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Modqling, CoTpute''i ,
qnd Erior Anolysis

t.t MoTtvATtoN

What are numerical methods and why should you stridy them?
Numerical methods are techniques by which mathematical problems are formulated so

that they can be solved with arithmetic and logical operations. Because digital computers
excel at perform.ing such operations. numerical methods are sometimes referred to as com-
puter mathematics.

In the pre-computer era, the time and drudgery of implementing such calculations se.--
riously limited their practical use. However, with the advent of fast, inexpensive digttul
computers, the role of numerical methods in engineering and scientific problem solving

has exploded. Because they figure so prominently in,:'
much of our work, I believe that numerical methods
should be a part of every engineer's and scientist's
basic education. Just as we a.ll must have solid foun-
dations in the other areas of mathematics and science,
we should also have a fundamental understanding of
numerical methods. In particular, we should have a
solid appreciation of both their capabilities and their
limitations.

Beyond contributing to your overall education.

.thog T9 several additibnat reasons why you shoutO
study numerical methods: .",,,,rr,,,r,,,r,,,,,,

1. Numerical methods greatly expqld the types of ,
problems you can address. They are capable of
handling large systems of equations. nonlineari-

, , d.l, and complicated geometries that are not un-
common in engineering and science and that are
often impossible to solve analytically with stan-
dard calculus. As such" they greatly enhance your
problem-solving skil ls.

2. Numorical methods allow you to use "canned"

so-ftware with insight. During your career, you will

"'T" q*"



PART I MODELING, COMPUTERS, AND ERROR ANALYSIS

invariably have occasion to use commercially available prepackaged computer pro-
grarns that involve numerical methods. The intelligent use of these programs is greatly
enhanced by an understanding of the basic theory underlying the methods. In the ab-
sence of such understanding, you will be left to treat such packages as "black boxes"
with l itt le crit ical insight into their inner workings or the validity of the results they
produce.

3. Many problems cannot be approached using canned programs. If you are conversant
with numerical methods, and are adept at computer programming, you can design
your own programs to solve problems without having to buy or commission expensive
software.

4. Nr.rrnerical methods are an efficient vehicle fbr learning to use computers. Because nu-
merical methods ale expressly designed for computer implementation, they are ideal tbr
illustrating the conrputer's powers and limitations. When you successfully implement
numerical methods on a computer, and then apply them to solve otherwise intractable
problenrs, you will be plovided with a dramatic dernonstration of how computers can
serve your professional development. At the sarne lime, you rvilI also learn to acknowl-
edge and control the errors of approximation that are part and parcel of large-scale
numerical calculations.

5. Numerical methods provide a vehicle fbr you to reinforce your understanding of math-
ernatics. Because one tunction of numerical methods is to reduce higher mathematics
to basic arithmetic operations. they get at the "nuts and bolts" of some otherwise
obscure topics. Enhanced understanding and insight can result from this alternative
perspective.

With these reasons l ls motivation. we can now set out to understand how numerical
methods and digital computers work in tandem to generate reliable solutions to mathemat-
ical problems. The remainder of this book is devoted to this task.

1.2 PART ORGANIZATION

This book is divided into six parts. The latter five parts focus on the major areas of numer-
ical methods. Although it might be tempting to jump right into this material, Part One con-
sists of four chapters dealng with essential background material.

Chapter 1 provides a concrete example of how a numerical method can be employed
to solve a real problem. To do this, we develop tt muthematical model of a fiee-falling
bungee jumper. The model, which is based on Newton's second law, results in an ordinary
differential equation. After first using calculus to develop a closed-form solution, we then
show how a comparable solution can be generated with a simple numerical method. We
end the chapter with an overview of the major areers of numerical rnethods that we cover in
Parts Two through Sir.

Chapters 2 and 3 provide an introduction to the MATLAB' software environment.
Chapter 2 deals with the standard way of operating MATLAB by entering commands one
at a time in the so-called t'alculator nuttle.This interactive mode provides a straightforward
means to orient you kl the enviroument and illustrates how it is used ibr common opera-



I.2 PART ORGANIZATION

Chapter -l shows how MATLAB's programming mode provides a vehicle for assem-
bling individual commands into algorithms. Thus, our intent is to i l lustrate how MATLAB
serves as a convenient programming environment to develop your own software.

Chapter I deals with the irnportant topic of error analysis, which must be understood
for the effective use of numerical methods. The first part of the chapter focuses on the
roundoJf errors thar result because digital computers cannot represent some quantities
exactly. The latter part addresses truncation errctrs that arise fiom using an approximation
in place of an exact mathematical procedure.
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Mothemoticol Modeling,
Numericol Methods,
ond Problem Solving

CHAPTER OBJECTIVES
The prirnary objective of this chapter is to provide you with a concrete idea of what
numerical methods are and how they relate to engineering ancl scientific problem
solving. Specific objectives and topics covered are

o Learning how mathematical models can be formulated on the basis of scientific
principles to simulate the behavior of a simple physical system.

r Understanding how numerical methods irlford a means to generate solutions in a
rnanner that can be irnplemented on a digital computer.

o Understanding the different types of conservation laws that lie beneath the models
used in the various engineering disciplines and appreciating the diff'erence
between steady-state irnd dynamic solutions of these models.

r Learning about the difterent types of numerical methods we will cover in this
book.

YOU'VE GOT A PROBTEM

uppose that a bungee-jumping company hires you. You're given the task of predict-
ing the velocity of a jumper (Fig. l.l ) as a function of time during the free-fall part
of the jump. This inlbrmation will be used as part of a larger analysis to determine the

length and required strength of the bungee cord for jumpers of different mass
You know from your studies ofphysics that the acceleration should be equal to the ratio

of the tbrce to the mass (Newton's second law). Based on this insight and your knowledge



I .I A SIMPTE MATHEMATICAL MODEL

Upward force
due to  a i r
resistance

t

til
tilv

Downward
force due
to gravrty

of fluid mechanics, you develop the following mathematical model for the rate of change
ol 've loc i ty  r . r ' i th  respect  to  t ime.

d u c d .

d t ' ' m

where rr : vertical velocity (n/s). r : time (s), g : the acceleration due to gravity
(:9.81nls21, ca: a second-order drag coetficient (kg/m), and m: the jumper's
mass (kg).

Because this is a ditlerential equation, you know that calculus might be used to obtain
an analytical or exact solution for u as a function of /. However, in the following pages, we
will illustrate an alternative solution approach. This will involve developing a con.rputer-
oriented numerical or approximate solution.

Aside from showing you how the computer can be used to solve this particular prob-
lem, our more general objective will be to illustrate (a) what numerical methods are and
(b) how they figure in engineering and scientific problen solving. In so doing, we will also
show how mathematical n.rodels figure prominently in the way engineers and scientists use
numerical methods in their work.

I . l A SIMPTE MATHEMATICAT MODET

A motlrcnntical ntodel can be broadly defined as a tbrmulation or equation that expresses
the essential features of a physical system or process in mathematical terms. In a very gen-
eral sense, it can be represented as a functional relationship of the fonn

Deoenden( - /  indenenclent  forc ine \
. . ' . . . , _ ,  : J  [  

' . , ,  . p u r a n ) e t e r s .  |  ( l . l )
vanaole \  vanaDtes lunct lons , f

where the de;tendent variable is a characteristic that usually reflects the behavior or state
of the system:- the independettt variables are usually dimensions. such as time and space,
along which the system's behavior is being determined; the parameters are retlective of the
system's properlies or composition; and thelbrring.functiotts are external intluences acting
upon it.

The actual mathematical expression of Eq. (1.1) can range from a sirnple algebraic
relationship to large complicated sets of diff-erential equations. For example, on the basis of
his observations, Newton formulated his second law of motion, which states that the time
rate of change of momentum of a body is equal to the resultant force acting on it. The ntath-
ematical expression, or model, of the second law is the well-known equation

F : m a (  t . 2 )

where F is the net force acting on the body (N, or kg nls"), m is the n.rass of the object (kg),
and c i  is  i ts  accelerat ion ( rn/s : ) .

f lGURE l . l
Forces ociing on o
lreeJoll ing bungee
iumpet.



6 MATHEMATICAL MODELING, NUMERICAL METHODS, AND PROBLEM SOLVING

The second law can be recast in the format of Eq. ( 1. l) by merely dividing both sides
by m to give

F

n1
( 1 . - 3 1

where a is the dependent variable reflecting the system's behavior, F is the forcing func-
tion, and nr is a parameter. Note that for this simple case there is no independent variable
because we are not yet predicting how acceleration varies in time or space.

Equation ( 1.3) has a number of characteristics that are typical of mathematical models
of the physical world.

. It describes a natural process or system in mathematical terms.

. It represents an idealization and sirnplification of reality. That is. the model ignores neg-
ligible details of the natural process and focuses on its essential manif'estations. Thus,
the second law does not include the effects of relativity that are of minimal importance
when applied to objects and forces that interact on or about the earth's surface at veloc-
ities and on scales visible to humans.

. Finally, it yields reproducible results and, consequently, can be used fbr predictive pur-
poses. For example, if the force on an object and its mass are known, Eq. ( 1.3) can be
used to compLlte acceleration.

Because of its simple algebraic form, the solution of Eq. (1.2) was obtained easily.
However, other mathernatical models of physical phenomena may be much more complex.
and either cannot be solved exactly or require more sophisticated mathematical techniques
than simple algebra for their solution. To illustrate a more complex model of this kind,
Newton's second law can be used to determine the terminal velocity of a free-falling body
near the earth's surface. Our falling body will be a bungee jumper (Fig. 1.1). For this case,
a model can be derived by expressing the acceleration as the time rate of change of the
r,'elocity (t luldr) and substituting it into Eq. (1.3) to yield

d u F

dt nr
(  1.4)

where u is velocity (in meters per second). Thus, the rate of change of the velocity is equal
to the net force acting on the body normalized to its mass. If the net force is positive, the
object will accelerate. Ifit is negative. the object will decelerate. Ifthe net force is zero, the
object's velocity will remain at a constant level.

Next, we will express the net force in terms of measurable variables and parameters.
For a body talling witlrin the vicinity of the earth, the net force is composed of two oppos-
ing forces: the downward pull of gravity Fp and the upward force of air resistance Fy
( F i g . 1 . 1 ) :

F :  F o l  F t i (  1 .5 )

If force in the downward direction is assigned a positive sign, the second law can be
u.sed to formulate the force due to pravity as

F o : m 8

where g is the acceleration due to gravity (9.81 m/s2).

(  1 .6)
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Air resistance can be fbrmulated in i.i variety of ways. Knowledge from the science of
fluid ntechanics suggests that a gtrod first approxirrration wouliJ be to assume that it is pro-
portional to the square of the velocitl,,

- l

f  U :  - c d r ) '  ( 1 . 7 )

where r',1 is a proporticlnalitv constant called the drag coefticient (kg/m). Thus. the greater
the fall velocity, the greater the uprvard fbrce due to air resistance. The parameter c./ ac-
counts lbr properties ofthe ialling object, such as shape or surface roughness, that affect air
resistance. For the present c&s€, c,7 might be a function of the type of clothing or the orien-
tation used by the jumper during free tall.

The rlet fbrce is the difference between the downward and upwi.rrd force. Therefbre,
Eqs.  11.41 through (  1.7)  can be combined to y ie ld

dt:  c t t  t
,  - , 5

dt  tn

Ecluation (1.8) is a ntodel that relates the accelerirt ion of a fall ing object to the tbrces
acting on it. It is a tli/Jerential equtttiort because it is written in ternts of the differential rate
of change (d u I dt 1 of the variable that we are interested in predicting. However, in contrast
to the solution of Newton's second law in Eq. ( 1.3), the exact solution of Eq. ( 1.8) for the
velocity of the jumper cannot be obtirined using simple algebraic manipulation. Rather,
more adt'anced techniques such as those of calculus nrust be applied to obtain an exact or
analytical solution. For example, if the jumper is init ially at rest (r., : 0 at / : 0), calculus
can be used to solve Eq. ( 1.8) for

( 1 . 8 )

(  1 . 9 )

where tanh is the hyperbolic tangent that can be either computed directlyr or via the more
elementary exponential function as in

e '  -  e - '
t a n h - t :  ( 1 . 1 0 )

e . ,  * e  \

Note that Eq. ( 1.9) is cast in the general fbrm of Eq. (1.1) where t,(/) is the dependent
variable. t is the independent variable , ctt and m are parameters, and g is the forcing function.

Anolyt ico l  Solut ion to the Bungee Jumper Problem

Problem Stotement. A bungee jumper with a mass of 68.1 kg leaps l iom a stationary hot
air balloon. Use Eq. ( 1.9) to compute velocity fbr the first l2 s of f iee fall. Also deterr-nine
the terminal velocity that will be attained fbr an infinitely long corcl (or alternatively, the
jumprraster is having a particuiarly bad dayl). Use a drag coefticient of 0.25 kg/m.

I  MATLABG'al lows di recr  calculat ion of  the hypcrbol ic  tangent v ia thc bui l t - in funct ion rdnh (r ) .

u(/) :r,ff*"n(,8,)y i l t  /

EXAMPLE I .I
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Solution. Inserting the parameters into Eq. (1.9) yields

which can be used to compute

t, 3 u , m f s

o
I B 72,92
3 3  I  I  t B
42 4762
46 9575
4 S  4 2 t  4
50  6175
5 1 6938

According to the model, the jumper accelerates rapidly (Fig. 1.2). A velocity of
49.4214 m/s (about 110 mi/h) is attained after 10 s. Note also that after a sufficiently lons

FIGURE I.2
The onolyticol solution for the bungee iumper problem os compured in Exomple I 1 Velociry
increoses with t ime ond osympfoi icol ly opprooches o terminol veloci iy.

0
2
4
6
B

t 0
1 2
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t ime, a constant velocity. called the terminol velocitt ' , of 51.6983 m/s (115.6 mi/h) is
reached. This velocity is constant because, eventually, the force of gravity will be in bal-
ance with the air resistance. Thus. the net force is zero and acceleration has ceased.

Equation ( I .9) is called an anabtical or closed-form solution because it exactly satis-
fies the oliginal diffbrential equation. Unfortunately, tlrere are mirny matlrematical nrodels
that cannot be solved exactly. In many of these cases, the only alternative is to develop a
numerical solution that approximates the exact solution.

Nttnterical ntethods are those in which the mathemirtical problerr is refbrmulated so it
can be solved by arithmetic operations. This can be illustrated for Eq. ( 1 .8) by realizing that
the time tate of change of velocity can be approximated by (Fig. 1.3):

d t t
-

d t

A u

N

d t t

dt

-  Au  u( / i+ r )  -  u ( t i )
: - :

Lt t i+t - t i
( r . l r )

where Au and At are differences in velocity and time computed overflnite intervals, u(r1)
is velocity at an init ial t ime ri, and u(ria;) is velocity at some later t ime f11. Note that
du ldt = Lu I Lt is approximate because Ar is f lnite. Remember from calculus that

-  l im
A1+l )

Equation ( l. I I ) represents the reverse process.

FIGURE I .3
The use of o finite difference to opproximote the firsf derlvotive of u wifh respect io /

A U

Approximate slope
A r _ u ( 1 , * , )  - u ( r , )

Lt  l i+ t  -  t i



to MATHEMATICAL MODELING, NUMERICAL MEIHODS, AND PROBLEM SOLVING

Equation ( 1.1 I ) is callecl a Jinite-diJJeren.ce opprcrirnation of the derivative Jt Iirnc /, .
It can be substituted into Eq. (1.8) to give

r ' ( 1 , , 1 ) - u ( t , l  . J  ): g  _  _ t . t / 7 ) -
t r+t  *  t ;  tn.

This equation can then be rearrangecl to yielcl

(  r .  r 2 )

Notice that the tenn in brackets is the right-hand side of the diff'erential equation itself
tEq. (1.8)1. That is, it provides a means to compute the rate of change or slope of u. Thus,
the equat.ion can be rewritten as

u i+ r  : r + ' ! u  ( t . 13 )
{1t

where the nomenclature u; clesignates velocity attinle /i and At : t i+t - t i.
We can now see that the differential equation has been transformed into an equation that

can be used to determine the velocity algebraically at ri+l using the slope and previous val-
ues of u and t. If you are given an initial value for velocity at some time l;, you can easily com-
pute velocity at a later t ime f 11 . This new value of velocity at l;11 can in tum be employed to
extend the cornputation to velocity at l;12 and so on. Thus at any time along the way,

New valne : old vahle * slope x step size

This approach is tbrnrally called Euler's metlnd. We'll discuss it in more detail when we
turn to diff'erential equations later in this book.

EXAMPLE 1 .2 Numer icol  Solu i ion to the Bungee Jumper Problem

'  Problem Sto iement .  Per form the same cornpLl tat ion as inExample 1.1but  use Eq.  (J .13)
to colnpute velocity with Euler's method. Employ a step size of 2 s fbr the calculation.

Solution. At the start of the computation (/{) :0), the velocity of the jumper is zero.
Using this infbrmation and the parameter values from Example I . I , Eq. ( 1.13) can be used
to corxpute velocity at 11 - 2 s:

r, : o * fr.r' - H,o,rl x 2 : te.62rls
L  6 8 . r  I

For the next interval lfiom r : 2 b 4 sJ, the colnplrtation is repeated, with the result

l -  0.2s .1
:  l ( ) . 6 2  +  1 9 . 8 1  - , ( 1 9 . 6 2 t - l  

"  l : 1 6 . 4 1 1 7 m / s
L  6 8 . t  r

u(/i+r ) :  u(/ i) -1_ 
[r 

- 9lrt , , f f(/ ,+r - / i)
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Terminal velocity

FIGURE I . 4
Compcrison of the numericol ond onclyticol solutions for the bungee iumper problem

The calculation is continued in a similar fashion to obtain additional values:

u, m/s

0
r9 .6200
36 .4137
46 2983
50 r  802
5  t  3 1 2 3
5 r 6008
5 r  6938

The results are plotted in Fig. 1.4 along with the exact solution. We can see that the nu-
merical method captures the essential features of the exact solution. However, because we
have employed straighfline segments to approximate a continuously curving function,
there is some discrepancy between the two results. One way to minimize such discrepan-
cies is to use a smaller step size. Forexample, applying Eq. (1.13) at 1-s intervals results in
a smaller error, as the straighrline segments track closer to the true solution. Using hand
calculations, the effort associated with using smaller and smaller step sizes would make
such numerical solutions impractical. However, with the aid of the computer, large num-
bers of calculations can be performed easily. Thus, you can accurately model the velocity
of the jumper without having to solve the differential equation exactly.

t t S

0
2
4
6
B

r 0
l 2
oo
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As in Example 1.2, a cornputational price nrust be paid for a nrore accurate numerical
result. Each halving of the step size to attain morc accuracy leads to a doubling of the nurn-
ber of computations. Thus, we see that there is a trade-off between accuracy and computa-
tional effort. Such trade-offs figure prominently in numerical methods and constitute an
important theme of this book.

1.2 CONSERVATION L/AWS lN ENGINEERING AND SCIENCE

Aside from Newton's second law. there are other major organizing principles in science
and engineering. Among the most important of these are the conserv,ation lan:s. Although
they form the basis for a variety of complicated and powerful mathematical models, the
great conservation laws of science and engineering are conceptually easy to understand.
They all boil down to

Change : increases - decreases ( 1 . r 4 )

This is precisely the fbrmat that we empioyed when using Newton's law to develop a force
balance for the bungee jumper tEq. ( 1.8)1.

Although simple, Eq. (1.14) embodies one of the most fundarnental ways in which
conservation laws are used in engineering and science-that is. to predict changes
with respect to time. We will give it a special name-the time-variable (or transient)
computation.

Aside from predicting changes, another way in which conservation laws are applied is
fbr cases where change is nonexistent. If change is zero, Eq. (I.14) becomes

Change : 0 : increases - decreases
or

Increases : decreases ( 1 . r 5 )

Thns, ifno change occurs, the increases and decreases nrust be in balance. This case, which
is also given a special narne-the stea(ly-state calculation-has many applications in engi-
neering and science. For example, fbr steady-state incompressible fluid flow in pipes, the
flow into a junction musl be balanced by flow going out. as in

Flow in : flow out

For the junction in Fig. I .5, the balance can be used to compute that the flow out of the
fourth pipe must be 60.

For the bungee jumper, the steady-state condition would correspond to the case where
the net lbrce was zero or [Eq. (1.8) with du ldt : 0l

f

l 1 l$  :  6411- ( 1 . r 6 )

Thus. at steady state, the downward and upward fbrces are in balance and Eq. ( 1. | 6) can be
solved for the terminal velocity

Although Eqs. (1.14) and (1.15) might appeartrivially simple, they embody the two funda-
mental ways that conservation laws are employed in engineering and science. As such, they
will tbnn an important part of our et-forts in subsequent chapters to illustrate the connection
between numerical methods and engineering and science.
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Pipe 2
F low in  =  80

Pipe 1
F low in  :  100

Pipe 4
Flow out =

FIGURE I . 5
A f  ow bo once for  s teody incompressibe f  u id f lo tv  ot  the juncl ion of  p ipes

Table l. I summarizes some models and associated conservation laws that f igure promr-
nently in engineering. Many chemical engineering problems involve mass balances for
reactors. The mass balance is derived from the conservation of mass. It specifies that the
change of mass of a chemical in the reactor depends on the amount of mass flowing in
minus the n.rass flowing out.

Civil and mechanical engineers often focus on models developed from the conserva-
tion of momentum. Forcivil engineering, force balances are utilized to analyze structures
such as the simple truss in Table 1.1. The same principles are employed for the mechanical
engineering case studies to analyze the transient up-and-down motion or vibrations of an
automobile.

Finally. electrical engineering studies en-rploy both current and energy balances to model
electric circuits. The current balance, which results from the conservation of charge, is simi-
lar in spirit to the flow balance depicted in Fig. 1.5. Just as flow mnstbalance at the junction
of pipes, electric current must balance at the junction of electric wires. The energy balance
specifies that the clranges of voltage around any loop of the circuit must add up to zero.

We should note that there are many otherbranches of engineering beyond chemical, civi,,
electrical, and mechanical. Many of these ale related to the Big Four. For exalnple, chemical
engineering skills are used extensively in areas such as environmental, petroleum, and bio-
rnedical engineering. Sirnilarly, aerospace engineering has much in cornmon with mechani-
cal engineering. We will endeavor to include examples from these areas in the coming pages.

I.3 NUMERICAT METHODS COVERED IN THIS BOOK

We chose Euler's method for this introductory chapter because it is typical of many other
classes of numerical methods. In essence, most consist of recasting mathematical opera-
tions into the simple kind of algebraic and logical operations compatible with digital com-
pllters. Figure 1.6 summarizes the major areas covered in this text.

Pipe 3
F low out  :  120
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TABTE l. l Devices ond types of bolonces fhot ore commonly used in ihe four moior oreos of engineering. For
eoch cose, lhe conservotion low on which the bolonce is bosed is specified.

Field Device OrganizingPrinciple MathematicalExpression

Chemical
eng ineer ing

Civi l
eng i  neer i  ng

Mechan ica l
eng ineer ing

Electr ical
eng ineer ing

I
t

,,\structyz 
\

ffi
?7fu. ,1m77,

ilH3

Conservation
of mass

Conservation
of momentum

Conservation
of  momentum

Conservation
of charge

Conservation
of energy

Force balance:

Cur ren t  ba lance:  + i ,

For each node
I current ( i)  = 0

I ' R '

Voltage balance: 
a{A&-l

, ,R ,  J  - -  f- - 2 r * z Y

L--\A7\--J
i:R:

Around each loop
I emf's - I  voltage drops for resistors

>6 ->a :0

Mass balance: f f i
inort 

ff_--* 
ourpur

Over a unit  of t ime period
A m a s s : i n p u t s - o u t p u t s

+Fv

+
I

-Fn  *  O+ +FH

I
V

- a t /

At each node
I horizontal forces (FH) = o
I vertical forces (I'u) : 0

Force balance: I  Upward force
I
l r = 0
I
V Downward force

m Li = downward force - upward force
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lal Part 2: Roots and optimization f(xl

Roots: Solve for.r so thatfi-r) = 0

Optimization: Solve for x so that/ ' (r) = 0

lbl Part 3: Linear algebraic equations
f\x\

Given the a's and the b's. solve for the.r 's

a ' , rx t  t  a r2x .a= b ,

arrx, 1- a,x, = b2

ldl Part 5: Integration and differentiation

Integration: Find the area under the curve

Differentiat ion: Find the slooe of the curve

lel Part 6: Differential equations

Given
dv Av
, h  

:  
N : f l t ' Y l

solve for r as a function of r

.,Ii+r = -]'i + "f(ti, yJAr

FIGURE I.6
Summory of the numericol methods covered in this book.

Optima

lcl Part 4: Curve fitting

o
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Part Two deals with two related topics: root finding and optimization. As depicted in
Fig. 1.6a, root locotiorr involves searching for the zeros of a function. In contrast, optimiza-
rion involves determining a value or values of an independent variable that correspond to a
"best" or optirnal value of a function. Thus, as in Fig. 1 .6a, optimization involves identify-
ing maximir and minima. Although somewhat different approaches are used, root location
and optimization both typically arise in design contexts.

Part Three is devoted to solving systems of simultaneous linear algebraic equations
(Fig. 1.6&). Such systerns are similar in spirit to l'oots of equations in the sense that they are
concemed with values that satisfy equations. However, in contrast to satistying a single
equatiou, a set of values is sought that simultaneously satisfies a set of l inear algebraic
equations. Such equations arise in a variety of problem contexts and in all disciplines of en-
gineeriug and science. In particular, they originate in the mathenratical modeling of Jarge
systems of interconnected elements such as structures, electric circuits. and fluid networks.
However, they are also encountered in other areas of numerical methods such as curve tit-
l ing l rnd d i f ferent ia l  equut ions.

As an engineer or scientist. you will often have occasion to fit curves to data points. The
techniques developed for this pulpose can be divided into two general categories: regression
and interpolation. As described in Part Four tFig. 1.6c'1, regression is ernployed where there
is a significant degree of error associirted with the data. Experimental results are often of this
kind. For these situations. the strategy is to derive a single curve that represents the general
trend of the data without necessarily matching any individual points.

In contrast, interpolution is used where the objective is to determine intermediate val-
ues between relatively error-free data points. Such is usually the case for tabulated infor-
mation. The strategy in such cases is to flt a curve directly through the data points and r.rse
the curve to predict the intermediate values.

As depicted in Fig. 1.6d, Part Five is devoted to integlation and differentiation. A
plrysical interpretation of ruurrcricctl iltegratiott is tlre determination of the area under a
curve. Integration has many applications in engineering and science, ranging from the de-
termination of the centroids of oddly shaped objects to the calculation of total quantities
based on sets of discrete measurements. In addition, nurnerical integration formulas play an
importtrnt role in the solution of diffbrential equations. Part Five also covers methods for
nume.rical difr'erentiation. As you know fiom your study of calculus, this involves the de-
termination of a function's slope or its rate of change.

Finally. Part Si.x focuses on the solution of ordirro'v di.fterential equations (Fig. 1.6e).
Such equations are of great significance in all areirs of engineering and science. This is be-
cause many physical laws are couched in terms of the rate of change of a quantity rather than
the magnitude of the quantity itself. Examples range from population-forecasting rnodels
(rate ofchange of population) to tlre acceleration of a tallin-e body (rate ofchange ofvelocity).
Two types of problems are addressed: initial-value and boundary-value problems.
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PROBTEMS

l . l  Use calculus to vel i ty that Eq. (1.9) is a
Eq.  (1 .8 ) .
1.2 The following infbrmation is availablc
acc0unt:

Dote Deposits Withdrowols

solut ion of

for a bank

Bolonce

6 / l

9 l l

5 i r

7 / l

B i t

2 2 4  1 3

2 t 6  B 0

, r ( n  r <

t  2 7  . 3 1

327 .26

3 7 8  6 1

r06  80

3 5 0  6 r

Use the conservation of cash to compute the balance on 6/ l ,
111.811, and 9/1. Show each stcp in thc computation. ls this
a steady-state or a transient computation?
1,3 Repeat Example 1.2. Compute thc velocity to t :  l2 s,
with a step size of (a) I and (b) 0.5 s. Can you make any
statement regarding the crrors of thc calculation based on the
results?
1.4 Rather than the nonlinear rclat ionship of Eq. ( 1.7), you
might choose to model the upward fbrce on the bungee
jumpcr  as  a  l inear  re la t ionrh ip :

r l
f  t t  :  C  U

wherer'' : a first-order drag coefTicient (kg/s).
(a) Using calculus, obtain the closed-fbnn solution fbr thc

case where thejurnper is ini t ial ly at rcst (u :  0 at 1: 0).
(b) Repeat the numerical calculat ion in Example 1.2 with

the same initial condition and oarameter values. Use a
value of 12.5 kg/s fbr c' .

1.5 For the free-talling bungee jumper with linear drag
(Prob. I .4). assume a first jumper is 70 kg and has a drag co-
efficient of l2 kg/s. If a secondjurnper has a drag coefficient
of 15 kg/s and a mass of 75 kg, how long wil l  i t  take her to
reach the same velocity jumpcr I rcached in l0 s'l
1.6 For the fiee-falling bungce jumper with linear drag
(Prob. 1.4), compule the velocity of a free-tal l ing parachutist
usrng Er-rler's method fbr thc casc whcre rr : 80 kg and c' :

l0 kg/s. Perfbrm thc calculation from / : 0 to 20 s with a
step size of I  s. Use an init ial  condit ion that the parachutist
has an upward vclocity of 20 m/s at / :  0. At r:  l0 s, as-
sume that the chute is instantaneously deployed so that thc
drag cocllicient jumps to 50 kg/s.

1.7 Thc amount of a uniformly distributed radioactive con-
taminant contained in a closed reactor is measured by its
concentration c (becquerel/liter or Bq/L). The contaminant
decrcases a1 a decay rate proportional to its concentration;
that is

Decay rate : -tc

I 5 I 2 . 3 3 where ft is a constant with units of day I . Thercfore, accord-
ing to Eq. (1.14), a rrass balance fbr the reactor can be
wntten as

dc  
k t

d t

/ changc \ /  decrease \
t . " t : t , l
\  in  mars  /  \  U l  decaS /

(a) Use Euler's mcthod to solve this equation from t : 0 to
I  d w i t h  k : 0 . 2 d r . E m p l o y a s t e p s i z e  o f  A r : 0 .  I  d .
The concentrat ion at / :0 is l0 Bq/L.

(b) Plot the solution on a semilog graph (i.e., ln c versus /)
and detennine the slopc. Intcrpret your results.

l  l l  A storage tank (Fig. Pl.8) contains a l iquid at depth )
where ,r' : 0 when the tank is half full. Liquid is withdrawn
at a constant flow rate Q to meet demands. The contents are
resupplied at a sinusoidal rate 3Q sin2(t).  Equation (1.14)
can be written fbr this systcrn as

d( Av'\-+  :30s in ' ( r )  -  O
A T

/ c h a n e e  i n \
|  , '  l :  t i n f l o w t  -  ( o u t f l o w )
\ votume /

FIGURE PI .8
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or, since the surface area A is constant

r / t ' O . O:  : 3 :  s i n - f t )  _  :
d r A A

Use Euler's method to solve for the depth _v fron-r r : 0 to
I0 d with a step size of 0.5 d. The parameter values are A :

1200 m2 and p : 500 m3/d. Assume that the initial condition
is .y  :  0 .
1.9 For the same storage tank described in Prob. 1.8, sup-
pose that the outflow is not constant but rather depends on
the depth. For this case, the differential equation fbr depth
can be written as

nr the heat capacity, and thc change in temperature by the
fol lowing relat ionship:

The mass of air can be obtained liom the ideal sas larv:

nt
P l t  :  - P 7

Mwt

where P is the gas pressure, V is lhe volume of the gas, Mwt
is the molecular weight of the gas (1br air 28.97 kg/krnol),
and rR is the ideal gas constant [8.31,1 kPa m]/(kmol K)].
1.12 Figure P1.12 depicts the various ways in which an aver-
ilge man gains and loses water in one day. One liter is ingested
as food, and the body metabolically produces 0.3 liters. In
breathing air, the exchange is 0.05 liters while inhaling, and
0.4 liters while exhaling over a one-day period. The body will
also lose 0.2, 1.4.0.2. and 0.35 l i ters through sweat, urine,
feces, and through the skin, respectively. To maintain steady
state, how much water must be drunk per day?
l.13 In our example of the fiee-falling parachutist, we as-
sumed that the acceleration due to gravity was a constant
value of 9.8 m/s2. Although this is a decent approxinration
when we are examining falling objects near the surtace of
the earth, the gravitational lbrce decreases as we lrove
above sea level. A rnore general representation based on
Newton's inverse square law of gravitational attraction can
be written as

R :
s(x )  :  g (0)  -( l ( + . r ) '

o : - 
Ir': 

c,dr : nrc,,(rz - rr)

dl'

d t

O  .  a ( l t r ' ) r
=  . 1 ;  s i n - ( r  t  -  

A

Use Euler's method to solve for the depth )' fiom t : 0 to
10 d with a step siz-e of 0.5 d. The parameter values are A :

1200 m2, O:500 mr/d, and cv: -300. Assurne that the ini-
tial condition is _r : 0.
1.10 The volume flow rate through a pipe is given by Q :

rA, whele u is the average velocity and A is the cross-
sectional area. Use volume-continuity to solve for the required
area in pipe 3 of Fig. P I .  10.
l.ll A group of 30 students attend a class in a room which
lneasures l0 m by 8 m by 3 m. Each student takes up about
0.075 mr and gives out about 80 W of heat (l W = I J/s).
Calculate the air temperature rise during the first l5 minutes
of the class if the room is completely sealed and insulated.
Assume the heat capacity C,. tbr air is 0.7 18 kJ/(kg K). As-
sume air is an ideal gas at 20 "C and 101.325 kPa. Note that
the heat absorbed by the air O is related to the mass of the air

Q r . i n  = Qz'rt:  20 m3/s

u.,ou, = 6 m/s

A : = ?

Food

Dr ink

Skin

Metabolism

FIGURE P I . IO F I G U R E  P I . I 2
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where g(r) : gravitational acceleration at altitude .r (in m)
measured upward fronr thc earth's surface tm/s2). gtO) :
gravitational acceleration at the earth's surface (! 9.8 rn/sr),
and R :  the  car th 's  rad ius  (=  6 .37  x  106 mt .
(a) In a fashion similar to the derivation of Eq. (1.8), use a

force balance to derive a ditlerential equation for veloc-
ity as a function of time that utilizes this more complete
representation of gravitation. However. lbr this deriva-
tion, assume that upward velocity is positive.

(b.1 For the case where drag is negligible, use the chain rule
to express the differential equation as a function of alti-
tude rather than time. Recall that the chain rule is

du du d-r

dt d.r dt

(c) Use calculus to obtain the closed form solution where
u = u,, at.r :  0.

(d) Use Euler's rnethod to obtain a numerical solution from
r : 0 to 100,000 m using a step of 10,000 m where the
initial velocity is 1400 m/s upward. Compare yor,rr result
u i th the analyt ical solr"rt ion.

l. l{ Suppose that a spherical droplet of liquid evaporates at
a rate that is proportional to its surface area.

d V
: :  - k A
d t

rvhere V: volume 1mm3), t : time (hr), k : the evapol'ation
rate (mm/hr), and A : surface area 1mmr). Use Euler's
method to conrpute the volume of the droplet from I : 0 to
l0 min using a step size of 0.2,5 min. Assume that ft :

0.1 mm/min and that the droplet initially has a radius of 3 mm.
Assess the validity oi your results by determining the radius

of your final computed volume and verifying that it rs con-
sistent with the evaporation rate.
l.l-5 Newton's law oicooling says that the temperature of a
body changes at a rate proportional to the difference between
its temperature and that of the surrounding medium (the am-
bient temperature).

dT-;
a t

:  - k (T  -  T " )

where Z: the temperature of the body ("C), r : time (rnin),
k : the proportionality constant (per minute), and 7, : ths
arnbient temperature ("C). Suppose that a cup of coft-ee orig-
inally has a temperature of 68 'C. Use Euler's method to
compute the temperature from I : 0 to l0 min using a step
size of I min if I.. : 2l "C and ft : 0.01 7/min.
|.16 Afluid is pumped into the network shown in Fig. P1.16.
l f  0, :  0.6. O., :  0.4. Qt:O.2. and Qo : 0..1 mr/s. determine
the other flows.

i ilr*?-i=-i--I
ir i:;$

b o,l "i "i "'i
t ' i l i

i-. er-:- -s... ;-*-*L*-i
F I G U R E  P I . I 6
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MATLAB Fundomentols
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2.1

CHAPTER OBJECTIVES
The primary objective o1'this chapter is to provide an introductiorr and overview of
how MATLAB's calculator mode is used to implcment interactive cornputations.
Specific objectives and topics covered are

' Lcarning how real ancl cornplex nurrrbcrs are assigned to variables
. Learning how vectors and matrices are assigned values using sinrple ussignrnent.

the colon ope'rator', and thc 
.l irs;p.r,:c and 1oq1,;piic:,--- l ' t tnctit lns.

. Llnderstanding thc priority rulcs firr constructing mathernatical cxpre-ssions.

. Gaining a gencral undcrstanding ol'built- in lr-rnctions and how you can lcarn tnore
about  them wi th MA' I 'LAB's Help f  ac i l i t ies.

. Learning how to usc vectors to crcirtc a sinrplc l inc plot basecl on an equation.

YOU'VE GOT A PROBLEM

I n Chap. l. we usctl ir f irrce balance to detcrnrine the tcrminal velocity of a fiec-fall ing

I  
ohjec l  l ikc i r  hLrr rgce jurnpcr .

T

wher-e r.,, : ternrinal velocity (nr/s), ,q : gravilational accelerertion (m/s'). m : mass (kg),

and t ',, : a drag coefl ' icient (kg/m). Aside from prcdicting the terminal velocity, this equa-
tion can also be rearranged to compute the drag coefficicnt

tsi
V  t , t

(2 .  I  ;

20

ffi=?N 4_
,f = 

%. uE-1 5t
zr'+ zl x+ % I
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Doto fo r themossondossoc io ted te rm ino |ve loc i l i eso fonumbero f i umpersTABTE 2.I

m , k g
u,, ml s

8 3 6
( 1 , , 1

6A2
l a  \

7 2 1
5 0 9

g l l

5 5 7
9 2 9
54

6 5 3
4 7 7

B O 9
5 l  l

Thus, if we nleasure the terminal velocity of a number ol . iumpers of knclwn

equation provides o *t-' tt.l e stimate the drag coeificient' The clata in Table 2' I

lectu 'd lor lh is  purpose'  ^m,  ̂  n  ^^^ , .^ , , .nr l  rn rn: r lv .zr 'sr rch d l tu.  Beyond
In this chapter, we wil l leartr how MATLAB can be uscd to analyze t

showinghowMATLABcanbeenlp loyedtocolnputeqtrant i t ies l ikec l ragcoetTic ients 'we
wi l la lso i l lust ratchowttsgraphicalcapabi l i t iesp,* i . t .adt l i t i t lna l ins ight in tosuchanalyses.

MATLABisacomputerprogralx thatprovi< lcs. theuserwi thaconvelr ie t r tenvi ront l rent fc l r
perfornirrg many typcs.ol.cti lculaticrns. ln particular, it prtlvides a very nice tool to inrple.

mass, this
were col-

2.r

" " !i:H:i:iilll1l;|; "v t o ope rute * *' 1 P, :', :,'^ ::::::: :::):i:I;:;: ii' ffi :l

ff.:ll,'Ji:'.:il{; ilJffill'.":ili: ;::'# "' *.,ln "'" u'T- ":1 crc ati n g p r ot s r n

Chap. 3, we show how sr'rch commands can be usecl to create MAft-AB progralns'

one fu r the r .no tc ' . [ h i schap te rhasbeenwr i t t enasa l ranc l s - t l r r cxc l . c i se .Tha t i s , yo t t
shoultl rcad it while ,,tr ing in fiont o1'youl cornpLrtcr. The m.st elf icient way to beconle

orof ic ient is t 'oact t ra l ly in l ; l lc t lent thcct l tn t r rat rc lsonMATLABasyouprocccdthrotrghthe
following material '

fUeif-A,B uses three primary witrclows:

. Conrtnancl winclow' Uscd to enter commancls and data'

. C."pt,i.* windtlw' Used kr display plots and graphs'

. gaii winclow' Usecl tt'r creute and edit M-filcs'

In this chapter, we wilr r.rake usc of thc c.mmand ancl graphics wind.ws' ln chap' 3 we

*ii i  ut. the edit window to crcatc M-ii les'

Afier starting Md;;; '  tht tu'ntunti window will open with thc commancl prompt

bcing disPlaYcd

I  a scqucnt i i t l  l l tsh i t rn as yoLl  typc in  cont-

The calculator nlode o1'MATLAB oper' 'rtcs lr

mancls l ine by l ine' For each cotnurancl' you get'r-result 
Lh::s' 

you can think of it as oper-

^ii"g f if,. a uery l 'ancy calcttlator' For exanlplc' if you typc tn

- _ - ,  5 1  L o

MATL.AB will disPlaY thc rcsult '

a , t t t - , = , ,

' M A | l , A B s k r p s a l i n c b c t w c c l l t | - r | a h e l ( l , r r l . ) l t n d t h c n u n l b c r . ( - ] ) . H e r r - . $ 1 . ( , m i t s l l c h b l l n k l j n c s t o r

co .c iscness .  varu  aun aun, ,a r t  .uh . i ther  r r tan t  l ine 's  a re  inc ludc t l  w i th  thc  I  ( ) r : r r '1 i  (  . i l L l r f r i :1  Aud ! . r : ' r ' '  1c ' i ' : ' r

comlrtnds.

8
ffi AL

^r- ?t 5tqA
zt\4x

4,.-I LJ '
b

L-

!8
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Notice that MATLAB has automatically assigned the answer to a variable, ans. Thus, you
could now use ans in a subseouent calculation:

' -  a r s  +  I I

with the result

5 0

MATLAB assigns the result to ans whenever you do not explicit ly assign the calculation
to a variable of your own choosing.

2.2 ASSIGNMENT

Assignment refers to assigning values to variable names. This results in the storage of the
values in the memory location corresponding to the variable name.

2.2.1 Scolors

The assignment of values to scalar variables is sirnilar to other conlputer languages.
Try typing

1 _ A

Note how the assignment echo prints to confirm what you have done:

4

Echo printing is a charactelistic of MATLAB. lt carr be suppressed by terminating the com-
mand line with the semicolon (; ) character. Try typing

> >  A  =  5 ;

You can type several commands on the same line by separating them with comnlas or
semicolons. If you separatethem with commas, they wil l be displayed, and if you usethe
semicolon, they wil l not. For example,

> >  a  -  4 , A  =  6 ; x  =  . 1  
;

4

MATLAB treats names in a case-sensit ive rnanner-that is. the nan)e a is not the same
as the name a. To i l lustrate this. enter

> >  a

and then enter

> > A

See how their values are distinct. Thev are distinct names.

twe
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2.2 ASSIGNMENT 23

We can assign complex values to variables. since MATLAB handles complex arith-
metic automatically. The unit irnaginary number 

"/J 
ir preassigned to the variable i.

Consequently, a complex value can be assigned simply as in

> >  x  =  2 + i * 4

2 . 0 0 0 0  +  4 . 0 0 0 0 i

It should be noted that MATLAB allows the symbol j

inary number for input. However, it always uses an i

> >  x  =  2 + 1 * 4

2 . 0 0 0 0  +  4 . 0 0 0 0 i

There are several predefined variables. fbr example. pi.

> -  p i

3  .  r 4 r 6

Notice how MATLAB displays fbur decinral places. If you desire additional precision,
enter the fbllowing:

> >  f o r m a t  l o n g

Now when pi is enteled the result is displayed to l5 signil icant f igures:

> >  p i

1 . 1 4 1 5 9 2 b 5 - 1  5 8 9 7 9

To return to the four decimal version, type

> >  f o r m a t  s h o r t

The f<rl lowing is a summary of the format commands you wil l  employ routinely in engi-

ncering and.scienti f ic calculat ions. They al l  have the syntax: f  ormat typr.. .

to be used to represent the unit imag-
for display. For example,

Exompletwe Result

-cho ]  t

Lcrng

sr ro r t  e

lonlJ e

shor l :  g

l o n q  g

s h o r t  e n g

long eng

bank

Sco ed f ixed point  formct wi th 5 d ig i ts
Sccr ied f rxed-point  formoi  wi th 15 dig lh for  double ond Z dig i ts  for  s ingle
Flooi ing 'point  formct wi ih 5 d iq i ts
Flooi ing point  lormot wi fh l5 d ig i is  for  double ond /  d lg i ts  lor  s ingle
Besl  of  f ixed or  f loof ing-poin l  lormot wi th 5 d ict l ts
Best  o[  [ ixed or  f loot ing poin l  formof wi th 15 dlg i ts  for  double
a n d T a g l s f o r s i n g i e
Engineer lng formof wi th o l  lecsl  5 d ig i ts  ond o power ihot  is  cr  rnut lp le of  3
Engineer ng formot wi ih exccl ly  16 s igni f icont  d ig i ts  ond o power
thot  s o mu t ip le of  3
Fixed dol lors ond cents

3  .  r 4 1 6
i . 1 4 1 5 q 1 b 5 J 5 8 9 7 9
l . 1 4 1 5 e + 0 t r 0
3 .  1 4  l  5 9 2 6 5 3 5 8 9 7 9 3 e + 0 0 0
3 . r 4 1 6
3  . 1  4 1 5 9 2 . 6 5 ] , 5 8 9 7  9

1 . 1 4 1 6 e r 0 0 0
3  .  1  4 1 5 9 2  6 5 3 5 8 9 7  9 e + 0 0 0

1  1 A
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2.2.2 Arroys, Vectors qnd Mqtrices

An arrat' is a collection of values that are represented by a single variable name. One-
dincnsirnalarral't arc callcd tu'/ort and two-dinensional anavs are c'alled nrutnce:. The
scalars used in Section 2.2.1 are actually a matrix with one low and one column.

Brackets are used to enter arrays in the comnranil mode. For exan.rple, a row vector can
be assisned as fbiiows:

1 2 3 4 5 1

Note that this assignment overrides the previous assignment of a : 4.
In practice, row vectors are rarely used to solve rnathematical problerns. When we

speak of vectors. we usually ret-er to column vectors, which are more contmonly used. A
column vector can be entered in several ways. Try them.

or

_ - . . > b -  | 2 ;
1 ;

6 ;

8 ;

I 0  l

or. by transposing a row vector with the ' operator,

> >  L r  =  |  2 ,  4  6  I  1 0  I '

Tlre result in all three cases wil l be

b =

1.

4

b

S

1 t )

A rnatrix of values can be assigned as lblkrws:

In addition. the Enter key (carriage return) can be used to separirte the rows. For example.
in the following case, the Enter key woulcl be struck after the 3. the 6 and the I to assign the
matrix:

. - > A . .  l r 2 3
4 5 6
7  8  9 l

r ' 2 3
4 5 6
7 8 9

:5ystzf LIZ _r -{
4 , - A
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2.2 ASSIGNMENT 25

At any point in a session, a l ist of all current variables can be obtained by entering the
v;ho command:

> > rvho

Y o u r  y a r i a b l  e s  . r r c :

a l  ans  b  x

or. with more detail. cnter thc whos command:

> ; . w h o s

fJ d r { ie

A

d n s

l )

x-

S r  z e

l x 3

I  x 5

L X  L

5 x i
' 1  

x l

B y t e : :  C l a s s

1 2  c l o u b l e  a r r a y

4 0  c l o u b L a  a r r a y

8  t l ouL r  Lc :  ; . L r r  ay

4C t  i l , t r r b  l  e  i ) i  I ' a y

I 6  d o u b L e  a r r . r . y
( c o m f i L e x )

C l r a n c l  t - o t a l  i s  2 1  e l e n r r r n l . s ;  L r s i n q J  1 7 5  b y t e s

Note that subscript notation can be used to access an individual elcment of an array.
For exarnple. the firurth element o['thc column vccfor t) can be displayed as

: >  b ( 4 )

, t l t  s i  .

8

F o r a n a r r a y , A ( n r  , n )  s e l e c t s l h e c l e m c n t i n m t h r o w a n d t h c n t h c o l u r n n . F o r e x a m p l e ,

A ( : , 1 )

6

Thsre are sevcral built- in functions that can be used 1o creatc matrices. For cxarnplc,
the ones l lnd zero:i l 'unctions creatc vcctol's or matrices fi l led with ones and zeros.
respectively. Both have two argumcnts, thc first tbr the nulnber of rows and the second tbr
thc number-of columns. For example. to creatc a 2 x 3 matrix t l1'zeros:

E :  7 , c I  os ;  ( 2 .  ,  - )  J

0 0
U U

Sinti lar ly, the or-res fLtnction can be used to create a row vector of oncs:

u  =  o n c : : ;  ( j ,  - l  )

2.2.3 The Colon Operotor

The colon opefator is a powerfl l tool fbr crerting and
used to separate tw'o nunrbers, MATLAB generales lhe

manipulating arrays. If a colon is
numbers bc lween lhem usinu an

z$4 I
l a - Y
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increment of one:

- :  l -  -  1 . (

I

If colons are used to separate three numbers. MAILAB generates the numbers between the
first and third numbers using an increment equal to the second number:

> >  t  =  L : 0 . 5 : 3

f -

1 . 0 0 0 0  1 . 5 0 0 0  2 . 0 0 0 0

Note that negative increments can also be used

> - "  f  =  i 0 : - 1 : 5

t 0  9  B  1  6  5

Aside from creating series of numbers, the colon can also be used as a wildcard to se-
lect the individual rows and columns of a matrix. When a colon is used in place of a spe-
cific subscript, the colon reprcsents the entire row or column. For example, the second row
of the matrix A can be selected as in

> >  A ( 2 , : )

We can also use the colon notation to selectively extract a series of elements from
within an array. For example, based on the previous definition of the vector t :

> > '  1 -  ( 2 : 4 )

9 8 1

Thus, the second through the fourth elements are returned.

2.2.4 The r lnspace ond losspace Funct ions

The iinspacre and logspace functions provide other handy tools to generate vectors of
spaced points. The 1 inspace function generates a row vector ofequally spaced points. It
has the form

I  i n s p a c e  (  x l  .  x 2  ,  n )

which generates n points between xl and x2. For example

' >  l i n s p a c e ( 0 , 1 , 6 )

0  0 . 2 0 0 0  0 . 4 0 0 0  0 . 6 0 0 0  o . B O O O  1 . 0 0 0 0

lf the n is omitted, the function alromatically generates 100 points.
The logspace l-unction generates a row vector that is logarithmically equally spaced.

It has the form

l o g s p a c e ( x 1 ,  x 2 ,  n )

I f n
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2.3 MATHEMATICAL OPERATIONS 27

which generates n logarithmically equally spaced points between
For examp)e,

> >  l o g s p a c  e  ( - I  , 2  ,  4 )

0 . 1 0 0 0  1 . 0 0 0 0  1 0 . 0 0 0 0  1 0 0 . 0 0 0 0

If n is omitted, it automatically generates 50 points.

2.3 MATHEMATICAL OPERATIONS

decades l0'r and 10":

Operations with scalar quantities are handled in a straightforward manner, similar to other
computer languages. The common operators. in order of priority, are

Exponenl io l ion
Negot ion
Mult ip l icot ion ond div is ion
Left  d iv is ion' l
Addi t ion ond sublroct ion

These operators will work in calculator fashion. Try

, r  2 * p t

6  . 2 , 8 3 2

Also, scalar real variables can be included:

> >  Y  -  P t / 4 ;
> >  y  ^  2 . 4 5

0 . 5 5 3 3

Results of calculations can be assigned to a variable, as in the next-to-last example, or sim-
ply displayed, as in the Iast example.

As with other computer calculation, the priority order can be overridden with paren-

theses. For example, because exponentiation has higher priority then negation, the follow-
ing result would be obtained:

> >  Y  =  4  ^  2

y -
_ r 6

Thus,4 is first squared and then negated. Parentheses can be used to override the priorities
as in

> >  Y  =  \ - 4 )

L 6

: Lefi division applies to matrix algebra. It will be discussed in detail later in this book.
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2a MATTAB FUNDAMENTAIS

Calculations can also involve complex quantit ies. Here are some examples that use the
values of x (2 + 4i) and v ( I 6) defined previously:

' > , ' 3  *  x

a n s  -

5 . 0 0 0 4  + I 2 . 0 0 0 0 i

> > ' 1  / ; <

0 . 1 0 1 1  0  0 . 2 0 0 0 r

>> x  ^  ,2

a n s  -
- 1 2 . 0 0 0 0  + 1 r , . 0 0 0 0 - r

> >  x  +  y

a n ! ;  -

l B . O 0 t J 0  +  4 . 0 0 0 0 1

The real power of MATLAB is i l lustrated in i ts abi l i ty to carry out vector-rnatr ix

ca lcu la t ions .  A l though we w i l l  descr ibe  such ca lcu la t ions  in  de ta i l  in  Chap.  8 .  i t  i s  wor th

introducing sorne of those manipulat ions here.

The irtner product of two vectors (dot product) can be calculated using the * operator,

: . : , d * b

r 1 0

and l ikewise, the outer pnrluct

> : ,  b  *  -

a l l S  -

2  4  b  8  I 0
4  8  1 2  1 6  2 0
6  1 2  1 8  2 4  3 0
8  1 6  2 4  3 ' 2  4 t )

1 0  2 t )  l 0  4 L )  5 0

To further i l lustrate vector-matrix mLrlt ipl icat ion, l l rst redefine a and l : , :

.  ,  t i  2  l ;

and

> >  b  =  f 4  5  t j l ' ;

Now. try

> >  a  *  A

l 0  t 6  4 ? .

Z
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2.3 MATHEMATICAL OPERATIONS 29

> > A * b

3 2
7 1

r 2 2

Matrices cannot be multiplied if the inner dimensions are unequal. Here is what happens

when the dimensions are not those required by the operations. Try

> >  A  *  a

MATLAB automatically displays the error message:

? ? ?  E T r a r  u s i n g  = - >  m t i m e s
I n n e r  m a t r i x  d i m e n s i . o n s  m u s t  a Q f r e e .

Matrix-rnatr ix mult ipl icat ion is carr ied out in l ikewise fashion:

> >  A  *  A

3 0  3 5  4 2
6 6  B 1  9 6

1 0 2  1 2 6  1 5 0

Mixcd operations with scalars are also possible:

> >  A / p i

a n s  =

0 . 3 1 8 3  0 . 5 3 6 6  0 . 9 5 4 9
' I  . 2 1 3 2  I . 5 9 1 5  1 . 9 0 9 9
? , . 2 , ? , 8 2  2 , . \ 4 6 \  2 , . 8 6 4 8

We must always remember that MATLAB wil l  apply the simple ari thmetic operators

in vector-matrix fashion i f  possible. At t imes, you wil l  want to carry out calculat ions i tem

by i tem in a matrix or vector. MATLAB provides for that too. For example,

3 0  3 5  4 ? ,
6 6  8 1  9 t r

r 0 2  t 2 , 6  1 5  0

results in matrix multiplication of a with itself.
What if you want to square each element of e? That can be done with

> >  A  . ^  2

a n S  =

r 4 9
1 6  2 a  3 6
4 9  6 4  8 1

The . preceding the ̂  operator signifies that the operation is to be carried out element by
element. The MATLAB manual calls these array operatlons. They are also often referred
Lo as el ement - hy -c I eme n t t tpa rut it tn.s.
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MATLAB contains a helpful shortcut for performing calculations that you've already
done. Press the up-arrow key. You should get back the last line you typed in.

> >  A  . ^  2

Pressing Enter will perform the calculation again. But you can also edit this line. For
example, change it to the line below and then press Enter.

> >  A  . " .  3

1 8 2 1
6 4  I 2 5  2 1 6

3 4 3  5 r 2  1 2 9

Using the up-arrow key, you can go back to any command that you entered. Press the up-
arrow until you get back the line

F * -

Alternatively, you can type b and press the up-arrow once and it will automatically bring
up the last command beginning with the letter b. The up-arrow shortcut is a quick way to
fix errors without having to retype the entire l ine.

2.4 USE OF BUIIT.IN FUNCTIONS

MATLAB and its Toolboxes have a rich collection of built- in functions. You can use online
help to find out nrore about them. For example. if you want to learn about the 1og function,
type rn

> >  h e l P  l o g '

L O G  l r l a t u r a l  l o g a r i t h m .

L O G  ( X )  i s  t h e  n a t - u r a l  l o g r a r i t h m  o f  t h e  e l e m e n t s  o f  X .

C o m p l e x  r e s u l t s  a r e  p r o d u c e d  i f  X  i s  n o t  p o s r t i v e .

S e e  a l s o  L O G 2 ,  L O G 1 0 ,  E X P ,  L O G M .

