) 5T J_Tx,(t)yr(r) dt 7T J_Tx(l)y(l) dt (7.3-8)
Sinct‘: x,l(t) and y,{t) arc Fourier transformable, Parseval’s thcorem (D-20)
applics; its left side is the same as (7.3-8). Thus, we may write

(T 1 ([ XHw)Yr{w

Py T) = — - — _l.__J_).

xT) T J_Tx(t)y(t) dt 7)o T dw (7.3-9)
Thi_s cross power is a random quantity since its value will vary depending on
which enscmble member is considered. We form the average cross power,
denoted Pyy(T), by taking the expected value in (7.3-9). The result is

- 1 (7 1 [* E[X%w)Yi{w)]
Pyr(T) = 3 _[_TR”(A 0 dt = 5 ,L —’—Z-T—’— do  (1.3-10)
Finally, we form the total average cross power Pyy by letting T — c0:

L fT 1 [ . E[XHw)Y.
Pyy = lim 'ﬁj:rkxy(l. 1) dl=ﬁ_]:,, lim EX 30 Y]

o lim T (7.3-11)

It is clear ~(h_at the integrand involving w can be defined as a cross-power density
spectrum; it is a function of w which we denote

. E[XHw)YHw)]
i S = l P A
xr(w) r'."l o (1.3-12)
Thus
l ©
Pxy =5~ J_ mer(w) dw (1.3-13)

l}y repealing the above procedure, we can also define another cross-power
density spectrum by

. E[YHw)X
S) = tim ST (7314
T~
Cross power is given by
] o
Prx=3- J Syx(@) dw = Pyy (1.3-15)
o

Tolal cross power Pyy + Pyx can be interpreted as the additional power two pro-
cesscs are capable of generating, over and above their individual powers, due to
the fact that they are correlated.

0 T LIREINERN
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Properties of the Cross-Power Density Spectrum

Some properties of the cross-power spectrum of real random processes X(f) and
Y(t) are listed below without formal proofs.

(1) 8xr(w) = 8yx(—w) = 8x(w) (7.3-16)
(2) Re [Syy(w)] and Re [8yx(w)] are even functions of @ (see Problem 7-40).

(1.3-17)
(3) Im [8yy(w)] and Im [8yx(w)] are odd functions of w (see Problem 7-40).
(7.3-18)
(4) $xy(w) = 0 and 8yx(w) = 0if X(t) and Y(¢) are orthogonal. (7.3-19)

(5) If X(¢) and Y(1) are uncorrelated and have constant mé_ans Xand ?

Sxp(@) = 8yxlw) = 218 P8(w) (7.3-20)
(6) AR xy(t, t 4 1)] & 8xy(w) (7.3-21)
A[Ryxlt, t + 1)] & Syx(w) (7.3-22)

In the above properties, Re (-] and Im [+] represent the real and imaginary
parts, respectively, and A[ -] represents the time average, as usual, defined by
(6.2-21). , o

Property 1 follows from (7.3-12) and (7.3-14). Properties 2 and 3 are proved
by considering the symmetry that X{(w) and Yy{w) must possess for real pro-
cesses. Properties 4 and 5 may be proved by substituting the integral (Fourier
transform) forms for X {w) and Y{w) into E[XHw)Y{w)] and showing that the
function has the necessary behavior under the stated assumptions.

Property 6 states that the cross-power density spectrum and the time average
of the cross-correlation function are a Fourier transform pair; its development is
given in Section 7.4. For the case of jointly wide-sense stationary processes,
(7.3-21) and (7.3-22) reduce to the especially useful forms

Syy(w) = Jj Ryy(t)e ™" dt (7.3-23)
Syylw) = f Ry (2)e™7 d (7.3-24)
Ryylt) = ﬁ f;s erlw)e™ dw (7.3-25)
Ryylt) = 21_7: J_wws,x(w)efm dw (7.3-26)

Example 7.3-1 Suppose we are given a cross-power spectrum defined by

a + jbw/W -W<w<W
0 elsewhere

Syy(w) = {

SPEC IRAL CHARACTERISTICS OF RANDUM 1RORGESSED U

where W > 0, ¢ and b arc rcal constants. We use (7.3-25) to find the cross-

correlation function, It is
W

R - L 1+ ; b er dw
xr(Y)—zn . ¢ JW

il

a [ b w Jos ]
= — el dwy + J we! dw
2% Jow TS oaw —w

On using (C-45) and (C-46) this expression will readily reduce to
w b @ 1 ] w }
nwjl“ mW {e PR H I E

[(aW1t = b) sin (W1} + bWt cos (W1)]

a Jjwt
Ryv(0) =5~ t-TT—

|
Al

*7.4 RELATIONSHIP BETWEEN CROSS-POWER SPECTRUM
AND CROSS-CORRELATION FUNCTION

In the following discussion we show that

© —_ .
Syrlw) = J: {,h_m T J_ TRx,(l, t+ 1) dl}e ot e (7.4-1)

as indicated in (7.3-21). '
The development consists of using the transforms of the truncated ensemble

members, given by .

X o) = J x(t)e™ 1 dt (7.4-2)

-7

-
Y{w) = J y()e =t dt (1.4-3)
r

in (7.3-12) and then taking the expected value and limit as indicated lo obtain
$ ¢y(w). From (7.4-2) and (7.4-3):
» "
z\'-T-(m))",‘(u»)=J’ Xt el m,J e e e,
- .

-
= J J N(ey(tg)e T T dey dey (7.4-4)
-7 J-T

Now by changing variables according to (7.2-5), dividing by 2T, and taking the

expected value, (7.4-4) becomes

E[X @) Vr{w)] _ EUT" {__ JT (O + 1) ,,,}e-/m (,f}
2T ore 2T )y
(

1

T

Tt {l J‘T
—J’-'r-: 2T Jor

Ryy(t, t +7) dt}e'“" dt (7.4-5)

e
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After the limit is taken:

. ,\'*- 0 Y, {(a
Syyple) = lim _[:_[_:_7_(11_’_(1)_)1

m o
T t T _
= lim J‘ {-—- J‘ Ryylt, t 4 1) dtpe o e
Foo dor=t (2T Jow
Py T
= J {lim ;17 J Ryylts 0 + 1) dl}(""'" dr (7.4-6)
o 'l"-‘rn bl T

which is the same as (7.4-1). Sinee {7.4-6) is a Fourier transform, and such trans-
forms arc unique, the inverse transform applics:

l 1. l ” » {1
lim — | Rultt+0di=2" Syy(w)e!™ dw (7.4-7)
gow 2T Jor 7 2n
It should be noted from (7.4-7) that, given thc cross-power spectrum, the
cross-correlation function cannot in general be recovered, only ils time average
can. For jointly widc-sensc stationary processes, however, the cross-correlation
function R (1) can be found from §¢y{m) since its time average is just Rgy(1).
Although we shall not give the proof, a development similar to the above

shows that (7.3-22) is true.

-

Example 7.4-1 Let the cross-correlation function of two processes X(1) and
Y1) be
AB .
Ryt 1+ 1) = 5 Isin (g 1) + COS [wo(2t + D1}
where A, B, and m, arc constants. We find the cross-power spectrum by use
of (7.4-1). First, the time average is formed

| T
Hin —— j Ryylt, t + 1) dt
m 2T Jor

AB AB |, t (7
= sin (we 7) + - }l_xl T J_T cos [wel2t + )] dt

d is found to be zero. Finally we Fouricr

The mtegral is readily cvaluated an . ‘ ' :
ation function with the aid of pair

transform the time-averaged cross-correl
12 of Appendix E:
AB
F == sin (my 1)
(4 o)

= -——I%’—”—! (5 — ) = Sl -+ )]

Syylm)
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7.5 SOME NOISE DEFINITIONS AND OTHER TOPICS

In many practical problems it is helpful to sometimes characterize noise through
its power density spectrum. Indeed, in the following discussions we define (wo
forms of noise on the basis of their power spectrums. We also consider the
response of a product device when one of its input wavcforms is a random signal
or noise.

White and Colored Noise

A sample function n{r) of a wide-sense stationary noisc random process N(1) is
called white noise if the power density spectrum of N{f) is a constant al all fre-
quencies. Thus, we define

Sun(w) = A of2 (7.5-1)

. for white noisc, where " is a real positive constant. By inverse Fouricr trans-

formation of (7.5-1), the autocorrelation function of N{1) is found to be
Ryn(t) = (470/2) 8(1) (7.5-2)

“The above two functions arc illustrated in Figure 7.5-1. While noisc derives ils
name by analogy with * white™ light, which contains all visible light frequencies
in its spectrum.

White noisc is unrealizable as can be scen by (he fact that it possesses infinite
average power:

1 -
ﬂ I Sanlw) dw = o0 (7.5-3)

-
0

However, one type of real-world noise closely approximates while noisc. Thermal
noise gencrated by thermal agitation of electrons in any electrical conductor has a
power spectrum that is constant up to very high frequencies and then decreases.
For cxample, a resistor at temperature T in kelvin produces a noise voltage

Runlr) SNN(w)

N Nol2

0 T 0 w
ta) (h

Figure 7.5-1 («) The autocorrelation function and (h) the power density spectrum of white noise.
[ Adupted fram Peebles (1976) with permission of publishers Addison-Wesley, Advanced Bonk Program.)

RN
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across ils open-circuited terminals having the power spectrumt (Carlson, 1975,
p. 118)

,
Bunle) = LN 0U/T) (7.5-4)
where a = 7.64(107'2) kelvin-seconds is a constant. At a temperature of T =
290 K (usually called room temperature although it corresponds to a rather cool
room at 63°F), this function remains above 0.9 (/4/2) for frequencics up to
10'? Hz or 1000 GHz Thus, thermal noise has a nearly flat spectrum at all fre-
quencies that are likely to ever be used in radio, microwave, or millimeter-wave
systems.]

Noise having a nonzero and constant power spectrum over a finite frequency
band and zero everywhere else is called band-limited white noise. Figure 7.5-2a

t The unit of §,(w) is actually volts squared per heriz. According to our convention, we obtain
walts per hertz by presuming the voltage exists across a 1-0 resistor,

{ This stutement must be reexamined for T < 290 K, such as in some superconducting systems or
other low-temperature devices (masers),

Suniw)

N

-2x -x x 2 Figure 7.5-2 Power density spectrum
W W W W (a) and autocorrelation function (b)
) of lowpass band-limited white noise.

SPECTRAL CHARACTERISTICS OF RANDOM PROCLSSES [X-34

depicts such a power spectrum that is lowpass. Here
Prn
— -W<w<W
Sunlw) =W (1.5-5)
0 elsewhere

Inverse transformation of (7.5-5) gives the autocorrclation function shown in
Figurc 7.5-2b: i
sin (W1)
Wt
The constant P cquals the power in the noise. ) o
Band-limited white noise can also be bandpass as illustrated in Figure 7.5-3.

Ryn(t) = P (1.5-6)

~wy 0 Wo w
W iy + = Wy - L4 wy ¥ 4
—wy - g o V3 2 2
(a)
Rynlr)
z
\
7NN
/ \
/ \
\
/ \

—_— / \\ ~
e N e
RNV,

U/

2 2 4n On
-4 % '%\ l/ v W W
\\ /
\ /
\ /
\!
\\ L’
(b)

Figure 7.5-3 Power density spectrum (a) and autocorrelation function (b) for bandpass band-limited
white noise. [Adapted from Pecbles (1976) with permission of publishers Addison-3esley, Advanced
Book Program.)
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The applicable power spectrum and autocorrelation function arc:

Pr/W wg — (W/2) < |o| <wo + (W/2)
= 7.5-1
Swal®) {0 clsewhere { )
and
sin (W
Ranlt) = P sin (WH2) o (w1) (1.5-8)

(W1/2)
where wg and 1V arc constants and P is the power in the noisc.

Again, by analogy with colored light that has only a portion of the visible
light frequencics in its spectrum, we define colored noise as any noisc that is not
white. An example serves to illustrate colored noisc.

Example 7.5-1 A wide-sensc stationary noisc process N(1) has an autocorrel-

ation function
Rypt) = Pe~3t

where P is a constant. We find its power spectrum, It is

o0
Snalw) = J

-

© o
=P J e~ dr 4 P J
0

pe=Mlemivv dt

c(J - Ja)t d‘f

-

Runin)
r
,‘p-)lll
0 1
(a)
S antw)
: 2w
T
Figure 7.5-4 The autocorrelation
function (a) and power spectrum
(h) of the colored noise »f Example
7.5-1. [Adapted from Pechles (1976)
with  permission  of publishers |

“ Addison-Wosley, Advanced Book
Program.) .
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These integrals casily cvaluate using (C-45) to give
+ P 6P
3—jo 9+t

Sun(w) = 3+ jw

This power spectrum is sketched in Figure 7.5-4 along with the preceding
autocorrelation function.

P'roduct Device Response to a Random Signal

Product devices are frequently cncountered in electrical systems. Often they
involve the product of a random waveform X(¢) (cither signal or noise or the sum
of signal and noise) with a cosine (or sinc) “carrier” wave as iltustrated in
Figuie 7.5-5. The response is the new process

Y(t) = X(t)Aq cos (wo 1)
where A, and w, are constants. We scek to find the power spectrum Syy() of
Y(1) in terms of the power spectrum Sxx(w) of X(1).

The autocorrelation function of Y() is
Ryy(t, t + 1) = E[Y(O)Y(t + ©)]
= E[AZX(D)X(¢ + 1) cos (wo 1) cos (wo ! + @oT)]

(1.5-9)

A2
= —2—" Ryx(t, t + 1)[c0S (@0 1) + cos (2wgt + wo 1)) (7.5-10)

Even if X(t) is wide-sense stationary Y(1) is not since Ryy{t, t + 1) depends on .
Thus, we apply (7.1-19) to obtain Syy(w) after we take the time average of
Ryylt, t + 7). Let X(¢) be assumed wide-sense stationary. Then (7.5-10) becomes

AZ
A[Ryy(t, t + )] = '?0‘ Ryx(1) cos (wo 1) (7.5-11)
On Fourier transforming (7.5-11) we have
. Al
Spy(w) = 7 [Bxale — o) + Bxxl® + o)) (7.5-12)

A possible power density spectrum of X(1) and that given by (7.5-12) arc illus-
trated in Figure 7.5-6. It presumes that X(f) is a lowpass process, although this is
not a constraint in applying (7.5-12).

X() Y
Product -
8 yxlw) Syyl(w)
Figure 7.5-5 A product of interest in electrical systems.
[Adapted from Peehles (1976) with permission of publishers
Ao €08 (Wel) Addison-Wesley, Advanced Book Program.] '
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.l, H » o RUTVU 3
; Brat) the power density spectrum of the output noise Y(t) of the product device is
t: Sext0 =~ readily found (by sketch) (o be
?” N o AL/ — 2wy — (Wref2) < @ < = 2w + (Wge/2)
oy AL/ = Wipf2 < < Wyy/2
B = a8 2w — (Wael2) < @ < g + (War/2)
3 7 0 elsewhere
2 2
d
. ’ Now only the noise in the band —Wgp/2 <@ < Werf2 cannot be rcmczv«ic
K ? by a lowpass filter (which usually follows the product dc‘_"cc-‘f" r{c:ln.o'n
| - unwanted noise and other undesired outputs) because (h.c dcsnlrcd m,rlm }s i |
‘ o the same band. This remaining component of 8yy(w) gives rise to the hina
w output noise power, denoted N,
p (W oAl N o A Wap
________ |/ N,=— dw = -
": ' ° 2n - Warl2 4
i
‘ :“é*' “Wo 0 W w 0
| g: @ *76 POWER SPECTRUMS OF COMPLEX PROCESSES
i : Figure 7.5-6 Power density spectrums upplicable to Figure 7.5-5; (a) at the input and (b) at the : lex processes. We consider only
d [} outpul. [Adapted from Peebles (1976) with permission of publishers Addison-Wesley, Advanced Book Power spectrums may readily be defined for complex p
gE

i i s of the autocorre-
Frogend those processes that are al least wide-sense stationary. In terms o

fation function Ryy(v) of a complex random process Z(t), the power density spec-
trum is defined as its Fourier transform

L4

Example 7.5-2 One important use of the product device is in recovery
(demodulation) of the information signal {music, specch, etc.) conveyed in the
wave transmitled from a conventional broadcast radio station that uses AM
(amplitude modulation). The wave received by a receiver tuned (o a station

REU3

Syalw) = J R, (v dr (7.6-1)

The inverse transform applics, so

with frequency wo/2n is one input to the product device. The other is a “local

oscillator” signal A, cos (wqf) generated within the receiver. The product
: device output passes through'a lowpass filter which has as its output the
i desired information signal, Unlortunately, this signal also contains noise
because noise is also present at the input to the product device; the input
noise is added to the received radio wave, We shall calculate the power in the
output noise of the product demodulator.

Let the power spectrum of the input noise, denoted X(1), be approx-

©

Ryy(v) = 51; J. $z2(w)e!* dw (7.6-2)

-

For two jointly wide-scnse stationary complex processes Z,(t) and Z."(‘)' lhclsr
cross-power density spectrum and cross-correlation function arc a Fourier tran
form pair:

.f % S, = “ R, ,{t)e™ " dt (7.6-3)
l' E imated by an idealized (rectangular) function with bandwidth W, centered $z.2.(@) J_m_ znz(7) i
s at +w,. Thus, i ©
|E ¥ LIS R (1.6-4)
| g Nol2  —wo —(Wae/2) < 0 < —wg + (Wip/2) i ' Rynz(0) = 5= J_ méz,z,.(w)t dw
(8 Srxl@) = { N o/2 g = (Warf2) < 0 < wg + (Wyy/2) . |
: 0 clsewhere An equivalent statement is:
. . L . . R (T)H(s . (w) (7.6'5)
where 74/2 is the power density within the noise band. By applying (7.5-12) ZmZa LmZn
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Example 7.6-1 We reconsider the complex process V(1) of Example 6.6-1 and
find its power spectrum, From the previous example

N
Ryy(t) = el E »—4—3
n=i
On Fouricr transforming this autocorrelation function we oblain

N
Syv(w) = 3{(3"""' Y XZ}

A=)

N
T T el

nre

N
2n8{w — we) Y VH

LR

after using pair 9 of Appendix E.

PROBLEMS

7-1 We arc given (he random process
X(1) = A cos (wg t + ©O)

where A and wy arc constants and © is o random variable uniformly distributed
on the interval (0, n).

(@) Ts X() wide-sense stationary?

() Find the power in X (1) by using (7.1-10).

(¢} Find the power spectrum of X(1) by using (7.1-11) and calculate power

from (7.1-12). Do your two powers agrec?
7.2 Work Problem 7-1 if the process is defined by

X(1) = u(t)A cos (wot + Q)

where u(f) is the unit-step function.
*7-3 Work*Problem 7-2 assuming © is uniform on the interval (0, n/2).

7-4 Wark Problem 7-1if the random process is given by X(1) = 4 sin (mq ( + ).
*9.5 Work Problem 7-1 if the random process is

X(1) = A% cos? (wg ¢t + ©)
7-6 Let A and B be random variables. We form the random process
X(1) = A cos (wo!) + B sin (wgt)

where my, is # real constant,
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S . (a) Show that if A and B are uncorrelated with zero means and equal

variances, then X{r) is wide-sense stationary.
(h) Find the autocorrelation function of X{r).
{¢c) Find the power density spectrum.

7-7 A limiting form for the impulse function was given in Example 7.1-2. Give
arguments to show that the following arc also true:
(@ lim T exp [—na?T?] = 8(a)

T=w
. T
" lim 3 exp [—la| T] = 8(a)
T
7-8 Work Problem 7-7 for the following cases:

’ . T sin(@T)
lim ———=24¢
(1) Tl-l}:n e Ha)
(hy tim T =l T] = &a)
T-o
la) < /T
7-9 Show that (7.1-14) is truc.

7-10 Prove (7.1-17). [Hint: Use (D-6) of Appendix D and the definition of the
derivative.]

7-11 A random process is defined by
Y(1) = X(¢) cos (wot + ©)

where X(1) is a lowpass wide-sense stationary process, w, is a real constant, and
@ is a random variable uniformly distributed on the interval (0, 2n). Find and

.+ - skelch the power density spectrum of Y(1) in terms of that of X(1). Assume O is

independent of X(1).
7.12 Determine which of the following functions can and cannot be valid power
. densily spectrums. For those that are not, cxplain why.

wl

@ 3T 13 (b) exp [—{w - l)z;

w*

(©) 2 s W) ———s
o1 |+ w? + job

7-13 Work Problem 7-12 for the following functions.

cos (3w) 1
@ T (®) (1 + w?)?

jw)

|
1+ 2w+ w? (@) J1 = 3w?

. (¢)

b S

Y

gy

4

5
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7-14 Given that X (1) = Y M. o X (1) where {a;} is a sct of real constants and the
processes X (1) are stationary and orthogonal, show that
N

Sxxlw) = Z alz Sx,x,(w)

i=]
7-15 A random process is given by
X(t) = A cos (Q + ©)

where A is a real constant, Q is a random variable with density function fof*),
and @ is a random variable uniformly& istributed on the interval (0, 2r) indepen-
dent of Q. Show that the power spectrim of X(t) is

Seal6) = 2 L) + fo =)

7-16 1f X(1) is n stationary process, find the power spectrum of
Y(r)= A + BX(1)
in terms of the power spectrum of X (1) if 4 and B are real constants.
7-17 Find the power density spectrum of the random process for which |
Ryx(t)= P cos* (wo 1)
il P and w, are constants. Determine the power in the process by use ol'(7 1-12),

7-18 A random process has the power density spectrum

, 6w?
Sxxlw) = e

Find the average power in the process.
7-19 Work Problem 7-18 for the power spectrum

6?2
S =
xx(w) 0+ wz]_\
7-20 Work Problem 7-18 for the power spectrum
6w?
Sxxlw) = ———=
XX( ) (1 + w1)4

7-21 Assume X(1) is o wide-sense stationary process with nonzero mean value
X # 0, Show that

Sxx(w) = 2nX*8() + f Crxlrle ™" d

-
where Cy () is the autocovariance function of X(t).
7-22 For a random process X{r), assume that

Ryxlt) = Pe2e
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where 1 > 0 and ¢ > 0 are constants, Find the power density speetrum of X(1).
[Hint: Use Appendix E to cvaluate the Fourier transform of Ryx(1).]
7-23 A random process has an autocorrelation funclion

P[1 = (21/T)] 0<t<T/2
Ryxl(r) = { P[1 + 21/T)] -T/251<0
0 1< =T/2 and t>T/2

Find and skelch its power density spectrum. (Hint: Use Appendix E) .

*7.24 A random process X(t) has a periodic autocorrelation function where the
function of Problem 7-23 forms the central period of duration T'. Find and skelch
the power spectrum.

7-25 If the rundom processes of Problem 7-14 are stationary, zero-mcan, sti-
tistically independent processes, show that the power spectrum of the sum is the
same as for orthogonal processes. For stationary independent processes with
nonzero mcans, what is 8y x(w)?

7-26 Given that a process X (1) has the autocorrelation function

Ryx(1) = Ae™ cos (wo )

where 4 > 0, a > 0, and wy arc real constants, lind the power spectrum of X{i).
7-27 A random process X(t) having the power spectrum of Problem 7-19 is
applied to an ideal differentiator.

(a) Find the power spectrum of the diffcrentiator’s output.

(b) What is the power in the derivative?
7-28 Work Problem 7-27 for the power spectruim of Problem 7-20.
7-29 A wide-sense stationary random process X(f) is used to define another
process by

Y() = Jw EVX( = &) de

where Ii(1) is some real function having a Fourier transform H(w). Show that the
power spectrum of Y(¢) is given by

Syr(w) = Syxlw)| H(w)|?

7-30 A deterministic signal A cos (wq 1), where 4 and w, are real constants, is
added 1o a noise process N(1) for which

Ww?

Synlw) = Wit ol

and W > 0is a constant.

(a) Find the ratio of average signal power to average noise power,

(b) What value of W maximizes the signal-to-noise ratio? What is the conse-
quence of choosing this value of W?
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7.31 Find the rms bandwidth of the power spectrum
,)
2
Syxlw) = 1 4 (/W)
0 jm] > KW

jw] < KW

where P, 1V, and K are real positive constants. 1f K — oo, what happens?

7-32 Find the rms bandwidih of the power spectruin
$oxl) = P cos (renf/2W) jml < W
S0 lo|> W
where W > 0 and P > 0 arc constants.
7-33 Determine the rms pandwidth of the power spectrums given by:
P jwl<W
Soo(m) =
() Sxxlev) {0 fw)> W
P = lo/Wl] lwls W
b) Syylm) =
(b) Sxaleo) {O lwl> W
where P and W are real positive constants.
*7.34 Given the power spectrum
P P

5.\‘.\'(“’)=-1+ w — o\ ’+“ . w+a\ |
W AW

onstants, find the mean frequency and rms

where P, o, and W are reul positive ¢

bandwidth,
B 7.35 Show that the rms bandwidth of the power spectrum of arc

process (1) is given by
l : Wi = 4(WT - @)

al bandpass

where @, is given by (7.1-23yand W1is given by the right side of (7.1-22).
*7.36 Jointly wide-sense stationary random processcs X(1) and Y() definc a

l : process W(!) by
W) = X{1) cos (wet) + Y1) sin (wo )
| where wq is a real positive constant.
(a) Develop some conditions on the mean values and correlation functions of

Xy and Y(0) such that 1V() is wide-sense stalionary.
(h) With the conditions of part'(a) applicd to W() find its power spectrum in

I terms of power speclrums of X(1) and Y(1).
() 10X and Y(1) arc also uncorrelated, what is the power spectrum of
wn?
"
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7.37 A random process is given by
W) = AX()+ BY(0)

where A and B are rcal constants and X(1) and Y(r) are jointly wide-sense station-

ary processcs.
(a) Find the power spectrum Syiwlw) of W),
(b) Find Sy wlw) il X(1) and Y(t) are uncorrelated.
(¢) Find thc cross-power spectrums S y(w) and Sy(w).

*7.38 Definc two random processcs by
X(1) = A cos (wot + ©)
Y(t) = W(t) cos (wot + ©)

where A and w, are real positive constants, @ is a random variable independent
of W(t), and W(1) is a random process with a constant mean vatue W. By using
(7.3-12), show that

AW
; I [8(w — wo) + 8 + wo)]

Sxrlw) =

regardless of the form of the probability density function of ©.

*7.39 Again consider the random processes of Problem 7-38.
(@) Usc(6.3-11) to show that the cross-correlation function is given by

AW
Ryylt, t + 1) = - {cos (wo7) + Efcos (20)] cos 2mot + wo1)
— E[sin (20)] sin 2w, + wo 1)}

where the expectation is with respect to © only.
(b) Find the time average of Ryy{t, t+ 1) and determine the cross-power

density spectrum Syy(w).
7.40 Decompose - the cross-power spectrums into real and imaginary parts
according to

Sxylw) = Rxy(w) + jlxr@)
Syx(w) = Ryx(w) + jlyx(®@)
and prove that
Ryy(w) = Ryx(—w) = Ryx(®)
Ieplw) = Tyx(—w) = —lyx()
7.41 From the results of Problem 7-40, prove (7.3-16).
~ 7-42 Show that (7.3-19) and (7.3-20) are true.

C e m—T
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7-43 (a) Sketch the power spectrum of (7.5-4) as a function of aw/T.

(b) For what values of w will 8$yy(w) remain above 0.5(4",/2) when
T =42 K (the value of liquid helium at one atmosphere of pressure)? These
values form the region where thermal noise is approximately white in some
amplifiers operated at very low lemperatures, such as a maser,
7-44 For the power spectrum given in Figure 7.5-2a, show that (7.5-6) defincs the
corresponding band-limited noise autocorrelation function. .
7-45 Show that (7.5-8) gives the autocorrelation function of the bandpass band-
limited noise defined by Figure 7.5-3a.
7-46 A lowpass random process X (1) has a continuous power spectrum §yy(w)
and 8xx(0) # 0. Find the bandwidth W of a lowpass band-limited white-noise
power spectrum having a density 8x,(0) and the same total power as in X(t).
7-47 Work Problem 7-46 for a bandpass process assuming 8yx(w,) # 0, where
wg is some convenient frequency about which the spectral components of X(t)
cluster,

*7-48 A complex random process is given by
Z0) = A

where Q is a random variable with probability density function f5(+) and 4 is a
complex constant. Show (hat the power spectrum of Z(t) is

Szzlw) = 21| A iw)

ADDITIONAL PROBLEMS

7-49 The autocorrelation function of a random process X(¢) is
Rxx(t) =3 + 2 exp (—~47?)

(a) Find the power spectrum of X(t).

(h) What is the average power in X(1)?

(¢) What fraction of the power lies in the frequency band - l/ﬂ <
ws l/ﬁ?
7-50 State whether or not each of the following functions can be a valid power
density spectrum, For those that cannot, explain why.

|w| exp (—4dw?)
) ——————l

( I + jw

(b) cos (3w) exp (—a? + j2w)

w6

) 2w |
(e} cos? (w) exp (—8w?) (f) (—j)j)/(3 = j)'(3 + jo)?

7-51 If Sxx(w) is a valid power spectrum of a random process X(f), discuss
whether the functions dSy vlew)/dw and d?8yx(w)/dw? can be valid power spee-
trums.

( (d) 6 tan [12w/(1 + w?)]
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7.52 («) Rework Problem 7-15 and show that even il © is u constant (nol
random) the power spectrum is still given by

Syxlw) = (A2 i) + Jul = )]

[Mint: Time-average the autocorrelation function before Fourier transforming (o

obtain Syylw).] o ‘
(b) F‘n\ad the total power in X(1) and show that it is independent of the form

of the density function fy{w).
7-53 Find the rms bandwidth of the power spectrum

Sexlw) = {1+ (/W)
where W > 0is a constant.
1-54 Work Problem 7-53 for the power spectrum
Syxlw) = w1+ (/Wy}

7-55 Work Problem 7-53 for the power spectrum
Seqlw) = [ 4+ (/W)
7-56 Work Problem 7-53 for the power spectrum
Syxl®) = W1 + (/W)
29.57 Generalize Problems 7-53 and 7-55 by finding the rms basdwidth of the
power spectrum
Sex(w) = Y1 + (/W) )"
where N 2 2 is an integer.
*1.58 Generalize Problems 7-54 and 7-56 by finding the rms buandwidth of the
power speclrum

Syp(w) = W1 + (/W)

where N = 3 is an integer.
7-59 Assume a random process has a power spectrum

' 4 — (?/9) lw| <6
Syxlw) = 0 clsewhere

Find (¢) the average power, (b) the rms bandwidth, and (¢) the autocorrelation
function of the process. . ‘

7-60 Show that rms bandwidth of a lowpass random process X(1), as given by
(7.1-22), can also be obtained from

Wl o= —1 diRy (1)
T R0) de?

=0

where Ryy(t)is the autocorrelation function of X(1).
b
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7-61 A random process has the autocorrelation function
Ryft)y=18 cos? (g 1) exp (=W it

where B. w,, and ¥ arc positive constants.

(a) Find and sketch the power spectrum of X(1) when wg is al least scveral
times larger than W,

(i Compute the averpge power in the lowpass part of the power spectrum.
Repeat for the bandpass part, In cach case assumce my » W.

*7.62 Generalize Problem 7.61 by replacing cos? (mg 1) with cos® (g 1) where
N = 0is an integer. What is the resulling power spectrum when N is (@) odd, and
(hyeven?

*7.63 The product of & wide-sense stationary gaussian random process X(1) with
itself delayed by T seconds forms it new process Y = X()X(t ~ T) Determine
{a) the antocorrelation function, and () the power spectrum of Yy, iine: Use
the fact that E[X, X3 X, X4 = E[X, X JELX X+ !;’[,\'l,\’.‘jl:‘[_l\',,‘(‘] -
EIX XGELN, Ny - 2EL X JELX JELN JELX ] for gaussian random variables
X Xg, Xy and Xy {Thomas, 1969, p. 64.)}

7-64 Find the cross-correlation function Ryylt, t +17) and cross-power spectrum
Syey{w) for the delay-and-multiply device of Problem 7-63. {Hint: Usc the fact
that  E[X, N2 X3) = E[X,JELX, X3] + E[XJE[Xy X ]+ E[X,)ELX  X] —
2ELNJELN JJECX,] for three gaussian random variables X, Xa, and X,.
(Thomas, 1969, p. 64.)}

7.65 1f X(1) and Y(t) are real random processcs determine which of the following
functions can be valid. For thosc that arc not, stale at least onc reason why.

() 1R 0] S i Rxal0Ryil0)

() Syx(@) = 6/(6 + T0%)

() Ryylt) =cexp (- feh)
{©) Ry(t)y=2 sin (31)

4 cxp (=3t

| + w? () Syylw) = 3 jor?

(e} h‘_\',\'(“)) =

() Syriw) = 188(w)
7.66 FForm the product of two slatistically independent jointly wide-sense st
tionary random processes X(1)and Y() as

W(t) = X(OY(@)

Find gm;crnl cxpressions for the following corrclation functions and power
spectrums in terms of those of X(1) and Y(1): () Rypwlts t +7) and Syplo)
(M) Ryt 1+ 1) and 8 y(w), and () Ryxltit +7) and Sy x(@). () 1

Ryglt) = (W /mSa(Wy 1)
and
Ryyle) = (Wy/mSa(iy )

with constants W, > 1, find explicit functions for Ryl + 1) and Sypdw).
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7.67 An cngincer is working with the function
Ryy(t) = P(1 + 1) exp (= W2e?)

where P> 0 and W > 0 are constants. He suspects that the function may not be
a valid cross-correlation for two jointly stationary processes X{1) and Y(1), as he
has been told. Determinc if his suspicions arc truc. (Hint: Find the cross-power
speetrm and sec il it satisfics properties (7.3-16) through (7.3-18).]

7-6!? A wide-sense stationary process X(1) is applicd to an ideal differentiatpr
having the response Y(1) = dX(1)/di. The cross-correlation of the input-output
processes is known to be

Ryy(z) = dR o x()/dt

. («) Determine Syy(w) and Syxlw) in terms of the power spectrum Sy xlw) of
().
(b) Since Syxlw) must be real, nonnegative, and have even symmelry, what
are the propertics of 8gy(w)?
7-69 The cross-correlation of jointly wide-sense stationary processes X(t) and
Y(1) is assumed to be
Ryy(1) = Bu(t) exp (~ Wr)

where B > 0 and W > 0 are constants.