For a l ist of all the elementary functions, type

' >  h e l p  e l f u n

One of their important properties of MATLAB's built-in functions is that they will op-
erate directly on vector and r.natrix quantities. For example, try

> >  l o g  ( A )

0  0 . 6 9 3 1  1 . 0 9 8 6
1 . 3 8 6 3  1 . 6 0 9 4  r . 7 9 ' L B
1 . 9 4 5 9  2 . 0 1 9 4  2 . 1 9 1 2

and you will see that the natural logarithm function is applied in array style, element by

elenrent, to the matrix A. Most functions. such as sqr t ,  abs, sin, acos, f  anh, and exp, op-
erate in anay fashion. Certain functions, such as exponential and square root, have matrix
definitions also. MATLAB will evaluate the matrix version when the letter m is appended to
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2,4 USE OF BUILT-IN FUNCTIONS 3 l

the function name. Try

> >  s q r : t m  ( A )

A . 4 4 9 8  +  0 . 1 6 2 3 i  0 . 5 5 2 6  +  0 . 2 0 6 8 i  0 . 5 5 5 5  0 . 3 4 8 1 l
1 . 0 1 8 5  +  O . A B 4 2 i  1 . 2 5 1 5  +  0 . A 2 2 B i  I . 4 8 4 4  -  0 . 0 3 8 5 i
I . 5 8 1 3  -  0 . 5 9 4 A 1  1 . 9 5 0 3  -  0 . 1 6 1 1 i  2 . 3 1 3 4  +  0 . 2 1 I 7 i

There are several functions for rounding. For example, suppose that we enter a vector:

> >  E  =  l - 1 . 6  - 1 . 5  - I . 4  I . 4  1 . 5  I . 6 l ;

The round function rounds the elements of E to the nearest integers:

> >  r o u n d ( E )

- 2 - 2 - 1 r 2 2

The cei l  (short fbr cei l ing) function rounds to the nearest integers toward inf inity:

> >  c e i l  ( E )

1  1  - 1  2  2  2

The f loor function rounds down to the nearest integers toward minus inf inity:

> >  f  l o o r  ( F t  )

2 2 2 r l

There are also functions that perform special actions on the elements of matrices and
arrays. For example, the sum function returns the sum of the elements:

> >  F  =  l 3  5  4  6  I l ;
> >  s u m ( F )

1 9

In a similar way, i t  should be pretty obvious what's happening with the fol lowing commands:

> >  m i n ( F ) , m a x ( F ) , m e a n ( F ) , p r o d ( F ) , s o r t  ( F )

1

6

3 . 8 0 0 0

3 6 0

1 3 4 5 6
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A common use of functions is to evaluate a fornrula for a series of arguments. Recall
that the velocity of a free-fall ing bungee jumper can be computed with [Eq. (1.9)]:

l o m  /  l o e ,  \

,  :  , / a  t anh l  , / r - r  I
V c.r \V trt /

where u is velocity (m/s), g is the acceleration due to gravity (9.81 m/s:), n is mass (kg),

c,, is the drag coefficient (kg/m), and r is time (s).

Create a column vector t that contains values from 0 to 20 in steps of 2:

; ' >  l -  =  [ 0 : 2 : 2 0 ] '

t . -
0
2
4
6
B

l 0
t 2
l 4
1 5
1 B
2 0

Check the number of i tems in the t array with the lerrgLh function:

> >  I  c n q t l r  ( L  )

a l l S  =

1 I

Assign values to the parameters:

> : . 9  =  9 . 8 1 ;  i n  -  6 8 . 1 ;  c r l  =  0 . 2 5 ;

MATLAB al lows you to evaluate a formula such as r : .1  ( r ) ,  where the fbrrnula is
computed fbr each value of tl.re r array, and the result is assigned to a corresponding posi-
tion in the u array. For our case,

- /  :  s q L t -  ( g * n / c ' d ) * 1 - a n h ( s q r t  ( g * c c l  / n ) * t  )

t)
1 B  . ' t  2 9 2
3 3 . r 1 1 8
4 2  . 0 1  6 2
4 6  . 9 5 1  a
4 9  . 4 2 r 4
5 0 . 6 1 7 5
5 1 . 1 8 7 1
5 1 . 4 5 6 0
5 1 . 5 8 2 3
b r . 6 4 1 6
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332.5 GRAPHICS

2.5 GRAPHICS

MMLAB allows graphs to be created quickly and conveniently. For example, to create a

graph of the t and v arrays from the data above, enter

: , . ,  n l o l  ( t ,  . / )

lne gfapn appears ln tne grapnlcs wrnoow ano can De pnnteo or translerreo vra tne clrp-

board to other programs.

60

50

40

30

20

1 0

0
8  1 0  1 2 1 4  1 6  1 8

You can customize the graph a bit with commands such as the following:

> >  t i l , r e ( ' P l o t  o f  v  v e r ' : j u s  t ' )

: ' : . '  x l a b e l  ( ' V a l u c s  o f  L ' )

, -  >  y l . L b c l  ( ' V a l u c s  o l  v ' )

. : ' >  q r i d

Plot of u versus f

60

50

40

30

20

1 0

0
8  1 0  1 2
Values of t

1 4  1 6  1 8
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TAB E 2.:2

Colors

Specifiers for colors, symbols, ond line types.

Symbols

Bl,re
Green
Red

Cyon
A^agen io
Yello'"v

Blccl .

Line Types

Sol id
Dolied
Dcshdot
Doshed

m
v
k

The 1r lot- conlmand clisplays a solid l ine by default. If you want to plot each point witha symbol' you can include a specifier enclosed in single quotes in the pior functio..Table 2'2 Iists the available specifiers. For example, if you want to use open circles enter
r - : . l : j l o t  ( t ,  v ,  , o , )

MATLAB allows y.ru to display more than one data set on the same prot. For example,if you want [o connect each clata rnarker wirh a straight rine you courd rype
: ' i . I , 1 o l ,  ( L ,  y t  t ,  \ r ,  , o ' )

It should be Inentioned that, by clefault, previous plots are erased every tirne the plorcommand is implernented. The hol d c,n conrmancl hoids the currcnt plot ancl all axis prop-erties so that additional graphing commancls can be added to the existing plot. The h.titof f cornmand returns to the def'ault mocre. Fclr exampre, if we had typed the tbilowingcornmands, the flnal plot woukl only display syrnbols;

: ' '  p I o L  ( 1 ,  . r )

> >  p l o t  ( t ,  v ,  , o , )

ln contrast, the f<li lowing commands would resurt in both l ines and symbors beingdisplayed:

' : '  p l o L  (  t ,  - , . )

' - .  l L o L d  o n
> -  P l o t -  ( t ,  v ,  ' o ' )

: : - ,  h o 1 c 1  o f f

In addition to ho1.l, another hanrly function is subplor, which alJows you lo split thegraph window into subwindows ()r p(ute,r. It has the svntax

s u b p l o L  ( n ,  n ,  p J

This cornrnand breaks the graph window into an m-by-n matrix of small axes, and selectsthe p-th axes for the current plot.
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We can demonstrate subplot by examining MATLAB's capability to generate three-
dimensional plots. The simplest manifestation of this capability is the p1or3 command
which has the syntax

p 1 o t 3  \ x ,  y ,  z )

where x, y, and z are three vectors of the same length. The result is a line in three-dimensional
space through the points whose coordinates are the elements of x, y, anrJ z.

Plotting a helix provides a nice example to illustrate its utility. First, let's graph a circle
with the two-dimensional plot function using the parametric representation: -r: sin(t)
and.y - cos(r). We employ the subplot command so we can subsequently add the three-di-
mensional plot.

> >  l -  =  0 : p i / 5 0 : 1 0 * p i ;
> >  s u b p l o r -  ( 1 ,  2 ,  I )  ; p 1 o t  ( s j n ( L ) , c o s  ( r )  )
> >  a x i s  s q u a L e
> >  r . i r l e  ( '  ( a )  ' )

As in Fig. 2. la,the result is a circle. Note that the circle would have been distorted i f  we
had not used the axis sou.er e command.

FIGURE 2. I
A two pone plot of (o) o two-dimensionol circle ond (b) o three-dimensionoJ helix

(b )
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Now, let's add the helix to the graph's right pane. To do this, we again employ a para-
metl ' ic representation: x: sin(/),.) '  : cos(1), and u : /

' >  s u b p L o t -  ( I , 2 , 2 )  ; p 1 o t 3  ( s i n ( L ) , c o s  ( 1 . ) , L )  ;
> >  r i r l e ( ' ( b )  , )

The result is shown in Fig. 2.l b. Can you visualize what's going on? As time evolves.
the .r and .y coordinates sketch out the circumference of the circle in the r-r' plane in the
same fashion as the two-dimensional plot. However. simultaneously. the curve rises verti-
cally as the : coordinate increases l inearly with time. The net result is the characteristic
spring or spiral staircase shape of the helix.

Thele ale other f 'eatr.rres of graphics that are useful-fbr example. plotting obiects
instead of l ines, families ol curves plots, plotting on the complex plane, log-log or semilog
plots, three-dimensional mesh plots, and contour plots. As described next, a variety of re-
soll l.ces are available to learn about these as well as other MATL,AB capabil it ies.

2.6 OTHER RESOURCES

The fbregoing was designed to lbcus on those f 'eatures ol'MATLAB that we wil l be using
in the remainder of this book. As such. it is obviously not a comprehensive overview of all
o1'MATLAB's capabil it ies. If you are interested in learning rnore, you should consult one
of the excellent books devoted to MAILAB (e.g.. Palrn. 2005; Hanselman and Litt lefield.
2005:  and Moore.2007).

Further, the package itsell ' includes an extensive Help lacil i ty that can be accessed by
clicking on the Help nrenu in the comnrand window. Thi.s wil l provide you with a nutnber
of dit l 'erent options fbr exploring and searching thlough MATLAB's Help material. In ad-
dition, it prclvides access to a number of instructive detnos.

As described in this chiLpter. help is also available in interactive rnode by typing the
lrclp conrmand fbllowed by the narne o1'a command or function.

If you do not know the narne, you can use the lookfor command to search the
MATLAB Help fi les lbr occurrences of text. Fol example, suppose that you want to find all
the cornrnands and functions that relate to logarithrns, you could enter

l - , k t  , r  . . , ' t  i r h n

ancl MATLAB will display all ret'erences that include the word loq.rri t-hnr.
Finally. you can obtain help tionr The MathWorks. lnc., website at www.mathworks

.corn. There you wil l l ' ind l inks to product infbrmation, newsgroups, books, and technical
support as well as a variety ofother uselit l  resources.
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EXPLORATORY DATA ANALYSIS

Bockground. Your textbooks are filled with formulas developed in the past by
renowned scientists and engineers. Although these are of great utility, engineers and scien-
tists often must supplement these relationships by collecting and analyzing their own data.
Sometimes this leads to a new forrnula. However, prior to arriving at a final predictive equa-
tion, we usually "play" with the data by per{orming calculations and developing plots. ln
most cases, our intent is to gain insight into the pattems and mechanisms hidden in the data.

In this case study, we will illustrate how MAILAB facilitates such exploratory data
analysis. We will do this by estimating the drag coefficient of a free-falling human based
on Eq. (2.1) and the data from Table 2. 1. However, beyond merely computing the drag
coefficient, we will use MATLAB's graphical capabilities to discern patterns in the data.

Solution. The data from Table 2.1 along with gravitational acceleration can be entered as

,  t r - j r r 1 . o  f , 0 . l l  7 . 1 . l  9 1 . 1  9 ) . . 9  ( t i r . . l  8 t : 1 . 9 1 ;

: ; ' r r t : : l ! - 1  . 4  4 | J . 1  ! 0 . 9  ! , 5 . i  ! , 1  4 l . l  ' r l . . l l ;

, - - .  r ;  9 . f l 1 ;

The drag coefficients can then be computed with Eq. (2. l). Because we are performing
element-by-element operations on vectors, we must include periods prior to the operators:

( r .  ' . 1 ,  r 1 ) . . t t , i l ' )  l ) . ' ) t )  l r )

We can now use some of MATLAB's built-in functions to cenerate some statistics for the
results:

- . . -  1 , J , 1 r 7 q = 1 1 r ( ' . l a  ( (  i l l

i  Li,-.1 ';1,1 ,.

l )  .  . l  l l r ; 4

r l c l r r r  i  r r  -

l i ,  i  i r = t i r  i  r r  (  . l  r , n , . ,  r ,  , , 1 , q  ' 1  (  r ' r l  )

i )

r ' c l n t . r  : .

0 .  J 1 2 !

Thus, the average value is 0.2854 with a range ttom 0.25 l l
Now, let's start to play with this data by using Eq. (2

teuninal velocity based on the average drag:

' , . .  v l ) ] , . ' a l  . , : l a l r  L  ( g * r l t  r t  r , l , r ' " ' . 1  )

Vp l  t  r :C i
' r l - t , ( l L ' r  1 i , . . i i i , ) /  4 ' 1 .  / ! . 1 l ' - r ' r . l l 1 r ' , t r : ,

' . 1 ) , .  i  ] ,  ) f "

Notice that we do not have to use periods prior to the operators in this formula? Do you
understand why?

We can plot these values versus the actual measured terminal velocities. We will also
superimpose a line indicating exact predictions (the l;1 line) to help assess the results.
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Plot of predicted versus measured terminal velocit ies

49 50 51 52 53 54
Measured

Plot of drag coeff icient versus mass
0.35

75 80
Mass (kg)

FIGURE 2.2
Two olols creoted with MATIAB

Because we are going to eventually generate a second plot, we employ the subplot

command:

'  '  : : u l . , y r l o L  ( 2 ,  ) , 1 ) ;  p l o t  ( " / t - , v p r ( . 1 ( l  , ' . ) ' , ' , ' 1 .  , v l - )
. ,  x  I  a b , - l  ( ' l r , : , , t : ; L r r i : c l '  )
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PROBTEI

2.1 A simple electr ic c
pacitor, and an inductor
on the capacitor 4(l) as
as

q( t ) :  q t )g -Rt / (21)  s

w h e r e r : t i m e , q o : t l
L: inductance, and (

generate a plot of this fi

4 o : 1 2 , R : 5 0 ' L - j
2.2 The standard norrr
bell-shaped curve that c

q) o
o O c,)

o

I  i . r l r t ' I  ( ' I r r  i . : r l i c  l L - ' t l ' )

I  i  t  l c ]  (  ' l ' l  o l  o l  I ) t  ( ' ( l  i  (  t . . c r d L r u r a r ( l  l ,

As in the top plot of Fig.2.2,because the predictions generally follow the l: I line, you

might initially conclude that the average drag coefficient yields decent results. However,

notice how the model tends to underpredict the low velocities and overpredict the high.

This suggests that rather than being constant, there might be a trend in the drag coefficients.

This can be seen by plotting the estimated drag coefficients versus mass:

x l  ; r i r e I  ( ' n r , r : r f , r  ( k q  r '  t
' , ' l , i ' l : r ,  l  ( ' , - ' : : 1  i t n a l ' t , r l  L l r , t g  r : t , [ ' l ' I  i c t l l r l  ( ] i q / 1 l l  )

L i 1 . L e 1 '  ; ; L i r l -  O I  c 1 L . i . - ]  l r o l r i I  i .  i c t l L  \ " r r : . i 1 1 l r l  f i l , l , )

The resulting plot, which is the bottom graph in Fig. 2.2' suggests that rather than

being constant, the drag coefficient seems to be increasing as the mass of the jumper

Use MATLAB to ger
z: -4 to 4. Label th
scissa as z.
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continued

increases. Based on this result, you might conclude that your model needs to be improved.
At the least, it rnight motivate you to conduct further experiments with a larger number of
jumpers to confirm your preliminary finding.

In addition, the result might also stimulate you to go to the fluid mechanics literature and
leam more about the science of drag. If you did this. you would discover that the parameter
c., is actually a lumped drag coefficient that along with the true drag includes other factors
such as the jumper's frontal area and air density:

CoPA
(2.2)

where C, : a dimensionless drag coefficient, p : tir density (kg/mr), and A : frontal
area (m2), which is the area projected on a plane normal to the direction of the velocity.

Assuming that the densities were relatively constant during data collection (a pretty
good assumption if the jumpers all took off from the same height on the same day),F,q. (2.2)

suggests that heavierjumpers might have larger areas. This hypothesis could be substanti-
ated by rneasuring the frontal areas of individuals of varying masses.

PROBTEMS

2.1 A simplc elcct l ic circuit  consist ing ol '  a rcsistur, a ca-
pacitor, and an induc(or is dcpictcd in Fig. P2. l .  T'hc chargc
on the capacitor r i( t)  as a l i rnct ion ol ' l imc can bc cor.nputcd
as

whcre I = t ime, r7o : thc init ial  chargc. 1l :  the rcsistancc,
I = inductance, and C : capacitancc. Usc MATLAB to
generate r plot o1'this l i rnct ion l iorn / -  0 Io 0.7, givcn that
qo-  12 .  R:  50 ,  L  :  5 ,  and C :  l0  r .

2.2 The standard norrnal probabil i ty density l i rnct ion is a
bell-shaped curve that can be rcprescntcd as

l -
I t - \ -  - ,  : - ' -
/  

\ ! /  

-  

/ ; - .

\/ llt

Use MATLAB to gencrate a plot ol' this fbnction liom

;=-,1 to.1. Labcl thc ordinate as lrcquency and the ab-
scissa as :.

2.f  Usc thc I  i r : rp,rc e l 'unct ion to crcatc vcctors idcnt ical  to

thc l i r l lowing crcatccl  wi th cokln nolat ion:

( a )  t  :  ! : { r : - J l J

( b )  r :  t , : , . 1

2.4 Usc colon notut ion lo crcatc vectors idcnt ical  to the

l i r l l ow ing  c r cu t cd  w i t h  t hc  I  i n : , [ ) , ] .  r :  l i r nc t i on :

( a )  r '  :  I  i r s l ) . r c ' { r  I  l , I ,  t  t
( b )  |  :  1  r n s l r . r c e ( r ,  0 ,  I  I )

2 . 5  I l ' a  l i r r c c  I - (N )  i s  app l i cd  t o  con rp r css  a  sp r i ng ,  i t s  d i s -

placcmcnt, r  ( rn)  can ol ' tcn bc rnodclcd by Hookc's law:

I j : l r

Induc tor

FIGURE P2. I

, ](#)'

ffirqA+,
,"1 {t 6 e[st

-l -l

x
<, [h-

1-l€- eJ 5t

8,

Resistor

zt'+ Z] X+



PI40 MATLAB FUNDAMENTALS

where k : the spring constant (N/m). The potential energy
stored in the spring U (J) can then be computed as

l -
U :  - ( . r -

2

Five springs are testcd and the following data compiled:

F , N

2.8 lt is general practice in engincering and sciencc that
equations be plotted as lines and discrete data as syrnbols.
Here is somc data fbr conccntration ({) \'elsus timc (l) for the
photodegradation of aqueous bromine:

t, min
c, PPm

t 0
41 4

2A
2 6

3C
t 6

40
t 3

50 60
i 0  c 5

2.13 You conract the jur
Table 2.1 and measure
values, which are order
conesponding values in T

A , m 2  o 4 5 A  O 4 O l  O

(a) If the air density is p
compute values of tl
cD.

(b) Determine the averag
result ing values.

(c) Develop a side-by-sid
C, versus rr (right sic
and titles on the plots.

2.14 The following parar
that contracts exponentiall

- l l  l ,  .. r : c  -  s r n I
n  t ,

. v = e  c o s l

Use subplor to generat(
(.r, .y) in the top pane and
(x,.v, l )  in the bottom pane
2.15 Exactly what wil l  t
MATLAB commands are I
( a ) > > x = z ;

> >  x  ^  3 ;
> > Y = B - x

( b )  r t  q  =  4 : 2 : L 0 ;

> >  r  -  1 7  B  4 ;  3
> >  s u m ( q )  *  r ( 2 ,

l l ) 2 l 5  9 t 2
r , r r  0 0 1 3  0 0 2 0  0 C 0 9  0 0 1 0  0 0 1 2

Llse MATLAB to store F and,t as vectors and thcn conrputc
vcctors of the spring constants and the potential energics.
Use thc max l-unction to dctermine the maxirnum potential
cncruy.
2.6 The density oi treshwater can he computed as a lunction
ol ' tcmperaturc with the f ir l lowine cubic cquation:

p :  -5 . -5289 x  l0 -8 f ( l  -  8 . -5016 x  to ' -67<?

i 6.5622 x l0 s 11 + 0.99987

whcre p : dcnsity (g/cnr31 and 16' : tcmperat.urc ('C). Usc
MATLAB to gencrate a vcctor of tcrnpcratures ranging liorn
32 "F to 82.-1 'F using incrcrncnts of 3.6 oF. Convclt thrs vcc-
tor tcl  clcgrecs Celsius ancl the'n computc a vcclor of dcrrsit ics
hascd on the cubic lbrmula. Crcate a plot ol 'p vcrsus 

- i"1..

Rccal l  that T( :  519(7'F - 32).
2.7 Manning's cquation can bc uscd to compulc thc vclocity
01'wirtcr in a rectangl l lar opcn channcl:

.  / s /  B H  \ t '
r t  \ B + 2 H /

wherc U: r,clocity (nr/s), S: channel slopc, n: roughncss
cocfl ' ic ient, I i :  yu;.1,1.r (nr),  and /1 :  dcpth (rn). Thc l i r l lo ' ,v-
ing data is avai lablc lbr I ' ive channels:

n 5 B H

This data can bc dcscribed by the lbl lowing function:

( .  _  4 .g4 . , .00r .1 /

Usc MATLAB to crci\ tc a plot displayirrg both the data
(r-rsing squarc symbols) and the function (using a dotted
l ine) .  P lo t  thc  lunc t ion  lb r  r :  0  to  75  rn in .
2.9 The seni i  1 o9i,  lunction t)pcratcs in an idcntical fashion
to thc fr lot,  l i rnct ion cxccpt that a logarithrnic (basc-10)

scale is used l irr  thc l  axis. Usc this l 'unction to plot the
data ancl l 'unction as dcscribcd irr Prob. 2.t1. Explain thc
resu l t  s.
2.1() Hcrc is sornc wirrd tunncl data l i rr  l i rrcc (I-) vcrsus
ve loc i ty  ( r ' ) :

u,  mls 10 ?.0 30 4A 50 60 7A B0
I t ,  N  ' t 5  7A  3BO 550  6 r0  t 22A  830  1450

This clata can bc de scribcd hy thc l i r l lowing l 'ur.rct ion:

I" :  0.2711ttt ' )x+t

LJsr'  MATLAB to crcatc a plot displaying both thc data
(using diantond symbols) and thc l lnct ion (usirrg a dottcd
l ine) .  P lo t  thc  lunc t ion  l i r r  u :0  to  9 ( )  n r /s .
2. l l  Thc loc_{locr l i rncl ion opcratcs in an idcntical I 'ashion
to the f i l () ' .  l i rnct ion cxccpt (hat logarithnric scalcs arc uscd
l irr both thc,r ancl .r 'axcs. Usc this lunction to plot thc dau
and lunction as dcscl ihcd in Proh. 2. I0. Explain t lrc rcsults.
2.12 Thc Maclaurin scrics cxpansion t irr  thc sinc is

. .r'l .r5 ,r7 .r' ')
S l n , I = - t - -  +  + - -

. r !  5 1  7 1  9 l

Use MATLAB to creatc a plot o1'thc sine (sol id l inc) along
r.vith a plot o1'thc scries cxpansion (dashed l ine) up ttr  and in-
cluding the terni -r7171. Usc the Lrui l t- in t i rnct ion f .rct1)r
ial in conrputing the scries expansion. Make the range of
the abscissa li'onr ,r : O to 3tr 12.

0  035
0.020
0 0 r 5
0 030
a  a22

0 0001
0 0002
o o 0 t o
0 0008
0 0c103

t 0
B

l 9
'24

t 5

2
I
t 5
3
' 2 5

Store these values in a matrix where each row reprcscnts one
oi'thc channels and cach column represents one of the paranr-
ctcrs. Writc a single-l ine MATLAB statcment to conputc a
column vector containing the vclocit ies based on the vir lues
in the parameter matrix.
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2.13 You contact the jumpers used to generate the data in
Table 2.1 and measure their frontal areas. The resulting
values, which are ordered in thc same sequence as the
conesponding valuc-s in Table 2. l, are

A , n t 2  0 . 4 5 4  0  4 0 1  0  4 5 3  0  4 8 5  0  5 3 2  a  4 7 4  A  4 B 6

(a) I l  the air density is p :  1.225 kg/mr, use MATLAB to
compute values of the dimensionless drag coeff icicrrt
cD.

(b) Deternrine the average, minimunr and rnaxir lum ol ' thc
result ing values.

(c) Dcvelop a side-by-side plot ofA versus rr ( lcft  sidc) and
C., versus rr (r ight side). lnclude descript ivc axis l i ibels

and t i t lcs on the plots.
2.11 The lbl lowing paramctric equl l i rrrrs generrlc- l  hcl ix
that contr i icts r 'xponential ly as i t  cvolvcs

. r : e  o l ' s i n I

\ ' = c  C o s I

Use subpl,rr to gcneratc a two-dimcnsional l inc plot ot '
(-r,  i ' )  in the top pane and a three-dirncnsional l ine plot ol '
(,r, r, :) in thc bottom panc.
2.15 Exactly whal wi l l  be displaycd al ier thc l i r l lowing
MATLAB courmands arc typcd'l
( a )  - ' >  x  -  2 ;

: ' : '  X '  l ;

> - . . /  -  l t  x

( b )  t -  q  .  . 1  : 2 : 1 0 ;

> >  r  .  f ]  I  4 ;  )  6  2 . ) ;

> > : i L l l r ( c 1 )  *  r ( 2 ,  3 )

2.16 The trajecbry of an object can be modeled as

R .
) : ( t a n d o ) . \ - - r ' * ) t ,

IU ;COs.d0

where _v : height (m), d,, : initial angle (radians), r :

horizontal distance (m), g = gravitat ional accelerat ion
( :9 .81  m/sr ) ,  u , , :  in i t ia l  ve loc i ty  (m/s ) ,  and y , , :  in i t ia l
height. Use MATLAB to find the displacement fbr r',, : Q
and r,, :30 nr/s lbr ini t ial  angle-s ranging l iom l5 to 75o in
increrncnts of 1,5". Employ a range of horizontal distances
from -t :  0 to 100 m in incremcnts of 5 m. Thc re sults should
be assernblcd in an array where thc f irst dimension (rows)

corresponds to the distances. and the second dimension
(columns) corresponds to the dif l 'erent ini t ial  angles. Use
this matrix to gcncrate a singlc plot of thc hcights versus
horizontal distances lbr each of the init ial  angles. E,rnploy a
legencl to di.st inguish among the di l l -crent cases. and scale
thc plot so that thc minirnum height is zero using the azis
commancl.
2.17 The lcmperature dcpendence ol 'chcmical reactions can
bc ctrrnprrtet l  wi lh the Arrhaniu.t t ' t lutrt i t tn;

k  -  Aa t ' i tR I , ,1

wherc k: rcaction ratc (s r).  A : thc prccxponential (or t ie-
quency) lactor, E: act ivat ion energy (J/mol),  R - gas con-
stant [8.314 J/(rnolc .  K)],  and l ,  :  absolute temperaturc
( K ) . A c o r n p o u n d h a s E :  l x  l O s J / m o l  a n d A : 7  x  1 0 1 6 .
Usc MATLAB to gcncrate valucs ol reaction ratcs 1br tem-
peralurr-s rangin-u lrom 273 to 333 K. Usc subplot to gc'n-
crate r sidc-by-side graph ol '(a) /< vcrsus I, ,  and (b) logr{) f t
vcrsus l /7,, .  Enrploy thc semi l .rqy function to crcatc (b).

Interpret your rcsults.
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EXAMPTE 3.I

We also learned that a numerical solution of this eouation could be obtained with Euler's
method:

dut
Ui+ l  :  u i  + 

dt  
Lt

This equation can be implemented repeatedly to compute velocity as a function of
time. However, to obtain good accuracy, many small steps must be taken. This would be
extremely laborious and time consuming to implement by hand. However, with the aid of
MATLAB, such calculations can be performed easily.

So our problem now is to figure out how to do this. This chapter will introduce you to
how MATLAB M-fi les can be used to obtain such solutions.

3. I M-FIEs
The most common way to operate MATLAB is by entering commands one at a time in the
command window. M-files provide an alternative way of performing operations that
greatly expand MATLAB's problem-solving capabilities. An M-file contains a series of
statements that can be run all at once. Note that the nomenclature "M-flle" comes liom the
fact that such fi les are stored with a .m extension. M-fi les come in lwo flavors: scrint f i les
and function fi les.

3.l.  t  Script Fi les

A script file is merely a series of MMLAB comnrands that are saved on a file. They are
useful for retaining a series of commands that you want to execute on more than one occa-
sion. The script can be executed by typing the fi le name in the command window or by
invoking the nrenu selections in the edit window: Debug, Run.

Sc r i p t  F i l e

Problem Stotement. Develop a script l i le to compute the velocity of the lree-fall ing
bungee jumper.

Solution. Open the editor with the menu selection: File, New, M-fi le. Type in the fbllow-
ing statenrents to compute the velocity of the fiee-tall ing bungee junrper at a specific t ime

[recal l  Eq.  (1.9) ] :

9  =  9 . 8 1 ;  m  =  6 8 . 1 ;  L  -  1 2 ;  c d  =  0 . 2 5 ;
v  =  s q r t ( g  *  m  /  c d )  *  t a n h ( s q r t - ( g  *  c d  /  m )  *  L )

Save the fi le as scriptdemo . rn. Return to the command window and typc

> > s c r i p t d e m o

The result will be displayed as

5 0 . 6 1 7 5

Thus, the script executes just as if you had typed each of its l ines in the comntand winclow.
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EXAMPLE 3.2

As a final step, determine the value of s by typing

> > g

9 .  B l O O

So you can see that even though q was defined within the script. it retains its value back in
the command workspace. As we wil l see in the following section, this is an important dis-
t inct ion between scr ipts  aud funct ions.

3.1.2 Function Files

FunctionJiles are M-fi les that start with the wclrd f unction. In contrast to script f i les, they
can accept input arguments and return outputs. Hence they are analogous to user-deflned
functions in programming languages such as Fortran, Visual Basic or C.

The syntax for the function fi le can be represe'nted generally as

f u n c L i o n  o u t r ' . r r -  =  f u n c l a n l c  ( . : r - g l J  i ^ . - - t  )

Z  h e ) p c o n m e . n L s

s  L . l  t  eme l l  L . s

a u L v a  r -  -  v ' a l  u e ;

where outvar'= the name of the output variable, furcr.rme = the function's name,
argt)st = the function's argument l ist (i.e., comma-delirnited values that are passed into
the function.l, ?reTpcornnerts = tcxt that provides tlre user with infbrmation regarding the
function (lhese can be invoked by typing t1elp f uncnane in the cornmand window), and
srare.mL-lLs = MATLAB statements that compute the r,.r-/uer thitt is assigned to ourvar.

Beyond its role in describing the function, the first l ine ol'the he/pcorrurrcnts, called
the Hl l ine, is the l ine that is searched by the lookf or command (recall Sec. 2.6). Thus,
you shoulcl include key descriptive wclrds related to the fi le on this l ine.

The M-fl le should be saved as furrcnarne.m. The function can then be run by typing
f uncname in the command window as i l lustrated in the fbllowing exarnple. Note that even
though MATLAB is case-sensitivc. your computer's operating system may not be.
Whereas MATLAB would t reat  funct ion narnes l ike f  r :ee la l  lve i  and F ' rect ra l lve l  as
two diff'erent variables, your operating system might not.

r . lruncl ton r i le

Problem Stotement. As in Example 3. l, compufe the velocity of the free-fall ing bungee
jumper, but now we wil l use a functiorr f i le for the task.

Solution. Type the following statements in the fi le eclitor:

f  r r n c t i o n  v  =  f  r e e f  a L L v e l -  ( L ,  m ,  c d )

%  f  r e e f  a l 1 v e l :  b u n g e e  ' , - e l o c i t i z  r v i L h  s j e c o n d - o r d e r  d r a g

%  v = f r e e f a l l r r e l ( L , m , c d )  c o n p u t e s  t h e  f r c - e - f a L 1  v e l o c i t y

Z  c : f  a n  o b j e c L  w i L h  s e c o n d * o r d e r  d r a g

i n p u t :
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%  r  =  r i m e  ( s )

%  m = m a s s  ( k s )

2  c d  =  s e c o n d - o r d e r  d r a g  c o e f  f i c r e n t  ( k S i  m )
%  o u t p u t :
%  v  =  d o v r n w a r d  v e l o c i t y  ( m / s  )

9  =  9 . 8 1 ;  ?  a c c e l e r a t i o n  o f  g r a v i t y
v  =  s e r t ( g  *  m  /  c d ) * t a n h ( s q r t ( g  *  c d , /  m )  *  t ) ;

Save the f i le as f reef al lvel .  m. To invoke the function, return to the command window

and type in

> >  f r e e f a l l v e l  \ 1 2 ,  6 8 .  1 ,  0 . 2 5 )

The result wi l l  be displayed as

5 0 . 6 i 7 5

One advantage of a firnction M-file is that it can be invoked repeatedly for diff'erent

argument values. Suppose that you wanted to compute the velocity of a 100-kg jumper

after 8 s:

> >  f r e e f a l l v e l  ( 8 ,  1 0 0 ,  0 . 2 t )

5 3 . 1 8 7 B

To invoke the help comments type

> ; .  h e l . p  f r e e f a l l v e L

which results in the comments being displayed

f r e e f ; r 1 l v e 1 :  b u n g e e  v e l o c i t y  w i t h  s e c o n d - o r d e r  d r a g
. , ' = f r e e f a l l v e l ( t , m , c c l )  c o m p u L e s  t h e  f r e e  f a l l  v e l o c l t y

o f  a n  o b j e c t  w i t h  s e c o n d - o r d e r  d r : a g
i  n p u t -  :

t  =  t i m e  ( s )

m  =  n a s s  ( k S )

c d  =  s e c o n d - o r d e r  d r a g  c o e f f i c i e n t  ( k g l m )

o u r p u [ :
v  =  d o w n w a r d  v e l o c r t y  ( m / s )

If at a later date, you tbrgot the narne of thjs functiorr, but remembered that it involved

bungee jumping, you could enter

> >  l o o k f o r - b u n g e e

and the fol lowing information would be displayed

f  r e e f  a l .  1 . m :  %  f  r e e f  a l 1 :  b u n q e e  v e l o c i t y  w i t h  s e c o n d - o r d e r  c l r : a g t

Note that, at the end of the previous example, if we had typed

> > g
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the following message would have been displayed

? ? ?  U n d e f i n e d  f u n c t i o n  o r  v a r i a b l e  ' S '  .

So even though s had a value of 9.81 within the M-fi le, it would not have a value in the
command workspace. As noted previously at the end of Example 3.1, this is an important
distinction between functions and scripts. The variables within a function are said to be
local and are erased after the function is executed. In contrast, the variables in a script
retain their existence after the script is executed.

Function M-files can retum more than one l'esult. In such cases. the variables contain-
ing the results are comma-delimited and enclosed in brackets. For example, the following
function, staf s.m, computes the mean and the standard deviirt ion of a vector:

f u n c t i o n  I m e a n ,  s t d e v ]  =  s t a t s  ( x )
n  =  l e n g t h ( x ) ;
m e a n  =  s u m ( x )  / n ;
s t d e v  . .  s q r  t  ( s u m (  ( x - m e a n )  . ^ 2 /  ( n - 1 )  )  )  ;

Here is an example of how it  can be applied:

' >  ! '  -  l B  5  1 D  1 2 '  6  1 . 5  4 l ;

m =
7 . 5 0 0 0

S =

2  . 8 7 3 ' 1

Because script M-fi les have limited uti l i ty. function M-fl les wil l be our prirnary pro-
gramming tool fbr the remainder of this book. Hence, we wil l ofien refer to function
M-fi les as simply M-fl les.

3.1.3 Subfunctions

Functions can call other firnctions. Although such functions can exist as separate M-fi les,
they rnay also be contained in a single M-fi le. For example. the M-fi le in Example 3.2
(without conrments) could have been split into two functions and saved as a single
M-f i le ' :

f  u n c t i o n  r r  =  f  r e e f  a l  L s u b f  u n c  ( L ,  n r  ,  c c l )

v  =  v e L  ( t ,  m ,  c d ) ;

e n d

3.2

f u n c t i o n  v  =  v e l  ( t ,

n  a  a l .
9  r . r t l

v  =  s q r t  ( q  *  m  , z  c d )

e n d

m ,  c d )

* t a n h ( s q r t  ( g  *  c d  /  m )  *  t ) ;

I Note that although end statements are t.rptional in single-function M-lilcs, we like to include them whcn
subfunct ions are involvcd to h ishl ight  the boundar ies betwcen thc main funct ion and the subfunct ions.
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This M-fi le would be saved as f reefallsubfunc.m. In such cases, the first function is
called the main or primary function. It is the only function that is accessible to the com-
mand window and other functions and scripts. Al1 the other functions (in this case, ve1) are
referred to as subfunctions.

A subtunction is only accessible to the main firnction and other subfunctions within
the M-fi le in which it resides. If we run f reef al lsubf unc from the command window
the result is identical to Example 3.2:

; ' >  f r e e f a ] l s u b f u n c  (  1 2 ,  6 8 . ! ,  0 . 2 5 )

5 0 . 6 1 7 5

However, if we atternpt to run the subfunction vel, an error message occurs:

> >  v e l ( I 2 , 6 8 . 1 , . 2 5 )

?  ?  ?  U n d e f i n e d  c o m m a n d /  f u n c t  i o n  ' v e 1  '

3.2 INPUT.OUTPUT

As in Section 3.1, information is passed into the function via the argument l ist and is out-
put via the function's name. Two other functions provide ways to enter and display infor-
mation directly using the command window.

The r r , l ' r r l  Funct ion.  This funct ion a l lows you to prompt the user  for  va lues d i rect ly
from the command window. lts syntax is

, r  =  i n p u t  \ ' p r o m p t s t r i n g ' )

The lunction displays Ihe pronptstring, waits for keyboard input, and then returns the
value fiom the keyboard. For example,

m  =  i n p u t  ( ' M a s s  ( k S )  r  ' )

When this l ine is executed, the user is prompted with the message

M a s s  ( k g ) :

If the user enters a value, it would then be assigned to the variable n.
The inpur funclion can also return user input as a string. To do this, an ,s, is ap-

pended to the function's argunlent list. For example,

n a m e  =  i n p u t  (  ' E n t e r  y o u r  n a t n e :  '  ,  , s  ,  )

The ,t i. 1, Function. This function provides a handy way to display a value. Its syntax is

d i s p ( r z a - Z u e )

where yalue = the value yort would l ike to display. If can be a numeric constant or vari-
able, or a string message enclosed in hyphens. Its application is illustrated in the following
example.
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EXAMPLE 3.3 An Interoct ive M-Fi le  Funct ion

Problem Stqtement. As in Example 3.2, compute the velocity of the free-fall ing bungee
jumper, but now use the inprut and disp functions for input/output.

Solution. Type the fbllowing statements in the file editor:

r u n c t  i o n  f r e e [ - ,  L :
%  f  r e e f  a 1 l i :  i n t . e r a c t i ' r e  b u n g e e  v e l o c i t y
?  f r e e f a l l i  i n t e r . a c t i v e  c o m p u t a t j o n  o f  t h e
Z  f r e e  f a l 1  r r e l o c i t y  o f  a n  o b j e c t
e o  \ r t  i t h  s e c o n d - o r : d e r  d r a g ,

9  -  9 .  B 1 ;  %  a c c e l e r a t i o n  o f  g r r a v i L y
m  =  i n p u t ( ' M a s s  ( l < g )  :  ' ) ;

c d  =  i n p u t  ( ' D r a g  c o e f f i c i e n t  ( k q l m )  :  ' )  ;
t  = : - n p u t ( ' T i m e  ( s ) :  ' ) ;

d i s p ( ' ' )
d r s p ( ' V e l o c i t y  ( m / s )  : '  )
d r s p ( s q r t ( g  *  m  /  c d ) * t a n h ( s q r t ( g  *  c d  /  m )  *  t ) )

Save the f i le as f reef a11 i  .  m. To irrvoke the function. return to the command window and
type

> >  f  r e e f  . r l  I  i

M c r s s  ( k g ) :  6 g . l
D r a g  c o e f f r c i e r r t  (  k g / m )  :  0  . 2  5
T i m e  ( s ) :  1 2 .

V e l o c i t , l r  ( n r , / s ) :

5 0  . 6 1 ' 1  5

The t1 , r  r r r l  1  Func t ion .  Th is  func t ion  prov ides  add i t iona l  con t ro l  over  the  d isp lay  o f
infbrmation. A simple representation of i ts syntax ts

f p r i n L f  ( ' f o r m a L ' ,  > < , ,  . . . )

where form.: t  is a str ing specifying how you want the value of the variable x to be dis-
played. The operation of this function is best i l lustrated by examples.

A sirrrple example would be to display a value along with a message. For instance, sup-
pose that the variable velocity has a value of -50.6175. To display the value using eight
digits with four digits to the r ight of the decimal point along with a message, the statement
along with the result ing output would be

> >  f p r i n L f  ( ' T ' h e  v e l o c i t y  i s  % 8 . 4 f  n / s \ n ' ,  v e l o c i t y )

T h e  v e l o c i t . 7  i  s  5 0 . 6 1 7 5  m r ' s

This example should make it clear how the format string works. MATLAB starts at

the left  end of the str ing and di: ;plays the labels unti l  i t  detects one of the symbols: % or \ .
In our example, it first encounters a % and recognizes that the following text is a format
code. As in Table 3.1 , the format codes allow you to specify whether numeric values are
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TABTE 3.I

Formoi Code

Commonly used formot ond control codes employed
wi th the f  pr in t f  funct ion.

Descripiion

z d

z f
Z g

Conirol Code

ln leger lormci
Scient i f lc  formof wl th lowercose e
Scient i f  ic  formot wi th uppercose E
Declmol  formot
The more compoct o[  %e or %f

Description

\ I l

\ t
Slor f  new l ine
Tob

displayed in integer, decimal, or scientif ic format. After displaying the value of veLociry,
MATLAB continues displaying the character information (in our case the units: m/ s) until
it detects the symbol \. This tells MATLAB that the following text is a control code. As in
Table 3.I,the control codes provide a means to perfbrm actions such as skipping to the
next l ine. If we had omitted the code \n in the previous example, the comrnand prompt
would appearat the end of the label m/s ratherthan on the next l ine as would typically be
desired.

The fprintf function can also be used to display several values per l ine with diff 'er-
ent formats. For example,

> >  f p r i n t f  ( ' % 5 d  % 1 0 . 3 f  % 8 . 5 e \ n ' , 1 0 0 , 2 * p i , p i )  ;

1 0 0 6 . 2 8 3  3 . 1 4 1 5 9 e + 0 0 0

It can also be used to display vectors and matrices. Here is an M-file that enters two
sets of values as vectors. These vectors are then combined into a matrix. which is then dis-
Dlaved as a table with headines:

f u n c t i o n
x  =  l I  

' 2
f p r r n t  f d e m o
I  4  5 l ;

1 2 . 6  r 7 . B  B B . 7  L 2 a . 4 l ;j - 2 A  . 4
x ; y l

f p r i n t f  ( '  x  y \ n '  )
f p r i n t f  ( ' % 5 d  % 1 0 . 3 f \ n ' ,  z )  ;

The result of running this M-ll le is

> >  f  p r : i n t  f  d e  r n o

X

1

2

3

4

5

Y
2 0 . 4 0 0
1 2  . 6 A A
1 7 . 8 0 0
8 8 . 7 0 0

1 2 0 . 4 0 0
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3.2. I Creoting ond Accessing Files

MATLAB has the capability to both read and write data files. The simplest approach in-
volves a special type of binary file, called a MAT-fi\e, which is expressly designed tbr
implementation within MATLAB. Such files are created and accessed with the save and
load commands.

The save command can be used to generate a MAT-file holding either the entire work-
space or a few selected variables. A simple representation of its syntax is

s a v e  f i f e n a m e  v a r T  v a r 2  . . .  v a r n

This command creates a MAT-fi le named fi-tename.mar that holds the variables yarl
through varn. If the variables are omitted, all the workspace variables are saved. The l oad
command can subsequently be used to retrieve the file:

l o a d  f r  l e n a m e  v a r l  v a r 2  . . .  v a r r l

which retrieves the variables rzar-1 through varn from f i lenante.mat. As was the case
with save, if the variables are omitted. all the variables are retrieved.

For example, suppose that you use Eq. ( 1.9) to generate velocities for a set of drag
coefficients:

> >  9 = 9 .  B 1 ; m = B O ;  t = 5 ;
> >  c d = [ . 2 5  . 2 6 1  . 2 4 5  . 2 8  . 2 1 3 ] ' ;
> >  v = s q r t  ( g " m  . / c d )  . * t a n h ( s q r t ( g * c d l m )  * t )  ;

You can then create a tile holding the values of the drag coefficients and the velocities with

> >  s a v e  v e l d r a g  v  c d

To illustrate how the values can be retrieved at a later time, remove all variables from
the workspace with the clear command,

> >  c l e a r

At this point, if you tried to display the velocities you would ger rhe result:

> >  v

? ? ?  U n d e f i n e d  f u n c t i o n  o r  v a r i a b l e  ' v '

However, you can recover them by entering

> >  l o a d  v e l d r a g

Now, the velocities are available as can be verified by typing

> >  w h o

Y o u r  v a r i a b l e s  a r e :

c d v

Although MAT-files are q,rite useful when working exclusively within the MATLAB
environment, a somewhat different approach is required when interfacing MATLAB with
other programs. In such cases, a simple approach is to create text files written in the widely
accessible ASCII format.
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ASCII files can be generated in MATLAB by appending ascii to the save com-
mand. In contrast to MAl-files where you might want to save the entire workspace, you
would typically save a single rectangular matrix of values. For example,

> >  A = 1 5  I  9  2 ; 3  6  3  9 l ;
> >  s a v e  s i m p m a t r i x . t x t  a s c i i

In this case, the save command stores the values in A in 8-digit ASCII form. If you want
to store the numbers in double precision,just append -ascii -doubLe. In either case, the
file can be irccessed by other proglams such as spreadsheets or word processors. For
example, if you open this fi le with a text editor, you wil l see

5  .  0  0 0  O O 0 O e + O 0 O  7  .  0 0  0 0 0 0 0 e + 0 0  0  9  .  0  0  0 0  O  0 O e + 0 0 0  2  .  0  0 0 0  0 0 O e + 0 0 0
3 . 0 0 0 0 0 0 0 e + 0 0 0  6 . 0 0 0 0 0 0 0 e + 0 0 0  3 . 0 0 0 0 0 0 0 e + 0 0 0  9 . 0 0 0 0 0 0 0 e + 0 0 0

Alternatively, you can read the values back into MATLAB with the load command,

> >  l o a d  s i r n p m a t r i x . t x t

Because simpmaLr ix. txt is not a MAT-fi le, MATLAB creates a double precision array
named after the fi l ename..'

'  , ; i r p t - r t .  '  i > :

s i m p m a L r  i x  =

5 1 9 2
z F ,  l 9

Alternatively, you could use the load command as a function and assign its values to a

variable as in

> >  A  =  l o e i d ( s i m p m a t r i x . t x t )

The foregoing material covers but a small  port ion of MATLAB's f i le management ca-

pabil i t ies. For example. a handy import wizard can be invoked with the menLr selections:

Fi le, lmport Doto. As an exercise, you can denronstrate the import wizards convenience by

us ing  i t  to  open s impmat r ix .  t x t .  In  add i t ion ,  you  can a lways  consu l t  he lp  to  learn  more

about this and other l'eatures.

3.3 STRUCTUREDPROGRAMMING

The simplest of all M-files perform instructions sequentially. That is, the program state-
ments are executed line by line starting at the top of the function and moving down to the
end. Because a strict sequence is highly l imiting. all computer languages include state-
ments allowing programs to take nonsequential paths. These can be classified as

. Decision s (or Selection). The branching of t-low based on a decision.

. Loolts (or Repetition). The looping of flow to allow statements to be repeated.

3.3.1 Decisions

The i r Siructure. This structure allows you to execute a set of statements if a logical
condition is true. Its general syntax is

i f  c o n d i t i o n

s t a t e m e n f - s
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where condr tron is a logical expression that is either true or false. For example, here is a
simple M-ti le to evaluate whether a grade is passing:

I u n c r i o n  g l d d e r ( g  o d e r

%  g r a d e r  (  g r a d e  )  :

%  d e t e r m i n e s  w h e t h e r  q r a d e  i s  p a s s i n g

%  i n p u t :
r "  g r a d e  =  n u m e r i c a l -  v a l u e  o f  g r a d e  ( 0 - 1 0 0  )
%  o u t p u t :

%  d r s p l a y e d  m e s s a g e

i f  g r a d e  > =  5 0

d i  s p  (  ' p a s s  r r - r g  g r r a d e  '  )
e n d

The following illustrates the result

> >  g l a d e r ( 9 5 . 6 )

p a s s i n g r  g r a d e

For cases where only one statement is executed, i t  is of ien convenient to implenrent
the i  f  structure as a single l ine,

i f  g r a d e  >  6 0 ,  d j s p ( ' p a s s i n g  g r . r d c ' ) ,  e n d

This structure is cal led a single-l i rrc rf  For cases where rnore than one statel.nent is irnple-
mented, the multiline if structure is usually preferable because it is easier to read.

Er ror  Func t ion .  A  n ice  exampler  o l ' the  u t i l i t y  o f  a  s ing le - l ine  i f  i s  to  employ  i t  fo r  rud i -
rnentary error trapping. This involves using the cr:ror: function which has the syntax,

e r  r o r  ( m s g r )

When this f irnct ion is encountered, i t  displays the text message ,.rsEr and causes the M-t i le
to terminate and return to the conrmand window.

An example of i ts r"rse would be where we might want to terminate an M-f i le to avoid
a division by zero. The fbl lowing M-f i le i l l r"rstrates how this could be done:

f u n c t i o n  f  =  e r r o r t e s t ( x )
1 1  1  = =  0  ,  e r  r o r  ( '  ' z c r c :  v a l u e  e n c o u n t e r e d '  )  ,  c n d
f  =  I / x . ;

I f  a nonzero argument is used, the division would be implemented successful ly as in

> >  e r r o t L e s t ( l 0 )

0 . 1 0 0 0

Howevel fbr a zero argument! the function would ternrinate prior to the division and the
error message would be displayed in red typef 'ace:

> >  e r r o r  t e s t  (  L  ;

? ? ?  E r r o L  u s i t ' t g  = = >  e r r - o r : t e s t
z e r o  v a l u e  e n c o u n t e r e d
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TABTE 3.2 Summory of relotionol operoiors in MATLAB

Exomple Operotor Relotionship

u n i t  - =  ' r

a <  0

s > t

3 . 9  . : =  3 / 3
r :  >= 0

Equo l
Not equcl
Less lhon
Greoler  lhon
Less thon or  equol  lo
Greoier  lhon or  equol  to

Logicol Conditions. The simplest form of the condr Lron is a single relational expres-
sion that compares fwo values as in

v a f  u e .  r e l a L  i , o n  v a f  u e ,

where the yaf ue-s can be constants, variables, orexpressions and the relaLion is one of
the relational operators listed in Table 3.2.

MATLAB also allows testing of more than one logical condition by cmploying logical
operators. We wil l ernphasize the fbllowing:

. - lNot). Used to perfbrm logical negation on an expression.

-  exp res-s r  o, t

If the expre.sr; ion is true, the result is false. Converscly, if the expressjon is false,
the result is true.

. * (And ). Used to perlbnn a logical conjunction on two expressions.

+ ; 1 p 7  e s s r . , r  d  p x p /  |  . ' ; S , r O n

If both e)<pre.ssrors evaluate to true, the result is true. If either or both expre-s-
srons evaluates to false, the result is false.

. (Or).Used to perform a logical disjunction on two expressions.

F X p /  p s . - ; ' o n  I  P x L r t  r - .  : ' i o " 1

If either or both express,- i on!r evaluate to true, the result is true.

lhble 3.3 summarizes all possible outcomes lor each of these operators. Just as fbr
arithmetic operations, there is a priority order lbr evalualing logical operations. These

TABTE 3.3 A truth toble summorizing the possible outcomes for logicol operotors
employed in MATLAB. The order of priority of ihe operotors is shown ol
the loo of the toble.

Highesr
ryx x & y

Lowesl
x l y

I

I
F
F

T
T
T
F
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4

x
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are from highest to lowest: -, a and I . In choosing between operators of equal priority,
MATLAB evaluates them from left to right. Finally, as with arithmetic operators, paren-
theses can be used to override the priority order.

Let's investigate how the computer employs the priorities to evaluate a logical expres-
s i o n .  I f  a = - 1 , b - 2 , x  = t , a n d y = ' b ' , e v a l u a t e w h e t h e r t h e f o l l o w i n g i s t r u e o r f a l s e :

a  *  b  >  0  &  b  = =  2  &  x  >  7  |  . ' ( y  >  , d  )

To make it easier to evaluate, substitute the values for the variables:

I  *  2  >  0  &  2  = _  2  &  1  >  7  |  _ ( , b ,  >  , d ' )

The first thing that MMLAB does is to evaluate any mathematical expressions. ln this
example, there is only one: -7 x 2,

- 2  >  A  &  2  = =  2  t ' ' I  >  1  - ( ' b '  >  ' d ' )

Next, evaluate all the relational expressions

- 2  >  A  &  2  - =  2  &  I  >  I  1  - ( ' b '  ; '  ' d ' )

F  &  T  &  t r  l -  F

At this point, the logical operators are evaluated in priority order. Since the - has highest
priority, the last expression (-r) is evaluated first to give

F & T & F  T

The a operator is evaluated next. Since there are two, the left-to-right rule is applied and
the first expression (p r r) is evaluated:

F & F I T

The r again has highest priority

F I T

Finally, the I is evaluated as true. The entire process is depicted in Fig. 3.1.

The j  r  . r ' t : : , ,  St ructure.  This s t lucture a l lows you to execute a set  of  s tatements i f
a logical condition is true and to execute a second set if the condition is firlse. Its general
syntax is

i f  r : o n d j t i o n

s t a t € m e n t : , - ,

e l s e

S t d a e ' n l e n L S . . ,

e n d

T h e  i r  . . { , t i ; r l t S t r u c t u r e .  I t o f i e n h a p p e n s t h a t t h e t a l s e o p t i o n o f  z r n i f  . . . e l s e
structure is another decision. This type of structure often occurs when we have more than
two options lbr a par-ticular problem setting. For such cases, a special form of decision
structure, the if. . . efseif has been developed. It has the Seneral syntax

i f  c o n d i t i o n ,
s t a t e m e n t s ,

e l s e i f  c o n d i t r o n . .
s t a t e m e n t s ,

EXAMPLE 3.4
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a * b

ll
- r *2

I
t

- 2

> u &

> 0  &

> 0  & 2 = = 2

t l
t l
i i
F & T

\.-.........-.Y#

F

|  - (  Y  '

I
t

I  ' ( ' b '  t

Substitute constants

Evaluate mathematical
expressions

Evaluate relat ional
expressions

1^, -- Z d..

2 &

x > ' 7

I
I
i
7 > ' 7

& 1

&

&

_ ( ' b '  > ' d ' )

I
I
t

- F
\---YJ

T

I+
T

> 7  |

I
F l

I
F l

EXAMPLE 3,4

Evaluate compound
expressions

T

FIGURE 3.I
A slep'by'srep evol lot ion o{ o conrplex decision.

e l s e i f  c o n d i t i o n - ,

s t a t e m e n t s r

e l s e

s t a t e m e n t s . . l 5 . .

e n d

i  t Structures

Problem Stotement. For a scalar, the built-in MATLAB sign function returns the sign
of its argument (- I, 0, I ). Here's a MATLAB session that illustrates how it works;

> >  s i g n  ( 2 5 . 6 )

1

> >  s i g n  ( - 4 . 7 7 6 )

- 1

> >  s i g n ( 0 )

0

Develop an M-file to perform the same function.

I
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Solution. First, an i f structure can be used to return 1 if the argument is positive:

f u n c t i o n  s q n  =  n Y S i Q I n ( x )

%  m y s i g n ( x )  r e t u r n s  1  i f  x  i s  g T r e a t e r  t h a n  z e r o .

i f  x  >  0

s g n  =  1 ;

e n d

This function can be run as

> >  m y s i g n ( 2 5 . 6 )

1

Although the function handles positive numbers correctly, if it is run with a negative

or zero argument, nothing is displayed. To partially remedy this shortcoming, an

if .  .  .e1se structure can be used to display -1 i f the condit ion is false:

f  u n c t i o n  s g t n  =  m y s i g n  ( x )

%  m y s i g n ( x )  r e t u r n s  1  i f  x  i s  g r e a t e r  t h a n  z e r o .

Z  I  i f  x  i - s  l e s s  t h a n  o r  e q u a l  t o  z e r o .

i f  x  >  0
s g n  =  1 ;

^ t  ^ - .

- ^ -  _  _ t .
- 9 r !  -

e n d

This function can be run as

> >  m y s i g n ( - 0 . 1 7 6 )

- 1

Although the positive and negative cases are now handled properly, -1 is erroneously

returned i f  azero argument is used. An rf .  .  .  elseif  structure can be used to incorporate

this final case:

f u n c t - i o n  s g n  =  m y s i g n ( x )
%  m y s i g n ( x )  r e t u r n s  1  i f  x

z
z
l f  x  >  0

s g n  =  1 ;
e l s e i f  x  <  O

s g n  =  - 1 ;

e l s e
s g n  =  O ;

e n d

O  i f  x

i s  g t r e a t e r  t h a n  z e r o .

x  i s  l e s s  t h a n  z e r o .

i s  e q - a l  t o  7 . a r o .

The function now handles all possible cases. For example,

> >  m y s i g n ( 0 )

0
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The srv i t -ch Structure.  The swi tch st ructure is  s imi lar  in  spi r i t  to  the i f  . . .e1sei f
structure. However, rather than testing individual conditions, the branching is based on the
value of a single test expression. Depending on its value, different blocks of code are im-
plemented. In addition. an optional block is implemented if the expression takes on none of
the prescribed values. It has the general syntax

s r . r i  c c h  I  . . s f  r . x p r c s s  I  o n

c a s e  r z a J  u e ,

" - c t a a e m e n c s .
c a s e  y a - 1  u e . ,

s t a I e . m e n r s .

o I n e r w r s e

s  I  a  a  e m e l ]  f  . s o l  l r . . r  r r : i ,

e n d

As an example, here is function that displays a message depending on the value of the
string variable, gra de.

g r a c l e  =  ' R ' ;

s v r i f c h  q r a c l e :

c a s e  ' A '

d r s p  (  ' E x c e l l e n t '  
)

c a s e  ' B '

c l i s p ( ' G o o d ' )

c a s e  ' C '

d i s p  (  ' M c , - d i o c r e '  )
L  r 1 5 r i  D

d i s p ( ' W h o o p s ' )

c a s e  ' F '

d r s p  (  ' W o u 1 d  l i k e  f r i e s  w j  t h  y o u r  o r d e r ? '  )
o t h e r w ] s e

d i s p ( , l l u h t  )
e n d

When this code was executed, the message "Good" would be displayed.