(a) Find Ryx(2).

(b Find 8xy(w) and Syx(w).
1.70 Work Problem 7-69 for the function

Ryy(t) = Bu(t)t exp (— W)

v I ! ! ! 'l‘ ' sscs ‘((’) ‘“ld )(‘) can be
writ{cn as
8.\')’(0)) = (.')xx((l))ll((u)

where Syx(w) is the power spectrum of X(r) and H(w) is a function with an
inverse Fourier transform fi(t). Derive expressions for Ryy(t) and Ry,(r) in terms
of Ryy(t) and h(z).

772 The power spectrum of a bandpass process X(t) is shown in Figure P7-72.
X(1) is applied to a product device where the sccond multiplying input is
3 cos {wp £). Plot the power spectrum of the deviee's output 3X(1) cos (o).

Sxxlw)

=,
v | 1 "

cey W (34 ' “
o' 2 -y wy W y | 2W Figure P7-72

[
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7-73 Let (hc? “carrier” Ay cos (w, 1) in Figure 7.5-5 be modified to add a phase
r:{ndom variuble © so that Y(1) = 4y X(1) cos (wot + ©). Il © is uniformly dis-
(nbu.lcd on (0, 2n) and is independent of X(1), find Ryy(t, 1 + 1) und Sy,(w) when
X(t) is wide-sense stationary,

7-74 Assume a stationar

y bandpass process X(1) is adequately approximated by
the power spectrum

8xx(w) = Pulw — wofw ~ wy) exp [~(w —~ we)/b]

* Pu(—w — wol—w — wy) exp [—(w + we)¥/b]
where w,,
formed.
(@) Find and sketch the power spectrum of Y{(1).
(b) Determine the average power in X(r) and Y(1).
*7-15 Compufe the power spectrum of the complex process of Problem 6-55.

* P n
;7-76 Let X(1) and Y(1) be statistically independent processes with power spee-
rums

P >0, and b > 0 are constants. The product Y(f) = X(t) cos (wo 1) is

Sxx(w) = 28(w) + 1/[1 + (w/10)3]
and

Syrlw) = 4/[1 + (w/2)1]
A complex process

Z(0) = [X(0) + jY(0)] exp (jwo 1)

is formed where w, is a constant much larger than 10,
(a) Determine the autocorrelation function of Z().
{b) Find and sketch the power spectrum of Z(t).

i
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CHAPTER

EIGHT
LINEAR SYSTEMS WITH RANDOM INPUTS

8.0 INTRODUCTION

A large part of our preceding work has been aimed at describing a random signal
by modcling it as a sample function of a random process. We have found that
time domain methods based on correlation functions, and frequency domain
techniques based on power spectrums, constitute powerful ways of defining the
behavior of random signals. Our work must not stop here, however, because one
of the most important aspects of random signals is how they interact with linear
systems, The knowledge of how to describe a random waveform would be of little
value to a communication or control system engineer, for example, unless he was
also able (o determine how such a waveform will alter the desired output of his
system,

In this chapter, we cxplore methods of describing the response of a lincar
system when the applied waveform is random. We begin by discussing some basic
aspects of lincar systems in the following section. Those readers well-versed in
lincar system theory can proceed directly to Section 8.2 without loss. For others,
the topics of Section 8.1 should serve as a brief review and summary.

8.1 LINEAR SYSTEM FUNDAMENTALS

In this section, a briel summary of the basic aspects of linear systems is given.
Attention will be limited to a system having only one input and one output, or
response, as illustrated in Figure 8.1-1. 1t is assumed that the input signal x{1) and

205
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e

Lincat
system

e, 1)

Input x(1) ——> Output v(7)

(a)

——
Input x(0) -——-J LTl ’-——-b- Qutput y(1)

syslem
U Figure 8.1-1 (a) A general single-input single-
Hw) output lincar system, and (h) a simitar lincar,
" time-invariant (LTI) system.

the responsc y{!) arc deterministic sighals, even though some of the topics dis-
cussed apply to random waveforins. Which topics are applicable to random
signals will be made clear when they arc used in later sections.

The General Lincar System

Cicarly, the lincar system (Figure 8.1-1a) will, in gencral, cause the response 0
to be different from the inpul signal x(). We think of the system as operating on
x(t) to cause (1) and write

y(1) = LLx(1)) (8.1-1)

Here L is an operator representing the action of the system on x(1).

A system is said to be lincar if its responsc to a sum of inputs x,(f), n=1,
2, ..., N,is cqual to the sum of responses taken separately. Thus, if x,(1) causcs a
response ¥,(0), n =1, 2. ..., N, then for a lincar system

N N N
W) = L[ Y «, x,,(r):\ = ¥ o, L{x (0] = Y o ) (8.1-2)
n=} a=l

n=l

must hold, where the «, arc arbitrary constants and N may be infinite.
From the definition (2.3-2) and propertics of the impulse function we may

wrile

X = r X&)t — &) d§ (8.1-3)

By substituting (8.1-3) into (8.1-1) and observing that the opcrator operates on
the time function, we obtain

i = L) = LUm x(Qdt =9 di] = jm XOLS( — 91 dS (8.1-4)

We now define a new function N, &) as the impulse response of the lincar system;
that is,

L[S(r — €] = Wt S) (8.1-5)

LINEAR SYSTEMS WITIL RANDOM INPUTS 207
Equation (8.1-4) becomes
) = j‘ x(Ehlt, §) dg (8.1-6)

which shows that the response of a gencral lincar system is completely deter-
mincd by its impulse response through (8.1-6).

Linear Time-Invariant Systems

A general lincar system is said to be also time-invariant if the form of its impulse
response hit, &) does not depend on the time that the impulsc is applicd. Thus, if
an inpulse (1), occurring at t = 0, causes the response h(r), then an impulse
S(t — &), occurring at t = &, must cause the response h(r — &) if the system is time-
invariant. This fact means that

ht, & = Wt = &) (R.1-7)

for a lincar, time-invariant system, so (8.1-6) becomes

)= I x(§)i(e — §) d& (8.1-8)

Equa‘ion (8.1-8) is known as the convolution integral of x(t) and h(t); it is some-
times written in the short form

) = x(1) = h1) (8.1-9)

By a suitable change of variables, (8.1-8) can be put in the alternative form

W)= J h(&)x(t — §) d¢ (8.1-10)

Time-Invariant System Transfer Function

Either (8.1-8) or (8.1-10) shows that a lincar time-invariant system is completely
characterized by its impulsc response, which is a temporal characterization. By

_Fourier transformation of y(t), we may derivc an equivalent characterization in

the frequency domain. Hence, if X(w), Y(w) and H(w) are the respective Fouricr
transforms of x(¢), y(t), and h(), then .

Y{w) = o y(l)’-’_j"” di = J"” [J"‘ Xt = & d{:le_/“" dt
-1 X(é)Um e — e Ie=o d:}-m p
= |7 xon@e d = X () (8.1-11)

OCTeR)

————— I
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The function H(w) is called the transfer function of the system. Equation
(8.1-11) shows that the Fourier transform of the response of any linear time-
invariant system is equal to the product of the transform of the input signal and
the transform of the network impulse response.

In the actual calculation of a transfer function for a given nctwork, an alter-
native definition based on the response of the system to an exponential signal

x(1) = e/ (8.1-12)

may be more convenient. It can be shown (Thomas, 1969, p. 142, or Papoulis,
1962, p. 83) thatt

_ L0
H(w) = Tt =x(t) (8.1-13)
where
o) = L{e™] (8.1-14)

An example serves to illustrate the determination of H(w) by means of (8.1-13).

Example 8.1-1 We find H(w) for the network shown in Figure 8.1-2, By
ussuming a clockwise current i (and no loading in the output circuit), we
havet

di
X(f)=1L a7t e}

But y{t) = iR so
di 1 dyft)

ddTR @t
and

x(1) = L

00)
R dt A

t It should be carefully observed that (8.1-13) holds only for x(t) given by (8.1-12); that is, for an
exponential waveform,

$ L in the network is an inductance and should not be confused with L above, which stands for n
linear system operator,

L
Input x(r} R Output y(t) Figure 8.1-2 A lincar time-invariant network. [Re-
produced from Peebles (1976) with permission of pub-
o— ° lishers Addison-Wesley, Advanced Book Program.]
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With x{(1) = cxp (jwi) as the input we must have an output y(r) = Hlw)x(r)
from (8.1-13). Hence, dy)/dt = H{wljiwx(r) and

i) = -l[i H{w)jwx(t) + H{w)x(t)
Finally, we solve for H(w):
|
He) = T GelyR) .

Idealized Systems

To simplify the analysis of many corrfplex systems, it is orlen convt;nilec':ll(izég
approximate the system's transfer function H(w) by an idealized omj,. 1 L{ i e
transfer functions arc illustrated in Figure 8.1-3a for a lowpass systcr}1: ( )l) dp[l)l >
to a highpass system and (c) applies (0 a .bundpuss s.yslcm. l_n every c.}sc ll)'u.(l; f\‘r’\d
ized system has a transfer function magnitude that is lat within its pussband ¢

)l or 0(w)
1

S~ 1H(w)]

- [T w

(a)

1wl or 0{w)
~. (H{w)

- S 1 ===
\\\
~k
S~ - e

)

1wl or 0(w)

I——-ll'—-— '*‘W"'I
~.r -
T~ - )t .
~~o .
! =l
-w, 0 \\\\ Wy w
~—
\\
T=0(w)
()

Figure 8.1-3 1deal system trunsfer functions. (a) Lowpass, (b) highpass, and (c) bundpass syslcms:
[(Reproduced from Peebles (1976) with permission of publishers Addison-Wesley, Advanced Book

Program.)
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sero outside this band; its midband gain is unity and its phase () is defined to
be a lincar function of frequency.

In replacing an actual system with an idealized one, the latter would be
assigned a midband gain and phasc slope that approximate the actual values.
The bandwidth WV (in lowpass and bandpass cascs) is chosen according Lo some
convenient basis. For example, W could be made cqual to the 3-dB bandwidth of
the actua! system, or alternatively, it could be chosen to satisfy a specific require-
ment. An example of the latter case is considered in Scction 8.5 where W, called
nnise bandwidih, is sclected to cause the actual and idcal systems to produce the
sume oulput noise power when cach is cxcited by the same noise source.

Causal and Stable Systems

To complete our summary of basic topics in linear svstem theory, we consider
twa final items,

A lincar time-invariant system is said to be causal il it does not respond prior
to the application of an inpul signal. Mathematically, this implies y{(1) = O fort <
1o il x{) = 0 for t <o, where o is any real constant. From (8.1-10), this condi-
tion requires that

ht)=0 for 1<0 (8.1-15)

All passive, lincar {ime-invariant networks that can be constructed will satisfy
(§.1-15). As a conscquence, i sysiem satisfying (8.1-15) is often called physically
realizable.

A linear time-invariant system is said to be stable if its response to any
bounded input is bounded: that is, if [ x(N] < M, where M is some constant, then
101 < M for a stable system where [ is another constant independent of the
input. By considering (8.1-10), it is readily shown that

I = r [h()] dt < oo (8.1-16)

-

will ensure that a system having the impulse response h(r) will be stable.

8.2 RANDOM SIGNAL RESPONSE OF LINEAR SYSTEMS

With the preceding summary of lincar system theory in mind, we proceed now Lo
determine characleristics of the response of a stable, linear, time-~invariant sysiem
as illustrated in Figure 8.1-1b when the applied waveform is an ensemble member
N{1) of a random process X{). We assume in all work (hat the system's impulse
response h(1) is & real function.t In this scetion we restrict our attention to tlempo-
ral characteristics such as mean value and mean-squared value of the response,
its autocorrelation function, and applicable cross-correlation functions. Spectral
charcteristics are developed in Seetion 8.4,

+ Al real-warld networks ave real impulse responses,
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System Response—Convolution

Even when x(f) is a random signal, the network’s response (1) is given by the
convolution intcgral:

W = J x(EW(t — &) dg (8.2-1)
or
W= J‘ h(&x(t = §) d¢ (8.2-2)

where h(r) is the network's impulse responsc.

We may view (8.2-2) as an operation on an ensemble member x(1) of the
random process X(r) that produces an ensemble member of a new process Y(/).
With this viewpoint, we may think of (8.2-2) as defining the process Y{1) in terms
of the process X(f):

o

Y(n) = J_ hOX(t — &) d¢ (8.2-3)

Thus, we may cnvision the system as accepling the random process X() as ils
input and responding with the new process Y(t) according to (8.2-3).

Mean and Mean-Squared Value of System Response

We may readily apply (8.2-3) to find the mean value of the system's responsc. By
assuming X(t) is widc-scnsc stationary, we havet

ELY(0] = EU” HOX( = dc}

= J‘ WEELX( — 8] d&

-

=X J ne)dé =¥  (constant) (8.2-4)

t 1tis known (Coopér and McGillem, 1971, p. 169) that the operation

E[J' lW(l)h(l) d!-] - J‘“F,[W(f)]h(l) di

is valid, where W(1) is some bounded function of a rnndom process [on the interval (i, 1)) and (e is
a noneandom time function, if

J ELLW ] dt < o

‘\vhcn‘ 1, and 1, are real constants that may be infinite. This condition is satisfied in all physical cases
if (1) is wide-sensc stationnry because 1W(r) will be bounded and the systems are stable [sce (8.1-16)].
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}hls E:xpression indicates that the mean value of Y(t) equals the mean value of
(r) times the area under the impulse response if X(t) is wide-sense stationary.
For the mean-squared value of Y(t), we calculate

E[Y} )] = EU_ MENX( ~ &) d&, r’ h(EDX( ~ &) dé;]

= J_m f_mE[X(l = &)X = $NIMEIME,) dE, dE;  (8.2-5)
If we assume the input is wide-sense stationary then
ELX( = §)X( = &)] = Ryxly — €2) (8.2-6)
and (8.2-5) becomes independent of 1
-7 . w @« N
V= H:Yz(f)J = . J: Rxx(fl = fz)h(fx)h(fz) ‘lfx ‘I{z (8-2'7)

Although this expression gives the power in Y(¢), it may be tedious to calculate in
most cases. We develop an example of its solution for a simple case.

Example 8.2-1 We find Y7 for a system having white noise at its input. Here

Rex(§y — &) = (”0/2)5(51 - &)

where .47, is a positive real constant, From (8.2-7):
-1 w w0 . .
Yi= J’_w '[_w(«‘ of (& — EIE,) dEy (&, dE,

= (Ho2) j ) déy

P { P ccomes plOpOl( on to the are Undcl the square of i)
OU( u ower b 1 al t d

Autocorrelation Function of Response
Let X(1) be wide-sense stationary. The autocorrelation function of Y(¢) is

Reflt, t + 1) = E[Y@)Y(t + 7]

= E[ J_w"(fx)‘xﬂ = &), r hENX( + 1= &) w:z]

= J J..-..,E[X(l = EDX(E + v = EIMEN(E,) dEy dE,  (8.2-8)

-
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which reduces to

Ryle) = r J'” Ryyls + & — EDMENNED dE, dEs (8.2:9)

- J-

. because X(1) is assumed wide-sense stationary.

Two facts result from (8.2-9). First, Y(¢) is wide-sense stationary if X(1) is
wide-sense stationary because Ry,(1) does not depend on ¢ and E[Y(1)] is 4 con-
stant from (8.2-4). Second, the form of {8.2-9) shows that Ryy(1) is the two-fold
convolution of the input autocorrelation function with the network's impulse

response; that is
Ryy(1) = Ryx(t) » h(=1) * (1) (8.2-10)

Cross-Correlation Functions of Input and Output

The cross-correlation function of X(1) and Y(t) is

Ryy(t, t + 1) = E[X(O)Y(t + )] = E[X(z) J-w MHOX( +1—=28§) d.:]

= J‘m E[X(X(t + 1 — &I d& (8.2-11)

If X(1) is wide-sense stationary, (8.2-11) reduces to

Ryy(t) = J

L

Ryx{r — () d& (8.2-12)

which is the convolution of Ry x(x) with h(7):

Ryy{t) = Ryx{t) * i) (8.2-13)
A similar development shows that
Ryy(t) = J. Ryxlt = I~ ) d (8.2-14)
or
Ryx(t) = Ryx(z} * I{(~1) (8.2-15)

From (8.2-12) and (8.2-14), it is clear that the cross-correlation functions
depend on t and not on absolute time 1. As a consequence of this fact X(t) and
Y(t) are jointly wide-sense stationary if X(¢) is wide-sense stationary, because we
have already shown Y(t) to be wide-sense stationary.

By substituting (8.2-12) into (8.2-9), autocorrelation function and cross-

correlation functions arc scen Lo be related by

Ryy(t) = J-‘” Ryt + & )&, d8y (8.2-16)

-
L
i

e
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or
Ryy(1) = Ryylt)  h(=7) (8.2-17)
A similar substitution of (8.2-14) into (8.2-9) gives

Ryy(7) = '[“’ Ryx(t — §2)(&5) &y (8.2-18) ¥

or . ;_( .
]

Ryy(t) = Ryxlt) « h(z) (8.2-19) ik

Example 8.2-2 We shall continuc Hxample 8.2-1 by finding the cross-
correlation functions Ryy(1) and R,5(1). From (8.2-12)

Ryy(r) = Jm (A70/2)5(x = EINE) dE

= (N of2)(2)
From (8.2-14)
Rex(®) = Jm (o o/ 28(c = O~ E) d§

= (N /DN =1) = Ryy(—7)

These two results arc scen to satisly (6.3-16), as they should.

8.3 SYSTEM EVALUATION USING RANDOM NOISE

b TR D S =

ation of the foregoing theory can be immediately developed; it
ation function of (8.2-12). Supposc we desire to find

the impulse response of some lincar time-invariant system. If we have available a
proadband (relative to the system) noisc source having a flat power speetrum,
and a cross-corrclation measurement device, such as shown in Figure 6.4-1, h1)

can casily be determined. '
For the approximately white noise source

- Raxlt) ~ (i‘;—°)am 63-1)

the cross-correlation function from (8.2-12)

A practical applic
is based on the cross-correl

s B iyt
o Sabs

g

Thrivan.

Sl A S AT

With this noise applied to the system,
or Example 8.2-2 becomes

Ry(0) = J ) (12—9>s( ~ 8g) d¢ b

= (Z‘—;ﬂ>hm (8.3-2)
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System | YN

Xy W

Cross-correlation
measurement
system

Figure 8.3-1 A method for finding a system's impulse response. [Reproduced from Peebles (1976) with
permission of publishers Addison-Wesley, Advanced Book Program.)

[ R yy(r)

or

h(r) ~ <—2—)Rx,(t) (8.3-3)

o

Since a measurement Ryy(t) of Ryy(1) can be obtaincd from the cross-correlation
measurement device, (8.3-3) gives us a measurement f(x) of i)

M) = (-;—O)R,,,.(f) = h(t) (8.3-4)

Figure 8.3-1 illustrates the concepts described here.

8.4 SPECTRAL CHARACTERISTICS OF SYSTEM RESPONSE

Because the Fourier transform of a correlation function (autocorrelation or cross-
correlation) is a power spectrum for wide-sense stationary processes, it would

“scem that if R,(r) is known for the input process one can find Ryy(t), Ryy(1), and

Ryx(t) as described in Section 8.2 and therefore obtain power spectrums by trans-
formation. Indecd, this approach is conceptually valid. However, from a practical
standpoint the integrals involved may be difficult to evaluate.

In this section an alternative approach is taken where the desired power
spectrum involving the system's response is related to the power spectrum of the
input. In cvery case, the input process X(1) is assumed to be wide-sense station-
ary, which, as previously proved, means that Y(¢) and X(t) arc jointly widc-sense
stationary.

Power Density Spectrum of Response

We show now that the power density spectrum Syy(w) of the response of a linear
time-invariant system having a transfer function H(w) is given by

Syy(w) = 8xx(w)l H(w)|? (8.4-1)

where Sxx(w) is the power spectrum of the input process X(1). We call | H(w)|? the
power transfer function of the system.
The proof of (8.4-1) begins by writing Sy,(w) as the Fourier transform of the

oulput autocorrelation function

Syrlw) =J Ry(D)e ™9 dr (8.4-2)

-

\
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On substitution of (8.2-9), (8.4-2) becomes

Syylw) = f_ h¢&,) f_ (&) fm'Rxx(T + & = &le I du dE, dE,  (8.4-3)

The change of variable § =t + &, — ¢,, d§ = dr, produces

Syy(w) =j (g )eke ag, Jw h(§a)e ™14 dg, Jm Ryx(GQe™ ¢ df  (8.4-4)

These three integrals are recognized as H*(w), H(w), and Sy4(w) respectively.
Hence

Syy(w) = H¥{w)H(w)8 g x(w) = 8yx(w)| H(w)|? (8.4-5)
and (8.4-1) is proved. ‘

The average power, denoted Pyy, in the system'’s response is readily found by
using (8.4-5):

l @
Po=5: || st H@I do (846

Example 8.4-1 The power spectrum and average power of the responsc of

th; r}\‘etwork of Example 8.1-1 will be found when X(1) is white noise for
whic

\ %
Syx(w) = To

Here H(w) = [1 + (jwL/R)]"' so

{
- —————
I = T eRe
and
Bl = S HE = ﬁ,ﬁ—m

Average power in Y(t), from (8.4-6), is
1 [ N [® dw Vo R
Pyy==—| 8plw)dw =22 J =20
"= f_w nlw) do =7 -o |+ (@L/RE "~ 4L

after an integral from Appendix C is used.
As a check on the calculation of Pyy, we note that (pair 15, Appendix E)

1
1 + (jwL/R)

h(e) = (R/L)u(t)e ™ - +s H(w) =
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for this network, and, using the result of Example 8.2-1, we get

= (N [RY _akar Ao R
P”r=) =<-—2—' X z ¢ e dt = al.

The two powers are in agreement.

Cross-Power Density Spectrums of Input and Output

It is casily shown (see Problem 8-42) that the Fouricer transforms of the cross-
correlation funclions of (8.2-12) and (8.2-14) may be written as

Sxr(w) = Syxlw)H(w) (84-7)
Syxlw) = Syxlw)H(—w) (8.4-8)

respectively.

8.5 NOISE BANDWIDTH

Consider a sysiem having a lowpass transfer function H(w). Assume white noise
is applicd at the input. The power density of this white noise is ,¥"/2 where A7,
is a real positive constant. The total average power cmerging from the network is
[from (8.4-6)]

1 [ [ )
I’,‘,.=§J‘ (—2—°>|H(w)l' dw (8.5-1)

By assuming the system impulse response is real,t | H{w)]? will be an even func-
tion of w and (8.5-1) can be writlen

;/r' ‘ll
Py = -2—n3 '[ | H(w)]? dew (8.5-2)
0

Now consider an idealized system that is equivalent to the actual system in
the sense that both produce the same output average power when they both are
excited by the same white noise source, and both have the same value of power
transfler function at midband; that is, | H(0)|? is the same in both systems. The
principal difference between the two systems is that the idealized one has a rect-
angularly shaped power transfer function | 17 ,(w)|? defined by

[HO? o] < Wy

0 lw| > Wy ®.3-3)

|H (W) = {

t The impulse response of any physical system is alwitys real,
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is a posilive constant sclected 1o make output p

where Wy ted L 7
WL The output power in the idealized system 18

systems Cqi
2
By cquating (8.5-2) and (8.5-4), we require that Wy be given

S, =
W = "o P

1¥, is called the noise handwidih of the systen.

AND RANDOM SIGNAL PRINCIPLES

owers in the (wo

s Ao [ Wl HOEWY g5y
'S (—2—°>|u,(c.,w da =2—:L HO) do =55 @3 )

by

(8.5-3)

-

.. .-..___._____..___...___________—_———————

Example 8.5-1 The no
transfer function

i
) e e————
l”(“))‘ = | (m/”/)l

where W is the 3-dB bandwidth inr

Wwdm

ise bandwidth is found for a system having the power

adians per second. Here HHO)|? = 1,50

e am " Wn
/= Y W otan”! (—)\ =
”N ,L ‘Vl + (')2 w ° 2

n the system 3-d8 handwidth by

NARROWBAND PROCESSES
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8.6 BANDPASS, BAND-LIMITED, AND

A random process N(1) will be called handpass if its power density spectrum

5 Synlw) has its significant components clustered in a band of width W (rad/s) that

pificant peaking at higher frequencics.

bandpass processes.

*and-Limited Processes

Il the power spectrum of a bandpass

trum is illustrated in Figure 8.6-1h.

does not include w = 0. Such a power spectrum is illustrated in Figure 8.6-1a.
Our definition does not prevent the powcr spectrum from being nonzero at
o = 0; it only requires that Syx(0) be small in relation to more significant values,
so as to distinguish the bandpass casc from a lowpass power spectrum with sig-

All subsequent discussions in this scction will relate to special forms of

random process is zero outside some fre-

quency band of width W (rad/s) that docs not include @ = 0, the process is called
hand-limited. The concept of a band-limited process forms a convenient approx-
imation for physical processes that often allows analytical problem solutions that
otherwise might not be possible. A band-limited bandpass process powcr spec-

t Power spectrums arising in physical systems will always decrease as frequency bscomes sufli-
cienlly large, so a suitable value of W can always be found. For example, I could be chosen to
include all frequencies for which Sypl@) 2 0.18 yulerg) Where g is some convenient [requency near
where 8yy(w) has its largest magnitude (see Figure 8.6-1).

“I'his expression shows that W,y is larger tha o
a factor of aboul 1.57.
”_/—- | |
|
' i
a b : ans stion with @ | |
If we repeat the z\bos{c df:vclopmcnt for a bandpass transfer functio ‘ L | 9
centerband frequency ®o it will be found that = L oy .
(a)
= b - —_—
W = s(, | H{w)] 2(1(:) (8.5-6) S
" an(w)
| H(wo)l " . -
Proo‘f of this result is left as a reader exercise (sce Problem 8-4.5).t’l;l:qd:rv::‘l:iys); i ||
i i i i ver in terms |
ment also provides 2 simple expression for output noisc powe ‘ {
bandwidth: | l

‘/"
Pyy = _2;°- | H(wo) 1 Wa

For a lowpass filter, (8.5-7) applics by letting wo = 0.

(8.5-7)

—We )
—
()]
Figure 8.6-1 Power densily spectrums {a) for a
bandpass process.

=T

handpass random process and (b} for a band-limited

~
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*Narrowband Processcs

A band-limited random process is said to be narrowband if W < w,, where wy is
some conveniently chosen frequency near band-center or near where the power
spectrum is al its maximum, A power spectrum of a narrowband process is
sketched in Figure 8.6-2a. A typical sample function, if viewed on an oscilloscope,
might look as shown in (b). The appearance of n(1) suggests that the process
might be represented by a cosine funclion with angular frequency w, and slowly
varying amplitude and phase; that is, by

N(1) = A(t) cos [wyt + O()] (8.6-1)

where A(f) is a random process representing the slowly varying amplitude and
©() is a process representing the slowly varying phase. Indeed this is the case,
and, for the important practical case where N(t) is gaussian noise, it is known
that A(t) and ©(1) have Rayleigh and uniform (over 2n) first-order probability
density functions respectively. The processes A(t) and ©(1) are not statistically
independent when N() is gaussian (Davenport, 1970, p. 522, or Davenport and
Root, 1958, pp. 161-165), but for any one instant in time the process random vari-
ables are independent,

In some problems, (8.6-1) is a preferred representation for N(t). For others, it
is convenient to use the equivalent form

N(t) = X(1) cos (1) = Y(1) sin (o) ' (862)
Snnw)
/\ W< w, /‘f\
":’o 0 “l’o w

{a)
Carrier with  n(r) Randomly
randomly Nuctuating
Nuctuating TN tnvelope
phase PPRs santll \
W /\ /
A lwaS
- : 7 Figure 8.6-2 (a) A power spectrum
\,/- \_/~ of 4 narrowband random process
-~ N // - N@) and (b)) a typical ensemble
‘. S~
S -

member  n(t). (Reproduced from

Peebles (1976) with permission of

publishers ~ Addison-Wesley, Ad-
th) vanced Book Program.}

-~
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where the processes X(f) and Y(1) are given by
X(1) = A1) cos [O(1)] (8.6-3)
Y(1) = Ay) sin [O1)) (8.0-4)

Expressions relating A() and O(f) to X(1) and Y(t) are

Ay = X+ Y {8.6-5)

o) = tan~" [Y(t)/X(1)] T (8.6-6)

*Properties of Band-Limited Processes

The representations (8.6-1) and (8.6-2) are acluull.y more general than ijnphcd
above; they can also be applied to any band-limited random process. For the
remainder of this section we concern ourselves only with (8.6-2). .

Let N(1) be any band-limited wide-sensc stationary rcal‘ rsmdom process with
a mcan value of zero and a power density spectrum that satisfics

Snalw) # 0
Sya(w) =0

O<wmy— W, <|lwl<wy—W, + W
elsewhere (8.6-7)

where W, and W are real positive constants, Then N(r) can be represented by the
right side of (8.6-2),1 where the random processes X (1) and Y(t) have the follow-
ing propertics:

(1) X(t) and Y(t) are jointly wide-sensc stalionary (8.6-8)
(2 E[X®I=0 E[Y(N]=0 (8.6-9)
() E[X*0)] = E[Y*(1)] = E(N*(1)] (8.6-10)
(4)  Ryx(t) = ;lt- .[)QSNN(w) cos [(w — we)t] dw 8.6-11)
(5)  Ryy(r) = Ryx(v) (8.6-12)
(6) Kyylt) = % J:SNN(w) sin [(w — we)t] dw (8.6-13)

(7} Ryx() = — Ry (1)
() Rerl0) = ELXOY()] =0

Ryx(t) = = Ryy(—1) (8.6-14)
Ryx(0)=0 (8.6-15)

110 we denote the right side of (8.6-2) by N() the equality in (R.6-2) must be interpresed in the
sense of zero mean-squared ecror; that is N{1) equals N(r)in the sense that

E[{N() - N())*]1=0
(Ziemer and Tranter, 1976, p, 241).
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©9)  Syxlw) = L [(Synlw ~ W) + Sanl@ + @o)] (8.6-16)
(10) Syy(o) = Sxx() (8.6-17)
(1) Syy(w) = jL[Sanlwr — wg) — Syaler + )} (8.6-18)
(12)  Syxlw) = —Sxrlw) (8.6-19)

In the preceding 12 results, wg is any convenient frequency within the band of
Spalim)s Ryx(1), Ryplt) Ryy(t), and Ryy(t) arc autocorrelation and  cross-
correlation functions of X(7) and Y(1) while Syx{m), Syplm), Sxylw), and Syx(w) are
the corresponding power spectrums; and L,[-] denotes taking the lowpass parl
of the quantity within the brackets,

We outline the proofs of the above properties in the next subscction. Here we
discuss their meaning and develop an example. We sce that in addition to being
zero-mean (property 2) wide-sense stationary (property 1) processes, X(1) and Y(1)
also have cqual powers (property 3), the same autocorrelation function (property
5), and therefore the same power speclrum (property 10). Random variables
defined for the processes X(1) and Y(1) at any onc time arc orthogonal (property
8). If N(1) has a power spectrum with components having even symmetry about
w = +wg, then X() and Y(t) will be orthogonal processcs (property 6). A consc-
quence of this last point is that the cross-power spectrums of X(1) and Y(1) are

zero (propertics 11 and 12).

Example 8.6-1 Consider the bandpass process having thc power density
spectrum shown in Figure 8.6-3a. We shall find Syx(w), Sxrlew), and Ry (1).
By shifting Sualw) by +wo and —w, as shown in (b), we may construct
Syalw) according to (8.6-16) as the lowpass portion of Synlw — wo) +
Spnlw + @o), a8 illustrated in (). This function also equals Syy(w) by (8.6-17).
Similarly, we form the difference of the spectrums in (b) to obtain Sxr()
according to (8.6-18) as shown in (d). This function also gives Syxlw) from

(8.6-19) as shown.
To find Ryy(t) we apply (8.6-13):

| wet W P Wit
Ryp(t) == J P sin [(@ — wo)t] dw = o J sin (x) dx

T Jiva =Wy -Wait

,’
= — [cos (W,1) — cos (W,1)]
nt

~ _1_’{cm [(W, + W (W - W,)r_J
a | 2 2

nt
(W, + W)t (W, — W)t
~ COs [———————2 + -——-———‘2

ar Wy + Wy [(W,—W.)r]
= — S| = sin| ——————
nt 2 2

S anv{w + wo)

1 ¢ . Y .
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i Swn(w) W, +W, =W
P
.
1 I s 1
-2w, ~We 0 we 2wy W
. o =Wy cwo t W, Wwe =Wy wet W,y
(a)
Snntw = we)
P
1 1 [ —-l 1 l L l
=W, " ~wy =W, 0w, Wo 2w, w

14 I3
i
', [ $ l 1 [— 3 N
‘l =2w, ~Wy -, 0 W, w, 2wy w
,{ )
"'.'ri‘-. Sxx(w) or Syp(w)
4 »
Y P i
'%. 1 1
i3 W, W, W, W w
¢ ()
fSxriw) or [Syx(w)
P W
Wy -W,.0 > w .
)

1\/\1 /\1

Figure 8.6-3 Power spectrums applicable to Example 8.6-1.

apRxr(n
0.6l
0.4} w, =Y
0.2

-12 -0

1
8 68 4 -2

- -0.2 5

- -0.4

r-&é

Figure 8.6-4 Cross-correlation function of Example 8.6-1.
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Now since I, + W, = W, we may write this result as

WP sin (We/f2) |
Ryylt) = == =L - :
xrlt) "y W) sin [(W — 2W,)t/2)
.which is an odd function of ¢ as (8.6-14) indicates it should be. Figure 8.6-4
Hlustrates a plot of Ryy(x) for the special case W, = w/e.

It should be noted that if W, = W/2, corresponding to Synlw) having

¢even components aboul w = oL wo, we get Ryy(t) = 0 for all 1. In this case,
X(1) :!nd Y(1) are orthogonal processes; they are also independent if N(/) is
gaussian, ot

0t

*Proof of Propertics of Band-Limited Processes

It is a quite long and involved task to prove all 12 properties of band-limited

processes in detail, Therefore, we shall outline most of the proofs and give the
details on only a few.

. Property 2 is proved by taking the expected value on both sides of (8.6-2).
Since N(¢) is assumed wide-sense stationary with a mean value of zero, then
E[X(1)] =0and E[Y(1)] = Oare necessary and property 2 follows. '

The sequence of developments leading to the proofs of properties 9 and 4 will
now be given. We begin by assuming the usual case W, = W/2 (sec Figurc 8.6-1h)
and observing that the network of Figure 8.6-5a gives X(¢) at its output if the

ideal lowpass filter has a bandwidth W/2 and if wy > W/2.t We shall assume
these conditions true, Thus

Vi(8) = 2N(r) cos (wq 1)
= 2[X(1) cos? (wq 1) — Y(¢) sin (wp ) cos (wg )]
= X(1) + [X(1) cos (2w, 1) — Y(1) sin Qwg 1] (8.6-20)

The filter will remove the bandpass process contained within the brackets so (hat
only X(t) appears in the output. Next, we develop an expression for Ryx(t,t + 1):

Ryx(t, t + 1) = E[X()X(t + )]

= E[J: he)Vy(t = u) du J’w o)Vt + t — ) clv}

J._ Jl h)h(R)R yn(t + 1 — v)4 cos [wolt — u)]

» ¢os [wolt + T — v)] du dv i (8.6-21)

1 These ure idealized values bused on an ideal product device. Practical values of bandwidth and

wy My bc considerubly different. The ussumption W, = /2 is for simple definition of filler band-
width und is not & constraint in propertics 9 or 4,
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o Tt ,
N(I)—.—{ Product T towpass Xt
——*—'— ! filtet

'
Bandwnith = i

2 cos (Wyl) 2
ta)
Ny Product II:::“:;M e ¥(1) Figl'xrc 8.6-5 Block dingrams of networks that
Vatn I'lll\-lr realize (@) X(1) and (b)) Y(1) from a random
* W process N{1) = X{1) cos (w1} = Y1) sin (w1
Bundwabih = -y | Reprodueed  from Peebles (1970) with per-

=2 (wyt) mission  of  publishers  Addison-3esley,

) Advanced Book Program.)

In developing (8.6-21), we have written X(1) and X(f + 1) in terms of the convolu-
tion integral involving li(r), the impulse response of the lowpass filter, substituted
V() from (8.6-20), and uscd the fact that N(r) is assumed wide-scnse stationary.
The further reduction of (8.6-21) is lengthy (Peebles, 1976, p. 157) and will only be
outlined. Il the cosinc factors are replaced by their exponential forms and if
Rynlt + u — v) is replaced by its equivalent, the inverse transform of the power
spectrum 8yp(w), (8.6-21) becomes the sum of four integrals. It can be shown
that two of these integrals, the only two involving ¢, are zero. Thus, Ryy(f, ¢ + 1)
becomes a function of t only and X() is therefore wide-scnse stationary, proving
part of property 1. The two remaining integrals are used to prove properties 9
and 4.

A procedure exactly the same as discussed in the last paragraph can be used
to prove first that Y(t) is wide-sense stationary, thereby providing the proof of
another part of property 1. The development also proves properties 10 and 5; it
is based on the fact that Y(r) is produced by the operations shown in Figure
8.6-5h.

Property 3 next results from use of propertly 5 with © = 0 and the integration
of $xx(m) using property 9.

Properties 11, 6, 8, and the balance of property 1 are proved by considering
the cross-correlation function

Ryplt, £ +7) = E[X(O)Y(t + 0))
= IS[J.." hu)V,(t — u) du J'Q Mo)yVot + T~ v) dv1

cw - -

= — J J’ N Ha)h(p)R yn(t + 1 = 0)4 cos [wolt — )]

+sin [wolt + 1t — v)] dv du (8.6-22)

which is developed in a manner analogous to (8.6-21). Reduction of (8.6-22) as
discussed carlier shows that Ry, (1, 1 + 1) depends only on 1, so that X(1) and Y(1)
arc jointly widc-sense stationary (proving property 1); it also proves properties |1
and 6. Property 8 results from property 6 with 1 =0,

=]
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Proofs of the remaining propertics, 7 and 12, follow [rom consideration of the
autocorrelation function of N(1). It is readily found by using (8.6-2) that

Rygt, 1 + 1) = EQNQ@ON( + 1))
= [Ryy(t) + Ryylt)) Y, cos (g 1)
+ [Ryx(1) = Rpy(0)] Y, cos Qugt + wg1)
— [Ryy(1) = Ryy(0]' 50 (00 7)
— [Ryyl) + Ryylr)] Y, sin Qg -+ @o 1) (8.6-23)

Since N(() is wide-sense stationary by original assumption, its autocorrelation
function cannot be a function of t. Thus, we require

Ryx(1) = Ryy(7) (8.6-24)

and
Ryy(t) = — Ryx() (8.6-25)

in (8.6-23); these results prave property 12 and the first part of property 7.
Finally, recognizing that Ryy(t) = Ryx(=1) for a cross-corrclation function, we
obtain the sccond part of property 7, which says that Ryy(t) is an odd function
of t.

87 MODELING OF NOISE SOURCES

All our work in this chapter so far has related to finding the response of a lincar
system when a random waveform (desired signal or undesired roisc) was applicd
al its input. In every casc, the system was assumed to not contain any internal
sourccs. In particular, the system was assumed to be free of any internally gener-
ated noise. In the real world, such an assumption is never justified because all net-
works (systems) gencrale onc of more types of noise internally. For example, all
conductors or semiconductors in a circuit are known to generatc thermal noise
{sec Scction 7.5) because of thermal agitation of free electrons.t The question
naturally ariscs: How can we handle practical networks that produce internally
generated noise? The remainder of this chapter is concerned with answering this
question.”

We shall find that, by suitable modeling techniques for bo'h the network and
for the external source that drives the network, all the internally generated
network noise can be thought of as having been causcd by the external source. In

t There ate many other 1ypes of internally gencrated noise such as shot noise, partition noise,
induced grid noise, flicker naise, secondary emission noise, €€, The reader is referred to the literature for

more detail (Mumford and Scheibe, 1968; van der Ziel, 19700,
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effeet, we shall replace the noisy practical network with a noise-frec identical
nelwork that is driven by a “more noisy " saurce.
Our wark begins by developing modcls for noise sources.”

Resistive (Thermal) Noise Source

Suppose we have an ideal (noise-free, infinite input impedance) voltmeter that
responds to voltages that fall in a small ideal (rectangular) frequency band dw/2n
centered at angular frequency w. If such a voltmeter is used to measure the
vollage across a resistor of resistance R (ohms), it is found, both in practice and
{heorctically, that a noise voltage e,(t) would cxist having a mecan-squared value
given by

T = 2ka dw ®8.7-1)

Here k = 1.38(1072%) joule per Kelvin is Boltzmann's constant,t and T is tem-
perature in Kelvin. This result is independent of the value of w up to extremely
high frequencics. (See Scction 7.5 where AT/2 cquals 2kTR here. The reader
should justify this fact as an cxercise.)

Now because the voltmeter does not load the resistor, (1) is the mean-
squarcd open-circuit voltage of the resistor iwhich can be (reated as a vollage
source with internal impedance R. In other words, the noisy resistor can be
modeled as a Thevenin} voltage source as shown in Figure 8.7-1a. An equivalent
current source is shown in (b) where

T dw

R (8.7-2)

0 = TT/R? = 2

is the short-circuit mean-squared current.
From Figure 8.7-1a it is found that the incremental noise power dN, delivered
{o the load in the incremental band dw by the noisy resistor as a source is

2(OR, _ 2kTRR, dw

R+ R AR+ R (8.7-3)

dN, =
The maximum delivered power occurs when K, = R. We call this maximum
power the incremental available power of the source and denote it by dN i it is
given by

dN,, = /4R = = (8.7-4)

n

We see from (8.7-4) that the incremental power available from a resistor source is
independent of the resistance of the source and depends only on its physical tem-
perature T. These facts may be used as a basis for modcling arbitrary sources.

t Lndwig Bolizmann (1844-1906) was an Austrian physicist.
{ Named for the French physicist Léon Thevenin (1857-1926).
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Nofsy Noise
resistor free

|

|

| 1

! !

{ | Flgure 8.7-1 Equivalent circuit models of o noisy
'l __} resistor; (u). voltuge model and (h) current model,
e | [Adapted from Pecbles (1976) with permission of

publishers Addison-Wesley, Advanced Book Pro.
gram.]

Arbitrary Noise Sources, Effective Noise Temperature

Suppose an actual noise source has an incremental availab

se ar le noise power dN
open-circuit output mean-squared voltage eX(1), and impedance as mensur;H

bc(WCCII its Outl)u (cl"““als of Z(w) = R (w + (X', 3 ]he v Illb]c N0ISC
© o( ) ((U) avai nois

N o 0
"~ 4R () ®.7-5)
Il we now ascribe all the source’s noise 1o the resistive

impedance by defining an effective
then

; part R,(w) of its output
holse temperature T, such that (8.7-1) applics,

lw
el = 2kT, R () in- (8.7-6)

As wnl!t a purcly resistive source, available power is still independent of the
source impedance but depends on the source’s temperature

L dw
«iNa, = kT, T 8.7-7)

We consider two examples that illustrate efTective noise temperature,

Exump!c 8.7-.1 Two diferent resistors at different physical temperatures are
plnce':d in scries. The elective noise temperature of the series combination as
i noise source is to be found.
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Temperature T,

2
Il

a

Temperature T'y

Figure 8.7-2 Equivalent circuits for
two resistors at different emperatures
in series.

Figure 8.7-2 illustrates Thevenin equivalent circuits for the combination.
Since the individual resistors as sources may be considered independent, their
mean-squared voltages add. Hence,

el + (1) = &)

By applying (8.7-1) to both sides of the preceding expression, we obtain

: o
k[T R, + T3 Ry] ‘%’ = 2U[T(R, + k)] =
or
TR TR,
*T R, + R,

Example 8.7-1 clearly shows that eflective noise temperature of a source is
not necessarily equal to its physical temperature. In the specinl case where 7, =
Ty =T, then T, = T. Morc gencrally, it is truc that any passive, two-terminal
source that contnins only resistors, capucitors, and inductors, all at the same
physical temperature 7', will have an effective noise temperature T, = 7", (Ziemer
and Tranter, 1976, p. 471). The next example can be used to illustrate this Jast
point,

Examyple 8.7-2 We reconsider Example 8.7-1, except we now aillow u capac-
itor to be placed across one resistor as shown in Figure 8.7-3.

By superposition, ¢X(1) is the sum of contributions from each resistor us a
noise source. The mean-squared voltage, denoted ;m. due to the first
resistor is readily seen to be

S (0)

Tl wiRICt

t
eI =
en(0) ‘vl(/)l L juR,C,
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—

Temperature 77y

dn = e Zg(w) D)

Temperatnre Ty

J

Figure 8.7-1 Liguivalent cireuits for a lincar,

\ssive, two-lerminal network of (wo resistors and one

capacitor.

That due to the second resistor is
L) = €30
Thus, by applying {8.7-1) lo the two individual resistor mean-squared voll-
ages, we have
N 27 I 71 TR dw
p = ¢ = 2Kkl 150 R —-—
eI() = en (1) + enal)) 2’\\:1—4_—5;7{35‘}*' T 1] -

Next, we find the output impedance of the nclwork as an overall source by

imagining the noisc sources set to 0. We get

R (1/jwCy) R _
- _RwEY R4 -
ZJw) = Ry + R, + (1/jwC)) 2V 4 joR Gy

R,(1 — joR,C))

Ry + =70 RIC

which has a resistive part
Ry + —_——
Ryfw) = Ra I+ (L)zRfC}

nv\npplying (8.7-6) to the cquivalent souree, We have

R dw
T = 9 -
) = 2LT,[R2 T w’R{C%] n

Finally, we equite X1y for the actual and cquivalent networks to find 73

T TR, -+ Ty R(1 + wiRiCY)
$TTOR, 4+ Ry(l + wIRICY)

e A R -
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The preceding example shows that efeclive noise temperature may be a

_function of frequency. In this case, the available noise power is also frequency

dependent.
Again we sce that T, = T in the above cxample if 7, = 7y = T, as it must

because it is a lincar, passive, two-lerminal network with only resistors and a
capacitor, as noted previously.

An Antcnna as a Noise Source

In practice, all antennas produce noisc at their output because of reception of
clectromagnelic radiation from noise sources external to the antenna.t The
amount of available noisc power dN,, in an incremental band dw depends in a
rather complicated manner on all the space surrounding the antenna, However, it
is possible to modcl the antenna in a simple way by assighing to it an antema
temperature T, chosen so that dN,, and T, arc rclated by (8.7-4). Thus,

dw
d = k7, — -
N, = kT, P (8.7-8)

In general, antenna temperalure may vary with frequency. However, in many
applications T, can be considered constant (with respect to ) because its varia-
tion with frequency over a [requency band comparable to that of the desired
signal being reccived is often small, '

Example 8.7-3 A very sensitive meter that is capable of measuring noise
power in a (small) frequency band | kHz wide al any frequency a/2x is
attached to a microwave antenna uscd in a radio relay link. It registers 2.0
(10718 W when the meter's input impedance is matched to the antenna so
that its reading is maximum. We find the antenna temperature T,.

Since maximum power is extracled from the antenna, the power is its

available power and (8.7-8) gives
-18 - .,
2r dN,, 2r(2)10 20 a9k

= —
~

T.= kdo  1.38(10**)2n(10%) 13

8.8 INCREMENTAL MODELING OF NOISY NETWORKS

In this scction we shall show how a noisy network can be modceled as a noise-free
network excited by a suitably chosen external noise source. We also develop
some measures of the “noisincss” of a network. All our work is applicable to an

incremental band do.

t There are many sources of external noise; several of these arc described by Peebles (1976, pp.
463-464).
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o Figure 88-1 A linear  two-port

network driven by u source of
impedance Z,.

Available Power Gain

Consider first a linear, noise-lree, (wo-port (4-terminal) network having an input
impedance Z; when the outpul port is open-circuited. Its oulput impedance,
found by looking back into its output port, is Z, when being driven by a source
with source impedance Z,. The source open-circuit voltage is e,(t) and the
nelwork’s open-circuit output voltage is e,(t). The applicable network is illus-
trated in Figure 8.8-1.
The available power, denoted dN,,, of the source is
)
dN,, = ;,’,g—') (8.8-1)
where R, is the real part of Z,. This power is independent of Z,. The available
power, denoted dN,,,, in the output due to the source is

_0

4R,
where R, is the reul'purt of Z,. This power does depend on Z, through its influ-
cnce on the gencration of e,(t) but does not depend on the load impedance Z,.

We. define the available power gain denoted G, of the two-port network as the
ratio of the available powers

dN,,, (8.8-2)

dN,, ~ R,eXi) ®.8-3)
' When a cascade of M noise-free networks is involved where M = 1,2,...,0t
is casy to see that the overall availuble power gain G, is the product of available
power gains G, m = 1,2,..., M, il G, is the gain of stage m when all preceding
stages are conncected and treated as its source (see Problem 8-65), Thus,

G, = [] G, (8.8-4)

Equivalent Networks, Effective Input Noise Temperature

Colnsider next the casc of a lincar two-port network with internally generated
noise. The network is assumed to be driven from a source with effective noise
temperature 7; as shown in Figure 8.8-2a. If G, is the network’s available power
gain, the available output noise power due to the source alone is

dw

AN, = G,dN,, = G kT, —
2n

(8.8-5)
{rom (8.8-3) and (8.7-7).
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o Nois .
Souree temperature 7 — =t "‘:&):”k g (1N oy + AN 2 d N,
()
Somve tenpetatare Uy 0, e :‘::‘;’:;w bt (N VAN NG
Lo -
thy
i, 4w X -
3y Noise-free UNyoy + AN = dN,y
network
7, 4
kT, 2x
{¢)

Figure 8.8-2 A network with internally generated noise driven from a noise source (a), and equivalent
noise-free networks (b) and (¢). [ Reproduced frum Peebles (1976) with permission of publishers Addison-
Wesley, Advanced Book Program.}

Total available output noise power dN,, is larger than dN,, because of inter-
nally generated noise. Let AN,, represent the excess available noise power at the
output. We shall imagine that AN,, is generated by the source by defining effec-
tive input noise temperature T, as the temperature increase that the source would
require to account for all output available noisc power. 1t therefore follows that

AN,, = G kT, dw (8.8-6)
2n

With this definition, the noisy network is replaced by a noise-free network driven
by a source of temperature 7, -+ T, as shown in Figure 8.8-2b,

It is somewhat helpful to model the available source noise power by usc of
lwo inputs, as shown in Figure 8.8-2¢. The sccond input represents the internally
generated noise due to the network, The representation is convenient in visual-
izing noise clects when networks are cascaded as illustrated in Figure 8.8-3, By
cquating expressions for output available noise powers in the cascade and equiv-
alent network, the effective input noise temperature T, of the cascade is deter-

mined to be
T g ot
PR Tent (8.8-7)

P o= T g2
e=ladt G, + G,G, e GGy Gyymy

where 1, and G,,,m =1, 2,..., M, arc the cflective input noise temperature and
availuble power gain, respectively, for the mth stage when all m =1 previous
stages are connected and form its source.

An cspecially useful application of (8.8-7) is to the cascade of stages in an
amplifier. We develop an example.

o
[t
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U Gpn "
Network 1 n

Source
M + AN,

({21
VFigure 8.8-3 () M networks in cascade and (h) the equivalent network. [Reproduced from Peebles
(1976) with permission of publishers Addison-Wesley, Advanced Book Program.)

Example 8.8-1 The stages in a three-stage amplificr have cflective input noisc
= 1350 K, T,y = 1700 K and T,y = 2600 K. The respective
=16, G, = 10, and G, = 6. We find the cllee-
f the overall amplificr by use of (8.8-7):

temperatures Ty
available power gains arc G,
tive input noisc temperature 0

1700 2600
T =13504—+ 7 = 1350 4 106.25 + 16.25
o= 1350+ 7 o) +
= 14725 K
We sce that, even though T and T,y arc larger than T,,, the contributions to
T, by the second and third stages arc much smaller than that of the first stage”
pecause of the gain of previous stages. In gencral, it is clear from (8.8-7) that
an amplifier should have its lowest noise, highest gain stage first, followed by

its next best stage, etc, for best noisc performance.

Spot Noise Figures

Elfective input noisc temperature T, of a network is
formance. Better performance corresponds (o lower values of T,. Another
measure of performance is incremental ot spot noise figure denoted by F and
defined as the total incremental available output noisc power dN,, divided by the
output noisc power due to the source alonc:

a measure of its noisc per-

incremental available

dN AN... + AN AN
R = 20 = 208 a0 = ‘ "0 8.8_8
F=iNn~  dNe * N om (®8-8)

An alternative form derives from the substitution of (8.8-5) and (8.8-0):

F l+T'
= T

A A

e o

(8.8-9)
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ln.:m ideal network, T, =0 so F = 1. For any real network, F is larger than
unity.

In practice, a given network might be driven by a varicty of sources. For
cxample, an amplifier might be driven by an antenna, mixer, attenuator, other
amplificr, etc. Itsspot noisc figurc is therefore a function of the cflective noise tem-
perature of the source. However, by defining a standard source as having‘:l stan-
dard noise temperature T, = 290 K and standard spot noise figure Fq, given by

T,
Fo=1+43" (8.8-10)

a nelwork can be specified independent of its application.
' When a network is used with the source for which it is intended to operate F
z\éllﬂl ;))c calicd the operating spot noise figure and given the symbol F,,. From

~

Fop=1+7 (8.8-11)

~)

-

Operating and standard spot noisc figures can also be developed for a
caseade of networks (scc Problems 8-66 and 8-68).

E).mmplc 8.8-2 An enginecr purchases an amplifier that has a narrow band-
wnfjlll of 1 kHz and standard spot noisc figurc of 3.8 at its frequency of oper-
z.mon. The amplificr's available outpul noisc power is 0.1 mW when its input
is connecled to a radio receiving antenha having an antenna temperature of
80’ K. We find the amplifier's input effective noise temperature T., its oper-
ating spot noisc figure F,, and its available power gain G,. ’

T, derives from (8.8-10):

T, = Ty(Fo — 1) = 290(3.8-1) = 812 K
We can now use (8.8-11) to obtain F.:

812
Fop=1 + 50 = 11.15

From (8.8-5) and (8.8-6) we add to get total available output noise power:

KT, + T)G, dw

de = dN." + ANM =
2

SO

2n dN,, 27(0.1)10*

G, = - _
=T+ T)dw  138(10° P)812 + 80)2n(10%) ~ 8.12(10'%)

T
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8.9 MODELING OF PRACTICAL NOISY NETWORKS

In a realistic network, the frequency band of interest is not incremental, There-
fore such quantities as available power gain, noise temperature, and noise figure
are not necessarily constant but become frequency dependent, in general. In this
seclion we extend the earlier concepts based on an incremental frequency band to

include practical networks, by defining average noise temperatures and average
noise figures.

Average Noise Figures

We define average operating noise figure F,P as the total output available noise °

power N,, from a network divided by the rotal output available noise power N
due to the source alone. Thus, '

20

- N,,
pw = ._Nm (8.9-1)
N, is found by integration of (8.8-5):
Ny = —k T, G, dw 8.9-2
Aoy 2n o s Uy ¢ ( e )

We may similarly use (8.8-8) with (8.8-5) to determine N,.:

N, = f dN,, = f F,, dN,, =% f Fo, T,G, dw (8.9-3)
0 Jo 2n o
Thus, from (8.9-1)
_ [3’ Fou .G, dw
w= (8.9-4)

In many cases the source’s temperature is approximately constant, Operating
average noise figure then becomes

£, = [3° Fop G, dw

¢ G, dw

An antenna is an example of a source having an approximately constant noise
temperature (so long as the surroundings viewed by the antenna are fixed),
Another example is a standard source for which T, = Ty = 290 K is constant. We
define average standard noise figure Fy as that for which the source js $tandard, In

this case
F. = &M R (8.9-6)

°" (26, dw

as can be shown by repeuting the steps leading to (8.9-4),

T, constant (8.9-5) -

: .
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Average Noise ‘Temperatures

From the delinition of eliective inputrnoisc temperature 7, it follows that the
incremental available output noise power from a network with availuble power
gain G, that is driven by a source of temperature T, is

lw
ANy, = G KT, + T) 5= (8.9-7)
Total available power is therefore .
«©
N, = J‘de" = L J GAT, + T) dw (8.9-8)
uo o 2n o

Next, we define average effective source temperature T, and average effective
input noise temperature T, as constant temperatures that produce the same total
available power as given by (8.9-8). Hence

(T.+T) J G, dw (8.9-9)
o

Nau=

¥l=

By equating (8.9-9) and (8.9-8) on a term-by-term basis, we gel

e T,6,dw

T = 8.9-10)
s {8 G, dw (
and
T = ‘};TZ;G",Z,(U (8.9-11)
o afl

17 (8.8-10) and (8.8-11) are substituted into (8.9-6) and (8.9-4), respectively, we
obtain the interrelationships

(8.9-12)
(8.9-13)

By cquating T, from these last two expressions, we obtain alternative interrela-
tionships

. 1 o
Fo=1+ ﬁ (Fyp = 1) (8.9-14)
Fo=1 —T‘—’ (Fo=1) (RY-15)

3
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Average cffective noise temperature is a very uscful concept for modcling
network noise in a simple way. To demonstrate this fact, note that (8.9-9) can be

written as

k - = @ G, (w) dw
=—( 1q{a 9-16
Nuw = 5= (7 + TG0) [§ Sl 0 (89-16)

where g is the centerband angular frequency of the function G, (®). Since G {w)
is the available power - gain (or power transfer function) of the nctwork, we

identify
W, = !0 G (w) do (8.9-17)
G.(wo)
as the noise bandwidth of the network, by analogy with (8.5-6). Fgquation (R.9-16)
becomes

- W,
N., = Glogk(Ty + T 53 (8.9-18)

which says that actual available output noisc power is that duc to a source with
constant emperature T, o T, driving an cquivalent noise-free network with an
ideal rectangular transfer function of bandwidth Wi(rad/s) and midband available
power gain G,(wo). This result represents a very simple network modcl.

Modeling of Attenuators

Consider a source of average cflective temperature T, driving an impedance-
matched lossy attenuatof with power loss L (a number not less than onc) at all
frequencics. The atlenuator has a physical temperature Tp. It can be shown
(Pecbles, 1976, p. 463; Mumford and Scheibe, 1968, p. 23) that the average effec-

tive inpul noise temperature of the attenuator is
T,=TAL =1 (8.9-19)
From (8.9-12) and (8.9-13) the applicable average noisc figures arc

Fo=1+ Ly (8.9-20)
To
Foo=1+ —TI'- (=" 8.9-21)

Note that if T, = Toorif T, = T,, the average noise figure of the attenuator is
just cqual to its loss.

Model of Example System
Onc of the most important applications of the theory of this and the preceding
deling receiving systems. As illustrated in Figurc 8.9-1a, con-

{wo scctions is in mo
sider a receiving antenna that drives a receiver amplifier through various broad-

Anlenna Physical
temperature T. temperature
T

Noise-free
loss L

KT (L = DWWy kT‘E Wy
Ix dn

(a)

Ciain = Q'J_(,‘ﬁ_q_)

Nolse-lrer

KTyt 2
rystem

~

h
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Available power
gain = Galona)

Naise-free
receiver

Figure 8.9-1 A modecl of a receiving syslem (a) and its equivalent (h). [Rrprmlucedjmm Peebles (1976),
with permission of publishers Addison-Wesley, Advanced Book Program.}

band components having an overall loss L. These components (which may
include microwave transmission lines, isolators, or other devices) arc all assumed
{0 have physical temperature T,. The antenna temperaturc is T, and the receiver
average effective input noise temperature is Tg. The recciver's noise bandwidth is
W, and it has a centerband available power gain Gglwo). We demonstrate that
the system is equivalent to that shown in Figure 8.9-1b.

The equivalent system has the same noise bandwidth as the actual system
and has a centerband available power gain Grlwo)/L. Tt is driven by a simple
source with system noise temperature Toys- The available output noise power in
the actual system is the sum of the antcnna's contribution plus those due to
cxcess noises in the attenuator and recciver. By using earlicr models, this noise

power is
G W,
N T, 4 il = 1) T £ A (8.9-22)
For the cquivalent system
_ GglwgW,
N.. =kT, 2ol N -
» o T2 (8.9-23)
By cquating the above two cxpressions, we obtain
=T+ Tl = N+ Te L (8.9-24)

From (8.9-24), the average efective input noisc temperature of the system laken

at point A in Figure 8.9-lais

To=TUL - 1)+ TeL (8.9-25)
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From (8.9-13) the average system operating noise fligure is

T, T,
Fpo=1+ ?f““ 1)+~TfL (8.9-26)

Example 8.9-1 An antenna with temperature T, = 150 K is connected to a
receiver by means of a waveguide that is at a physical temperature of 280 K
and has a loss of 1.5 (1.76 dB).t The receiver has a noise bandwidth of
Wy/2n = 10° Hz and an average eflective input noise temperature Ty =
700 K. We determine the system’s noise temperature Towss its operating

average noisc figure F,,, and its available output noise power when
Grlwo) = 10" (120 dB). '
From (8.9-24)

T, = 150 4 280(1.5 — 1) + 700(1.5) = 1340 K
From (8.9-26)

280 700
F o= —_ — —_— ~
w= 1T (S = D+ 5L =893  or 951D

Finally, we use (8.9-23) to find N,,:

6
N,, = 1.38(107%)1340.0(10'?) -;—Qg = 123 mW

PROBLEMS

8-1 A signal x(t) = u(t) exp (—ar) is applied to a network having an impulsc
response h(t).= Wu(t) exp (— Wi), Here « and W are real positive constants and
u(+) is the unit-step function. Find the system's response by use of (8.1-10).

8-2 Work Problem 8-1 by using (8.1-11) to find the spectrum Y(w) of the re-
sponse. '

8-3 A rectangular pulse of amplitude 4 and duration T, defined by

A O<t<T
x(t) =
0 clsewhere

is applied to the system of Problem 8-1.
(@) Find the time response ().
(b) Sketch your response for W = n/T and W = 2n/T.

t A number L expressed in decibels (dB), denoted Ly, is related to L as a numeric (power ratio)
by Ly = 101og,o(L).

LINEAR SYSTEMS WITIT RANDOM INPUTS 241§

8-d A filter is called gaussion i it has o transler function

|
H{w) = —=—
@ V2tWn,

where W,,,, is the root-mean-squared (rms) bandwidth.

(a) Sketch H(w). :

(b) How is W,,, related to the 3-dB bandwidth?

8-5 Two systems have transfer functions H,(w) and H(w).

(a) Show that the transfer function H(w) of the cascade of the twq, which
means that the output of the first feeds the input of the second system, is H(w) =
H (()H y{(w).

(b) For a cascade of N systems with transfer functions H (w), n = 1,2, ..., N,
show that .

e~ W/ 2IW me?

~
Hw) = [] Hw)
n=|

*8.6 Work Problem 8-1 if the output of the given network is applied to u second
identical network and the response is taken from the second network,

8-7 The impulse response of a system is

Pe " .0 <!
) = {0 (<0

By use of (8.1-8) or (8.1-10), find the responsc of the network to the pulse

1) = {:

where 4 and T are real positive constants.
8-8 Work Problem 8-7 if the network’s impulse response is

R
Iy = {;‘

8-9 Given the network shown in Figure 18-9.
(a) Find the impulse response h(t).
(b) By Fourier transforming (1), find H(w),
(¢) Sketeh hie) and ().

O<t<T
clsewhere

0<t
(<0

______________________ —

r .
| {
fnput x(0) ‘I + hd '-IJ"_(-)d,t—f—-b—()ulpuly(ll
| |
|
Network |
i 8
i Delay 1 Hiw) |
| S vogrepmepaspusousyn R,

Figure P8-9 [Reproduced from Peebles (1976), with permission of publishers Addison-Wesley, Advanced

Bouk Program.)
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8-10 Find the transfer function of the network of Figure P8-9 by usc of (8.1-13).
8-11 By using (8.1-13), find the transfer function of the network iftustrated in
Figure P&-11. Assume that no loading is prescnt due to any output circuitry.

n
_I_
Input C Quipw
f S e S iad t] Figure PH-11

8-12 Work Problem 8-11 for the network of Figure P8-12,

(&Y
tnpat R T ¢, Outpul

o—- +——0 ! Figure P8-12
*8.13 («) Work Problem 8-i1 for the network of Figurce PR-13.
(h) Under what condilions will the nctwork behave approximafcly as @
lowpass filter?
(¢) Find a relationship between Ry, C, Ry, and C, such that the network
behaves at all frequencics as a purc resistive attenuator,

loput G Outt Figure P8-13 [Reproduced  from Peehles

T (1976), with permission of publishers Addison-
Wesley, Advanced Book Program.)

O &—0

8-14 Given the network shown in Figurc P8-14. .
(a) !f the output causes no loading on the network, find the transfer function

H(w). )
(h) "Deline wg =1/ /LC and Qo = R/w, L. Plot |H(w)]? as a funcllon.of
N = (= we)Qolw for Qo large and w near wo. (Hint: Use the approximation
w = w, lor the most significant values of w when Qo is large.)

R

Tt [ Gty 1 Quiput

S

Figure PR-14

o EAm i
dlitnatts

o e Sastalsaenth

ST ek s
" -

A e Y

L
AELSVTE S

e~

2 e

LINEAR SYSTEMS WIETIL RANDOM INPUILS 243

*8-15 (a) Find the transfer function H(w) for the netwark shown in Figure P8&-15.
(h) Define wy = l/\/-I‘_C_' and Qg = m(R + R)C and assume @, » 1, so
that the values of @ for which H(w) is significant correspond 1o @ = w,. Use
these facts to obtain an approximation for I(w).
{¢) If an impulse is applicd to the network, find an expression for the approx-
imate energy absorbed by R, (Hint: Use Parseval’s thcorem).

L R ¢
Input vir) R, Output i)
[ o— _— Figure PR-18

8-16- A class -of filters called Butterworth fillers has a power transfer function
defined by
|
P R, S—
HI) ™ = 0wy
where 11 =1, 2, ..., is a number related to the number of circuit clements and W
is the 3-dB bandwidth in radians per second. Sketch | H{@))* forn = 1,2,4,and 8
and note the behavior. As n-» oo, what does | H{w) [* become?
8-17 Determine which of the following impulsc responses do not correspond (o a
system that is stable, or realizable, or both, and statc why.
(a) h(t) = u(t + 3)
) M) = u(ne™"
(¢) h(t) = &' sin (wq 1) g 4 real constant
(d) hit) = u(r)e " sin (g f) g real constant.
8-18 Use (8.1-10) and prove (8.1-15).
8-19 Show that {8.1-16) must be truc if a lincar time-invariant system is to be
stable,
8-20 A system is defined by

wo) = f x(§) dé

for all x(f) for which the integral exists. Show that the system is lincar, time-
invariant, and causal,
8-21 A random process

X(1) = A sin (wg! + ©)
where A and wg are real positive constants and © is a random variable uniformly
distributed on the interval (=, n), is applicd to the network of Problem 8-1.
Find an expression for the network’s response process using (8.2-3).
8-22 Work Problem 8-21 for a network with impulse response

I(t) = u(tyre ™!
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8-23 A random process X(1) is applied to a linear time-invariant system. A rc-
sponse Y(f) = X(1) = X(t — t) occurs where 7 is a real constant.

(a) Sketch a block diagram of the system.

(b) Find the system’s transfer function.