Vorioble Argument List. MATLAB allows a variable number of arguments to be passed
to a function. Tlris feature can come in handy for incorporating default values into your
functions. A d{oult vulue is a number that is automatically assigned in the event that the
user does not pass it to a function.

As an example, recall that earlier in this chapter, we developed a function free-
f a 1 1ve i, which had three arguments:

v  =  f r e e f a l l v e l  ( t , m , c d )

Although a user would obviously need to specify the time and mass, they might not have a
good idea of an appropriate dr;..9 coefficient. Therefbre, it would be nice to have the pro-
gram supply a value if they omitted it from the argument list.

MATLAB has a function called narsin that provides the number of input arguments
supplied to a function by a user. It can be used in conjunction with decision structures like

ffi 3!hZN-x
z.J,-T LJ '
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the if or switch constructs to incorporate default values as well as error messages into
your functions. The following code il lustrates how this can be done for fr^eefallvel:

f u n c t i o n  v  =  f r e e f a l L v e l t  ( t ,  m ,  c d )

?  f r e e f a l l v e f  :  b u n g e e  v e f o c i t y  w i t h  s e c o n d - o r d e r  d r a g

%  v = f r e e f a l l v e l  ( t , m ,  c d )  c o m p u t e s  t h e  f r e e - f a 1 1  v e l o c i t y

o f  a n  o b j e c t  w i t h  s e c o n d - o r d e r  d r a g .

%  i n p u t :
Z  L  =  t i m e  ( s )

% m = m a s s ( k s )
%  c d  =  d r a g  c o e f f i c i e n t  ( d e f a u l t  =  0 . 2 1  k g / m )
%  o u t p u l - :
%  v  =  d o w n w a r d  v e l o c i t y  ( m r s )

s w i  t  c h  n a r g r i n
c a s e  O

e r r o r ( ' M u s t  e n t e r  t r m e  a n d  m a s s ' )
^ - - ^  a

e r r o r  (  ' M u s t  e n 1 - e r  n a s s  '  )

c a s e  2

c d  =  0 . 2 1  ;

e n d

A  =  9 . 8 1 ;  %  a c c e l e r a t i o n  o f  g r a v i t y

v  =  . s q r t ( g  *  m , /  c d ) * L a n h ( s q r t ( g  *  c d  /  m )  *  t ) ;

Notice how we have used a switch structure to either display error messages or set the
default, depending on the number of arguments passed by the user. Here is a command
window session showing the results:

> ' >  f  r e e f  a l l v c .  l  ( 1 2 , 6 8 . I ,  A  . 2 5 )

5 0 . 6 1 . 7 5

> >  f r e e f a l l v e l  (  1 2 , 6 B . l )

4 8  . 8 1  4 1

> >  f r e e f a l l v e l  ( 1 2  )

? ? ' .  E r r ( , r  u s . n g  f  r e e f a l l v - l

M u s t  e n t e r  m a s s

> >  f  r e e f  a l .  l v e l  (  )

? ? ?  E r r o r  * s i n g  l t r o f a l l v o l

M u s t  e n t e r  t i m e  a n d  m a s s

Note that narsin behaves a l itt le diff 'erently when it is invoked in the command
window. In the command window, it must include a string argument specifying the func-
tion and it returns the number of arguments in the function. For example,

> >  n a r g i n  ( ' f r e e f a l l v e l '  )

EXAMPLE 3.5
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3.3.2 Loops

As the name implies, loops perform operations repetitively. There are two types of loops,
depending on how the repetitions are terminated. A for loop ends after a specified number
of repetitions . A whi I e loop ends on the basis of a logical condition.

The ror . . . encl Structure. A f or loop repeats statements a specific number of times. Its
general  syntax is

f o r  i n d e x  -  s t a r t :  s t e D : .  f i n i s h

" . 1 - u t e m e ' , r s
The f or loop operates as follows. The rndex is a variable that is set at an initial value,
start. The program then compares the rndex with a desired final value, f in jsh. If the
index is less than or equal to the frnish, the program executes the sLatemenrs. When
it reaches the end line that marks the end of the loop, the index variable is increased by
the srep and the program loops back up to the for statement. The process continues unti l
the index becomes greater than the f ini sh value. At this point, the loop terminates as the
program skips down to the l ine immediately following the end statement.

Note that if an increment of 1 is desired (as is ofien the case), the s t ep can be dropped.
For example,

f o r  i  =  1 : 5
d j s p ( i )

e n d

When this executes, MATLAB would display in succession, 1 , 2 , l, 4, 5. In other
words, the def-ault step is 1 .

The size of the srep can be changed from the default of 1 to any other numeric value.
It does not have to be an integer, nor does it have to be positive. For example, step sizes of
A .2,  - I ,  or  -5,  are a l l  acceptable.

If a negative step is used, the loop wil l "countdown" in reverse. For such cases, the
loop's logic is reversed. Thus, the f . inj sh is less than the start and the loop terminates
when the index is less than the f inish. For example,

f o r  i  =  l 0 :  1 : 1
d i s p  r  j  r

e n d

When this executes, MMLAB would display the classic "countdown" sequence: 10 , 9 ,
B ,  1 ,  6 ,  5 ,  4 , 3 , 2 ,  1 .

EXAMPLE 3.5 Using o 1. r  Loop to Compuie the Foctor io l

, Problem Stotement. Develop an M-fi le to compute the factorial.2

I
I
I  v  )  - ' )

2 Note that MATLAB has a builrin function f acLoriat that oerforms this comnutation
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3 l  : l x 2 x 3 : 6
4 l : l x 2 x 3 x 4 : 2 4
5 ! : 1 x 2 x 3 x 4 x 5 : 1 2 0

Solution. A simple function to implement this calculation can be developed as

f u n c t i o n  f o u t  =  f a c t o r  ( n )

%  f a c t o r  ( n )  :

%  C o m p u t e s  t h e  p r o d u c c  o f  a l l  L h e  i n t e g i e r s  f r o m  I  t o  n '
- -  -  t .

f o r  i  =  l : n

x  =  x  *  i ;

e n d

f o u t  =  x ;

e n d

which can be run as

> >  f  a c t o r :  ( 5  )

1 2 a

This loop will execute 5 tirnes (fiom I to 5). At the end of the process, x will hold a value

of5 l  ( rneaning5factor ia lo l  I  x  2 x  3 x 4 x 5 :  120) .

Notice what happens if n : 0. For this case, the f or loop would not execute, and we

would get the desired result, 0! : I

Vectorizotion. The for loop is easy to implement and understand. However, for
MATLAB, it is not necessarily the most efficient means to repeat statements a specific
number of times. Because of MATLAB's ability to operate directly on arrays, vectorizotion
provides a much rnore efficient option. For example, the filllowing f or structure:

i  n .

f o r  t -  =  0 : 0 . 4 2 : 5 C

r  =  i  +  l ;

y ( i )  =  c o s ( r ) ;

e n d

can be represented in vectorized form as

t  =  0 : 0 . 0 2 : 5 0 ;
y  =  c o s ( t ) ;

It should be noted that for morc complex code, it may not be obvious how to vectorize the
code. That said, wherever possible, vectorization is recommended.

Preollocotion of Memory. MATLAB automatically increases the size of arays every
tirne you add a new element. This can become time consunring when you perform actions
such as adding new values one at a time within a loop. For exarnple. here is some code that
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6 t

sets value of elements ofy depending on whether or not values of t are greater than one:
L  -  U : . U I : ) ;

F ^ -  lL O r  I  l : l e r g . h r L /

r  f  t  (  i  )  > l

Y ( i )  =  I / t - ( r ) ;
e l s e

y ( j )

e n d

e n d

For this case, MATLAB rnust resize y every time a new value is determined. The follow_ing code preallocates the proper amount oi -".o.y by using a vectorizecl statement toassign ones to y prior to entering the loop.
1 ,  -  0 : . 0 1 : 5 ;
y  -  o n e - q ( s i : e ( t ) ) ;
f o r  i  =  l : l e n g L h ( t )

r f  r  ( i  ) > l
y ( i )  -  I i r ( i ) ;

enc j
e n d

Thus, the anay is onry sized once. In addition, preailocation herps reduce memory frag_mentation, which also enhances eff iciency.

The r.;h L t L:,  Structure.
general syntax is 

A while lclop repeats as long as a logical condit ion is true. I ts

v r h , l .  e ^ n d i r i a n
s t ; t t e , r n e r t , s

e n d

The statemencs between the whiLe ancl the end are repeated as long as the condr t  jon ist rue .  A  s imp le  exanrp le  i s

v O

w h i l e  x  >  0

d i s p  ( x )

enc l

When this cocle is run. the result is

E
5
2

- 1

The r r ' i  l r : '  '  '1r r r - : ' rk  s t ructure '  A l though the whi le  s t ructure is  ext remery usefur ,  thef'act that it always exits at the beginning lf the structure on a false result is somewhatconstraining' For this reason' languages such as Fortran 90 and visual Basic have specialstructures fhat allow loop termination on a true condition anywhere in the loop. Althoughsuch strudures are currenrly nor available in MATLAB, tt er. iun.tion;ii;."" be mimicked
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by a special version of the while loop. The syntax of this version, called a while...
break structure, can be written as

r , v h i l e  ( 1 )

s t a f e m e n t s

i f  c o n d i t r o n ,  b r e a k ,  e n d

. ' r X t u t e m e n t s

where break- terminates execution of the loop. Thus. a single line i f is used to exit the loop
if the condition tests true. Note that as shown, the break can be placed in the middle of the
loop (i.e., with statements before and atier it). Such a structure is called arnicltest loop.

If the problem required it. we could place the break at the very beginning to create a
prel(.st loop. An example is

w h i l e  ( 1 )
I f  x  <  0 ,  b r e a k ,  e n d
- ;  w  -  l .

e n d

Notice how 5 is subtracted from x on each iteration. This represents a rnechanism so that
the loop eventually terminates. Every decision loop must have such a mechanism. Other-
wise it would becorne a so-called infinite loop that would never stop.

Alternatively. we could also place the i f . . . break statement at the very end and cre-
ate a posttest lo)P,

w h r l e  ( 1 )
q .

i f  x  <  ( . ) ,  b r e a k ,  e n d

e n d

It should be clear that, in fact, all three structures are really the same. That is, depend-
ing on where we put the exit (beginning, middle, or end) dictates whether we have a pre-,
nrid- or posttest. It is fhis simplicity that led the computer scientists who developed
Fortran 90 and Visual Basic to favor this structure over ofher forms of the decision looo
such as the conventional v;hile structure.

The 1,,,,, ' ,,-. Commond. There are often times when you might want a program to tem-
porarily halt. The command pause causes a procedure to stop and wait until any key is hit.
A nice example involves creating a sequence of plots that a user rnight wanf to leisurely
peruse befbre moving on to the next. The following code employs a f or loop to create a
sequence of interesting plots that can be viewed in this manner:

f o r  n  =  3 : 1 0
m e s h  ( m a g i c  ( n )  )
p a u s e

e n d

The pause can also be formulated as pause (n ), in which case the procedure wil l halt
fbr n seconds. This feature can be demonstrated by irnplementing it in conjunction with
several other useful MATLAB functions. The beep command causes the computer to emit
a beep sound. Two other functions. t ic and toc, work together to measure elapsed time.

3,
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The tic command saves the cuffent time that toc later employs to display the elapsed

time. The fol lowing code then confirms that pause (n)works as advert ised complete with

sound effects:

t i c
b e e p
p a u s e  (  5  )
b e e p
t o c

When this code is run, the computer will beep. Five seconds later it will beep again and dis-
play the following message:

E L a p s e d  t i m e  i s  5 . 0 0 6 3 0 6  s e c o n d s .

By the way, i f  you ever have the urge to use the command pause ( inf ),  MATLAB wil l  go

into an infinite loop. In such cases, you can return to the command prompt by typing

Ctrl*C or Ctrl+Break.
Although the foregoing examples might seem a tad frivolous, the commands can be

quite useful. For instance, t ic and toc can be employed to identify the parts of an algo-
rithm that consume the most execution time. Further, the Ctrl*C or Ctrl+Break key
combinations come in real handy in the event that you inadvertently create an infinite loop
in one of  your  M-f i les.

3.4 NESTING AND INDENTATION

We need to understand that structures can be "nested" within each other. Nc.sllrrc ref-ers to
placing structures within other structures. The following example i l lustrtrtes the concept.

EXAMPLE 3.6 Nest ing Structures

Problem Stqtement. The roots of a quadratic eqLration

/ ( x ) : u x l + l r x + r '

can be determined with the quadratic formula

-b +.,t8-- 4aa

Develop a function to implement this fbrmula given values of the coeff 'cients.

Solution. ktp-down r/e.rlgn provides a nice approach for designing an algorithm to com-
pute the roots. This involves developing the general structure without details and then
refining the algorithm. To start, we first recognize that depending on whether the parameter
a is zero, we wil l either have "special" cases (e.g., single roots or trivial values) or conven-
tional cases using the quadratic fbrmula. This "big-picture" version can be programmed as

f - u n c t i . o n  q u a d r o o t s  ( a ,  b ,  c )
%  q u a d r o o t s :  r o o t s  o f  q u a d r a t i c  e q u a t i o n

%  q u a d r o o t s  ( a ,  b ,  c )  :  r e a l  a n d  c o m p l e x  r o o l - s

LA

v
a

llt

Lth

nit

]e.

z
%  i n p u t :
9 o  o  l o . o n d  o t d e t

o ' q u o d ' o t  j -  a q u a '  j o n

c o e f f i c i e n t
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Z  b  =  f i r - s t - o r d e r  c o e f f l c i e n t
Z  c  =  z e r a  o r d e r  c o e f f i c i e n t
%  o u t p u t :
Z  r I  =  r e a l  p a r t  o f  f i r s t  r o o t
Z  i 1  =  i m a g r i n a r y  p a r t  o f  f l r s L  r o o t
Z  1 2  =  r e a l  p a r t  o f  s e c o n d  r o o t
%  i 2  =  i m a q i n a r y  p a r t  o f  s e c o n d  r o o t
1 t  d  = =  u

% s p e c i a l  c a s e s

e l s < :

" i r ' r  ' d r , t l  e  ' ^ r l - L 1 a

e n d

Next, we develop refined code to handle the "special" cases:

% s p e c i a l  c a s e s

i f  b  - ' =  0
e ; s r n g l e  r o o t
1 1  |  V ,

e l s e -

? t r  i  v i a l  s o l  u t  i o r - r

e r r o r ( ' T r i v i a l  s o l u t r o n .  T r y  a g a i n '  )
e n d

And we can develop refined code to handle the quadratic formula cases:

% q u . r d r a t  i c  f  o r : m u l  a

d  -  b  ^  2  4  *  a  *  c ;

i f  c l  > -  O

% r  e a l  r o o L s

r 1  =  (  b  +  s q r t ( d )  )  /  1 2  *  a )

t ' 2  -  (  b  -  s q r t . ( d ) )  /  ( ) ,  *  a )

e l  s e

% c o m p l e x  r o o t s

r l  =  b  /  \ 2  *  a )

i 1  =  s e r L ( . r b s ( d ) )  /  ( 2  *  a )
r )  r - l

e n d

We can then merely substitute these blocks back into the simple "big-picture" frame-
work to give the final result:

f u n c t r o n  q u a d r o o L s  ( a ,  b ,  c )

?  q u a d r o o t s :  r o o t s  o f  q u a d r a t i c  e q u a f i o n

%  q u a d r o o t s  ( a  , b ,  c )  :  r e a l  a n d  c o m p l - e x  r o o t s
%  o f  q u a d r a t i c  e q u a t i o n

Z  i n p u t :

%  a  =  s e c o n d - o r d e r  c o e f f i c i e n t

Z  b  -  f i r s t  o r d e r  c o e f f i c i e n t

%  c  -  z e r o - a Y d e r  c o e f f i c i e n t

%  o u L p u t :

%  r I  -  r e a l  p a r t -  o f  f i r s t  r o o [

Z  i 1  =  i m a g i n a r y  p a r t -  o f  f i r s t  r o o t

ffi=
7t 5fi st
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%  1 2  =  r . e a l -  p a r t  o f  s e c o n d  r o o t
Z  1 2  =  i m a g , i n a r y  p a r t  o f  s e c o n d  r o o ti F  -a r  a  = =  u

S s p e c i a l  c a s e s
i f b - = 0

? s i n g l e  r o o r
1 L - - c / b

e l s e
? t r i v i a l  s o l u t i o n

^ * : r . o .  
(  '  ? r i v i a l  s o l u t  i o n .  ? r y  a g a l n  ,  )

g l l u

e - L s e

S g u a d r a t i c  f o r m u l a
d = b  4  * a  *  c ;  E d i s c r i m i n a n t
r f  d  > =  0

? r e a 1  r o o i s
r i -  =  ( - b  +  s q r t ( d ) )  /  ( 2  *  a )
1 2 =  ( - b - s q r r ( d ) )  /  ( 2 * a )

e l s e
S c o m p l e x  r o o t s
r l - = - b / ( 2 * a l
i 1  =  g q y ;  ( a b s  ( d )  )  /  ( 2  *  a )
r )  -  v 1

l .
! .  -  - f  

a

e n d

e n d

, . 
o.r highrighted by the shading, notice how indentation helps to makelogical structure crear. Also nodc;how "modular,,the structures are. Herewindow session illustrating how the function f"rfo.rs

> >  q u a d r o o t s ( 1 , 1 , 1 )

1 7  =
- 0 . 5 0 0 0

i 1  =

0 . 8 6 6 0
1 2 -

_ 0 . 5 0 0 0

- 0 . 8 6 6 0

> >  q u a d r o o t s  (  l ,  5 ,  1  )

- 0 . 2 0 8 7

4 . 7 9 1 3

> >  q u a C r o o t s  ( 0 , 5 , 1 )

- 0 . 2 0 0 0

the underlying
rs a command
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j  > >  q u a d r o o t s  (  0 ,  0 ,  0  )

? ? ?  E r r o r  u s i n g  = = >  q u a d r o o t s
T r i v i a L  s o l u t i o n .  T r y  a g a i n

3.5 PASSING FUNCTIONS TO M.FIIES

Much of the remainder of the book involves developing functions to numerically evaluate
other functions. Although a customized function could be developed for every new equa-
tion we analyzed, a better alternative is to design a generic function and pass the particular
equation we wish to analyze as an argument. In the parlance of MATLAB, these functions
are given a special name: function.functictns. Before describing how they work, we will
first introduce anonymous functions, which provide a handy means to define simple user-
defined functions without developing a full-blown M-file.

3.5.1 Anonymous Functions

Anonyntous .functions allow you to create a simple function without creating an M-file.
They can be defined within the comrnand window with the following syntax:

i h a n d L e  =  @ ( a r g J i s t )  e x p r e s s r o , r

where f.harrdle - the function handle you can use to invoke the function, argTist = a
comma separated list of input arguments to be passed to the function. and express l on =
any single valid MATLAB expression. For example,

> >  f l - @ ( x ' Y )  x ^ 2  +  Y ^ 2 ;

Once these functions are defined in the command window, they can be used just as other
functions:

> >  f 1 ( 3 , 4 )

a n s . = .

Aside fiom the variables in its argument l ist, an anonymous function can include vari-
ables that exist in the workspace where it is created. For example, we could create an
anonylnous funct ion/ t l ) :  -L l l  us

> >  a  -  4 ;

> >  b  =  2 ;

> >  f 2 = @  ( x )  a * x ^ b , '

> >  f 2  ( 3 )

a n s  =  3 6

Note that if subsequently we enter new values for a and b, the anonymous function
does not chanse:

a n s

\
t
t

f  2  ( 3  )

ffiar
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Thus, the function handle holds a snapshot of the function at the time it was created. If we
want the variables to take on new values, we must recreate the function. For example, hav-
ing changed a to 3,

> >  f 2 = @ x  a * x ^ b ;

with the result

> >  f 2  ( 3 )

a n s

It should be noted that prior to MATLAB 7, inline functions pertbrmed the same
role as anonymous firnctions. Forexample. the anonymous function developed above, f 1,
could be written as

> >  f l = r n l i n e : ( ' x ^ 2  +  y ^ 2 ' ,  ' x ' , ' y ' ) ;

Although they are being phased out in favor of anonymous function, some readers might be
using earlier versions. and so we thought it would be helpful to mention them. MATLAB
help can be consulted to learn more about their use and limitations.

3.5.2 Function Functions

Function functions are functions that operate on other functions which are passed to it as
input arguments. The function that is passed to the function function is ref'erred to as the
passed.function. A sirnple example is the built- in function fp1oL, which plots the graphs
of functions. A simple representation of its syntax is

f p l o t \ i u n , l i n s )

where fun is the tirnction being plotted between the -r-axis l imits specified by 7 rms =

[xmin xmax]. For this case, f un is the passed function. This function is "smart" in that it
automatically analyzes the function and decides how many values to use so that the plot
wil l exhibit all the function's f 'eatures.

Here is an example of how fplot can be used to plot the velocity of the free-fall ing
bungee jumper. The f unction can be created with an anonymous function:

.  v r l  ' J r r j

s q r t  ( 9 . B 1 * 6 i l .  I  / 0 . 2 5 )  * L a n h ( s c l r t -  ( 9 .  B 1 * A . 2 5 , / 6 8 .  1 )  * t )  ;

We can then generate a plot from / : 0 to l2 as

> >  f p l o t  ( v e l ,  [ 0  f 2  I  )

The result is displayed in Fig. 3.2.
Note that in the remainderof this book, wc, wil l have many occasions to use MATLAB's

builrin function functions. As in the following example, we wil l also be developing our
own.
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FIGURE 3.2
A ploi o{ velocily versus trrne generoted wilh the fplor funclion

EXAMPLE 3 .2  Bu i ld ing  ond lmp lement ing  o  Func t ion  Func t ion

Problem Stqtement. Develop an M-file function function to determine the average value
of a function over a range. ll lustrate its use fbr the bungee jumper velocity over the range
f t o m  r : 0  t o  l 2  s :

u(r): ffo"n(rH,)
w h e r e g : 9 . 8 1 , m : 6 8

Solution. The average
commands as

value of the function can be comnuted with standard MATLAB

> >  t = l i n s p a c e  ( A  ,  I 2 )  ;
> >  v = s q r f  ( 9 .  8 1 " 6 8 .  1 , / 0
> >  m e a n  ( v )

3 6 . 0 8 7 0

ffir
-  - r , a r

qAb

* t a n h  ( s q r t  (  9 .  8 1 " 0 . 2 5  /  6 8 .  1  )

lnspection of a plot of the function (Fig. 3.2) shows that this result is a reasonable estimate
of the curve's average heieht.
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We can write an M-file to perform the same computation:

f u n c r  i o n  l a v g  I  u n c a v g  {  o ,  b ,  n  )
o  f  ' , - ^ r -  ^ .  r o  f  r r a . l : .  n  l - , o h Lu  v  L  !  s Y

e "  f - v g  f u n c a v g ( o , b , n ) :  c o m p u L e s  a v e r a g e  v a l u e
%  o f  f u n c t i o n  o v e r  d  r a n g e
%  i n p u t :
2  a  =  l o w e r  b o u n d  o f  r a n q e
%  b  =  u p p e r  b o u n d  o f  r a n g e
%  n  -  n u m b e r  o f  i n t e r v a l s
%  o u t p u t :
%  f a v g  =  a v e r a g e  v a l u e  o f  f u n c t r o n
x  =  l i n s p a c e ( a , b , n ) ;
y  =  f u n c ( x ) ;
f a v g  -  m e a n ( y )  ;
e n d

f u n c t i o n  f  =  f u n c ( t )
f - s q r t  (  9 .  B 1 *  6 8 . I  /  0 .  2 5  )  * t a n h  (  s q r t  (  9 .  B 1 *  4 . 2 5  /  6 8 .  1  )  * t  )  ;
e n d

The main function f irst uses l inspace to generate equally spaced -r values across
the range. These values are then passed to a subfunction func in order to generate the cor-
responding y values. Finally, the average value is computed. The function can be run from

the command window as

> >  f u n c a v S  (  0 ,  1 2 , 6 0 )

3 6 . 4 1 2 1

Now let 's rewrite the M-f i le so that rather than being specif ic to f  unc, i t  evaluates a

nonspecific function name f that is passed in as an argument:

[ * n c t . o n  i a v g  f u n - d v g  { r , o , o , n )
9  r  r  n r " a .  r ' 7 ^ ,  , a a  f  r r r n l  : n r  h o i q h L

%  f a v g - f u n c a v g ( f  , a , b , n )  :  c o m p u t - e s  a v e r a g e  v a l . u e

%  o f  f u n c t i o n  o v e r  a  r a n g e

?  i n p u t :

Z  f  =  f u n c t i o n  t o  b e  e v a l u a t e d

%  a  =  l o w e r  b o u n d  o f  r a n g e

%  b  -  u p p e r  b o u n d  o f  r a n g e

%  n  =  n u m b e r  o f  i n t e r v a l s

z  o u t p u c :

%  l ' a V 9  =  , v Q )  o Q e  v o l u e  o f  f  u n e  t  i o n

x  =  l l n s p a c e ( a , b , n ) ;

Y  =  f  ( x ) ;

f a v g  =  m e a n ( Y )  ;

Because we have removed the subfunction f unc, this version is truly generic. It can be run
fiom the command window as

> >  v e l - @  ( t  )
s q r t  (  9 .  B 1 *  6 8 . I /  0 . 2 5  )  * t a n h  (  s q r t  (  9 .  B 1 * 4 . 2 5  /  6 8 . 1  )  * t  )  ;
> >  f u n c a v g  ( v e l  ,  A  ,  1 2  , 6 0 )

ffi
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,t';rrA 
=

=1_h" { Zl F+z

3  6  .  0 r 2 ' 7

To demonstrate its generic nature, funcavg can easily be applied to another case by
merely passing it a different function. For example, it could be used to determine the aver-
age value of the built-in sin function between 0 and 2z as

> >  f u n c a v g  ( G s i n ,  0 ,  2 * p i ,  1 8 0 )

6 . 3 0 0 1 e  0 1 7

Does this result make sense?
We can see that f uncavg is now designed to evaluate any valid MATLAB expression,

We will do this on numerous occasions throughout the remainder of this text in a number of
contexts ranging tiom nonlinear equation solving to the solution of differential equations.

3.5.3 Possing Porqmelers

Recall from Chap. I that the terms in mathematical models can be divided into dependent
and independent variables, pararneters, and fbrcing functions. For the bungee jumper

model, the velocity (u) is the dependent variable, t ime (t) is the independent variable, the
rnass (rr) and drag coefTicient (c,,) are parameters, and the gravitational constant (g) is the
fbrcing function. lt is cornmonplace to investigate the behavior of sr.rch models by per-
fbrming tr sensitivit lt ana\-sis. This involves observing how the dependent variable changes
as the parameters and forcing tunctions are varied.

In Example 3.7, we developed a function function, f uncavg, and used it to determine
the average value of the bungee jumper velocity fbr the case where the parameters were set
L\t tn :68. I and c,, - 0.25. Suppose that we wanted to analyze the same function, but with
dif ' ferent parameters. Of course, we could retype thc functicln with new values fbr each
case, but it would be preferable tojust change the parameters.

As we learned in Sec.3.5.1, it is possible to incorporate parameters into anonymous
functions. For example, rather than "wiring" the nurneric values, we could have done the
fb l lowing:

> >  m - b 8 . I ; r : d - ( ) . 2 , 5 ;

> >  - z e 1 = @ ( t , )  s q r t  ( 9 . 8 1 * m / c d )  * L a n h ( s q r t  ( 9 . 8 1 * c d z ' m )  * t )  ;
> >  f  u n c a v g  ( v e 1 ,  0  , 1 , 2 , 6 A )

3 6 . A 1 2 1

However, if we want the parameters to take on new values, we must recreate the anony-
mous function.

MATLAB offers a better alternative by adding the term varargin as the function
function's last input argument. In addition, every tirne the passed function is invoked
within the function function, the term vararsin{: } should be added to the end of its
argument list (note the curly brackets). Here is how both modifications can be implemented
fbr f uncavg' (clmitting comnrent.s for conciseness):

ffi= "L
zJ
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I
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f u n c t i o n  f a v g  =  f u n c a v g  (  f ,  a ,  b ,  n ,  v a r a r g i n )
x  -  l i n s p a c e ( a , b , n ) ;
y  =  f ( x , v a r a r g i n { : } ) ;
f  a v g  =  m e a n  ( Y )  ;

When the passed function is defined, the actual parameters should be added at the end

of the argument list. If we used an anonymous function, this can be done as in

.  v o l = t ? ( r , m , e d t  S q r L ( q . B l * m  e d r * L a n h ( s q r r _ r 9 . B l " c d  m l * L r ;

When all these changes have been made, analyzing different parameters becomes easy. To

implement the case where m : 68.1 and c1 - 0.25, we could enter

> >  f u n c a v g ( v e 1 ,  0 , 1 2 ,  6 4 ,  6 8 .  1 ,  0 . 2 5 )

a n s  =

3 6  .  A r 2 1

An altemative case, say m : 100 and cd : 0.28, could be rapidly generated by merely

chang ing  the  urguments :

> >  f u n c a v g ( v e 1 ,  4 , f 2 ,  6 0 ,  1 0 0 ,  0 . 2 8 )

3 8 . 9 3 4 5

BUNGEE JUMPER VELOCITY

Bockground. In this section, we will use MATLAB to solve the free-falling bungee
jumper problem we posed at the beginning of this chapter. This involves obtaining a solu-
tion of

du cd .t
- : 8 - - U -a I m

Recall that, given an initial condition for time and velocity, the problem involved iter-
atively solving the formula,

du '
U i + l  : u 1  *  - A t

A I

Now also remember that to attain good accuracy, we would employ small steps. Therefore,
we would probably want to apply the formula repeatedly to step out from our initial time
to attain the value at the final time. Consequently, an algorithm to solve the problem would
be based on a loop.

Solution. Suppose that we started the computation at / = 0 and wanted to predict
velocity at t : 12 s using a time step of A/ : 0.5 s. We would therefore need to apply the
iterative equation 24 times-that is,

t 2
n - - - 2 4

0.5

)n

its
ed
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continued

where n : the number of iterations of the loop. Because this result is exact (i.e., the ratio is
an integer), we can use a for loop as the basis for the algorithm. Here's an M-file to do this
including a subfunction defining the differential equation:

f  u n c L i o n  v e n d  =  v e l o c i t y l  ( d t ,  t , i ,  r f  ,  v i  )
%  v e l . o c i t y l :  I i u l e r  s o l u t j . o n  f o r  b u n g e e  v e l o c i t y
%  v e n d  =  v e l o c - L t y l  ( d t ,  t i ,  L f  ,  v 1 )
Z  [ . u l e r  u r e t ] r o d  s o l u L i o n  o f  b u n g e r -
Z  j  u m p e ]  r z e  L o c  i t y
%  r n p u L :
%  d L  , =  t . r m e  s t e p  ( s )
%  t i  =  i n i t i . a l  L i m e  ( s )

Z  L t  =  f , i n . r l  t i m e  ( s )

%  v i  =  i n i t i a l  v a l . u e  o f  d e p e n d e n t  v a r i . r b l e  ( r n / s )
t  o u t D u t :
%  v e n d  =  v e l . o c . i  L v  a t  t f  ( n / s )

L  =  L i ;
1 , /  =  V l , '

n  =  ( t f  -  t i )  /  d L ;
F a r  i  -  1 . n

d v d t  =  d e r i v ( v )  ;
v  :  v  +  d v d t  *  d t ;
t  =  t  +  d t ;

e n d
V a r n d  =  V , '
e n d

f  u n c t  i o n  d . ;  -  d e r i - z  ( v )

d v  =  9 . B L  -  ( A . 2 5  /  6 8 . 1 )  x  v ' ' 2 ;
e n d

This function can be invoked from the command window with the result:

> >  v e l , o c i  L y l  ( 0 . 5  , 0  ,  1 ? , , l ) )

d n s  =

5 0 . 9 2 5 9

Note that the true value obtained from the analytical solution is 50.6175 (Example 3.1).
We can then try a much smaller value of dt to obtain a more accurate numerical result:

> >  v e  . o c r i . r - y 1  ( 0 . 0 0 1  , 0  , 1 2 ,  O )

5 0 . 6 i . B i

Although this function is certainly simple to program, it is not foolproof. In partic-
ular, it will not work if '.he computation interval is not evenly divisible by the time step.
To cover such cases, a while . break loop can be substituted in place of the
shaded area (note that we have omitted the comments for conciseness):

ffi=
,f 

=

zt+ -\ 
4F+
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e

continued

f u n c t i o n  v e n d  =  v e l o c i L y 2  ( d t ,  t 1 ,  t f ,  v i  )
t  =  t i ;

] - \  -  ^ f .

w h i l e  ( 1 )

i f  t  +  d t  >  t f ,  h  =  t f  -  t ;  e n d
d v d t  =  d e r i v ( v )  ;
v = v + d v d t * h ;
1 -  -  t  r  h .

i f  t  > -  t f ,  b r e a k ,  e n d
e n d
v e n d  =  v ;
e n d

f  u n c t  i o n  c l v  =  d e r i v  ( v  )

d v  -  9 . 8 1 .  -  ( 0 . 2 5  /  6 8 . L )  *  v " " 2 ;

e n d

As soon as we enter the while loop, we use a single line if structure to test whether
adding t + dt will take us beyond the end of the interval. If not (which would usually be
the case at first), we do nothing. If so, we would shorten up the interval-that is, we set the
variable step h to the interval remaining: tf * t. By doing this, we guarantee that the last
step falls exactly on t f . After we implement this final step, the loop will terminate because
the condition t >= tf will test true.

Notice that before entering the loop, we assign the value of the time step dt to another
variable h. We create this dummy variable so that our routine does not change the given
value of dt if and when we shorten the time step. We do this in anticipation that we might
need to use the original value of dt somewhere else in the event that this code were inte-
grated within a larger program.

If we run this new version, the result will be the same as for the version based on the
for structure:

; ' >  v e  l o c i L y 2  ( 0 . 5 ,  0 ,  l : 1  ,  0 )

5 A  . 9  2 \ 9

Further, we can use a dt that is not evenly divisible into tf - ci:

: ' - -  v e l o c i L y 2  ( 0 .  3 5 ,  A ,  1 2 ,  A )

5 0  -  8 3 4 r 1

We should note that the algorithm is still not foolproof. For example, the user could
havemistakenlyenteredast3psizegreaterthanttrecalculat ioninterval(e.g., t f  -  t i  = 5

and dt = 2 0). Thus, you might want to include error traps in your code to catch such errors
and then allow the user to correct the mistake.

,"I LJ '
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continued

As a final note, we should recognize that the foregoing code is not generic. That is, we

have designed it to solve the specific problem of the velocity of the bungee jumper. A more

generic version can be developed as

f  L r n c - ' t i o n  y e n d  = ,  o d e s i r n p  ( d y d r ,  C t ,  t  i ,  t , f  ,  y  j  )
L  -  t i ;  y  =  y i . ;  h  =  d t ;
w h i I e  ( 1 )

j  1 '  t  +  c ] t -  ;  L f ,  h  = ,  t - f  L ;  t . r r d
. t  - . /  +  d y c l L ( 1 )  *  I ' i i
f  t s  -  h .

i {  t -  ' =  t f ,  b r e a k ,  r : n d

c- nrl

Y e n r l  =  Y  '

Notice how we have stripped out the parts of the algorithm that were specific to the
bungee example (including the subfunction defining the differential equation) while keep-
ing the essential features of the solution technique. We can then use this routine to solve the
bungee jumper example, by specifying the differential equation with an anonymous func-
tion and passing its function handle to odesimp to generate the solution

-  - .  r l . r < . l t .  i a  ( v )  q . I l . -  \ ( . ) .  2 \ / 6 f . r .  L  )  * u " " - ' .

, . :  o r , l e : r 1  m p  ( c 1 v c 1 l , ,  ( r .  l ,  a r ,  l : l . ,  l l )

, l I  l l  -

' r ( l - 9 2 b ' r

We could then analyze a different function without having to go in and modify the
M-file. For example, if .y : lQ al t :0, the differential equation dy/dt : -0. l.y has the ana-
lytical solution jy : l0e-0 r'. Therefore, the solution at t : 5 would be y(5) : l0e*0 r('5) -

6.0653. We can use oclesimp to obtain the same result numerically as in

' ' : .  o d . : i i  n r r ,  ( 0  ( y  )  - 0 .  l  * y ,  l l .  i J { . ) ' : ,  ( 1 ,  ! ,  . 1  { r  )

b . 0 i , 4 ' l
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PROBtEMS

we
Dre

3.1 The cosine function can be evaluated by the following
rnfinite series:

x2 .t4
c o s . r :  I  -  -  +

) t  |  |

Create an M-file to irnplement this folrrrula so that it com-
putes and displays the values of cos x as each term in the
series is added. In other words, compute and display in
sequence the values tbr

Write an M-file to compLrte A. Test it with P : $55,000 and
an interest rate of 6.6% (l : 0.066). Conlpu(e results ftrr l :
1 ,2 ,3 ,4 ,  and 5  and d isp lay  the  resu l ts  as  a  tab le  w i th  head-
ings and columns fbr n and A.
3.4 The average daily temperature for an area can be ap-
proxirnaled by the fol lowing function:

7 : 4."^n * (Q"ar. -- I."nn) cos((,(/ - lp"ol))

where Z,u""u : the average annual temperaturc. In.,,s : thc
peak tcmpelaturc, o : thc frequency of thc annual variation
(:2n1365). and tn"^r. : day ol' the pcak tempcrature
(=205 d). Paramcters fbr some U.S. towns are l istcd here:

T-.on ("C) T"""r ("C)

C O s - r :  I

cos-r :  I  -

c o s . r :  I  -

:
City

2 l

,
x4

+ -
4 l

the
- " Y

) the
[nc-

y the
) ana-
l 5 t

2 2 1
2 3  1
5 2

t 0  6
l a 7

2 8 3
3 3 6
2 2 1
) 7 . 6
2 2 9

up to thc order term ol 'youl choosing. For each ol-thc pre-

ceding, compute and display the perccnt relative error as

AAiomi, FI
Yumo, AZ
Bismorck ,  ND
Seoiile, WA
Boston, MA

T.error :
l rue - senes approxrmatlon

^ 1007,
true

As a test case. employ the prograrn to corllpute cos(L5) fbr
up to and including eight tcnrs-that is, up to thc tcrm
r'* f141..
3.2 An amount ol rnoney P is investcd in an account wherc
inlerest is conrpoundcd at thc cnd ol ' thc pcriod. Tlrc luturc'
worth F yielded at an intercsl ratc I aficr n periods rnay be
deternrined liom thc lbllowing fbrmula:

F = P ( l + i ) "

Write an M-f i lc that wi l l  calculate the futurc worth of an in-
vestment lbr each ycar lrorn I through rr. The input t0 the
function should include the init ial  investment P, thc interest
rate I (as a decinral), and the numbcr of ye ars n firr which the
future worth is to be calculatcd. The output should consist of
atable rvith hcadings and columns firr n and F. Run the pro-
gtamfor P : $100,000, t  :  0.06, and n : 7 years.
3.3 Economic tbrmulas are available to compute- annual
payments for loans. Suppose that you borrow an amount of
money P and agree to repay it in n annrral payments at an
inlerest rate ol l. The tblmula to computc the annual pay-
ment A is

i i l  +  l ) "
t - p

( l + i ) , - l

Dcvelop an M-file that cornputes the averagc tcmperature
hetrvcen two clays ol' thc year {irr a particular city. Tcst it
lirr (a) January-Fcbruary in Miarni. FL 1l : 0 to -59) and
(b) JLrly August tcnrpcraturc in Boston, MA (t:  180 to 242).
3.5 Figurc P3.-5 shows a cyl indrical tank with a conical
basc. l f ' the l iquid levcl is quitc low, in the conical part.  thc
vo lume is  s imp ly  the  con ica l  vo lume o l ' l i qu id .  l f  the  l iqu id
level is rnidrangc in the cyl indrical part,  thc totr l  volLrnc ol '
l iqLrid includcs thc f i l lccl conical part and thc part ial ly t i l lcd
cy l indr ica l  par t .

Usc dccisional structures to writc an M-f i le to compule
the tank's volumc as a f lnct ion ol 'given valucs of 'R and 11.
Desisn thc tunction so that i t  rcturns the volurnc f irr  al l  cascs

zJLJt -1 st fi:- sp 5t
l -

ffiE\ <Ah

NT

W
FIGURE P3.5
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where the depth is less than 3R. Return an error message
("Overtop") iI you overtop the tank-that is, d > 3R. Test it
with the lbllowine data:

The difliculty arises for the other cases. The following table
summarizes the possibilities:

x y 0

R
d

1 . 5
I

t 5
2

t 5
4 5

t < <0
<0
< 0
:0
:0
:0

> 0
< 0
:0

ton l"-,zxl * r
loo lr , / .rJ - 1T

T

r l 2
-n /2

0
Note that the tank's radius is R.
3.6 Two distances are required to specify the location of a
point relat ive to an origin in two-dimensional space
(Fig. P3.6):

. The horizontal and vertical distances (-r, y) in Cartesian
coordinates.

. Thc radius and angle (r,  d) in polar coordinates.

It is relatively straightfbrward to compute Cartesian coordi-
nates (-r, .y) on the basis of polar coordinatcs (r,6). The
reverse process is not.so sirnple. The radius can be cornputcd
by the fbl lowing lbrmula:

Write a well-structured M-file to calculate r and 0 as a func-
tion of -r and _r'. Express the final results for d in dcgrees. Test
your program by evaluating thc fbl lowing cases:

x J r |

> 0
< 0
:0

where U: velocity (m
cocff icient, B: width
ing data is avai lable fo

, : l * ? - + v ,

I f  the coori l inates l ic within the f irst and lburth coordi-
nates ( i .e.,  x > 0), then a sirnple lbrmula can bc uscd to
compute 9:

r l  :  tan  I  ( I )
\_ r , /

FIGURE P3.6

0
0
I

3.7 Dcvelop an M-filcr to detcrmine polar coordinates as
descrihed in Prob. 3.6. However, rathcr lhan designing the
function to cvaluate a single casg, pass vectors of ir and ).
Have the f unction display the results as a table with columns
forx,.y, r,  and ().Test the prograrn fbr the cases outl ined in
Prob. 3.6.

3.11 Dcvelop an M-l l lc function that is passed a numenc
grade liom 0 to 100 and returns a lettcr grade according to
the schcmc:

Criterio

90 < numeric orode < l0C
BO 1 numeric grode < 90
/O .  numerlc qrode .  BO
60 < numeric crode < /0

numeric grode < 60

A
B
C
D
F

0 .035
0 020
o  0 t 5
0 030
o  422

0.0
O O i
0 0 t
0 .0(
0 0 (

Write an M-file that cor
channels. Enter these v
umn represents a param
nel. Have the M-f i le di
computed velocity in tal
colurnn. Include headin,
3.10 A simply suppor
F ig .  P3.10 .  Us ing  s ing
along the heam can be e

- 0

+75 (x  -  7

By dcfinit ion, the singu
follows:

( x - t t ) " : l t * - o
l 0

Develop an M-fi le that <
distance along the beam
the beam.

3.9 Manning's cquation can be r.rsed to compute the velocity
of water in a rectangular open channel:

J s r  B H  \ 2 '
i l  \ . 8 + 2 H /

ffi= n+Y
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20 kips/ft

: - c

FIGURE P3. IO

0 035
0 020
0 0r5
0 030
0422

0 000t
0 0002
0  0 0 1 0
0 000/
0 0003

where U: vclocity (rn/s), S: channcl slope, n - roughness
coeff icient. B: width (m), and H : dcpth (rn). The tbl low-
ing data is avai lahle lbr l lve channe ls:

n

3.1l Thc volumc V of l iquid in a hollow horizontal cylinder
ol'radius r and lcngth L is related to the depth o1'the l iquid
hbv

l - ,  , / r  h r  - - l
V - l t - c o r ' [ -  |  r r  h t r /  2 r l t  h , I l -

L  \ r  /  I

Dcvclop an M-f l lc to cl 'ci l te a plot ol 'volume versus depth.
Tcst thc program l-or r - 2 rn and L: -5 m.
3.12 Dcvclop a vectorized vclsion ol ' thc lbl lowing codc:

1 , : i l d r L = U ;  t c , n c l - i l f l ;  r r i  5 ;

L  (  L )  - t s 1 , . t 1 L ;

c l r t ( l

3.l l  Thc "dividc and average" method, an old-t imc mcthod
lirr approximating thc square root ol 'any posit ivc numbcr a,
can bc firrrnulatcd as

.r + ulx

2

Writc a wcl l-structurcd M-l ' i lc lunction bascd on a
wh i l - - . . .b |eak  loop s t ruc tu rc  to  i rnp lcmcnt  th is  a lgo-
rithur. Use ploper indentation so that thc structnrc is clcar. At
clrch \tcp c\t inr ir tc thc crrrrr in y,rur irpprtrr i l l lul i ()n irs

t . _ , , , 1
^  - . _  

. r / l r  t t  . \ t ' l t l

" - t - t
I  r n r u '  l

r 0
B

20
24
t 5

Write an M-f i lc that conrputcs thc vclocity l i r l  cach ol ' thcse
channels. Enter these values into a matrix whcrc cach col-
umn reprcscnts a prramctcr and cach row rcprcscnts a chan-
nel. Have thc M-l ' i lc display thc input data along with thc
computed vclocity in tabular f i rm whcrc ve locity is the l ' i l th
column. lncludc hcadings on thc tablc to lahcl thc colurnns.
3,10 A simply supportcd bcant is loadcd as shown in
Fig. P3.10. Using singulari ty f 'unctions. thc displacerrncnt
along the bcam can bc cxprcsscd hy thc ccpration:

- s  t 5
l r r . r ) - - l ' r - 0 ) ' - ( r  : ' * l  .  .  ( . r  x )  '

o o

* ? 5 ( r  7 ) r  + r - 23tt.25 t

Bydetinit ion, thc singulari ty lunction can be cxprcsscd as
follows:

57
'\

6

Rcpeat the loop unti l  a is less than or cqual to a spccif ied

,, _,, , , ,  _ J 
(.  r t l"  when,r > a I value. Design your program so that i t  returns both thc rcsult

I tt when -r < a I and the errur. Makc surc that it can cvaluate thc square root
o1'nunrbers that arc equal to and lcss than zero. For the latter

Develop an M-f i lc that crcatcs a plot ol-displacemenl versus casc, display the result as an imaginary number. For exam-
distance along the beam, ,r. Notc that,t : 0 at the leli end ol' plc, thc square root of -4 would retr.rrn 21. Te st your program

t h e b e a m .  b y  e v a l u a t i n g  u - 0 , 2 , 4 ,  a n d  - 9  f b r c :  I  x  l 0  r .

Aq
st

I

ffi
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3,14 Piecewise functions are sometimes useful when the re-
lationship between a dependent and an independent variable
cannot be adequately represented by a single equation. For
example, the velocity of a rocket might be described by

l 1 t 2 - 5 t  0 < t < 1 0

l l 0 0 - 5 /  1 0 < t < 2 0

5 0 t + 2 ( t - 2 0 ) 2  2 0 < r < 3 0

l52oe 0.2(t 10) /  > 30

0 othcrwise

Develop an M-flle function to compute u as a function of /.
Then, use this lunction to gcnerate a plot of u versus / fbr
t -  5 t o 5 0 .
3.15 Develop an M-f i le lunction cal lcd rounder to round a
number -r to a specified number of dccimal digits, n. The first
l ine of the f 'unction should be set up as

f u n c t i o n  x r  =  r o u n d e r ( x ,  n )

Test the prograrn by rounding cach of thc fbllowing to 2 dec-
inral digits: r  :  467 .9587, 467.958'7,0.125, 0. 13,5, -0. 125,
a n d  - 0 . 1 3 5 .

-1.16 Develop an M-filc function to dctcrmine the elapsed
days in a year. The f'irst linc ol' thc function should be set
up as

f  u n c r t  i . r n  n d  =  d a y s  ( m o ,  c l a ,  l e . r p )

where  mo:  the  month  ( l -12) ,  da :  the  day  ( l -31) ,  and
leap : (0 for non-leap year and I for leap year). Test it for
January l ,  1999, February 29,2000, March 1, 2001, June 21,
2002, and December 31, 2004. Hint: A nice way to do this
combines the for and the switch structures.
3.17 Develop an M-file function to determinc the elapsed
days in a year. The first line of the function should be set
up as

f u n c t i o n  n d  =  d a y s ( m o ,  d a ,  y e a r )

where  i ro :  the  month  ( l -12) ,  da :  the  day  ( l -3  l ) ,  and
year : the year. Test it for January l,1999, February 29,
2000, March l ,  2001, June 21, 2002, and December 31,2004.
3.18 Develop a lunction function M-f l le that returns the dif-
ference between thc passcd iunction's maximum and mini-
mum value givcn a range of the independent variable. In
addit ion, have the lunction generate a plot of the function fbr
the range. Test it for the following cases:
( a )  . l ( 0 :  l 0 e - 0 2 s ' s i n ( l  -  4 )  f r o m  t : o t o 6 T .
(b) /(x) :  es'sin( l /x) l iom -r :  0.01 to 0.2.
(c) The bui l t- in humps luncl ion l iom x : 0 to 3.
3.19 Modily the function function odesimp developed at
the end ol'Sec. 3.6 so that it can bc passcd thc argumcnts of
the passed lunction. Tcst i t  lbr thc lbl lowing casc:

> >  d v c l t - @ ( v , m , c : c 1  )  9 . B L  ( c < 1 / m ) * v ^ 2 ;

: ' : '  o c l e s i r n p  ( d v t l t  ,  0 .  5 ,  0 ,  L 2  , 0  ,  t t 9  . I ,  A  . 2 5 )

_q
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Roundoff ond Truncotion Errors

CHAPTER OBJECTIVES
The primary objective of this chapter is to acquaint you with the major sources of
errors involved in nurnerical rnethods. Specitic objectives and topics covered are

' Understanding the distinction between accuracy and precision.
' Learning how to quantity error.
' Learning how error cstimates can be used to decide when to terminate an iterrti ' , 'e

calculat ion.
' Understanding how roundoff errors occllr bccause digital cornputers have a

limited ahil ity to represent nunrbers.
' Understanding why lloating-point numbers have [irnits on their range and

precis ion.
' Recognizing that truncation errors occur when exact mathematical fbrmulations

ilrc represcnlcd by approx irnat ions.
' Knowing how to usc the Taylor selies to estimate truncation errors.
t Understanding how to write lbrwarcl, backward. and ccntered finite-difTerence

approximations of f irst and seconcl derivatives.
'  Recogniz ing that  e l ' f i r r ts  lo  rn in imize l " runcrr t ion errors can somel imes incrcase

roundofT errors.

YOU'VE GOT A PROBLEM

n Chap. I, you developed a numerical model for the velocity of a bungee jumper. To
solve the problem with a computer, you had to approximate the derivative of velocity
with a llnite difl-erence.

! ] = ! ! -  u ( t i + r ) - u ( r i )

dr  Lt  t ,+t  -  t i

79



80 ROUNDOFF AND TRUNCATION ERRORS

Thus, the resulting solution is not exact-that is, it has error.
In addition, the computer you use to obtain the solution is also an imperfect tool. Be-

cause it is a digital device, the computer is l imited in its abil ity to represent the magnitudes
and precision of numbers. Consequently, the machine itself yields results that contain enor.

So both your mathenlatical approxir.nation and your digital computer cause your lr-
sulting rnodel prediction to be uncertain. Your problem is: How do you deal with such un-
certainty'? This chapter introduces you to sonle approaches and concepts that engineers and
scientists use to deal with this dilemma.

4.I ERRORS

Engineers and scientists constantly f ind themselves having to arccomplish objectives based i
on uncertain information. Although perf'ection is a laudable goal, it is rarely if ever at-
tained. For example, despite the tact that the rnodel developed liom Newton's second law
is an excellent approxirnation, it would never in practice cxactly predict the jumper's fall.
A variety of factors such as winds and slight variations in air rcsistance would result in de-
viations ftom the prediction. If these deviations are systematically high or low, then we
might need to devclop a new modcl. However, i l-they are rzrndomly distributed and tightly
grouped around the prediction, then the deviations rnight be considered negligible and the
model deemed adequate. Numerical approxirlations also introduce similar discrepancies
into the analys is .

This chaptercovcrs basic topics rclated to tlre identif ication, quantif ication, and rnini-
mizaticln of these errors. Ccneral information concerned with the quantif ication ol'error is
reviewed in this section. l-his is fbllowed by Sections 1.2 and 4.3, dealing with the two
major f irrms of numerical error: rclundof' l 'crror (due to computer approximations) and trun-
cation erlor (due to mathe nratical approximations). We also describe how strategies to re-
duce truncation error sometinres increase roundolT. Finally, we briefly discuss crrors not
directly connected with the nurnerical nrethods themselves. Thess include blundcrs, rnodel
errors. and data uncertaintv.

4.1.1 Accurocy ond Precis ion

The errors associated with both calculations arrd measuremenls can be characterized with
regard to their accuracy and precision. Att 'unrc'.v rcl 'ers to how closely a corlputed or mea-
sured value agrees with the true value. Prct'1.\ ' iorr ref'ers to how closely individuitl computed
or measured values agree with sach other.

These concepts can be i l lustrated graphically using an analogy fiom target practice.
The bullet holes on each target in Fig.4. l can be thought of as the predictions of a numer-
ical technique, whereas the bull 's-eye represents the truth. Inaccurucy (also called birr. i) is
defirrecl as systematic deviation from the truth. Thus, although the shots in Fig. 4.lc are
more tightly grouped than in Fig.4.la, thc two cases arc equally biased because they ate
both cerrtered on the upper left quadrant of thc target. Imltrecision (also called urrc:ertaintl),
on the other hand, ref'ers to the magnitude o1'the scatter. Therefore, although Fig. 4. lD and
d are eqLrally accurate (i.e.. centered on thc bull 's-eye), the latter is more precise because
the shots are tightly grouped.
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An exomple from morksmonship
(o )  inoccuro te  cnd rmprec ise ,  (b l
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i l l us t ro t ing  the  concep ls  o l  occurocy  ond prec is  on .
occuro te  onc i  in rp rec ise ,  (cJ  incccuro te  ond prec ise ,

r\umerrcal methocls snoulcl oe sufi icrenrly accura("e or unorused ("o meet irc requtre-
nrents of a particular problem. They also should be precise enough fbr adequate design.
In tlr is book, we wil l use thc collective term errur to represent both the inaccuracy and
implcc is ion t l l '  our  predict  ions.

4.1.2 Error Definit ions

Numerical errors arisc from the use of approximations to rL'present exact mathematical op-
erations and quantit ies. For such errors, the relationship between the exact, or true, result
and thc approximation carr be lbrmulated as

True value : approximation f error

By rearranging Eq.(4. l), we find that the numerical error is equal
between the l ruth i tnd the upproximal ion.  as in

6r  :  t rue value -  upproximat ion (4 .21

where Cr is used to designate the exact value of the error. The subscript t is included to des-
ignate that this is the "true" error. This is in contrast to other cases, as described shortly.
where an "approximate" estimate of the enor must be employed. Note that the true error is
commonly expressed as an absolute value and referred to as the absoLute error.

A shortcoming of this definition is that it takes no accrount of the order of magnitude of
the value under exarnination. For example, an error of a centimeter is much rnore significant

( 4 .  l )

to the discrepancy
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if we are measuring a rivet than a bridge. One way to account for the magnitudes of the
quantities being evaluated is to normalize the error to the true value, as ir-

True fractional relative error :
true value - approxlmatlon

true value

The relative error can also be multiplied bv 100%,to express it as

true value - approximation
1004/tc l  -

true value

where e, designates the true percent relative error.
For example, suppose that you have the task of measuring the lengths of a bridge and

a rivet and come up with 9999 and 9 cm, respectively. If the true values are 10.000 and
10 cm, respectively, the enor in both cases is I cm. However. their percent relative errors
can be computed using Eq. (4.3 ) as 0.0 I 7o and l0olo, respectively. Thus, although both ntea-
surcments have an absolute error of 1 cm, the relative error for the rivet is much greater. We
wor.rlcl probably conclude that we have done an adequate job of measuring the bridge.
whereas our estimate for the rive( leaves sornetl.ring to be desired.

Notice that for Eqs. (4.2) and (4.3), t and e are subscripted with a 1 to signify that the
error is based on the true value. For the exanrple of the rivet and the bridge, we werc pro-

vided with this value. Howcvcr, in actual situations such infbrrnation is rarcly available.
For nurnerical nrethods, the true value wil l only be known wlren we deal with functions that
can be solved analytically. Such wil l typically bc the case when we investigate the theo-
retical behavi<,rr of a particular techniqLre fbr simple systerns. However, in real-world ap-
plications, we wil l obviously not know the true answcr a priori. For these siturtions. an
alternative is to norrnalize the error usirrg the best available estimate of the true value-that
is ,  to  the approximat ion i tse l f ,  as in

approxrmate error'
l00a/(

approximation

where the subscript a signifies that the error is norrnalized to an approximate value. Note

also that fbr real-world applications, Eq. (4.2) cannot be used to !:alculate the errttr term in
the nunterator of Eq. (4.4). One of the challenges of numerical rnethods is to determine
crror estimates in the absence of knowledge regardiug the true value. For example, certain
nunrerical methods use iteratiotr to computc answers. In such cases, a present approxima-
tion is rnade on the basis of a previous approximation. This process is performed repeat-

edly, or iteratively, to successively compute (hopefully) better and better approximations.
For such cases. the error is often estimated as the dil'lerence between the previous and pre-

sent approximations. Thus, percent relative error is determined accorcling to

present approximation - previous approximation
l\OC/t (4  5 )

present approxrmatlon

This and other approaches fbr expressing errors is elaborated on in subsequent chapters.
The signs of Eqs. (4.2) through (4.5) may be either positive or negative. lf the approx'

im:rtion is greater than the true value (or the previous approximation is greater than the cur-
rent approximation), the error is negative: if the approximation is less than the true value,
the error is positive. Also, for Eqs. (4.3) to (4.-5), the denonrinator may be less than zero,
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EXAMPLE 4

4 . I  ERRORS

which can also lead to a negative error. Often, when performing computations. we may not
be concemed with the sign of the eror but are interested in whether the absolute value of the
percent relative error is lower than a prespecified tolerunce e.. Theretbre, it is often useful
to employ the absolute value of Eq. (4.5). For such cases, the computation is repeated until

I r , ,  I  <€. ,  (4.6)

This relationship is refered Io as a stop1'ting criterion.If it is satisfied. our result is assumed
to be within the prespecified acceptable level o.. Note that for the remainder of this text, we
almost always employ absolute values when using relative errors.