8-24 Work Problem 8-23 if the response is

Y() = X(t — 1) + J“xu - &) d¢

L}
where (, and r, are real constants,
8-25 A random process X(t) has an autocorrelation function

Ryylt) = A% + Be~ MMl

where 4 ur}d B arc positive constants. Find the mean value of the response of a
sysiem having an impulse responsc '

e~ 0<t
W) =
0 {O t<0

where W is a real positive constant, for which X(¢) is its input.
8-26 Work Problem 8-25 for the system for which

- Wi
) = {le 0<t
0 1<0

8-27 Work Problem 8-25 for the system for which

LW

M) = {c sin{wet) O<t

0 t<0
where W and w, are real positive constants,
8-28 VYhitc noise with power density S W/Hz is applied to the system of Problem
8-25. Find the mean-squared value of the response using (8.2-7).
8-29 Work Problem 8-28 for the system of Problem 8-26.
8-30 Work Problem 8-28 for the system of Problem 8-27.
8-31 Let jointly wide-sgnsc stationary processes X (f) and X,(f) cause responscs
Y1) and Yy(r), respectively, from a linear time-invariant system with impulse
response lr(l): If the sum X(6) = X () + X (1) is applied, the response is Y(1). Find
expressions, in terms of i(t) and characteristics of X ,(¢) and X ,(t), for

(@) E[Y]  (b) Ryylt,t + 1)
8-32 Show that the cross-correlation function for the output compo
\ ¢ s Y,

and Y;(t) in Problem 8-31 is given by P ponents 10

w w
Rypflty t + 1) = J j Ry, x,{t + u = 0)h(u)h(v) du dv
-w -

= RY:Y:(T)
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8-33 Two separate systems have impulse responscs Iy(t) and hy(1). A process
X,(1) is applied to the first system and its response is Y(1). Similarly, a process
X ,(1) invokes a response Y, (1) from the second system. Find the cross-correlation
function of Y,(t) and Yy(t) in terms of h,(1), hy(t), and the cross-correlation func-
tion of X ,{1) and X ,(r). Assume X (1) and X ,(0) arc jointly wide-sensc stationary.

8-34 Two systems arc cuscaded. A random process X(t) is applicd to the input of
the first system that has impulse response hy(1); its response W(r) is the input 1o
the sccond system having impulse response hy(t). The second system's output is
Y(1). Find the cross-correlation function of W(1) and Y(1) in terms of ;i (1) and
Iiy(1), and the autocorrelation function of X(t) if X(1) is wide-sensc stationary.

8-35 Let the (wo systems of Problem 8-34 be identical, each with the impulse
response given in Problem 8-26. 1f E[LX(1)] = 2 and W = 3 rad/s, find ELY(N).

8-36 The random process X(t) of Problem 8-21 (the signal) is added to white
noise with power density . ¥o/2, where .7 is 2 positive constant, and the sum is
applicd to the network of Example 8.1-1.

(@) Find the power spectrums of the output signal and outpul noisc.

(b) Find the ratio of output signal average power 10 oulput noise average

power.
(¢) What value of W = R/L will maximize the ratio of part (b)?

8-37 A rundom process X (1) having autocorrelation function
Ryy(z) = e~k

where P and a are real positive constants, is applied to the input of a system with

impulse response
We™ M 0<t

ht) =

) {0 t<0
where W is a real positive constant, Find the autocorrelation function of the
network’s response Y(1).
8-38 Find the cross-corrclation function Ry,(t) for Problem 8-37.
8-39 For the processes and system of Problem 8-31, show that the power spee-
trum of Y(t)is

Syp(w) = | (@) F[8x,x,{0) + Sx,x,{0) + Sy x, () + Sy ()]

8-40 If X (1) and X,(1) arc statistically independent random  processcs in
Problem 8-31, use the results of Problem 8-39 to show that the output power
spectrum becomes

Ser(@) = | W) P[Sx, x,(®) + Sx,x,(c0) + 4nX X, 8(w))
8-41 Rework Example 8.4-1 when the network is replaced by two identical net-
works in cascade, that is, when H(w) = [1 + (joL/R)]™%
8-42 Show that (8.4-7) and (8.4-8) are true.
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8-43 A nctwork with transfer function H{w) = jw is a differentiator; its input is
the wide-sense stationary random process X{/) and its output is X(1) = dXn/dt.

(@) By using (8.4-7), show that

1
ARy (1)
Ryx(t) = '_{\l—f_’

(h) By using (8.4-1), show that

AR ¢ y(1)

Ryelty = - 2

dt
8-44 Given the random process

1 1+T
Y0 =57 L X(9) d

where X{t) is a wide-sense stationary process, Usc (8.2-1) to show that the power

spectrum of Y(1) is

Syyl@) = sxxuu)[ﬂ%‘;i—’] '

§-45 Prove (8.5-6).

8-46 A random process X{1) has a power spectrum Sxx(w) that is nonzero only
for — Wy <w < Wy, where Wy is a real positive constant. X(1) is applied to a

system with transfer function
H{w) =1 + jlw/Wy) — Wy <0< Wy

v in the network's response Y(1) in terms of the rms

Find the average power Py  of L
and the average power Pyy in X

bandwidth of Sxxlw), the constant Wy,
Discuss the effect of letting Wy— 0.

8-47 Find the noisc bandwidth of the system having the power transfer function

' 1
\HO) = T T

where W is a real positive constant,

8-48 Work Problem 8-47 for the function

{
V) = 5wy
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8-49 Work Problem 8-47 for the function

1
N
I = 5w

8-50 White noisc with power density A7of2 is applicd to a lowpass network for
which | 71(0)] = 2; it has a noise bandwidth of 2 MHz If the average output noisc
power is 0.1W ina 1-Q resistor, whatis A7o?

8-51 While noisc with power density .A70/2 is applicd to an ideal lowpass filter
with bandwidth W.

(¢) Find and sketeh the autocorrelation function of the responsc.

(h) If samples of the output noise taken at times ¢, = nn/W, n=0, +1,
+2,..., arc considered as values of random variables, what can you say about
these random variables?

8-52 Work Problem 8-51 for an ideal bandpass filter centcred on a {requency
wo/2n that has a bandwidth W. Assume sample times are now {, = n2n/W,n =0,
+1, +2,....
*g.53 A band-limited random process N(f) has the power density spectrum

P cos [n(w — we)/W] —WR<w-w, < W2
Snalw) = { P cos [n(w + we)/ W] ~W/R2<Sw+we < W)2
0 elscwhere

where P, W, and w, > W are real positive constants.

(a) Find the power in N(1).

(b) Find the power spectrum Syx(w) of X(t) when N(1) is represented by
(8.6-2).

(¢) Find the cross-corrclation function Ryy(1).

(d) Arc X(1) and Y(1) orthogonal processes?

*g.54 A band-limited random process is given by (8.6-2) and has the power
density spectrum shown in Figure P8-54.

{a) Sketch §xx(w).
(b) Sketch Sxy(w),ifa sketch is possible.

Sawlw)
wy > W
P o
A /1\
- /
Wo W, - !}i We we * %’ w

Iigure P8-54
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*8.55 Work Problem 8-54 for the power spectrum of Figure P8-55.

Sanlw)

Wi-W,
Wy > W, |-4—
'J

Wy o]

Figure 1’8-55

*8-56 Use (8.6-2) and derive (8.6-23),

8-57 A sonar echo syslem on 4 submarine transmits a random noise n(t) to deter-
mine the distance to another “target” submarine. Distance R is given by vr,/2
where v is the speed of the sound waves in water and 15 is the time it takes the
reflected version of n(r) to return. Its block diagram is shown in Figure P8-57.
Assume that n(t) is a sample function of an ergodic random process N(¢) and T is
very large,

(a) Find V in terms of a correlation function of N(2).

(b) What value of the delay 1 will cause ¥ to be maximum?

(c) State in words how the submarine can determine the distance to the
target,

Round- (np delay = ry

nie)
Transmitter
[ | <J ),), o
v
Y |\ “ ‘
\ \
Delay 1o |lyx!rophones
\
Product Distance

!

Vo S5 e

Figure P8-57
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8-58 ‘T'wo resistors with resistances R, and R, are connected in paradiel and hive
physical temperatures T} and Ty, respectively,

(a) Find the effective noise temperature T, ol an equivalent resistor with
resistance equal to the parallel combination of R, and R,.

) T, =T, =T, whatis T,?
8-59 Work Problem 8-58 for three resistances R,, R, und R, in parallel when
they have physical temperatures Ty, Ty, and Ty, respectively.
8-60 Work Example 8.7-2 if a sccond capacitor is placed across the resistance
R,. Is it possible to choose C, so that 7, is independent of frequency.?

*8-61 Find the ¢licctive noise temperature of the network of Figure P8-61 il R,

and R, are at physical temperatures 7y and 75, respectively,

at al '
T, 7 T
—o  Figure P'8-61

8-62 A two-port network is illustrated in Figure P8-62. Find its available power
gain.

Temperature = 7,

Temperatare 7y

Nuivy fwoepnt
S Figure 1°8-62

8-63 Il the two-port network of Problem 8-62 has a physical temperature 73, and
is driven by a source of resistance R, and effective noise temperature 7;, what is
the cflective input noise temperature of the network?
8-64 If the output of the network of Problem 8-62 is connected to the input of a
sccond indentical network, what is the available power gain of the cascade if
Ri=5Q R, =30Qand R, =7
8-65 Show that (8.8-4) is valid.

8-66 In a cascade of M network stages for which the mth s(zu,c has available
power gain G,, and operating spot noise figure F,,,, when driven by all previous
stages as its source, show that the overall cascade's operating spot noise figure is

( ) 7;M-I)(Fa M"'l)
Fpp= goiliee2 T o M1V oph
Foms + 1.6, * T:Gsz < Gy

where Ty, -, is the temperature of all stages prior to stage m treated as a source.
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8-67 An amplifier has a standard spot noise figure Fo = 6.31 (8.0 dB). An engi-
neer uses the amplifier to amplify the output of an antcnna that is knows to have
an antenna temperature of T, = 180 K.

(@) Whatis the cflective input noisc temperature of the amplifier?

(b) Whatis the operating spot noise figure?
8-68 In a cascade of M stages for which Fom M = 1,2,..., M, is the standard
spot noisc figure of stage m which has available power gain G, show that the
standard spot noise figure of the cascade of networks is

Fg, =t Fay—1 Fon — |
Foo=Fop + 02 +_9,‘__.+__.___°_!“__._-——
o= ot G, GG, GG, Gu-1

8-G9 An amplifier has three stages for which 7, = 200 K (first stage), T =
450 K, and T,y = 1000 K (last stage). If the available power gain of the second
stage is 5, what gain must the first stage have to guarantee an effective input
noise temperature of 250 K?
8-70 An amplificr has an oper
source of cficetive noisc temperature 225 K.
(a) What s the standard spot noisc figure of the amplifier?
) fa matched attenuator with a loss of 3.2 dB is placed between the source
and amplifier’s input, what is the operating spot noise figure of the altenuator-
amplificr cascade if the attenuator’s physical temperature is 290 K?
(¢) What is the standard spot noise figure of the cascade in (h)?
g-71 Onc manufacturer sclls a microwave receiver having an operaling spot
noise figure of 10 dB when driven by a source with effective noise temperature
130 K. Another sclis & recciver with a standard spot noise figure of 6 dB.

(¢) Find the clTective input noisc temperatures of the Lwo reeeivers.

(h) All other parameters, such as gain, cost, ctc, being the same, which
recciver would be the best 1o purchase?
8-72 What is the maximum average clfective input noisc femperature that an
amplifier can have il its average standard noise figure is to not cxeeed 1,77

8-73 An amplifier has an average standard noise figure of 2.0 dB and an average
of 6.5 dB when used with a source of average clfective

ading spot noise figurc of 10 dB when driven by a

operating noise ligure
source temperature T, What is T,2
8-74 An antenna with average nois
through various microwave clemen
matched atlenuator with an overall loss ©
275 K. The overall system noise temperature is T,y = 820 K.

(a) What is the average cffective input noise temperature of the receiver?

(h) What is the average operating noise figure of the atlenuator-recciver

cascade?
(¢} What is the available outpul noise power of the recc

able power gain of 110 dB and a noisc bandwidth of 10 MHz?

¢ temperature 60 K connccets to & receiver
ts that can be modeled as an impedance-
{24 dBand a physical temperature of

iver if it has an avail-

8-75 1f the antenna-atlenuator ©

source, what is its average cffective noise temperature?

ascade of Problem 8-74 is considered as a noise

ators, one with loss L, at temperature T attached to the antenna output, and
onc wn.h loss L, at temperature Ty that connecls 0 the receiver, Derive a new
expression for T,,, analogous to (8.9-24).

ADDITIONAL PROBLEMS

8-77 A network is driven by a resistive source as shown in Figure P8-77. Find:
(@) Z,, (b) Z,, and {c) G,. () Is the network a malched attenuator?
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8-76 The loss L in Figure 8.9-la is replaced by two cascaded matched attenu- ]

“ ! oo [
'| AN {I .
Suurce | 100 61 W I Load
r’ 1 :"| S0 11
- t -
: .
L Network | :
______________ i 8
Ro=100) 7, p }
Figure P8-77 ’ %
A P
8-78 A nctwork has the transfer function ’ 2
2ejmllo
H(w) = ———5
(20 + jw)
{a) Determine and sketch its impulsc responsc. (Hint: Usc Appendix 13)
(b) Is the network physically realizable? ’
(c) Determine if the network is stable by evaluating [ in (R.1-16).
*§.79 Show that the impulsc res identi
: : sponsc of a cascade of N i (s, ¢
with transfer function ' e identieal networks, cach
H,(w) = (e + jw) . '
where a > 0 is a constant, is given by
it [ Nt i
(1) = u(t)] —— - ¥
W0 (>(N_1)chp( ) :

8-80 A signal
x(t) = u(t) exp (—af)
is applied to a network having an impulse response

(1) = u()W 2t exp (= Wi)

Here ¢ > 0 and W > 0 are real constants B !
e o ) its. By use of (8.2-2) find the network's
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8-81 Work Problem 8-80 assuming
h(t) = u(1) W32 exp (— Wi)

8-82 A stationary rundom process X(t) is applied to the input of a system for
which

() = 3u(n)e* exp (—81)
Il ELX(1)] = 2 what is the mean value of the system’s response Y()?

8-83 Work Problem 8-28 for the system of Problem 8-82,

8-84 White noise with power density J¥o/2 js applied to a network with impulse
response

h(t) = ()Wt exp (— Wr)

where W > 0 is a constant, Find the cross-correlutions of the input and output.
8-85 Work Problem 8-84 for a network with impulse response.

h(t) = u(t)Wt sin (wq t) exp (— W)
where wg is a constant.,
8-86 A random process X(r) is applied to a network with impulse response

h(t) = u(t)t exp (= bt)

where b > 0 is a constant. The cross-correlation of X(f) with the output Y(/) is
known to have the same form:

Ry (1) = u(t)r exp (—br)
(a) Find the autocorrelation of Y{t).
(b) What is the average power in Y(1)?
8-87 Work Problem 8-86 except assume
W) = u(1)t? exp (—b)
and
Ryy(7) = u(r)r? exp (—br)
8-88 Two identicul networks are cascaded. Each has impulse response
I(t) = u(1)3t exp (—41)

A wide-sense stationary process X(1) is applied to the cascade’s input.
(a) Find an expression for the response Y(t) of the cascade.
(b) I E[X(1)] = X = 6, find E[Y(1)].

8-89 A stationary random process X (f), having an autocorrelation function
Ryx(r) = 2 exp (—4|1{)

is applied to the network of Figure P8-89. Find: (a) 8yx(cw), (b) | H(w)]?, and
() Syy(w).
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8-90 A wide-sense stationary process X(f), with mean value 5 and power spec-
trum

Sy x() = 50r8(w) + 3/[1 + (w/2)*)
is applied Lo a network with impulse response
It) =4 exp (—4}t])

(¢) Find H(w) for the network.

Determine: (b) the mean ¥, and (c) the power spectrum of the response Y(1).
8-91 White noise, for which Ry(r) = 10725(z), is applicd to a network with
impulse response

h(t) = u(1)3t exp (—41)

(a) Use (8.2-9) to obtain the network’s outlput noise power (in a f-ohm
resistor),

(b) Obtain an expression for the output power spectrum,
8-92 White noisc with power density . 4/2 = 6(107%) W/Hz is applied to an
ideal filter (gain = 1} with bandwidth W (rad/s). Find W so that the output's
average noise power is 15 wallts.
8-93 An ideal filter with a midband power gain of 8 and bandwidth of 4 rad/s
has noise X() at its input with power spectrum

$ xx{e0) = (50//87) exp (—w¥/8)

What is the noisc power at the network’s output?

8-94 White noise with power density 47/2, 475 > 0 a conslant, is applied to a
lowpass nctwork for which H(0) =2 and its noisec bandwidth is 2 MHz Il
average oulput noise power is 0.1 W in a [-ohm resistor, what is Ji"y?

8-95 A system’s power transfer function is

| H(w)]? = 16/[256 + w*]

o

o
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(@) What is its noise bandwidth? .
(b) 1 white noisc with power density 6(107%) W/Hz is applicd to the input,
find the noise power in the system’s output.
*8.96 Assume a band-limited random process N(1) has a power spectrum

Synlew) =
Bluew — wg + W) ~ 1{@ — o — W) exp [—alm — wo + Wl
+ Bl —w — wy + W) = u(—w —wy — W] exp [—a(—w = mq + )]

where B, mg, W, and 1, are positive constants, and a is a constant.

Assume 2wq > 1 + Wy and find analytical cxpressions for (a) the power
spectrum Sy x(w) and (h) the cross-power speetrum S¢y(w) for the processes X()
and Y(1) involved in the representation of (8.6-2) for N(1).

(¢) Sketeh Syy(m) and Spyplen) for W, = Wy/2 and a = 1/W,.

(d) Repeat part (¢) exeept with a = ~ /W

*8-97 Find the functions Ryx(1) and Ry, (1) applicable in Problem 8-96.
8.98 Determine the cllective noise temperature of the network of Figure P8-98 il
resistors R, and Ry are at different physical temperatures T, and Ty, respectively.

—0

R.
T H

¢
T ) o [igure rg-98

8-99 Two resistors in scrics have different physical temperaturcs s in Example
8.7-1. Let R, and R; be independent random variables uniformly distributed on
(1000, 1500) and (2200, 2700), respectively. Their average resistances arc then
R, = 1250 Q and R, = 2450Q. . .
(«) What is the ellective noisc temperature of the two resistors as a source if
T,=250Kand Ty = 330 K and average resistors are used?
(b) What is the mcan effective noise temperature of the source for the same
values of 7, and T3?
8-100 Anamplifier has threes!
and Tf,_‘-= 600 K (output stage). Available power gain of the first st
overall input cffective noise temperaturc is 190 K.
(@) Whatis the available power gain of the sccond stage?
(h) Whatis the cascade’s standard spot noise figure? .
{¢) What is the cascade’s 4opcrﬂ(ing spot noise figure when uscd with a source
of noise temperature T, = 50 K?
8-101 Three networks are cascaded. Available power gains arc gl '
stage), G, = 6, and G, = 20 (output stage). Respective input effective spot noisc
= 100K, and T,, = 280 K.

ages for which Te = 150K (firststage), Ta = 350 K,
age is 10 and

= § (input

{emperatures are T, = 40K, T,
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(a) What is the input eflective spot noise (emperalure of the cascade?

(b) 1 the cascade is used with a source of noisc temperature T, = 30 K, find
the percentage of total available output noise power (in a band dw) due to each
of the following: (1) source, and the excess noises of (2) network 1, (3) network 2,
and (4) network 3.

8-102 An antenna with cflective noisc temperature T, = 90 K is connected to an
attenuator that is al a physical temperaturc of 270 K and has a loss of 1.9. What
is the effective spot noise temperature of the anlenna-attenuator cascade if its
outpul is considered as a noise source?

8-103 An amplificr, when used with a source of average noise temperature 60 K,
has an average operating noise figure of 5.

{a) Whatis 7,?

(h) 1f the amplificr is sold to the engincering public, what noisc figure would
be quoted in a catalog (give a numerical answer)?

(¢) What average operating noise figure results when the amplificr is used
with an antenna of temperature 30 K?

8-104 An enginecr purchases an amplifier with average operating noise figure of
1.8 when used with a 50-Q broadband source having average source temperature
of 80 K. When used with a different 50-Q source the average operating noisc
figure is 1.25. What is the average noisc tcmperature of the source?

8-105 An amplificr with a noise bandwidth of at least 1.8 MHz is needed by an
engincer. Two units from which he can choose are: unit 1—average standard
noise  figure = 3.98, noise bandwidth = 2.0 MHz, and availablc power
gain = 10%; unit 2—average standard noisc figure = 2.82, noisc bandwidth =
2.9 MHz, and available power gain = 10°.

Find: (a) T, for unit 1, (b) T, for unit 2, (¢) excess noise power of unit 1, and
(d) excess noisc power of unit 2.

(e) If the source’s noise temperature T: is very small, which unit is the best o
purchasc and why?

() 1f T, > T,, which is best and why?

*8.106 A resistor is cooled to 75 K and scrves as a noisc source for a network
with available power gain

G.(w) = 10°6/(10° + w?)*

(@) Write an expression for the power spectrum of the network's output noisc
that is duc to the source.

(b) Compute the available outpul noisc power that is duc to the source
alone.
8-107 A broadband antenna, for which 7, = 120 K, connccls through an attenu-
ator with loss 2.5 to a receiver with average input cffective noise lemperature
80 K, available power gain 10'2, and noisc bandwidth 20 MHz. The antenna
and attcnuator both have a physical temperature of 200 K.

(a) What is the attenuator’s input cffective noisc temperature?

(b) What is the system’s noisc temperaturc?
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(c) Find the average standard noise figure of the receiver by itsclf.

(d) What is the available noise power at the recciver’s output (in system
operation)?

(e} Determine the input effective noise temperature of the attenuator-receiver
taken as a unit,

(/) What is the average operating noise figure of this system when the
antenna is the source?

8-108 An antenna with average noise temperature 120 K connects to a recciver
through an impedance-matched attenuator having a loss of 1.5 and physical tem-
perature 75 K. For the overall system T, = SO0 K.

(@) What is the average eflective input noise temperature of the receiver?

(b) What is the average operating noise figure of the atlenuator-receiver
cascade?

(c) What is the available output noise power of the receiver if its available
power gain is 120 dB and its noise bandwidth is 20 MHz (system is connected)?
8-109 A receiving system consists of an antenna with noise temperature 80 K
that feeds a malched altenuator with physical temperature 220 K and loss 2.6.
The attenuator drives an amplifier with average effective noise temperature 170
K, noise bandwidth 4 MHz, and available power gain 108,

. Find: (a) the overall system's average noise lemperature T,yes (b) the available
noise power N,, at the system’s output, (c) the total noise power available at the
altenuator’s output (within the noise bandwidth) and how much of the total (as a

percentage) is due to the antenna alone, and (d) the average operating noise figure
F,, of the system,

CHAPTER

NINE
OPTIMUM LINEAR SYSTEMS

9.0 INTRODUCTION

The developments of the preceding chapter related entirely to the analysis of a
linear system, In this chapter we do an about-face and concentrate only on the
synthesis of a linear system. In particular, we choose the system in such a way
that it satislics certain rules that make it optimum.

In designing any optimum system we must consider three things: input speci-
fication, system constraints, and criterion of optimality.

Input specification means that at least some knowledge must be available
about the input to the system. For example, we might specify the input to consist
of the sum of a random signal and a noise. Alternatively, the input could be the
sum of a deterministic signal and a noise. In addition, we may.be able to specifly
signal and noisc correlation functions, power spectrums, or probability densities.
Thus, we may know a great deal about the inputs in some cases or little in others.
Regardless, however, there is some minimum knowledge required of the charac-
teristics of the input for any given problem.

System constraints define the form of the resulting system. For example, we
might allow the system to be linear, nonlinear, time-invariant, realizable, etc. In
our work we shall be exclusively concerned with linear time-invariant systems
but will not necessarily require that they be realizable. By relaxing the realizabil-
ity constraint, we shall be able to introduce the most important topics of interest
without undue mathematical complexity.

In principle, there is great latitude available in choosing the criterion of opti-
mality. In a practical sense, however, it shonld be a meaningful measure of
*goodness " for the problem at hand and should correspond to equations tt
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are mathematically tractable. We shall be concerned with only two criteria. One
will involve (he minimization of & suitably defined ciror quantity. The other will
relate to maximization of the ratio of 2 signal power (o a noise power. This last
criterion leads us (0 an optimum system often called a matched filter.

9.1 SYSTEMS THAL MAXIMIZE SIGNAL-TO-NOISE RATIO

An important class of systems involves the transmission of & deterministic signal
of known form in noisc. A digital communication system is one examplet where,
during a time interval T, a known signal may arrive al the receiver in the pres-
ence of additive noise. The presence of the signal corresponds o transmission of
a digital * 1," while absence of the signal occurs when a digital “0 " is transmitted
(noisc is always present). 1t would scem reasonable that some system (or filter})
could be found that would enhance its output signal power at some instant in
time while reducing its output average noise power. Indeed, such a filter that
maximizes this output signal-to-noise ratio can be found and it is called a matched
Jilter, 1t can be shown that decisions made as to whether the signal was present
or not during time interval T have the smallest probability of being in error il
they arc based on samples taken at the times of maximum signal-to-noisc ratio.
Although our comments here are dirccted toward a digital communication
system, we shall find as we progress that the matched filter concept is & broad
one, applying to many situations.

In this section we shall consider the optimization of a lincar time-invariant
system when the input consists of the sum of a Fourier-transformable determin-
istic signal x(1} of known form and continuous noisc n(f). If we denote by x,(1) and
n{1) the output signal and noise, the criterion of optimality we choose is the max-
imization of the ratio of the output signal power it some time 1, to the output
average noise power. Thus, with n,(t) assumed to be a sample function of a wide-
sense stationary random process§ N (1), we maximize

$,) _ lxdtal? (
)= -1
<N) EINZ(0)] @-1-0
where

$, = Ixft)1? 9.1-2)

is the output signal power at time ¢, and
' N, = ECN30) 0.1

is the outpul average noise power.

t Although we discuss only this example, many other systems such 8s radars, sonars, radio

allimeters, ionespheric sounders, nd automobile crash avoidance systems arc other examples.
t We often use the waords system, filter, or network in this chapter to convey the same meaning.
the input noise is from a widle-sense sialionary

§ This assumplion is equivalent to assuming
and time-invariant (sce Section 8.2).

random process sinee the system is assumed to be linear
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Matched Filter for Colored Noise

Define X{m) as the FFourier transform of x(1), and [1(m) as the transfer function of
the system. The output signal at any time ¢ is

1 0
x () = I j X()H(w)e™ dw 9.1-4)

-®

From (8.4-6), the output average noisc power can be written in the form
1~
N, = E[IN}0)] = e J‘ SNN(m)III(m)II dw (9.1-5)
where Syn(w) is the power density spectrum of the random process, denoted N(1),

that represents the input noise n(t). By use of (9.1-4) at time t, and (9.1-5), we can
write (9.1-1) as

) 2

(.‘&) _ ‘% J—«,X (w)H (m)e!™" d“’L
N L™ : o1

27 ) (@) H@)|? de

To find H{w) that maximizes (9.1-6), we shall apply the Schwarzt inequality.
If A{w) and B(w) arc two possibly complex functions of the real variable w, the
inequality states that .

@ 2 w© ©
“‘ A(w)B(w) do) < J’ | A(w)|? dw J‘ { B(w)|? dew 9.1-7)

-

The equality holds only when B(w) is proportional to the complex conjugate of
A(m); that is, when

B(w) = CA*(w) (9.1-8)

where C is any arbitrary rcal constant.
By making the substitutions

A(w) = /Sp)H () 9.1-9)

X(w)el

Blw) = —F===
il 2n/ Sanlw)

(9.1-10)

in (9.1-7) we oblain
.l. @ ot 2 @® { «© |X((l))ll
‘27! -[_ mX(cu)H(w)e’ dw\ < J‘_,,SNN(“))I H(w)|? dw -(—Z—n—); J_m ——-—SNN(w) dw
9.1-11)

t Named for the German mathematician Hermann Amandus Schwarz (1843-1921).
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With this last result, we write (9.1-6) as

Y.L [° [X@P
(ﬁ—..) Sﬂ_j‘_m Snlw) de (9.1-12)

The maximum vatue of (§,/N,) oceurs when the equality holds in (9.1-12), which
implies that (9.1-8) is true. Denote the optimum filter transfer function by H ().
We flind this function by solving (9.1-8) using (9.1-9) and (9.1-10); the resull is

X w)

Hoplw) = 3 St ©

g~ Jwie 9.1-13)
From {9.1-13), we find that the optimum [ilter is proportional (o the complex
conjugate of the input signal’s spectrum; we might say that the system is there-
fore matched to the specified signal since it depends so intimately on it. H () is
also inversely proportional to the power spectrum of the input noise. In general,
this noise hus been assumed nonwhite; that is, colored. Because of these facts, an
optimum filter given by (9.1-13) is culled a matched filter for colored noise.

H,,(w) is also proportional to the inverse of the arbitrary constant C. In
other words, H, (w) has an arbitrary absolute magnitude. This fact allows the
oplimum system to have arbitrary gain. Intuitively, we feel that this should be
true because gain affects both input signal and input noise in the same way, and,
in the ratio of (9.1-1), gain cancels.

The time 1, at which the output ratio (§,/N,) is maximum enters into the
optimum system transfer function only through the factor exp (—jwt,). Such a
fuctor only represents an ideal delay. Since ¢, is a parameter that a designer may
have some latitude in choosing, its value may be selected in some cases to muke
the optimum filter causal.

In general, the system defined by (9.1-13) may not be realizable. For certain
forms of colored noise realizable filters may be found (Thomas, 1969, Chapter $).
In practice, one can always approximate (9.1-13) by a suitably chosen real filter.

Matched Filter for White Noise

If the input noise is white with power density J7o/2, the optimum filter of (9.1-13)
becomes

H () = KX *w)e ™t ‘ (9.1-14)

where K = 1/rC. V5 is un arbitrary constant. Here the optimum filter is related

only to the input signal's spectrum and the time that (S/N,) is maximum. Thus,.

the name matched filter is very appropriate. Indeed, the name was originally
attached to the filter in white noise; we have liberalized the name to include the
preceding colored noise casc.

The impulse response denoted hy,,(1) of the optimum filter is the inverse
Fourier tranform of H,(w). From (9.1-14), it is easily found that

ho[ll(() = KX*((, - l) (9.'-[5)
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For real signals x(1), (9.1-15) reduces to

holt) = Kx(t, — 1) (9.1-10)
Lquation (9.1-16) indicates that the impulse response is equal to the input \L},n.ll
displaced to a new origin at { = ¢, and folded aboul this point so as to “run
backward.”

Exaniple 9.1-1 We shall find the matched filter for the signal of Figure 9.1-1a
when received in white noise. From (9.1-16), the matched- filter’s impulse
response is as shown in (b). By Fourier transformation of the waveform in (h),
we readily obtiin
sin (wt/2) _
anl(w) = KAt _(_(_r/# Jwlta ¥ 1o = (1/2))
An alternative development consists of Fouricr-transforming the input signal
to get X(w) and then using (9.1-14).

Whether or not any chance cxists for the matched filter to be realizable
may be determined from the impulsc response of Figure 9.1-1b. Clcurl‘y. to be
causal, and therefore realizable, the delay must be at least T — 1,5 that is

2T —1,
x(r)
A
-1y 0 T~T, !
(a)
)
KA |
T
]
|
1
|
fy tTy =T 0 1o 1y +7y ]
)
fnput ) +

}“(l,‘.)g:f’l o }——V Output

Figure 9.0-1 A matched filier and its related signals, (a) Input signal, (b) the filter’s impulse respanse,
and (¢) the lilter's block diagram [Reproduced from Peebles (1976), with permission of publishers
Addison-Wesley, Advanced Book Program.]
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If we assume this last condition is satisficd, the optimum filter is iltustrated in
(¢) where the arbitrary constant K is sct cqual to 1/4. This filter still requires
that perfect integrators be possible. Of course, they are not. Haowever, very
good approximations are possible using modern operational amplificrs with
feedback. so for all practical purposcs matched filters for rectangular pulses
in white noise may be constructed.t

Y

9.2 SYSTEMS TUHAT MINIMIZE MEAN-SQUA'RED ERROR

A second class of optimum systems is concerncd with causing the outpul to be a
good estimate of some function of the input signal which arrives along with addi-
tive noisc. One example corresponds to the outpul being a good cstimale of the
derivative of the input signal. In another case, the system could be designed so
that its output is a good cstimale of cither the past, present, or future valuc of the
input sighal. We shall concern oursclves with only this last casc. The optimum
system or filter that results is called a Wicner filter

Wicener Filters

The basic problem to be studied is depicted by Figure 9.2-1. The input sighal x(1)
is now assumed to be random; it is thercfore modceled as sample function of a
random process X(1). it is applicd to the input of the system along with additive
noise n(1) that is a sample function of a noise process N(f). We assume X (1) and

1 Other techniques using integrate-and-dump methods exist. See Pecbles (1976), pp- 161-362,
4 After Norberl Wicner (1894-1964), a preat American mathematician whose work has tremen-
dously aflected many areas of science and enginecring.

Actual system path

Wy = X ¢ N - ;,"'I',",y,"(‘::," ‘-———r——-» Yy N0+ M)
. * }
1

. e

| Delay
o '\-'(' + l;;

Idealized (conceptual)
outpnt geperation

igure V.2-4 Operations that define the Wiener Bilter prablem
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N(1) arc jointly wide-sensc stationary processes and that N(1) has zero mean, The
sum of signal and noise is denoted W():

W(t) = X(1) + N(0) 9.2-1)

The system is assumed to be linear and time-invariant with a real impulse
1;:::[))onsc h(t) and a transfer function (). The output of the system is denoted
1.

In general, we shall select H(w) so that Y(t) is the best possible estimate of the
input signal X(1) at a time [ + 1,3 that is, the best estimate of X(t + t,). 1f ¢, >0,
Y(1) is an estimate of a future value of X (1) corresponding to a prediction filter. \f
1, <0, Y() is an estimatc of a past value of X{1) and we have a smuolhinqﬁhcr. If
t, =0, Y(r) is an estimate of the currenl value of X(1). '

Now if Y{(1) differs from the desired truc value of X(r + 1,), we makc an
crror of

e(t) = Xt -+ 1) = Y() 9.2-2)

Thi§ error is illustrated conceptually in Figure 9.2-1 by dashed lines. The
optimum (iter will be chosen so as lo minimize the mean-squarcd value of o).t
We §hall not be concerned with obtaining a system that is realizable. Some infor-
mation is given by Thomas (1969) on the more difficult problem where H{(w) must
be realizable. Thus, we scek to find H(w) that minimizes

ECX(0] = EL(X( + 1) = Y(O)*)
= E[XYt + (,) = 2Y(OX(t +1,) + Y1)
' = Ryx(0) = 2Ry,(t,) + Ryy(0) (9.2-3)
From the Fourier transform relationship between an autocorrelation func-

tion and a power spectrum, we have

o

‘ A
Ryx(0) = I J. Syx(w) dw (9.2-4)

where Syy(m) is the power density spectrum of X{t). From a similar relationship
and (8.4-1) we have

1
Ryy(Q) = o= ‘[_ Sww(w)| H)|* do (9.2-5)

where Sy () is the power spectrum of W(1). By substitution of (9.2-4) and (9.2-5)
into (9.2-3), we have

1 o«
E[e*()] = —2Ryx(t,) + ﬂj {8xx(@) + Sww(@)| H)|?) do (9.2-6)
-
t We could elect to minimize the average error, or even force such an error 10 be zero. This

approach does not prevent large posilive errors from being offsct by large negative errors, however.
Hy minimizing the squared error, we eliminate such possibilitics,
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To reduce (9.2-6) further, we develop the cross-correlation function:

Ryxlt,) = ELY()X(t +1,)] = E[X(( +t,) fw NEOW( — &) d&:!

= fm Ruplt, + (&) de 92-7)

-

where Ry x(*) is the cross-correlation function of W(r) and X(t). After replacing
Ryxlt, + &) by its equivalent, the inverse Fourier transform of the cross-power
spectrum 8, (w), we obtain

o l «©
Ryxlt,)) = ,[— P Jl_ Swxlw)e’* 9 daw h(§) d¢

= -:-:—ﬂ- N Sw,\-(w)e"""{J :h({)e/“" d{} dw

-

l oy
= ﬂ f Sy p(@)H(— w)e’" dw 9.2-8)

Substitution of this expression into (9.2-6) allows it to be written as

l w
E[}(0] = o J- {Sxx(w) = 28y (W H(—w)e!"* + 8 y(w)| H(w)*} dw
9.2-9)
The transfer function that minimizes E[2(t)] is now found, We may writc
H(w) in the form

H(w) = A(w)e’® 9.2-10)

where A(w) is the magnitude of H(w), and B(w) is its phase, Next we observe that
Sxx(w) and 8y (w) are real nonnegative functions, since they are power spec-
trums, while the cross-power spectrum 8y (w) is complex in general and can be
wrilten as

Sy x(w) = Clw)e!™) ©.2-11)
After using (9.2-10) and (9.2-11) in (9.2-9) and invoking the fact that
H(—w) = II'*(w) 9.2-12)
for filters having a real impulse response h{t), we obtain
. |
E{e* (0] = n J {8xx(®) + Sywl(w)AN(w)} dw
- Z_In j 2C(w)A(w)elters * D) =) g (9.2-13)

We minimize E[e2(1)] by first selecting the phase of H(w) to maximize the sccond
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integral in (9.2-13) and then, with the optimum phase substituted, minimize the
resulting cxpression by choice of A(w). Clearly, choosing

B(w) = wt, + D(w) 9.2-1.)
will maximize the second integral and give the expression

o

E[eX ()] = 2]-; j {8xx(w) — 2C(w)A(w) + Sww(w)A(w)} dow

« 2) -
1 j {.Sx_\-(w) SO S.,.W(w)[/!(w) —gﬁi)] } di> (9.2-15)

n Jow Spewlw) - Sl

In writing the kst form of (9.2-15), we have completed the square in A{w). Finally,
it is clear that choosing

C{w)

9.2-10)
Sppiwlw) (

Alw) =
will minimize the right side of (9.2-15). By combining (9.2-16), (9.2-14), and
(9.2-11) with (9.2-10) we have the optimum filter transfer Tunction which we
denote 1, (w):

M plwte

”ul“(w) - Syewl(w)

9.2-17)

For the special case where input signal and noise are uncorrelated, it is casy
to show that

Sipwl(w) = Sy x(w) + Syn(w) (9.2-18)
Sy x(@) = 8y y(w) (9.2-19)
where Sya(w) is the power spectrum of N(1). Hence, for this special cuse
Syl
H o) = ———#({—))-———- el (9.2-20)

Syxlew) 4 Syalw)

Example 9.2-1 We lind the optimum f{ilter for estimating X(¢ -+ 1,) when
there is no input noise. We let Syylw) = 0in (9.2-20);

“u,u(”)) = c.lmt,

This expression corresponds 1o an ideal delay ling with delay —¢,. 111, > 0,
corresponding to prediction, we require an unrealizable negative delay line, If
{, < 0, corresponding to a smoothing filter, the required delay is positive and
realizable. Of course, 1, =0 results in H (w)=1. In other words, the
optimum filter for estimating X(f) when no noise is present is just a direct
connection from input (o output, a result that is intuitively agreeable.
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Minimum Mean-Squared Error

On substitution of (9.2-17) into (9.2-15), we readily find the mean-squarcd error of
the optimum filter
. U SeloSn(o) - 1 8o
Eletu = R : lo
[l‘ ( ).]mln 2 J_w Sw“’(“)) e

For the special case where input signal and noise are uncorrelated, this cquation

) 9.2-21)

reduces to

. 10 SyslaSanln)
STt = — VNN 9.2-22
ELEH 0] = 35 jl Frl®) + Sl den ( )

9.3 OPTIMIZATION BY PARAMETER SELECTION

We conclude our discussions of optimum linear systems by bricfly considering a
second approach that minimizes mean-squared crror. The problem we undertake
is identical to that of the last section up to (9.2-9), which defines the mcan-
squarcd error. Now, however, rather than sceking the filter that minimizes this
error, we specify the form of the filter in terms of & number of unknown param-
cters and then determine the parameter values that minimize the mean-squared
error. This procedure necessarily leads to a real filter so long as the form we
choose corresponds to such a flter.

If we assume the special casc where the input signal
uncorrelated, (9.2-9) can be writlen as

X(1) and noisc N(1) arce

o

1
EH0)) = J S, (0) dw 9.3-1)
M J-w
where

.00 = Salen) = 28 xal@) = e [Syy(e) - Sude)]] Han | (9.3-2)
Since the imaginary parl of H(—w) exp (jwt,) is an odd function of @ when h(t) is
real (as assumed), the only contribution to the integral of (9.3-1) due to the
middle term in (9.3-2) results from the real part of H(—w) exp (jwt,). Thus, the

crrop-contributing part of (9.3-2) can be written ast
Salw) = Syxlw){1 - H{w)e " — H(—w)e!" + | H)*] + Synlo)l H(w)|?

= Syxl@)| 1 - H(—w)er | + Snt@) | H(@)1? (9.3-3)

beeause H(~w) = H*(w). _
We summarize the synthesis procedure. First, a filter form is chosen for a real

filter. The applicable transfer function H{w) will depend on a number of unknown
blain §,(w), the power

paramelers. H{w) is next substituted into 9.3-3), to 0

1 writing (9.3-0), we also use the fact that 2 Re(z) = & ¢ 2° forany complex number 2.
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density spectrum of the error &(¢). Finally, the error E[e*(1)] is calculated from
(9.3-1) and the parameters are then found by formally minimizing this error.
Although this procedure is direct and conceptually simple to apply, the solution
of the integral of (9.3-1) may be tedious. For the case where Syy(w) and Syy(w)
are rational functions of @ and H(w) corresponds to a real filter form, the
resulting integral has been abulated for a number of functions §,(w) involving
orders of w up to 14 (Thomas, 1969, pp. 249 and 636, and .l:\mcé, ct al, 1947,
p. 369).

All the preceding discussion has related to the special case where the input
signal dnd input zero-mean noise arc jointly wide-sensc stationary and uncor-
related.- For the more general case of corrclated signal and noise, the choice of
form for I(m) must bc substituted into (9.2-9) and the integral solved. The
unknown filter coefficients are then determined that minimize E[e3(1)).

PROBLEMS

9-1 A maltched filter is to be found for a signal defined by

A+ 1)t —t<t<0 ‘ \
x(t)y = {A(t =0/ O<t<t - X(w) = At[sm (("1’/2)]
0 elsewhere wt/2

when added to noisc having a power density spectrum

W
Wi+ ol

Sualw) =

where A, 1, and W, are real positive constants.

(a) Find the matched filter's transfer function H, (w).

(b) Find the filter's impulse responsc Dolt). Plot figp(0).

(¢) 1s there a value of £, for which the filter is causal? If so, find it.

(d) Sketch the block diagram of a network that has I7, (w) as its transfer
function. "
9.2 Work Problem 9-1 (a), (b), and (c) for the signal

x(1) = w(t)[e™ " — em o]

ila > 1 is a real constant.
9-3 Work Problem 9-1 (a), (b), and (c) for the signal

x(t) = (=)™ — &™)

if a > tisa real constant.
*9.4 By proper inverse Fourier transformation of (9.1-13), show that the impulse
response li(1) of the matched filter for signals in colored noisc satisfics

J R wall = &) dE = X*{ty = 1)
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9-S A signal x{1) und colored noise N(f) arc applied to the network of Figure
P9-5. We select | H (w)]? = 1/8yn(w) so that the noise N,(f) is white. We also
make H,(w) a matched filter for the signal x,(t) in the white noise N,(¢t). Show
that the cascade is a matched filter for x(t) in the noise N(¢).

RUENIG) XA N () [, 1
. . 1 {w) 1 - Xoll) +Ny(1)
Colored —E Wiite Lt AT e

noise

Figure P9-5

9.6 'or the matched flter of Example 9.1-1, find and sketch the output signal,
{Hint: Fourier-transform x{t) and use a transform pair from Appendix E to
obtain x,(t).]

9-7 Assume the power density of the white noise at the input to the maiched
filter of Example 9.1-1 is A y/2 with .y > 0 a real constant. Find the output
signal-to-noise ratio of the filter at time (.

9-8 Show that the maximum outpul signal-to-noise ratio obtainable from a filter
matched to a signal x(1) in white noise with power density A y/2 s

: 2" 2 2E
<N0)m.. - :F; J._w [x(6)])* dt = ;,170

where E is the energy in x(f) and A", > Ois a real constant.
9-9 Let 1 be a positive real constant. A pulse

A cos (n/t) |t} < t/2
x) ’-{0 . ] > 12

is added to while noise with a power density of A o/2. Find (5,/N ) for a filter:

matched to x(1) by using the result of Problem 9-8.

9-10 Find the matched filter’s transfer function applicable to Problem 9-9.

9-11 Show that the output signal x,(t) from a filter matched to a signal x(¢) in
while noisc is

C
x(=K J XMEOx(E 4+t —1,) d§
o
That is, x,(1) is proportional to the correlation integral of x(t).

9-12 Show that the output signal x,(f) from a filter matched to a signal in white
noise reaches its maximum magnitude at ¢ = ¢, il the filter impulse response is
given by (9.1-15). (Hint: Use the result of Problem 9-11.)

9-13 Fourier-transform the signal of Figure 9.1-1q, and use (9.1-14) to verily the
optimum system transfer function given in Example 9.1-1.

9-14 The signal

x() = u(t)e™ "
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where W > 0 is a real constant, is applicd to a filter along with white noise with
power density . 17,/2, .47 > 0 being a real constant.
(@) Find the transfer function of the filter matched to x(r) at time 1,
(b) Find and sketch the lilter's impulse response.
(¢) 1s there any value of 1, that will make the filter causal?
() FFind the output maximum signal-to-noise ratio.
9-15 Work Problem 9-14 for the signal
X(1) = u(—1)e™
9-16 Work Problem 9-14 for the signal
X(0) = u(tye™ ™
9-17 Work Problem 9-14 for the signal
A0 = —u(—0e™

918 17« real signal () exists only in the interval 0 < ¢ < T, show that the cor-
relation receiver of Figure P9-18 is a matched filter at time (= T, that is, show
that the rutio of peak signal power to average noise power, both at time T, is the
same as the ordinary matched filter. Assume white input noise.

XY+ Ny —w  Product - T ydt e Y(1) = X0} + N(1)

an

Figure PY-18

9-19 Find the matched filter for the signal

x() = de™=

in while noise with power density J17,/2 where .7, > 0, a >0, and A are real
constiants,

9-20 A random signal X(1) and uncorrelated white noise N(1) have autocorrela-
tion functions

Wwre _.
Ryylt) = ¢ i

Ryn(t) = (17o/2)d(x)

where W > 0, P > 0, and .47, > 0 are real constants,

() Find the transfer function of the aptimum Wiener filter,

(b) Find and sketch the impulse response of the filter when 1, <0, ¢, > 0, and
t, =0
9-21 Find the minimum mean-squared error of the filter in Problem 9-20.

ov -
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9.22 Work Problem 9-20 for colored ‘§oisc defined by
Rynde) = Wye ™"
where W, > 0is a real constant.

9-23 Work Problem 9-21 for the noisc defined in Problem 9-22.
9.24 A random signal X(1) and additive uncorrelated noise N(1) have respective

power spectrums

. 9 .
Syxlw) = T and Synlm) = m

(@) Find the transfer function of the Wicner filter for the given signal and

noise.
(b) Find the minimum value of the crror in predicting X(r -+ )

9-25 Work Problem 9-24 for signal and uncorrelated while noise defined by
)

Sxal) = i

Snnlo) = Ao/ 2

where 4 > 0, ¥ > 0, and A"g > Oare real constants.
9.26 A deterministic signal x(1) = A cos (wq1) and white noise with power
density «17o/2 arc applied to a one-scction lowpass filter with transfer function

H(w) = WIW + jw). Here W > 0, N> 0, Wo, and A arc all real constants.
What valuc of W will cause the ratio of output average signal power o average

noise power to be maximum?
9.27 Work Problem 9-26 if the network ¢

filters in cascade. '
9.28 Work Problem 9.26 il x(1) = A cos (o ! + ®), where © is a random vari-

able uniformly distributed on the interval (0, 2n).

9-29 A random signal X(1) having the autocorrelation function
Ryxlt) = Wye'

A af2 are applicd to a lowpass filter

onsists of two identical one-section

walel

and uncorrclated noise with power density
with transfer function

H(m) = m

Here W > 0 and Wy > O are real constants.
(v} What value of W will minimize the mean-squs

be s estimate of N(y?
(b) Calculate the minimum mean-squared error.
+9.30 Work Problem 9-29 by finding the real constants G > 0 and W > 0 for the

filter defined by

wred crror if the output is to

64

“((I)) = —m

&
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ADDITIONAL PROBLEMS

9-31 A signal x(1} = u(t)5e? exp (—2¢) is added to white noise for which J7g/2 =
10-? W/Hz. The sum is applied to a matched filter.

(@) What is the filter’s transfer function?

(b) What is (S,/N,)?

(¢) Sketch the impulsc response of the filter.

(d) 1s the filter realizable?
9-32 A signal

x(t) = u()t* exp (—Wi)
is added to noise with power spectrum
Syuw) = P(W} + o)

where W, P, and Wy are positive constants. The sum is applied to a matched

filter,

(a) Find the filter's transfer function.

(b) Find the filter’s impulse response.

(¢) Whatis the signal-to-noise ratio at the output?
9.33 A pulsc of amplitude A >0 and duration t > 0 is x(t) = A rect (t/7). The
pulse is added to white noise of power density 4 /2 when it arrives at a receiver.
For some practical reasons the receiver (flter) is not a matched filter but is a
simple lowpass filter with transfer function

H(w) = W/W + jo)
W > 0 a constant. :

(a) Find the ratio of instantancous output signal power x2(1) at any time ( to
average noise power E[N3(1)] at the filter’s output. At whal time, denoled by £,
is the ratio maximum?

(h) Attimet, what bandwidth W will maximize signal-to-noisc ratio?

{¢) Plot the loss in output signal-lo-noise ratio that results, compared to a
matched filter, for various values of 0 < W < 5/t. What is the minimum loss?

*9.34 Reconsider the system of Problem 9-33 excepl assume
H(w) = WH(W + jw)?
(¢) Find the time t, at which output signal-to-noisc ratio is largest.

(b) For the t, found in (a) determine the output signal-to-noisc ratio. Plot
this result versus Wt for 0 < Wr < 6 and determine what value of W gives the

best performance.
(¢) What minimum loss in signal-to-noisc ratio occurs compared (o a

matched filter?
9-35 A pulsc
x(1) = A rect (t/20[1 = (t/0%]

where A and t > 0 arc constants, is added to whitc noise.
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(u) Find the output signal x,(t) of a filter matched to the pulse.

(b) Sketch x{r) and x,{t).

(¢) What is the matched filter's output signal-to-noise ratio?

(d) What is its transfer function if K in (9.1-16) is chosen so that | H,,(0)| =
17 Is there a value of 1, that makes the filter causal?

*9.36 A deterministic waveform y(t) is defined by
,l,(,) = ‘,(l)emnflwol = v(l)e”""‘
where a(t) and (1) are “slowly” varying amplitude and phase *modulation™
functions and w, > 0 is a large constant, The white-noise matched filter for () is
defined by
hopl(l) = V"(f. - l)
it K =11in(9.1-15). Now let (1) be offset in frequency by an amount w, before
being applied to the *“ matched filter ™ so that
V() = (1) exp (—jw, 1)

is applied with noise (o the filter,
(a) Show that the filter's response to () is

o — 1, w)) = Jw VWt — 1 + {e™ ¢ d§

The function | x(«, w,)|? is called the ambiguity function of the waveform y(1).

(b) Show that the volume under the ambiguity {unction does not depend on
the form of ¥(t) but only on | x(0, 0) |2

(c) Show that

L]
xt, =1, wy) = glwott=1) J &, — t + C)e—ch dé
*9-37 Reconsider the ambiguity function of Problem 9-36.

(a) Show that |x(t, w)|* < | (0, 0)[2.
(b) Show that another form for x(t, w,) is

l «w
x(1, wg) = ey J YHw)W(w + wie " dw

where \P(w) is the Fourier transform of y/(1).
(c) Show that

a6,0= [ view + 0.

. 00
= f | W(w)[2e™ ¥ dw

X0, w) I!.(/(f)lz s dg

]

1
¥l ¥l

J Y*(w)'P(w + w,) dw
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() Show that the symmetry of (1, w,) is given by
A1, W) = (=1, —w,)
9-38 The deterministic signal
x(1) = rect (¢/T) exp (jwot + jut?/2)
is a pulsc having a linearly varying frequency with time during the pulse's dura-
tion 7. The nominal frequency is wy(rad/s). The matched filter for whllc noise has
the impulse response of (9.1-15) which, for ¢, = 0, is
hopll) = K rect (1/T) exp (jewo t = jut?/2)

(@) If instantaneous frequency is to increase by a tolal amount Aw (rad/fs)
during the pulse’s duration T, how is the constant y related to Aw and T7

(b) Find the value of K such that | H,,(we)| = t when g is large, [Hint: Note
that

C(x) = J.x cos (n&2f2) dE
o
and
S(x) = J‘x sin (n&?/2) dé
o

called Fresnel integrals, approach ‘/z as X —» 0.]

{¢) For the K found in (b), determine the output x,(1) of the filter. Sketeh the
envelopes of the signals x(1) and x,(1) for AwT = 80r using the same time-voltage
axes. What observations can you make about what has happended to x(r) as it
passes through the filter?

*9.39 () Find the transfer function H,,(w) of the matched filter of Problem 9-38,
(Hint: Put the expression in terms of Fresnel integrals having arguments

= JAwT/2n{l - [2w — (no)/AwJ}/ﬁ

= /BaT/2n {1 + [2w — wol/bwl}//2
where i = Aw/T.)

(b) Sketch the approximate form of | H,y(w)]| that results when AwT is large.
9-40 A rundom signal X(f) and uncorrelated white noise have respective power
speclrums

and

Sexl®) = 2/2 Py Wy 0¥ (W} + )
and
Synlw) = o"of2

Here Pyy is the average power in X(t), while Wy and g are positive constants,
(a) Find the transfer function of the Wicner filter for this signal and noise.
() What is the minimum mean-squared filter error?
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(¢) Lvaluatc the result of () for Pyy =2 W, Wy = 15 rad/s, and . 47/2 = 0.1
W/Hz. [int: Usc the known integral (Thomas, 1969, p. 249)

L[ by = byw?) dw
1= Do
=5 . 2 P
21 |, @i+ (a3’ = 2aqa)0" + agw 2a,a,4,
where by, by, dg, @y, and a; are constants and agA? + @A + @ has no roots in

the lower hall-plane when A = @ + jo.]
9-41 Work Problem 9-40 for the signal with the power speetrum

Sexlw) = AN Wi+ w?)?

aghy = a3 ho
e Rl BRNNLD S

I

Put resuMts in terms of the average power Pyyin X0
9-42 The respective power speclrums of a random signal
noise N(1) are :

X(n) and uncorrelated

Syxlw) = (17200102 + m?)

and
Syalw) = w162 + 0}
(@) Whatis the transfer function of the Wicner filter?
(h) What is the minimum mean-squarcd prediction error?

from P’roblem 9-40.)
*9.43 Generalize the random signal of Problem 9-42 by assuming ils power spee-

Hint: Use resulls

trum is
Syexlw) = (W 2/2000)/(W 14 wh)
Iwidth, Find the minimum mean-squared pre-

where ¥y is the signal's 3-dB band ) ‘
> 9.5, What docs an increase in Wy mecan

diction crror and plot the result for Wy
in a physical sensc?

9.44 A random signal X{1) plus uncorrel
spectrums

ated noise N(1), having respeelive power

Sya(@) = 205y WiV} + @)

and
() = 4I’NNW;L./(W§, + w‘)z

is apphicd to a Wiener filter, Here Py and Pyy are the average signal and noise
po\vcrs,‘rcspcclivcly, while Wy and Wy are positive constants. o
{a) Use (9.2-22) and find the filter’s minimum mean-squared prediction error.
(h) Show that as Pyy— ECe0))min— Pn and that ELeX) )i~ Pxx i

hNN

Pyge > ' '
() From @ peaphical plot of k| 520 L iy vETSUS Wy /Iy, determine ir

there is a preferred pandwidth ratio when Pyn/Pyy = 818 there o ritio that
should be avoided? Discuss. (Hint: Use the integral given Problem 9-40.)

CHAPTER

TEN

SOME PRACTICAL APPLICATIONS
OF THE THEORY

10.0 INTRODUCTION

The main purpose of this book has been to introduce the reader to the basic
principles nccessary to mode!l random signals and noisc. The principles were
broad cnough to include ‘the descriptions of waveforms modified by passage
through linear networks. In this chapter we shall apply the basic principles to a
few practical problems that involve random signals, noise, and networks. Obvi-
ously, the list of practical applications is almost limitless and it is necessary (o
sclect only a finite few. Although the applications discusscd here may not neces-
sarily scrve the main interests of all readers, they do represent important applica-
tions and do serve to illustrate the usc of the book's theory.

In the following sections we shall describe two practical communication
systems, two control systems {one with applicalion to one of the communicalion
systems), an application involving a computer-type signal, and two applications
that relate to radar. In every casc we arc primarily interested in how these appli-
cations arc affected by the presence of random noise. We begin by considering
the common broadcast AM (amplitude modulation) communication system.

{0.1 NOISE IN AN AMPLITUDE MODULATION
COMMUNICATION SYSTEM

The communication system most familiar lo the general public is probably the
AM (amplitude modulation) system. In this system the amplitude of a high-
frequency “carrier™ is made to vary (be modulated) as a lincar function of the
message waveform, usually derived from music, speech, or other audio source,
The carrier frequency assigned to a broadeast station in the United States is one
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of the values from 540 to 1600 kHz in 10-kHz steps. Each station must contain
its radiated power to a 10-kHz band cenlered on its assigned frequency.

In this section we shall give a very brief introduction to the AM broadcast
system and illustrate how the noise principles of the preceding chapters can be
used to unulyze the system's performance.

+ n (1)

5.0

AM System and Waveforms

Figure 10.1-1 illustrates the basic functions that must be present in an AM

————
|
1
1

S R

|
| .

system. In this figure we include only those functions necessary to the study of | B l '
noise performance. A practical system would include many other devices such as { ] g 1'
amplifiers, mixers, oscillators, and anténnas that do not directly alflect our per- - 'I CA N
formance caleulations, ¥ 5
The transmitted AM signal has the form é——} T § {
. samlt) = [Ay + X)) cos [wot + 0] (10.1-1) 3 I| i * :
where Ay > 0, wg, and 0, are constants, while x(f) represents a message that we { 25 }
model as a sample function of a random process X{t). Note that the amplitude ! o= |
[Ao + x(1)] of the carrier cos (ot + 0y) is a linear function of x(r). Now, in } }

I

general, one has no control aver 0, beeause the turn-on time of a transmitier is

random and the chuannel itself may introduce a phase angle that is random

(which we presume is absorbed in the value of 05). Thus, we may properly model

fp 1s a value of a random variable ©, independent of X(r) and uniformly distrib-

'\ uted on (0, 2m). These considerations allow say(f) to be modeled as a sample func-
' tion of a transmitted random process S,,(¢) given by

Samlt) = [Ag + X(1)] cos (wo ! + ©y) {10.1-2)

The transmitted signal arrives at the receiver after passing through a channel

with gain G,. The channel is assumed to add no signal distortion but does add

zero-mean white gaussian noise of power density A /2. A practical channel typi-

cally adds delay but this eflect does not modify the noise performance. A receiver

i bandpass filter pusses the received signal sg(t) = G, sau(t) With negligible distor-

. tion but has no wider bundwidth than necessary so as to not pass excessive

noise.t The noise n{t) at the filter’s output is a bandpass noise so the theory of

Section 8.6 applies.

We model waveforms sg(f) and n{t) as sample functions of processes S(1) and
N(1), respeclively. Thus, we may write

Sult) = Gy Sanll)

= Gep[ o + X(1)] cos (wo + @) (10.1-3)
¢ N(1) = N1} cos (wy! + Og) = N,{1) sin (wot + O) (10.1-4)
o where N (1) and N,(t) are lowpass noises with average powers N2(1) = NI(1) =

- ¥ N1} [rom Section 8.6. N

Ho2

White guassian noisc.
+ l
Channel voltage
gain = G,

power density

<05 {wo + 8p)

BRI SEATE
Modulator

T

g ——— e e ——
TRANSMITTER

Figure 10.1-1 Funciional block diagram of a broadcast AM system.

1 The required bundwidth ¥, must be at least iwice the speciral extent Wy of X(1).
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Noise Performance

A good measure of noisc performance is the ratio of the average power in the

output signal sgf) of the system to the average power in the output noisc n (). In

the AM recciver an cnvelope deteclor is used to recover the transmiticd message.
The total waveform applicd to the cnvelope detector becomes

$4(1) + N() = {Ganl Ao + X(W] + N(0)} cos (wol + @) = N (1) sin (wqt + ©u)

= A(1) cos [wot + O + V(] (10.1-5)
wheret
g () } (10.1-6)
b =t {cc..m X0+ N0 ’
Ay = (Gl Ao + XW0] + NN} NX '
. 2N 1) NI + NI >‘“ 10.1-7
= Gl Ao+ ’\('H<l * Gl Ao 1 NI LA, 4+ X (10.17

Now only (10.1-7) is of interest because A(t) is the envelope of Sut) + NU). The

detector output is this envelope.
Since N2(1) + N(1) is the instantancous envelope of the square of N(1)

(retated to received noise power), while G4[4o + X(0)]? is the instanlancous
envelope of the detector's input signal (related to received signal power), we make
the assumption that input (received) signal-to-noisc powcr ratio is largc so that
[NX(N) + NHOY/GL{Ao + X(0)]? is small most of the time. The assumption allows

A) = Gl Ao + X(0] + N0 (10.1-8)

from (10.1-7) Only when this condition is true do we obtain quality performance

anyway, so other situations are not usually of interest. .
It we model s,(1) and ngt} in Figure 10.1-1 as sample functions of processes

S, and N (1) respectively, then (10.1-8) clearly gives
Sd1) = Gl Ao + X(1) (10.1-9)
N =N (10.1-10)

“The wseful output sighal average power, denoted by S, is that due to X(0) m

(10.1-9). Il output average noise power is denoted by N, then

s, = GL XD (10.1-11)
N, = NI = NT(1) (10.1-12)
p Fypaeally, overmodulation wheie 1 XD s e maximam magnitade of i), exeeeds Ay is unde-

arable in AN so [Ag N(n) > s assumed in (1017
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and performance is measured by
(_S_) _GaX0) (10.1-13)
N./am N1 '

INext, we model the bandpass filter in Figure 10.1-1 as an idcal filter with
handwidth W,,, (rad/s). Noise power rcadily follows

{ wo+ (Wil 2} '1,0 ”/' .
N(l)=,—‘2j N2 doy = ——< 10.1-14
2 Jug=(Weeer2) ol 2n ( )
From (10.1-13) we have
S Gl X?
(—”) =—"——',—('—) (10.1-15)
Na AM AT ”uc

Equation (10.1-15) is the principal result of this section. 1t describes the per-
formance of the AM system. 1t is helpful lo demonstrate the usc of (10.1-15) by
means of an example.

Example 10.1-1 Assume an AM system uscs an unmodulated carrier of peak
amplitude Ag = IO\/9—5V and a message of power XT(0) = 500 W. Its
channel has a gain G, = \/3—2/100 with a noise density N of2 = (1078)
W/Hz The recciver uscs a filter with bandwidth W, = 2n(10*) rad/s. We
compute various signal powers and system performance.

From Problem 10-1 the average power in the transmitted carricr is
A3/2 = 4750 W; the transmitted power duc to message modulation is
Ryx(0)/2 = X¥(1)/2 = 250 W, Total average -lransmitted power is, therefore,
5000 W, '

From (10.1-15) we compute

S\ _ 2r(32)1074(500)
(N,)m = 300 " nion 8000  (or 39.03 dB)

This signal-to-noise ratio represents fairly good performance.

At the input to the envelope detector the reccived average signal power is
5000 W decreased by the loss incurred in passing over the channel:
5000(/32/100)* = 16 W. From (10.1-14) and (10.1-12) the input average
noisc power is 10~ %2n(10%)/n = 2(107*) W. Input signal-to-noise ‘ratio
becomes 16/2(107¢) = 80,000 (or 49.03 dB). This value is well above the
minimum for performance as required for (10.1-15) to be valid: in fact, if the
performance of an AM system is satisfactory then (10.1-15) will always be
valid (the reader should justify this fact by examining the ¢fficiency of an AM
system--sec Problems 10-4 and 10-2))
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10.2 NOISE IN A FREQUENCY. MODULATION
COMMUNICATION SYSTEM

Another communication system with which the reader is familiar is the broadcast
FM (frequency modulation) system, Here the instantanecous frequency of a sinu-
soidal “currier” waveform is madeto vary as a linear function of the message
waveform. Il X(1) is a process rcpicscn(ing the message, the FM transmitted
wuveform can be represented by the :‘ocess :

Y
Senlt) = A cos l:w:(",llj+ Op + kem fX(l) dl] 10.2-1)

where A, w, and kyy > 0 are constanist and @, is a random variable indepen-
dent of X (1) and uniformly distributed on (0, 2r). In a practical station w,/2n is
the station’s assigned frequency and is one of 100 possible {requencics from 88.1
to 107.9 MHz. Each station transrhits power in a 200-kHz “channel " centered
on its assigned [requency, '

The constant kgy in (10.2-1) is the transmitter's modulation constant. Its unit
is rad/sccond per volt when X(1) is a voltage. Transmitted signal bandwidth is
difficult to compute in FM because FM is a nonlinear modulation. If kg,, is large
enough, this bandwidth can readily be much larger than the bandwidth of the
message process X(1). If X(t) is presumed to be bounded at | X(#)|,,., and have a
crest-factor defined by (Problem 10-3)

2 _ 1 XO ey 1X(0) 150

= L (10.2-2)

UEX] T X

the bandwidth of Sgy(t) for the broadband case is approximated by (Pcebles,
1976)

WFM ~ 20w = 2kFM l X(l) lmu
= 2o Ko/ TD (10.2-3)
Here
Aw = kFMI X(l)[mu “02-4)

is the peak frequency deviation that instantaneous [requency can make from w,
(on cither side).
Although difficult to prove, the average transmitted waveform power is

AI
Pew = E[SE(0] = 5 (10.2-5)

which is independent of the modulation.

t 16 kg 8 negative its sign can be absorbed into the definition of X{(1).

SOME PRACTICAL APPLICATIONS OF THE THEORY 281

IFM System and Waveforms

Figure 10.2-1 illustrates the basic functions present in a lypical FM system. The
transmitted wivelorm passes over the channel modeled as a power gain G2,
without distortion or deluy (as also assumed in Section 10.1 above), The receiver's
bandpass filter (BPF) is wide enough to pass Gy, Spmlt) with little distortion but
not so wide s (o puss excess noise, Its bandwidth is, therefore, Wy = 2Aw.

The purpose of the limiter is to remove amplitude fluctuations in the
received waveform. The limiter is necessary so that the receiver responds only to
frequency variations (that contain the message) and not to amplitude variations
that arc mainly due to noise. The discriminator is the actual demodulation
device; it produces a voltage proportional {(constant of proportionality Kj) to
instantancous deviations of the frequency of its input waveform from a nominal
value wy. Ideally, with no noise, the discriminator’s output signal is K, kpy X(1).
The lowpass filter must pass this witveform with low distortion so that its output
is proportional to X(1)

S0) = Kk X(0) (10.2-6)

It should have a bandwidth no wider than the spectral extent of X(1), denoted by
Wy, so as o not allow excessive output noise.

If the receiver's “input” is defined as the input to the limiter, the input
signal's average power §; is

(10.2-7)

while the cutput signal power is
S, = E[S}(0] = K3 kky X0 (10.2-8)

By modeling the BPF in Figure 10.2-1 as an ideal filter the input noisc power
is readily found to be

two +Adw r ’/‘
N, = } 2 f X9 oy = o B0 (10.2-9)

~n wo = Sw r

Input signal-to-noise power ratio is

. 2 42
Sy rGad” (10.2-10)
Ni/wg 247w

from (10.2-7) and (10.2-9).