It is also convenient to relate these errors to the number of significant figures in the ap-
proximation. It can be shown (Scarborough. 1966) that if the following criterion is met, we
can be assured that the result is correct to at least rr significant f igures.

e . , : ( 0 . 5  x l 0 2 - " 1 % o (4.7 )

Error  Est imotes for  l terot ive Methods

Problem Stotement. In mathematics, functions can otien be represented by infinite se-
ries. For exanrple, the exponential function can be computed using

( E 4 . l . l )

'Ihus, 
as more terms are added in sequence, the apploxirnation becomes a better and better

c'slimate of the true value of e'. Equation (E4. L l) is called a Moclourin serit,,s a.rput,sion.
Starting with the shnplest version. e' : l , add terms one at a time in order to estimate

e" 5. After each new term is added, compute the true and approximate percent relative errors
with Eqs. (4.3) and (4.-5), respectively. Note that the true value is e" 5 - |.648121 . . . . Add
terms unti l the absolute value of the approximate en'or estimate c,, falls below a prespeci-
fied error criterion s.r contbrming to three signil ' icant f igures.

Solut ion.  F i rs t ,Eq.  ( .4 .1)canbeemployedtodeterminetheerrorcr i ter ionthatensuresa

result that is correct to at least three significant f igures:

€. : (0.-5 x 102 t)"/n :0.05a/,,

Thus, we wil l add terms to the series unti l e,, falls below this level.
The first cstimate is simply equal to Eq. (E4. | . l) with a single term. Thus, the first es-

t i r t i a te i sequa l  t c l  l . Thcsecondes t i l na l . e i s thengene la tedbyadd ing thesecond te rmas in

e t :  l * x

or fbr,r : 0.5

e o 5  -  I  * 0 . 5 :  1 . 5

This represents a true percent relative enor of tEq. (a.3)l

, \ ' l  . r l  . r "
e ' : l + . r + - '  F : + . .  1

2  - l !  n t

^_l. '  _  
|

r .6 "18721 -  t . . s  I
I x 1001, =9.02(/t

t .64812t I
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Equation (4.5) can be used to determine an approximate estimate of the error, as in

t 1 5 - l l
r., : l-j_=_-l x 100(/o :.1.1.3(Z

I  l . )  |

Because en is not less than the required value of e,, we would continue the computation by
adding another term, x2 12r., and repeating the error calculations. The process is continued
until le,, l < e,. The entire computation can be summarized as

Ierms Result

I
b
S

n

D,

nl
di
nl
tu

TI

Inte
res(
put'
the
mai
senl

I
2
3
4
5
6

5
625
645833333
648437544
6486979)7

3 9 3
9 4 2
I 4 4
a  t 7 5
a  a t 7 2
0 0 0 1 4 2

3 3  3
7 6 9
I 2 7
0  t 5 8
0 0 t 5 8

Thus, after six terms are includcd, the approxirnate error falls below e , : 0.05olo, and the
computation is terminated. Howcver, notice that, rather than three significant f igures, the
result is accurate to five! This is because, tbr this case, both Eqs. (4.5) and (4.1) are con-
servative. That is, they ensure that the result is at least as good as they specify. Although,
this is not always the casc lbr Eq. (4.-5), it is true most of thc time.

4.2 ROUNDOFF ERRORS

Rountlo.ff'errur,s arise because digital computers cannot rcpresent some quantities exactly.
They are irnportant to engineering and scicntif ic problern solving because they can leadto
erroneous results. In ccrtain cases, they can actually lcad to a calculation going unstable
and yiefding obviously erroneous results. Such calculations are said to be i l l-conditioned,
Worse sti l l , thcy can lcad to subtler discrepancies that are difTicult to detect.

Thcre are two major facets of nrundoll 'crrors involved in numerical calculations:

1. Digital computers have size and precision l imits on their abil ity to represent numben.
2. Certain numerical manipulations are highly sensitive to roundofT errors. This can re-

sult l iorn both rnathematical considerations as well as fiorn the way in which comput-
e'rs perl 'orm arithmetic operilt i()ns.

4.2.1 Computer Number Representotion

Numerical roundofT errors are directly related to the manner in which numbers are stoled
in a computer. The fundamental unit whereby infbrmation is represented is called a word,
This is an entity that consists cf a string of binary digil.l, or bits. Numbers are typically
stored in one or more words. To understand how this is accomplished, we must first revierry
some material related to number systems.
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Anumber system is merely a convention for representing quantities. Because we have
l0 fingers and l0 toes, the number system that we are most familiar with is the decimal, or
base-10, number system. A base is the number used as the ref-erence fbr constructing the
sys tem.Thebase - l 0sys temuses the  l 0d ig i t s -O ,  1 ,2 ,3 ,4 ,5 ,6 ,1 ,8 ,and9 - to rep resen t
numbers. By themselves, these digits are satisfactory for counting from 0 to 9.

For larger quantit ies, combinations of these basic digits are used, with the position or
place vulue specifying the magnitude. The rightmost digit in a whole number represents a
number from 0 to 9. The second digit fiom the right represents a multiple of 10. The third
digit from the right represents a multiple of 100 and so on. For example, if we have the
number 8642.9, then we have eight groups of 1000, six groups of 100, four groups of 10,
two groups of l, and nine groups of 0. l, or

( 8 x  1 0 3 ) + ( 6 x  1 0 2 ) + ( , 1  x  l 0 r ) + ( 2 x  1 0 0 ) + ( 9 x  l 0  r y : 9 6 4 2 . 9

This type of representation is called positionol notatktn.
Now, because the decimal system is so familiar, it is not commonly realized thal there

are alternatives. Forexample, if human beings happened to havc eight f ingers and toes we
would undoubtedly have developed an ot'tul, t>r ba.se-8, representation. In the same sense,
our fi iend the computer is l ike a two-fingcrcd animal who is l imited to two states-either
0 or l. This relates to the fact that the prirnary logic units of digital computcrs are on/off
electronic components. Hence, numbers on the computer are rcpresented with a birtary,
or ba"^e-2, system. Just as with the decirnal systcm, quantit ies can be represented using
posi t ional  notat ion.  For  examplc,  thc b inary nurnber I0 l . l  is  equivalent  to  ( l  x  2r)  +-
( 0  x  2 l )  *  ( l  x  2 " )  +  ( l  x 2 - - t )  : 4 + 0 +  I  + 0 . 5  :  5 . 5  i n t h c d e c i m a l  s y s t e m .

Integer Representotion. Now that we have reviewed how base-10 numbers can be rep-
resented in binary lorm, it is simplc to conccive of'how integers are represented on a corn-
puter. The most straightforward approach, callcd thc ,signad nngnitrule metfutd, employs
the first bit of a word to indicate the sign, with a 0 fbr positivc and a I f irr negative. The re-
maining bits arc used to store ths number. Forexample, thc integer value of 173 is repre-
sen ted  i n  b ina ry  as  l 0 l 0 l  l 0 l :

( l 0 l 0 l  l 0 l ) ,  :  2 1  +  2 s  +  2 r  +  2 2  +  2 t t :  1 2 8  +  3 2  +  I l  +  4  +  I  :  ( 1 7 3 ) , , ,

Therefore, the binary equivalent of - 173 would be stored on a l6-bit computer, as depicted
in  F ig .4 .2 .

If such a scheme is cmployed, there clearly is a l irnited range of integers that can be
represented. Again assurrring a l6-bit word size, if one bit is used tbr the sign, the l5 re-
maining bits can represent binary integers l iom 0 to I I I I I I I I I I I I I I I . The upper l imit can

FIGURE 4.2
The b inory  represento l ion  o f  the  dec imc l  in teger  l /3  on  o  l6  b i t  computer  us ing  the  s igned
mogn i lude method

1 0 0 0 0 0 0 01110 1 0 1 0 1

Magni tudeI
S i g n
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be converted to adecimal inreger, as in (1 * 2'o) +(1 x 2'3) +. . . + (l x 2') * (l x 20; =
32,161 . Note that this value can be simply evaluared as 2rs - l. Thus, a l6-bit computer
word can store decimal integers ranging from -32,761 to 32,767 .

In addition, because zero is already defined as 0000000000000000, it is redundant
to use the number 1000000000000000 to define a "minus zero." Therefore, it is conven-
tionally employed to represent an additional negative nurrrber: -32.768, and the range is
frorn -32.768 to 32,761 . For an n-bit word, the range would be from -2" to 2" - l. Thus,
32-bit integers would range from -2,141.183.648 to +2,141,483,641.

Note that, although it provides a nice way to illustrate our point, the signed magnitude
method is not actually used to represent integers for conventional computers. A prefened
approach called the 2s complemenl technique directly incorporates the sign into the num-
ber's magnitude rather than providing a separate bit to represent plus or minus. Regardless,
the range of numbers is still the same as for the signed magnitude method described above,

The foregoing serves to illustrate how all digital computers are limited in their capabil-
ity to represent integers. That is, numbers above or below the range cannot be represented.
A more serious l imitation is encountered in the storage and rnanipulation of fractit 'rnal quan-
tit ies as described next.

Flooting-Point Representotion. Fractional quantit ies are typically represented in com-
puters using floating-point.format. In this approach, which is very much like scientif ic
notation, the number is expressed as

* s x b "

where s : the significand, b: the base of the number system being used, and e : the
cxponent .

Prior to being expressed in this forrn, the nurnbel is normaliz.ed by moving the decirnal
place over so that only one significant digit is to the lefi of the decirnal point. This is done so
cornpLlter rt lcmory is not wusted cln storing useless nonsignificant zeros. For example, a
value l ike 0.00567ti could be represented in a wasteful manner as 0.00-5671t x l0('. How-
ever, nort.ttalization would yield -5.678,. l0 I which eliminates the useless zeroes.

Before describing the base-2 implementation used on computers, we wil l f irst explore
the fbndamental irnplications of such floating-point representation. In particular, what are
the ramifications of the fact that in order to be stored in the cornputer, both the mantissa
and the exponent must be l imited to a finite number of bits? As in the next example, a nice
way to do this is within the context of our more tirmil iar base- l0 decimal world.

EXAMPLE 4.2 lmpl icot ions of  F loot ing-Point  Representot ion

Problem Stotement. Suppose that we had a hypothetical base- I0 computer with a 5-digit
word size. Assume that one digit is used fbr the sign, two for the exponent, and two forthe
mantissa. For simplicity, assume that one of the exponent digits is used firr its sign, leaving
a single digit for its magnitude.

Solution. A general representation of the number following normalization wcluld be

s1d1.d2 x lOro 'd)
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where . roand .s ,  - t hes igns ,  d , : t he  rnagn i t udeo f  t heexponen t .and  d randd , : t hemag-
nitude of the significand digits.

Now, let's play with this system. First, what is the largest possible positive quantity
that can be represented? Clearly, it would correspond to both signs being positive and all
nragnitude digits set to the largest possible value in base-10, that is. 9:

Largest value : +9.9 x l0+Y

So the largest possible number would be a l itt le less than l0 bil l ion. Although this might
seem like a big nunrber, it 's really not that big. For example, this computer would be inca-
pable of representing a commonly used constant l ike Avogadro's number 16.022 x l0rr.1.

In the same sensc, the smallest possible positive number would be

Smal lest  va lue :  *1.0 x l0  
' '

Again, although this value rnighf seem pretty snrall, you could nol use it tr l represent a
quant i ty  l ike Planck 's  constant  (6.626 x l ( ) - r r  J  .s) .

Similar negative values could also be developed. The resulting ranges are displayed in
Fig.4.3. Large positive and negative numbers that fall outside the range would cause an
overflow errcr. ln a similar sense, for very small quantit ies there is a "hole" at zero. and
very small quantit ies would usually be converted to zero.

Recognize that the exponent overwhelrningly determines these range limitations. For
exarlple, if we increase the manfissa by one digit. the maxirnum value increases slightly to
9.99 x l0'. In contrast, a one-digit increase in the exponent raises the maximurn by 90 orders
of magnitude to 9.9 x l0e'r!

When it comes to precision, however, the situation is reversed. Whereas the signil ' icand
plays a minor role in detining the range, it has a profound etl 'ect on specifying the precision.
This is dramatically i l lustrated fbr this exanrple where we have limited the significand to
only 2 digits. As in Fig. 4..1, just as there is a "hole" at zero, therc are also "holes" between
values.

For example. a simple rational number with a finite nurnber of cligits l ike 2-5 : 0.0-l 125
would have to bc stored as -1. I x l0- r or 0.03 I . Thus. 't rountloff error is introduced. Fclr this
case, it represcnts a relative error of

0.0312-5 -  0.03 |
: 0.00t1

0 .03  125

FIGURE 4.3
The number  l ine  showing the  poss ibe  ronges  cor respond ing  to  the  hypothe t ico  bose lO
f loo t ing  po in l  scheme descr ibed in  Exomple  4  2 .

M i n i m u m  S m a l l e s t  M a x i m u m

l , , \ l
9 .9  x  10s  -1 .0  x  10  s  1 .0  x  10  s  9 .9  x  10s

Overflow l--{ ,Underflow |-{Overflow

"Hole"  at  zero
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0.01

0.98  0 .99  1  1  .1  1 .2

FIGURE 4.4
A smoll poriion of the number l ine corresponding to the hypotheticol bose lO flootingpoinl
scheme descr ibed in Exomple 4.2. Ihe numbers indicofe volues thot  con be represented
exoctly. All other quonli l ies foll ing rn the "holes" belvreen ihese volues would exhibit some

t ' r r
rounoott error.

While we could store a number l ike 0.03 125 exactly by expanding the digits of the
significand, quantit ies with infinite digits must always be approximated. For example, a
common lyusedcons tan tsuchas ; r ( : 3 .141 -59 . . . )wou l c l  have tobe rep rcsen tedas3 . l  x  l 0 r )
or 3. l. For this case, it represented a relative error of

3 .14159  -  3 .  r :  0 .01 32
3.  l4  I  .59

Although adding significand digits can improve the approximation, such quantit ies wil l
always have some roundofT error when stored in a computer.

Another rnore subtle ef'fbct of'f ' loating-point representation is i l lustrated by Fig.4.4.
Notice how the interval between numbers increases as we move befween orders of mag-
nitude. Iror nurnbers with an exponent of - I (that is, between 0.1 and I ;, the spacing is
0.01. Once we cross over into the range fiom I to 10, the spacing increases to 0. l. This
means that the roundofl-error of a nurnber wil l be proportional to its rnagnitude. In addr-
tion, it nreans that the relative error wil l have an upper bound. For tlr is example. the max-
inrum relative error would be 0.05. This value is called the nuc'hine epsilon (or machine
precis ion) .

As i l lustrated in Exanrple 1.2,the fact that both the exponent and significand are finite
means thaf there are both range and precision l imits on l loating-point representation. Now,
let us examine how floating-point quilntit ies are actually represented in a real computer
using base-2 or binary numbers.

First, let's look at normalization. Since binary numbers consist exclusively of 0s and
ls, a bonus occurs when they are nornralized. That is, the bit to the left clf the binary point
wil l always be onel This means that this leading bit does not have to be stored. Hence,
nonzero binary floating-point numbers can be expressed as

X ( l - t f ) x 2 ' '

wheref': the nnntisso (i.e., the fractional part of the significand). For example. if we nor-
malized the binary numbel l l  0 l. l , the result would be l. l0 l l  x (2)'r or ( l + 0. l0 l l  ) x 2-3.
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Signed
exponen Mantissa

11 b i ts 52 bits

Sign
(1 brt)

FIGURE 4.5
The monner in which o f loot ing-point number is stored in on B-byte word in IEEE double
prec s on formol.

Thus. although the original number has five signil icant bits, we only have to store the four
fractional bits: 0. l0l I .

By default, MATLAB has adopted the IEEE double-precision.fbnncrt in which eight
bytes (64 bits) are used to represent f loating-point numbers. As in Fig. 4.5, one bit is re-
servecj f itr the nurnber's sign. In a similar spirit to the way in which integers are stored, the
expollL'nt and its sign are storcd in l l  bits. Finally. -52 bits are set aside for the mantissa.
Howevcr. becausc of normalization, 53 significand bits can be stored.

Now, just as in Exarnple.i.2, this nreans that the nunrbers wil l have a l irnited range and
precision. However, because the IEEE firrnrat uses lnany more bits. the resulting number
system can be used tbr practical purposes.

Ronge. In a tashion similar to the way in which integers are stored, the l l bits used for
the exponent translatcs into a range from - I 022 to | 023. The largest positive number can
be reprcscnted in binary as

l - a r g e s t  v a l u e :  + l . l l l l  . . .  l l l l  x  ? + 1 0 ] ' t

where the 52 bits in the nrantissa are all l . Sincc the significand is approximately 2 (it is ac-
tually 2 - 2 t '), the largest value is therelbre 2r0-rr - l. i9ii x 10108. In a similar fashion,
the smallest positive number can be reprcsentcd as

Srra l lest  va lue :  +1.0000. . .  0000 *  2- t t \12

This value can be t ranslated in to a base-10 value of  7 r { )11 -  2.2251 x l0  r t )8.

Precis ion.  The 52 b i ts  used fbr thc mant issa col respond to about  l5  to l6  base- l0 d ig i ts .
Thus, z would be expressed as

- '  f o r m a L  I o n g

" p l

.1 l l  S -

I .  I 4 I 5 9 2 r i 5 3 a 8 9 1 . )

Note that the machine epsilon is 2 sr : 2.2204 x l0 16.
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MATLAB has a number of built-in functions related to its internal number representa-
tion. For example, the rea Zmax function displays the largest positive real number:

> >  f o r m a t  l o n g

> >  r e a l m a x

A n q  =

t .  9  
- o 9 l - I  

l o 0 2 J . o e - J t r u

Numbers occurring in computations that exceed this value create an overflow. In MATLAB
they are set to infinity, inf . The te-aLmitT function clisplays the smallest positive real
number:

> >  r e a l m i r r

? . . 2 2 . 5  0 7 3 8 5 8 5 4  i - 2  O  i e - 3 0 8

Nrlmbers that are smaller than this value create an underflow and, in MATLAB, are set t0

zero. Final ly, the e.p-s function displays the machine epsi lon:

> >  e p s

2 . ?. 2 A ,!. 4 6 0 4 9 2 5 0 3 I I e - C I tj

4.2.2 Arithmetic Monipulotions of Computer Numbers

Aside frorn the l irnitations of a cclmputer's number systeul, the actual arithmetic manipula-
tions involving these nunrbers can also result in roundofT error. To understand how this
occurs. let's look at how the computer performs simple addition ancl subtraction.

Because of their familiarity, normalized base-10 numbers wil l be ernployed to i l lus-
trate the effect of roundofT errors on simple addition and subtraction. Other number bases
would behave in a sirrri lar fashion. ?l simplify the cliscussion, we wil l ernploy a hypothet-
ical decimal computer with a 4-digit mantissa and a l-digit exponent.

When two floating-point numbers are addecl, the numbers are first expressed so that
they have the sane exponents. For example, if we want to add | .5-57 + 0.0434 l, the com-
puter would express the nurnbers as 0. 1557 x l0r + 0.00+3-ll x l()r. ' fhen the nrantissas
are added to give 0. 16004 I x t0r . Now. because this hypothetical computer only carries a
4 -d ig i tman t i ssa . theexcessnumbero fd ig i t sge tchoppedo f fand the resu l t i s0 . l 600x  l 0 l .
Notice how the last two digits of the second number (41 ) that were shified to the right have
essentially been lost fiom the computation.

Subtraction is perfbrmed identically to addition except that the sign of the subtrahend
is rcversed. Forexample. suppose that we are subtracting 26.86 frorn 36.41. That is,

0. -1641 x 102
-0.2686 x 102

0.095-5 x l0'

For this case the result must be nornralized because the leading zero is unnecessary. S0
we must shift the decirnal one place to the right to give0.9-550 x l0' : 9.-550. Notice that
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the zero added to the end of the mantissa is not significant but is merely appended to fill the
empty space created by the shift. Even more dramatic results would be obtained when the
numbers are very close as in

0.1642 x 103
-0.7641 x 103

0.0001 x lOj

which would be converted to 0. 1000 x 100 : 0. 1000. Thus, for this case, three nonsignif-
icant zeros are appended.

The subtracting of two nearly equal numbers is called subtractive cancellation. lt ts
the classic example of how the manner in which computers handle mathematics can lead to
numerical problems. Other calculations that can cause problems include:

Lorge Computotions. Certain methods require extremely large numbers of arithmetic
manipulations to arrive at their final results. In addition, these computations are often inter-
dependent. That is, the later calculations are dependent on the results of earlier ones. Con-
sequently, even though an individual roundoff errorcould be small, the cumulative effect
over the course of a large computation can be significant. A very simple case involves sum-
ming a round base- l0 number that is not round in base-2. Suppose that the following M-fi le
is constructed:

f u n c t i o n  s o u t  =  s u m d e m o ( )
-  n .

f o r  i  -  1 : 1 0 0 0 0
s  =  s  +  0 . 0 0 0 1 ;

e n d
s o u t  =  s ;

When this tunction is executed. the result is

> >  f o r m a L  l o n g
> >  s u m d e m o

a n s  =

0 . 9 9 9 9 9 9 9 9 9 9 9 9 9 r

The f ormat long command lets us see the l5 signif icant-digit  representation used by

MATLAB. You would expect that sum would be equal to l .  However, although 0.000 I is a

nice round number in base-10, i t  cannot be expressed exactly in base-2. Thus, the sum

comes out to be slightly diff'erent than l. We should note that MAILAB has features that

are designed to minimize such e:'rors. For example, suppose that you form a vector as in

> >  f o r m a t  l o n g r
> >  s  =  [ 0 : 0 . 0 0 0 1 : 1 ] ;

For this case, rather than being equal to 0.99999999999991 , the last entry will be exactly

one as verified by

> >  s  ( 1 0 0 0 1 )

1
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Adding o Lorge ond o Smol l  Number.  Suppose we add a smal lnumber,0.0010,  toa
large number, 4000, using a hypothetical computer with the 4-digit nrantissa and the l-digir
exponent. After modifying the smaller number so that its exponent rnatches the larger,

0.4000 x l0a
0.0000001 x lOa

0.4000001 x l0a

which is chopped to 0.4000 x 104 . Thus, we rright as well have not performecl the addi-
tion! This type of error can occur in the computation of an infinite selies. The init ial terms
in such series are ollen relatively large in comparison with the later terms. Thus. after a few
terms have been added, we are in the situation of adding a small quantity to a large quan-
tity. One way to mitigate this type of error is to sum the series in revelse order. In this way,
each new ternr wil l he of comparable rnagnitude to the accurnulatecl surn.

Smeoring. Smearing occurs whenever the individual terms in a summation are larger
than the sunrmation itself. One case where this occurs is in a series ol'rnixed sicns.

Inner Products. As should be clear from the last sections, some infinite series ure partic-
ularly prone to roundolT error. Fortunately, the calculation of series is not one o1'the more
common operations in numerical nrethods. A l l l  more ubiquitous manipulation is the cal-
culut ior t  t r f  inner  l ) rodue(s us i l l

E.tr.t '  
:  . trr,vr *,r: .v: * ' ' '  * x,,-) ' , ,

This operation is very comrron, particularly in the solution ol-simultaneous linear algebraic
equations. Such summations are prone to roundoll error. Cc'rnsequently. it is ofien desirable to
compute such sumrnations in double precision ns is done autorratically in MATLAB.

TRUNCATION ERRORS

Trwrccttion (rrors are those that result fiom using an approximation in place ol- an exact
rnathematical procedure. For example. r n Chap. I we approx imated the clerivative of veloc-
i ty  of  a bungee jumper by a f in i te-d i f fbrence equat ion o l ' the f i r rnr  [Eq.  (  l . l  l ) l

d u - A , u  u ( r i + r )  u ( t 1 )

dt  L t t;"t I 
- t i

A truncation error was introduced into the nurnerical scllution because the difl 'erence equa-
tion only approximates the true value of the derivative (recall Fig. 1.3). To gain insight into
the properties of such errors, we now turn to a rnathematical tormulaticln that is used widely
in numerical n'rethods to express furrctions in an approxinrate fashion-the Taylol series.

4.3.1 The Toylor Series

Taylor's theorem and its associated formula, the Taylor series, is of great value in the study
of nurnerical rnethods. [n essence. the Tay'lor thertrem states that any smooth tirnction can
be approxirnated as a polynomial. The Tay-lor.renes then provides a means to express this
idea mathematically in a form that can be used to come up with practical results.

FI
Tt-
ze

pr
fu

4.3

(4 8)

do

rel

po

idt

gu
wt
no

Th

.f ar
ber
ilar

fac
on
tior

leg



4.3 TRUNCATION ERRORS 93

Zero order

h

FIGURE 4.6
The opprox imo l ion  o{  /  ( - r )  :  O l - ra  -

zero order, f  i rst order, ond second order

J k , n ) : f k )

r ;+t  :  1

O  l 5 - r r  O 5 . r r -  a 2 5 x *  l  2 o t r :  l  b y
Toylor series exponsions.

r i = 0

A usel'ul way to gain insight into the Taylor scries is to build it term by terrn. A good
problcrn c()ntext tbr this cxercise is to predict a function valuc at one point in ternrs of the
firnction value and its dcrivatives at anothcr point.

Suppose that you ale blindfblded ancl takcn to a location on thc side of a hil l  facing
downslopc 1Fig.4.6). We'l l call your horizontal location Jri and your vcrtical distance with
respect to thc base of the hil l  l(.r;). You are givcn the task of pledicting the height at a
posi t ion , r ;1  1,  which is  a d is tancc / r  away f rom you.

At f irst, you are placed on a platfbrm that is completely horizontal so that you have no
idea that the hil l  is sloping clown away fiorn yon. At this point, what would be your best
guess at the height at x;11'? If you think about it (remcmbcr you have no idea whatsoever
what's in front of you), the best guess would be the same height as where you're standing
now! You c<lulcl express this precliction rnathcmatically as

l ( , r i + r )  ] . 1 ( x r ) G .9 )

This rclationship, which is called the 7.ero-onler uppntximatiorz, indicates that the value of

I at the new point is the same as the valuc at the old point. This result makes intuit ive sense
because if r, and r;11 ere close to each other, it is l ikely that the new value is probably sim-
i lar  to  the o ld valne.

Equation (4.9; provicles a perf'ect estinrate if the function being approxirnated is, in
f'act, a constant. For our problcm, you would be right only if you happened to be standing
on a pcrfectly f lat plateau. However, if thc function changes at all over the interval, addi-
tional terms of the Taylor series are required to provide a better estimate.

So now you are allowcd to get ofT the plattbrrn and stand on the hil l  surface with one
leg positionecl in tiont of you ancl the other behind. You immediately sense that the front

\:[:* ':d::-s /(.r,.1) = ̂ xt - r '(,,th

\.'3"^
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foot is lower than the back foot. In fact. you're allowed to obtain a quantitative estimate of

the slope by measuring the difference in elevation and dividing it by the distance between
your feet.

With this additional information. you're clearly in a better position to predict the
height at .f (xi+).In essence, you use the slope estimate to project a straight l ine out t0

.r;.,1. You can express this prediction mathematically by

f (.,ri+r) = 
"f(.ri) *.f '(.u)h (4.10)

This is called a.firsr- order approximation because the additional llrst-order term consists of

a slope / '(.r;) multiplied by /r. the distance between .;r; and x;11. Thus, the expression is

now in the form of a straight line that is capable ofpredicting an increase or decrease ofthe

function between J; and -t;11.
Although Eq. (,1.l0) can predict a change, it is only exact for a straight-line , or linear,

trend. To get a better prediction, we need to add more terms to our equation. So now you

are allowed to stand on the hill surface and take two measurements. First, you measure the

slope behind you by keeping one foot planted at x; and moving the other one back a dis-

t anceA ,L .Le t ' sca l l t h i ss lope  f l ,Q i ) .Thenyoumeasu re thes lope in f ron to f youbykeep -
ing one fbot planted at x; and moving the other one forward Ax. Let's call this slope

.fi(.r). You immediately recognize that the slope behind is milder than the one in front,

Clearly the drop in height is "accelerating" in l'ront of you. Thus, the odds are that .f (;rr)is

even lower than your previous linear prediction.
As you rnight expecf, you're now going to add a second-order term to your equation

and make it into a parabola. The Taylor series provides the correct way to do this as in

. l ' G i + )  =  . t ' ' G i ) +  / ' ( r ,  , ,  *  
J " l r ' l  , '  ( o . t ' )

L :

To make use of this fbrmula, you need an estimate of the second derivative. You can use the

last two slopes you determined to estit late it as

. f  "  ( r i + )  7
.fiQt) - .fi,Qi) (4. r 2)

Thus, the second derivative is merely a derivative of a derivative; in this case, the rate of

change of the slope.
Before proceeding, let's look carefully at Eq. (4. I l). Recognize that all the values

subscripted r represent values that you have estimated. That is, they are numbers. Conse'
quently, the only unknowns are the values at the prediction position x;a1. Consequently,it
is a quadratic equation of the tbrm

.f  (h)  = a2h2 I  a1h - r  a1y

Thus, we can see that the second-order Taylor series approximates the function with a second'

order polynomial.
Clearly, we could keep adding more derivatives to capture more of the function's cut'

vature. Thus, we arive at the complete Taylor series expansion

f ( r , . r )  :  f  ( r ;  +  / ' ( . r ;  n+  l - j J .n ' * " f ' ' - 1 t ' l r , ' +  "  *  f " ) t t i t r '  +R , ,  {4 .131
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Note that because Eq. (4.13) is an infinite series. an equal sign replaccs the approximate
sign that was used in Eqs. (4.9) through (4. I l). A remaincler terrn is also included to
account for all terms fror.n n * I to infinitv:

/  t / / + l  l l i  \
R,,  -  J-  l ' -7 , , ,+ l  g . l1)

where the subscript n connotes that this is the rernainder fbr the nth-older approximation
and ,.e is a value of -t ' that l ies somewhcre between .t ' ; l i f ld r;+ r .

Thus, we can now see why the Taylor theorem states that any smooth function can be
approximated as a polynornial and that thc Taylor series provides a means to express this
idea mathematically.

In general, the nth-orcler Tiiylor series expansion wil l be exact f irr arr rth-ordcr poly-

norlial. For other clif l 'ererrtiablc and continuous functions, such as exponentials and sinu-
soids, a finite nunrber o1'terms wil l not yicld an exact estimate. Each additional term will
contr ibute somc improvement ,  howevcr  s l ight ,  to  the approxi rnat ion.  This behavior  wi l l  be
demonstrateci in Example .1.3. Only if an infinite nurrbcr of terrns alc addcd wil l thc serics
y ie ld an exact  rcsul t .

Although the tbregoing is true, the practical value of Taylor scries expansions is that,
in  rnost  cases,  the inc lus ion o l 'on ly  a f 'erv tern. rs  wi l l  resul t  in  an approxi rnat ion that  is  c lose
cnollgh to the true valuc l i lr placl.ical purposcs. The assessmcnt ol how many tL'nxs are
required to get "close enclugh" is bascd on the remainder tcrrn of the expansion (Eq. 4.l4).

This relationship has two major drawbacks. First. { is not known cxactly but melely l ics
somewherc between r ;  and. \ ;1  t .  Sccond.  to cvaluate Eq.  (4.  l - l ) .  wc nccd to determinc thc
(r r  + l ) th  der ivat ive o l '  / ( r ) .  To do th is ,  we need to know . / ( , r ) .  Howcver,  i f  rve kncw

/(,r), l lrere would be no neecl to pcrlirrrn thc Tirylor scrics expansion in the present

contexf !
Despi te th is  d i lcnrnra.  Eq.  (4.  1.1)  is  s t i l l  usefu l  t i r r  gain ing ins ight  i r r to  t runcat ion

errols. This is because we rlo have contrnl ovcr lhc term ir in thc cquation. In other words.
we can choose how lar awa-v fiorn .r ' wc wiurl to evaluate l (r ), and we cil l t control Ihe nttnt-

ber<r f ' rernrs wc inc lude rn the expansrorr .  Consequeniy,  Eq.  ( .1 ,1) is  usual ly  exptes.seda.s

R , ,  :  O ( l t " '  ' )

wherc the nomenclature O(1, ' * '  )  mearts  that  the t runcat ion crror  is  of  thc order  o l  / t " * i .
That is, the ellol is proportional to thc step size /r raiscd to the (rr * l)th power'. Although
this approximation implics nothing regarding the magnitudc o1'the derivativcs that multi-
ply firr+t, it is extremcly Lrseful in.judging the comparative error of nurncrical rnethods
based on Taylor scries exparrsions. Fur cxample, if the crror is O(fi), halving the step sizc
wi l l  ha lvc the ermrr .  On thc other  hand.  i f  the cr l r r r  is  0( f i r ) .  ha lv ing thr-  s tep s ize wi l lquar-
ter the error.

In general, we can usually assume that the truncation error is decreased by the addition
of tcrnrs to the Taylor series. In many cases, i l ' f i  is sLrff iciently sn'rall. the first- ancl other
lower'-order ternrs usually account lbr a dispropoltionately high percent of the error'. Thus,
only a t-ew terms are required to obtain an adequate approxinration. This property is i l lus-
trated b_\, the following exanrple.



4 .
ROUNDOFF AND TRUNCATION ERRORS96

EXAMPLE 4.3 Approximot ion of  o Funct ion wi th o Toylor  Ser ies Exponsion

Problem Stotement. Use Taylor series expansions with n : 0 to 6 to approxirnate

, f ( - r ) : c o s x a t ' r r + t : r l 3 o n t h e b a s i s o f t h e v a l u e o f / ( x ) a n d i t s d e r i v a t i v e s a t
x i  :  t l4 '  Note that th is  means thath :  r13 *  n l4:  T l12 '

Solution. Our knowledge of the true tunction means that we can determine the correct

va |ue f ( r13 ) :0 .5 .Theze ro -o rde rapp rox in ra t i on i s [Eq . (4 .9 ) l

t ( i )  = ' " -  ( i )  :  o 'o ' r0678l

which represents a percent relative error tlf

.', : lu_L9#Sl'or* 
:rt o*

For the fir-st-order approximatit 'rn, we adtJ the first clerivative term where.f '(x) : -sinxl

r /  1 \  = . . ,  / "  )  - , in  f  4  ) ( -+)  :  0 .s2re866ss' \ r / - -  \ - r l  \4 / \12 l

which has le,l:4.400/o. For the seconcl-ttr<ler approximatit ln, we add the second deriva-

tive terln where / "( 'r ) : - cos r:

/ z \  / r \  / r \ / r \  c o s ( ] r / 4 ( l \ ' : 0 . 4 ( ) 1 1 5 4 4 9 1
t ( i ) : c . ' s ( ; ) - - ' " | ' ; ) \ i ) -  2  \ r2 l  

- - - " '

with le, l:0.44g%,. Thus, the inclusion of additional terms results ir.r an improved esti-

n ra te .Thep focesscanbec t rn t i nuec land the resu l t s l i s t edas in
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COS -Y

-sirt -r
-cos -r

o  7a7  l 06 /8 l
0 521 9B6e' -59
o 497754491
c)  499869147
0 50000/55 1
0 500000304
0 499999988

4 1  4
4 4 0
a.449
2 6 2 x  l A  )

l  5 l  x  l O  r

6 0 8  x  l O  5

2 4 4 x l O "

Notice that the derivatrves never go to zero as would be the case for a polynornial '

Therefbre, each additional term results in some improvement in the estimate' Howevet'

also notice how most of the improvement comes with the init ial terms' For this case' by the

tinre we have aclded the third-order term, the error is reduced to 0.0267a' which means that

we have attained 99.974o/a of the true value. Consequently, although the addition of more

terms will reduce the enor turther, the irr.rprovement becomes negligible'
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4.3.2 The Remoinder for the Toylor Series Exponsion

Before demonstrating how the Taylor series is actually used to estimate numerical errors,
we must explain why we included the ar-{ument f in Eq. (4.14). To do this, we wil l use a
simple, visually based explanation.

Suppose that we truncated the Taylor series expansion [Eq. (4. I 3)] after the zero-order
term to yield

. / ( . r , + r )  ] . / ( - t i )

A visual depiction of this zero-order prediction is shown in Fig. 4.7. The remainder, or
error. of this prediction, which is also shown in the i l iustration, consists of the iniinite
series of terms that were truncated

.  f " t v  t  f { l ' t t  t
Rr r  : , / ' ( . \ i  t h  +  +h2+ '  . l ^ ' ' h3+ . . .

It is obviously in.onu"Ji.nt to deall ith the remainder in this inflnite series format. One
simplif ication might be to truncate the remainder itself, as in

R11  =  
. [ ' ( x1 ) l t ( 4 . 1 s )

Although, as stated in the previous section, lower-order derivatives usually account for a
greater shale of the remainder than the lrigher-order terms, this result is sti l l  inexact be-
cause of the neglected second- and higher-older terms. This "inexactness" is implied by the
approximate equal i ty  symbol  ( : )  employed in Eq.  (4. l5) .

An alternative simplit ication that transfbrms the approximation into an equivalence is
based on a grnphical insight. As in Fig. 4.8, the derivative menn-value thertrem states that

FIGURE 4.7
GrophicoL depicl icn cf o , r o r  . , . t d -  T o . L l  s e  i p s  6 r c f l . r ' r o ' ) . : r , d  r e n o r . d e t
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FIGURE 4.8
Groph ico l  dep ic t ion  o [  the  der ]vo t ive  meon-vo lue  lheorem

i f  a function l(r) and its f irst derivative are continuous over an interval frorn.:r, to.ri+1, then
there exists at leasl one point on the function that has a slope, designated by / '(€). thatis
parallel to the l ine joining,l{.r,) and,l(,r,*,). The parameter { marks the r value where this
slope occurs (Fig. 4.8). A physical i l lustration of this theorem is that, i l 'you travel between
two points with an average velocity, there wil l be at least one moment during the courseof
the trip when you wil l be moving at that average velocity.

By invoking this theorern, it is simple tu realize that, as i l lustrated in Fig. 4.8. the slope

.l '(6) is equal to the rise R,, divided by the run h, or

,  R. ,
f ' ( t ) :  +

which can b. ilurr.ng.o to -{ive

Ro -- .t ' ' ' (.t)h (416)

f'hus, we have derived the zero-order version of Eq. (4.14). The higher-order versions
are merely a logical exfension ol'the reasoning used to derive Eq. (4. 16). The first-order
version is

I " ( F )
R1 : :--------7, r4l7r

L i

For this case, the value of { confbrms to the r- value corresponding to the second derivative
that makes Eq. (4.l7) exact. Similar higher-order versions can be developed from Eq. (a.la)

4.3.3 Using lhe Toylor Series to Estimqte Truncotion Errors

Although the Taylor series wil l be extremely useful in estimating truncation enors through'
out this book, it may not be clear to you how the expansion can actually be applied to
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numerical methods. In fact, we have already done so in our example of the bungee jumper.

Recall that the objective of both Examples l. I and I .2 was to predict velocity as a function

of t ime. That is, we were interested in deterrnining u(/). As specified by Eq.(4. 13), u(l)
can be expanded in a Taylor series:

r , ( / i + r )  :  u ( t ) *  u ' { / ,  1 1 1 ' * ,  -  I ,  ) *  { f  , r , * ,  -  t i ) z  + " ' - F  R , ,
L I

Now let us truncate the series after the first derivative term:

u ( t i + r )  :  u ( t i )  f  u ' ( / r ) ( t r * r  -  / i )  *  R r

Equation (4. l8) can be solved fbr

(4 .  l 8 )

t .  .  u ( r i + r ) - u ( t i )
r l  I  I  |  -

{ i + l  -  { i
-

First-ordcr
appfoxr nra(ron

R1

r i + l  -  r i

Truncatiorl
e[ot

(4 .  r9 )

The first part of Eq.(4.19,) is exactly the same relationship that was used to approximate
theder ivaf ive inExample 1.2[Eq.( l . l l ) l .However,becauseof theTaylorser iesapproach,
we have now obtained an estimate of the trtrncation error associated with this approxima-
tion of the derivative. Using Eqs. (4. l4) and (4. l9) yields

r R r  u " ( 6 ) .
:  - ( t i + t  -  t i )

t i + t  -  l i  2 !

or

R '
: O ( t i r r - l , )

t i + t  -  I i

Thus,  the est imate of  the der ivat ive [Eq.  ( l . l l )  or  the l l rs t  pal t  o f  Eq.(4.  l9) ]  has a t runca-
tion error of order ti+r - t i. In other words, the error of our derivative approximation
should be proportional to the step size. Consequently, if we halve the step size, we would
expect to halve the error of the derivative.

4.3.4 Numericql Differentiotion

Equation (4.f 9) is given a formal label in numerical methods-it is called a.finite difJ'er-
ence. lt can be represented generally as

f  
' ( . r i \  : . f  \ r i + t )  -  

/ ( . f i )
f  O( - r i+ t  -  r i ) (1.20)

f  
' ( r i )  :

J i + t  - r ,

. l  ( . r i+r)  -  . f  ( r i )
+ o(h) (4.21)

where /r is called the step size-that is, the length of the interval over which the approxi-
mation is rnade,.ri+t - x;. It is termed a "forward" difference because it uti l izes data at i
and i * I to estimate the derivative (Fig.4.9a).
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'I'his forward difference is but one of many that can be developed from the Taylor
series to approximate derivatives numerically. For example, backward and centered differ-
ence approximations of the llrst derivative can be developed in a fashion similar to the
derivation of Eq. (4. 19). The former uti l izes values at r;-1 and.r; (Fig. 4.9b), whereas
the latter uses values that are equally spaced around the point at which the derivative is
estimated (Fig. 4.9c). More accurate approximations of the first derivative can be developed
by including higher-order terms of the Taylor series. Finally, all the foregoing versions can
also be developed for second. third, and higher derivatives. The following sections provide
brief summaries illustrating how some of these cases are derived.

Bockword Difference Approximotion of the First Derivotive. The Taylor series can be
expanded backward to calculate a previous value on the basis of a present valr.re. as in

f  t x i  - r t :  J ' ( x t t  -  l ' ( x i f t  +  
f  

: : ' t  h

Truncating this equation after tlre first derivative and rearranging yields

1 ' G i )  =
J  ( r i )  -  . f  ( x i - r )

(4.23)

wlrere the error is O(/z). See Fig.4.9b for a graphical representation.

Centered Difference Approximotion of the First Derivotive. A third way to approxi-
mate the first derivative is to subtractEq. (4.22) from the fbrward Taylor series expansion:

J ' (x i - t )  -  . l ' ( r i )  *  l ' ( . r i  *  +  f fn '+ ' . '

to yield

. l (x i+ r )  :  . f  (x i  )  - t2 l ' ( x , r ,  *  J ' ^ l ( * ' \  r t  *

which can be solvcd for

.l'' (x) : . l ( - r i + r )  -  . fG i  t )

t ' t " . \  -

2h

" f ( . r i+ r )  
*  l ( . r i_ r )-  o( t ) (4.25)

Equation (4.25) is a centercd finire tlifJbrence representation of the first derivative.
Notice that the truncation error is of the order of ft2 in contrast to the forward and backward
approximations that were of the order of /2. Consequently, the Taylor series analysis yields
the practical information that the centered difference is a more accurate representation of
fhe derivative (Fig. 4.9c). For exarnple, if we halve the step size using a forward or back-
ward difference, we would approximately halve the truncation error, whereas for the cen-
tral difference, the error would be quartered.

(4.22)

(1.21)

. f ' r ) ( " , ) , ,
b

2h
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EXAMPLE 4.4 Fin i te-Di f ference Approximot ions of  Der ivot ives

problem Stotement. Use forward ancl backwarcl clifference approximations of o1/r1 and

a centered difference approximatio n of O(h2) to estimate the first derivative of

J ( , r )  :  -0 . l . ra  -  0. l5 . t r  -  0 .5. r r  -  0 '25 ' t  - t  1 '2

ar -r : 0.5 using a step size ft : 0.5. Repeat the comprrtation using h:0-25. Note that the

clerivative can be calculated directly its

f ' ( r ) :  - 0 .4 ' t 3  -  0 .45x2  -  1 ' 0x  -0 ' 25

a n d c a n b e u s e d t o c o m p u t e t h e t r u e v a l u e a s / , ( 0 . 5 ) : - o . 9 | 2 5 .

So|ution. For h:0.5, the function can be employed to determine

r i  t : 0 f  ( x i - t ) :  l ' 2

.t; : 0.5 .f @) :0.925

r r i + r  :  1 . 0  l ' ( - r i + t ) : 0 ' 2

These values can be used to compute the forward difference [Eq' (a'21)J'

o ' 2  -  0 ' 925  
:  - l  ' 15  l e , l  :  58 '9%l ' ' (0 . -5)  = 

*

the backward difference lEq. (a.23)1.

/ ' ( 0 5 )  -  0 ' 9 2 5 -  l ' 2 : - 0 . 5 5  
l e , l : 3 g " 7 o / o

0 .5

and the centered clif l 'erence IEq. (a'2-5)l '

0 . 2  -  1 . 1
. l ' ' ( 0 . 5 ) =  f f  

- - 1 . 0  l e , l : 9 . 6 a / < ,

For ft : 0.25,

- r ;  I  : 0 . 2 5  . l ( r i - r ) :  l ' 1 0 3 5 1 5 6 3

,r;  :  0.5 J 'Qi)  :  0 'gZS

r ; 1 1  : 0 . 7 5  . l ( r i * r )  : 0 ' 6 3 6 3 2 8  l 3

which can be usecl to compute the fbrward dif'ference'

0.6363281 3 -  0.925
: - l . l - 5 5  l t , l : 2 6 . 5 " / ol ' ' (0.5) =

0.25

the backward diff'erence'

0.925 -  1 .10351563: -0.1 11 le , l  :  21. ' |Eol ' '(o.s) =
0.25

T
EI

4.4 I
T
rh
ol
ca
E
si
c(

and the centered diff-erence'

0 .63632813 -  1 .  1035 1563
f / ( o  { \  = :  -0.934 V , \  : 2 ' 4 % 'f ' ( O S \ :

0.5
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For both step sizes, the centered difference approximation is more accurate than for-
ward or backward difl'erences. Also, as predicted by the Taylor series analysis, halving the
step size approximately halves the error of the backward and forward diff-erences and quar-
ters the error of the centered difference.

Finite-Difference Approximotions of Higher Derivotives. Besides first derivatives, the
Taylor series expansion can be used to derive numerical estirnates of higher derivatives. To
doth is ,wewr i teafbrwardTaylorser iesexpansionfor . f ( . . r i+)  in termsof  . / ( - r i ) :

. / ' ( r , + r )  :  . l ' ( r i )  I  J ' l x i ) t 2h l  +  
' " ) r ' ' '  

, r , r r t  *  "

Equation (4.24) can be multiplied by 2 and subtracted from Eq. (4.26) to give

. l 'Q i+ )  -2 .1 ' ( r ; *1 )  :  . [ ( r i )  +  . 7 ' "1 t11h2  + . . .

which can be solved fbr

. / " ( r , ) :
I  ( r i+ : )  -  2 . f  ( . r i+ t )  *  . / ' ( . r i )+ o(h)

h 2
(1.27)

Sirn i lar  manipulat ions can

(4.26)

This relationship is called thc second.f ont,unl .finite diflerenca.
bc cmployed to derive a backwirrd version

, . ,  . / { . t , ) - 2 . / ' ( - t ,  r ) * . 1  ( r i  3 )  -.1" ( r , ) : f f+o(h)

and a centered version

, . , ,  . l  ( . t ,  r )  -  2  /  ( . t i  l  I  l ( . r i  r )  -. / " \ . r i ) : f f+of t2)

As was thc casc with the first-derivativc approximations, the centered case is more accurate.
Notice also that the centercd vcrsion can be altemativelv cxnrsssed as

f ' "  ( r i )  1

l ( , r i + r )  - . 1 ' ( . r i )  
_  IG i )  -  . / ' ( x i  t )

h h

Thus,just as the second derivativc is a derivative ofa derivative, the second finite dilfbr-
ence approximation is a differcnce of two first f inite differcnces Irecall Eq. (a. l2)1.

4,4 TOTAT NUMERICAT ERROR

The total nnnerit:aL error is the summation of the truncation and ror-rndofTerrors. In general,
the only way to minimize roundofT errors is to increase the number of significant f igures
of the computer. Further, we have noted that roundoff error may int:rease due to subtractive
cancellation or due to an increase in the number of computations in an analysis. In contrast,
Example 4.4 demonstrated that the truncation error can be reduced by decreasing the step
size. Because a decrease in step size can lead to subtractive cancellation or t.o arl increase in
computations. the truncartion errors are decreased as the roundofTerrors are increasetl.
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Therefore, we are faced by the following dilemma: Thc strategy fbr decreasing one
component of the total error leads to an increase of the other component. ln a cornputation,
we could conceivably clecrease thc stcp size to minimize truncation errors only to discover
that in doing so, the roundoff error begins to dominate ths solution and the total error
grows! Thus, our remedy becomes our problem (Fig. 4. l0). One challenge that we lace is
to determine an appropriate step size 1br a particular computation. Wc' would l ike to choose
a large step size to decrease the amount of calcr,rlations and roundoff crrors without incur
ring the penalty of a large truncation error. If the total error is as shown in Fig. 4. 10, the
challenge is to identi ly the point of dinrirrishing returns where roundofT error begins to
negate the beneflts of step-size reduction.

When using MATLAB, such situations are relatively uncommon bccause of its l5- to I6-
digit precision. Nevcrtheless, they sometimes do occur and suggcst a sort of "numerical un-
certainty principle" that places an absolute l imit on the accuracy that rnay be obtained using
certain computerized numerical methods. We erplore such a case irr thc lollowing section.

4.4.1 Error Anolysis of Numericol Differentiotion

As described in Sec. 4.3.4, a centered difl 'erence approximation of the first derivative can
be written as (Eq. 4.25)

EXAMPLE 4.5 R

P
c

P
b.
R

l

i r e

, f ' ( . r , ) :

True
value

./ '(t)(6) , . '---11-

6

J ( r i + t l  - . 1  ( . t i  r )

Finite-difference Truncation
approximation error

2h
f

f r

d

h ,

H

D

E

(4.28)

Thus. if the two function values in the numerator of the finite-difference approximation
have no roundoff error, the only error is due to truncation.

- I
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However, because we are using digital computers, the function values do include

roundoff error as in

. f  ( x i  t )  :  f  @ i -  )  - t  e i - t

, f  ( - r i+r)  :  . f  (x i+)  I  e i+r

where the ;'r a.e the rounded function values and the e's are the associated roundoff

errors. Substituting these values into Eq. (4.28) gives

? t .  f ( * , , r 1 -  / ( . r i  t )  ,  t ' , r l  P i  t  , / ' l ' ( € ) , - :
. l  l x i t :  

A ,  
-  

2 h  
-  

6  "

True Finite-difference RoundofT Truncation

value approximation error error

We can see that the total error of the finite-difference approximation consists of a roundoff

error that increases with step size and a truncation error that decreases with step size.

Assuming that the absolute value of each component of the roundoff error has an

upper bound of e , the maximum possible value of the difl 'erence €i+r- €iwil l be 2e . Further,

assume thtrt the third derivative has a maximum absolute value of M. An upper bound on

the absolute value of the total error can therefbre be represcnted as

e  h 2 M
< _ + _

h 6

t -

|  . ,  . [ 1 r , ,  r )  -  . / ( x r  r )
To tu l  e r ro r :  

l . / ' t_ r . r ,  
_  

nI
G.29\

An optimal step size can be determined by diffbrentiating Eq. (4.29), setting the result

equal to zero and solving fbr

('1.30)

EXAMPLE 4.5 Roundof f  ond Truncot ion Errors in  Numer icol  Di f ferent io t ion

Problem Stotement. In Example 4.4, we used a centered diffbrence approximation of

O(h]) to estimate the first derivative of the fbllowing function at,r : 0.-5,

t 'G)  :  -0. l , ra  -  0.  l5 , r r  -  0 .512 -  o.25x - l  1 .2

Peribrm the same computation starting with ft : l. Then progressively divide the step size

by a f'actor of I 0 to demonstrate how roundoff becomes dominant as the step size is reduced.

Relate your results to Eq. (4.30). Recall that the true value of the derivative is -0.9 125.

Solution. We can develop the following M-tl le to perfbrm the computations and plot the

results. Notice that we pass both the function and its analytical derivative as arguments:

f u n c L i o n  d i  f f e x  (  f u n c ,  c L f u n c ,  x ,  n )

f o r m a t  1  o n g

d f  t  r . u e = d f  u n c  ( x  )  ;

h - 1 ;

H  (  I  )  = h ;

D ( 1 )  =  (  f u n c  ( x + h )  - f u n c  ( x - h )  )  /  ( 2 * h )  ;

E  ( 1  )  = a b s  ( d f t r u e - D ( 1 )  )  ;
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i  r r  i  -  )  .  n

h = h ,  1 r j  ;
H ( r ) = 5 ;
D ( r 1 =  ( f u n c ( x + h )  f u n c ( x  h )  )  /  ( 2 * h \  ;

( . )  o . l ( i l  u F  |  ) ) ;

e n d

1 , =  [ l |  L ) '  E '  I  '  
;

f p r i n c l ( '  s r t - r p  s i z . :  f i n i t e  d i f l e r e n r - e  t 1 . u .  e r r o l ' \ n ' ) ;

l p r i n t f  ( ' % 1 4 . 1 0 f  % ] 5 . 1 4 f  \ 1 6 . l i f \ n ' , L )  ;
l  o g L o g  ( H ,  E )  ,  x l  a b e l  (  ' S L c p  S i  z c '  )  , y  L a b e l  (  ' E r r o r '  )
! , r 1 - 1 e ( ' F l a ' !  r t  l , . r . r . o r  \ / c r . i r , l . . r  S L e p  S t z . ' )

I o r m a L  s h o l f

The M-fl le can then bc run using the tbllowing commallcls:

. >  f  f = G ( x )  L l  . 1 * x ^ . 1  0 . 1 5 * r ^ 3 - 0 . ! * x ^ 2  0 . 2 5 * x + 1  . 2 ;
- >  c 1 f = ( ; r  ( x )  0 . 4 * x ^  i  0 . 4 5 * _ r ^ 2  x  ( 1 . 2 b ;

> : '  c l i f  I r - - - . x ( f  f  , r - 1  f  , 0 . ' 1  , l l )

: t r - - p  : ; i z c  f  i n i t e  c i  i 1 f  e t , - n c c  t . r ' u L r  e r r o r

I  . 0 0 0 ( 1  0 0 0 f  { l ( l  I  . 2 . t t 2 .  ! r 0 0 ( . r  r )  ( 1  0 0 0 t r r - 1  0 . I  r i - )  0 0 1 : )  0 ( r i l  0 t l  0 0

0 .  I  t l f l r r ( l 0 L l 0 r ) ( l  1 . ) .  !  1 r . , 0 0 ( ) 0 ( ) ( l ( ) l l 0 r ) |  0 . 0 ( j  t ' r ( ) t l L l t ) u t . l l l t ) ( )

0 .  r _ l  1  0 0 0 0 0 0 0 0  0 .  ! l  l 2  5 J  i 0 0 0 0 0 0 1 1 ( r  l l . 0 i l ( l 0 l  5 0 0 0 0 0 0 t )

0 . 0 ( l  1 0 0 0 0 { ) ( r 0  A . ' ) 1 2  5 0 0 l l r 0 0 0 0 0 I  0 .  U ( r 0 t )  0 O l ! t ) 0 0 0 t )

i l .  ( r ( ) 0  I  ( l o L r ( ) i ) r l  l ) .  ! )  l : 5 ( ) L r l r { l  l . j  9 ! r t r ' ,  0 .  { i ( | ) 1 ) { ) ( ) ( ) t )  3  1  i , r 9 3

0 . 0 0 0 0  1  0 0 r ) r J 0  0 .  t  l  2 1 0 0 0 r J 0 0  l  l  I  !  0 . 0 0 u t J 0 0 0 0 0 0 1 1 2

0 . 0 0 0 0 0  1  0 0 | 0  0 . 9 1  2 ! t ) 0 0 0 0 0 0 b 4 . .  0 . 0 r 1 0 0 0 0 0 0 0 0 0 5 4
( l  .  [ )  ( ) { ) 0 0 U  1 ( )  ( ] i )  0 .  r l  L - l  4 9 t j c ) ' )  q 4 5 ( r  l  I  0 . 0 r )  [ )  ( ) 0 t )  0 U 0 1 , 4 9  /

0 . 0 ( ) ( l l r 0 0 0  L  ( l o  0 .  q  1  2 5 O ( t r ) ( l  I  i  1 6 0 ' r  0 . 1 1 0 1 1 6 6 3 0 ( ) l  1 3 6  1

0 . 0 f ) 0 0 0 0 0 0  t  0  a  . 9 1 2 , 5 0 0 u  t  9  9 8 q 4 4  0 . 0 0 0 0 0 0 0 1 9 9 8 9 4

0 .  O ( r ( ) ( ) 0 0 0 ( l ( )  I  U . 9  I  2 ! 0 0 ( l  i  ' r b ( 1 0 ! t l  0 . 0 . J 0 0 0 0 0 7 5 i r 0 0 6

As clepicted in Fig.4. I I. thc rcsLrlts arc as expcctcd. At l ' irst, foundol'f is minimal andthe
r'stimatc is dclrninnted by truncation L-rror. Hcnce, as in Eq. (4.29). the total error drops bya
t a c t o r o l ' I 0 0 e a c h t i n i e w c d i v i d c t h e  s t e p b y  I 0 . H o w ' c v e r , s t a r t i n g a t / z : 0 . 0 0 0 l , w e s e e
roundol'f 'error bcgin to crcep in and crode thc rate at which the crror dirninishes. A rninimum
crror is reachcd at /r: l0 t ' . Bcyond this point. the crrol irrcrcascs as roundofTclominates.