Computation of output noise power is less straightforward than the preced-
ing computations. However, its development forms the most interesting problem
in computing system performance.
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M System Performance

Care must be exercised in finding outpul noise power beeause FM is a nonlincar
aperation, For relatively large (S/NJww and wideband operation (developed
abeve), signal and noise powers may be independently found. Signal power is
found assuming noisc zero (above). Noise power is found assuming the mcssage
is 7ero but carrier is still transmitted. In this latter case the waveform at the
limiter is

Gup A cos [wot + Op] + N{1) cos (wo ! + Og) — N(1) sin (wg t + ©g)
= A(f) cos [wo! + O + Y()] (10.2-11)

where the bandpass noise N () is modeled as in (10.1-4) (sec also Scction 8.6) and

AW = {{Gen A + ND]? + NI} (10.2-12)
- N0
=t d -
Y1) = tan {GchA - N,(I)} (10.2-13)

For large input signal-to-noise ratio we have |G, A| > | N.(Oland [Gp Al >
| NANT most of the time, so (10.2-13) becomes

Y(t) =~ tan~} L-g’;(%‘l x -CI;V;:% (10.2-14)

Equation (10.2-11) is now approximated by

A1) cos [wo! + Oy + (1)) = A(l) cos [mot + O, + —GI!’—(%} (10.2-15)
ch

Recause the limiter removes A(f) and the discriminator responds only to instanta-
neous frequency deviations from wy, the input to the lowpass filter is

Kp AN ()

—= 10.2-16
(Geh A) {Il ( )
1f 8 (w) is the power spectrum of N,(1) the power spectrum of (10.2-16) is

K 2
<G=,.DA> w8y (@) (10.2-17)

However, we may usc (8.6-17) and (8.6-16) to write this power spectrum as

2
(GK”A) W [Syndw — wo) + Sywlw + wy)] |w] < dw  (10.2-18)
ch

where Sy fm) is the power spectrum of N(1); it is constant at .4"o/2 over bands
of width 2Aw centered at wg and —wg.
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Final output noisc power results from the action of the lowpass filter on
(10.2-18). We have

] Wy K 2
N, = E[N})] = > f (—L) W[ Epnfw — Wo) + Byl + wo)] dw
T Jewy G4
K2 W THy Ny KA Wi
=S A L“w St |de = Gl A7 (10.2-19)

Output performance is determined by

(S_) _ 3nGL A%k XA()
N FM "VO W;(

0.

from (10.2-8) and (10.2-19). An alternative form of (10.2-20) is

S, 6 [Aw 3( S\
—_ ==—|— = 10.2-21
(Na)FM K (Wx> NIJFM ( )

An important observation derives from (10.2-21), Since FM bandwidth is
2Aw, we sce that performance increases as the cube of bandwidth relative to
(SN ). However, (S/N ) decreases as the reciprocal of bundwidth from
(10.2-10), so the net performance increases as the square of bandwidth. By simply
increasing bandwidth at the transmitter, system performance rapidly increases,
There is a limit to this procedure, unfortunately, that occurs when conditions
under which the performance equations were derived are no longer valid. The
break point, or threshold, occurs approximately where (S)/N)uy drops below
about 10 (or 10 dB). For a more detailed discussion of FM threshold the reader
is referred to Pcebles (1976). We shall emphasize FM system performance
through an example.

Example 10.2-1 An FM system uses a message with crest factor 3 and band-
width Wy/2n = 3 kHz The F'M modulator’s bandwidth is 2Am/2n = 20 kHz
and  the  recciver's input signal-to-noise  ratio is 81, From (10,2-21)
(SN i = 2000 (or 33.01 dB3). We determine how much performance can be
increased by raising Aw.,

From (10.2-10) {8)/N )y decreases to 10 Trom 8106 Aw inereases by a
fuctor of 8.1, Next, we again use (10.2-21) but now with Aw/2r = 8.1(10) kHz

and (S/N gy = 10:
S 6 /81\°
o === (10) =
(No)FM 9(3) ( 0) l3ll220

{or 51.18 dB). The bandwidth increase of 8.1 times has improved (S,/N )
by 65.61 times.

Rk
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10.3 NOISE IN A SIMPLE CONTROL SYSTEM

In this section we shall bricfly consider the noisc response of a simple control
system modeled by the block dingram shown in Figure 10.3-1. The following
section will then illustrate how a very practical network can be analyzed by
applying the results developed here.

‘Transfer Ffunction -

Typical loop behavior in Figure 10.3-1 is to force the feedback signal F to
approximate the command C so that the error C-F is small. The control loop’s
response R may be conveniently chosen. For example, if R in the time domain is
1o be the derivative of the command then H,(w) = l/jw, the transfer function of
an integrator. If R is to approximate C then H,(w) = L.

From Figure 10.3-1 it is clear that

Rw) = H,(w)[Clw) — Hy(w)R{w)] (10.3-1)

$0

R((u)=C(w)[ (@) ] (10.3-2)

b+ H (w)H 3(w)
We deline the transfer function of the control loop as

oy = R Hile)

Clw) 1+ H (w)H,(w) (10.3-3)

The transfer function (10.3-3) is not always stable. There are combinations of
11, (w) and H,(w) that can cause instability, In general, if / (w) and H,(w) are
stable and | H () ()] fulls below unity, as a function of w, before the phase of
I (w)H y(w) becomes —mn, and if the phase of H {w)H ;(w) cquals —~n at only one
frequency, the transfer function H(w) is stable. The product H (w)H (w) is called
the open-loop transfer function of the control system, Stability is a deep subject in
control systemy and we shall not develop it Turther because it detracts from the
simple points to be made here.

Now suppose the conmund waveform in Figure 10.3-1 is the sum of a signal
S0 and noise N (7). Because the system s lincar its responses (o signal and noise
may be computed separately. If 8y, (w) is the power spectrum of N (1) then the
power spectrum of the response noise N y(t) is

2

H\(w)

T+ H () {w) (10.3-4)

SNnNu(w) = SN,N,(w)\

whencver the network is stable.
An cxample serves to illustrate the use of (10.3-4).
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Example 10.3-1 Let a signal
S0 = Au()e™""

plus white noisc of power density A7o/2 be applied to the control network
where
KW,

H () = =t
) = i

K, » |

Hy(m) =1

“This choice means that we desire the response (0 equal the command. We
{ind the output signal and the output noise power.
From (10.3-3)
K W /(W, + jw) KW

H@) = TR Wil (W, + jo)) (L + KW, +Je

From pair 15 of Appendix E the inverse transform of I1(m) is
h(ty = K, Wyu(te "t X0
The response signal becomes

Sgt) = J WSt — &) ¢

o
= K,W,A J W(E(t — E)e 11 KWWK grg =it

= KW Au(ne™"" J'e'l" SRR g
0
_ K, W,
(I + KW, — W
For K, » 1 so that (1 + KW, > W this resull becomes
SR(‘) = S((()
The approximation is more accurate as becomes large.
From (10.3-4) the output noisc power spectrum is
A oK W1)*/2
S =0 L
wnd ) = KT + @

(1 —exp {=L(1 + KW, = WIHS)

Output noise power is found using (C-25):
1 (=
Pyane = I J‘_ mSN'N"(m) dwm
AR KW A K W
A1+ Ky 4

TR T o
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We observe in passing that this control loop is stable and its transfer

< function is equivalent to u simple lowpass filter of gain K, /(1 + K )& | und

3-dB bandwidth (1 + K,)W, = K, W,. This unity-gain large-bandwidth filter

resulted from a narrowband (bandwidth W;) high gain filter (gain K ) inside
the loop.

Error Function

The error @ = C — Fin Figure 10.3-1 is readily found. From
Q(w) = C(w) — Flw) = Clw) —~ Hy(w)H (w)Q(w) (10.3-5)

we have ’ :

Clw)

%) = T @)

(103-6)

Wiener Filter Application

By comparing (10.3-3) with the transfer function of a Wiener filter for uncor-
related signal and noise as given by (9.2-20) we sec that the Wiener filter can be
implemented as a loop. From (9.2-20)

Jwte

§ Henle) = 1 T ] (1037
. : Thus :
: Hw) = 1, (w) (10.3-8)
: ) if

H(w) = el (10.3-9)

() = [Sunlo)/Sex(w)le " C (00

" Of course these functions H(w) and H,(w) may not be realizable even for realiz-

able signal and noise power spectrums. Other choices for H,(w) and H,(w) arc
also possible (Problem 10-10).

10.4 NOISE IN A PHASE-LOCKED LOOP

I SR S

The phase-locked loop (PLL) is a practical system to which the noise theory of
this book can be applied as a good example. The PLL is also an example of the
control system of the preceding section.

Figure 10.4-1 depicts the block diagram of a PLL. Broadly, the aclion of the
loop is to force the phase of the output of the voltage-controlled oscillator (VCO)

R T R T R R Ry rwers

Quiput signal

s4l1)

Filter

H ()

oscillator

Voltage

Ervor signal

(1)

Phase
detector

Ay cos [wet + 8, + 8,{1)]
= A, cos [8,(n)

Feedback signal

= A, cos [8,(:)]
Figure 10.4-1 Block diagram of a phase-locked loop (PLL).

A, cos [og + 84 + 841))

Input signal
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1o closely follow the phase of the input signal. This action leads to onc of the
most important uscs of the PLL, that of demodulating a frcqucncy-modulnlcd .
signal. If there is no input noise N{1) and the VCOs phasc follows that of the
input FM signal, then the VCOs signal has the same FM as that transmiticd.
Since the VCO is just a frequency modulator, its input waveform (loop's output
waveform) has to be proportional to the original message used at the transmitter.
When input noise is present there is noise on the output signal. In this scction we
shall develop this output noisc power and find the available output signal-to-
noise power ratio.

IPhase Detector

Consider first the phasc detector. Although there arc many forms of phasc detec-
tor | Banchard (1976) and Kl:\p‘icr et al. (1972)] they all provide an oulpul
response proportional to the ditference between the phases of the (wo input
waveforms for small difference phases. Thus

e,l) & K0,(0) = 02(0] (10.4-1)

if the two input waveform’s phases are defined as 0,(1) and 0,(0). The constant Kp
is the phase detector’s sensilivity constant; its unit is volts per radian for e,(t) a
voltage. [n some phase detectors the response is also proportional to the ampli-
tudes of the two input waveforms. Others depend only on onc input amplitude
beeause the other is farge enough to saturate the device giving a type of limiting.
Another type allows both inputs to limit in the detector and the outpul is not a
(unction of cither input waveform’s level, We shall assume cither this last form of
detector or that an actual limiter is in the path of the signal's input when a dctec-
tor is used with limiting in the feedback path’s input. Thus our phase detector is

described by (10.4-1).

Loop Transfer Function

Since the YCO in Figure 10-4-1 acts like a frequency modulator for the
“ message " sglt), its output can be written as

VCO output = Ay cos {wo! + o + 0u(1)]

A, cos {woz + 0o + ky js,,(/) rl!]

= A, cos [0,(1)] (10.4-2)

]

where ky- is the VCO's modulation constant,

0,(1) = wot + Og + ky j’sk(t) dt (10.4-3)
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and

0,00) = ky J.sn(l) dt (10.4-4)

The other phase detector input signal, from Figurc 10.4-1, is the input wave-
form. If we define its phase as

0,(1) = wo t + 0 + 0i(1) (10.4-5)

then the phase deteclor’s response (10.4-1) becomes

e ft) = K,.l:mot 4+ 0o + 0f1) = ot — 0 — ky Jsﬂ(r) dl:\

= K,.[()i(r) —ky [sn(r) rlf\ (10.4-6)
Next, if we define Fourier transforms as follows
e, (1) I, () (10.4-7)
0{t) & Ofw) (10.4-8)
Sg(t) > Sp(w) (10.4-9)
we may write (10.4-6) as
E _ ky Salw)
2 (w) = Kol Ofw) = ——— (10.4-10)
jw
From Figure 10.4-1
S p{w)
E\(w)= 7;-’(—(;) (10.4-11)

On cquating (10.4-10) and (10.4-11) we find the PLL's transfer function, denoted
by Hy{w), to be

Sg(w) Kpjoll {w)  jo
Ofw) Jjo + Kpky H, (w) " ky

Hq{w) = H{w) (10.4-12)

where we also definet

Kpky Hi(w)

Hiw) = — e )
jw + Kpky Hi(o)

(10.4-13)

t In many texts H(w) is called the PLL transfer function but the loop's output is defined at a dif-
ferent point. (Where would it be?)
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Pluse modatition

of input wavelomm Ouipuat wivelonm
(1) '@ KNpll(w) m:} e
6,{w) Sielw)
Fhine moduliation kvt jw
af feedbach wavelorm
8,.(1) Voltage-controlied
) (w) oscillator .
()
Phase-locked loop
8,(1)
I () = julllwthy e 0
Sulw) .
o, (w) {
0 “
Figure 10.4-2 (1) Equivalent block diagram of the lincar PLL of Figure 10.4-1, and {h) the trunsfer )
function equivalent of the loop in {a), R
It should be noted that the above definition of transfer function relutes the ,
output signal to the input signal’s phase modulation 0(t) according to ;
4
Salw) = H{w)O (w) (10.4-14) k
or ;
© B
sal) = f halt = §)08) d& (104-15) ;
-w
where A(t) denotes the inverse transform of Hq{w) ;
Dy {t) = Ho{w) (10.4-16) 3
The above developments show, in effect, that Figure 10.4-2 is an equivalent
form for the loop of Figure 10.4-1.
:

Loop Noise Performance

We shall apply the preceding results to the case where the input to the PLL is the

sum of an FM signal plus bandpass noise N(t) modeled as

N{1) = N(t) cos (wot) — N(t) sin (wo 1)

The representation (10.4-17) follows developments of Section 8.6 where N (1) and
N,(1) are lowpass random processes having the properties defined in (8.6-7)

through (8.6-19). The actual input to the PLL is, therefore,

A, cos [mol + 0g + kgy JX(!) dl.‘ + N () cos (wo t) — N(t) sin (wet) (10.4-18)

(10.4-17)

L
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where kpy is the FMmodulator’s constant, N{r) is the message process, and o,
wg, and Uy are the inpul FM signal’s peak amplitude, frequency, and phasc,
respectively.

The exact analysis of the PLL's response to the waveform of (10.4-18) is very
involved. However, it can be shown that the waveform of (10.4-18) can be put in
the form (Problem 10-11)

R(t) cos [wqt + Oy + Opy(t) + Ox(t)] (10.4-19)

where ‘
Opl(t) = Ky JX(:) dt (10.4-20)

and U{0) is o phase angle caused by noise. For large-input signal-to-noise ratio
(A22)/ECNF0] and input noise N{t) broadband relative to the FM signal, the
autocorrelation function of O,(1) is approximately 1/A4} times the autocorrelation
function of N.(t) (Problem 10-12). This facl means that, within a reasonuble
approximation, 0x{t) can be replaced by the equivalent angle N (1)/4;.

With the above noise cquivalence used, the input phase modulation to the
PLL from (10.4-19) is

0,(t) = Oppfft) + 04(1)

N (t
= Opn{t) + —‘-(—2 (10.4-21)
. A
i
The component Oyy(t) is due (o the signal. 1f X(1) is a random process with power
spectrum Sy y(w), we use (10.4-20) in (10.4-21) and find that the power spectrum of
0(n) is

ki Sex(w) 8 w
Spl) = mexzx( )+ N,III,Z( )
i

(10.4-22)

After using the PLL's transfer function (10.4-12), the output waveform’s power
spectrum becomes

Sy @) = Sg,0(@)| Hy{cw)

Kpen \2 0}
= sx,\,(w)(—m) LH@)I® + Syp,(00) g | H@)P (10.4-23)
ky Aiky

The first right-side term in (10.4-23) is due to the desired message while the
sccond is due lo noise. Loop design is typically chosen so that | H(w)|® = | for all
frequencics of interest in Syx(w). In fact, if the message is to be preserved with
very small distortion the bandwidth of the transfer function F{w) may be signifi-
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cantly farger than the frequencics of interest in Syylw). Thus, if Wy is the spectral

extent of the message X(1) then the power in the output signal component is

S =—l- ) Sy (@) LY llll(u))lz dw = l(—'-ﬂ l L " Syylw) dw
R Xy A k, ) 2t )om Xx

v

\2

ke \ =13

={ M) X))

ky
In some loops (scc example to follow) | H(w)}? docs not decrease rapidly enough
to remove high-frequency noise due to the factor w? in @ () in (10.4-23). In
these cases it may be necessary 10 follow the loop with o separate filter to better
remove noise spectral components at f1 equencics @] > Wy. As long as cither the
loop or a scparale filter removes these components, the overall output noise

power is approximately

(10.4-24)

[ [ w? ,
N, = -2—,; _ “‘x'\N,N‘((”) m | Hi)t dw
Ao [T AW '
~ —— loy = Lt 425
TaAL kY J“".‘rm dw =3 (10.4-25)

Finally, we determine oulput signal-to-noisc power ratio from (10.4-25) and
(10.4-24). As in Scction 10.2, we let A be the peak amplitude of the transmitted
FM signal and let G, be the gain of the channel, so that

A= AGe (10.4-206)

Thus.

(Sn _ 3”03"/11‘\'12:»(/\,2(‘)
N./¥m - Ao WY

10.4-27) with (10.2-20) we find that both the discrimin
formance when the received (input)

(10.4-27)

On comparing ( ator and
PLL forms of FM recciver have (he same per

signal-to-noise ratio is large.

Example 10.4-1 As an cxample of a practical PLL's transfer function et the
loop Rlter be a simple low-pass function with 3-dB bandwidth 1V, where

W,

i i
i) W, + jw

The function H{w), from {10.4-13), becomes

|

)y = —_—TTT N
mafTE
w, w,
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Figure 10.4-3 [ ()] for the loop of Example 10.4-1.

where the quantitics defined by
w, = (KI'kV ”/l,)llz
1 [w,

T2\ Kpky
arc called the natural frequency and damping factor, respectively, of the loop.
Figurc 10.4-3 illustrates how | H(w)] behaves with w/w, for { as a paramelcr,
The curve for { = 1//2 is most fat in the scnse that the largest number of
derivatives of | H(w)} arc zcro at w = 0.
For{ = I/ﬁ and w, = Wy, the signal’s spectral extent, we have
4

w
H(w 1= X
| Hw)] Wit o

The more exact power in the noise term of (10.4-23) becomes

AWk J‘m w? dw Ao W
= 2,2 =
WAKE | Wy ot 2/ 24K

N,

after using (C-38), On com aring (his result with (10.4-25) we see the noise in
the loop output is 3n/2/2 = 1,33 times that of a broadband loop followed
by an abrupt-cutoff filter of bandwidth Wy.

§
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10.5 CHARACTERISTICS OF
RANDOM COMPUTER-TYPE WAVYEFORM

As another example of the practical application of the theory of this book we
examine a waveform not unlike those encountered in binary computers. The
waveform is shown in Figure 10.5-1; it consists of a sequence of rectangular
pulses of durations T, having amplitudes that randomly may equal 4 or — .
Amplitudes A and —A are assumed to occur with equal probability and the
amplitude of any pulse interval is assumed to be statistically independent of the
amplitudes of all other intervals, The random process from which this type of
wavelorm is modeled as a sample function is called a semirandom binary process
(sec also Problem 6-4); in the remainder of this section we shall examine the
desceription, power spectrum, and sutocorrelation function of this process.

Process Description

The semirandom binary process X(f) can be described by

X(1) = i A, rect |—' _TkT"} (10.5-1)
A= " w - b

where {A,} is a set of statistically independent random variables and rect (-) is
defined by (E-2). The A, satisly

k=0, +1, £2,... (10.5-2)

E[A]=0
. A2 k=m
E[AA,] = {0 k 5 m (10.5-3)

The truncated version of X(t) is needed in calculating power spectrum. We
truncate to a time interval 2T centered on ¢ = 0 that is a discrete multiple of 7,
according to

2= QK + )T, (10.5-4)
xln)
T,
—_— A
i 1 i
L) 0 T T
=571 NN "2

-A

Figure 10.5-1 Typical waveform of a semirandom binary random process.
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Thus, the truncated process X (1) is

X g
Ny = ¥ A rect [{———lk—lﬂ (10.5-5)

k= ~-K ]

Power Spectrum

We compute the power spectrum Syy(w) of X(1) by use of (7.1-11). The Fourier
transform of X (1), denoted by X 4(w), is
N
Xdw) =T, ¥ ASa{wT/2e "
ka =K
1y )
=T, Sa(wT,/2) Z Agu Aol (10.5-6)
ka-kK

from (10.5-5) and pair S of Table E-1. Next,

ECLX ) ]2] _ 15 Su(wT,/2) ‘:: 5\: E[A, A, e 1= mors

2T QK+ 1D ity
AT, SaX(wTy/2) (10.5-7)

Now because (10.5-7) does not depend on K, and therefore not on through
(10.5-4), we have

. E[1Xy{(0)]*]

Syylw) = lim —————=

T 2T

= AT, SaX(wT,/2) (10.5-8)

The bandwidth of this power spectrum at its —3-dB3 point is 0.44292n/7;) =
0.442%m,.

Autocorrelation Function

It follows from (10.5-1) through (10.5-3) that E[X ()X (1 + 1)] is zero unless both ¢
and ¢ -+t fall in the same pulse interval. The autocorrelation function is, there-
fore,

Ryylt, 1 4 1) = ELN ()N (0 1 7))

{-“’ (k="K < (tand ¢+ 1) < (k -+ )T,

(10.5-9)
[§] clsewhere

Thus, the process X (1) is not even wide-sense stationary since (10.5-9) depends on
absolute time 1.

The time-averaged autocorrelation function is readily obtained by inverse
Fouricr transforming (10.5-8) according to (7.2-9). After using pair 7 of Table E-|
we obluin

T !
Ryy(t) = lim -2—-17 J Ryx(t, t + 1) dt = A tri (1—> (10.5-10)

Tw b,

-1
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The direet computation of Ryg(1) by time-averaging Ryex(t, t + 00 is possible, but
4 bit more complicated than the inverse transform procedure used here (see
Thomas., 1969, p. 107).

10.6 ENVELOPE AND PHASE OF A
SINUSOIDAL SIGNAL PLUS NOISE

Many practical problems invalve the probability density function of the envelope
of the sum of a sinusoidal signal and noise. A radar, for example, may be inter-
ested in determining if a short scgment (pulsc) of a sinusoidal waveform is being
received at some time or if only noise is being received. This problem is one of
detection bascd on obscrving the received waveform's envelope; if the envelope is
large enough (becausc of the signal's presence) the radar decides both the signal
and the noisc are present, We examine radar detection further in Section 10.7.

In this scction we discuss probability densitics involved in describing the
envelope and phase of the sum of the sinusoidal signal and noisc.

Waveforms
Let the signal be
s(1) = Ag cos (gt + Ug) = Ay cos ({ly) cos (wgt) — Ag sin (00) sin (wy ) (10.6-1)

where Aq, g, and {1, arc constants. We assume the noisc n(t) to be added to 51
is @ sample function of a zero-mean. wide-sense stationary gaussian bandpass
process N(1) with power E[N¥()) = o, From (8.6-2), the sum can be writlen s
st) + Ny = [Ag cos (0o) + X(1)] cos {wo 1) = [Ag sin (Go) + Y(1)] sin (wo!)
= R(t) cos [wot + ou)] (10.6-2)

where N(1) and Y(¢) arc zero-mean, gaussian, lowpilss processes having the same
powers E(XY0) = E[YH)] = E[N1)} = o*. Other propertics of X{/) and Y(1)
are given in (8.6-7) through (8.6-19). The envelope and phase of the sum are R(1)
and O(1), respectively. We may think of R(t) and ©(t) as transformations of X(f)

and )’(‘r) as follows:
"R = TN, ¥) = {[4o cos (%) + X7 + [ sin (00) + YI})'2 (106:30)

A sin(09)+ Y
D = Y= tan”!t Lo > L0 10.6-30
@ = Ty(X, Y) = tan [Ao os (00) + X] (10.6-3h)

Inverse transformations arc:
N = TR, ©)=Rcos (©) — g cos (o) (10.6-da)
Y = T; (R O)= R sin (®) — Ay sin (04) (10.6-4h)
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“The functional dependence on ¢ has been suppressed in writing (10.6-3) and
(10.6-4) with the implicd understanding that the quantities X, Y. R, and © are
random variables defined from the respective processes attime £

Probability Density of The Envclope

From (8.6-15), processes X(1) and Y(r) arc statistically independent {at the same
times 1) because they are gaussian and uncorrelated. The joint density of random
variables X and Y is, therefore,

‘."(-\'“)")/Zﬂ‘

5 (10.6-5)

fX. Y(xl }’) = 2
no
From (5.4-4) the jacobian of the transformations (10.6-4) is readily found to
be R. We next apply (5.4-6) to obtain the joint density of random variables R
and ©:
u(r)r

’ 1
Srelr 0) = ———27“’2 cxp {-— pys] [r? = 2rdq cos (0 — (g) + A(’,]} (10.6-6)

The density of R alone is obtained by integrating over all values of ©:

Salr) = th& olry 0) d0
= “f,g e'("Mo’)ll-vl El; Lh?mqm- 0=~0aia 40 (10.6-7)
The integral is known to cqual the modificd Bessel function of order zero
Io(f) = ZLn ‘Lhu" cos (™ ) (10.6-8)
Thus,
Jalr) = 5:5—? rh(%‘,—")e“"““””"’ (10.6:9)

which is known as the Rice probability density.

Equation (10.6-9) is our principal result; it is the density of the envelope R(t)
at any time t. Figure 10.6-1 illustrates the behavior of (10.6-9). For A/o = 0, the
case of no signal, the density is Rayleigh. For Ao/o large the density becomes
gaussian, To show this last fact we note that

ef
Io(f) % —= > 1
o B o f3
so for rAg/e? large

— _ 2
Julr) = u(r) /ZR A'o“; exp { (rz(,f“’) ] (10.6-11)

(10.6-10)
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Figure 10.6-1 Probubility densities of the envelope of a sinusoidal signal (amplitude 4,) plus noise
(power o) for various ratios A,/0.

This function peaks for r near Ay, and since 4, > o, the most significant values
of r exist only near Ay. Therefore, with r & A, (10.6-11) becomes

g~ lr—Ao)t/2e2

Sulr) = e (10.6-12)

which is a gaussian function with mean A, and variance o2,
Although difficult to derive, the mean and variance of R as found from
(10.6-9) are known (Appendix F).

Probability Density of Phase

The density of the phase @ of (10.6-2) derives by integrating (10.6-6) over all
values of R, We shall leave the detailed steps for the reader as an zxercisc
(Problem 10-16). The procedure is to first complete the square in r in the expo-
nent, and, after a suitable variable change, integrate the sum of two terms. The
result becomes (Middleton, 1960, p. 417)

Sol0) = (1/2r) exp (- A3/20)
+ Ag cos (0 — 0,) exp [—Ag sin? (0 — 00):]

\/2_,”, 202

_ F[A_LOM} (106-13)

(2

- o

ey rT3iT e e sr——y

b e e

SOMIE PRACTICAL APPLICATIONS OF T THEORY 301

H
St4

Ayla =0

8= Hy=3n/

Figure 10.6-2 Probubility density function of the phase of the sum of u sinusoidal signal and gaussian
noise. Curves are plotted for u signal phase of 0, = 3n/4.

where the function F(+) is given by (B-3). Figure 10.6-2 illustrates the behavior of
Sol0) for various values of Ay/a when 0y = 3n/4.

For noisc only, which is the case of Ao/ = 0, Figurc 10.6-2 shows that the
density of @ is uniform on (0, 2n1). As Ao/ becomes large the density approaches
an impulsc function located at the signal’s phase (at 0 = llp). Thus,

lim [fo(0)] = 8(0 — 00) (10.6-14)

Aoloe=

(Problem 10-17).

10.7 RADAR DETECTION USING A SINGLE OBSERVATION

Radar can be used to detect the presence (and distance) of a nearby object (called
the radar targer), A representative problem might be to detect the presence of an
aireralt approaching an airport, FHere the airport’s radar radiates a pulse of radio
frequency (RF) encrgy. The pulse propugates outward until it strikes the target
(aircraft), whereupon some of the energy is reflected back toward the radar. The
targel's presences can be detected at the radar simply by detecting the presence of
the reflected RF pulse. Once the received pulse is detected the delay between the
time of the radiated pulse and the received pulse is proportional to the target’s
distance from the radar, After a sufficient time interval (called the pulse repetition
Srequency, or PRF, interval, chosen for the most distant detection of interest) the
radar transmits another RF pulse and the entire “ detection ™ process is repeated.
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Reccived RF

pulse plus Envelope W +
noise detector n
(Envelope = R) -
Wom g(R)
W,
‘Threshotd

Figure 10.7-1 Simple radar detection network.

A straightforward implementation within the radar receiver to achieve delee-
tion is depicted in Figure 10.7-1. During any PRI interval noisc is always being
received (mainly due to the padar's own sell-gencrated noise). A reflected pulse is
received with this noise only when a targel is present. The envelope detector pro-
duces an output H(1) that is some monotonic function g(+) of the envelope R(1) of
the received signal-plus-noise waveform. The first-order probability densily func-
tion of R{1) was developed in the preceding Scction 10.6. On the average R(1), and
therefore V(1) with a target present will be larger than R(t) when only noisc is
being reccived. A suitable detection logic compares W(r) lo a threshold Wy if
W(1) > Wy the receiver decides that a target is present; if W) € Wy it assumces
anly noisc is being received. These tests amount (o determining when D >0 in
Figure 10.7-15when D > 0 target is dectared to be present.

On the average the detection logic is valid. On any onc PRI interval,
however, it is possiblc for the receiver to make mistakes. For cxample, if no target
is truly present it may oceur that noisc could become large enough at some time
to make W(1) cxeeed Wy and cause i falsc detection; this type of detection is
called a false alarm. The probability of a false alarm, denoted by Pr, . is

Pr= [ Solw) dow (10.7-1)
Jiy

where fo(w) is the probability density of W{r) given thal there is no tirpet present,
Generally, a radar wants Py, to be small.

Another type of error oceurs when a target is actually prescent but noise is
such as to cancel its clleet during the signal's duration and foree W) < V.. The
radar usually is designed such that the probability of this event, called the proh-
ability of a miss, is small: it cquals one minus the detection probability, denoted
by 1%, given by

Py= J Li(w) dw (10.7-2)
Wy

Here fi(w) is the probability density of 1V(1) when a target is present.

In most radars Py and Pr, arc parameters of greatest importance. Wy is
usually chosen to give & prescribed value of P,,. P4 then depends on the ampli-
tude of the targel’s returncd signal. In this scction we shall develop expressions
for I, and Py when the radar makes detection decisions bascd on a single abser-

SOMIE PRACTICAL APPLICATIONS OF THE THEORY 303

vation (l'lScS only one PRF interval). Our results can be cxtended to mulliple
qbscrvuuons bul the details are complicated and we only refer the reader to the
literature {Difranco and Rubin, 1968).

False Alarm Probability and Threshold

When there is no target only noise is present at the input to the envelope detee-
tor. From (10.6-9) the density of the envelope of the noisc is

) = ’-',%! re 1t (10.7-3)

- . . .

.whcrc % is the power in the input noise. Because the detector characteristic g(R)
i« assumed monotonic, there is an equivalent threshold Ry on R that is related to
W, by

Wr = g(Ry) (10.7-4)
Rr =g~ '(Wp) (10.7-5)
where g~ !(+) is the inverse function of y(+). We may then compute Py, from the

envclope as follows:

Py = J”fn(sv) dw = I‘m‘fn(r) dr
Wy Ji

= J: L e dr = o (10.7-6)
Thus,
AR
Ry = {20’ In (7,7>} (10.7-7)
and

T S

where In (+) represents the natural logarithm,
Equation (10.7-8) gives the threshold Wy that is to be used to realize a speci-

ficd valuc of P,, when the noise power level is o2 at the detector’s input.

Example 10.7-1 A radar receiver uses a square-law envelope detector defined
by W = 3R% We find what threshold is required when noise power at the
detector's input is 6 = 0.025 W and Pq, = 10~ % is required. From (10.7-8)

Wy = 3[2(0.025) In <101_6)] ~207V
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Detection Probability

When a target signal is present the density of the received waveform'’s envelope is
given by (10.6-9). Again using the iden of an equivalent threshold Ry on the
envelope R we expand (10.7-2) to get

Py = J "_/‘,(u') dw = .“j',((r) dr
W Rr

oy

" r rdo\ -2 - :
—_-J — ol = Je r1+ AotN2e? .
V3ot Tn (17F,) g

1

)0
JBRR

PURILS

Y995
w.Y
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W.s
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Y8

y§

U

R

M
o
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40
W

0

i\

16 dog (A3720%), A8

Figure 10.7-2 Radur detection probabilities for various false atarm probubilitics when detection is
based on u single observition, {Adupted from Burton (1964) with permission.]
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where

.

Qla, 1) = J (e Wt g (10.7-10
I
is called Marcum's Q-function (Marcum, 1950, 1960). Figure 10.7-2 illustrates I’
for various values of A2/20% with Py, ax o parimeter. Generally, the smaller 17 is
required to be the larger is the necessary signal strength to achieve a given value
of P,.
When Py, is small while Py is relatively large so that the threshold 1V is large
and signal strength is relatively large, the approximation of (10.6-12) cun be used

in {10.7-9) to oblain
A |
P oxFl2L 2 _— {10.7-11)
! I‘{” \/ ln(”n)]

where (- ) is given by (B-3).

Example 10.7-2 We find the value of Py in a receiver having P, = 10"
when the received signal-to-noise power ratio at the detector’s input is
16.0 dB. Here A3/20% = 39.811 (16 dB). Thus, (4o/0) — /2 In (1/P;,) = 2.137.
From Table B-1 and (10,7-11), P, = F(2.137) = 0.9837 or 98.37%, which is in
agreement with Figure 10.7-2.

PROBLEMS

10-1 Show that (a) the time-averaged avtocorrelation function of S,(1), as given
by (10.1-2) is

Ranlt) - I/.‘lll‘l 1 Ry} cos (wy 1)
i X(1) is a zero-mein process, and (b) the power spectrum is
\ Ain . Ve
Samfin) « - 5" (8w = any) F 0 1)) /Ilh'\.‘\((n ) 1 Syl 1 wy)]
where Syy(w) is the power spectrum of X(/).

10-2 Deline transmitter efficiency 1y, in an amplitud¢ modulation communica-
tion system as the ratio of transmitted power due to the message to the total
power. For a zero-mean stitionary random message show that

Ryx(0) I‘i’,, Syxlw) dw X1
Ham =73 = Y o o = RvEr
Ad 4+ Ryx(0)  2mdd + [2,, Sxxlw) dw 42 4 X(1)

where Ry (1) and Syy(w) are the autocorrelation function and power spectrum,
respectively, of the message X (1).

wiidh
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10-3 Define crest factor Ke for a zero-mean, bounded, random signal by
K2 = | X015/ X0

< Ag in the transmiticd

If no overmodulation is to occur, such that | X{0) s
ansmitter cfliciency

signal of an amplitude modulation system, show that the tr
(Problem 10-2) is

|
Nam S T+ K:,

cicncy for a message X(1) = A, c0s (W, + ®,), where

What is the maximum cfli
ble uniform on (0, 2m)?