Becuu.sc w'e afc dcaling w'ith an easily clittbrcntitble l 'unction, wc czur also investigate
whcther thesc results arc consistent with Eq. t4.30). First, we can estimatc M by evaluating
the l 'unel ion 's  th i r t l  dcr iv l r l ivc us

M : I l ' t ' t ( 1 . - 5 ) l  - l - 2 . 2 1 1 0 . . 5  1  - 0 . ( ) : 2 .  1' - . . , I

Becausc MATLAB has a prcc is ion 01 'about  l5  to l6basc- l0dig i ts ,  arrough est imateof  the
upper bound orl rounclofl 'would bc abollt €r :0.-5 x l0 r( '. Sr-rbstituting thesc values into
Eq.  (4.30)  g ives

: 4 . 3  x  l 0  
( '

which is  on the same order  as the resul t  o l  I  x  l0  
( 'ohtu ined 

wi th MATLAB.
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FIGURE 4.I  I
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4.4.2 Control of Numericol Errors

For rrrost practical cases, we do not know tlre exact error associated with numerical rnethods.
The exception, of course, is when we know the exact solution, which makes our numerical
approxitnations unnecessary. Theretbre, for rnost engineering and scientif ic applications we
must settle fbr some estimate o1'the error in our calculations.

There are no systematic and general approaches to evaluating numerical errors lor all
problems. In many ciises error estimates ale based on the expericnce and juclgnrent o1'the
engiueer or scientist.

Although error analysis is to a certain extent an art, there are several practical pro-
gramming guidelines we can suggest. First and fbremost, avoid subtracting two nearly
equal nurnbers. Loss of significance almost always occurs when this is done. Sometimes
you can rearrange or refbrmulate the problenr to avoid subtractive cancellation. If this is not
possible, you may wirnt to use extended-precision arithnretic. Furthermore. when adding
and subtracting numbers. it is best to sort the numbers and work with the srnallest numbers
first. Thrs avoids loss of significance.

Beyond these computational hints, one can attempt to predict total numerical errors
using theoretical formulations. The Taylor series is our primary tool fbr analysis of such
errors. Prediction of total numerical erroris very complicated foreven rnoderately sized prob-
lems and tends to be pessirristic. Theretbre, it is usually attempted for only srlall-scale tasks.
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The tendency is to pnsh forward with the numerical computations and try to estimate
the accuracy of your results. This can sometimes be done by seeing if the results satisfy
some condition or equation as a check. Or it n'ray be possible to substitute the results back
into the original equation to check that it is actually satisfied.

Finally you should be prepared to pertbrm numerical experiments to increase your
awareness of cor.nputatiorral errors and possible i l l-conditioned problols. Such experi-
ments may involve repeating the computations with a dif l 'erent step size or method and
comparing the results. We may employ sensitivity analysis to see how our solution changes
when we change rnodel parameters or input values. We may want to try different numeri-
cal algorithms that have dif ' tbrent theoretical foundations, arc based on dit ' terent computa-
tional strategies, or have ditferent convergence propcl't ies and stabil ity characteristics.

When the results of numerical computations are extrcmely crit ical and may involve
loss of human lit 'e or have scvere c.conornic ramiflcations, it is appropriate to take special
precautions. This may involve the uss of two or morc indepcndent groups to solve the same
problenr so that their results can be compared.

Thc roles of errors wil l be a topic of cclncern ancl analysis irr all sections of this book.
Wc wil l leave thcse investigations to spccific sections.

4.5 BI.UNDERS, MODEL ERRORS, AND DATA UNCERTAINTY

Although the following sources ol'error are not dircctly connected with most of the nu-

merical mcthods in this book, they can sometimcs have great impact on the success of a
modeling eflbrt. Thus, they must always be kepl in mind when applying nunrcrical tech-
nic;ues in thc context of real-world problcms.

4.5.1 Blunders

We are all f 'amiliar with gross errors, or blundcrs. In the early years ol'conrputcrs, erroneous
numerical results cor-rld sornetimes be attributcd to rnalfunctions ol'the cornputer itself,
Today. this source ol'ernlr is highly unlikcly. and most blundcrs rnust bc attributcd to humar
impert'ection.

Blunders can occur at any stage of the rnat.hernltical rnodeling process and can con-
tribute to all the other conlponcnts of err<lr. They can be rvoicled <-rnly by sound knowledge
of fundarnental principles and by the care with which you approach and design yoursolu-
tion to a problenr.

Blunders are usually disr-egarded in discussions ol'rrurnerical rlethods. This is no doubt
due to the f act that, try as we may, rnistakes are to a certain extent unavoidable. Horve ver, we
believe that there are a number of ways in which thcir occurrcnce can bc nrinimizecl. In par-
ticular. the good plogramnring lrabits t lrat were outl ined in Chap. 3 are extrcmely usetul for
mitigating programnring blundcr.s. ln addition. there arc usually sirnple ways to check
whethcr a particular nunrerical method is working properly. Throughout lhis book, wc dis-
cuss ways to chcck the results of nurrerical calculations.

4.5.2 Model Errors

Model error.s relatc to bias that can be ascribed to incorrrplete mathu'matical rnodels. An ex-
ample of a negligible moclel error is the f-act that Newton's second law doe s not account fbr
relativistic eff 'ects. This does not detract f iorrr the adequacy of the solution in Exanrple l. l
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4.1 Convert thc l i r l lowir
l 0 l  l 0 0 l  a n d  |  1 0 . ( X ) 1 0 1 .
4 .2  Convcr t  the  l i r l l ou i r
7 I  563 and 3. I  zl .

4.3 For computcrs. thc
thought ol '  as lhc srnir l lcsl
givcs a numbcI grcrtcr th
idtr ca1\.t drr r\o\'td .r.

S t e p  l :  S e t r  :  I .
Step 2: I l '  I  + e is less th

Otherwisc go to I
Step 3: r '  :  e/2
Step 4: Rcturrr to Stcp 2
S t e p 5 :  a - 1 x €
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because these errors are rninimal on the timc and sDace scales associatcd with the br-rngee
jumper problern.

However, suppose that airresistance is not proportional to the square ofthe fall velocity.
as in Eq. ( 1.7), but is related to velocity and other factors in a diffbrent way. If such were the
case, both the analytical and numerical solutions obtained in Chap. I would be erroneous be-
cause ofmodel error. You should be cognizant ofthis type oferror and realizc that, ifyou are
working with a poorly conceived model, no numerical method wil l provide adcquatc rcsults.

4.5.3 Dofq Uncertointy

Errors somctimes enter into an analysis because of uncertainty in the physical data on which
a rnodel is based. For instance, suppose we wanted to test the bungee jr"rmper model by hav-
ing an individual rnake repeated jurrrps and then rneasuring his or hcr velocity alicr a spccr-
fied time interval. Uncertainty would undoubtcdly bc associatcd with thcsc mcasllrcmcnts, ns
the parachutist would fl l l  taster during some jumps than during othcrs. Thcsc crrors can cx-
hibit both inaccuracy and irnpr-ecision. If our instmments consistently underestirnate or over-
estimate the velocity, wc arc dcaling with an inaccuratc. or hiascd, dcvicc. On thc other hand,
if the measurements are ranclomly high and low, we arc dcaling with a qr-rcstion ol'prccision.

Measurernent errors can bc quarrti l ' icd by sr-rnrnrarizing thc data wil lr one or more well-
choscn s(atistics lhat convcy as much inlbrrnation as possible regarding specil ' ic character-
istics ol ' thc data. Thcsc dcscriptivc statistics arc most olien selected to represent ( I) the
locat ion of ' thc ccntcr  o l ' thc d is t r ihut ion o l ' (hc data and (2)  the degree of  spread o l ' the data.
As such. they providc a rnsasurc ol'Lhc bias and irnprccision, rcspcctivcly. Wc wil l retLrrn to
(hc topic ol 'charactcrizing dala r-rncertainty when we discuss regression in Part Four.

Although you mr-lst hc cognizant o1'blundcrs, r-rroclcl errors, and uncertain clata, the nu-
rncrical rncthods uscd firr bLrilcl ing nroclels can bc stndicd, l i lr the nrost pilrt, indepcndently
ol'thcsc errors. Thcreli lrc, ftrr rlost of this hook, we wil l assr"rmc that wc havc not lnadc gross
en'ors, we have a souncl nrodel, and wc are dcalirrg with crror-l l 'cc rncusurcnrcnts. Undcr
thesc conditir)ns, wc can study nunrcrical errors witl ' toul crlrlplicating l 'actors.

PROBTEMS

Convcrt thc l i r l lowing basc-2 nurnbcrs to basc l0:
l00 l  rnd  I  10 . (X)101.
Convert the l i r l lowing basc-l{ nurnhcls to basc l0:

and 3. 1,1.
For computcrs, thc rnachinc cpsi lon c can also hc

ol  as thc smal lcst  nurnbcl  that  whcn addcd to onc

a nurnbcr grcatcr than l .  An algori thrn huscd on this
can hc dcvclr rpcd as

l : S e t s :  l .
2: I l ' I  * e is less tharr or eqrral to l .  thcn go to Stcp .5.

Olherwisc go to Stcp 3.
3:t = t :12
1: Return to Stcp 2
5 : t  =  2  x  t

Writc your own M l ' i lc bascd on this al-uori thrn to dctclnrirrc
thc nrachinc e psi lon. Val idatc thc lcsLrl t  hy comparing i t  with
thc  va luc  cornputcd  w i th  thc  bLr i l t - in  l ' u r tc t io t t  r ,1 r r .
4 .4  In  a  lnsh io r r  s in r i la l  to  Prob. ,1 .3 ,  c lovckrp  your  own
M l ' i lc to dctclnrinc thc srnal lest posit ivc rcal nunrhel used in
MAf LAts. Basc your algori thrn on the notion that yoLrr corn-
putcr wi l l  hc unablc to rcl iably dist inguish bctwccn z.cro rnd
a quant i t y  tha l  i s  s rna l l c l  than th is  nunrber .  Notc  tha l  thc
rcsult you obtain wil l  cl i l ' l 'cr l l 'onr thc valLrc conrpLrtcd with
r r , r  l i r  in .  Cha l lcnge qucs t ion :  Invcs t iga te  thc  rcsu l ts  by
taking thc base -2 logal i t l rrn ol ' the nun.rhcr gcne ratcd by your'
codc  anc l  thosc  oh ta incd  w i th  r r . r  I  m i r ; .
zl .5 Although i t  is not conrrnonly uscd, MATLAB al lows
nuntben lo bc cxpresscd in single prccisiolr.  Each valuc
is storcd in :1 hytcs with I  bit  lor thc sign, 23 hits l i )r  thc
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mantissa, and 8 bits fbr the signed exponent. Determine the
smallcst and largcst posit ive f loating-point numbcrs as u,el l
as the machine epsilon lor single precision represcntation.
Note that the exponcnts range from - 126 to 127 .
.1.6 For the hypothetical base-10 computcr in Exarnplc 4.2,
prove that the rnachinc epsi lon is 0.05.
.1.7 Thc derivative ot l( .r) = l /1 I  -  3xr):  is given by

6-r

(  I  -  3 r t ) ,

Do you cxpect to havc dif f  icult ics evaluating t lr is Ir-rnct ion
at ,r  :  0.577 1 Try i t  using 3- and , l-digit  ari thmctic with
chopping.
l . t t  (a) Evaluate thc polynornial

I : , r r - 7 - r : + u , r - o . - 1 5

irt  .r .  :  1.37. Usc 3-digit  ari thrncl ic with r:hopping. Evaluatc
thc perccnt rclativc crror.
(b) Rcpeat (a) hut cxplcss I 'as

,r '  :  (( ,r  -  7).r * 8).r 0.35

Evaluutc the clror and cornpare with part (a).
'1.9 Thc l i r l lowing inf ini tc scrics can hc used to approxi-
n la tc  d ' :

-rl .t l .{
r " - I i - t l - r

I  . l I  n' .

(a) Provc that this MaclaLtr irr \cr iL' \  rr \pi ln\ irur is a spucial
casc ol ' thc Taylor scl ics cxpansiun (Eq. 4. l3) with .r,  -

0 ancl lr : .r.
(b )  Usc  thc  1 'ay lo l  sc r ics  to  cs t in ra tc . l ' ( . r ) :  c  'a t , r i * r  :  I

l i rr .r , :  0.2. Enrploy thc zcro-. l ' i rst-,  sccond-, and third-
ort lcr velsions and contputc thc lr :r  I  l i rr  cach casc-

-1.10 The Maclaurin scrics cxparrsion l i rr  cos -r is

.rl ,rf -r(' ,rS
C ( r \ \ - l  -  I  I

)  4' .  6! t t l

S ta r t ing  w i th  thc  s imp lcs t  vc rs ion .  cos , r :  l ,  add  te rnrs  one
at a t inrc to estirnate cos(z/3). Altcr cach ncw lcrm is acldcd,
cornpLrte thc truc and appr0xirnatc pcrccnt rclltivc crrors.
Usc _vour pockr.t  calculnlor or MATLAB to dc-lcrrninc thc
trLrc valuc. Add tcrnrs unti l  thc ahsolutc valuc ol ' thc approx-
imate r-rror cst imatc I 'al ls bclow an crror cr i tcr ion conl irrm-
ing to two signif  icant I ' igures.
. l . l l  Perlbrm thc sarnc conrputation as in Prob. 4. 10, but
use thc Maclaurin scries cxpansion lbr the sin -r to cst irnatc
s in (z /3  ) .

S l n . f  :  - \

4.12 Use zero- through third-ordcr Taylor serics expanslons
to pre'dic:t.l(3) firr

I (;r) : 25-1r - 6-12 + 7x - 88

using a basc point at.r:  l .  Compute the true percent relat ive
error c, for each approximation.
zl. l . l  Prove that Eq. (4. I  I  I  is exact fbr al l  valucs of.r i f ' l (-r)=
u r z + h r + c .
4. l,l Use zero- through fourth-ordcrTaylor serics expansrons
to predict l(2) fbr f(-r) :  In "r 'using a base point at,r = l .
Computc the true percenl rclativc cror r, firl each appsoxi-
mation. Discuss thc rneaning oI thc results.
,1.15 Usc lirrward rnd backwarcl dillirencc approximations
ctf O(h) and a ccntercd diff'ercnce apprtrximation of O(ft2) to
cstimalc thc l ' i rst dcrivativc ol '  the f irnct ion cxamincd in
Prob. 4. 12. Evaluato the clcr ivat ivc at.r.  :  2 using a stcp size
c>l '  h :  0.2. Compare yoLrr rcsults with the true value of the
dcrivativc. Interprct your results on the hasis ol ' thc remain-
dcr term ol ' lhc Ti l)  l trr  se r ir 's cxpi ln)i i {)r).
. f .16 Usc a ccntcrcd di l lercncc approxirnation of 0(h2) to
cstimate the second dcrivativc of ' thc lunction examined in
Prob. -1. 12. Pcrl irrnr thc e vir luation at . \ '  :  2 using slep sizes
ol ' /r  -  0.25 and 0. 125. Curnparc your cst imatcs with thc true
valuc ol ' thr '  sccontl  dcl ivat ivc. Intcrprct youl rcsults on the
basis ol ' thc rcrnaindcr tcnr ol ' thc Taylol scrics cxl lunsion.
1 .17  l l  l . r l  <  I  i t  i s  known tha t

l .

l l

Rcpcat Prob. zl .  l0 l i rr  this scrics l i )r  -r :  0. I  .
, l . l lJ To calculatc a planct 's spacc coordirrates, wc have t0
so lvc  thc  lunc t ion

l ( r ' ) :  t  -  I - 0 . 5 s i n . ^

Lct thc basc point bc u: xi  :  r f2 <tn thc intcrval [0, r] ,
Dctclnrinc lhc highcst olclcr ' l -aylor scrics cxpansion resulf
ing in a rnaximutn crnrr ol '0.0 15 on thc speci l ' icd intcrval.
Thc error is cc;ual to thc absolutc vrluc ol ' thc di l l 'erence
bctwecn thc givcn lunction and thc speci l ic Taylor series
cxpuns ion .  (H in t :  So lvc  g raph ica l l y . )
4. 19 Consitlcr thc lirnction l'(-r) : -rr - 2.r -l- 4 on the inter-
va l  [  2 ,21  w i th  l :0 .25 .  Use thc  l i r rward ,  backward ,and
centcrcd l lni tc di l ' lcrcnce approximations l i rr  lhc f irst and
sccond dcrivativcs so as to graphical ly i l lustratc which ap-
proxinrat ion is most i lccrr l l tc. Craph al l  thrcc I ' i lst-derivafive
finitc di{l-ercncc approximations along with the theoretical,
and do thc same l ix lhe sccond clcr ivat ivc as wcl l .
4.2(l  Dcrivc Eq. (4.30).
4.21 Repcat Exanrple 4.5. but lbr l(  r) :  cos(.r) at . \  = n 16.
4.22 Repcat Exarnple 4.5, but lirr thc torwilrd divided dif-
l 'crence (Eq. .1.21 ).

r:
t
i '

R

2.1 o\

Yea

to sl

The
sent
time

1 5 1,r  _r- r '- - + - - - +
3 !  5 !  7 t



Roots ond Optim izstion

2.1 ovERvtEw

Years ago, you leamed to use the quadratic formula

*b+4F-4a i

to solve

f k ) : q f + b x + c : o

L U

(PT2.1)

:.:,,
(Yrz.2)

The values calculated with Eq. (PT2.1) are called the "roots" of Eq. (PT2.2). They repre-
senl the values olx that make Eq. tPT2.2'l equal to zero. For this reason. roots are some-
times called lhe z.eros of the equation.

Although the quadratic formula is handy for solv-
ing Eq. (W2.2), there are many other functions for
which the root cannot be determined so easily. Before
the advent of digital computers, there were a number of
ways to solve for the roots of such equations. For some
cases, the roots could be obtained by direcf methods, as
with Eq. (PT2.l). Although there were eQuations l ike
this that could be solved directly. there were, many
more that could nol. ln such instances. the onlv alter-
native is an approximate solution technique.

One method to obtain an approximate solution is
to plot the function and determinl where it crosses the
r axis. This point, which represents the r value for
which/(x) : 0, is the root. Although graphical meth-
ods are useful for obtaining rough estimates of roots,
they are limited because of their lack of precision. An
alternative approach is to use trial and error. This
"technique" consists of guessing a value of x and eval-
uating whether/(r) is zero. If not (as is almost always
the case), another guess is made, and/("r) is again eval-
uated to determine whether the new value provides a
better estimate of the root. The process is repeated until
a guess results in anfir) that is close to zero.

'  : , . ; .

l t l
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l'(;r) = o
,f"(r) < o

f(x) = o

.l'('r) = 0
f"G) > 0

FIGURE PT2.I
A funci ion of o single vorioble i l lustrci ing the dif ference belween roots ond opl imo

Such haphazard methods are obviously inefficient and inadequate for the requirements
of engineering practice. Numerical methods represent alternatives that are also approxi-
mate but employ systematic strategies to home in on the true root. As elaborated in the
following pages, the combination of these systematic methods and computers rrrakes the
solution of most applied roots-of-equations problems a simple and efficient task.

Besicles roots, another feature of lunctions of interest to engineers and scientists are its
minimum and maximum values. The detennination of such optimal values is ref'en-ed to as
optimi.ation. As you learned in calculus, such solLltions can be obtirined analyticalty by de-
termining the value at which the function is f'lat; that is, where its derivative is zero. Although
such analytical solutions are sometimes feasible, most practical optimization problems re-
quire nunrerical, computer solutions. From a numerical standpoint, such numerical opti-
mization methods are sinrilar in spirit to the root location methocls we just discussed. That is,
both involve guessing and searching fbr a location on a function. The fundamental difference
between the two types of problems is illustrated in Figure PT2.1. Root location involves
searching for the location where the function equals zero. In contrast. optimization involves
searching fbr the functiorr's extreme points.

2.2 PART ORGANIZATION

The first two chapters in this part are devoted to root location. Chapter 5 focuses on brack-
eting methods for finding roots. These methods start with guesses that bracket. or contain,
the root and then systematically reduce the width of the bracket. Two specific methods are
covered: bisection and.false position. Graphical methods are used to provide visual insight
into the techniques. Error formulations are developed to help you determine how much
computational effort is required to estimate the root to a prespecified level of precision.

Chaltter 6 covers open ruetltods. These methods also involve systematic trial-and-error
iterations but do not require that the initial guesses bracket the root. We will discover that
these methods are usually more computationally efficient than bracketing methods but that
they do not always work. We illustrate several open methods including the Jixed-point
iteration, Nev,ton-Raph.rolr, and secant methods.
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2.2 PART ORGANIZATION r r3

Following the description of these individual open methods, we then discuss a hybrid
approach called Brent's root-finding method that exhibits the reliability of the bracketing
rnethods while exploiting the speed of the open methods. As such, it fbrms the basis fbr
MATLAB's root-finding function, f zero. After i l lustrating how f zero can be used for en-
gineering and scientific problems solving, Chap. 6 ends with a brief discussion of special
methods devoted to finding the roots of polynontials. In pafticular, we describe MATLAB's
excellent built-in capabilities for this task.

Chapter Z deals with optimization.First, we describe two bracketing methods, golden-
section search and parabolic interpolation, for finding the optima of a function of a single
variable. Then, we discuss a robust. hybrid approach that combines golden-section search
and quadratic interpolation. This approach, which again is attributecl to Brent, fbrms the
basis for MAILAB's one-dimensional root-finding function:fminbnrl. After describing
and illustrating fmlnbnd, the last part of the chapter provides a brief description of opti-
mization of multidimensional functions. The emphasis is on describing and illustrating the
use of MAILAB's capability in this area: the fminsrearch function. Finally, the chapter
ends with an example of how MATLAB can be employed to solve optimization problems
in engineering and science.
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Roots: Brocketing Methods
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YOU'VE GOT A PROBTEM

edical  s tudies have cstabl ishcd that  a bungee junrpcr 's  chances of  susta in ing a
signil icant vertebrae injury increase significantly it ' the l iee-1all velocity exceeds
36 m/s afier 4 s of f iee fall. Your boss at the bungec-jumping compirny wants you

to detet'mine the ntass at which this criterion is exccedecl given a drag coeli icient of
0.2-5 kg/rn.

You know f}om your previous studies that the fbllclwing analytical solution can be
used to prcdict fall velocity as a function of t irne:

l n t f ^ t
r ' ( r ) :  , / i -  r i r n h  ' , l : - , |  r s r r

V  t , r  \ V  r t t  /

Try as you might, you cannot ntanipulate this equation to explicit ly solve fbr rn-that is,
you cannot isolate the mass on the lefi side of the equation.

T^.
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CHAPTER OBJECTIVES
Thc primary objective of this chapter is to acquaint you with bracketing mcthods fbr
finding the root of a single nonlinear equation. Specific objectives and topics covered are

' Uncierstanil ing what roots problems nrc and where they occur in cngineering and
science.

' Knowing how to determine a root graphically.
. Llnderstanding the incremental search method and its shortcomings.
. Knowing how to solve a roots problem with the bisecl.ion rnethod.
' Knowing horv to cstimate the error ol 'biscction ancl why it dif l 'crs l iom error

estimates fbr othcr types clf root location algorithms.
. Understanding lalse positicln and how it dif l 'ers fiom biscction.
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An alternative way of looking at the problem involves subtracting u(t) from both sides
to give a new function:

(  5 . 2 1

Now we can see that the answer to the problem is the value of ru that makes the function
equal to zero. Hence. we call this a "roots" problem. This chapter wil l introduce you to how
the computer is used as a tool to obtain such solutions.

5.I  ROOTS IN ENGINEERING AND SCIENCE

Although they arise in other problem contexts, roots of equations frequently occur in the
area of design. Table 5. I l ists a number of tundamental principles that are routinely used in
design work. As introduced in Chap. 1, mathematical equations or models derived fiom
these principles are employed to predict dependent variables as a function of independent
rurrr,b\t:. torii.r,g{i,:r,:'j,cr,:.'s.d pN.rm'-t--rs. \ote \hrt \r.',rlh'i.rsi.'Jrt dtpendtrt. r'*i,-
ables ret'lect the state or pertbrmance of the syster.n. whereas the pararneters represent its
propertres or composition.

An examp\e of such a mode\ is the equation for the bungee \umper's ve\ocity. If the pa-

r(m) :,1*,u n(,F') -,, ',

. i \ ' . . ' i : . . - \ . ^ \ ' : : - ^ \ j - ' - : : - ' . . ' . : . - ' - \ - : . : ' : . ) . r : ' -  . ' - ' . : : ' : r . . | i : . - . - ' . : . ' . ) : l : . : , '

parameters. That is, it is isolated on one side of the eqLral sign.
However, as posed at the start of the chapter, suppose that we had to determine the

ma.ss fbr a jumper with a given drag coefficient to attain a pre.scribed velociryt in a .set tinre
period. Although Eq. (5.1) provides a mathematical representation of the interrelationship
among the model variables arrd parameters, it cannot be solved explicit ly fbr nrass. In such
cases. /r, is said to be irrrnlicit.

5. t Fundomentol principles used in design problems

)  S 1 - : . i . .

Poromelers
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EXAMPLE 5. I

This represents a real dilemma, because many design problems involve specifyrng the
properties ol cornposition of a system (as represented by it.s pararneters) to ensure that it
perfornrs in a desired manner (as represented by its variables). Thus, these problems often
reqr-ri le the determination of implicit parameters.

The solution to thc dilemma is provided by numerical methods tbr roots of equations.
To solve the problem using numerical methods, it is conventional to reexpress Eq. (5.1) by
subtracting the dcpendent variable u frorn both sides of the equation to give Eq. (-5.2). The
va lueo f ' n i t ha t rnakcs . f (m) :0 i s , t he rc fb re , t he roo to f t heequa t i on .Th i sva luea l so rep -
resents thc rnass that solVes the clesign problem.

The lbllclwing pages deal with a variety of numerical and graphical methods fbr deter-
rnining roots of relationships suclr as Eq. (5.2). These techniclues can be applied to many
other problcn.rs conl'ronted ror-rtincly in cnginecring and science.

5.2 GRAPHICAT METHODS

A sinrple nrcthod lbrobtaining an estir.nate of the root of the ecluation ./(r) :0 is to make
a plot ol 'thc firnction ant' l observc wherc itcrosses thc.raxis. This point, which represents
the.r  va lue lbr  which . l  ( r l  :0 .  prov idcs a rough approxi r .nat ion of  the root .

The Grophicol  Approoch

Problem Stotement. Use thc graphical approach to dcternrine the nrass of the bungee
jurrper with a drag coel' l ' icicnt ol '0.25 kg/rn to havc a velocity ol '36 m/s after 4 s of free
1al l .  Notc:  Ther accelcrat ion o l 'ur i rv i tv  is  9.81 nr /sr .

Solut ion.

' '  r ' r i l  =

'  n l l l  ' '

I  f )  =

: : '  p l o t

Thc l i r lkrwing MATLAB scssion scts up a p lot  o l 'Eq.  (5.2)  versus mass:

( . ) . 2 , \ ;  q  -  c )  . l l  1 ;  v  
' \ 6 ;

1  r . .  1  ,  '  ,  ' ;

r i q f  L  ( r 1 * m 1 r ,  c : c 1 )  .  * t . a n l r  ( : ; q r

( r r r ; r , 1 1 - r ) , q r r 1 1

I  =  4 ;

1 ( . J * c d . / n l r ) * L )  ! '

- z
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The function crosses thc l lr axis between lrl0 and l50 kg. Visual inspection of the plot
provides a rough estimate of the root of 145 kg (about 320 lb). The validity of the graphi-
cal estimate can be checked by substituting it into Eq. (5.2) to yield

> >  s q r t  ( g * 1 4 5 / c c L ) * r , a n h  ( : : q r t ,  ( g * c d / 1 , i 5 ) * t , )  v

0 . 0 4 5 6

which is close to zero. I t  can also be checked by substi tut ing i t  into Eq. (S.l  )  along with the

parametcr values l iorr this exarnple to give

> > -  s q r t ,  ( q * 1 4 f i l c o )  * t , a n h ( s c T r t -  ( q * c d /  r  4 5 )  * t )

3 5 . 0 4 5 6

which is close to the desired fal l  velocity ol-36 rr/s.

Craphical techniques are i lf l imited practical value beciiuse thcy arc not vcly precise.
Howevcr, graphical methods can be uti l ized to obtain rough cstimatcs ol'roots. These esti-
mates can be ernployed as starting gucsscs lor numcrical mcthods discussed in this chapter.

Aside fiorn providing rough estimatcs ol't lre root, graphicul interpretations are usefirl f irr
understanding the ploperties ol'the l irnctions and anticipating the pitlalls of the nurnerical
rrethods. For cxample, Fig. -5.1 shows a number of'ways in which roots can occur (or be
absent) in an interval prescribcd by a lowcr bound ,r1 and an uppcr bound .r,,. Figurc -5. lb dc-
picts the case where a singlc root is brackctcd by ncgative and positive values o1'./ (r). How-
eve r ,F ig .5 . l r l ,whe rc  / ( - r r ) and . / ' ( - r , , ) a rea l soonoppos i t es idcso f  t he . rax i s , shows th rcc
roots occurring within the interval. In general, if / (.rr) and ./ (-r,,) havc oppositc signs, thcrc
are an odd number of roots in the interval. As indicatcd by Fig. -5. la ancl r ', i l '  l  (rr ) and .f (.r,, )
have the sarnc sign, there are either no roots or an even nunrbcr ol 'roots bctwecn thc values.

Although thcse gcncralizalions arc usually lrue, lhere are cases where thcy do not holcl.
Forcxarnple,  t i rnct ions that  arc tangcnt ia l  to  thc, rax is  (F ig.  -5.2a)  and d iscont inuous l 'unc-
t ions (F ig.  5.2b)  can v io late thesc pr inc ip lcs.  An cxarnplc o l 'a  I 'unct ion that  is  tangent ia l  t t l
thc ax is  is  the cubic equat ion . /  ( - r ' )  :  ( r  -  2)( . r '  -  2) (x  -  4) .  Not icc that , r  :  2  tnakcs twtr
terms in th is  polynomial  cqual  to  zero.  Mathernat ica l ly , . r :2  is  ca l led ' . t  t r ru l t i l t lc  nr t t .
Although they are bcyond the scope of this book, there are special tcchniqr"rcs that arc
expressly designed to locate rnultiple roots (Chapra and Canale. 2002).

The cxistencc of cases of thc type depictcd in Fig. -5.2 nrakes it dif i icult to dcvelop tirol-
proof computer algorithms guaranteed to locate all the roots in an interval. Howevcr, whcn
used in conjunction with graphical approaches, the rnethods described in thc l ir lkrwing scc-
tions are extrerrely useful for solving rnany problerns confl 'onted routinely by cnginccrs,
scientists, and applied rnathematicians.

5.3 BRACKETING METHODS AND INITIAT GUESSES

If you had a roots problem in the days befbrc computing, you'd often be told to use "trial and
error" to come up with the root. Thiit is, you'd repcatcdly make guesses unti l the function
was sufTiciently close to zero. The process was grea(ly lacil i tated by the advent of sofiware
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FIGURE 5 . I
I lustrolion of cr number of generol woys thoi o rool moy
occur rn on intervol prescribed by o lower bound .r, ond
on upper bound x,,. Poris (oJ ond (c) indicoie thct if both
,/ (rr) ond ./(r,,) hove the some sign, either there wil i
be no roots or there wil l be on even number of rools
wi th in the in tervol  Por ts  (b)  ond (d)  ind icote thot  l f  lhe
funcl ion hos d i f ferent  s igns o i  the end points,  ihere wi l l
be on odd number of rools in the intervol.

(bl

FIGURE 5.2
l l lustrot ion of some exceptions lo lhe generol coses
depicted in Fig. 5. 1 (o) Mult iple rootsfhot,occur when
the function is tongentic to the -r oxis. For this cose,
o l ' h . ,  ' n h  l n c  e " d  n n i n l s  n r ' p  r f  n n n o . i l e  s ; . n <  i h o ' c  o r e

on even number of oxis inlercepi ions for the inlervol.
(b) Discontinuous funci ions where end points of opposi ie
s ig^  o 'oc [e t  on  even nur rber ,o [  roo 's . ,Spec  io l  s t ro 'eg ies
^ r o  , o ^ ,  

" , o l  
l n r  n o l a r m r n , n n  J h o  , ^ ^ r .  [ ^ ,  t h o a ^  . - . o .
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tools such as spreadsheets. By allowing you to make many guesses rapidly, such tools can
actually make the trial-and-error approach attractive fbr some problems.

But, for many other problems, it is preferable to have methods that come up with the
correct answer automatically. lnterestingly, as with trial and error, these approaches require
an initial "guess" to get started. Then they systernatically home in on the loot in an itera-
tive fashion.

The two major classes of methods available are distinguished by the type of init ial
guess. They are

. Brttcketing method.s. As the namc implies, thesc are based on two initial guesses that
"bracket" the root-that is. are on either sidc of the root.

. Opert methotls. These methods can involve one or more init ial guesses, but there is no
need for them to bracket the root.

For well-posed problems, the bracketing methods always wrlrk but converge slclwly
(i.e., they typically take more iterations to home in on the answer). In contrast, the open
rnethods do not always work (i.e., they can divergc), but when they do they usually con-
verge quicker.

In both cases, init ial guesses are required. These may naturally arise l iom the physical
context you are analyzing. However, in other cases, good init ial guesses may not be obvi-
ous. In such cases, automated approaches to obtain guesses would be useful. The following
section describes one such approach, the incremental search.

5.3.1 Incremenlo l  Seorch

When applying the graphical technique in Example -5.1, you observed that / '(.r) changed
sign on opposite sides of the root. In general, if ./(x) is real and continut'rus in the interval
from x7 to,r,, and .l (,r7) and f (x,,) have oppositc signs, that is,

/ ( - r1) / ' (x , , )  < 0 (5.3)

then there is at least one real root between .r1 afld,r,,.
Ircrenrental seun:h methods capitalize on this observation by locating an intcrval

where the function changes sign. A potential problcm with an incremental scarch is the
cl.roice ol'the incrcment length. If the length is too srnall, the search can be very time con-
suming. On tho other hand, if the length is too great, there is a possibil i ty that closely
spaced roots might be misscd (Fig. 5.3). The problem is compounded by the possible exis-
tcnce of multiple roots.

An M-fi le can be developedr that implements an incremental search to locate the roots
of a firnction f L.rnc within the range from xmin to xmax (Fig. 5.4). An optional argument
ns allows the user to specify the number of intervals within the range. lf ns is ornitted, it
is automatically set to 50. A f or: loop is used to step through each interval. In the event that
a sign change occurs! the upper and lower bounds are stored in an array xb.

' This lirnction rs a rnoditled version of an M-lilc originally prcscntcd by Recktenwald (2000).



FIGURE 5.3
Coses where roots could be missed becouse the incremenlol length of
too lorge Note thot  the lost  root  on lhe r ight  is  mul t ipe ond wouid be
incremenl  lenglh.

lhe seorch procedure is
missed regordless of the

f u n c t i o n  x b  =  i n c s e a r c h ( f u n c , x m i n , x m a x , n s )

?  i n c s e a r c h :  i n c r e m e n t a l  s e a r c h  r o o t  f o . - a L o r

%  x b  -  i n c s e a r c h  (  f u n c ,  x m i n ,  x m a x ,  n s )  :

%  f i n d s  b r a c k e t s  o f  x  t h a t  c o n t a i n  s i g n  c h a t t g e s

?  o f  a  f u n c t i o n  o n  a n  i n t e r v a l .

?  i n p u L :

%  f u r L c  -  n a m e  o f  f u n c t - i o r r
Y  x n i  - ,  x m a x  c n d p o i t r ( s  o I  i n r e r v a ]

?  n s  =  n u m b e r  o f  s u b i n t e r v a l s  ( d e f a u l t  =  5 0 )

%  o u t p u L :
%  x b ( k , 1 )  i s  t h e  l o w e r  b o u n d  o f  L h e  k t h  s i g t n  c h a t r g e

2  x b  ( k , 2  )  i s  t i r e  u p p e r  b o u n d  o f  t - h e  k t h  s i g n  c h a n g e

%  I f  n o  b r a c k e f . s  f o u n d ,  x b  -  L l .

i f  n a r g i n  <  4 ,  n s  =  5 0 ;  e n c l  % r f  n s  b l a n k  s e t  t o  5 0

Z  I n c r e m € n t a l  s e a r c h

x  =  I  i n s p a c e  ( x m r - n ,  x m a x ,  n s  )  ;
f  -  f u n c  ( x )  ;
n b  =  0 r  : { b  -  i  I  ;  e . x b  i s :  n u l l  u n l e s s  s i g n  c | r a n q e

f o r  k  =  1 ;  l e n g t h  ( x )  - 1

i f  s i g n ( f  ( k ) )  ^ - -  s i g n ( f  ( k + - L ) )  l i c h e c k  f o r  s i g n

n b  =  n b  +  1 ;
x b r n l , l )  .  x { k l ;

x b ( t ' t b , 2 )  =  x  ( k + 1 ) ;

e n d
e n d
j f  i s e m p t ) , ,  ( x b )  ? d i s p l z r - v  t h a t  n o  b r a c k e t s  w e r e  f  o u n d

d i s p  (  ' n o  b r a c k e t s  f o r i n d '  )
d i s p  (  ' c h e c k  r n t e r v a l  o r  i n c r e a s e  n s '  )

d i s p ( ' n r : m b e r  o l  b r a c k e t s : ' )  % d r s p L a y  n u m b e r  o f  b r a c k e t s

d i s p  ( n b )

end

FIGURE 5.4
An M-fi le fo irnplemenl on incrernelrtcl  seorch

d e t  e c  t  e d

c h a n q e

r20

EXAMPLE 5.2



5.3 BRACKETING METHODS AND INITIAL GUESSES t2l

EXAMPLE 5.2 Incrementql  Seorch

Problem Stotement. Use the M-fl le i ncsearch (Fig. 5.a) to identify brackets within the
interval [3, 6] fbr the function:

J G) :  s in(  l0 . r )  *  cos(3.r )

Solution. The MATLAB session using the detault number of intervals (50) is

> >  i n c s c a r c h ( @ r  s i n ( 1 0 * x )  + c o s  ( 3 * x ) , 3 ,  6 )

n u m b c r  o f  p o s s i b l c  r o o L s :

5

a fnS  -

3  . 2 1 , 4  9  t . 3 0 6 1

3 . 3 0 6 1  3 . 3 6 ' . t 3

3 .  / 3 4 - t  3 .  t 9 \ 9

4 . 6 5 3 1  4 . ' - t 1 4  j ,

\ . { : i 2  l  a . 6 9 3 9

A plot ol 'Eq. (5.4) along with thc root Iocations is shown here.

(s.4)

J ? E 5.5

Although five sign changes are dctccted, because the subintervals are too wide, the func-
tion rnisses possible roots at .r j 4.25 and -5.2. These possible mots look l ike they might be
doLrble nrots. However, by using the zoom in tool, it is clear that each represents two real
roots thal are very closc together. The f 'unction can be run again with more subintervals
with thc result that all nine sign changcs arc located

> : .  i n c s e a r c h  ( t l x  s  i n  ( ' l  O * r ) + c o s  ( 3 * x ) , 3 ,  b , 1 0 0 )

n u m b e r  o f  p o s s i b l c  r o o L s :
9

3  . 2  4 2  4  3  . 2 1 2 . 7
3 . 3 5 3 6  3 . 3 9 3 9

4.5
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The lbregoing example i l lustrates that brute-lbrce nrethods such as incremental search
are not lbolproof. You would be wise to supplement such automatic techniques with any
other inlbrnration that provides insight into the location ol'the roots. Such intbrrnation can
be fbuncl by pkrtt ing lhe function and through Lrnderstandinc the physical problern frorn
which the equat ion or ig inated.

5.4 BtSECT|ON

The bisection ntctlu)d is a variation of the incremental search rnethod in which the interval
is always dividecl in hali. If a function changes sign over itn interval, the firnction valueat
the rnidpoint is evaluated. The location of the root is then determined as lying within the
subinterval where the sign change occurs. The subinterval then beconres the interval f ix
the next iteration.'f lre process is lepeated unti l the root is known to the reqr"rired precision,
A graphical depiction of the method is provicled in Fig. 5.5. The lbllorving example goes
through the actual cornputations involved in the method.

EXAMPLE 5.3 The Biseci ion Method

Problem Stotement. Use bisection to solve the sarne problenr approached graphically in
Exa rnp le  5 . l .

Solution. The first step in bisection is to guess two values of the unknown (in the present
problenr. rr) that give values l 'or t 0n') with dil lelent sisns. Frorn the graphical solution in
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FIGURE 5.5
A grophicol depicl ion of the bisection method This ploi corresponds to the f irsi  four i terot ions
trom Er.omple 5 3

Example 5. l, wc can see that the t 'unction changes sign between values clf -50 and 200. Thc
plotobviouslysuggestsbet ter in i t ia l  guesses,say l40and I50,but t i l r i l lust rat i 'u ' t 'purposr- ' \
lct 's assume we clon't have the bencfit of the plclt and havc made conservative guesses.
Thcrcfble, the init ial estimatc of the rtx>t.r,. l ies at thc midpoint of the interval

.50 + l(x)
_ |  - )<

./.

Note that tlre exact value of tlre root is 142.1316. This means that thc value of 125 calcu-
lated here has a true Dercent relative error of

, . , - lr , / r -  
i

142.1316 - r2-s I
l x 1 0 0 ? 4 : 1 2 . 4 3 4 / ,

112.7316 I

Next wc compute the product of the function value at the lower bound and at the midpoint:

I  ( 50 )  I  ( 12 -51  :  - 4 .519 ( -0 .4091  :  1 .371

which is greater than zero, and hence no sign change occurs between the lower bound and
the midpoint. Consequently, the root must be locatecl in the upper inte rval betweerr 125 and
200. Therefbre, we create a new interval by redefining the lower bound as 125.
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At this point, the new interval extends fronr xl : l2-5 to r, :200. A revised l 'oot esti-
rnate cau then be calculated as

125 + 20t)
2

r vh i ch rep resen tsa t ruepe rcen te r ro ro f  l e ,  l : 13 .85%.Thep rocesscanbe repea ted toob -
tain refineil estinrates. For example,

. f  ( t t  s l .1  11 62.-5;  :  -0.409(0.3.59)  :  - ( t . |1 l

Therelbre. the roo( is now irr the lower interval between 125 and 162.-5. The upper bound
is rede[ined as l 62.5. ancl the root cstinrate tirr the third iteration is calculated as

125 *  162.5
: |  43.7-5)

, which represents a percent relative elrur of a, : 0.101)()(,. The nrethod can be repeated unti l
i  the result is accurafe enough to satisty your needs.

We ended E,xarnple 5.3 with the statement that the rnethod could be continued to obtain
a lel ' ined r'stimate of the rrxrt. We rnust now develop an olr. jective criterion l irr deciding when
to terminate the rnethod.

An init ial suggestion rnight be to end the calculation when the errrlr l 'al ls below some
plcspeci f  ied level .  For  instance.  in  Exarnple 5.3.  thc t rLre re lat ive errordropped f rom l2.43
t<t0.J09(,4 during the coulse of'the cornputtt ion. We rnight clecide thtt we should ternrinate
when the error drops below. say. 0.-5%,. This strategy is l lawed because the error estlmates
in the exanrple wer-e based tlrr knowledge ol'the true r(x)t ol 'the firnction. This woulcl notbe
the casc i r r  an actuul  s i ( r , rat ion becrusc there would bc no point  in  us ing the rncthod i f  we
tulrcady knew the roo(.

There l irre. wc recluire an error estirnate thal is not contingerrt on lbreknowledge ol'the
roo1.  One way (o c lo th is  is  by r 's t i rnrLt ing urr  lpproxi rnrr te percent  le lat ive erro l ' i ls  in  I recal l
Eq.  (4.5)  |

1_r1c' _ ..y. ' l i l  1
lo ' , ' l : l f f ] l (x )%'  (55)

whc.re .r]1"" is the loo{ l i rr  the present i terat ion and -rf ' l ' l  is the rool l ionr the plevious i tem-

t ion .  When c , ,  becorncs  less  than a  prespec i l ' i ed  s topp ing  c r i te r ion  e , ,  the  conrputu t ion  is

Ic i l l r i i l u lc (1 .

EXAMPLE 5.4 Error  Est imqtes for  Bisect ion

Problem Stotement .  Cont inue Exarnple 5.3 unt i l  the applox i rnate error  ta l ls  below a
s(oppinc cr i ter ior t  o l '€ . ,  :0 . -5%. Use Eq.  ( -5. -5)  to  conr [ ]ute the errors.

So lu t i on .  The resu l t so l ' t he f i r s t two i t e ra t i ons lb rExa r rp le5 .3were  l 25and  l 62 .5 .Sub -
st i tu t ing these values in to Eq.  1-5. -51 y ie lds

l r A l  5 - r ? s l
,  lur , ,  l :  # l l \ l0o/ , , :23.08c/o

I 6 t . 5  I
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Recall that the true percent relative eror for the root estimate of 162.5 was 13.85%. There-
fore, le,, I is greater than le , I . This behavior is manifested for the other iterations:

Iterolion le,l ("/"1 le,l l7"lxlxuxt

50
1 2 5
1 2 5
1 2 5
134  375
t39 a625
l4t  4463
t 4 2  5 7 B l

204
204
t 6 2  5
I 4 3 . 7  5
143.75
143 75
143 75
143 75

1 2 5
t 6 2  5
143 75
134  375
r 39 0625
14t  4063
|42  578 t
| 4 3  t 6 4 )

23  0B
1 3  4 4
6 9 8
3 3 7
) 6 6
o 8 2
o 4 l

1 2  4 3
t 3  8 5
a 7 l
5 8 6
2 5 8
0 9 3
0 i l
0 3 0

1e

+-1

C S

be
V C

he
al l

I n

)n

ra-
i s

Thus after eight iterations le,, l f inally falls below €., :0.5c/o, and the computation can be
terminated.

These results are summarized in Fig. 5.6. The "ragged" nature of the true error is due
to the fact that, fbr bisection, the true root can l ie anywhere within the bracketing interval.
The true and approximate errors are far apart when the interval happens to be centered
on the true root. They are close when the true root firlls at either end of the interval.

FIGURE 5.6
Errors for lhe bisection meihod. True ond opproximcte errors ore piotted versus the number
of iterolions.

Although the approximate error does not provide an exact estimate of the true error,
Fig. -5.6 suggests that la,, l captures the general downward trend of le, l. In addition, the plot
exhibits the extremely attractive characteristic that le,, l is always greater than le, l. Thus,

o  1 n

.z
o

(t)

r l
o r

Approximate error, le,, l
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when le,, I falls below s' the computation could be terminated with confidence that the root
is known to be at least as accurate as the prespecified acceptable level.

While it is dangerous to draw general conclusions from a single example, it can be
demonstrated that le,, l will always be greater than le, l for bisection. This is due to the fact
that each time an approximate root is located using bisectiofl oS.r,. : (xt * x) /2, we know
that the trlle root lies somewhere within an interval of A-r : xu - xt. Therelbre, the root
must l ie within *Ax/2 of our estimate. For instance, when Example 5.4 was terminated,
we could rnake the definitive staternent that

1.13.7500 - 142.5781
x, :  143.1641 + :  I '13 . l64 l  +  0 .5859

In essence, Eq. (5.5) provides an upper bound on the true error. For this bound to be
exceeded, the true root would have to fall outside the bracketing interval, which by defini-
t ion could nevet occur fbr bisection. Other roollocating techniques do not always behave
as nicely. Although bisection is generally slower than other methods, the neatness of its
error analysis is a positive feature that nrakes it attractive for certain engineering and
scientif ic applications.

Another benefit of the bisection method is that the number of iterations required to at-
tain an absolute enor can be computed u priori-that is, before starting the computation.
This can be seen by recognizing that before starting the technique, the absolute error is

s l l : r ! l - r ro :AxO

where the superscript designates tlre iteration. Hence, before starting the method we are at
the "zero iteration." After the first iteration. the error becomes

, A.r"
F ' - _

" 2

Because each succeeding iteration halves the error, a general fbrmula relating the error and
the nurnber o l '  i terat ions r  is

A-rt '
E " - -(  . \D

L

If C,,.,1 is the desired error, this ecluation can be solved fbri

log(L.r\tf E,,.,1)

log 2
:,"r,(#)

Let's test the formula. For Example -5.4, the init ial interval was A.ro : 200 - 50 : 150.
After eisht iterations. the absolute error wAS

t r - 1r43.7s00 - 142.518t1
= 0.58-59

We can substitr-rte these values into Eq. (5.6) to give

n :  l o g : ( 1 5 0 / 0 . 5 8 5 9 ) : 8

I MATLAB provides the I oq2 function to evaluate thc base-2 logarithm directly. lf the pocket calculator or
computer language you are usinl does not include the base-2 logarithm as an intrinsic function. this etluation
shows a handy way to computc it. ln general, log,,(,r) = log(_r)/log(b).

(5.6)

-.------
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Thus, if we knew beforehand that an error of less than 0.5859 was acceptable, the formula
tells us that eight iterations would yield the desired result.

Although we have emphasized the use of relative enors for obvious reasons, there will
be cases where (usually through knowledge of the problem context) you will be able to
specify an absolute error. For these cases, bisection along with Eq. (5.6) can provide a use-
ful root location algorithm.

5.4.1 MATTAB M-f i le !  b isecr

An M-fi le to implement bisection is displayed in Fig. 5.7. It is passed the function (func)
along with lower (x1 ) and upper (xu) guesses. ln addition, an optional stopping criterion (es)

FIGURE 5.7
An MJr le to implement  the b isect ion method.

f  u n c t  i o n  I  r o o t ,  e a ,  i t . e r  I  - b i  s e c r  (  f  u n c ,  x l ,  x u ,  e s ,  m a x i t ,  v a r a r g i n )
%  b i s ; e c t :  r : o o t  I o c a t i o n  z e r . o e s
?  l r o o t , e a ,  i t e r l = b i s e c 1 , ( f u n c , x l , x u , e s , m a x i t , p 1 , p 2 ,  .  . .  )  :
%  u s e s  b i s e c t - i o n  r n e t h o d  t o  f i n d  t h e  r o o t  o f  f u n c
?  i n p u L :
%  f u n c  :  n a m e  o f  f u n c t i o n
t s  x l  ,  x  r  l o u e r  o r r d  . p l , F r  g u e s : - s

%  e s  =  d e s i r e d  r e l a t i v e  e r r o i :  ( d e f a u l t  =  0 . 0 0 0 1 % )
%  m a x i L  =  m a x i m u m  a l l o w a b l  e  i t e r a t i o n s  ( d e f a u l  t  =

%  p l , p ? , ,  . . .  =  a d d i t i o n a l  p a r a m e t e r s  u s e d  b y  f u n c
%  o u t p u t :
?  r  o o t  , .  r e a  L  r o o t
?  e a  =  a p p r o x i m a t e  r e l a t i v e  e r : r o r  ( t )

?  r t e r  :  r l u m b e f  o f  i t e r a t i o n s

i f  n a r g i n < 3 , e r r o r ( ' a t  l e a s t  3  i n p u t  a r g u r n e n t s  r e q u i
t e s t  -  t u n c  ( x l . , v a r a r g i n {  :  }  )  * f u n c ( x u , v a r a r g i n {  :  }  )  ;
i  f  t e s t > 0  /  € r r o r  (  ' n o  s i  g n  c h a n g e '  )  ,  e n d
i f  n a r g i n < 1  I  i  s e m p t y ( e s ) ,  e s - 0 . 0 0 0 1 . ; e n d
: l f  n a r g i n < 5  i  l s e m p t y ( m a x i t ) ,  m a x i t = 5 0 ; e n d
i t c r -  -  0 ;  x r  =  x l ;
w h i l e  ( l )

x r : o l d  =  x r ' ;
x r ' -  ( x 1  + . x u ) / 2 ;
i L e r  =  i L e r  +  1 ;
i  f  x r  - =  0 ,  e a  =  a b s  (  ( x r  ,  x r o l d )  / x r )  *  1 . 0 0 ;  e n d
t e s t  =  f u n c  ( x l , v a r a r g i n { :  }  )  * f u n c  ( x r , v a r a r g i n { :  }  ) ;
i f  t e s t  <  0

X U  =  X I ;

e l s e i f  t e s t  > ' 0

x f  -  x r ;

e l  s e

e a  =  0 ;

e n d

i  f  e a  < =  e s  i t e r  > =  m a x i t , b r e a k , e n d

e n d

l : O O t  =  X l - ;

s 0 )

r e d ' ) , e n d
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@,, -)

and maximum iterations (maxit) can be entered. The function first checks whether there
are sufficient arguments and if the initial guesses bracket a sign change. If not, an error
message is displayed and the function is terminated. It also assigns detault values if maxit
and es are not  suppl ied.  Then a whi le . . .break loop is  ernployed to implement  the
bisection algorithm until the approximate error falls below es or the iterations exceed
max i  t .

We can employ this function to solve the problem posed at the beginning of the chapter.
Recall that you need to determine the mass at which a bungee jumper's fiee-ftrll velocity
exceeds 36 rrls after 4 s of free fall given a drag coefficient of 0.25 kg/rn. Thus, you have t0
find the root of

f  (m):  \ ,1 - 3 6

In Example 5.1 we generated a plot of this function versus rlt lss and estimated that the root
fell between 140 and 150 kg. The bi sect f unction from Fig. 5.7 can be used to determine
the root as

> >  f m - G ( r n )  s q r L  ( 9 . 8 1 * m / 0 . 2 5 )  * t a r r h ( s q r t ,  ( 9 . 8 1 * 1 1 . 2 5 l m )  * 4 )  3 6 ;
> >  [ m a s s  e a  i  t e r ]  = b r s e c t  (  f m ,  4 0 , 2 0 0  )

m c l S S  =

1 4 2 . 1 3 ' 1 1

5 . 3 4 5 0 e  0 O l r

2 . r

Thus, a result of nr : 142.1311 kg is obtained after 2l iterations with an approximate rela-
t i vee r ro ro l ' € , , : 0 .0000 -534 -50 /o .wecansubs t i t u te the roo tback in to the l ' unc t i on tove r i f y
that it yields ar value close to zero:

> : '  f m ( m a s s )

4 . 6 0 8 9 c  0 0 7

5.5 FArSE POSTTTON

False position (also called the l inear interpolation method) is another well-known bracket-
ing method. It is very similar to bisection with the exception that it uses a diffbrent strategy
to come up with its new root estimate. Rather than bisecting the interval, it locates the root
by jo in ing. l ( r r )  and. l ( , r , , )  wi th a st ra ight  l ine (F ig.5.8) .  The intersect ion o l ' th is  l ine wi th
the r axis represents an improved estimate of the root. Thus, the shape of the function in-
fluences the new root estimate. Using similar triangles, the intersection of the straight l ine
with the r axis can be estimated as (see Chapra and Canale, 2002, for details),

f (.r,,)(x1 - r,,)

.f Gt) - .f (.Y,,)
(5.7)
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(5.7)

FIGURE 5.8
Folse posi t ion

This is the.fhl,sc-po,sit ion.l itrmula. The vah-re of ,r,, computed with Eq. (-5.7) then re-
p laccs whichcver  of  the two in i t ia l  gucsscs, . r /  or . r , , ,  y ie lds a l i rnct ion valLre wi th the same
sign as l (.r, ). In this way the values of .r7 andr,, always bracket thc true root. The proccss
is repeated unti l the loot is estimated adequately. Thc algorithm is identical tcl the one for
b isect ion (F ig.  5.7.1 wi th thr :  cxcept ion thar  Eq.  (5.7)  is  used.

EXAMPLE 5 5 The Folse-Position Method

Problem Stotement. Use lalse position 1o solvc the same problern approachecl graphi-
cal ly  and wi th b isect ion in  Exanrples 5.1 ancl  -5.3.

Solut ion.  As in  Example -5.3,  in i t ia tc  the computat ion wi th l luesses of  . r1 -  50 and
.r,, : 200.

Fi rs t  i tc lu t ion:

.rt : 50

'r,, : 200

. \ ,  :200 -

./ (.ri) : -'4.519381

.f  ( . r , , )  -  0.860291

0.rJ6029 r(50 - 2(n)
:  l 7  6 . 2 1 1  l-4.519381 -  0.860291

which has a true rclative error of 23.5clo

Second iteration:

. l  ( . r r )  f  6 , )  :  -2 .592132
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Therefbre, the root lies in the first subinterval, and r,.
iteration. r,, : 116.2713.

becomes the upper limit for the next

, . - { n .f (rt) : -4.519381

.r,  :  176.2113 t 'Q,) :0.566114

0.566t 74(50 - t ]  6.2113)
. r ,  :  116 .2773 : t  62.3828-1519381 - 0.566174

which has true and approximate relative errors of 13.16a/c and 8.-56olc, respectively. Addi-
tional iterations can be performed to refine the estimates of the root.

Although fir lse position olien perfbrms better than bisection, there are other cases
where it does not. As in the fbllowing exarnple, there are certain cases where bisection
yields supericlr results.

EXAMPLE 5.6 A Cose Where Bisect ion ls  Preferoble to Folse Posi t ion

Problem Stotement. Use bisection and lalse position (o locate the root of

' l ( r )  : ' r " ' - l

between - r  :  0  rnd 1.3.

Solut ion.  Usins b isect ion.  the resul ts  can be sunrmar ized as

Iterotion e" ("/"1 e, (o/olr-X,,xt

l
2
,J

4
5

u
O (r5
0 975
o 975
o 975

3
,J

J

1 3 7  5
45625

0 6.5
4 975
I  1 3 7 5
) 05625
I  0 t  5625

r 0 0  0
3 3 3
1 4  3
7 7
4 A

35
2 5

t 3 B
5 6

6

Thus, alier l ' ive iterations, the true error is reduced to less than 27r,.
very diffbrent outcome is obtained:

Frlr false position, a

herotion .r,xt e. (Y"l e,(7"1

3
3
3
3
3

I
2
3
4
5

0
a a943O
0  t B t z 6
o  26287
0  3 3 8 I  I

0 09430
a  t B l 7 6
o  26287
0 3 3 8 I r
a 40788

4 8 I
3 0 9
2 2 3
l 7  l

9 0 6
B I B
7 3 7
662
592

After f ive iterations, the true error has only been reduced to about 59%. Insight into
these results can be gained by exarlining a plot of the l 'unction. As in Fig. -5.9. the curve
violates the prernise on which fhlse position was based-that is, if . l(.rr) is much closerto
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35
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r 3  8
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t 6

;r t lon,  a
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9 0 6
B r  8
7 3 7
66 .2
5 q 2
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FIGURE 5.9
Pot  of  .F(x)  :  x l r t  1 ,  i l lust rot ing s low convergence o{  the fo lse posi i ion method

zero than f(x"), then the root is closer to x1 than to x,, (recall Fig. 5.8). Because ofthe shape

of the present function, the opposite is true.

The fbregoing exarrrple i l lustrates that blanket generalizations regarding roclt-location

rnethods are usually not possible. Although a method such as lalse positiorr is often supe-

rior to bisection, there are invariably cases that violate this general conclusion. Therefbre,

in addition to using Eq. (5.5), the results should always be checked by substituting the root

estimate into the original equation and determining whether the result is close to zero.

The example also i l lustrates a major weakness of the false-position method: its one-

sidedness. That is, as iterations are proceeding, one of the bracketing points wil l tend to

stay fixed. This can lead to pool'convergence, particularly fbr functions with significant

curvature. Possible remedies for this shortcoming are available elsewhere (Chapra and

Canale.2002).
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'il " i i ' i * , i r y ' i i " " , . l f , i e i { r l :{ '  
," '  ,,,,SY GREENHOUSE GASES AND RAINWATER

Bcckground. It is well documented that the atmospheric levels of several so-called
"greenhouse" gases have been increasing over the past 50 years. For example, Fig.5.10
shows data for the pafiial pressure of carbon dioxide (COr) collected at Mauna Loa, Hawaii
from 1958 through 2003. The trend in the data can be nicely fit with a quadratic polynomial,3

pco , :0 .011825 ( r  -  1980 .5 )2  +  1 .356975 ( t  -  1980 .5 )  +339

where pgo, - COz partial pressure (ppm). The data indicate that levels have increased a
little over 19Vo over the period from 315 to 376 ppm.

One question that we can address is how this trend is affecting the pH of rainwater,
Outside of urban and industrial areas, it is well documented that carbon dioxide is the pri-
mary determinant of the pH of the rain. pH is the measure of the activity of hydrogen ions
and, therefore, its acidity or alkalinity. For dilute aqueous solutions, it can be computedas

pH: - log,n[H+]  6.s)

where [H+] is the molar concentration of hydrogen ions.
The following five equations goverx the chemistry of rainwater:

^ , ,  IH*J lHCOi I
K r - 1 0 " '  "  ( 5 . 9 )' 

Knpco.

1960 1980 1990 2000 2010

FIGURE 5.IO
Averoge onnuol port iol  pressures o{ otmospheric corbon dioxide (ppm) meosured ol Mouno Loo,
Howoi i .

I In Part Four, we will learn how to determine such polynomials.

w
ul

tr
st

l (
rh
fc

a

5r
is
pc

A
tr

AI

fa

Sr

Er



5.6 CASE STUDY

continued

tH+l lcol2l
1 l l : -- 

tHcotl
K,,, : [H-][OH-]

, r :  fu#+ tHcot l11coJ2 l'  
1 0 6

0: tHcoil  + 2tco;21+ toH-l - [H+]

(5.10)

(5 . r  l )

(5. r 2)

(s .1  3 )

(5. r  4)

(5. I  s)

(5 .  I  6 )

where Ks : Henry's constant, and K1, K2, and K,, are equilibrium coefficients. The five
unknowns utec7 : total inorganic carbon, tHCOtl: bicarbonate, tCO;21 : carbonate.

[H*] : hydrogen ion, and tOH-l : hydroxyl ion. Notice how the partial pressure of CO2
shows up in Eqs. (5.9) and (5.12).

Use these equations to compute the pH of rainwater given that K n =

l0-1 46,  K1 :  lQ-6 3,  Kz -  10- to: .  and K,  :  lQ- la.  Compare the resul ts  in  1958 when
the pgo. was 3 l5 and in 2003 when it was 375 ppm. When selecting a numerical method
for your computation, consider the following:

. You know with certainty that the pH of rain in pristine areas always falls between 2
and 12.

. You also know that pH can only be measured to two places of decimal precision.

Solution. There are a variety of ways to solve this system of five equations. One way
is to eliminate unknowns by combining them to produce a single function that only de-
pends on [H+1. To do this, f irst solve Eqs. (5.9) and (5.10) for

tHcotl: -fu, Kupco,

rcor2l: {#F

Subst i tu te Eq.  (5.14)  in to (5.15)

tco;21 : 
ffi*rnro"

Equations (5.14) and (5.16) can be substituted along with Eq. (5.11) into Eq. (5.13) to give

(s.  l7)

Although it might not be immediately apparent, this result is a third-order polynomial in

[H+]. Thus, its root can be used to compute the pH of the rainwater.
Now we must decide which numerical method to employ to obtain the solution. There

are two reasons why bisection would be a good choice. First, the fact that the pH always
falls within the range from 2 to 12, provides us with two good initial guesses. Second, be-
cause the pH can only be measured to two decimal places of precision, we will be satisfied

o: 
#*, 

Ku.co'+ 'z##I KuPcoz. # 
- [H+]
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con t i nued

with an absolute error of Ea,d : t0.005. Remember that given an initial bracket and the
desired error, we can compute the number of iteration a priori. Substituting the present val-
ues into Eq. (5.6) gives

r l  . ' .  -  L ) .  . ' ,  :
'  l : i . r r l - 1 - l . 1 l l ) t ) ;
'  r r - l l , t . '  l r i : ' . ' l l  r , l r

I  ( r  .  t l  L , ' r  i l

Eleven iterations of bisection will produce the desired precision.
Befbre implementing bisection, we must first express Eq. (5.17) as a function. Be-

cause it is relatively complicated, we will store it as an M-file:

l i i | a i j  i r r r l  I  , .  1 l ) l  ( l j i l , i i i r .  l

f . L . - l  1  ' , . : , ; 1 , .  I L I  i L r .  i ; i ' ; , t  i  i  i  i ;

l . . i l  . r  r )  L , l  t , ;

l l  l i )  i . , l ;

I  i . l  l l ' . { , * l l l * l l j * 1 . ' ) l  l r l  ) * l ' i  ( L , r , 1 l i ) l l . l l ^ i , l ' i , i r  " , l l  l l ;

We can then use the M-file from Fig. 5.7 to obtain the solution. Notice how we have
set the value of the desired relative error (r., : I x l0-8) at a very low level so that the it-
eration limit (maxit) is reached first so that exactly I I iterations are implemented

l r i j l l i , i r  , i  t t , r l l

I  i l I ' t  , 1 r

| r 1 i 1 l , ' ' , i . ' ,  ' , I  
,  r , )

, -  { ) . l r ' ( l

l - i l r l i , l - l

l l

Thus, the pH is computed as 5.6279 with a relative error of 0.0868%. We can be confident
that the rounded result of 5.63 is correct to two decimal places. This can be verified by per-
forming another run with more iterations. For example, setting maxi t to 50 yields

l l , l l l ' r  r r  , ,  r l  i l  l ' ; .  r  i r i l i l l ,  , , ' . ,  ,  i ,  l l , )

i i l l "  l
' i  .  i ,  r i t  i

' r .  l i , ' l L l ,  I  l l r r

t l  t , l

] , .

For 2003, the result is

PROBTEI

5.1 Use bisection to de
so that an 65-kg bungee
4.5 s of free lal l .  Note:Tl
Start with init ial  guesse
ate until the approximat
5.2 Develop your own J
ion to Fig. 5.7. Howev
iterat ions and Eq. (5.5)
criterion. Make sure to r
next highest integer. Ter
using 8 ,, ,7 :  0.0001 .
5.3 Repeat Prob. 5. I ,  t
obtain your solution.
5.4 Develop an M-file
by  so lv ing  Prob.5 . l .
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Interestingly, the results indicate that the l9%o rise in atmospheric CO2 levels has pro-
duced only a 0.67Vo drop in pH. Although this is cenainly true, remember that the pH
represents a logarithmic scale as defined by Eq. (5.8). Consequently, a unit drop in pH rep-
resents a l0-fold increase in the hydrogen ion. The concentration can be computed as
[H*l : lO-pH and its percent change can be calculated as.

I  I  1 1 1 2 . ,  I  r  
.  \  l r p ] ]  1 9 5 8 ) * 1 0 0

c l i l : l  :

( r .  o q  l ( l

Therefbre, the hydrogen ion concentration has increased about.97o.
There is quite a lot of controversy related to the meaning of the greenhouse gas trends.

Most of this debate fbcuses on whether the increases are contributing to global warming.
However, regardless of the ultimate implications, it is sobering to realize that something as
large as our atmosphere has changed so much over a relatively short time period. This case
study illustrates how nunrerical methods and MATLAB can be employed to analyze and in-
terpret such trends. Over the coming years, engineers and scientists can hopefully use such
tools to gain increased understanding of such phenomena and help rationalize the debate
over their ramifications.

PROBTEMS

l l  Use biscct ion to dctcrrn inc the dlag cocl ' l ' ic icn(  nccdccl

mthat  an 65-kg bunrcc. ju nrpcr hus a vcloci ty  o l '35 nr /s a l  tcr '

5.5 A bcant is loadcd as shown in Fig. P5.-5. Usc thc biscc-
t ion rncthocl to solvc l i r  thc 1-rosit ion insiclc thc bcant whcrc
thclc is no rnol l lcn(.

100 lb/ft 100  tb

soffrcelal l .  Notc: Thc accclcrat ion ol 'gravitv is 9.8 I nr/sl
Staf iwith init ial  gLrcsscs of ' ,r i  :0.2 and i , ,  :0.3 ancl i tcr-

unl i l  thc approxi lnatc rclat ivc crror l i r l ls bcl<tw 2()tr, .
Devclop your own M-l ' i le f i rr  biscction in a sirni lar lash-
to Fi.e. -5.7. Howcvcr, rathcr than usin_r: l  thc rnaxir.nrrrn

and Eq. (-5.-5), crnploy Eq. (5.6) as yoLrr stopping
. Makc sure to round thc rcsult  ol 'Eq. (5.6) up to thc

highcst integer. Test your l lnct ion by solving Prob. 5. I
8,.,r = 0'000I

Repeat Prob. 5.1, but nsc thc falsc-posit ion Incthod to
your solut ion.

Develop an M-f i lc fbl thc lnlsc-posit ion rnethod. Tcst i t FIGURE P5.5
solvine Prob. 5. I
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5.6 (a) Dctermine the roots of . l  (x) :  -  14 - 20r *
l9-{2 - 3i3 graphically. In adclition, determine the flrst root
of the lunction with (b) bisection and (c) falsc posit ion. For
(b) and (c) use init ial  -guesses of ;r7 :  - l  and.rr :0 and a
stopping criterion of I o/c.

5.7 l ,ocate the f irst nontr ivial fu()t  of sin(.r )  :  .r  
j  

w hcre,r rs
in radians. Use a graphical tcchnique and biscction with the
init ial  interval lrom 0.5 to l .  Perfblm the computation unti l
e,, is less than o, : 2c/,.
5.tJ Detcrmine the posit ivc rcal rrrtr( of ln(,r l)  :  () .7 (a)
gfaphical ly, (b) using threc i terat ions of the biseetion
nrethod, with init ial  gucsses of -r1 :  0.5 and -{r,  :  2, and
(c) using threc i terat ions of thc talse-posit ion rnethod, with
the same init ial  gucsses as in (b).
5.9 Thc salurat ion conccntrat ion of cl issolved oxygcn in
l icshwatcr can be calculatcd with thc et luation

tnr,1 :  t3() .3441 +l j ] I01"]o'
1 , ,

case, the width and the cross-scctional area cirn be related to
dcpth -r' by

B :  3  * . r ,
ano

A , .  : 3 r , * _f -

2
Solve lbr the cri t ical depth using (a) the graphical method,
(b) bisection. and (c) falsc posit ion. For (b) and (c) use
init ial  gucsscs t l l ' r i  :  0.-5 i ind -r, ,  :  2.-5, ancl i tcrate unti l  the
approximatc error l j r l ls belorv l% or thc numhcr of i terat ions
exccccls 10. Discr.rss yonr results.
5. l l  Thc Michaelis-Mcntcn rnoclel dcscribcs thc kineticsof
cnr)/nle mccl iatcd rstct iol ls:

t lS  .S

t l r  " 1 , + S

whcrc .!  = suhstrate conccntrat ion (rnolcs/L), t l ,r  = Inrxi.
r lum uptakc r l tc (rnolcs/L/d). ancl A. :  thc hal l-saturarion
constan[, which is thc s{.{bstratc lcve I at rvhich uptake is half
ol Lhc rnaximum lrnolcs/Ll.  I l '  thc init ial  substr i t lc level at
/  :  0 is So, this di l ' f 'crcntial cqui l t ion can bc solvcd fbr

.S : Sir -  t t , , , /  * f t ,  In(Sg/S)

Devclop an M-l ' i lc to gcncratc a plot ol 'S vcrsus r lbr the
casc whctc .Sp : l0 ntolcs/L, 1,,  :  () .J lrolcs/L/d, and
*., :  2 r l t t lcs/L.
5.12 A rcvcrsi lr lc chcntical rcaction

2 4 + B - c

can bc churactcrizcd by thc cqLri l ibr iunt lclat ionship

K :

r,, 'hcre lhc rrorlcnclaltrrc ( i  l 'cptcscnts lhc conccntrat ionof
consti tucnt l .  Supposc lhat wc r lcl ' inc a variublc.{ as repre.
scnting thc nurnbcr ol ' rnolcs ol 'C that arc ploduccd. Conser.
vutior) ol '  nlass cirt  bc uscd kr lcl i rrrnulatc thc cqui l ibr ium
rc la t ionsh ip  as

A ' -
( t , . . r r  * . I  )

Q' , , .n -  2x))( t  1, .0 -  . r )

whcrc thc subscript 0 dcsicnatcs thc init ial  concentrut ion
ol cach consti tucnt. I l  K - 0.0 16, (, .o: 42, ( i , .0 :  28, and
(,.0 :  -1, dctcrnt inc thc valuc ol ' .r ' .
(a) Obtain thc solLrt ion graphical ly.
(b) On thc basis ol (a), soh,c lbl the roor with inir ial  guesu

of'- t ,  :  0 rnd -r, ,  :  20 to r,  :0.5%,. Choosc cither bisec
tion or '  lulsc posit ion to ohtaiu your solut ion. Justi f ,v
your choicc.

I*-
,tr-

I

FIGURE P5.T3

5.13 Figure P5. l3a shows
early increasi ng distr ibutcd
ing  e las t i c  curvc  i s  rs tc  F ig

v : - t l L - r - r s + l'  
l 2 0 E I t .  

'

Use bisection to dctcrminc
(that is, thc value of _r whcn
value into Eq. (P5.l . l )  ro dcr,
de f lec t ion .  Usc  thc  l i r l l qy*1n
p u t a t i o n :  L : 6 ( X ) c m , E :
ond u.r,, : 2.5 kN/crn.
5.14 You huy a $25,000 1
down at $5,500 pcr ycar Ic
you paying'? The f irrmula r
payments A, nr-rmbcr ol 'yea

i ( l , L ; \ t ]
A :  P - "  " '

( t + i ) , _ l

5.15 Many f iclds ol 'enginer
estimates. F-or examplc, trar
it necessary to determinc s
trends of a city and adjacer
urban area is dccl ining with

P u Q ) : P u . n ^ ^ e - k " ' a I

\ a

l.2z1.l t l00 x l0r( l

r,l

T,l

whcrc o.7 : thc saturation conccntrat ion ot 'dissolvcd oxy-
gen in l icshwatcr at I  atnr (ntg L r):  and 4, :  ahsolutc
lcmpcrature (K). Rcmcmbcr that f ,  :  T +213.1 5. wherc
r :  tcmperature ("C). According to this cquation, satLlr i l t i ()n
dccrcascs with incrcasing tempcraturc. For typical rratural
u'atcrs in tcnipcrate cl imatc.s, the cquation can hc usc.cl to dc-
lclrninc that oxygcn conccntrat ion rangcs l i 'or l  1 4.62 | ntg/ l ,
at 0 "C to 6.4 I 3 nig/L at 40 ' 'C. Gir,  cn a valuc ol oxygcn con-
ccntrat ion, this l i r l rnr"r la and the biscction tncthod can hc
uscd to solvc l i rr  tcmpcratulc in "C.
(a) I l ' thc init ial  gucsscs alc sct as 0 and 40 "C, how rlany

biscction i tcrat ions would bc rcquircd tu dctcrni inc te rn-
pcralurc to an absolulc crror of '0.05 'C' l

{b) Basecl on (a), dcvclop and tcst a biscction M-l ' i lc l 'une l ion
to dcternrine 7 as a lunction ol a givcn oxygcn cor)ccn-
trct ion. Tc.st your luncl ion l i rro,T : lJ. l0lnd l2 rng/L-
Check youl results.

-5.10 Watcr is l lowing in a trapezoidal channcl at a ratc ol '

Q : 20 mr/s. The cri t ical clepth .r '  t i rr  such I channel rnust
satisfv the cquation

O 2
0 : I  L n

t r  A .
^ , ^ 1

tvherc g :  9.81 r l l /s1.  ,4, .  :  the cross-scct ioni l l  arca (r r r ) .

and R :  thc width ol ' thc channel  l t  the surtacc (m).  Fol  th is

6.64230U x 107
- l - r,i
t i . ( r2  1949 x  10"
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rvhi le the suburban populat ion is growing, as in

P  r r t  -
Dr  \ . i l t l t

I  + L P , . m a x / P o  - l l s - t ' r

$'hcrc P,,,,,,.,*, tu, P,,u,"*, P,,, and k, : ernpirically derivcd pa-
ralnctcrs. Determinc the t imc and con'esponding valucs of
P,,(t) and P,(/) when thc sLrburbs 'nt'c 2()% larger than the city.
The pararnctcr values arc P,,.n,", : 75,000, k,, : 0.045/yr,
P,.u,iu : 100.000 people, P,.,'.,x : 100'000 people, P0 :

10.000 people, and t,  :  0.08/yr. To obtain your solut ions,
usc (a) graphical,  and (b) false-posit ion mcthods.
- i .16 Thc rcsist ivi ly p ol '  doped si l icon is based on thc
chargc r7 on an clcctron, thc clectron dcnsity n, ancl thc elec-
trorr rrobi l i ty l l .  Thc electron dcnsity is givcn in terms of
thc doping dcnsity N i incl thc intr insic carr icr density n,.  The
clcctron rnobi l i ty is describcd by the tempcrature I thc rcf-
crcncc tempcraturc I,,, and thc referencc mobility pr1y. The
cqLlnt ions rcquircd to computc the rcsist ivi ty are

I

qn l r

\4',ncfc

iIGURE P5.I 3

5'13 Figure P5.l3rr shows ir uni l i r lnr bcarn subjccl to a l in-
at lyrncreasing dist l ihutcd loacl.  Thc ccluatiorr l i rr  thc rcsult-
hgelastic cun'c is (scc Fig. P5. l3r)

r  =  - l _ l . t  . . t  +  2 1 - r . r r  L r  r  )  ( p 5 . 1 3 )
120F. I L

Usebisectron ttr  dctcrr.ninc thc noint ol ' rnaxirnurn dcf ' lcct i trrr
ts,thc value ol ' .r  whcrc t l t ' ld.r ' -  0). Then sr.rbst i tulc this
into Eq. tP5.l3) to dctcrminc thc valuc ol ' thc rnaxirnurn

. Usc thc l i r l lowing prrarnctcr valucs in y()r.r 'corlr
ion: L - (r(X) crn. E : -50.(XX) kN/crn'. 1 : 30.000 cm*.
u b = 2 5 k N / c t n .
You buy a $2-5.000 ;r iccc ol '  cqr: ipnrcnt l i l '  nothing
at $5.500 Dcl' voar lor' 6 vcars. What intcrcst ratc arc

pupaying' l  Thc l i rrnrula rclat ing pfcscnt worth P. i t tr t tual
pyments A. nurnber ol 'ycirrs rr,  lnd intercst ratc i  is

i ( l  +  l ) "
A =  P

i l  + l ) , r  -  I

Many l ields of 'cnginccring rcquire accuratc populat ion
For cxarnplc. transportat ion cnginccls rnight l ind

necessary to dctcrnrinc scparatcly thc population grttwth

of a city and ad.lace nt suhurh. Thc populat iort o{ '  (hc

area is decl ining with t imc accorcl ing tcr

P, ,  u , " * t ,  
l " '  

*  Pr r . r r in

(a)

, , : j (r*
Dctcrnrinc N, givcn 7ir :  300 K. f  :  1000 K. 1111 :

l 3 - 5 0 c r n r  ( V  s )  r ,  
4 : 1 . 7  x  l 0  r ' )  C . n , : 6 . 2 1  x  l 0 ' ) c r n  3 ,

and a dcsircd l t  :  6.5 x l0t '  V s cm/C. Usc (a) biscction and
(b) the l l lsc posit ion nrcthod.
-5. l7 A total chargc B is uni l i rrrnly distr ihuted around a r ing-
shapccl conductor with r ldius a. A chlrgc q is l()catcd at a
drstancc -r lhrrn thc ccntcr ol ' thc r ing ( Fig. P-5.17). The l irrcc
cxcrtcd on thc chargc by the r ing is given by

I  u 0 . t
r : -'  

1n co ( . r l  + a2 yr , ' :

whc rc  c , , :  t 1 . 85  x  10 ' tC t (N  m ly .  F i nd thcc l i s t anccxwhc rc

thc lorcc is  1.25 N i l '11 and Q arc2 x l0 5 C l i ) ra r ingwith a

rad ius  o l ' 0 . 9  r n .

FIGURE P5.17

( . r = 0 , t = 0 )
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5.lti For tluid flow in pipcs, friction is dcscribed by a di-
merrsionl ess number. the F u n n i n g .f r i c' t i on .f o t: t o r .1. The Fan-
ning liiction factor is dependcnt on a nurnber of paramctcrs
related to the sizc of the pipe and the fluid, which can
all  be representcd by anotlrcr dimcnsionlcss quanti ty. the
Revnolds ttumher Re. A firrmula that prcdicts.l given Rc is
the r.,on Kurnuul etlutttion:

I r - \
: : 4 t o c , , ( n c .  l )  u . +

J f
Typical valucs tbr thc Reynolds numbcr tbr turbulent I ' low
are 10,000 to 500,000 ancl fbr thc Fanning fiiction tactor arc
f ) .00 I  to  0 .01 .  Devc lopa l i rnc t ion  th i l t  uses  b iscc t ion  to  so lvc
lor./  given a uscr-sr.rppl icd valuc of Rc bctween 2.500 and
1,000,000. Design the lunction so that i t  cnsures that the ab-
solute crror in thc' rcsult  i ,  6,, . , ,  .  0.00000-5.
5.19 Mcchanical cnginccrs, as wcl l  as most other cnginecrs,
usc thernrodynamics cxtcnsivcly in thcir work. Thc l i r l lowing
polynornial can bc uscd to rclatc thc zelu-prcssurc spcci l ic

heat of dry air r1, kJ/(kg K) to tcmperaturc (K):

r ; ,  : 0 . 9 9 4 0 3  +  1 . 6 1  |  x  l 0  1 I  + 9 . 7 2 1 5  x  l 0  8 r :

- 9 . - 5 8 3 8  x  l 0  r r T 3  +  1 . 9 5 2 0  x  l 0  l ' 1 r l

Detcrmine the tcmperaturc that conesponds to a speci l ic heat
o i  l . l  kJ / (kg  K) .
5.20 The upward vclocity of a rockct can be computcd by
thc tbl lowing lblnrula:

l l l n
l '  :  , . {  l f l  - -  -  

,qI
t t to - qt

where u : upward vclocity, u :  thc vclocity at which fuel is
expcl lcd relrt ivc t t> thc rosket. /??o : thc init ial  mass ofthe
rockct at t inlc /  :0, q :  thc l 'ucl consumption r i i te, i rnd g = ths
dorvnwat'd accelera(ion ol' gravitv (assumcd constant =
t). lJI rn/sr).  I f  r .r  :  2000 m/s, rt , ,  :  150.(X)0 kg. and 4 =

2700 kg/s, compute thc tirne at which u = 7-50 rn/s. (Hint: t
is somcwhcrc bctwccn l0 and .50 s.) Dcternrinc ycurr results0
thut i t  is w' i thin l% ol ' thc trr,re value . Chcck youl answer.

R
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Roots: Open Methods

CHAPTER OBJECTIVES
The primary objective of this chapter is to acquaint you with open methods lilr finding
the root of a single nonlinear equation. Specific objectives and topics coverecl are

. Recognizing the diff 'erence between bracketing arrd open methods lbr root
location.

o Understanding the fixed-point iteration rlethod and how you can cvaluatc its
convergencc chaluc lcr is t  ics.

. Knowing how to solve a roots problern with the Ncwton-Raphson method and
appreciating the concept of quadratic convergence.

' Knowing how to irnplement both the secant and the modil ' ied secant rnetlrods.
. Knowing how to use MATLAB's f zero lunction to estimate roots.
. Learning how tcl rnanipulate and dctcrmine the roots of polynomials witlr

MATLAB.

or the brackcting rnethods in Chap. 5, the root is located within an intcrval prescribed
by a lower and an upper bound. Repeated application of these mcthods always results
in closer estimates of lhe true valuc ol'thc root. Such methods are saii l lo be conver-

,genl because they move closer tcl the truth as the cornputation progresses (Fig. 6. la).
In contrast, the open ntethotls described in this chapter require only a single starting

value or two starting values that do not necessarily bracket the root. As such, they some-
times diverge or move away from the true root as the computation progresses (Fig. 6. lb).
However, when the open methods converge 1Fig.6. lc) they usually do so ntuch more
quickly than the bracketing methods. We will begin our discussion of open techniques with
a simple approach that is useful for i l lustrating their general fbrm and also ltr demonstrat-
ing the concept ofconvergence.

r39
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EXAMPLE 6.

|J

ri r,

^ 1  ^ u

#
xt -lx

lH
- t t - ru

lol

FIGURE 6 . I
Grophicol deplcf ion of lhe fundcmentol djf ference between the (o) brocketing ond (b) ond {c)
open rnelhods for root loccrl ion ln (cr l ,  which is bisection, the rooi is consircrinecl wi lhin lhe infef
vol pr-^scribed by.r1 ond -r, , .  ]n controst, for ihe open method depicted in (b) ond (c), whLch s
Newlon Rophson, cr lorrnulo is used fo proiect frorn ,r;  io -r; ,  I  in cn i tercrt ive foslr ion. Thus the
method ccrn ei lher (bJ cl iverge or (c) converge rop,id1y, depending c-,rr thr: shope of the frnc-r ion
cnd the  vo lue  o f  th -^  in i l io l  ( tL ress

6.I SIMPLE FIXED-POINT ITERATION

As just mentioned, open nrcthods employ a fbrnrula to predict the root. Such a fbrmulaca
be developed fbr sirnple.l i,red-poitrt itcration (or, as it is also called, one-point iterirt ionor
successive subst i tu t ion)  by rcarranging thc ' f 'unct ion. l ( . r )  :0  so that . r  is  on the le f t -hand
side of the equation:

- r : . q ( x )  ( 6 1 )

This tlansfbrnlation can be accourpli.shed either by algebraic manipulafion or by simpJy
adding r 1o both sides of the original equation.

The uti l i ty of Eq. (6. l) is that it provides a tbrmula to predict a new value of .r asa
funct ion of  an o ld value of  r .  Thus,  g iven an in i t ia l  guess at  the root  - r i ,  EQ.(6.  l )canh
used to compute a new estimate .r;11 eS exprcssed by the iterative fbrnrula

r i+t  :  g( r i )  (6. : l

TI

pr'
pr,

s i t
gri
be
alt

Tt

an



6.1 SIMPLE FIXED POINT ITERATION t 4 l

As with many other iterative formulas in this book, the approximate error for this equation
can be determined using the error estimator:

'":lfflrcou" (6.3)

EXAMPLE 6.1 Simple Fixed-Point l terot ion

Problem Stotement. Use simple fixed-point iteration to locate the root of /(r) : e '\ - x.

Solution. The function can be separated directly and expressed in the form of Eq. (6.2) as

, f i + l  :  C - "

Starting with an init ial gr-ress of -r11 :0, this iterative equation can be applied to computc:

rt le ol, "/" le,l, "h le,l,/ le'1,-t

U
I
2
3
4
-5
6
7
B
9

r 0

0 0000
r 0000
4 3675
0  6922
0 5005
o 6462
a 5454
4 5796
0  560 r
o  5 / I I
4 5649

r 00 000
t 7 l  B 2 B
46 854
38 309
) 7  4 4 7
|  1 5 7
5 903
3  4 B t
t 9 3  I
t  r 0 9

t 00 000
76  322
35 I 3-5
22 450
t )  7 5 5
6 894
3  8 3 5
2  t s g
)  239
o 7a5
0 399

4 763
a 46A
a  628
0  5 3 3
0  586
0  556
o  573
4 564
0 569
4 566

Thus. each iteration brinss the estimatc closcr to the true value of the root: 0.567 14329.

Notice that the true percent relativc error lbr each iteration of Examplc 6. I is roughly
proportional (by a firctor of about 0.-5 to 0.6) to thc error f iom the previous iteration. This
propcrty, called Iinear convergen(e. is charactcristic ol 'f ixed-point iteratron.

Aside l iom the "rate" of convergence, we must commcnt at this point about the "pos-
sibil i ty" ol 'convergence. The concepts of convcrgence and divergence can be depictcd
graphically. Rccall that in Scction 5.2, we graphed a function to visualize its structure and
bchavior. Such an approach is ernployed in Fig. 6.2a for the f unction .l (r ) : e ' - ,r. An
al tcr r tut ivr 'gruphical  approuch is  to separutc thc cqual ion in lo two component  par ts .  as in

. f t G ) :  J z G )

Then the two equations

,vr - .l l(.r)
and

. t ' : : . / : ( - r )

(6 .4 )

(6..5 )
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FIGURE 6.2
i;;il;;;e srophiccrl methods, for dererminins the root 'l l9l 

:-:^:-Jr 
!1ll::' "' 

'h'
rvvu u"E'  

,  
" " l i ;  

Ot  , " . to t  the ln iersect ion of  ih" .o*pon"nt  iunct ionsooini where it crosses lhe

canbep lo t t edsepa ra te l y (F ig . ( l ' 2b ) .The - r va lucsco r respond ing to the in te rsec t i onso f
these functions represent the rclots of /( 'r) : 0'

'l'he twcl-curve method can now be used to illustrate the convergence and divergence

of fixed-point iteration. First, Eq. (6. l) can he rcexpressed as a pair of equilt ions'\ ' l  =r

ancl .y2 :g(r). These two equalions can then be plotted separately' As was the case with

Eqs . (6 .4 )and (6 '5 ) , t he roo tso l l ' ( x ) : 0co r respond to theabsc i ssava luea t the in te rsec '
tion of the two cufves. The function .)'t : 't and tbur diflbrent shapes lbr.v2 : g('r) ate

plotted in Fig. 6.3.
For the first case (Fig. 6.3a), the initial guess of r11 is used to <letermine the conesponding

point on rhe .yz curve l.{(; g(r0) l. The point [xr , .rr] is located by moving lefl horizontally to

the -yr curve. These movements are equivalent to the first itcration of the fixed-point method:

- r1 :  g(xs)

Thus, in both the equation and in the plot, a starting value of ,re is used to obtain an esti-

mate of ,rr. The next iteration consists of moving to [.,r1, g(,rr)l and then to [x2,:r2]. This

iteri

FIG
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Cha
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(cl

J0

(d)

FIGURE 6 .3
Groph ico l  dep ic t ion  o f  (o )  ond (b )  convergence ond (c )  cnd  id )  d ivergence o f  s impe f i xedpo in l
i terot ion. Grophs (o) ond (c) ore co led monotone potlerns whereos (b) ond (c) ore col led
osc i  lo l ing  or  sp i ro  po t te rns .  Note  tho t  convergence occurs  when g ' ( . r ) l  -<1 .

i teration is equivalent to the equation

12  :  s ( , r t ,

The solution in Fig. 6.3a is convergent because the estimates of -r move closer to the
root with each iteration. The same is true for Fig. 6.3b. However, this is not the case fbr
Fig. 6.3c and d, where the iterations diverge from the root.

A theoretical derivation can be used to gain insight into the process. As described in
Chapra and Canale (2002), it can be shown that the error for any iteration is linearly pro-
portional to the error from the previous iteration multiplied by the absolute value of the
slope of g:

Ei+r  :  g 'G)Ei
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Consequer-rtly, if lg' l < I. the errors decrease with each iteration. For lg' l > I the enors
grow. Notice also that if the derivative is positive, the enors will be positive, and hence the
errors wil l have the same sign (Fig. 6.3a and c). If the derivative is negative, the enors wil l
change sign on each iteration (Fig. 6.3b and d).

6.2 NEWTON.RAPHSON

Perhaps the most widely used of all root-locating formulas is Ilte Newtott-Raphsott method
(Fig. 6.a). If the initial guess at the root is .r;, a tangent can be extended from the point

Iri, I (,,.;)1. The point where this tangent crosses the r axis usually represents an improved
esl imatc o l ' the root .

The Newton-Raphson method can be derived on the basis of this geometrical inter-
pretation. As in Fig. 6.4, the first derivative at.r is equivalent to the slope:

/ ' ( ' r ' t :  
/ ( ' r ' t - o
J i  - ' f t + l

which can be rearranced to vield

. l  G i )
' r r + l  : ' ,  -  

f  o ,  
( 6 6 )

which is called tlre Ncwton-Raph.son lbnnulu.

EXAMPLE 6.2 Newton-Roohson Method

Problem Siotement. Use thc Newton-Raphson rnethod to estimate thc root of /(x) =
? ' - .tr employing an init ial guess ol'.r1; - 0.

Solution. The I ' irst derivative o1'the function can bc cvaluatcd as

/ ' t t )  :  - < "  I

which can be substituted along with the original l 'unction into Eq. (6.6) to give

z, t/ , .r1
' \ ' , ' 1  -  \ ' ,  ^ .

e - ' , i - l

Starting with an init ial gucss of ,re : 0, this iterative equation can be applied to compute

le,l, "/"

f
(
.l

EXAMPLE 6.3

T

i t
tt

P
R

0
I
2
3
4

0
0 -500000000
0 5 6 6 3 1 t 0 0 3
o  56 /143165
4 .567 1432()0

I O O
l l B
a  ) 4 7
0 0000220

. 1 0  8

Thus, the approach rapidly converges on the true root. Notice that the true percent relative
el'ror at each iteratiorr clecreases much fasler than il does in simple fixed-noint iteration
(compare with Example 6. l).
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l ( r )

FIGURE 6.4
Grophicol depiction of the Newton-Rcrphson method. A tongent to ihe function of ,r; fthot is,
/ '(.r)l is exlropo oted down to the ,r oxis lo provide on estimote of ihe root ot .r;11 .

As with other root-location mcthods, Eq. (6.3) can be used as a termination crite.rion.
ln addition, a thcorctical analysis (Chapra and Canale, 2002) provides insight regarding the
rate of'convergence as expressed by

( 6 . 7 )

Thus, thc crror should bc roughly proportional to the square ol'the prcvious error. In other
words, the numbcr of' significant f igures of accuracy approxirnately doubles with each
iteraticrn. This behavior is called qruulri l ic (onvc rgcn(e and is one o1' the rra.jor reasons fbr
thc popularity ol 'thc rnethod.

Although thc Ncwton-Raphson method is ofien very efl-icient, thcre irrc situations
where it pcrlbrms poorly. A special case-multiple roots-is discussed elscwhcre (Chapra
and Canale, 2002). However, cven whcn dcaling with simple roots, diff icull ies can also
ar ise.  as in  the fb l lowins examole .

EXAMPLE 6.3 A Slowly Converging Funct ion wi ih  Newton'Rophson

Problem Stotement. Determine lhe positive root of . l( l) : ,rr0 - I using the Newton-
Raphsor.r method and an init ial guess of .r : 0.-5.

Solution. The Newton-Raphson tbrmula fbr this case is

t . l { )  -  |
t i  r  

- - t
. . r -  r  : . t l  

l , ) r I :

which can be used to compute
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xi leol, "/"

0
l
2
3
4

4A
4 l
42

0 .5
5 1  6 5
46.485
4 t  8 3 6 5
37.65285

99.432

0023 I  6
aaoa24

2 1 3 0
o  22g
0 002

Thus, after the first poor prediction, the technique is converging on the true root of I, but
at a very slow rate.

Why does this happen? As shown in Fig. 6.5, a simple plot of the first few iterations is
helpful in providing insight. Notice how the l irst guess is in a region where the slope is neat
zero. Thus, the first iteration fl ings the solution tar away from the init ial guess to a new
value (,r: -5 1.6-5) where./(x) has an extremely high value. The solution thcn plods along
fbr over 40 iterations unti l convcrging on the root with adequate accuracy.

FIGURE 6.5
Grophicol depiction of the Newton Rophson method for o cose wilh s ow convergence The
inset shows how o neorzero slope init iolly shoots the solution for from the rool Thereofter,
the solulion very slowly converqes on lhe root

l(x)

2 E + 1 7

1 E + 1 7

Aside from slow convergence due to the nature of the function, other difficulties can
arise, as i l lustrated in Fig. 6.6. For example, Fig.6.6a depicts the case where an inflection

F I

T
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FIGURE 6.6
Four coses where the Newton-Rophson method exhibits poor convergence
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point (i.e.. f 
' (x) : 0) occurs irr the vicinity of a root. Notice that iterations beginning at .re

progressively diverge t'rorn the loot. Fig.6.6b illustrates the tendency of the Newton-Raphson
technique to oscillate around a local maximum or minimunl. Such oscillations may persist, or,
as in Fig. 6.6b, a near-zero slope is reached whereupon the solution is sent f'ar from the area of
interest. Figure 6.6c shows how an initial guess that is close to one root can jump to a location
several roots away. This tendency to move away fronr the arca of interest is due to the fact that
near-zero slopes are encountered. Obviously, a zero slope [./ '(.r) : 0l is a rcal disasterbe-
cause it causes division by zero in the tr-ewton-Raphson fornrula IEq. (6.6)1. As in Fig.6,6d,
it means that the solution shoots off horizontally and never hits the x axis.

Thus, there is no general convergence criterion for Newton-Raphson. Its convergence
depends on the nature of the lunction and on the accuracy of the init ial guess. The only
remedy is to have an initial guess that is "sufficiently" close to the root. And for some func-
tions, no guess wil l workl Good guesses are usually predicated on knowledge of thephys-
ical problem setting oron devices such as graphs that provide insight into thebehaviorof
the solution. It also suggests that good cornputer soliware should he designed to recognize
slow convergence or divergence.

6.2.1 I ATLAB M-fi le! newtraph

An algorithm lbr the Newton-Raphson method can be easily developed (Fig. 6.7). Notethat
the program must have access to the function (f unc) and its f irst derivative (ofunc). These
can be simply accomplished by the inclusion of user-dcfined functions to compute these
quantit ies. Alternatively. as in the algorithm in Fig. 6.7, they can be passed to the function
as arguments.

Alier the M-file is enterecl and saved. it can be invoked to solve tbr root. For examole.
lor the simplc function .r2 - 9, thc root cun he dcterminecl as in

: ' j '  n e \ ^ , / L r a I J n ( G ( x )  - " , ^ : l  ! 1  , ( 4 ( x )  2 , " x . , 5 )

.'

EXAMPLE 6 4 Newton-Rophson Bungee Jumper Problem

' Problem Stotement. Usc the M-fi le function tiom Fig. 6.7 to detcrntine the rnass of thc
bungee jumper with a drag coefTicient of 0.25 kg/rn to have a velocity ol-36 rn/s after4sof
fice fall. The acceleration of grlvity is 9.81 nr/sr.

Solution. Thc firnction to bc evaluated is

. f  l tn l -  r , ' ( l ; (E6.41)

To apply thc Newton-Raphson method, the derivative of this function rnust be evalu-
irted with resDect to the unknown. n:
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f  u n c c  i  o n  I  r o o u ,  e a ,  i  r  e  r  J  -  n e w L '  d p h  r  f  u n - ,  d i  r n c ,  y  r  ,  F S ,  m a x  '  L  ,  v o '  d r g  i  n  )

%  n e w t r a p h :  N e w t o n - R a p h s o n  r o o t  L o c a t i o n  z e r o e s
%  l r o o t ,  e a ,  i t : e r l = n e w t r a p h  ( f  u n c ,  d f  u n c ,  x r ,  e s , m a x i t , p l  ,  p 2 ,  .  .  .  )  :
?  u s e s  N e w t o n  R a p h s o n  n e t h o d  t o  f i n d  t h e  r o o t  o f  f u n c
%  i n p u t :
%  f u n c  =  n a m e  o f  f u n c t i o n
?  d f  u n c  =  n a n e  o f  d e r i r , z a t  i r z e  o f  f  u n c t  l o n
?  x r  =  i n i t  i a 1  g u e s s

%  e s  =  d e s i r e d  r e l a t i v e  e r r o r  ( d e f a u l t  -  0 . 0 0 0 1 ? )
%  m a x i t  =  m a x i m u m  a l l o w a b l e  i t e r a t i o n s  ( d e f a u l t  =  5 0 )
%  p 1 , p 2 , . . ,  -  a d d i t i o n a l  p a r a m e L e r s  u s t e d  b y  f u n c t i o n
%  o u t p u t :
%  r o o t  =  r e a l  r o o t
%  e a  -  a p p r . o r i m a t e  r e l a t i v e  e r r o r  ( ? )

%  i t e r  =  n u m b e r  o f  i t e r a t i o n s

i f  n a r g i n < 3 ,  e r r o r  (  ' a t  l e a s t  3  i n p u t  a r g u m e n t s  r e q u i r e d '  )  ,  e n d
i f  n a r g i n < 4  i s e r n p t ) ' ( e s ) , e s = 0 . 0 0 0 1 ; e n d
i f  n a r g i n < 5  |  i s e m p t y  ( m a x i t  ) ,  n a x i t , - 5 0  ;  e n d
i t o z  -  O .

w h i l e  ( 1 )

x r o l d  =  x r  ;
x r  =  x r  -  f  u ; r c  ( x r ) / d f  u n c  ( x r )  ;
i L e r  i r < r  .  1 ,
i f  x r  - =  0 ,  e a  =  a b s (  ( x r  -  x r o l . d )  / x r )  *  1 0 0 ;  e n d
i f  e a  < =  e s  i  i t e r  > =  m a x i t ,  b r e a k ,  e n d

e n d
r o o t  :  x r ;

FIGURE 6.7
An Ml i le  to  impemeni  fhe  Newlon Rcphson method

We should nrent ion t l ra t  a l though th is  der ivat ivc is  not  d i fT icu l t  [o  evaluate in  pr inc ip le,  i t
involvcs a bit of concentration and eflbrt to arrive at thc l-inal rcsult.

The two fbrntulas can now be used in cilnjunction with the function n, wtr nLih [o
evaluatc the root:

> >  y  =  G n  s q r t  ( ' j . 8 1 * m / 0 . 2 5 ) * l , a n h ( s q r l ,  ( 9 . 8 1 * 0 . 2 5 l m ) * 4 )  l 6 ;
> >  d y  =  G n  I / 2 * : - r c 1 r l ,  1 9 . ' E I /  ( m * 0 . 2 5 ) ) * t a n h ( ( 9 . 8 - l * 0 . 2 5 l m )

^  ( 1  / 2 ,  1 *  4 )  9  . r 3 1  /  ( 2  * p ;  * s c c h  ( s q r  l  ( ( 1  .  B l  * 0 . 2 5 l m )  *  4 )  ̂  2 , ;

r " >  n c w L r . r p h  ( - { , d y  ,  1 , 1  t l  , 0 . 0 0 0 0 1 )

\ . \ 2  . ' t  j ] 6

6.3 SECANT METHODS

As in Example 6.4, a potential problem in implementing the Newton-Raphson method is
the evaluation of the clerivative. Although this is not inconvenient fbr polynomials and
many other tunctions, there are certain functions whose derivatives may be diff icult or
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inconvenient to evaluate. For these cases, the derivative can be
ward finite divided difference:

approximated by a back-

f  ( x i - t )  -  . f  ( r i )

x i - t  -  x i

This approximation can be substituted into Eq. (6.6) to yield the following
equation:

/ ( x i ) ( x i  t  -  x i )
x i+ t  :  x i  -

. / (x i - r )  -  . f  (x ,1

Equation (6.8) is the fbrmula for the secant method. Notice that the approach requires two
initial estimates of x. However, because .f (.r) is not required to change signs between the
estimates, it is not classified as a bracketing method.

Rather than using two arbitrary values to estimate the derivative, an alternative ap-
proach involves a fractional perturbation of the independent variable to estirnate./'(.r),

. f  
' { x i \  = .f (xi + 6.ri) -./(,r,)

where 6 : a small perturbation fraction. This approximation can be substituted into
Eq. (6.6) to yield the following iterative equation:

6x; .l '(x; ) (6.9)r i + l  :  " t r  
-

. f ( x i + l x i ) -  f ( . r i )

We call this the modified secan.t nrcthod. As in the fbllowing example, it provides a nice
means to attain the efTiciency of Newton-Raphson without having to compute derivatives,

EXAMPLE 6.5 Modi f ied Secont  Method

Problem Stotement. Use the modified secant method to determine the mass of the
bungee jumper with a drag coefficient of 0.25 kg/m to have a velocity of 36 m/s atter 4 s of
f r ee fa l l .No te :Theacce le ra t i ono f  g rav i t y i sg .8 l  m /s2 .Usean in i t i a l guesso f  50kganda
value of I 0 6 for the perturbation fraction.

Solution. Inserting the parameters into Eq. (6.9) yields

First iteration:

Se

Th(6.8)

dri

swa
Eq.

deri

a s i
a lwi
chal
nif ir
rese
meti

6.4 Ml

The
but
o f b
feprxrt : 50

. ro *d ru :50 .00005

l '(xo) : -4.57938708

,f (xo + 6xo) - -4.579381 I l8

I 0-b (50) (-4.57938708)
J l -  5 r ) -

-4.57 938r I r8 - ( -4.57938708)

=  88 .39931( l€ ,1  :  38 . l%o;  leo l :43 .4Vo)

whe
Nott

whe
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Second iteration:

. t r  :  88.39931

. r1  f  d r1  : 88 .39940

. f ( . r-r) :  -1.69220111

./(.rr +dxr) - -1.692203516

. r r : 8 8 . 3 9 9 3  l -
10-6(88.3993 1)(-  1.6922017 t)

-t.6922035 r6 - (- 1 .69220't1t)

: 124.08910( je, | : l3.l7c: lo,l :28.16a/")

The calculation can be continued to yield

i x i letl, "/" le.l, T"

0
I
,2

3
4
5
()

-50 0000
BB 3993

t24 ABS7
) 4 A  5 4 1 7
t 42 7A72
142 73,76
1 42 737a

6 4 9 7 1
38 064
I 3 0 6 4

t  5 3 B
o  o 2 t
4  l  x  l O '
3  4  x  l 0  '

43 438
28 762
I I  7 4 6

I  5 t 7
a  a 2 t
4  I  x  l O  ' '

6.4

The choice of a proper value for 6 is not automatic. If J is too snrall, the method can be
swamped by round-oft error caused by subtractive cancellation in the denominator of
Eq. (6.9). If i t is too big, the technique can becorne inefTlcient arrd even divergent. How-
ever. if chosen correctly, it provides a nice alternative for cases where evaluating the
der ivat ive is  d i f f lcu l t  and developing two in i t ia l  guesses is  inconvcnient .

Further, in its m<-rst general sense, a univariate function is rnerely an entity that returns
a single value in return for values sent to it. Perceived in this scnsc. functions are not
always simple tbrrnulas l ike the one-line equations solved in the preceding examples in this
chapter. For example, a f unction might consist of nrany l ines of cocle that ccluld take a sig-
nificant amount of execution time to evaluate. In sorne cases, the function might even rep-
resent an independent computer program. For such cases, the secant and modifled secant
methocls are valuable.

MATLAB FUNCTIONz fzero

The rnethods we have described to this point are eithcr reliable but slow (bracketing) or f-ast
but possibly unreliable (open). The MMLAB f zerc-r function plovidcs the bestclualit ies
of both. The f zero function is designed to find the real root of a single equation. A sirnple
representation of its syntax is

f  z , e r o  (  f u n c t  i  o n ,  x a J

where funcrjon is the name of the function being evaluated, and x0 is the init ial guess.
Note that two guesses that bracket the root can be passed as a vector:

f  z e r o  (  f u n c L  i o n ,  l x a  x l  )  )

where x0 and x1 are guesses that bracket a sign change.
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Here is a simple MATLAB session that solves for the root of a simple quadratic:.f: - 9
Clearly two roots exist at -3 and 3. To find the negative root:

> >  x  =  f z e r o ( G l x )  x ^ 2 ' . ; ,  4 )

x -  
3

If  we warrt to f ind the posit ive root, use a guess that is near i t :

> >  x  =  f  z e  r o  ( ( 4  ( x )  - r ^ 2  9 , 4 )

x -  
3

I f  we pu t  in  an  in i t ia l  guess  o f  zero ,  i t  l i nds  the  negat ive  roo t

> >  x  -  f  : e r o ( t j  ( x )  x ^ 2  9 , 0 )

x -  
3

If  we wanted to ensure that we fbund the posit ive root, we could enter twi l  guesses as in

> : .  1 ,  -  f 2 c . 1 - 6 ( t ; l ( 1 )  x ' 2  ! )  , | 0  I i )

x -  
3

Also, if a sign change does not occur bctween the two guesses, an error message is displayed

> . :  x  -  f z c r o ( ( 4 ( x )  x - " ' ) , 9 , 1 - 4  4 l )

:  .  :  I  1  r  u ,  i r , 1  |  .  ,  r
' l h e '  f  u n c t - i o n  v a l  u e s ;  . r 1 -  L h c  i l l  c , ' t v . r  1  e ' n c l p o i  f l l . : j  l i l u : i t

c l i f  f c r  i n  s r g r r .

The f zero lunction is a combination of the relitble bisection rnethocl with two t'aster
algorithnrs: the secanl lnethod ancl inverse quaclratic interpolation. lrn'ersc quudrutic inter-
polttt ion is sirnilar in spirit to the secant method. As in Fig. 6.8rr, the secant rnethod is based
on computing a straight l ine that goes through lwo guesses. l 'he intelsection of this straight
l ine with the,r'axis represents the new root estimate. The inverse quadratic interpolation
uses a similar strategy but is based cln computing a quadratic equation (i.e., a parabola) that
goes through three points (Fig. 6.8b).

The f zcro function works as fi l l lows. lf a single init ial guess is passed, it f irst per-
forms a search to identi ly a sign change. This search difl 'ers from lhe incremental search
described in Section 5.-1.1, in that the search starts at the single init ial guess and then takes
increasirrgly bigger steps in both the positive and negative directions unti l a sign changeis
detectecl.

Thereafter, the fast methods (secant and inverse quadratic interpolation) are used un-
less an unacceptable result occurs (e.g.. the root estimate falls outsicle the bracket). lf abad
result happens, bisection is inrplemented unti l an acceptable root is obtained with one of
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J(x)

( a l

FIGURE 6.8
Compor ison o f  (o )  the  secont  me lhod ond (b )  inverse  quodro f ic  in te rpo lo t lon .  No ie  tho t  the
opprooch in  (b )  i s  co l led  " inverse"  becouse the  qucdro t ic  func t ion  is  wr i l ien  in . r ' ro lher  thon in

the fast methods. As might bc expected, bisection typically dominates at f irst but as the root
is approached, the technique shifts to the taster rrrcthods.

A more complete rcplescntation of the f 'zcrro syntax can be written as

I x ,  f x ]  -  i z , e r  c :  \  f u n c : L  j o n ,  x A ,  o l . t t i o n s ,  p  l  ,  p 2 ,  .  .  . J

where I xr ,  f  ;<] .  a vector containing the root x and the function evaluatcd at the root f-x,

optron.s is a data structure created by the opt- lmseL function, and p1 , ; :2. .  .  are any

parermeters that the function requires. Notc that i l 'you dcsirc to pass in parameters but not

use  the  op t , ions ,  pass  an  empty  vec tor  I  I  in  i t s  p lacc .

The opt imsct functicln has the syntax

o p t i o r s  -  o f i L r m s c t .  ( ' p . l r ' , '  , v c t l , , ' p a r  '  , v , t l  , ,  . . . J

w h e r e t h e p a r a m e t e r p a r -  h a s t h c v a l u e v a l , . A c c l m p l e t e l i s t i n g o f a l l  t h e p o s s i b l e p a r a m -

eters can be obtained by rnerely entering opt- i rnsct, at the command prornpt. The parameters

that are cornmonly used with the Izer o function are

c l i s p l a y ,  W h e n s e t t o ' i r - e r ' d i s p l a y s a d e t a i l c d r e c o r d o l ' a l l  t h e i t e r l t i o n s .

Lolx: A posit ive scalar that sets a termination tolerancs on x.

EXAMPLE 6.6 The r t o o f l d , , 1  r l  i i r Fu  nc t i ons

Problem Stotement .  Recal l  that  in  Example 6.3,  we fbund the posi t ive root  of  . l ' ,x ) :
rl0 - I using the Newton-Raphson mcthod with an init ial guess ol'0.5. Solve the same
problem wi th opl imset  and f  zero.

Solution. An interactive MATLAB session can be implemented as fbllows:

> >  o p L i o n s  =  o p 1 - i m s e t  ( ' d i s p l a y ' ,  ' i t e  r ' ) ;
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F u n c - c o u n t
L
2

5
6

2 3
2 4
2 5

2 6
2 1
2 B
'2 

.Q

3 0
3 1
3',.,
3 i

3 4
l 1

Z e r o  f o u n d

L o o k i n g  f o r  a  z e r o

f  ( x )
- 0 . 9 9 9 0 2 3
- 4 . 9 q 9 2 6 7

0 . 9 9 8 7 0 9
- 0 . 9 9 9 3 s 1
- 0 . 9 9 8 5 5 4

0 . 9 9 9 4 5 4

- 0 . 3 8 5 0 0 7
- 1

2 . 1 4 1 2 2

i n  l - h e  i n t e r r r a l

- 1

0 . 9 P , 1 4 4 2 .
a  . 6 2 6 0 5 6
o  . 2 5 7  2 t  I

- 0 . 1 0 3 5 1 1
, 0  .  0 1  L a a r l

7 . 6 B l B 5 e - 0 0 5
- 1 .  B 3 0 6 i e  0 0 7

I . 3 2 4  5 e  D 1 1
0

P r o c e d u r e
i n i t i a l
s  e a  r c h
s  e a r c h
s e a r c h
s e a r c h
s  e a r c h

s e a r c l l

s e a r c h

s e a r c h

t  0 . 1 4 ,  1 . 1 4 1

i n t e r p o l a t i . o r r
b r . s e c t  i  o n

b i s e c t r o n

b i s e c l - i o r - r

i n t e r p o  l a f , i o n

i n t e r p o l a L i o n

i n l - e r p o l a t l o r r

r n t e r l r o l a L i o r r

i  n t e r p o l a t  i  o r r

i  n i  e r p o I a t  i  o n

1 4 1 .

x
0 . 5

c . 4 8 5 3 5 8
4 . 5 r 4 r 4 2

0 . 4 8
0 . 5 2

4 . 4 7 I  r - L 6

0  . 9 5 2 5 4 E
0 . 1 4
I . I 4

v
n
nr

a:

fr
E

a  . 2 4 \ 2 1  : ,
a . 6 1  2 6 3 6
O . 9 0 t r 3 1 8

1 . 0 : 3 i t s J
0 . 9 8 q 1 2 8
0 . 9 9 8 8 9 4

1 . 0 0 0 0 1
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Thus. after 25 iterations of searching, fzero finds a sign change. It then uses interpo-
lation and bisection unti l i t gets close enough to the root so that interpolation takes overand
rapidly converges on the root.

Suppose that we would l ike to use a less stringent tolerance. We can use the opt imset
function lt l set a low maxinrum tolerance and a less accurate estimate ol'the root results:

> -  o p l - i o n s  =  o p t i m : , ; e 1 ,  ( ' l - o l x ' ,  1 e - l ) ;
> )  l x , l . x l  =  t z c r o ( G  ( x )  x ^ 1 0  1 , 0 . 5 , o p t i o n s )

1  0 0 0 9

0 . 0 0 9 0

6.5 POTYNOMTATS

Polynomials are a special type of nonlinear algebraic equation of the general fbrnr

. f r ( . r )  :  d1 , t "  *  a2x ' ' - t  +  . . ' +  ou  t . y2  |  u , , . t  !  a , , a1
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where n is the order of the polynomial, and the a's are constant coefficients. In many (but
not all) cases, the coefficients will be real. For such cases, the roots can be real and/or com-
plex. In general, an nth order polynomial will have n roots.