A, and m, nre constants while @,,is a random varia

10-4 Use (10.1-), (10.1-4), and (10.1-1d) to show that the inpul sign:ﬂ-lu-noi.\'c
power ratio at the envelope detector of Figure 10.1-1 is

— —

(3:_) SI) RGHLLAS 4+ NTO]
i/ AM

N| - =

N2(1) Ao Weee

at (10.1-15) e be written in the form

(3.7
Nn AM AM NI AM

where 5,y is defined in Problem 10-2.

10-5 In an AM broadcast system the tolal average (ransmitted power is ! kW.
The channel gain is Gey = 3./2(107%). Average noisc power at the cavelope
detector's input is 10-% W and the output signal-to-noisc power! ratio of the

receiver is 180 (or 22.55 dB).
(a) What is the average signa
(h) Find (Si/Ndam- .
(¢) What is the transmitter’s cfficiency?
(Him: Usce results of Problem £0-1)

10-6 When the message in an FM system is a sinusoid, such as x(1) = A, cos

(1) where Ay, > 0 and w,, arc constants, modidation index fluy 18 defined by

[l = Dwft,.

(a) Write an exp
waveform in terms of frx -

(h). What is the approxima
Aw is large relative to n,,?

(¢) For the specific waveform (1) = 0.1 cos (10%1), what arc fpa and the
transmitter’s constant Ly i the approximate bandwidth is to be 200 kHz?
10-7 Find an cxpression for the autocorrelation function of Spnln), as given by
(10.2-1), when N{)is a gaussian, 7ero-mean process. Formulate the cxpression in

terms of the correlation cocfficient and variance of the process

Use this tesult to show th

| power at the input to the envelope detector?

ression for the instantancous frequency (rad/s) of the I'M

te bandwidth of the FM signal in terms of Py if

() = ke J X() de
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[.Hin!: Note that the cxpectation involving X(1) leads to a characteristic
function.]
10-8 Il} an FM system the transmitted signal has 10 kW of average power and a
band}wdlh of approximately 150 kHz when a random message with a crest faclor
offi is used (Problem 10-3). The signal passcs over a channel for which G, =
1075 and A o/2 = S(107'3)/3. )

(1) Find the signal and noisc average powers and the signal-to-noisc ratio at
the receiver's input.

.(b) What is the message's spectral extent if the output signal-to-noisc power

ratio of the receiver is found to be 25,0007
10-9 Let H,(w) = K, W /(W, + jw) and H,(w) = jw in (10.3-3) where K,>0
and W, > 0 are constants. . l

(a) Are there any values of K and/or 1, that will make Tip
oA i / . that will make the loop of Figure

(1w, = 200 and K, =_40 find the loop's output noise power if white noise
of power d‘cnsxly N o2 = 107% W/Hz is applied at the input. (Hint: Use the inte-
gral given in Problem 9-40.)
10-10 Show that the transfer function of the control system of Figure 10.3-1 is
the same as the Wiener filter of (9.2-20) if

Hl((,)) = [i\_".((_')) L,]ml.
Syaln)
and
Hj(w) = e7 o

*10-11 Show that the sum of an FM w i i
i aveform plus noise a -
can be written in the form P s given by (104-15)

R{t) cos [wot + Oy + Opul(0) + ING)|

where

Opalt) = King J'xu) di

and
R(1) = ¢{N (1) + A, cos [0 + Opn(]}? + (N.,(() 4 Asin [0+ O]} 3112
N (1) cos [0 + Opn(0)] = Ne(1) sin (0o + Opul0)]

A;+ N (1) cos [0 + Opn(t)] + N(0) sin [0 + OFM({)]}

* . N
10-12 Ass.umc the bandpass noise N{¢) in Problem 10-11 is wide-sensc stationary
,lqlnd gaussian and note that il | 4,1 > I[N (D] and A, > | N ()] most of the time,
en )

INOES tan~! {

Nt
0yt = 229 cos (0 + Ount0] - B o 0y + 0ruto)
N i

A

c5-a mrag
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() Show that the autocorrelation function of the process Oy(t), for which
O4l1) is & sumple function, is

tte
Ropanlly 1 + 1) = 'Al—z R,,r,,((r)li[cos {k,..m J X&) d.f}:'
i t

b R~,~,<T)E[sin {kn. f X dcﬂ
] 1

where Ry, x,(1) and Ry, y (1) are the correlation functions of N.(1) and N,(1), and
the expectations are with respect to the message process X (¢) assumed statistically
independent of the noises. (Fint: Use the results of Section 8.6.)

(b) If noises N (t) and N,(1) are broadband relative to the FM signal, justily
that

|
R»Ne,.(f- [+ 1T)= :rz RN‘N,(T) = R9~9N(T)
i

(¢) If the message process varies slowly enough for values of t that arc impor-
tant to Ry,y,(7) such that

t+e
Rieng J X&) dé = ko XUt)T

is valid, show that the expression of part (o) reduces to

2.2 .2
—axkiut

2 ] RHrNt(T)

it X() is a zero-mean, wide-sense stationary gaussian message of power a3, (/lint:
Mauake use of characteristic functions.)
10-13 In Example 104-1 let { =} instead of l/ﬁ and recompute the loop's
output noisec power N,, Compare the result with that of (10.4-25). Is there any
improvement over the case where { = 1/,/2? (Hint: Make usc of the integral
given in Problem 9-40.)
10-14 Assume white noise is added to an FM signal and the sum is applied to a
phase-locked loop for message recovery. Thus, 8y y (w) = A7 in (10.4-23).

() If

I
Rgpo{ti t + 1) = 1 exp [

W, Wy(W, + jo)

11 =
L) = S W + JoWs + o)

where W,, W,, and W, are positive constants, find an expression for the power
contained in the noise part of (10.4-23).

(b) Assume the loop is designed so that Wy = 2wy, W,y = we/S, and W, =
wi/SK, where K = K ky and w, is called the loop's crossover frequency (rad/s); it
is the frequency where | KH (w)/jw| = 1. Evaluate the result found in part ()
when w, equals the message's spectral extent Wy,

sy

e oty oy s
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(¢) I K is very large, 10 what does the evatuation of part (b) approach?
[H1int: Use the known integral

l J‘ (bow* = by + by) dw
Iy

= - 2
21 ) wdw® + (a3 = 2 ay)o 4 (a3 = 2a,a5)0* + a}
agby — ay by — (aga,byfas)

2ag{ay ay — ayay)

where aq, a,, a3, a3, bg, by, and b, are constants and ay 2> + a2t ay ko oay
has no rootls in the lower hall-planc when A = w + jo (Thomas, 1969, p. 249).]
10-15 A sample function of a semirandom binary process is to be passed through
a lowpass filter with transfer function Fl(w) = W /(W, + jw) where ¥, is its 3-dB
bandwidth. If the rise and fall times of the pulses in the output waveform are not
to cxceed 5% of the pulse duration 7, what minimum value of 1V, is required?
(Hint: Assume the input wavelform has been at tevel — A Tor muany pulse intervals
and suddenly makes a transition to level A; determine rise time as that required
for the output to rise from — A 10 0.94.)

*10-16 Carry out the steps suggested in the text and show that (10.6-13) derives
from (10.6-6).

FL0-17 I Ayfo - oo in (10.0-13) show (hat (10.6-14) is true,

10-18 A radar receiver uses a lincar envelope detector where W = R, Find an
expression for false alarme probability £ in teems of 1., the thieshold voltage
level,

10-19 Work Problem 10-18 for a square-law detector defined by W = KR?,
where K > 0is a constant.

10-20 A radar uses a lincar envelope detector defined by W = R/4. The threshold
voltage is W, = 0.7 volt, Measurements show that Iy, = 4(10 7). What is the
noise power at the envelope detector’s input?

10-21 Work Problem 10-20 for a squarc-law  detector  with  characteristic
W = RY/4,

10-22 Faulse alarm probability is 107* in a radar that must have a detection
probability of 0.9901, When target is present what signal-to-noise power ratio is
neeessary at the envelope detector's input? [Hine: Assume (10.7-11) applies.]

*10-23 A radar receiver as shown in Figure 10.7-1 uses a square-law detector
defined by W = KR? where K > (His a constant. Find an expression for the prob-
ability density of 1, .

*10-24 A radar recciver uses a binary detection logic based on obscrving N PRF
intervals (multiple observations). 11 the observations in the N intervals are sta-
tistically independent and the detection and false alarm probabilities on any one
observation are Py, and Py, respectively, find Py und P, that correspond to un
overall detection logic based on obtuining ut least n detections in N intervals,
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j} - A simpler form of (A-1) is often applicable to many practical situations. If
; APPENDIX .l\hlc: — 0, X, = o0, and ¢(x) is arbitrary except that il is continuous at x = Xq, f‘
lﬁ 5 J $(x)5(x = o) dx = $(xo) (A-2) 3
‘ i E pULSE FUNCTION o ;

REVIEW OF TH M A useful fact that is casily obtained from (A-1) is : ’

or, cquivalently

. * x 3
IEB J 8(& = Xq) d& = u(x — o) (A-3) 2

i du(x)

dx

= (5(\) (A'4)

where 1(x) is the unit-step function defined by

(x) = | 0<x A-S
MX)=19  x<o0 (A-5)

s
SIBAC
R LS o

The impulse function can be generalized (o N-dimensional space (Korn and
Korn, 1961, p. 745). If we assume a carlesian coordinate system with axes §y, 2,
..., &y, and a function @&y, §ay oov &,) that is continuous at the point (&) = xy,
&y =Xy, .00 &y = Xxy), then an N-dimensional impulse function 8(& $1y ...y $n) s
defined by

e
: e
S R o

—
==

PR NN

3 There are several ways of defining what is known as the impulsc function J'm . Jm LLENS(E, - - -
‘% (Papoulis, 1962) denoted §(x). The most mathematically sound approach is to o _md)({“ Eavees GG = X1 Ea = Xa e dy m ) e iy
b define §(x) on the basis of its integral property. If (x) is any arbitrary function of ‘ = Plx,, X ) (A6) k
o xt oy, <X, are two values of x, and xo is the point of *occurrence of the o . ' ' - Ah e AN E,:
‘ i impulse, then 8(x) satisfies (Korn and Korn, 1961, p. 742) Of special interest is the two-dimensional casc; it is known that 8(¢,, §;) can be ¢
) i 0 . <x or Yo <Xy written as (Bracewell, 1965, p. 85) F
4 X2 < Xo ’ ' . 4
1 | 8(Ey, £2) = d(81)d(S,) (A-T)
l ji 3 [pixad) + xa)) Xy € Xg < X2 so (A-6) becomes ;
Vv = (A-1) .
% MRS —= No) dy = 'li Ph(xg) Xo =X, '[ J- P&, EDB(E, = X, = xa) dEy déy = Pplxy x3) (A-8)
1 REYY - -
l ' : | By using (A-7) with an appropriatc choice of ¢(&,, &;) we readily find that,
. 3 dlxe) No = N2 for N = 2, (A-6) can be written as y
'! It can be shown, using (A-1), that d(x) bchz\vci as a .funi(mn having even J J S(EL = Xou &1 = o) dE, 4y i
symmetry, an arci of unity, a vanishingly small “duration,” and an inlinite P H \
3 5 ¥
., wamplitude ™ (Pecbles, {976, pp. 34-33). i’ * i
‘ | = 8§ = yo) d<2 8(&, ~ xo) d&, i
- -
1 The function is also assumed to have penandedd variation in the neighborhood of x = x, (see foots = u(x — xoJu()' = o) (A-9)

note, page 320,

an
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312 PROBABILITY, RANDOM VARIABLES, AND RANDOM SIGNAL PRINCIPLES

1T u(x = xohu(y = yo) s interpreted as a two-dimensional wnit-step  function
X — Xg, ¥ = yo) we have

Pulx — xo,y = J0)

ax dy =d(x — X0,y = Yo) (A-10)

where
I(x = Xg, ¥ = ya) = 8(x — xg)(y = yo) (A-11)
u(x = Xg, y = yo) = u(x — xoJuly — yo) (A-12)

T O S P DT
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APPENDIX

B
GAUSSIAN DISTRIBUTION FUNCTION

The general gaussian or normal probability density and distribution functions
are:

Julx) = = e xmwx)i2ax? (B-1)
VAR S R
Fylx) = J J(®) dE = r<1‘—1> ' (B-2)
- ax

where —w0 < ay < 00, 0 < oy are constants and F(-) is the “normalized " dis-

tribution function for ay = 0 and oy = I; thatis

~ l
Fx) = 8Ly B-3
w ,[\/7 “ .

F(x) is listed in the following table. When ay % 0 and gy 3 1, Fy(x) can be found
from [(x) by use of (B-2). For negative values of x, use

F(=x) =1 = F(x) (B-4)

3
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Table B-1 Values of F(x)for0 £ x £ 389 in steps of 0.01 K —
[ N L 0 0% m , APPENDIX
T oo s S0 120 SI60 S1e9 S0 s219 MO S C :
) 1 WS SUR SITS SSITSSSTSS6 8006 8675 STl STE .
s 02§79 5832 .SKT1 5900 5948 SORT 6026 6064 6103 6141 ; USEF D
01 G179 6207 6255 6201 61 6163 6406 6443 64RO G517 : UL MATHEMATICAL QUANTITIES
04 6554 6891 6628 6664 6700 6736 6772 6ROB.GR4d 6879
05 9IS G950 GO8S 7019 .70s4 08 7123 71577190 1224
: 06 7281 7291 M2 ST M9 7422 4s4 T486 51T 7549
i 07 7sK0 2611 7642 7673 704 a4 7764 7794 7823 I8S2
0% 7881 7910 1930 7967 7995 8023 .gosi 8078 - R106 ETRE)
i 09 R1s9 8186 8212 8238 8264 R289 8IS 8340 RIS 3389
e 10 8413 R4IE 8461 8BS BSOR 8331 Bss4  BST7 8599 3621
i U1 %643 8665 8686 708 8729 A749 8770 790 EBIO AR30 A
| L2 R0 8R69 R8BS AUOT 8925 K944 B962  R9BO 8997 9015 :
e 3 om2 9049 9066 9082 9099 91S 913t 9147 9162 0177 g
i Ce olor 9207 9222 9236 9251 9265 9219 0292 9306 A 19
it s 912 0MS 9357 9370 932 9194 9406 9418 9429 90 Y
i 6 9152 0161 9474 0a%4 9495 0505 9SS 0525 9335 9% ¢
(7 9ci 0%64 9573 9SK2 9891 999 9608 0616 9028 9632 :
!l U3 Onil 0649 0686 9664 96TL 9678 96RG 9693 9699 9706
: Lo w73 9709 973 9732 9 %44 9750 9756 9761 9767 g
20 9770 9778 9781 9788 9793 9B 9801 9RO 9812 9817 ) :
iy 21 9S21 926 9%10  98M 98I 9842 9846 9RO 954 88T IRIGONOMETRIC IDENTITIES
i 22 9SGl 9864 OKGR  ORT1 KIS RIS ORI 98R4  9RKT 9%90
[ 31 osed 9896 9SS 9901 9904 9906 9909 W0tL 9913 916 , o _ . ' 5
. 4 wolg 9920 9922 9925 9921 9029 991 0932 993 9936 cos (X y) = cos (x) cos (y) F sin (x) sin (y) (C-1 :
; 26 9908 9940 9941 9943 9945 9946 994R 9949 99 9952 . : :
2 A YN 29 sin (x = ) cos (1) 4 in (1
i" Th 0%t ISS 0086 9957 99%) 9960 9961 9962 9963 9964 (x £ ) = sin (x) cos (¥) 1:-cos (x) sin (1) (C-2) . b
i 17 s 066 9067 998 9969 0970 9971 9972 973 99 - 3
28 994 9975 9976 9977 971 0978 9979 9919 99R0 9981 cos{xt3)= Tsin (x) (-3) ;
. 29 9981 9082 9982 99K} 9984  99R4  99RS 9983 9986 9986
?;1 : 10 9087 GORT  O0KT OURS  9OKS  99RY  99K9 9989 9990 9990 .
i L1000 9901 9901 9091 9992 9992 9992 9992 9993 999 sin (x + _> = +cos (x) (C-4) :
L3 gwod 999} 9994 9994 9904 0uvd 9094 9998 0095 9995 2 3
: Y1 0008 9995 999G 0996 9996 9996 9996 9996 9996 9997 co0s (26) = cos? (] — sin? ;
ﬂ" Vo 0007 9997 anwgT 9997 9997 9997 99T 907 0908 9W9R s (2x) = cos? (x) = sin® (x) (C-5) 3
; 1S 9998 999R  OUOR 9998 9998 999K 9998 999R 9998 4998 sin (2x) = 2 sit 2
R . X) = sty (X)) COS {2 .
Ve vy 9999 9099 9999 999 9999 9999 9999 .99 (2%) (x) cos (x) (C-6)
V7 090 9999 0999 9999 9999 9999 9999 9999 9999 9999 2 cos (x) = ¢ + ¢~ % (C-7)
i Tk 9900 9999 9009 9999 9999 9999 9999 1.00K0 OO 1KY . (
8 - " Ysin(x)=el*—e (C-8)
¥ Q(\A) 13 g 0 e—-)\ ’ P z\)\ /' :F 01 2 cos (x) cos (y) = cos {x — y) + cos (x -+ y) (C-9)
Ui == JrL=4-Tx 2 sin (4 s
? . R S = X -y - B
hi vZa i (x) sin (y) = cos (x ).) cos (x + ¥) (C-10)
2 2 sin (x) cos (y) = sin (x — y) + sin (x + )) (C-11)
B4 2 ( PN e 2 cos? (x) = 1 + cos (2x)
f . C\ L R 9k s (2 (C-12)
5{ Cv%bﬁ\':’ ! S éuL:A l&(\iz “> 2 sin? (x) = .
R T J 2 sin? (x) = 1 — cos (2x) (C-13) !
N e 3
[\ 5 4 cos® (x) = 3 cos (x) + cos (3x) (C-14)
£ A \ 2 oo
- . H . B o " P . o~ 1 r . s
erbe ()= [T g™ alahoerk ()= 2 & (T k)
s : Val 'wn
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4 sin® (x) = 3 sin (x) — sin (3x)

geost (x)=3-+4 cos (2x) + cos (4x)

8 sin* (x) = 3 — 4 cos (2x) + cos (4x)
A cos (x) — B sin (x) = R cos (x + 0)

where
R=J/A* + B?

0 =tan™" (B/A)
A4 = R cos (0)
B =R sin ()

INDEFINITE INTEGRALS

Rationual Algebraic Functions

— (a 4 bxy'*!
j(a + bx)" dx = ot ) 0<n

dx l In|a -+ bx|
=~ -+ bx
a+4+bx b ¢ ¥

I dy -1 |
@by =t b

j‘ dx _ 2 tan~" (M)
c+bx+axt  [f4ge — b2 Jdac = b?
_ 1 n 20x + b ~ Jb? — 4ac
Jb* —dac |2ax + b + /b* ~ dac
_ -2
T 2ux + b
x dx ——lnln +bx4¢|— b ——df———
¢+ bx+ax?  2a ¢ x ¢ + bx + ax?

t’m" bx
b ’ a
xdx l

= In (a* + x?)
a? + x? 2

x?dx S fx
=x —alan -
a* + x? a

[
Jartim-
J7
JZ

b? < dac

b?* > dac

b? = dac

(C-15)
(C-16)
(C-17)
(C-18)

(C-190)
(C-19h)
(C-19¢)
(C-19d)

(C-23)

(C-24)

(C-26)

(C-27)

dx X

USEFUL MA FHEMA TICAL QUANTITIES 3T

: : . | AN
R TR L e UL - (-28)
(@ - x4+ xY) 2 l <u> A (

xdx -X

1 X
= +—tan"' | =
(@ +xH)? 2Aa* +xY)  2a (u)

J Xy _ -1
(a? + x2)? - 2a® + x?Y)

dx X Jx

{C-29)

(C-30)

@+ daia® + x)? T g (a? + x?

J x¥dx —x

X
7 7k
(0¥ X3 da? + X  Ba¥ a4 )

My alx Sy
(@ 4 83 AP 4+ Be? by )

dx _ x Sx

"‘ N
= tan”! <l> MR (G DY
) «
| N
: - 32
o) tan <u> (C-32)

3 X
p=tan"t = C-33
80 tan (“> (C-13)

. + 5x + 5 tan ! X
- - —— s =
P T M@ + xB) 166 (a? + X3 16d] u

(C-34)

2 X | X \ X ) o [N
S0 ST S - S wo (s
L T Gl o T et ) Teat 4 55 U Tea® M \a

{a® + xH)* = 6(a? + x3)° 24(a® + x)?

dx x4 ax /2 4 al

xtdx

! 3 !
= in ( ) + tan
at + x* 4(1’\/’2 N —axJ2 + d? 2:13\/2-

b an/2 4+ a?

(C-35)
+ X | A
16a%(a® +.\') 16a° fan a
(C-36)
- ax /2 .
(nz - .\‘2> (€37

J
J
J
'[ x*dy alx Tx
J
J

Trigonometric Functions

JCOS (x) dx = sin (x)

Jx cos (x) dx = cos (x) + x sin (x)

| )
= — In <
at 4 x? 40 /2 \x? —ax/2 +

- mr*("" 2 (C-38)
VAT B

(C-39)

(C-40)
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N2 cos (v) dx = 2y cos (X) 4 (x? = 2) sin (x)
sin {A) dyosoccos ()

vosin (V) dyoosin (V) v ens ()

vEosin () dy e 2xsin (X)) - (v - 2 cos (x)

J
J
J
:

Lxponential Functions

S1X

U
J(""' dx = — a real or complex
a
x|
Ne"dy = " - — — a real or complex
a a .
2
X2 2x 2
Nedy =M — =5+ a real or complex
1 oat
3 2
N x 6 6
ety = e — - 5 -3 a real or complex
I a at
‘,nx
¢ sin (x) dx = == [a sin (x) — cos (x)]
at + |
("I‘
et oeos (W dy = —,—-|~-] [ cos (x) - sin (V)]
o

DEFINITE INTEGRALS

J e IRy = A 1-"'“'“'” a >0
. «a

r

e dx = Sl
Jo
“Su (x) dx = J M dx = i
o 2

Jo Ay

~

Sa? (N) dx = n/2

JO

(C-41)

(C-42)

(C-43)

(C-44)

(C-45)

(C-46)

(C-47)

(C-48)

(C-49)

(C-50)

(€C-51)

(C-52)

(C-53)

(C-54)

FINITE SERIES

i N N(N2+ 1)

N
E = N(N + 2N + 1)
n= 6
Y NN !
A S v e e——. atr
n%‘l ! 4
o, XMt
..-Z.:u v e x =1
X N/ . Y
,,,ON!(N--N)!X'V =+
N .
Z ‘,l(0+nm = sin [(N + 1)4)/2] (_»-"‘*(NNI)I
n=0 sin (¢/2)
N N N N!
= — 9N
&(n) Zoaiv=mi~?
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(C-55)

(C-56)

(C-57)

(C-58)

(C-59)

(C-60)

(C-61)
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APPENDIX

D
REVIEW OF FOURIER TRANSFORMS

The Fourler transformt or spectrum X(w) of a signal x(t) is given by

- (e
X(w) = J x(t)e ™I dt (D-1)
The inverse Fourier transform allows the recovery of x(¢) from its spectrum X(w).
Itis given by

0
X(1) = -I— J X(w)e dw (D-2)
2n Jo o
Together, (D-1) and (D-2) form a Fourier transform pair. Extensive tables of
transform pairs exist (Campbell and Foster, 1948). A transform pair is often sym-
bolized by use of a double-ended arrow:

(1) = X(w) (D-3)

The Fourier transform X(w) is valid for rcal or complex signals, and, in
general, is a complex function of w even for real signals x(t). X(w) describes the
relative complex voltages (amplitudes and phases) as a function of @ that arc
present in a waveform x(1). From (D-1), we see that the unit of X(w) is volls por
hertz if x(¢) is a voltage-time waveform. Thus, X(w) can be considered as the
density of voltage in x(t) as a function of angular frequency w.

t Named for the great French mathematician and physicist Baron Jean Baptiste Joseph Fourier
(1768-1830).

320
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EXISTENCE

Conditions (hat guarantee the existence of the Fourier transform of a wavelorm
X)) are:

1. that x(1) be bounded with at most a linite number of maxima and minima and
a finite number of discontinuitics in any finite time interval,t and

2, '[w Ix()] dt < o 3 (D-4)

-m

These conditions are only sufficient for X(w) to exist; they are not neeessary.
Many signals of practical interest do not satisfy these conditions but do have
transforms, Examples are: the unit-impulse function §(t) that has the transform
X(w) = 1; and the unit-step function u(r), defined by u(t) =1 for 0 <t and
u(t) = 0 for 1 <0, that has the transform X(w) = nd(w) + (1/jw).

PROPERTIES

A number of extremely useful propertics of Fourier transforms may be stated, We
give these without proofs since the proofs may readily be found in the literature
(Peebles, 1976, p. 29; Puapoulis, 1962, p. 14), In these properties, we assume the
Fouricr transform of some signal x(f) is X(w), while the notation X,(w) implies
the transform of a signal x () withn = 1,2, ..., N,

Lincarity

For constants a, (that may be complex):

N N .
)= 3 ax)e ¥ a,X,w) = Xw) (D-5)
nxj n=g
Time and Frequency Shifting
With 1, and w, real constants:
X(t — tg) &> X(w)e~Iure ‘ (D-6)
N G X (w = wy) (1>-7)

t These are known as the Dirichlet conditions, ufter the German mathematician Peter Gustov
Lejeune Dirichlet (1805-1859). A signal satisfying them is suid to have bounded variaion {Thomas,
1969, p. 579). '
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i Scaling Parseval’st Theorem
” With « a real constant: w | (=
}j | O dr == | X)X (o) deo (D-20)
d e () = - .
. : fa] "\« ‘
ﬂ An alternative form occurs when x, (1) = x,(t) = x{1):
1
Duality ® PR 2 n.
’;: . X(1) e 20(— ) (D-9) J‘ m]x(l)l dt I [ m] X{()|* den {N-21)
}
Differentiation :
E\f d"x(1) = () X () (D-10) MULTIDIMENSIONAL FOURIER TRANSFORMS
(18 “dt” A
5 "X () The Fourier transform X(w,, w,) of a function x(t,, {,) of two “time " variables ,
%l. (_j,)"_\~(,)<..'—'—:fi- (D-11) and t, is defined as the ilerated double transform. Upon Fourier transforming
ﬂ'.'-. dws X(ty, 15) first with respect to 1, we have
Hﬁg; Integration ; X(wy, 1)) = J X(ty, ta)e ™" dt, (D-22)
T X(w -
It " 0 dr e X O3() + 22 (D-12) .
o Jw X(wy, my) results from Fourier transformation of X(w,, 1,) with respeet (o fy:
ok (" v (D-13) ' -
Hg ' ; : m(O)d() = —jl— J.- mX(S) * X(w,, w,y) = J Xy, tp)e™tor dr, (D-23)
o -
g2t or
Hg : Conjugation 1-14) o
N XH) e XN ¥ ) N(wy, ) = J‘ J' Ay, fy)e A e diy di, (1-24)
=0 e XHw) (D-15) o J-o
!E By usc of similar logic, the two-dimensional inverse Fourier transform is
Convolution | n (o
a0 - X(ty, ty) = 51 Xy, mg)elonin o go, ey, (D-25)
ls () = j X (Ox (= 1) dr e X (@)X () = X(w) (D-16) 21 oo J-on
b : I ; The cxtension of the above procedures to an N-dimensional function is
. | a , , _ . . . B . .
Ii'ii. X(1) = 3y (0N, = 5 J X (&)X jlw = §) d§ = X(w) (b-17) direct; we obtain the Fourier transform pair
L;: ' o ke ®©
i - X((v,‘...,(uN)=J J X(tyy ..oy tye IO TSN Gy dey (D-26)
: §é - Correlation . m® . -
Il {. (1) = Jm NHON (T A 1) dee X)X plo) = X(w) (D-18) Mgseree n) = @n® I j mx(“)“ coey el L SN gy s degy (1D-27)
',j A % . Al - o -
ad? o
L s | XHEXA(E + @) dE = X(0) (D-19)
‘% X(1) = xHON, m )0 t Named for M. A. Parseval.
¢
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PROBLEMS

D-1 Find the Fourier transform of a pulse x(f) defincd by

/ - 2

() = A <t <t/

0 clsewhere
where © > 0 and 4 are real constants,
D-2 1T a signal y(1) is the product of X(t) of Problem D-1 with a cosine wave, that
is, il

1) = x(1) cos (wo t + )

where wy and 0, are real constants, what is the Fourier transform of y(1)?
D-3 Find the Fourier transform of the waveform

A<l-—m) jtjst
x([): T

0 1tj>1

where t > 0 and A are real constants,
D-4 By direct use of (D-1), find the Fourier transform of the waveform

_ §A cos (r1/27) [tI< 7
x(‘)"{o ltl>

where 1 > 0 and A4 are real constants,
D-5 The waveform of Problem D-4 can be written in the form

x(t) = A rect (¢/21) cos (nt/27)
where rect {1/21) is defined by (E-2). By using (D-19), find the Fouricr trunsform of

0] .

D-6 The complex form of the Fourier series of an arbitrary periodic signal y(r) of
period T is
y(l) = Z Cu L,]anll’l‘

where the Fourier series coefficients are given by
72

!
Co=7 J yt)e ™I 1=IT gy

-Ti2

forn=0, £1, +2,....Show that the Fourier transform of this arbitrary period-
ic signal is

Yw)=21r Y C, 6((0 - f%ri)

where 3(+) is the unit-impulse function of Appendix A,
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413-7 Prove the Fourier transform pair
2 2n & n2n
Z (5({ - NT)H-_—T Z :)(w hadiaveond
LR I n= s !
where I° > 0 is o real constant and §(+) is the impulse function of Appendix A.
(Hint: Represent the time function by a complex IFourier series as in Problem
-6, find the Fourier cocfficients of the series, and then Fourier-transform the
scries).
*D-8 From the expression in Problem D-7, it is readily shown that
o o ’)
E e'imd'l’ = _2_71 z lS(U) - _)!..ﬂ)
nE = w T n% = T
Use this result to prove that the periodic signal

@

y)= 2 x(t—nT)

nE =~ w

comprised of repetitions in each period T of a basic waveform x(1), has the
Fouricr transform Y(w) given by

2 o 2 2
Y(w) = 7;-( "“2w.\'("7§>6((:) - 'n[—n>
where X(w) is the Fouricr transform of x(¢). By using the result of Problem D-6,

we see that the coeflicient C, of the Fourier series of y(1) is related to the Fouricr
transform of its component wavelorm x(r) by

1 [(n2n
C,.=‘,I—‘1\( ,r>

D-9 Find the Fouricr trunsform of the wavelorm
x(t) = u()ete!

where u{ - is the unit-step function of (A-5) and wy is a real constant,
D-10 Find the Fouricr transform of a scquence of 2N + | pulses of the form
given in Problem D-1, where N =0, 1, 2, ... That s, find the transform of

N

W= T xe—nT)

nsm =N

with T > O a real constant and t < T,
D-11 Determine the Fourier transform of the signal

Ar? 0O<i<r
x(1) =
0 clsewhere

where v > 0 and A are real constants,
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D-12 Show that the.inverse Fourier transform of the function
K ~-W<w<¥
0 clsewhere

X(w) = {

x(1) = (KW/r) Sa (W1)

where W > 0 and K are repl constants and Sa (+) is the sampling function defined
D-13 The tansfer function H{w) of o lowpass filler can be approximated by
N
Ko+ 2 ¥ K, cos (nnw/i¥) —-W<w< ¥V
Hw) = nwy
0 clsewhere

tiere W > 0, Ko, K. ..., Ky arc real constants and N 2 0 is an integer. FFind the
inverse Fourier transforay h{r) of gm) which is the impulse response of the
network, in terms of sampling functions (see Problem 13-12).

D-14 Lel x(1) have the Fourier transform X{m). Find the transforms of the fol-
lowing functions in terms of X(m):

Ix(1 .
(@) x(t = 2) exp (jwy i) {h) (-—\1-5—2 exp [jmg(t = ) () x{t — 3) — Ix(20)
£
Plere g is i real constant.
D-15 If x(1) e X(w), find the inverse transforms of the following functions in
terms of x(1):

() X)X * (e b w0y) () X -+ ) - B (¢} N*H(~w) 1 Xw)
dw
Here * represents complex conjugation and w18 a real constant.

D-16 A voltage A(r) exists across i resistor af resistance R Show that the real
energy I expended in the resistance is

| "
l= R [ | X()}? dw

where X(m) is the Fouricr transform of x(1).
D-17 1tis Lnown that
o

A1) = e M e 5 = X(w)
at e

where 2 > 0 is a real constant. Find (he Fourier transform Y{w) of

0 O
M=o
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D-18 Us_c (h'c definition (A-2) of an impulse function to prove that the impulse
has the Fouricr transform 1. That is, show that )

MO
D-19 By usc of vari ‘ouri i
oL y usc of various Fourier transform propertics, show that the following are
(a) A & A(2n)d(w) where A is a constant
(h) cos (wg ) & n[8(w — wo) + 3w + )]
1-20 Use the facts that

where ), is a real constant

|
o+ jo

H(I)e ol
and

cos (wo 1) ald{w — wy) + Hw + w,y)]

1
where a > 0 and my, are real constants, (o prove that

a -+ jo
(@ + w — w?) + j2aw)

u(t)e ™% cos (wg t) &

D-21 Prove (D-6) and (D-10).

D-22 Prove (D-12). [Hint: Use (D-16).]

D-23 Prove (D-18).