Polynomials have many applications in engineering and science. For example, they
are used extensively in curve fitting. However, one of their most interesting and power-
ful applications is in characterizing dynamic systems-and, in particular, l inear systems.
Examples include reactors, mechanical devices, structures, and electrical circuits.

6.5.1 MATLAB Funct ion:  roots

If you are dealing with a problem where you must determine a single real root of a poly-
nomial, the techniques such as bisection and the Newton-Raphson method can have uti l i ty.
However, in many cases, engineers desire to determine all the roots, both real and complex.
Unfbrtunately, simple techniques l ike bisection and Newton-Raphson are not available fbr
determining all the roots of higher-order polynomials. However, MATLAB has an excel-
lent built- in capabil ity, the roots function, fbr this task.

The roots function has the svntax.

x . .  r o o t s ( c )

where x is a column vector containing the roots and c is a row vector containing the poly-
nomial's coefficients.

So hclw does the roots function work? MATLAB is very good at f inding the eigen-
values of a matrix. Consequently, the approach is to recast the root evaluation task as an
eigenvalue problem. Because we wil l be describing eigenvalue problems Iater in the book,
we wil l merely provide an overview here.

Suppose we have a polynomial

. / t . r 5  +  o2x1  + , r . , r t  +  a+xz  *  o5x  +  a6 :0

Dividing by rrs and rearranging yields

5  
( I l  

I  
( l  I  I  ( 1 4  .  ( l \  ( I r r

I  :  -  - f  -  - l '

d l  ( l l  A t  U l  A l

A special matrix can be constructed by using the coefflcients fiom the right-hand side as
the first row and with I 's and 0's written fbr the other rows as shown:

-o2 fu1  -u3 fd1  -aa fo1  -a5 fu1  -ao la r

1 0 0 0 0
0 t 0 0 0
0 0 r 0 0
0 0 0 1 0

(6 .13 )

Equation (6. l3) is called the polynomial's r:ompanion matix. It has the useful prop-
erty that its eigenvalues are the roots of the polynomial. Thus, the algorithm underlying
the roots function consists of merely setting up the companion matrix and then using
MATLAB's powerful eigenvalue evaluation function to determine the roots. Its applica-
tion, along with some other related polynomial manipulation functions, are described in the
following example.

( 6 . 1  |  )

(6.12)
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We should note that roots has an inverse function c-alled po1y, which whenpassed
the values of the roots. wil l return the polynornial 's coefficients. Its syntax is

' '  ' '  l ' 1 Y ( r )

where r is a column vector containing the roots and c is a row vector containing the poly.
nonliai 's cclef f icients.

EXAMPLE 6.2 Using MATLAB to Monipulote Polynomiols  qnd Determine Their  Roots

' Problem Siotement. Use the following equation to explore how MATLAB can be em-
; ployed to ntanipulate polynomials:

/ ! (x)  :  - r ' '  -  3 .5. r '1  *  2. ' /5xt  12.125,12 -  3.u75.r  + 1.2-5 (E6.7.1)

i Note that this polynomial has three real rcots: 0.5. - 1.0, and 2: and one pair ol complex
I  r oo ts :  I  +0 .51 .

Solution. Polynomials are entered into MATLAI) by storing the coefflcients as a row
r \/ector. Ftir example, entering the following l ine stores the coefficients in the vector a:

I  - ' '  a  =  f  I  3 . 5  2 . 1 5  2 . ' l ' 2 , \  i . 8 7 5  1 . 2 5 1 ;

i We can then proceed to manipulate the polynomial. For exarnple we can evaluate it at
. r  :  I ,  by ryping

'  
: >  p c )  l y v a l  ( a ,  I  )

,  w i th  the  resu l t ,  l ( l )5  -  3 .5 ( l )1  +  2 .15( t t r  +  2 .125 i l )2  -  3 .8750)  +  1 .2 -5  :  -0 .25 :

t ) . : t b 0 o

We ciin create a quadratic polyn<lmial that has roots con'esponding to two of the
or ig inal  roots o l '  Eq.  tB0.Z. l ) :  0 . -5 and -1.  This quadrat ic  is  ( , r  -  0 .5)( . r  *  l )  =. r r*
0.5.r - 0.5. It can be entered into MATLAB as the vector b:

. , . .  i r  -  i  i  . 5  , . . .  1

la)

1 . 0 0 0 0  0 . 5 ( ) 0 0  ( r . 5 0 0 0

Note that the pc;1y function can bc usecl to pel l i rrrn t lre satle task as in

- :  b  =  p o l y ( [ 0 . 5  1 ] )

D -

1 . 0 0 0 0  0 . 5 0 0 0  0 . 5 0 0 t )

We can divide this polynomial into the original polynornial by

r : >  [ q , r ]  =  d e c o n v ( a , b )

with the result being a quotient (a third-order polynontial. ,1) and a rerrrainder(r)

c l -
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Because the polynomial is a perfect divisor, the remainder polynomial has zero coeffi-
cients. Now, the roots of the quotient polynomial can be determined as

> >  X  -  r o o t S ( q )

with the expected result that the remaining roots of the original polynomial Eq. (E6.7. I ) are
tbund:

2 . 0 0 0 0
r . 0 0 0 0  +  0 . 5 0 0 0 i
r . 0 0 0 0  0 . 5 0 0 0 i

We can now multiply c1 by b to colrL- up with the original polynomial:

- >  i f  -  c o n v  ( q ,  b )

, l :

1 . f . r  0 t )  ( l  - 3 . 5 0 1 1  0  ? , . 1 5 A ( )  2 . i 2 ' ) A  - 1 . 8 ' l ! . 0  1 . 2 5 0 0

We can then determine all thc roots of the original polynomial by

. :  x  -  I - . J a l , S ( . 1 )

_\: .
2 . 0 0 0 0
r .  r J 0 0 0
1 . 0 0 0 t )  +  0 . 5 0 0 0 i
t . 0 0 r l r r  0 - ! 0 t ) ( l i
0 . 5 0 0 0

Final ly, we can return to thc original

_ : :  J  -  l ) . J r - \ 1 ( X )

- l  . 5 0 0 t r  2 , . 1 , , A 0  2 . 1 ) , \ O  3 . 8 7 ! 0  1 . 2 5 0 0

PIPE FRICTION

Bockground. Determining fluid flow through pipes and tubes has great relevance in
many areas ofengineering and science. ln engineering, typical applications include the flow
of liquids and gases through pipelines and cooling systems. Scientists are interested in topics
ranging from flow in blood vessels to nutrient transmission through a plant's vascular system.

The resistance to flow in such conduits is parameterizedby a dimensionless number
called the .lil t:tion J'actor For turbulent tlow, the Colebrook equ.otion provides a means to

polynomial again by using the poLy function:

calculate the friction factor:

o: +* 2 o rog (rr. U1#) (6 .14 )



t 5 8 ROOTS: OPEN METHODS

con t i nued

where e : the roughness (m), D : diameter (m), and Re = the Reynolds number:

oVD
Re - :__

LL

where p : the fluid's density {kg/m3t, V: its velocity (m/s), and & : dynamic viscosiry
(N.sim2). In addition to appearing in Eq. (6. l4), the Reynolds number also serves asthe
criterion for whether flow is turbulent (Re > 4000).

In this case study, we will illustrate how the numerical methods covered in this part of
the book can be employed to determine/for air flow through a smooth, thin tube. For this
case, the parameters are p - 1.23 kglm3, ! : 1.79 x I 0r N . slmz, D : 0.005 m, V = 40 nr/s
and e :0.0015 mm. Note that friction factors range from about 0.008 to 0.08. In addition,
an explicit formulation called the Swamee-Juin equation provides an approximate estimate:

1.325
f - (6.1t

['"(t;.#)]'
Solution. The Reynolds number can be computed as

oV D 1.23(40)0.005
Re -  : - -  :  

r .zs  t  lo-  
:  13 '743

This value along with the other parameters can be substituted into Eq. (6. l4) to give

r /0.0000015 2.st \g ( J ' l :  - +2 .0 l oe l= -+= -  l
J . f  " \3 .7(0.00s)  13.743Jf)

Before detennining the root, it is advisable to plot the function to estimate initial
guesses and to anticipate possible difficulties. This can be done easily with MATLAB:

( ) . f ) 0 I t ) / ' I ( ) { ) 0 ;

t , . . ' t t i  ( i , : , - , * : : , , 1 r t  ( i )  ) ) ;
' 1  '  

)  ,  _ v  l , r f r r  i  (  ' r r  ( i  )  )

As in Fig. 6.9, the root is located at about 0.03.
Because we are supplied initial guesses (x/ : 0.008 and x, : 0.08), either of the brack

eting methods from Chap. 5 could be used. For example, the bisect function developed
in Fig. 5.7 gives a value of/: 0.0289678 with a percent relative error of error of 5.926 x
l0{ in 22 iterations. False position yields a result of similar precision in 26 iterations.
Thus, although they produce the corect result, they are somewhat inefficient. This would
not be important for a single application, but could become prohibitive if many evaluations
were made.

1

Er
gc
0. i

I l t , ,  l .  l J ; ' l  I .  I  1 ( 1 , " r ; l )  1 l . i )  ( l  r l t i - , , ]  { )  ; ,

l i I  I  l l t , * \ , t * l ) , / [ l L t  ;

. t  :  I ( I )  1  r t L i t 1 .  (  I )  t  l * i l L l  i l l  ( , . : i  |  1 , . , ' " 1 . t

f  l r l , r l  ( r r ,  f  { )  . t ) 0 : r  0 . 1 ) i l  , ) , r r r  i , i , > :  t , r l r , ' i ( Hr
di

Ar
gu
fo
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cont i  nued
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FIGURE 6.9

We could try to attain improved performance by turning to an open method. Because
Eq.(6.14) is relatively straightfbrward to differentiate, the Newton-Raphson method is a
good candidate. For example, using an initial guess at the lower end of the range (ro :
0.008), the newtraph function developed in Fig. 6.7 converges quickly:

_ ? L !"0.01

i r . i l l - 1 i l

.  r r  I  l . l  r  
' l i r i l  , f i  l  i i l t ,  i l i r  l

'  '  :  

r l

However, when the initial guess is set at the upper end of the range (xn : 0.08), the routine
diverges,

, , , t  : i '  t  i . L l i r ,

As can be seen by inspecting Fig. 6.9, this occurs because the function's slope at the initial
guess causes the first iteration to jump to a negative value. Further runs demonstrate that
for this case, convergence only occurs when the initial guess is below about 0.066.

r . 1 . ,

l (  r . , , 1  r  , L i r l l  ( ( i ,

) ,  j

t {  I

' : , : i r l t  i

l l  ( l i r i r  l

) ( ,

i \  i  i  i

i ' \ - i i \-
- - - - - - L - - - - - - - - - - - - - - - - - - l

i ' \ - i i i i
i  - \ i \  r

H.
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'  con t i nued

So we can see that although the Newton-Raphson is very efficient, it requires good
initial guesses. For the Colebrook equation, a good strategy might be to employ the
Swamee-Jain equation (Eq. 6.15) to provide the initial guess as in

'  J  l l , i - l  .  l . l ' ,  '  l 6 1 1  ( t : r /  { 1 .  / " D ) +  5 . 7 4 . / R c ' 0 . 9  ) ^ 2

I  : l , I

1 j  . i J : . ) , . r i l  1 t , l : r  ' . r / l L . l  b l

I I  , , , ' L  i I i  i .  l , , 1 , : a t  r . - r p ) - i  1 , 1 , c 1 r 1 , l ! i . l )

r )  .  t ) . t f l ' l { i  r f j  I 0 1  ' ' I 4 4

i t . r r  I I  I l j l ) . 1  . i . r r , ( )  t r 0 r , l ) !  f )  I { )
i r  , . ,  

,

Aside from our homemade functions, we can also use MATLAB's built-in f zero

function. However, just as with the Newton-Raphson method, divergence also occurs when

f zero function is used with a single guess. However, in this case, guesses at the lower end

of the range cause problems. For example,

.  I  / ( r I ( r  ( r . 1 ,  ( 1 . ( J l l l - l )

l : : ,  j 1  i l j ( . J  L ' t t : t r , :  . r i r o r l  i i r ( 1  r ; r r , r i  ( l

,  i r , r r t r J , . '  r r c , c i r  r l s { r  i  o m J t  l  r : r  J  L i n c

('"'(#.*#))'

f L  l r l l  . r n  i n l . t , f ' . / ' ( i l  r : o r r l , a i n i l q , , r  s i . g n
' l  i  o n , , r . 1  i  l r r - ,  r . r r c o i . r n L c r e d

r. tu - r :  i  r rq : r  cc l  r  ( j1r  .

i  : ;  4  . 9  2 A ' . )  B  ? , 1 ) .  : 1  4 ; l  I  - i  .  )
r , , ' r t - . h  . r  r l  I  l .  1 | r  c t r l ,  s l  a r .  1 -  L rLc ' t  i , ' , . L . Lue .

( l , ' L r r ,  l  r , ) r r  \ . / L r  I r l , ,  , r t  .  r : )  . 0 0 t l l i

I  ,  '  \  t . , . , .

' l i l l l  , :

i ! ,  r  i r j

If the iterations are displayed using optimset (recall Exanple 6.6), it is revealed thata
negative value occurs during the search phase before a sign change is detected and the rou-
tine aborts. However, for single initial guesses above about 0.016, the routine works nicely,
For example, for the guess of 0.08 that caused problems for Newton-Raphson, f zero does
just fine:

'  I  I  t ,  . (  -  '

, : r I l ! t  .

f )  -  ( i : )  i ' r )  t )  / ' . '  I  0  I  
' , 1  

i  , 1  4

As a final note, let's see whether convergence is possible for simple fixed-point iteration,
The easiest and most straightforward version involves solving for the first./in Eq. (6.14):

0.25
f . . .  - (6.16)

I
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f
!
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f

o
n
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tl
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FIGURI 6.IO

The two-curve display of this function depicted indicates a surprising result (Fig. 6. 1 0).
Recall that fixed-point iteration converges when the )2 curve has a relatively flat slope (i.e.,
lg'({)l < l). As indicated by Fig. 6.10, the fact that the y, curve is quite flat in rhe range
from/: 0.008 to 0.08 means that not only does fixed-point iteration converge, but it con-
verges fairly rapidly! In fact, for initial guesses anywhere between 0.008 and 0.08, fixed-
point iteration yields predictions with percent relative errors less than 0.0087o in six or
fewer iterations! Thus, this simple approach that requires only one guess and no derivative
estimates performs really well for this particular case.

The take-home message fiom this case study is that even great, professionally devel-
oped software like MMLAB is not always foolproof. Further, there is usually no single
method that works best fbr all problems. Sophisticated users understand the strengths and
weaknesses of the available numerical techniques. In addition, they understand enough of
the underlying theory so that they can effectively deal with situations where a method
breaks down.
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PROBTEMS

6.1 Enrploy f ixed-point i tcrat ion to locate thc root ot

. l ( - r )  : : s i n ( v 4 )  - . ^ -

Usc an init ial  -{ucss of -r ir  :  0.-5 lncl i terate unti l  t ' , ,  < 0.Ola/a.

6.2 Use (a) fixed-point itefltion antl (b) tlrc Nc'ur'lon-
Raphson mcthod to cletcrminc a t 'clot oi . /  ( . t)  :  - .r l  +
l.8r * 2.-5 using - i '11 : -5. Pcrt ir lnt the conrputation unl i l  e,,
is lcss than e, :0.05%. Also check yor-r l  l ' inal iutswer.
6.3 Dctcrrninc thc hishcst rcal root ol . /  ( . f  )  :  0.9-5.t: t-
5 . 9 , r r +  1 0 . 9 . r - 6 :
(a )  Graph ica l l y .
(b) LIsin-c thrr Ncwton-Raphson mcthod (thrcc i tcrat ions,

' r ;  : 3 ' 5 ) '
(c) Using thc sccant nrclhod (thrcc i tcrat ions, -r;  I  -  2..5

i lnd . f ;  :  3  5 ) .
(d) Using thc rnodif icd sccant rncl lrod (thrc'c i tcntt iotrs,

. t i  :  3 . 5 .  , J  :  0 . 0 1 ) .
(c) Dctcrnrinc t l l  thc roots with MATLAB.
6.4 Dctcrrninc the l()wcst posit ivc r(x)t ol '  . /  (-r) :

8 s i n ( . t ) r  ' -  I :
(a )  Craph ica l l y .
( l t)  Using the Nervton-Ruphson ttrct l . tod (thrcc i tct ir t iotts,

. t i  :  0 . 3  ) .
(c) LIsing the sccant mcthod (thrce i tcrat ions. .r ' ; .  1 - 0.5

and, t i  :  0 . '1 .
(d) Using t lrc rnodi l icd scculrt  nle thorl  ( l lvc i tcl l t i ()n\,

, r ;  :  ( ) .3 .  , l  :  0 .01  ) .
6.5 Usc (a) the Ncwton-Raphsorr nlethod and (b) lhc nrocl i-
t iccl secant nrcthocl (3 :  0.05) to clctclnrir tc a r-oot ol . /  ( ,r ' )  :

, t5  -  16 .05 . r r  *uu .7-5 . r r  -  l t )2 .0175. r r  *  l l6 .35r  +31.6u75
usirrg an init ial  gucss ot '  , t  :  0.-5t125 ancl t ,  :  0.(\ l ( tr , .
Explain -your rcsults.
6.6 Dcvclt>p an M-f i lc l i rr  thc sccant nrcthod. Along with
thc (wo init ial  gucsscs, pass thc l 'unctiorr i ls an argunrctrt .
Tcs t  i t  by  so lv ing  Prob.6 .3 .

6.7 Dcvelop an M-l ' i lc t i r  thc modif iccl sccant nrcth()d.
Along with the init ial  gucss and the perturbation f i i rcl ion.
pass thL- I 'Lrnction as rn argurncnt. Tcst i t  by solving Prob. 6.3.

6. l l  DiUcrcrrt iate Eq. (86.4. l)  l ()  gct Eq. (86.21.2).

6.9 Enrploy the Ncwton-Rlphson nlcthod to dctenninc- a
r c a l  r t x r t  f o r . / ( . i )  :  - I  + 6 . r  - , l . r l  | 0 . 5 , t 1 .  u s i n g  a n  r n i -
t ial  gucss of (a).1.-5. and (b) 4.43. DiscLrss aud use graphical
and analyt ical r.ucthods to cxplairt  any pccul iari t ics in y'our
rcstr l  ts.
6.10 Thc "di" iclc and avcragc" t lct lrocl,  un old-t imc Inctho(l
lbr approxirrat ing thc : iquarc root ol 'any posit ivc rrult tbcr zr,
can be firrrlulatccl as

. t i  lu f  . t1
1

Provc that this firnnula is bascd on the Newton-Raphson
algorithm.
6,ll (a) Apply the Ncwton-Raphson rnethod to the t'unction

.l(r):  tanh(,r2 - 9) to evaluatc i ts known real root at
,r :  -1. Use an init ial  guess of . t1; :  3.2 and take a minimum
of thrcc itcrations. (b) Did thc nrcthod exhibit convergence
on(o i ts r:al root? Sketch the plot with thc rcsults for each
iterat ion labclcd.
6. 12 Thc polynomial /  ( , t  )  :  0.0074.ra - 0.284"rr +
3.3-5.5.rr- 12.183.r -1--5 has a rcal ro<;t bctwcen l-5 and20,
Apply thc Ncwton-Raphson u)cthod to this func(ion usingan
in i t ia l  sucss  o f  - r1 ;  -  16 .  15 .  Exp la in  your  rcsu l ts .
6.13 In a chcmical cnginccring proccss, wi i tel vapor (H:0)

is hcatcd to sLrlTiciently high tcrnpcraturcs that n signif icant
portion of thc watcr dissociatcs. o| splits irpart. to filnn oxy-
gcn (O1) ancl hydrogcn (H:):

H : O P  H :  *  l O :

If  i t  is assLrnrcd thut this is the only rcaction involved, the
nrolc t iact ion -t  of HlO that cl issociates can bc Rrpresentedby

,, .\' Tr\A : ,  , / ^ r  ( P 6 . 1 3 . 1 )
r  -  f  Y  l  1 - . \ '

whcr-c K is thc rcaction's cclui l ibr ium constult  and p, isthe
total prcssurc of thc rnixturc. l l '7r,  :  l .J atnr and K - 0.M,
dctcrnrinc thc valr.rc of ,r  that satisl ' ies Eq. (P6. I3.1.1.
6.14 Thc Rccl l ich-Kwong ccluation ol statc is given by

R 7
' ' -  t - l t r:(t: I l t)JT

whcrc R : t l re uniycrs:r l  gas constrnt l :0-5lt t  kJ(kg K)1,
7 : afrsolute tenrpcrnturc (K), /  :  absolute pressurc (kPa),

luncl ir  :  thc volurnc ol a kg ol 'gas {rrr/kg). Thc parameten
tr irntl lt arc calculatccl by

R r  r : ' 5  t .
,r  -- 0.4)7 '  /r  -- 0.0u66R -

l) , .  l ) , .

whcrc 7r,.  :  45tt0 kPa arrd 7, = l9l K. As a chcrnical engi.
ncer, you arc askcd to dctcrnrint: thc ilmount of methane fuel
that can bc hcld in a 3-rnt t i lnk a( a tcmperirture of -50'C

with a prcssurc ol '65.0(X) kPa. Use a rtxrt locating methodof
your choicc to calculatc l  and the-n dctcrnrine the mass of
rncthi lnc containcd in the tank.
6.15 Thc volurnc of l iquid V in a hol low horizontal cyl indu
o1'r 'adius land lcngth L is relatcd to the depth of thc l iquid/tby

T  , , .  , . ,  - 1

V  =  l l r c , , s  
{ ( ' - 1 I  - , , -  / i t ' ,  } / r  - h : l L

L  \ T  /  J
Dctelntine /r given r : 2 nr, L : 5 rnr, and l ' : 8.5 mr.

I
6.16 A catenary cable i
points not in the sarr
Fig. P6.l6a, it is subje<
weight. Thus, its weigh
length along the cable u
scction AB is depicted in
the tension forces at the e
cal force balances, the fol
ofthe cable can be derive

d'y w- - : : -
dxz TA

Calculus can be employ
height of the cable y as a

T a  . / w  \y :  _.o.nl \  
.o 

*/

(a) Use a numerical me
parameter ?".r given
and Y6 : 6, such that
- t : 5 0 .

(b) Develop a plor of ) v
6.17 An osci l lat ing curre
bY I :9e-t cos(2tt),  w
values of/ such that 1 :
6.18 Figure P6.18 showr
tor, and a capacitor in par
to express the impedance

,rc

+( ,c -
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(b )

FIGURE P6 . I6

#=;,FfS

116 A catenary cable is one which is hung between tw<r
pints not in the same vert ical l ine. As depicted rn

P6,l6u, i t  is subject to no loads other than i ts own
Ihus, i ts weight acts as a uni lblm load per unit

lcngth along the cable ur (N/m). A lree-body diagrarn ol' a
ion AB is depicted in Fig. P6. l6D. where T1 and Ts are
tension lbrces at the end. Based on horizontal and vcrti-
force balances, the fbl lowing dif  l -erential cquation rnode I

cable can be derived,

can be employed to solvc this equationtbr the
ofthe cable l  as a lunction of distance,r:

7,1- cosn
ur

Use a numerical method to calculate a value lbr the
parameter I,q given values for the parameters ut : 12
and r,s = $, such that the cable has a height of ,r' : I 5 at
r = 5 0 .
Drvelopaplot of,y versus-r fbr,r :  50 to 100.
An osci l lat ing current in an electr ic circuit  is described

l=9e-'  cos(2rt).  where / is in seconds. Deterrrr ine al l
o f t s u c h t h a t l : 3

Figure P6.18 shows a circuit  with a resistor, an induc-
acaoacitor in oarallel. Kircfihofl-'s ru/es can be used
the impedance o1'the system as

FIGURE P6.I8

where Z: impedance (Q). and ror is the angular lreguenc_v
Frnd the ar that results rn an rmpedance ot /- i  ( /  usrng the
tzero lunction with init ial  guesses of I  and 1000 for the
l ir l lowing parameters: R :225 A, C' - 0.6 , l0-r '  F, and
L : 0.-5 H.
(r.19 Real mechanical syslems may involve the deflect ion
o l 'non l inear  spr ings .  In  F ig .  P6.19 ,  a  b lock  o f  mass  r i  i s

I +( .c -

@t

FIGURE P6.19
l l  p:
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fixed-point iteration scht
g i v e n Q : 5 . S : 0 . 0 0 0 2
your scheme converges f<
equal to zero.
6.25 See i fyou can devel,
the friction factor basec
described in Sec. 6.6. yor
result for Reynolds numbe
e / D ranging from 0.0000
6.26 Use rhe Newton-Ra

f  (x )  :  
" -ns^  14  -  x

Employ init ial guesses of (
results.
5.27 Given

f  (x)  :  -2xb -  1.5t

Use a root location technic
this function. Perform iteri
tive error falls below 5Zo.

FIGURE P6.2O

released a distance I above a nonl incar spring. The resis-
tance fbrce F of the spring is given by

F - - \ k r t !  * k . d 3 i ' 1

Conscrvation ofcnergl 'can bc uscd ttr  show that

2krt l5l2 I  "{ ) :  -  + ; k 1 t l ' - n t g < l  - t t t q l t
t l

Solvc fbr z/,  given thr: fbl lowing parameter valuc-s: f t1 :

5 0 . 0 0 0 g / s 2 .  f t z : 4 0 g / ( s 2  n r s ) .  n : 9 0  8 .  . (  :  9 . 8 1 m / s 2 ,
and /r - 0.4-5 m.
6.20 Aerospacc enginc'ers somctimes computc the trajcc-
tories of projcctilcs such as rockcts. A relatecl problem dcals
u,ith the traicctory of a thrown ball. Thc traje-ctory o1'a ball
thrown by a right ficlder is clefined by thc (x,.1,) coordinatcs
as displayed in Fi-e. P6.20. Thc trdecbry can be modelecl as

R t
v - (tan0o)-r - - j5r '  *.r '1y

Ltrai cos- u0

F-ind the appropriate init ial  angle do, i f  urr :20 m/s, and the
distance to the catcher is 3-5 m. Note that thc throw lcavcs thc
right f iclder's hand at an elcvation of 2 m and the catclrcr
rcceivcs i t  at I  m.
6.2 |  You arc designing a sphcrical tank (Fig. P6.2 I )  to hold
water fbr a small  vi l lagc in a devcloping country. The vol-
ume of l iquid i t  can hold can bc computed as

, l l R - r l
l /  -  n  l t ' -

3

wherc' V: volunre Im]1, /r  :  depth of water in tank Im], and
R :  the  tank  rad ius  lm l .

If R : -l m, what depth rnust the tank be filled to so that
i t  holds 30 m3? Use three i terat ions of the most ef l lcient
nurnerical method possible to determine your answer. Deter-
mine the approximate relatir"e cror after cach iteration.
Also, provide justification fbr your choice of method. Extra

FIGURE P6.2I

infbrmation: (a) For hracketing methods, ini t ial  guesses of 0
and R will bracket a single root ti)r this cxample. (b) Fot
open mcthods, an init ial  guess of R wil l  always converge.
6.22 Pertbrm the identical MATLAII operations as thost
in Example 6.7 to manipulatc and i ind al l  the roots of the
polynomial

. l s (x )  :  ( - r  |  2 ) ( . r  *  5 ) (x  -  l ) (x  -  4 ) ( . r  -  7 )

6.2-1 ln control systcrns analysis, transfer tunctions ae
devr' loped that mathematical ly rclate thc dynamics of a sys.
tem's input to its output. A transf'er function for a robotic
pos i t ion ing  sys tcn l  i s  g ivcn  hy

c(s ) r t +  l 2 . 5 s l * - 5 0 . 5 , r * 6 6
C ( . t t -  -  =  -

N(. t )  r 'u  + l9sr  + 122s2 +296s - l  192

where C(s) : system gain, C(s) : system output, N(s) =

systcm input, and s : Laplace transfbrm complex frequency,
Use MATLAB to find thc roots of thc numerator and de.
nominator and t:rctor thesc into the form

G( , r )  =
( . s  * a r ) ( . s  + d 2 ) ( . r  + . r 3 )

(s  *  Dr ) (s  *  b : ) ( . r  *  h ) (s  *  l t t )

wherc zri and b1 : the roots of thc nume-rator and denomina.
tor, fespectively.
6.2-l The Manning equation can bc wrifte n fbr a rectangulat
open channel as

^ .,5(sH)' ' '( r :  -=  r t (B  i  2H J t l t

where B : flow (m3/s), S : slope (mlm), H = depth(m),
and n : the Manning roughncss coefficient. Develop l
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fixed-point iteration scheme to solve this equation for H
given 0 = 5, S : 0.0002. B :20, and r? : 0.03. Prove that
your scheme converges for all initial guesses greater than or
equal t0 zero.
6,25 See if you can develop a lbolproof function to compute
fie friction lactor based on the Colebrook equation as
described in Sec. 6.6. Yor.rr function should return a precise
rcsult for Reynolds number ranging from .1000 to | 07 and lbr
e/D ranging f iom 0.00001 to 0.05.
6,26 Use the Nervton-Raphson method to find the root of

. f ( . r ) - . - t r  
: ' @ _  x ) - 2

Employ init ial  gucsses of (a) 2, (b) 6, and (c) 8. Explain your
rcsults.
6J? Given

f  ( t )  =  -Zrb  -  l . -5 . r4  *  lox  *  2

Use a root location technique to dctt ' rminc (he maxirnum of
this function. Perlbrm iterations until the approximate rela-
tive enor ialls below 5%,. If you usc a br'ackcting mcthod,

use initial guesses of x1 - 0 and -r, : 1. If you use the
Newton-Raphson or the modified sccant nrethod, use an ini-
t ial  guess of;r;  :  l .  I fyou use the sccant method, use init ial
guesses of x; I  :  0 and Xi :  l .  Assuming thxt conver-
gence is not an issue, choose the technique that is best suited
to this problem. Justify your choice.
6.211 You must determine the root of the fol lowing easi ly
di fferentiable f unction:

n  < , .
? " - ^  =  ) - l - r

Pick the best nunrcrical tcchnique, just i fy your choice, and
then use thal technique to determine the root. Note that i t  is
known that f i :rr  posit ivc init ial  guesscs, al l  techniques except
fixed-point iteration will cvcntually converge. Perfbrm iter-
at ions unti l  the approximate relat ive error fal ls bclow 2olc. I f
you use a bracketing method, usc init ial  guesses of r1 :  [)
and.r,,  :  2. I f  you use thc Newton-Raphson or the modif ied
secant mcthod, use an init ial  guess of .r ;  -  0.7. I f  you usc
thc secant method, Lrse init ial  guesscs of ,r ;  1 :0 and
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YOU'VE GOT A PROBLEM

n object like a bLrngee jurrper can be projected upwarrd at a specified velocity. If
is subject to Iinear drag, its alt itude as a function of t ime can be computed as

I
(

f
I

( ,Z : zr* 1 (,,. ,  * T) tr - e I(tn'I)t) -ry,
t66

CHAPTER OBJECTIVES
The primary objective of the present chapter is to introduce you to how optinrization
can be used tcl determine minirrra and rnirxima of both one-dimensional and
multidimensional functions. Specific objectives and topics covered are

' Understanding why and where optirnizafion occurs in engineering and scientif ic
problem solving.

t Recognizing the difference betwecn one-dimensional and multidimensional
opt i rn izat ion.

'  Dis t inguishing betwcen g lobal  and local  opt imu.
' Knowing how to recast a nraximization problem so that it can bc solved with a

rn in i rn iz ing a lgor i thnr .
' Bcing able to define the golden rati<l and understand why it makes one-

dinrensional optitni zation e'f l icient.
' Localing the optinrum clf a single-vnriahlc function with the golden-section search.
' Locating the optirnum of a singlc-variable f 'unction with parabolic interpolation.
' Knowing how to apply the f m i n brid f unction to deterrnine the minimum of a

one-di  ruensior ta l  l 'unct  ior t .
'  Being able to develop MATLAB contour and surlhce plots to visualize two-

dimensional functions.
t Knowing how tcl apply the f minse.rr ch l irnction to clctermine the minimum of a

mul t id intensional  I 'unct ion.

7.1

t--



7.1

Z,I INTRODUCTION AND BACKGROUND

F'GURE 7.1
Eleval tan ot  q fu l la l i ; t r ' t  of  t ime for  on obf t rc l  i r r r i lo / / i  profeclet l  uSt, . " , 'o ,c l  rv i lh i rn i r t t ro l  r t , - l r t< r t t /

where:  :  a l l i tuc le ( rn)  ahi lvc thc car th 's  sud:rce (dct ]ncd as: :0) .  lo  :  thc in i t ia l  t l t i tuc le
(m),  l r :  rn i lss (kg) ,  (  :  a  l incardrag coel ' l ' ic icnt  (kg/s) ,  qr  :  in i t i ' r l  vc loc i ty  ( rn/s) ,  and I  :
t inrc (s). No(c that (irr t lr is l iurnulation" positivc vckrcity is corrsidcrcd to bc in thc rrpwlrci
d i r cc t i on .G ivcn the lb l l ow ingpa ra rnc l c r v t l ucs :  , \ : 9 .1 { l r r . r / s r . - ' , ,  :  lO0m,11 r  : - 5 .5 rn / r ,
r i  :  t lO kg,  and r '  :  l5  kg/s,  Ec1.  (7.  I  )  can bc uscd to culculatc thc j r r rnpe r 's  a l t i tuc lc .  As
d i s p l a y c d i n F i g . T . l , t h c j u r n p c r r i s c s t o a p c a k c l c v a t i o n o l ' i r b o u l  1 9 0 n r a t a h o u t l : - 1  s .

Supposc that  you arc g ivcn thc- joh o l 'dctcrr r in ing thc ex lc t  l i rne o l ' thc pcak c lcval ion.
Thc detcrminat ion o l 'such cx l rcmc values is  rc lcr rcd to ls  opl i rn izat ion.  This chaptcr  wi l l
introducc y()u to how the cornputcr is uscd to nrakc such detcrn'rinilt ions.

INTRODUCTION AND BACKGROUND

In thc nrost gcneral scnsc, optinri:/.ati()rl is thc ploccss o1'crcatirrg sonrcthing that is as
cf fbct ivc as possib le.  As crrg iucers.  wc nrust  eont inu<lus ly  dcs ign dcviccs ancl  products tha(
per l i r rm tasks in  an cf f ic icn l  Iashion l i l r  thc lcast  cost .  ThLrs,  cngincers arc a lways con-
fronting optirnizitt ion pnrblerls that uttcnrpt to balarrcc pell irrnrancc and linritatiorrs. In
adclit ion. scientists Iravc intcresl irr optirnal phenorncna rurnging fir lnr thc pcuk clcvation o1'
projecti les to the minirnunr l i 'ec cncrgy.

Frour a nrathcnraticirl perspective. optinriz.ation dcirls with l ' inding the nraxinra and
rninima of a l 'unctiorr that dcpends on one or m()re variablcs. The goal is to detcrnlinc the
values of t lre variables that yield rnaxima or minirna lbr the I 'unction. Thcse can then be
substituted back into thc function to conrputc its optinral valucs.

Al though thesc solut ions can sornct i rncs bc obta incd analyt ica l ly ,  nrost  pract ica l
optimization problenrs requirc nurnerical, cornputcr solutions. From a numcrical stand-
point, optirniz.atit 'rn is sinri lar in spirit to lhe root location rncthods wc just covercd in
Chaps. 5 and 6. That is. both involve guessing ancl searching ti lr a point on a function. The
fundarne'ntal dif ' lbrcncc between thc two types ol'problerns is i l lustrated in Fig.7.2. Root
Iocation involves searching for thc location where the I 'unction cquals zcro. ln contrast,
optimiz-ation involves searching for the function's cxtrenre p<lints.

Maximum
elevation
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l'('t) : o
l"(r) < o

l(x) : o

/'("t) = o

"f"(,r) > 0

T
m

FIGURE 7.2
A funct ion of  o s ingle vor ioble i l lust rc f inq the d i f ference belween roofs ond opl r rno

As can be seen in Fig. 7.2, the optirnunrs are the points whcre thc curve is f lat. In math-
enrirtical terms, this corresponds to the .r value whcre thc derivative / 

'(.r 
) is equal t0 zelo.

Additionally, thc second derivative, .1 "(,r), indicates whether the optimurn is a rninimumor
a maximum: i l '  .t '" (x) < 0, the point is a maximLlm; if . l '" (.r) > 0, the point is a minimun

Now, understanding thc relationship betwecn roots and optima would suggest a posi-
ble strategy for f inding the latter. That is, you can diff-crentiate thc function andlocateth
root (that is, the zero) of the ncw tunction. ln fhct. some optirnization rnethods do justthis
by solving the root problenr: .f '(.r1 : 11.

EXAMPLE Z. l  Determin ing the Opt imum Anolyt ico l ly  by Root  Locot ion

Problem Stotement. Deterrnine the tirnc and magnitude il1'the peak elevation basedon
Eq.  0.1 ) .  Use the lb l lowing paranreter  va lues for  your  calcula l ion:  .g :9.81 m/st ,
;o : 100 m, u0 - -55 m/s, nt : u0 kg, and r: : l-5 kg/c.

Solut ion.  Equat ion (7.1)  can be d i l f 'erent ia ted to g ive

:  D 'e  
\ (  / t t t  ) t  - ( l  -  e -  i ' l " ' t ' ;

t__

TT
tht
gri

sat

AS

ofr
on(
prc
sea
me

*
{oJ (

PqU
l tou
rh;
m i n

tn8

(;
dz

n
Note that because 1) - Ll-. ldt, this is actLrally thc ccluation fbr the vclocity. The maximun
elevation occurs at the value ol I that drives this gquation to zero. Thus, the problen
anrounts to deterrnining the root. Forthis case. this can be accomplished by settingthedc-
rivative to zero and solving Eq. (E7. L l.) analytically lbr

r  : ' ! rn  ( r  +  !a  )
r '  \  t n g /

Subst i tu t ing  the  p i l r i i rne le r r  g ivcs

,  :  8 o  
r n  / r  r  

l 5 t s 5 t  
\  : 3 . 8 . r 1 6 6 s

l . s  \  8 0 r 9 . 8 1 ) /
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This value along with the parameters can then be substituted into Eq. (7.1) to compute the
maximum elevation as

8 0  /  8 0 r Q  R l  r \  8 0 r 9 . 8 1 r
z :  1 0 0 + : ;  |  5 0 +  " " . ; ; " , ,  

) ( t  _ . _ , 1 5  8 0 , 3 8 3 1 6 6 1 _  " " , , = " , , r - r . 8 3 t 6 6 ) :  1 9 2 . g 6 0 9  m15\  rs  / '  l s
We can verify that the result is a maximum by differentiating Eq. (E7.1.1) to obtain the

second derivative

d2z  c  - . t ,  / , , t t  - ( .  / , n \ t  ^  -  -  m
- ; ; :  -  -  u t ) €  

" n t l t  
- , n - ( t / ' ' t t  -  - 9 . 8 1 ;

( l l -  l n

The fhct that the second derivative is negative tells us that we have a maximum. Further,
the result makes physical sense since the acceleration should be solely equal to the force of
gravity at the maximum when the vertical velocity (and hence drag) is zero.

Although an analytical solution was possible fbr this case, we could have obtained the
same result using the root location methods described in Chaps. 5 and 6. This wil l be left
as a homework exercise.

Although it is certainly possible to approach optimization as a roots problem, a variety
of direct numerical optimization methods are available. These methods are available fbr both
one-dimensional and multidimensiontrl problems. As the name implies, one-dimensional
problems involve functions thert depend on a single dependent variable. As in Fig. L3a, the
search then consists of climbing or desccnding one-dimensional peaks and valleys. Multidi-
mensional problems involve lunctions that depend on two or more dependent variables.

FIGURE 7.3
(o )  Cne 'd imens iono l  op t im izo t ion  Th is  f lgure  o lso  i l l us t ro tes  how min imizc i ion  o f  11 l r1  i s
equ ivcr len t  io  the  mor imizo l ion  o f  - . / ( , r )  (b )  Two-d imens iono l  op l im izo t ion .  Note  tho t  th is
l rgure  con be  to len  to  represen i  e i ther  o  mox imizo i ion  (contours  inc reose in  e levo l ion  up  to
lhe moximum i ike o mountcrin) or c minimizotion icontours decreose in eJevotion down to the
min imum l i ke  o  vo l lev )

Opt imum/ i r ' . .u ' r

Minimum.l("r)
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7.

ln the same spirit, a two-dimensional optimizalion can again be visualized as searchingout
peirks and valleys (Fig.7 .3b). However, just as in real hiking, we are not constrained to walk
a single direction; instead the topography is examined to efTiciently reach the goal.

Finally, the process of f indrng a maximum versus finding a minimum is essentially
identical because the same value x* both minimizes /(x) and maximizes -/(,r). This
equivalence is i l lustrated graphically for a one-dirnensional ftrnction in Fi_c. 7.3d.

In the next section, we will describe some of the mole common approaches for one-
dimensional optimization. Then we wil l provide a brief description of how MATLAB can
be employed to determine optima for multidinrensional functions.

ONE-DIMENSIONAL OPTIMIZATION

This section wil l describe techniques to find the mrnrmnm or maxrmum of a function of a
s ingle var iable. l ( . . ) .  A usefu l  image in th is  regard is  the one-dinrensional  " ro l ler
coaster"-like lirnction dcpictecl in Fig. 7.4. Recall liorn Clraps. -5 ancl 6 that root location
was complicated by the fact that several roots can occur tbr a single function. Similarly,
hoth local  und g lohul  opt imir  cur  occur  in  t rpt inr izat ion.

A gkhul olttittrtrm represcnts the very best solution. A local optinrunr, though not th
very best. is better thun its inrmecliate neighbols. Cases that include local optima are calld
multimodol.ln such cases, we wil l almost always be intercstcd in finding the global optimunl
In addition, wc must be concerned about mistaking a local rcsult tor the global optimum.

Just as in rool location. optimizrtion in one dimension can be dividc'd into bracketing
and operr methods. As dcscribed in the next section, thc golden-section search is an examplc
of a bracketing nrethod that is very sirnilar in spirit to thc hisection nlethod lbrroot location
This is f ir l lowcd by a somcwhat more sophisticated brackcting approach-parabolic inter.
polation. We will then show how thcsc two nrethods are cornbined and irnplemented wit
MATLAB's I  rn i  nbnd funct ion.

FIGURE 7 .4
A {unction thir l  osymptoticol ly opprooches zero ot p us ond minLrs oc ond hcrs trvo moximum ond
two rn in imum po n ls  in  th - -  v ic in i ty  o f  lhe  or iq in .  The lwo po i r l s  1o  th - -  r igh t  r r re  oco  op t imo,
wherecs  fhe  two to  the  le f t  o re  q  obo l .
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2.2 ONE.DIMENSIONAL OPTIMIZATION l 7 l

7.2.1 Golden-Section Seorch

In many cultures, certain numbers are ascribed rnagicai qualities. For example, we in the West
are all familiar with "lucky 7" and "Friday the 13th." Beyond such superstit ious quantit ies.
there are several well-known numbers that have such interesting and powerful mathematical
properties that they could truly be called "rnagical." The most comnlon of these are the ratio
of a circle's circumference to its diameter z and the base of the natLlral logarithm e.

Although not as widely known, the golden ratio should surely be included in the pan-
theon of remarkable numbers. This quantity, which is typically represcnted by the Greek
leuer Q (pronounced; fee), was originally defined by ELrclid (ca. 300 BCE) because of its
role in the construction of the pentagram or five-pointed star. As depicted in Fig. 7.-5.
Euclid's definit ion reads: "A straight I ine is said to have been cut in extreme and mean ratio
when, as the whole l ine is to the greater segment, so is the greater to the lesser."

The actr"ral value of the golclen ratio can be derived by expressing Euclicl 's definit ion as

t 1 I L 2  l r

I r  ( ' :

Multiplying by t 1/(.2 and collecting terms yields

o ' -Q - I : 0

(7 .2 )

(7 .3 )

(7 .51

where @

4, :

:  L r / ( z

l + \ ,6
. The positive root of this equation is the golden latit 'r

:  1 .6 t80.r - r98874989.  . (7.1)

The golden ratio has long been considered aesthctically pleasing in Western cultures.
In addition, it arises in a variety of i l thcr contexts including biology. For our pulposes, it
provides the basis fbr thc golden-sectiorl scarch, a sirnple, general-purpose rncthocl fbl dc-
termining the optimum of a single-variablc function.

The golden-section search is sirnilar in spirit to the' bisection approach lbl locating
roots in Chap. -5. Recall that bisection hinged on defining an interval, specil ' ied by a lorver
guess (-r,) and an upper guess ({,) that bracketed a single root. The prcsence of a root be-
tween these bouncls was verif lccl by deterrninimg that.l '(.r,) and.l(.r,,) had difl 'ercnt signs.
The root was thcn estimated as the midooint of this intcrval:

'tt I x,,
' . ,

FIGURE 7.5
Euclids definit ion of the golden roi io is bo-sed on dividing o i ine i .r fo lwo segmc-nls so lhot fhe
roi io of ihe whole l ine io the lorger segment is eguol lo the roiro of the lcrrger segrnenl io ihe
smo//er segmeni Ihis roi io is co//ed the go/den rof io

( t  ,  ( 2 -

t - + l - ,  _
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The final step in a bisection iteratjon involved detennining a new smaller bracket. This was
done by replacing whichever of the bounds -r1 or-r,/ had a functiorr value with the same sign
as-l (r,.). A kev advantage of this approach was that the new valne r, replaced one of the old
bounds.

Now suppose that instead of a root. we were interested in detennining the minimurn of
a one-dimensional function. As with bisection, we can start by dcfining an interval that
contains a single answer. That is, the interval should contain a single nrinirnurrr. andhence
is called uninrodal. We can adopt the same nomenclature as for bisection. where.l,and4
defined the lower and upper bounds, respcctively. of such an interval. However, in conlrasl
to bisection, we need a new strategy for f inding a rninimum within the interval. Ratherthan
using a single intermediate value (which is sufflcient to detect a sign change, and hencea
zero), we would need two intermediatc function values to detcct whcther a minimum
occun'ed.

The key to making this approach etficicnt is thc rvise choice of the intermediate points,
As in bisection, the goal is to nrininrize l irrrction evaluations by rcplacing old valueswith
nerv values. For bisection. this was accornplished by choosing the midpoint. For the
golclen-section sc'arch, the two intcrnediirte points are chosen according to the golden
ratio:

. Y t : . \ /  + d  ( 7 6 )

. r ) : x u - d  ( 1 . 1 )

where

d : ( (h  -  l ) ( : r , ,  - , r r )  ( 7 .81

Thc function is evaluatcd at thcse two inleriolnoints. Two results can occur:

I t ' , as inF ig .7 .6a , . l ( x r l  . l ( - r : ) , t hen . l ( . r , ) i s t hc r .n in in run r ,and thedoma ino f . r t o the
leli cl l 'x,, l iorn -r, to r), clur be clintinatcd becausc it does not contain thc rninirnum. For
this casc, .r, bscclmes the new .r, l irr thc next round.
If I ( v:) . ./ (,rr ), then / (.r,) is the rrinimum and thc donrain ol ' r to thc right of .r,, f iom
.rr to ,r,, wou ld bc eliminatcd. Fclr this case, .\ r bccotnes thc new .r,, l irr thc ncxt round.

Now. here is thc neirl hcnelit { l 'clm thc usc ol'thc golden ratio. Becallsc the oliginal.r,
and r, u,cre chosen using the golden latio, we do not havc to recalculatc all thc function
values for thc next iteration. For example. tbr thc case il lustrated in Fig.7.6, the old"r, be-
comes the new rr. This meirns that we alrcady have the value lbr the new.l(r.), sinceitis
the same as the l 'unction value at the old.r,.

To cornplete thc algorithrn, we need only detcrmine the new.r,. This is done with
Eq. (7.6) with r/cornputed with Eq. (7.8) based on the new values o1',r, rud.r,,. Asimila
approach would lre usecl fbr thc alternate casc where the optirlLrnr f-cll in the leli subinterval.
For this case. the new.rr would be computed with Eq. (7.7).

As the iterations are repeated, the interval containing the extremum is reduced rapidly.
In fact, each round the interval is reduced by a 1'actor of d - I (about 61 .87c). Thatnleans
that after l0 rounds, the interval is shrunk to about 0.6 l8r{) or 0.008 or 0.8% of its init iai
length. Afier 20 rounds, it is about 0.0066% . This is not quite as good as the reduction
achicved with bisection (50Vo\. birt this is a harcler Droblem.

l .

)

EXAMPLE 7.2 Gol<
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FIGURE 7.6
(o) The init icl  step of the golden-section seorch olgori thm involves choosing iwo inlerior pornts
occording to the golden rot io (b) The second step involves deflnlng o new intervol thot
encomoosses  lne  oo l lmum.

r l - d + x l

(a l

Golden-Sect ion Seorch

Problem Stotement. Use the golden-section search to find the minimum of

1

f ( x t : - - 2 s i n r"  l 0

within the interval from -r, : 0 to jr,, : 4.

Solution. First, the golden ratio is used to create the two interior points:

d : 0.61803 (4 - 0) : 2.4'.721

r r  : 0  + 2 . 4 1 2 1 : 2 . 4 1 2 1

x z : 4 - 2 . 4 1 2 1  : 1 . 5 2 7 9

.rl

on
)e-
is

irh
lar
al.
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The function can be evaluated at the interior ooints:

1.52192
l ( x : ) :  l 0  

-  2 s i n ( l  . 5 2 1 9 ) :  - 1 . 1 6 4 7

2.412t2
I  ( r r )  :  

t0  
-  2s in(2.4121) :  -0.6300

Because .[(xt1 ..1 (,r1), our best estimate of the minimum at this point is that it n
f ocated at r : | .5219 with a value of ,f (r) : - l .7641 .ln addition, we also know that the
minimum is in the interval defined by -r,,.rr, and.r, . Thus, for the next iteration. the lower
bound renra i r ls . t /  :  0 ,  and x,  beconres the upper bound,  that  is ,  . r , , :2 .1721 .  In  addi t ion,
the fbrmer -r. value becomes the new .rr , that is, x, - | .5279.ln adclit ion, we do not have to
recalculate /(x1), it was determined on the previous iteration as l (.5219) : -1.1641,

All that remains is to use Eqs. (7.8) and(7.7) to compute the new value of r/andr,:

d  : 0 . 6 1 8 0 3 ( 2 . 1 1 2 1 -  0 )  :  1 . 5 2 1 9

rz  : 2 .4J21  -  1 .5279  :  0 .9443

The func t i oneva lua t i ona t . r . i s  / ( 0 .9943 )  :  l . , 53 l0 .S ince th i sva lue i s l css than the
funct ion value at . r , .  the min imum is  l (1.5219):  -1.7611 ,  and i t  is  in  the in tcrval  pre-
scribed by rr, -r,. and,r,,. The process can be repcatcd, with the results tatrulated hcre:

a

or
esl

Th

Fit
apl

or
the

xt J'$,) x2 f (xr) xt l & ) xu J'(x,,)

I
2
3
4
5
6
7
B

0
0
o 9443
4 s443

3050
30,sc)
3050
390 I

_53 r0
5 3  t 0
7595
7595
7 595
7742

I  5279
o 944'3

5279
3050
5279
4427
390 I
4427

7647
- 5 3 1 0
7647
7 595
7647
7755
7742
7755

2  4 7 2 1
I  5279
I . B B 8 5
) 5279
1 66-s6
I  5279
I  4427
I  4752

--0 6300
*1 7647
,  t  5432
- - 1 7 6 4 7

t  7 1 3 6
t 7647

-1  7755
- t  7 7 3 2

2 A/21
) 5279
0 9443
0 5836
0 360/
a 2229
0  I3 l8
0 0B5r

0
0

4 0 0 0 0  : t  I t 3 6
2 4721 -o 6.100
2 4721 (l c,, lOO

B 8 B 5  t . 5 4 3 2
BBB-5  )  5432
6 6 5 6  I  7 1 3 6
5279 t  7647
5279  - t  7647

Note that the current minimum is highlighted tbr cvery iteration. Alier the eighth
i terat ion,  the min imurn occurs at  x :1.4421 wi th a l i rnct ion valuc ct l ' - ] t .1155.  Thus. the
resul t  is  ccrnverging on the t rue value of  -1.1157 at . r :  1 .1216.

Recall that for bisection (Sec. 5.4), an exact upper bound for the crror can be calcu-
lated at each iteration. Using similar reasoning. an upper bound fbr golden-section search
can be derived as lbllows: Once an iteration is complete, the optimum will either fall in one
of two intervals. lf the optimum function value is at,rr, it wil l be in the lower interval (.r,,
.r,. .r,). If optimum firnction value is at -r,, i t wil l be in the upper interval (.r.. .r,. .r,,). Because
the interior points ale symmetrical, either case can be used to define the error.

No
Co

gol
wo
nuI

l .



le
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Looking at the upper interval (xr, r,, :r,,). i f the true value were at the fiu' left, the max-
imum distance from the estimate would be

A r . : - T I  - , r 2

: . r t  I  (Q -  DQ, -  r r )  -  x , ,  + (Q -  l ) (x , ,  -  x i )

: (rr - .t,,) + 2(0 - l)(.r,, - ,r1)

: (20 - 3)(.r,, - .rr)

or 0.2361 (-r,, -.r ' ,). If the true vaiue were at the far right, the maximum il istance fiorn the
estimate would be

A,r1,  :  - { , ,  - ' f  I

:  , { r r  . t ' t  -  (Q -  l ) (x, ,  -  - r i )

: (r,, - rr) - (Q l)(.r,, - .r1)

:  ( 2  -  d ) ( . r u  - . r r )

or 0.3820 (,r,, - ,r1). Therefbre, this case would represent the maximum error. This result can
then be normalizecl to thc optimal value fcrr that iteraticln .r,,n, to yicld

t . _ . . 1
t , , : (2-O) l ' : ! - - - - :J l  x  t00% e.s l

I r, 'nr I

This cstimate provides a basis fbr tcrminating the iterations.
An M-fi le f 'unction fbr the golden-section search for minimization is presentcd in

Fig.7.7. The l 'uncticln returns the location of the rninimum, the value of the function, the
approximate crror, artcl the number of iterations.

The M-fi le can bc uscd to solve the problenr frorn Example 7.1.

> ) '  q - - - ' i  . 8 1  ;  v O - 5 5 ;  n t = 8 0  ;  r . : = 1 \ ;  z r ) -  I  0 l )  ;
> -  : = Q ( L )  ( z t ) + r n l c * ( v O + m * ! . 1 . , ' c ) * ( I  e r p (  c / m * 1 , )  )  n r * q , i . * L )  ;
r: > | x n i n , f rn i ri , .:r a , i L c r I = g o 1 ctn i n ( z , O , i', )

x m i n  =

3 . 8 3 1 7

l n i i  n  -

1 9 2 . 8 6 r )  9

6 . 9 3 5 6 c  ( l 0 ' - r

Not ice how because th is  is  a muximizat ion,  we have entered thc negat ive of  Eq.  (7.1) .
Consequent ly ,  [mi  n corresponcls to a maximum height  o l '  192.8609.

You nray be wondering why we have stressed the reduccd functiorr evaluations of thc
goldcn-section sL-ilrch. Of course, lor solvirrg a single optirnization, thc speed savings
would bc negligible. However, there are two important contexts where mininrizing the
number of function cvaluations can be important. These are

l. Many evaluations. There arc cases where the golden-section search algorithm may be a
part of a much larger calculation. In such cases. it may be called many times. Therefbre,
kecping functiort evaluations to a minimum coulcl pay great dividends for such cases.
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r  - n - r  i o - r  I x ,  f x , e - ,  i r e r  l . g o J d r i n  l f  , x ' , x u , e s , m a x i c , v a r a r g i n )
%  g o l d r r L i n :  m j - n i m i z a L i o r - r  g o l c l e n  s e c t i o n  s e a r c h
%  f x , f x , e a , i t e r j = g o l d m i n ( f , x l , x u , e s , m a x i t , p I , p 2 , . . . )  :
%  u s e s  g r o l d e n  s e c t j o n  s e a r c h  t o  f i n d  t . h e  m i n i m u m  o f  f
%  i n p r ' r g ;
Z  t  =  n a m e  o f  f u n c t i o r 1
o o  r ' l  ,  x l  l o w e r  a n d  J p p e '  o L e s s e s
%  e s  =  d e : ; i r e d  r e l a t i v e  e r r o r  ( d l e f a u l t  -  C . 0 0 0 1 ? )
%  m a x i t  =  n a x i m u m  a l l o w a b l e  i t e r a t i o n s  ( d e f a u l t  =  5 6 1
%  p 1  , p 2 ,  ,  . .  =  a d d i t i o n a L  p a r a m e t e r s  u s e d  b y  f
9 :  ^ r r r r i r r t s .