D-24 Find the FFourier transform of the signal

*

Xty 1)) = A = <<ty and —-1,<1, <1,
0 elsewhere

where ty > 0, 1, > 0, and A arc real constants.
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1 Table K-1 Fourier Transform Puirs
‘ APPENDIX 1% 1) Nw) Notes
| E } ad(i) 2
2 af2n ad{ew)
TABLE OF USEFUL FOURIER TRANSFORMS 3 n{ew) + (1 jn)
b ) !
'i . 4 Vi) - )_Z—n—l tfen)
. 5 rect {t/1) t Sa (wt/2) >0
6 (W/n) Sa (Wr) rect (w/2¥) W>0
7 tri (t/1) t Sa? (wr/2) t>0
; & (1W/n) Sa? (W) i (wf21Y) >0
1 Y i 2nd{er — )
10 M- 1) T
1 cos (i, 1) n 3 — ry) -+ v -+ wy)]
12 5N (1) —jn[(w = wy) ~ 8w + w,)]
13 (1) cos {wy, 1) g [ 8ter = aag)) F Slewr 4 1)) + —X/—m——'
- Nlo -
i R . . Wy,
14 (1) sin {wy 1) -3 (8 = ) = 8w 4 0y)] + — 3
2 Wy — w
1
i5 o 7 p
u1) i a>0
1
16 il —
unie wrjar a>0
7 1,at 2
1 u(t)ite m a>0
In the following table of Fourier transform pairs, we define i - 6
- 18 () e a>0
{a + jw)*
&) {1 E>0 (E-1)
= : . - 2x
0 <0 l/ : 19 e g a>0
1 1§l <A .
: rect () = (E-2) : 20 oo ten o fmem et 0
| @ {o HEY 2
'; sin (€) 2
Sa (&) = —— (E-3)
¢
. | - <1 -
N (R LI ()
0 [§]>1 .
X(t) = X(w) (E-$)
and let g, 1, @, g, and 1Y be real conslants.
328 i
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APPENDIX

I

SOME PROBABILITY DENSITIES
AND DISTRIBUTIONS

For convenience of reference we list below the probability density fi(x) and dis-
tribution function Fy(x) for some weli-known distributions. Where appropriate,
we also give the mean ¥, variance o}, and characteristic function dy(m).

A number of constants and functions are used as defined below:t

.ty ay by by by, a,and poare real constants {(F-1a)
N is a positive integer (17-1h)

8(&) = impulse function of (2.3-2) T (F-1e)
u(&) = unit-step function of (2.2-4) (FF-1d)

rect (&) = rectangular function of ([-2) (F-1¢)

r(\)_J Tl g Re(x)>0
= gamma lunction (-1
Pla, 1) = T (”) [ glomt dE Re(a) >0

incomplete gannma funclion (15 1)

tRe =1 demotes the el partof 2

RAL]
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P(x{N) = x{(N/Z)- te-u ye

1
2"*I(N/2) L

= chi-squarc probabilily function

X
= P( 7 2) (F-1h)

gy = [ e
u, p) = ——o re”
¥ r(p+1)L e dt

= Pearson’s form of incomplete gamma function (Pearson, 1934)

=Pp+1,u/p+1) (F-11)

MNa + b)
I ,l n ! — &
Aa b = 2o n) (=atd
= incomplc(c beta function (F-1))
F(x) = gaussian distribution of (B-3) (F-1k)
© " 2k
N L

xao KI(n + k)!

I L3
! f PERL Y TP (n0) d0
T Jo

= modified Bessel function of first kind of order 1 = 0,1,2,... (F-1)

© (FY 4
Qo, f) = L $lo(ad) exp [—%"L—a—:):l d¢ (F-1m)

The functions of (F-1f) through (F-1j) and that of (F- 1) are discussed in detail in

Abramowitz and Stegun, cditors (1964 o is M
tabulated in Marcum (1950), el reunr's @-function: it is

DISCRETE FUNCTIONS

Bernoulli

ForO<p<1

Sx(x) = (1 ~ p)a(x) + pd(x — 1) (F-2)
Fy(x) = (1 = pyu(x) -1 pu(x — 1) (1°-3)
I= (1)
at=p(l = p) (F-5)
Pylw) =1 = p -+ pei (I7-6)

.
i
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Binomial CONTINUOUS FUNCTIONS
ForO<p<landN=12,... Arcsine
N
S =T (N>P‘(1 =P he(x = k) (-7) Vora >0
K=o \ Kk rect (x/2a)
N IN Sxly) = ——= (F-22)
Falx)= 3 ( k)p‘(l = P Mulx = K) (F-8) n/fal - x?
_ K=o 0 -0 <X < —a
X=Np (F-9) .
Loy X
ok = Np(l —p) (F-10) Fylx) = §+ o sin™! (;) —agx<ua (F-23)
Oy(w) = [1 = p + pelI¥ F-1) | GEN<W
Pascalf \' =0 (1°-24)
2
ForO<p<landN=12,... g_z\.-_-ffz— (F-25)
2 (k-1
Jxlx) = ( )P"(l = p)Mo(x — k) (F-12)
g xgu N-—1 Beta
Fylx) = z (;\‘," ]I>pN(l — )l Mu(x — k) (FF-13) Fora>0and b >0
k=N - :
Mla + D)
(x) = u(x) — (x — DIx7 (1= x)P! F-26
2N - o) = s [0 = wo = D"~ = (F-26)
P
I {(a, bu(x)
- Fx(x) ={ F-27
a§=N“, ) (F-15) X I (F-27)
14
- a
Oylw) = p e[l — (1 = p)e] ™™ (F-16) X=T50 (F-28)
Poi S .20
oisson YTa+ b Hau+ b+ 1) (F-29)
Forb >0
© pk Cauchy
() = b bl -k F-17
Salx) =¢ ngo Xl 5(x — k) ( ) Forh>0uand —o0o <a< o
, r bk
Te(x)=e” — -k 118 (N) = ————
Fyx)=¢ L ulx — k) (F-18) Silx) = 7 o (1°-30)
Z=0b ' (F-19) . I 1, (x=*a
Fyx)=-+—tan (F-31)
at=b (F-20) 2 =z b
(bx((u) = exp [b(e]m - l)] (F-z]) - X’ = i3 undefined “V-Jz)
o = is undefined (F-33)
t Blaise Pascal (1623-1662) was a French mathematician, O () = elow=blwl (F-34)
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Chi-Squarce with N Degrees of Frecdom
ForN =12 ...

'\-(Nl“ o ~xl2
) = gy ¢
)= P Ny = o XX
Fx(x) = PxIN) = Pl 5.5
‘ X=N
ol =2N

Dy(w) = (1 = j2m)° b

Erlang
ForN=12...anda>0
“N\N I -
Jxlx) = —W—:l—)‘ l1(4\')

9 l—l—"-” [(u\l)"]”(_\)
. a=n N

2 i

=

e

(14

N
d
Oy{m) = (a —j(1)>

E~]
~

Exponential
Fora>0
Sx(x) = ae” "u(x)
Fy(x) = [1 = e™*Ju(x)
. o |
No=-
«
|
al = "

a
() = ——
se) a— jw

(F-35)

(F-306)

(F-37)
(I7-38)
(17-39)

(1F-40)

(F-41)

(FF-42)

(F-43)

(I7-44)

(F-45)
(F-46)

(F-47)

(F-48)

(F-49)
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Gamma

Fora>0and b >0

S = S i)
Fy(x) = I(%, b - l)u(‘()
=2
a
o=
b
®xw) = (a jjw)

(F-50)

(F-51)

(F-52)

(1-53)

(FF-54)

Note that il b is a positive integer the gamma density becomes the Erlang density.

Aiso il h=N/2, for N=1,2,.
chi-squarc density,

Gaussian-Univariate

: Forb>0and —0 <a< o

Si(x) = (ah)~Hip-tx=mln

X~a
Fy(x) = F
) ( I;/2)

X=ua

b
1 0
9x=3

Oy(w) = ol - tathi4)
Gaussian-Bivariate

For-—oo<n,<oo,—oo<a2<oo,b,>0,b1>0and——Is/;sl

fx.,x;(xn Xy) = [nszbz“ —ph)n

{ -1 [(x, —a,)?
(1-p? b

2p(x; — a,Xx; — a,) ' (x; — “2)1]}
Vo n

-a,] [x;-a,
Fry x,(x1 %5) = Li '
(X X,) ( (\/I)_/ZJ L b 2:’ /)

«and @ =% the gamma density beecomes the

(F-55)
(FF-56)
(F-57)
(F-58)

(F-59)

(F-60)

(FF-61)

!
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where L(x,, x,, p) is a probability function discussed extensively and graphed in
Abramowitz and Stegun, editors (1964), p. 936. Also

% =a (F-62)
%, =0, (1-63)
o}, = b2 (e
o}, = by/2 (1-65)
Uy, y(0), @) = exp {jw,a, + jw,ay — Ylwib, + 2pw,wy3/bb,y + wi,]}
(F-66)
Laplace
Forb>0and —w <u <
b .- "
Jxx) = 3¢ 1x=al (F-67)
et e —wm<x<a -
Y(A) { '/e_"“ a) a<x <00 (l '68)
X=ua (F-69)
2 2 -
gy = 7 (F-70)
s e!-lw .
Olw) = b? s (F-71)
Log-Normal
For —w<a<w, —w <b<w,ando>0
fi(x — b)e~ U tx=bi=ajzal
Silx) = (I°-72)
x J2n(x — b)o
Fy(x) = ulx = D)I'{a~[In (x — b} — ]} (F-73)
- a?
X=b+exp (u + 3-) (1--74)
ol = [cxp (02) — 1] exp (2a + o?) (1°-75)
Rayleigh
For —co <a<owand b >0
2
Sx(x) = 5 (x — a)e~=aby(x — g) (F-76)

SOME PROBABILITY DENSITIES AND DISTRIBUTIONS 337

Fyx) =1 = e " "Puix — a) (F-717)
X=a+ }1(-1-)- (F-78)

4
ﬂi‘ = ’)(4: J‘() ([.‘_7()]

Rice [Thomas (1969), Middleton (1960)]

Fora>0and b>0

Silx) =y e ,(Z')')u(x) (F-80)

i ; F-81
[ <b b)] (x) (F-81)

2 .2 , 2
PRI IENO R

ol = b2 + k%) — (X)? (F-83)
k= ;’ (F-84)

Uniform

For —mw <a<bh<o

ux = ) = u{x ~ b)

Jxlx) = — (7-85)

Fyly) = {(_\——7(:)_'—‘%:2 v<h (F-86)
1 xzb

£ = 1%——’ . (-87)

i = &};ﬁ)-z- (F-88)

Dyfe) = (F-89)

jw(b — a)
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Weibull
Fora>Oandbh >0 .
ilx) = abs"” 'iz""“’u(.\‘)

Fuy) =11 e ()

N o O R

A= “l/h

B AT RN oy TRk
ay = ul/h

Note that if b = 2 the Weibull density becomes a Rayleigh density.

(F-90)
(1:-01)

(I.‘_()z)

(190
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of linear system response, 212-213
measurement of, 156-158
at product device output, 191
properties of, 153
relationship to power spectrum, 177, 179-181,
193
of stationary process, 149
time, 151
time average of, 177, 179180
of wide-sense stationary process, 150, 153
Autocovarinnce function:
of complex process, 160
delined, 155, 160
Fourier transform of, 196
of wide-sense stationary process, 156, 158

INDEX |

Available power gatin, 232

Average effective noise temperature, 237
Average cllcctive source temperature, 237
Averape operating noise figure, 236
Average standard noise figure, 216
Axioms of probubitity, 10

Bund-limited random process, 219
properties of, 221-223, 224-226
Band-limited white noise, 188
Bandpass random progess, 219
Bandwidth:
noise, 210, 217-218, 238
of a power spectrun, 127179
ris, 177-179, 198, 201
Bayes, Thomas, 161,
Bayes' theorem, 16
Bernoulli densily, 331
Bernoulli, Jacab, 251
Bernoulli trials, 25
Bessel function, 299, 331
Reta density, 333
Binary communication system, 17
Binary procdss, semirandom, 162
Binary symmetric channel, 17
Binomial cocficient, 26, 33
Binomial density unction, 46, 332
characteristic function of, 83
mean of, 81
variance of, 81
Binomial distribution function, 46
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Bivariate gaussian density, 124,235
Boltzmann, Ludwig, 2271
Boltzmann's constant, 227
Bound(sh:
on autocorrelation function, 153
on cross-correlation function, 154, 155
on linear system response, 210
Bounded variation, 310m, 320
Butterworth filter, 243

Cartesian product space, 220,
Cauchy, Augustin Louis, 61
Cauchy density function, 61 RRR)
Canchy distribution Tunclion, 62
Canehy tamdom vininhle, 61
Cansal system, 21
Ceatral limil theorem, 105-108
Coentral moments, 70, 82,120 122
related 1o moments about origin, 82
Certain event, 10
Channel. 17, 276, 281
hisry syanetric, 17
Characteristic lunction:
of hinomial density, 85
delined, 72, 122
of Erlang random variable, 85
wf exponential rndom variable, 70 73
of gaussitn random variablels), 83, 138
joint, 122-124,138
marginal, 123
moment generating property of, 72, 123-124
of Poisson random variabie, 85
for several random variables, 124
for two randons variables, 122
Chebyehey's inequality, 8s
Chebyehey, Pafnuty L., fSn.,
Chi-syuare density, 85, 31, RRD)
Class of sels, 3
Classification of process, 144 146
CoefMcient of skewness, 71
Colored noise, 190
Combined experiment, 22
Combined sample space, 22
Communication systemis):
;xn\]\lilmlg:mn\lul:lliml (AN), 275279
binary, 17
frequency allocations, 275-276, 280
frequency modulation (M), 280 284

thyee-symbol, AR
Commautitive lw of sets, 7
Complement of set, 6
Complex random process, 160-161
(See alse Random process)
Complex samdom vaniahle, 133

Conditional density function, 52, 62

with interval conditioning, 99

with point conditioning, 96-99

propertics of, 83
Conditional distribution function, 520 62,96

with interval conditioning, 99

with point conditioning, 96-99

propertics of, 52
Conditional expected vatue, 69, 139
Conditional probability, 13
Conditioning event, $8-57

interval, 99

point, 9699
Continuous random process, 145
Continuons Gndom segquenee, 116
Conlisuous
Convolution integral, 103, 207, 223
Convolution of density functions, 103, 105

andom variable, VY

Correlation
of independent random variables, 119, 134
of orthogonal random variables, 119, 134
of rundom variables, 119, 134
of uncorielated random variables, 19, 13
Correlation coeficient, 121, (36
Correlation functions:
autocorrelition, 149, 152154, 160 161,
212-21)
autocovariance, 155-156, 160161
cross-correlation, 150, 154,213-214
cross-covariance, 156
of derivative of a process, 166, 246
lime autocorrelation, 151
time cross-corrclation, 152
(See also listings by specific types)
Correlation integral, 268
Correlation receiver, 269
Countable sct,
Countably infinite sel, 3
Covarianee:
of independeut random variables, 121
of orthogonal random variables, 121
of random variables, 121, 134
of uncorrelated random variables, 121, 134
Covirinee mactions {see Correlation functions)
Covarianee matrix, 127
after linear transformation, 132
Crest-factor, 280, 306
Crossover frequency, 308
Cross power, 1R
Cross-correlation function{s):
hounds on, 184, 185
af complex process, 160-161, 193
detined, 150, 154
of derivative of process, 166, 203, 246

- — o o

Cross-correlation function(s):
Fouricr transform of, 184, 185-186, 193
of independent processes, 154
of jointly wide-sense stationary processes, 150,
154
measurcment of, 156-158
of orthogonal processcs, 154
properties of, 154
real and imaginary parts of, 199
relationship to cross-power spectrum, 184,
185-186, 193
of response of lincar system, 213-214
time, 152
time average of, 184, 1RS-186
Cross-covatinnee function:
of complex processes, 160161
defined, 156
of independent processes, 156
of uncorrelated processes, 156
of wide-scns: stalionary processes, 156
Cross-power density spectrum:
of complex processes, 193
defined, 183
of lincar system, 217
propertics of, 184
real and imaginary parts of, 199
Cross-power densily spectrum:
relitionship ta cross-correlation function, 184,
IR5-186, 193
Cross-power spectrum (see Cross-power density
spectrum)
Cumulative probability distribution function (sce
Probability distribution function)

Damping fuctor, 295

Decibels, 240n.

Delta fanction (see lmpulse function)

e Morgan, Augustus, Tn,

De Morgan's laws, 7, 32

Density function (see Probability density function)
Derivative of random process, 166, 203

power spectrum of, 177

Dectection probability, 304-305

Deterministic random process, 147
Deterministic signal, 173

Difference of sets, 5

Dirichlet, Peter Gustav Lejeune, 321n,
Dirichlet conditions, 321n.

Discrele random process, 145

Discrete random sequence, 146

Discrete random variable, 37, 79
Disjoint sets, 3
Diistribution function (see Probability distribu-

tion fonction)
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Distributive law of sels, 7
Domain, SR
Duality principle, 8

Lffective noise tempeeature, 229, 233, 237
Efficiency, 279, 305 -306

Elementary cvent, 12

Elements of a set, 3

Lmpty set, 3

Ensemble, 143

Ensemble average, 143

Ensemble member, 143

Lavelope detector, 278

Founl sels, §

Erpodie random process, 152, 187n,
Frgadic theorem, 152 P
Erlang, A. K., 85n. ‘
Erlang density, 33
Erlang random variable, 85
Eveni(s):
certain, 10
on combined sample space, 23-24
defined, 9
clementary, 12
impossible, 10
joini, RO
mutnatly exclusive, 9
pairwise independence of, 19
probability of, 10
statistically independent, 18-22
IIxcess available naise power, 233
Expectation (see Expecled value)
Expected value (expectation):
conditional, 69, 139
of a function of a random variable, 68, 133
of a function of several rundom variables,
17-119
of random process, 143, 153, 160
of a random variable, 67-68, 133
of a sum of random variables, 118
Experiment(s), &
combined, 22
independent, 25
mathematical definition of, 8, 11-12
Exponential density function, 49, 68, 70, 71,
72-74, 334
Exponential distribution function, 49, 334

False alarm, 302
Filter (system):
Dutterworth, 243
gaussian, 241 |
idealized, 209 210 '
nutched, 258 -262
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Filter (system):
prediciion, 263
smouthing, 263
Wiener, 262 -266
Finite set, 3
Frest-onder statiosary tandum provess, 4R
Founer, Haron Jean Baptiste Joseph, 320n,
Fouricr series:
coellicients, 324, 325
delined, 324
Fourier transform of, 324, 325
Fourier transform(s):
of autocorrelation function, 177, 180, 193
of cross-correlution function, 184, 185-186,
193
defined, 72, 173, 320
existence, 321
inverse, 72,173, 320
multidimensional, 323
properties of, 321-323
table of pairs of, 329
of time-gveraged autocorrelation function, 177
of time-averaged cross-correlation function,
184
uniqueness, 161
Frequency-domatin unalysis, 172
FFrequency modulation {1°M), 280-284
Fresnel integrals, 273

Gamma density, 335

Gamma function, 85, 330, 331

Gauss, Johann Friedrich Curl, 43n,

Gaussiun densily function:
conditional, 112, 128
marginal, 125, 128
mean value of, 81, 124
N-dimensionul (N-variate), 127, 128
of one random variable, 43, 60, 61, 335
two-dimensional (bivariute), 112, 124, 335
vuriance of, 81, 124, 336

Guussian distribution function:
of one random variable, 44, 33§
table of, 31$

Guussian filter, 241

Gaussian random process, 156, 158-160
variinee estimate of, 167

Gaussian random variable(s):
churacteristic function of, 83, 138
conditional density function of, 128
defined, 43, 124, 127
linear transformation of, 77, 130-133
marginal density function of, 125, 128
mean value of, 81, 124
momenl genceting function of, 83

Guussian random variable(s):
properties of, 128
variance of, K1, 124, 336

Idealized system, 209210
Impaossible event, 10
tmpulse function:
delined, 41, 310-312
limiling forms of, 176, 195
N-dimensional, 311
relationship to unit-step function, 41, 311, 312
two-dimensional, 311-312
Itnpulse response of linear system, 206, 207
Incomplete beta function, 331
Incomplete gamma function, 330, 331
Incremental avuilable power, 227
Incremental noise power, 227
Independent events, 18-22
Independent experiments, 25
Independent random processes, 148
Independent rundom variables, 100-102,
133-134
joint characteristic function of, 122-124, 138
Infinite set, 3
Integrals:
Fresnel, 273
table of definite, 318-319
table of indefinite, 316-318
Integrator, 157
Intersection of sets, 6
Interval conditioning, 99
Inverse Fourier transform (see Fourier transform)

j, 60n.
Jacobi, Karl Gustav Jakob, 129n,
Jucobian, 129
Joint central moments, 120-122
of two discrete random variables, 136
Joint characteristic function, 122-124
of independent random varinbles, 138
of two gaussian random variables, 83, 138
Joint event, 89
Joint moments, 119-120
of two discrete rundom variubles, 136
loint probability, 13
Joint probability density function (see¢ Probabil-
ity density function)
Joint probability distribution function (see Prob-
ability distribution function)
Joint sumple space, 88
Jointly ergodic rundom processes, 152, 157n.
Jointly gaussian random processes, 156, 160
Jointly wide-sense stutionary random processes,
150, 160 -161, 213

Khinchin, AL 1, 180

Faplace, Matquis Picrre Simou de, 39,
Laplace desity function, §9, 116
Laphee transfonm, 173
ey, Gottliied Willieba voan, Jon
foabras's tale, 16
Likehhomd, 9
Lincar sysiem:
causal, 210
cross-correlution function, 213-214
cross-power spectrums, 217
defined, 206
idealized, 209-210
impulse response, 206, 207, 210
noise temperature, 239
optimum, 257
output autocorrelution function, 212-213
output mean-squared vilae, 212
output mean value, 211
outpul power, 212, 216
oulput power speetrum, 218
physically realizable, 210
response 10 deterministic signal, 206- 209
response to rivndom signal, 211
stable, 210
time-invariant, 207
transfer function, 208
white noise evaluation of, 214-215
Liguid helium, 200
Log-normal density function, 62, 86, 336
Log-normal distribution function, 62, 336

Mapping, 35
Marcum’s Q-function, 308, 331
Marginal characteristic funciion, §23
Marginal density function (see Probability
density function)
Marginal distribution function (see Probabitity
distribution function)
Maser, 188x., 200
Matched filier, 258
for colored noise, 259 260
impulse response, 260, 261, 267
paximum signal-lo-noise ratio of, 260, 268
oniput signat from, 268
for rectmgular pulse, 201-262
teansier function, 260
for white noise, 260-262
Matrix, covariance, 127
Mean frequency, 178
Mean (expected) value:
from awtocorrelation function, 153
conditional, 69, 19
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Mean (expected) value:
estinuite of, 167
of Tunction of a vandom variable, 6X, 133
of function of several tvndom vaniables,
17 HY
ul povess sitple function, 151
ol indont provessies), 104 188 T
ol tandom process derivative, 166
of random viriabie, 67- 68, 133
of sum of random vargables, §IN
of system response, 211 N
Mean-squared error, 263-266
Mean time between failures (M1, 64
Measurement of correlation functions, 156-158
Median of rundom variable, 61
Mixed random variable, 37
Mode of random viriable, 61
Modulation index, 306
Moment generating function, 73
of giussian random variable, §3
Momenls:
central, 70, 82, 120
fromn characieristic function, 72, 123 124
interrelittionships, 82
joing, 119122
from moment generating function, 73
about origin, 69,82, 119- 120
of two discrete random variables, 136
Monotonic transformutions:
decreasing, 75, 76
increasing, 75-76
Mutually exclusive events, 9
Mutually exclusive sets, 3

N-ocder stationary random process, 151
Narrowband gaussian process, 220
Narrowbaud random process, 220
Natural frequency, 295
Nituread numbers, 0
Noise, 1

arbitrary source of, 228

colored, 190

in control system, 285- 288

in phase-docked loup, 28§-295

resistive sowree of, 227

thermal, 187,227

types of, 226n,

white, 187
Noise bandwidih, 210, 217-218, 238
Noise ligure:

ol attenuator, 238

averige, 236

averige operating, 236

average standard, 236
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Noisc figure:
average syslem operting, 240
meremental, 24
operating spol, 235, 249
spot, 234 238
standard spot, 215, 250
Noise performance:
of amplitude modulation system, 278-279
of frequency modulittion system, 281-284
of phase-loched loop, 202 298
of radar, 301308
Noise temperature:
of antenna, 234
ol attenuator, M8
averape, MAONIS
average ellective input, 237
average cllective souree, 237
ellective, 228
clfective inpat, 233
standard, 238
system, 239
Nondeterministie randum process, 147
Nonstationary random process, 147
Normal density function (see Gaussian density
function)

Narmalb distribution function (see Gaussian dis.

tribution function)
Normalized second-onder moment, 121
Null set, 3

Open-loop transfer function, 285
Operating spot noise figure, 235, 249
Operator, 206

Order of moment, 119, 120
Orthogonal random process, 154, 161
Orthogonal random variables, 119, 134
Outeome of experiment, 8
Overmodulation, 278n,, 306

Parseval, ML AL W3
sevil's theorem, 323
ascal, Blaise, 1320,

Paseal density, 332

Phase detector, 290

Point conditiohing, 96-99
Poisson, Simeon Denis, 470,

Poaeeants dennaty Dang Lo 7, 88, VL)
menn ol N1 3R
vacianee of, 81,332
Paisson randont variable, 47, 140
Power:
from antocorreltion fanction, 183
awrementalavaitable, 227
from power density speettum, 175

Power:
ina random provess, 1S3, 178178
in tesponse of linear system, 212, 216
from second moment of process, 175
Power densily (see Power densily spectrum)
Power density speetrum, 153,173
bandwidth of, 177-179
of complex process, 193
detined, 175
of derivative of process, 177
inverse Fourier transform ol 177, 180
of output of linear system, 215
of product device ontput, 191
properties ol 176177

teltinnshup toautoconrelanon function 177,

179181

relationship (o swocovirisnee function, 196
Power gain, available, 232
Power speetral density, 173n,
Power spectrum (see Power density spectrum)
Power transfer function, 215§
Prediction filter, 263
Probability, 9

u posteriori, 18

a priori, |8

axioms of, {0

conditional, 13

detined, 1}

of detection, 302, J04 .305

of false alarm, 302, 303

joint, 13

of miss, 302

total, 15

transition, I8
Probability density function:

arcsing, 84, 133

Bernoulli, 331

beta, 333

binomial, 46, 81, 332

Cauchy, 61, 33 .

chi-square, 88, 331, 334 '

conditional, 52, 96-99

delined, 40, 93, 148

of diserete random viriable(s), 41, 94

Erlang, M

envistenee, 0

evpaotential, 8, [R1)

v, AN

paussian, 360,61 112, 124 128, 018

joint, 91

Laplace, 89,81, 336

log-nomal, 62, 86, 116

i pinal, 8,96

of N random variables, 94

Probability density function:
normal, 430,
Pasceal, 332
Poisson, 47, 85, 332
propcrtics of 42, 53, 94
of random process(es), 148n,
Raylcigh, 50, 336
Rice, 299, 337
of sum of random variables, 102-105
teansformation of, 74-80, 128-1323
triangular, 43
of two random variables, 93
uniform, 48, 337
Weihull, 85, 1R
Peobabitity distiibution function:
arcsine, 333
Bernoulli, 301
heta, 333
binomial, 46, 332
Cauchy, 62, 333
chi-square, 334
conditional, 52, 62, 96-99
defined, 37, 89, 147-148
of discrele random varinble(s), 38, 90
Erlang, 334
exponential, 49, 334
gamma, 335
gaussian, 43-45, 11§
joint, 89, 99, 148
Laplace, 336
log-normal, 62, 336
marginal, 92,93
ol one random variable, 37
Pascal, 332
Pofsson, 47, 332
propertics of, 37-38, 91
of random process, 147n,, 147-148
Rayleigh, 50, 337
Rice, 337
of several random variables, 90
of sum of random variables, 102-105
of two random variables, 89
uniform, 48, 337
Weibuil, 338
Process (see Random process)
Prochuct device, 191 4193
Provduct of sets, &
daet spaee, two-dimensional, 88
Pulse repetition frequency (PRIF), 301

Quinntizer, 58

Random point, 88
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Random process(es):
amtocorselation function, 149, 182 184, 160
autocoviniance function, 155, 160
band-limited, 219
handpass, 219
classilied, 144 -146
complex, 160-161
continuous, 145
cross-correlation function, 150, 154, 160-161
cross-covariance function, 156, 160-161
cross-power spectrutn, 182-185, 193
defined, 142, 160
densily function of, 148
derivative of, 166, 246
deterministie, 147
discrele, 145
distribution function of, 147148
ergodic, 152
estimale of, 168
first-order siationary, 148-149
gaussian, 156, 15R-160
jointly ergodie, 152, 157n.
jointly wide-sense stationary, 150, 160-161,
213
mean of, 143, 153, 160
mean value estimate of, 167
N-order stationary, 151
narrowband, 220
noudeterministic, 147
nonstationary, 147
orthogonal, 154, 161
periodic component in, 153
power of, 153,173, 175
random telegraph, 169
sample function of, 143
second-order stitionary, 149
seinirandom binary, 162, 296
stationary, 147
statistically independent, 148
shiicl-sense stationary, 1§1
time correlation functions of, 151-1$2
uncorretated, 156, 161
variance of, 156
wide-sense stationary, 150, 160-161

Random sequence:

continuous, 146
diserete, 1416

Random sigaal, |
Random telegraph process, 169
Random variable(s):

auxiliary, 140

Cavchy, 61

central moments of, 70, 82, 120-122
characteristic function of, 72, 122
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Random variable(s):
coetlicient of skewness, 71
complex, 133
conditions for, 36
continuous, 37
correlation of, 119
correlution coefficient, 121, 136
covariance of, 121, 134
delined, 34, 88, 89
discrete, 37
Erlang, 85
gaussian, 43, 81, 119n,, 124~128, 130-133
independent, 100-102, 133-134
joint central moments of, 120
joint characteristic function of, 122-124, 138
joint moments of, 119, 123, 124
lattice-type, 106n.
marginal charucteristic functions of, 123
mean of, 67-68, 133
mediun of, 61
mixed, 37
mode of, 61
moments of, 69--70
N-dimensional, 89
orthogonal, 119, 134
Poisson, 47, 140
Rayleigh, 50, 81
skew, 71
stundard deviation, 70
transformution of, 74-80, 128130, 130-133
uncorreluted, 119, 134
uniforni, 48, 59
variance of, 70, 133
vector, 88
Weibull, 85
Rundom vector, 88, 89
Range, 58
Runge sumple spuce, 88
Rational power spectrums, 267
Rayleigh, Lord (John William Strutt), 50n.
Rayleigh density function, 50, 336
maximum value of, 61
mean of, 81
median of, 61
mode of, 61
variance of, 81
Ruyleigh distribution function, 50, 337
Ruyleigh random variuble, 61
Realizable linear system, 210
Realization of a process, 143
Rice density, 337
rms bandwidth, 177-179, 198, 201

Sample function, 14

Sample space, ¥

combined, 22

continuous, 9

discrete, 9

joint, 88

range, 88
Sampling function, 326
Schwarz, Hermann Amandus, 259n.
Schwarz's ineqoalily, 259
Sceond-order stationary random process, 149
Semirundom binary process, 162, 296
Series, table of, 319
Set(s):

algebra of, 7

associative law of, 7

class of, 3

commutative law of, 7

complement of, 6

countable, 3

countably infinite, 3

defined, 3

difference of, §

disjoint, 3

distributive law of, 7

elements of, 3

emply, 3

equality of, 5

finite, 3

infinite, 3

intersection of, 6

mutually exclusive, 3

nll, 3

product of, 6

sumof, 6

uncountable, 3

union of, 6

universal, 4

Yenn diagrum of, §
Sct theory, 2
Skew, 70
Skewness, 70
Smoothing filter, 263
Spectrum (Fourier transform), 72, 173
Spot noise figure, 234-235, 249, 2°0
Stable linear system, 210
Stundard deviation, 70
Standard noise temperature, 235
Standurd source, 235§
Stationarity (se¢ Random process)
Statistical uvernge (see Expected vulue)
Statistical independence:

of events, 18-22

of experiments, 25

by puirs, 19
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Statisticad indepondence: .
of random processes, 148
of ritndom variables, 100-102, 134

Subexperiments, 22

Subset, 3

Sums of rundom variables:
density function of, 102-10$
distribution function of, 102
mean of, 1§
variance of, 122

System noise temperature, 239

05

Tables:
of definite integrals, 318
of finite series, 319
of Fourier transform pairs, 329
of gaussiz distribution function, 314
of indelinite integrals, 316-318
of trigonometric identities, 315-316
Telegraph process, 169
Thermal noise, 187
Thevenin, Léow, 227n,
Thevenin voltage sonree, 227
Threshold, 284, 302, 303
Time avtlocorrelation function, 15t
Time uverage, 151
Time cross-correlation function, 152
Time-domain wnalysis, 172
Time-invariunt system, 207
Total probability, 15
Transfer function:
open-loop, 285
of phase-locked toop, 290-202
of system, 208, 215
Transformation of random variable(s), 74--80,
128-130
lineur, 77, 130-133
maonotonic, 75-77
nonmanotonic, 77-80
square-law, 78-79
Transition probability, 18
Triad, ¥
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Togonvmetric ddentities, Gilde of, 115 116
Two-dimensional product space, 88

Uncorrelated random processes, 156, 161
Uncorreliuted random virtables, 119, 134
Uncountable set, 3
Uniform density function, 48, 139, 337
wmean of, 80, 337
viriance of, 80, 337
Union of sels, 6
Unit-impulse function (see Impulse function)
Unit-step function: *
defined, 38, 311, 312
related to impulse function, 311, 312
two-dimensional, 311-312
Universal set, 4

Vaurinee:
estimate of, 167
ol random process, 156
of random variable, 70, 113
of sum of random variables, 122
Vector rndom variable, 8%
Yenn, Joha, Sn.
Venn diagram, $
Voltage density spectrum, 173

Weibull density, 85, 338

Weibull, Ernst FH. W, 851,

White noise:
autacorrelation function of, 187
band-limited, 188 '
defined, 187
in system evaluation, 214 -2(8
power spectrum of, 187

Wide-sense stationary random process, 150,

160-161

Wicner, Norbert, 180, 2620,

Wiener filter, 262-2606, 288, 307
minimum mean-squared error of, 266
teansfer function of, 265 !

Wiener-Khinehin relations, 1X0