?  x  =  l o c a L j . o n  o f  m r n r m u m
?  f x  =  m i n i m u m  f u n c t i o n  v a l u e
?  e a  -  a p p r o x i r n a L e  r e l a t i v e  e r r o r  ( ? )

?  i t e r  =  n u m b e r  o f  i t e r a t i o n s

i f  r r . r r g i n . 3 , e r r o r ( ' a t  l e a s t  3  i n p u t  a r g u m e n L s  r e q u i r e d ' ) , e n d
i f  n a r g i n < 4  r s e m p t y ( e s ) ,  e s = 0 . 0 0 0 1 ; e n d
i f  n a r g i n < 5  i s e m p t - y ( m a x i t ) ,  m a x i t = 5 0 ; e n d
p h i .  ( 1 + s q r r -  ( 5 )  )  / 2 ;
i t e r - 0 ;
w h i l e ( 1 )

d  =  ( p h i . - 1 ) *  ( x u  x I ) ;
x I  =  x l  r  c l ;

x 2  =  x u  -  d ;
i f  t ( x 7 , \ t a r a r q i r r { : } )  <  f  ( x 2 , v a r a r c J i n { : } )

x o p t  =  x 1 ;
x 1  =  7 ) ;

x o p t  -  x 2 , .
v l .

e n d
i t e r = i t e r + 1 ;
i f  x o p t - - - 0 ,  e a  =  ( 2  -  p h i )  *  a b s (  ( x u  -  x l )  /  x o p t )  *  1 0 0 ; e n d
i - f  e a  < =  e s  I  i t e r  > =  m a x i t , b r : e a k ,  e n d

e n d
x - x o l ' ; [ x . i  x  ' p L , ' / a ' o r : i n  : ]  ;

FIGURE 7.7
A" A/ i ; le  13 jpr5.rminp the mrnimum of  o lunci ion wi th the oolden-.secl ion seorcfr

Time-consunring evaluation. For pedagogical reasons, we use simple functionsil
most of our examples. You should understand that a function can be very compler
and tinre-consunling to evaluate. For exarnple, optimization can be used to estimatr
the parameters of a model consisting of a system o1' diff 'erential equations. For sucl
cases, fhe "function" involves time-consuming model integration. Any method thal
min i rn izes such evaluat ions would be advantaseous.
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True max imum Parabolic
approx imat ion
of  max imum

Parabolic
function

./(.r ) True function

FIGURE 7.8
Grophicol  d--p ic t ion of  porobo ic  in terpolot ion

7.2.2 Porobolic Interpolotion

Parabolic interpolation tltkes advantagc ol'the l irct that a sccor.rd-ordcr polynornial olien
providcs a good approxirnation to the shapc of l(.r) ncar an optimum (Fig. 7.g).

.f ust its lhcrc is t lnll ' t tnc sl.raight l inc corrnccting two points, there is only 9nc parabola
connect ing three points.  Thus.  i1 'wc havc thrcc points that .yo int ly  hracket  an opt imum. wc-
cltn l. i t a parabola to the points. Thcn wc can dil ' lcrcntiatc it, sct thc rcsult cqual to zcro, ancl
solve lbr atr estitnale o1'lhc optimal -r. It can bc shown lhlough sontc algcbraic rlanipula-
t ions that  thc rcsul t  is

r l : . r l - ( 7 . l 0 l

in
Lex
ate
rch
lat

where -r', -r., ancl ,r, i irc thc init ial gucsses, and.rr is the value o1'.r that corresporrds tq the
opt i r r runt  va luc u l ' thc par .ahol ic  f  i t  to  the guesses.

EXAMPLE 2.3 Porobol ic  In terpolot ion

Problem Stotement. Use parabolic interpolation to approxirnatc thc rnipirnurn ol'

r l
/ ( r )  :  

l o  
2 s i n ' r

rv i th  in i t ia l  guesses of  , r ,  -  0 . . r , :  l ,  and_r. . :  -1.

Solut ion.  Thc lunct ion values at  thc three guesses can be evaluated:

r  -  f )

r ' - l

.  - A

. l ( r , ) : 0
l ( r , ) :  -1 . -s829

/ ( r ' , ) : 3 . 1 1 3 6
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and substituted into Eq. (7.10) to give

r ' .  -  I
l  ( l  -  0)2 L-1.5829 * 3.11361-  0  -  4 )2  [ -  r .5829 -  01
2 (1  -  0 )  [ - r .5829 -  3 . i l361  -  ( l  -  -+ )  [ -1 .s829 -  0 ]

which fras a function value of /(1.50-55) : -1.1691.

Next, a strategy sirrrilar to the golden-section search can be employed to determine
which point should be discarded. Because the function value for the new point is lower
than for the interrnediate point (.r:) and the new x value is to the right of the intermediate
point. the lower guess (x,) is discarded. Therefore, lbr the next iteration:

whe
func

Exar

rvhich can be subst i tu ted in to Eq.  (7. l0)  to  g ive

I  (  r  .50-55 -  I  )2 [ -  I  .769t  - . ] .1  l36 l
2  ( 1 . - s 0 5 - 5 -  r ) t - 1 . 7 6 9 t  -  3 . l l 3 6 l -  ( t . 5 0 5 s  1 ) l - t . 7 6 9 1

which lras a function value ofl( I .4903) : -l .11 14. The process can be repeated, with thc
r-e.suIts tabulated her-e:

.rl J  @ , ) x2 f  (x2) r.t f  k , l X ,

r r  : l
r: : I.-50-5-5
x l :  4

ra = 1.50.55 -

:  1.4903

.l i.r') : -1.5829

. l 'Q):  -1.76e1

. / k . ) : 3 ' 1 1 3 6

"f(rJ
4
4

r 36 1 .5055 -1 /691
I I 36 t 4903 -1 7711
7691 I  4256 - )  7757
/714 I 4266 -t 7757
7714  1  4275  - )7757

Thus, within five iterations, the result is converging rapidly on the true value of -1.7757

at . r  :  1 .42J6.

7.2.3 MATTAB Function: rminbnd

Recall that in Sec. 6.4 we described the built- in MATLAB function f zero. This function
combined several root-finding methods into a single algorithm that balanced reliability
with efl iciency.

The fminbn.f function provides a sin.rilar approach for one-dimensional minimiza.
tion. It combines the slow. dependable golden-section search with the faster, but possibly
unreliable. parabolic interpolation. It f irst attempts parabolic interpolation and keeps ap
plying it as long as acceptable results are obtained. If not, it uses the golden-section search
to set matters in hand.

I 0 000cr 0
2  I 0 0 0 0  r
3  I 0 0 0 0  , t
4  r o o o o  - t
5  1 4 2 5 6  - t

0000
5829
5 B 2 a
5829
77 57

0000
0000
5055
4qa:J
49A3

0000 - r  5829
5055 I  7691
4903  t  7714
4256  -1  7757
4266 - )  7757

3
J

- t
- t

I

Thus
itera

7.3 MU
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2.3 MULTIDIMENSIONAL OPTIMIZATION

A simple expression of its syntax is

f x m r n ,  f v a f l  =  f m i n b n d ( f u n c t i a n , x l , x 2 )

where x and f va1 are the location and value of the minimum, function is the name of the
function being evaluated, and xl and x2 are the bounds of the interval being searched.

Here is a simple MATLAB session that uses fminbnd to solve the problem from
Example 7. l.

> > g = 9 . B 1 ; v 0 - 5 5 r m = B O ; c = 1 5 ; z A - L 0 a ;
> >  z = @ ( t )  ( 2 0 + n / c * ( v 0 + m " g / c ) x  \ 1 - e x p (  c / m " t ) ) - m * g / c * t )  ;

X =

3 . 8 3 1 7
f -

- 1 9 2 . 8 6 0 9

As with f  zero, optional parameters can be specif ied using optimser. For example,
we can display calculat ion detai ls:

o p t i o n s  =  o f i t i m s e t  (  ' d i s p l a y '  
,  ' i t e r ' )  

;
fnr  i

F u n c - c o u n t
1
2
-l

4
5
5
1
B
9

X

3 . 0 5 5 7 3
4 . 9 4 4 2 7
r . 8 8 8 5 4
3  . 8 1 5 4 4
3 . 8 5 8 3 6
3 . 8 3 3 3 2
3  . 8 3 r 5 2
3 . 8 3 1 6 6
3 . 8 3 1 5 9

f  ( x )

r B 9  . 1  5 9
1 8 7 . 1 9
I / I , 8 7 I
7 9 2 . 8 5 1

- r 9 2  . 8 5 1
1 9 2  .  B 6 r
7 9 2  .  B 6 r
1 9 2 .  B ( r 1
7 9 2 . 8 6 1

P r o c e d u r e

i n i r i a l

g o  1  d e n
q o l d e n

p a r a b o  1 i  c -

p i r r a b o l i c

p e r r a b o l i c

p a r a b o l i c

P . , r r a b o l i c
p a r a b o  1  i  c

O p t i m i z a L i o n  t e r . m r n a t e d :

t h e  c u r r e n t  x  s a t i s f i e s  t h e  t e r m r n a t i o n  c r i t e r i a  u s i n q

O P T I C ) N S . T o L X  o f  1 . 0 0 0 0 0 0 e  0 0 4

3  . 8 3 , r 1

Thus, after three iterations. the nrethod switclres f'rom golden to parabolic, and alier eight
iterations. the minimum is determined to a tolerance of 0.0001.

7.3 MUTTIDIMENSIONAT OPTIMIZATION
Aside from one-dimensional functions, optimization also deals with multidimensional
functions. Recall from Fig.7 .3a that our visual image of a one-dimensional search was like
a roller coaster. For two-dimensional cases, the image becomes that of mountains and
valleys (Fie.1.3b). As in the lbllowing example, MAILAB's graphic capabil it ies provide
a handy means to visualize such functions.
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EXAMPLE 7.4 Visuol iz ing q Two-Dimensionql  Funct ion

Problem Stqtemeni. Use MATLAB's graphical capabil it ies to display the following
function and visually estimate its minimum in the range -2 < xr < 0 and 0 < .r2 < 3:

. f  ( x t '  x )  : 2  i  x t  -  xz  - ' l -  2x l  +2x r r z  +  x i

Solution. The fbllowing script generates contour and mesh plots of the function:

x - l i n s p a c e ( - 2 , C) , 4 A ) ; i, = l i n s p a c e ( 0 , 3 , 4 0 ) ;
t ] : '  Y l  =  m e s h q t r i d  ( x ' Y )  ;
z = . 2 + x - ' {  + 2 * x .  ̂ 2  + 2  * x .  * Y + Y .  ' ' 2  ;
s u b p l o L  i ' 7 , 2 , 7 ) ;
c ! ; = c o n t o l l r  ( X ,  Y , Z ' )  ;  ( - :  l . r b e l  ( c s )  ;
x l a b e l  ( ' r - 1 '  )  ; \ ' l ; r b e l  ( ' : < - 2 '  )  ;
t r t l e ( '  ( a )  C o n t o u r  p l o L '  )  ; , J r i d ;
s u b p l o l  \ I , 2 , 2  t ;
c s = s u r f  c  l X , ' { , Z ) ;
z m i n = f  l , r o r ( m i n  ( Z ) ) ;

z m a x - r - - e i  I  ( m . r x  (  Z  )  )  ;
x l a b c l  { ' y _ 1 '  )  ; : r  I a b e l  ( '  : ' , . _ ? , '  )  ; z l a b e l  ( '  f  ( x _ I , : < . _ 2 ) '  )  ;
t i t l e ( ' ( b )  M e  s l - r  t r ' l o t ' ) ;

As displayed in lr ig. 7.9, both plots indicatc that function has a minimurn value of about

. f t . r ' , " r2 ) :0  to  I  loca ted  a t  about r l  :  - l  and . r ,  :  l . -5 .

FIGURE 7.9
(o) Confour ond (b) rnesh plc, ls of o Mo-dimensionol functron
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7.4 CASE STUDY t 8 l

Techniques for multidimensional unconstrained optimization can be classified in a
number of ways. For purposes of the present discussion, we wil l divide them depending
on whether they require derivative evaluation. Those that require derivatives are called
gradient, or descent (or ascent), methods. The approaches that do not require derivative eval-
uation are called nongradient, or direct, methods. As described next. the built-in MATLAB
function fniinsearch is a direct method.

7.3.1 IVIATLAB Functiohs fminsearch

Standard MMLAB has a function fminsearch that can be used to determine the mini-
lnum of a rnultidimensional function. It is based on the Nelder-Mead method, which is a
direct-search method that uses <lnly function values (does not require derivatives) and
handles non-snrooth obiective functions. A simple expression of its syntax is

f x n r r ,  f v a l l  =  f m i n s e a r c h (  f u n c t i o n , x l , x 2 )

where xmrn and frzal are the location and value of the minimum, fttnction is the name of
the tunction being evaluated, and xl and x2 are the bounds of the interval being searched.

Here is a simple MATLAB session that uses f rninsearch to determine rninimum for
the function we just graphed in Example 7.4:

: . >  f  = @  ( x )  2 + x \ 1  )  - x ( 2 )  + 2 * x l I )  ^ 2 + 2  * x  ( l  )  * x  ( 2 )  + x ( t : , )  ̂ 2 ;

- 1 .  O O 0 O  1 . 5 0 0 1 )
f  ver  i  =

0 . 7 5 0 0

EAUILIBRIUM AND MINIMUM POTENTIAL ENERGY

Bockground. As in Fig. 7.70a,an unloaded spring can be attached to a wall mount.
When a horizontal force is applied, the spring stretches. The displacement is related to the
force by Hookes law, F : kx. The potential energy of the deformed state consists of the dif-
ference between the strain energy ofthe spring and the work done by the force:

PE( i  : 0 .5kx2  *  Fx  (7 .11 )

FIGURE 7.IO
{o) An unlooded spring oitoched to o woll mount. {b} Applicotion of o horizoniol force siretches
the spring where the relotionship beiween force ond displocement is described by Hookes low
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cont inued

Equation (7.11) defines a parabola. Since the potential energy will be at a
equilibrium, the solution for displacement can be viewed as a one-dimensional
tion problem. Because this equation is so easy to differentiate, we can solve for
p lacement  as. r :  F/k .For  example,  i f  k :2 N/cm and F:5 N,  r  = 5N/(2
2.5 cm.

A more interesting two-dimensional case is shown in Fig. 7.11. In this
are two degrees of freedom in that the system can move both horizontally and
In the same way that we approached the one-dimensional system, the equilibrium
mations are the values of x, and x, that minimize the potential energy:

+ (L,,

5€

The

-  x)2_ 2^ l
1 2

* L")

+ o.skb (

If the parameters are ko: 9 N/cm, k, : 2 N/cm, Lo: 70 cnt Lo: l0 cm, F, = 2
Fz = 4 N, use MATLAB to solve for the displacements and the potential energy.

FIGURE 7.I  I
A 1"wo-spring system: (o) unlooded ond (bl locded.

Thu
loca

PROBTEMS

three iterations,
the root of Eq. t

Example 7.1 along
the formula

= - x 2 * 8 x - 1 2

the maximum
this function analytir

that Eq. (7.10) yi
guesses ofr, - 0,

the following f

= 3 + 6 . r  + 5 x 2 + 3

6e minimum by findi
Use bisection r

- 1 . 5 x 6 + 2 r 4 + 1

fiurction.
methods to

fu dl values of r.



PROBLEMS

continued

Solution. An M-file can be developed to hold the potential energy function:

f u n c t i o n  p = P H  ( x , k a ,  l . : b ,  L a , L b ,  F ' I ,  l -  2 )
P E a =  0 . 5 * k a  *  ( s q r t  ( x  ( 1 )  ^ 2 +  ( L a - r  ( 2  )  )  ̂ . 1  )  - L a  )  ' 2 ;

P E b = 0 . 5 * k b *  ( s q r t  ( x  ( . 1  )  ' 2 +  ( l , b + x  \ ' 2 )  )  ̂ 2  )  L b ) ' l ;

W - F l  * x  ( 1 )  + F 2  * x ( 2 )  ;
p -  P F l a +  P E b  - W ;

The solution can be obtained with the fminsearch function:

k a =  9  ;  k b - 2  ;  L a = 1 0  ;  t , l ; =  i 0  ;  F 1 , ,  : , .  ;  E " t , - , ]

I x ,  f  ]  - f r n i n s e a r . c h  ( B P E ,  i  - " 0 .  ! r ,  0 .  5  l

f -

4  . 9 \ 2  i I  . 2 ' . l  0 9

-  9  .  ( , 42 , :

Thus, at equil ibrium, the potential energy is -9.6422 N.cm. The connecting point is
located 4.9523 cm to the right and 1.2'759 cm above its original position.

PROBtEMS

Perform three iterations of the Newton-Riiphson method
fhe root of Eq. (E7. |  . l ) .  Use the parameter val-

Example  7 .1  a long w i th  an  in i t ia l  guess  o f  r :3  s

Given the fonnula

J ( r )  = - r r + 8 r  1 2

Delermine the maxinrurn and the colresponding value ol'
r for lhis functirx analvt ical ly ( i .e..  using di l l -erentiat ion).
Vedfy that Eq. (7.10) yields the sanre results based on
initialguesses of,t, : fl, .v. - 1. xp1l .v.. : $.
Consider the lbl lowing lunction:
'(r) = 3 { 6-r * -5-r r + 3xr +,l-ra

the nrinimunr by f inding the root ol ' the derivative ol '
function. Use bisection with init ial  [uesses of -r,  :  2
r r=  l '
Given

r 1 y )  = - 1 . 5 - t n  + 2 x "  + 1 2 l

Plot the function.
Useanalytical methods to prove that the function is con-
cave for all values of -r.

(c) Dil-l-erentiatc' the lirnction and then Lrse a root-location
method Io solve lor the maxir lurn. l( .r) and the corre-
sponding value ul 'r .

7.5 Solve for the value of -x that rnuximizes.f (,r) in Prob. 7.4
using the golden-section search. Employ init ial  guesses of
,ti : 0 and -r,, : 2, and perfbrrn three iterations.
7.(r Repeat Prob. 7.5, except use parabolic intcrpolat ion.
Enrplo-v init ial  gue sses of ,r) :  0.,r,  :  I .  and xr :  2. rnd per-
lbrm three i terat ions.
7.7 Enploy the l'o|l<'tring nlethods to t'ind the nrarirnum ol-

I  ( r )  :  4x  -  l .ux2  *  1 .2 -13  0 .3 - ra

(a) Golden-section search (.rr:  -2, -r,  :  4, 8, :  l (n.r.
(b) Parabolic interpolat ion (, tr  :  1.7-5, r 'z :  2. ir  :  2.-5,

i terat ions : -5).
7. l l  Consider the fbl lowing function:

.f  (xl  :  ro + 2-tr + 8x2 + 5r

Use analyt ical and graphical methods to show the l i rnct ion
has a minirnum fbr some value ol '  x in the range
* 2  <  x  <  l .
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7,9 Employ the fbllowing mcthods to fincl the minitnurn of constant : 9.8 I rn/s:. attd ,t'n - the initial height (rn). Use the

thc function fiorn Prob. 7.8: golclen-section search to determine the nraximum height
(a) Golden-section search (,r, :  -2, -v,,  :  I ,  r .  --  lc/c). givcn -t 'u :  I  nt,  u'  :  25 rn/s, and 0,, :  50". I terate unti l  the

(b) Parabolic interpolat ion (,rr :  -2, -y: :  -1. .r . ,  :  l ,  approxirnate ertor fal ls below €,: lc/o using init ial  guesses

iterat ions :5). of ,r , :  g and -r, , :  $Q p.

PI

0.4

I
(d-1)  o.z

7.1{) Considcr thc fbllowing tr.rnction:
3

.l (.r) : 2.r * -
J

Perform IO itcrat ions of parabolic interpolat ion to locate

the minimum. Comment on t lre convclgcnce of yttur rcsults
(.rr :  0.1 .  ,r :  :  0.-5, -rr :  5)
7. l l  Devclop an M-f i lc that is expressly dcsigned to locate
a rnaxirnum with thc golden-scction scarch. [n othcr words,
sct i f  up so that i t  dircct ly f inds the traxitnum rather than
finding thc rninimunr of -/ ' ( .r) .  Thc subroutine should havc

thc tblloia,ing f'eaturcs:

. I teratc unti l  thc rclat ivc clror tal ls bclow a sk)pping cri-

tcr ion or cxcecds a ntaxinrunt nunrbcl ol ' i tcrat ion..
.  Rcturn both thc optinral "t  and./(.r).

Test y()ur prograrn with thc sarnc problctn as Exanrplc 7.1.

7.12 Dcvclop arr M-f i lc to krcit tc l  nt inimum with thc
goldcn-scction search. Ralhcr than using thc Inaxitrtuu i tcra-

t ions und L,q. (7.9) as thc stopping cri tcr ia, dctcnninc (hc

numbcr of i tcral ions nccdcd t() attain a dcsircd tolcrance. ' fcst
your  func t ion  by  so lv ing  Exrn tp lc  7 .2  us ing  L ' , , ,  :  0 . (XX)1 .

7.1-1 t)cvelop an M-f i lc (o irnplcntcnt parabolic intcrpolt l-

t ion (o krcatc a nrininturn. Thc subroutinc should havc thc
l ir l lowing l-caturcs:

. Basc i t  on tu,o init ial  gucsscs, and havc thc progl lut gcu-

cratc thc third init i i r l  valuc at thc rnidpoint ()f  thc intcrlal.
.  Check whethcl thc gtrcsscs brackct i t  t laxitr turn. I l  nt l t ,

thc subroutinc should not inrplcntcnt thc algori thrn, but

should rcturn irn crr()r nrcssagc.
. I tcratc unti l  thc rclat ivc crror l l l ls bckrrv a stoppinS cri-

tcr iori  or cxcccds l  rnaxintunt t tutnhcl t l l ' i tcrat ionr.
.  Rcturn both thc optinral ,r  and./(,r).

Tcst 1,ppr pfogram rvith thc samc ptoblctrt  as Exanrplc 7.3.

7.14 Prcssurc mcasurL'nlcnts arc takcn at ccrtain poi l t ts

bchind an air lbi l  ovcr t iuic. Thc data bcst l ' i ts thc curvc

_r :  6 cos -r - I .5 sin.t  l ' rom.r :  0 to 6 s. Llsc l i lur i terat ions

o1'thc goldcn-search rncthod to l ' ind thc nrininrunr prcssurc.

S c t r , : 2 a n d , r , , : ' 1 .
7.15 Thc trajcctory o1'a bal l  can bc cot.nputcd with

r : ( t i u l H { ) ) . t  -  - = j ,  r ' ' * r i r
2t , j  crrs'  11"

whcre ,r '  :  the height (m). d,,  :  thc init ial  angle (radiansl,

u. :  the init ial  vclocity (rn/s), .g :  thc gravitat ional

7 .16 The dcflection of a unifbrm bearn subject to a linearly

increasing distr ibuted load can be computed as

, =  _ 5 ( - y s + 2 L ) r ' - L r r l
I ) ( ) E I L

Giverr that L: 600 crn, C = 50,000 kN/cnr:,  1: 30,000 cm{,

ahd ur,, : 2.5 kN/cm, detcrtninc the point of maximum de-
{lect ion (a) graphical ly ' ,  (b) using the golden-scction sealch
unti l  t l ie approximatc error fal ls below e, :  l% with init ial
gue sscs of -r, : 0 ancl .r,, - L.
7.17 A ob.icct with a ntass of 100 kg is prolected upward
liom tlre surlucc ol'thc carth at a vclocity of 50 rn/s. [f the

ob.icct is subjcct to l incaldrag (r '  :  l5 kg/s), use the golden-

scction scarch to detcrrninc thc rnaxirnum height the objeo
attai ns.
7.Itl The nornral clistribution is a bcll-shapcd curvedefinedby

Usc thc goldcn-scction scarch to clc(crttr irrc the location of

the inf lcct ion point of this curvc f irr  posit ivc .r.

7 .19  lJsc  thc  f  r l  in r ; r r , r I r : l r  lunc t ion  to  dc tc rmine  the

rl inimrnl ot '

/  ( - t .  . r , )  :2 .v )  ,2 .25 . r . l '  -  1 .7 -5 , r .  +  1 .5 - r2

7.20 Usc t l lc f  nrir i , i {r .r  r  t ' l r  l t lnct ion to detcrrnine the

l.ttitxirtrunr of-

/1 , r . . r ' )  :4 - r  *  2 . r ' -1 - -1 .1  -  2 . r r  +  2 - r r . ' -  3 r2

7 .21  C iven t l rc  l i r l l o rv ing  lunc t ion :

./  ( ,r .  .r ' )  :  - t l -r  * -r l  + l2r '  + 4r ' l  -  2,rr '

Dctcnnine thc rninirnuttr (a) glaphical ly. (b) nurnetical ly
with (hc lrLj rr;r , .Li  , : l i  l 'uncti t ln. ancl (c) suhsti t tr te the result

ol '  (b) back into thc l 'unution io clcternrinc t l ic rninimum

I (.r, i').
7.22 Thc spcci l ic gt 'owth ratc of a vcast that producesan

antibiot ic is a l i rnct ion ol ' thc l ixld conccntr.t t iot ' l  ( . :

4 + 0 . 8 r + ( l + 0 . 2 ( ]

As dcpicted in Fig. P7.22, growth gocs to zc() at very l0$

conccntrat ions cluc to lcxrd l i rnitat ion. I t  also goes to zelo8l

high conccntr i . i t ions due to toxicity ci tects. Find the valueof

r  u (  r  l r ie  h  g rou  th  i s  u  r t r : rx in rum.

0
0

FIGURE P7.22
lne,specif ic grow,h .sls .
onl ibioi ic versus the fooo t

7.23 A compouncl A will I
tank reactor. The product B
separatlon unit. Unreacted
process engineer has fbund
is a function of the convers
wil l  result in the lowest cos
constant.

cosr:. 
f(,,___ar)

S/,- ; ( t  -  e - ^ , , ,  ,

Ir----r _ _ '

I
2t

7.24 A finite-element model
loading and monrenrs rF.ig.

f ( x , y ) - - 5 . r 2 - 5 x y * 2

where -r : end displacernent
va lues  o f r .and 1 . tha t  n t inunr ,
7.25 The Streeter-phelp.t mo,
dissolved oxygen .on."ntrrn,
charge of sewage (Fig. p7.25.

o: o.r - ;*!L . p
k a * k . - k , ,

FIGURE P7.24
A contilever beom



PROBLEMS r 85

rt

) S

l y

0,4

8
ld_1) 0.2

0
0 5 1 0

c (mg/L)

IIGURE P7.22
Thespecif ic growth rcle of o yeosf thot produces cn
onlibiol c vefsus the food concentrot ion.

(mg/L)

or'

lc.

FIGURE P7.25
A dissolved cxygen "sog" below o point dischorge of
sewoge Inro o rver.

14,

ch
ial

rrd
.he
:n-

7J3 A compound A will be converted into B in a stirred
hnkreactor. The product B and unreacted A ure- purified in a
loparation unit. Unreacted A is recycled to thc reactor. A
pocess engineer has found that the init ial  cost ol ' thc syslcm
ilafunction ol ' the conversion r. , .  Find the conversion that
r i l l result  in the lowest c()st systenr. C is a proport ional i ty
on$ant.

l ,  I  r " "  r  | r " " l
C o s t = c l t - l  ' 6 ( ' - l  I

L \ { l - . r l ) - /  \ . \ 1 , r  I

?J4 A finite-element rnodel of a cantilever bearn subject to
hoding and monrents (Fig. P7.24) is civen by optinrizing

J{.r.  r l  = .r. f  -  ) .r . \ '  + i . .) . \ ' -  . \ '  -  |  . . \ . \ '

r = end displacenrent and .y : end mol.nent. Find the
of .r  and l  that rninimizc 11.r,  r ' ) .

The Streeter-Phclps mtxlel can bc used to cornpute the
oxygen concentrat ion in a r iver helow a pnin( cl is-

ofsewage (Fig. P7.25),

whcre o : dissolved oxygen conccnlrat ion (mg/L). o, :

oxygen saturatiorl  conccntrrt i()n (mg/L), r :  l ravel t i rne (d),

L,,  :  biochemical oxygen denrand (BOD) concentral ion ir t
thc rnixing point (rng/L), kz :  rate ol 'decomposit ion ol '
BOD(d r ) .  t ,  :  ra teo l ' se t t l ingo l 'BOD (d  I ) , f r , ,  :  reaera t ion
ratL'(d r).  arrd 5,,:  sediurent oxygen demand (mg/L/d).

As indicatcd in Fig. P7.2-5, F.r1. (P7.25) produces ln
oxygen "sag" thal reaches a cri t ical r.nininrunr level a,,  srrme
travel t i rne t,  bclow thc point discharge. This point is cal led
"cri( icir l"  hecause i t  rcpresents the lrrcation where biotu that
depend on oxygcn ( l ikc I ' ish) would be thc most stressed.
Deternrine thc cri t ical t lavcl t i rrre'  and concentr i l t iun, r: ivcn
thc  lb l low ing  va lues :

r , , ,  :  l ( )  u rg /L  k , r :0 .  t  d  |  ( , ,  :0 .6  t l  I

t . : 0 . 0 5 d  I  L , , : - 5 0 r n g / L  5 r , :  I  r n g / L / d

7.26 The two-dirnensional distr ibution ol '  ptr l lutant concen-
trat ion in u channcl can be described by

r ' ( r .  r )  :  7 . 9  t O . l  3 . r  *  0 . 2 1 . t ' -  0 . 0 5 , r :

-0 .016r ' r  -  0 . (X)7- r I

ej.25\ Determine the exacrt Iocation ol ' the peak concentrat ion given
the  lunc t ion  and the  k r rowlec lgc ' lha t  lhe  peuk  l ies  rv i th in  the

{ 1 ( , . , r . / . .  , ( , \ . i  -  t t t , t l ' r l t t  -  I  - - - r r .

7.27 A total chiirge Q is unitbrnrly distributed around a t'ing-
sh',rned cr-rnductrq rr\th rrli\rl. r \ thrr.:c r1 i- \r':q11-{ .-t 1

o\:\mc€ -\ lr()m tnt center ()1 Lr\e r\ng tFrg. P1 .21 t.The \orce

exerted on thc charge by the ring is given by

|  , t O r
I :  -  -  

' r x '
' 

4ten 1t2 1 47131t

w h e r e a , , : 8 . t 1 5  x  l 0  r r C r / ( N m r ; , r 7 :  Q : 2 x  l 0  i C '

and d : 0.9 m. Deterrnine the distance x whet'e the force is a

mlxir.t'turtr.

by

r o f

the

:al ly
)sult
num

:s an

low
ro at
le of

o = 0 , -  -  J t t ! -  ( c  t ' , t  - d - ( i , i  + t ' ) / )' '  
l i , r * k , - f t , , '

Sr- p ( l - e - ^ " t

) '

RGURE P7.24
Aconli  ever beom
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r _  r o
(r

FIGURE P7.27

7.2t1 The torquc transrl i t ted to an indr"rct ion motor is a f lnc-
tion of the slip betwccn the rotation of the stator field and thc
rotrrr spced .r,  whele sl ip is detincd as

t l  t l R

n

whcre rr :  rcvolut ions pcr seconcl of rotat ing stator spccd
and r i , , :  rotor spced. KirchhotT's laws can bc used to show
that the torquc (cxpressed in dirncnsionlcss fbrm) artd sl ip
arc rclatcd by

, '  - l 5 s ( l  -  s )

(  I  -  . r ) ( 4 , s r- 3 s * z l )

Figure P7.28 shows t lr is function. Usc u numcrical mcthod
to dctcrmine thc sl ip at which t lrc r laximum torque occurs.
7.29 Thc total drag on an airtiril can bc cstirnatcd by

whcrc D : drag, o :  rat io of air density bctween thc f l ight
alt i tudc and sca levcl,  lV: wcight. and V: r,clocity. As scen
in Fig. P7.29, t l rc two l 'actors contr ibuting to drag alc i ' r f-
lected dif l 'ercntly as velocity increases. Whcreas fr iet ion
drag increascs with velocity, thc drag due to l i f i  dccreascs.

FIGURE P7.28
Torclue ironsmifted to on inductor os o function of sl ip

D
20,000

10,000

0

FIGURE P7.29
Plot of drcg versus velocity for cn oirfoil

combination of the two f'actors leads to a minimum

lf o :0.6 and W : 16.000, dcterrnine the minimun
drag ancl thc velocity at which it occurs.
In adcl i t ion, devclop a sensit ivi ty anl lysis to determim
how this optirrum varics in response to a range d
w: 12,000 to 20,(xx) with o : 0.6.

7.-10 Rollcr bcarings arc sub.iect to fatigue tailure
lirrgc contrct loacls /i tFig. P7.-10). Thc problenr of
thc location ol' the maxirnum stress akrng thc -r axis can
shown to bc cquivulcnt (o maxirnizing the function:

The
clrag
(a)

(b )

FIGURE P7.31
Two frictionless mosses cor
lineor elostic springs.

7.31 In a similar fashion r
Sec. 7.4, develop the potent
tem depicted in Fig. P7.3L
plots in MATLAB. Minimiz
to determine the equilibrium
ltc forcing function F: l0(
Jd t6 - l5 N/m.
732 As an agricultural engi

open channel to carr)
ine the optimal dime

perimeter for a cross-sectiona
dimensions universal'l
733 Use the funcrion rmins
ofthe shortest ladder that rea
ftnce to the building's wall (l
where
?34 The length of rhe long
6e corner depicted in Fig.

P7.32

D :11 .111oY '+  
:T  (# ) '

F-r ' ict ion Li i t

_ _ /  0 4  \- / t  r r ' I r  - - - _ ] + . r
\  l + r - l

0..1
.',4 +'F

Find thc .r that rraxirnizcs /(.r ' ) .

FIGURE P7.3O
Roller beorings.
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P7.3 |
hictionless mosses connected fo o woll by o poir of

e n s f i .  < . . i n ^ q- - " , ' - r  , J -

ln a similar lashion to the case study described in
?.4, derelop the poterrt ial  energy f 'unction fol the sys-
depicted in Fig. P7.. i l .  Develop contour and surf lce
tn MATLAB. Minimize thc potcntial cnergy l 'unction

letermine the equil ibr iurn displacenrents .r,  and -r.  given
forcing tunction F : 100 N und the paral)rcters k,, :20
tr, = l5 N/rn.
As an agricultural engineer. you rnust design a trape-
open channel to carry irr igation water (Fig. P7.32)
ne the optinri l l  dinrensions to rninimize the wettecl

fbr r cross-secti t ' rnal area of 50 rn'.  Are the relat ivc
universal l

Use the lunction tm i r i : ;e:a r ch to deternrine the length
shortest ladder that reaches liorrr the ground over the
to lhe bui lding's wall  (Fig. P7.33). Test i t  l i rr  the case
L _ . t  -  , t  ^-

The length of the longest ladder that can negotiate
in Fig. P7.,1,1 can be determined bycomer depicted

P7.32

r87

FIGURE P7.33
A lodder  leon ing  ogo ins l  o  fence ond ius t  touch ing  o  wo l l

computing the value of e that minimizes the fbl lowing
function:

L(o):  Ll-  + - .  " ' '
s f n f i  s t n ( f t - a - H )

For the case where ur 1 : r.lr2 : 2 m, use a numerical rnethod
described in this chapter ( including MATLAB's bui l t- in
capabil i t ies) to develop a plot ol 'L versus a range ola's from
4-5  to  135" .

'..

FIGURE P7.34
A iodder negolioting o corner formed by trro hollwoys

by
ing
be

_-."',
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Lineor Syrtems

3. I ovERVtEW

Whof Are Lineqr Algebroic Equotions?
In Part Two, we O"rrrrn::;.1|,Te value xrhar satisfied a single equation,f r) : 0. Now, wedeal with the case of determining the values * ri; *r, . . . , x, thatsimultaneously satisfy a setof  equat ions:

f , l x , . x r - . . . . x , ) : 0

f ik ,y ,  , i :o  
. , ,  , , ,

: : ', ''.'

fJ.xp xr,. , x r )  :  0

Such systems are either l inear or nonlinear. In part
,*:..*. deal with lincar algebraic equarions that
are of the general form

a | x t  *  a n x z + . . .  +  a l o x n  :  [ ,
aztxt * azzxz * .. . * a2,,x,, : f i ,

- :
a 1 , 1 x 1  *  a n Z X Z  I  . . . *  a r , , x ,  :  1 2 ,

(PT3.t)

where the rz's are constant coefficients. the b.s are con_
stanrs.. rhe 

1.: 
* unknowns. and n is ,f,. nrri., ofequatrons. All other algebraic equations are nonlinear.

linear Algebroic Equotions in
Engineering ond Science

::iy^,:l T 
fundamenlat equarions of engineering

ano. scrence are based on conservation laws. Some ta-
mllar quantit ies that conform to such laws are mass,
energy..anO momenturn. In mathematical terms, these

llT'p,": 
tead to balance or continuiry equarions rhar

.relare system behavior as represented by ifre levels or

r89
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Feed

@t

FIGURE PT3.I
Two lpes of syslems thot ccn be modeled using l ineor olgebrclc equotions. (ol lumped vorioble
system thot involves coupled l ini te components ond (b) distr ibuted vcrioble system lhot involves
o  c o n f i n u u m .

response of the quantity being modeled to the properties or characteristics of the system
alrd the external stimuli or fbrcing functions acting on the system.

As an example, the principle of mass conservation can be used to formulate a model
for a series of chemical reactors (Fig. PT3.l a). For this case, the quantity being rnodeled is
the mass of the chemical in each reactor. The system properties are the reaction character-
istics of the chernical and the reactors' sizes and f-low rates. The forcing lunctions are the
feed rates of the chemical into the system.

When we studiecl roots of equations, you saw how single-component systems result in
a single equation that can be solved using root-location techniques. Multicolnponent sys-
tems result in a coupled set of mathematical equations that r.nust be solvecl sinrultaneously.
The equations are coupled because the individual parts ofthe systerr ale influenced by other
parts. For example, in Fig. PT3.lc, reactor 4 receives chemical inputs fiom reactors 2 and 3,
Consequently, its response is dependent on the quantity ofchernical in these otherreactors.

When these dependencies are expressed rnathematically, the resLrlting equations are
often of the linear algebraic folm of Eq. (PT3.l ). The,t's are usually rneasures of the magni-
tudes of the responses of the individual components. Using Fig. PT3.ln as an example, "r1
might quantify the amount of chernical rnass in the first reactor,.r2 rnight quantify the amount
in the second, and so lbrth. The a's typically represent the properties and characteristics that
bear on the interactions between components. For instance, the a's for Fig. PT3. la might be
reflective of the flow rates of mass between the reactors. Finally. the b's usually represent the
forcing functions acting on the system, such as the feed rate.

Multicomponent problems of these types arise fiom both lurnped (macro-) or distrib-
uted (nricro-) variable mathematical models. Lrrmped voriable probLems involve coupled
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finite components. Examples include trusses, reactors, and electric circuits. The three
bungee jumpers at the beginning of Chap. 8 are a lumped system.

Conversely, distributed variable problems attempt to describe the spatial detail of
systerns on a continuous or semicontinuous basis. The distribution of chemicals along the
length of an elonqated, rectangular reactor (Fig. PT3. lb) is an exantple of a continuous
variable model. Diffbrential equations derived fiom conservation laws specify the distrib-
ution of the dependent variable fbr such systems. These differentiai equations can be
solved numerically by converting them to an equivalent system of simultaneous algebraic
equations.

The solution of such sets of equations leplesents a major application area tbr the meth-
clds in the fbllowing chapters. These eqLrations are coupled because the variables at one loca-
tion are dependent on the variables in acljoining regions. For example, the concentration at
the middle of the reactor in Fig. PT3.11, is a function of the concentration in adjoining
regions. Similar examples could be developed for the spatial distribution of temperature,
monrenlum. or  e lect r ic i t l .

Aside fiom phvsical systems. simulti ineous l inear al-uebraic equations also arise in a
variety of mathernatical problem contexts. These result when mathematical functions are
required to satisfy several conditions sirnultaneously. Each condition results in an equation
that contains known coefflcients and uuknown variables. The techniques discussed in this
part can be used to solve fbr the unknowns when the equations are linear and algebraic.
Some rvidely used nunrerical techniques that employ simultaneous equations are legres-
sion analysis and spline intel 'polation.

3.2 PART ORGANIZATION

Due to its importance in fbrmulating and solving linear alsebraic equations. Chap. 8 pro-
vides a brief overview of tnotrir algebru. Aside from coveling the rudiments of matrix
representation ancl rnanipulation, the cl.rapter also describes how man'ices are handled in
MATLAB.

Chttpter 9 is devoted to the most fundamental technique for solving linear algebraic
systems: Gauss eLimittolion.Before launching into a detailed discussion of this technique,
a pleliminary section deals with simple methods for solving small systerns. These ap-
proaches are presented to provide you witlr visual insight and because one oftlre rrrethods-
the elimination of unknowns-represents the basis lbr Gauss elimination.

After this prelirr.rinary material, "naive" Gauss elimination is discussed. We starl with
this "stripped-down" version because it allows the fundarnental technique to be elaborated
on without complicating details. Then, in subsequent sections, we discuss potential prob-
lems of the naive appr-oirch and present a number of mocliflcations to mjnirlize and cir-
cunlvent these problenrs. The fbcus of this discussion wil l be the process of switching
rows, orpdrlial pit 'oting. The chapter ends with a brief description of efl icient methods fbr
solving tridiagonal ntatrrces.

Chapter 10 illustrates how Gauss elimination can be lbrmulated as an LI) factoriZation.
Such solution techniques are valuable 1br cases where many right-hand-side vectors need
to be evaluated. The chaoter ends witlr a brief outl ine of how MATLAB solves l inear
s \/stet)-ls.
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Chapter -1-1 starts with a description of how LU factorization can be employed to effi-
ciently calculate the mati.r inverse, which has tremendous utility in analyzing stimulus-
response relationships of physical systems. The remainder of the chapter is devoted to the
important concept of matrix condition. The condition number is introduced as a measure of
the roundoff errors that can result when solving ill-conditioned matrices.

Chapter I2 deals with iterative solution techniques. which are similar in spirit to the
approximate methods for roots of equations discussed in Chap. 6. That is. they involve guess-
ing a solution and then iterating to obtain a refined estimate. The emphasis is on the Gauss-
Seidel method, although a description is provided of an alternative approach, the Jacobi
method. The chapter ends with a brief description of how nonlinear simultaneous equations
can be solved.
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CHAPTER OBJECTIVES
The primary objective of this chapter is to acquaint you with linear algebraic equations
and their relationship to matrices and matrix algebra. Specific objectives and topics
covered are

e Understanding matr ix  notat ion.
. Being able to identify the following types of matrices: identity, diagonal,

symmetric, triangular, and tridiagonal.
' Knowing how to perlbrm matrix multiplication and being able to assess when it is

feasible.
. Knowing how to represent a system of linear algebraic equations in matrix form.
. Knowing how to solve linear algebraic equations with left division and matrix

inversion in MNLAII.

\OU'\E GO\ A. PROBLEN\

It uppose rhat three jumpers are connected by bungee cords. Figure 8.ln shows them

\ U.ing held in place verticerlly so that each cord is fully extended but unstretched. We

9/ crn define three distances. .t'1. ,t'2. and .\. as measured dovnv'ard from each of their

unstretched po:itions. ,.l.tier rhel are reJeased. grar it1 takes hold and the jumpers s ill even-
tually come to the equil ibriun-r positions shown in Fig. 8.1b.

Suppose that you are asked to compute the displacernent of each of the jumpers. If we
assume that each cord behaves as a linear spring and follows Hooke's law, free-body dia-
grams can be developed for each jumper as depicted in Fig. 8.2.

Using Newton's second law, a steady-state force balance can be written foreach jumper:

m1g  I  kz (xz  -  11 )  -  f t 1 r1  :  Q

t1t lg  *  kr ( , r :  -  x)  -  kz(xz - . r r )  :  0

tntS - k: (.r: - irz) : 0
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where nr; : the mass of jumper r (kg), A; : the spring constant for cordT (N/m),-ri : the
displacernent of jumper I measured downward liom the equiiibrium position (m), and g =
gravitational acceleration 19.81 nr/sr). Collecting terms gives

( k 1  l k ) x 1  - k z x z  : m t g

-ftz.tr * (kz I kz)xz - k:-rr : mzg (8.1)

- k t x z l k 3 x l - 7 n 1 9

Thus. the problem reduces to solving a systeln of three simultaneous equations for
the three unknown displacements. Because we have used a linear law for the cords, these
equations are linear algebraic equations. Chapters 8 through l2 will introduce you to how
MATLAB is used to solve such systems of equations.

8.I MATRIX ALGEBRA OVERVIEW

Knowledge of matrices is essential for understanding the solution of linear algebraic equa-
tions. The tbllowing sections outline how matrices provide a concise way to represent and
maninula le l inerr  a lqehraic  eoLral ions.

t:tl

(a )  Uns t re tched (b )

FIGURE 8.I
Three individuo s connecied bv bunqee cords

t l
t l
t t

nrrg k.(x2- x)  m

FIGURE 8.2
Free-body diogroms.

t2(r, - 11)

I
Arxr

I

ill
tg t.(.r1 - "r2) m$
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8.1.1 Mqfr ix  Notot ion

A matrix consists of a rectangular array of elements represented by a single symbol. As
depicted in Fig. 8.3, [A] is the shorthand notation for the matrix and ai 1 designates an indi-
vidual element of the matrix.

A horizontal set of elements is called a row and a vertical set is called a column. The
first subscript I always designates the number of the row in which the element lies. The sec-
ond subscriptT designates the column. For example, element a23 is in row 2 and column 3.

The matrix in Fig. 8.3 has m rows and n columns and is said to have a dimension of
m by n (or m x n). It is referred to as an m by n matrix.

Matrices with row dimension m : l. such as

[ b ] :  [ b l  b 2 br l

are called row yectors. Note that for simplicity, the first subscript of each element is
dropped. Also, it should be mentioned that there are times when it is desirable to employ a
special shorthand notation to distinguish a row matrix from other types of matrices. One
way to accomplish this is to employ special open-topped brackets, as in fbl .l

Matrices with column dimension n : l. such as

l n l  -
t L  j  - (8.2)

are ref'erred to as column vectors . For simplicity, the second subscript is dropped. As with the
row vector, there are occasions when it is desirable to employ a special shorthand notation
to distinguish a column matrix from other types of matrices. One way to accomplish this is
to employ special brackets, as in {c}.

I In addition to special brackets, we will use case to distinguish between vectors (lowercase) and matrices
(uppercase).

8.3

L:
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Matrices where rn : n ate called .square matrices. For example. a 3 x 3 matrix is

l - r , ,  t t t l  a t r l
I  A l  :  I  ar ,  a) - )  . r r ,  I

L,;, ";: ,;,1
The diagonal consisting of the elements as, a22, and a.j3 is termed the principal or maitt
diagonal of the matrix.

Square matrices are particularly important when solving sets of simultaneous linear
equations. For such systems, the number of equations (corresponding to rows) and the
number of unknowns (corresponding to columns) must be equal for a unique solution to be
possible' Consequently, square matrices of coefTicients are encountered when dealine with
such systems

There are a number of special forms of square matrices that are important and should
be noted:

A symmetric matrix is one where the rows equal the columns-that is, a; i : aii for all
i 's and.l 's. For example,

[s t2 f
tA l : l l3  7 l

L2  7  8_ l

is  a3 x 3 synrmetr ic  nrat r ix .
A diagonal nmtrix is a square matrix where all elements off the main diagonal are

equal to zero, as in

fo , ,  I
lA l= l  a ) )  |

L 
- 

orr)

Note that where large blocks of elements ate zero. they are left blank.
An identi4' matrix is a diagonal matrix where all elements on the main diagonal are

equal to 1, as in

[ r l
tA l : l  I  I

L l J

The symbol Ul is used to denote the identity matrix. The identity matrix has properties sim-
ilar to unity. That is,

[A ]U l :  [ / ] [A ] :  tA l

An upper triangular malrx is one where all the elements below the main diagonal are
zero. as in

rl12

422

o,r l
ott 

Ictst J[ ' ' '
[ , 4 ] :
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A lower triangular malrrx is one where all elements above the main diagonal are zero,

I

i

i
I

i
I
I
i
I
I
I
j
I
I
I

I

I
i'
I

i
I

as ln

tAl
, , , ]

f  o , ,
:  |  

" ' ,  
o 1 1

1,,; ,,;
A banded ntotix has all elernents equal to zero, with the exception of a band centered

on the main diagonal:

f  a l  a t )
t .
I  aZ t  a :z  d t . r

l n  l :  I

|  
, , ,  ( / t l

L aat

The preceding matrix has a
matri.r.

l
IOr, 
Iaqc )

bandwidth of 3 and is given a special name-the tridiagonal

8.1.2 Motrix Operoting Rules

Now that we have specified what we mean by a matrix, we can define some operating rules
that govern its use. Two nr by n natrices are equal if, and only if, every element in the first
is equal to every element in the second-that is, [A] : [B] if ai1 : bi1 for all i and j.

Addition of two matrices, say, [Al and [B|, is accomplished by adding corresponding
terms in each matrix. The elements of the resulting matrix [C] are computed as

c'i1 : ct, i 1b,i

f o r  i  :  1 ,2 , . . . ,m  and  j  :  1 ,2 , . . . , n .  S im i l a r l y ,  t he  sub t rac t i on  o f  two  ma t r i ces .  say .

[E] ninus [F], is obtained by subtracting corresponding terms, as in

d i j : e i j  - f i j

f o r l :  l , 2 , . . . , m a n d  j : l , 2 . . . . , n . l t f o l l o w s d i r e c t l y f r o m t h e p r e c e d i n g d e f i n i t i o n s

that addition and subtraction can be performed only between matrices having the same
dimensions.

Both addition and subtraction are commutative;

tA l+  tB l  :  [B ]+  [A ]

and associative:

( tA l+  tB l )  +  [c ]  :  [A l+  ( tB ]  +  tc l )

The multiplication of a matrix [A] by a scalar g
ment of [Alby S. For example, for a 3 x 3 matrix:

fPo , ,  Ra r t  Pa t , , f
ID I  :  s lA l  :  l i o l  io , ,  io r ,  I

I  o n . ,  e f l t t  , n , ,  I

is obtained by multiplying every ele-
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F,'I
FIGURE 8.4
Visuol depict ion of how the rows ond columns l ine up in
motr ix  mu l t ip l i co i ion .

q-l

; )
[A'l^"n [Blnt = [C],"t

t ,  
r l  -> 

[sxs-1x7-22 I
I[::]Ll Exterior dimensions define

the  d imens ions  o f  the  resu l t

FIGURE 8.5
Motrix multlplicotion con be per{ormed only if
l he  inner  d imens ions  ore  equo l .

The product of two matrices is represented as [C] : tAltBl, where the elements of [C]
are dellned as

+
{  1 i  :  )  . o i s l t 11  {8 .3 )

t : l

where n : the column dimension of [A] and the row dimension of [B]. That is, the c;, ele-
nent is obtained by adding the product of individual elenents from the lth row of the fir$
matrix, in this case [A], by theTth column of the second matrix [B]. Figure 8.4 depicts how
the rows and columns line up in matrix multiplication.

According to this definition, matrix multiplication can be perfbrmed only if the first
matrix has as many columns as the nunber of rows in the second matrix. Thus, if [A] is an
m by n matrix, [B] could be an n by / matrix. For this case, the resulting [C] matrix would
have the dimension of m by /. However, if [B] were an m by i matrix, the multiplication
could not be performed. Figure 8.5 provides an easy way to check whether two matrices
can be multiplied.

If the dimensions of the matrices are suitable. matrix rnultiolication is associative:

( tAJtBl)  [c]  :  tAl( tBl tc l )
'aLnd distributive:

tA l ( tB l+  [ c ] )  :  [A l [B ]+  tA l t c l

or

( [A]+ tB l ) lc l  :  [A] [c ]  + lB l lc l

However, multiplication is not generally commutative:

tAttBl + lBltAl
Thot ic  rh, '  order nf  mrr l t in l ic : r t ion is  imnortant .

Interior dimensions
are equal.

mult ipl icat ion
is possible
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Although multiplication is possible, matrix division is not a defined operation. How-
ever. if a matrix [A] is square and nonsingular. there is another matrix [Al 

r, cailed the
inver.se of [Aj, fbr which

t A l t A l  
'  :  [ A ]  

1 J e ]  : 1 1 1

Thus, the multiplication of a matrix by the inverse is analogous to division, in the sense that
a number divided by itself is equal to l. That is, nultiplication of a matrix by its inverse
leads to the ident i ty  matr ix .

The inverse of a 2 x 2 matrix can be represented simply by

l A l  ' :
a i l 422  -  anq2 l

I  o"  -n ' t l
L - a t  i t r r  J

Similar fbrmulas tbr higher-dimensional matrices are much more involved. Chapter I I wil l
deal rvith techniques lbr using numerical methods and the computer to calculate the inverse
lbr such systems.

Two other matrix manipulations thirt wil l have Lrti l i ty in our discussion are the trans-
pose and the augmentation of a matrix. The trartslto,se of a matrix involves transforming its
rows into columns and its columns into rows. For examole. for the 3 x 3 ntatrix:

f  u , ,  0 t )  a , , l
lA l :  l , I . ;  ( t ) - ,  , , i ,  I

Lr;; ' t2 r,.,J
the tnrnspose.  designated l ,e1r .  is  del ined as

l - , , ,  '  ( t , t  a . , l
tA l r  :  I  , , ; '  u . ,  u , .  I

L, . ,;. ",;l
In other words, the element rr;; of the transpose is equal to the zu 7; element of the original
matl'lx.

The transpose has a variety of functions in matrix algebra. One simple advantage is
that it allows a column vector to be written as a row and vice versa. For example. if

[ ' '  l
J , - l  -  ,  - .  tr .  r  -  

l . r  I
[ . ,  J

tnen

{c}r  :  lc1 c2 c: l

In addition, the transpose has numerous mathematical applications.
The final matrix manipulation that wil l have uti l i ty in our discussion is uuqmenratiott.

A tnartrix is augrnented by the addition of a column (or colunurs) to the original matrix. For
example, suppose we have a 3 x 3 matrix of coefficients. We might wish to augment this
matrix [A] with a 3 x 3 identity matrix to yield a 3-by-6-dimensional matrix:

l  oo l
0 l0 l
0  0  r _ j

[ , t , ,  
a 1 t  d 1

I  
o t t  a2 t  021

L a S t  a 3 t  { 4 1
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EXAMPTE 8.1

Such an expression has utility when we must perform a set of identical operations on the
rows of two matrices. Thus. we can perlbrm the operations on the single augmented matrix
rather than on the two individual matrices.

MATLAB Motr ix  Mon ioulot ions

Problem Stotement. The following example illustrates how a variety of matrix manipu-
lations are implemented with MATLAB. It is best approached as a hands-on exercise onthe
computer.

So lu t i on .  C rea tea3  x  3ma t r i x :

> >  A  =  [ 1  5  b ; 7  4  2 ; - _ t  6 1 ]

, - 4
- 3  6

The transpose of [A] can be obtained using the '

> >  A ' ,

operator:

1
5
6

- i  - 3

. i 6
2 7

Next we will create another 3 x 3 matrix on a row basis. First create three row vectors:

> >  x  _  1 B  6  g J ;

> >  Y  =  t  5  8  1 l ;
> >  z  - -  t 4  B  2 l ;

Then we can combine these to tbrn.r the matrix

> >  B  =  l x ;  y ;  z )

p

- 5  B
4 B

9
1
2

We can add [A] and [Bl together:

> > C = A + B

c =

6
2

9  1 l
2 1 2
1  1 4

l 5
3
9
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Further, we can subtract [B] from [C] to anive back at [A]:

> > C = C - B

1
'l

5
4

6
2

- 3  6  7

Because their inner dimensions are equal, [A] and [B] can be multiplied

> >  A * B

7  9 4  2 6
4 4  9 A  7 r

- 2 6  8 6  1

Note that [A] and [B] can also be multiplied on an element-by-element basis by including

a period with the multiplication operator as in

> >  A .  * B

B  3 0  5 4
- 3 5  3 2  2

1 2  4 8  1 4

A2 x 3 matrix can be set up

> >  D  =  t 1  4  3 ; 5  B  1 l ;

If [A] is multiplied times [D], an error message will occur

> >  A * D

. ' ? !  L T t a '  u s r n q
I n n e r  m a t r i x  d i m e n s i o n s  m u s t  a g r e e .

However, if we reverse the order of multiplication so that the inner dimensions match,

matrix multiplication works

> >  D * A

2 0  r o  3 5
5 8  5 3  5 3

The matrix inverse can be computed with the inv function:

> >  l \ 1  =  f n v ( A l

l T  -

4 . 2 4 6 2
- a . 8 4 6 2

0 . 8 3 0 8

0 . 0 1 s 4  - 0 . 2 1 5 4

0 . 3 8 4 6  0 . 6 L 5 4
4 . 3 2 3 1  - 0 . 4 7 6 9
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To test that this is the conect result, the inverse can be multiplied by the original matrixto
give the identity rratrix:

> >  A X A I

a rl:; -

1 . 0 0 0 0  - 0 . 0 ( r 0 0  0 . 0 0 0 0
0 . 0 i 1 0 0  1 . 0 0 0 0  0 . r r 0 0 0
0 . 0 0 0 0  - 0 . 0 0 0 0  1 . 0 0 0 0

The eye function can be used to generate an identity matrix:

2 2  f  =  e ) r e ( 3 )

I =

0
0
1

0 t )

Finally, matrices can be augmented sirnply as in

> >  A u g  =  t A  I l

L r r n

t 4 :

3 6 1

0 1 0

Note that the cl imensions of a matrix can be determined bv t lre size f irnct ion:

3

8.I .3 Represenling Lineor Algebroic Equotions in Motrix Form

It shoulcl be clear that r.natrices pror,'ide a concise notation tbr representing simultaneous
linear equations. For example, a 3 x 3 set of l inear equations,

d r t r r  *  a 1 2 . t 2  - f  0 t 1 . V  :  b l

t t 21x1  *  a22 \21  o21 . r3  :  b .

4 : r r r  *  a32 .Y2  I  { 13113  :  f i ,

can be expressecl as

[ A ] { r }  :  { b }

(8.4)

( 8.5)
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where [A] is the matrix of coefficients:

t d l  -
t t r l  

-

{D} is the column vector of constants:

l b l r  :  l b1  bz  b t )

and {,,r} is the column vector of unknowns:

{ r } r  :  [ . r1  x2 r : ]

Recall the definit ion of matrix rnultiplication tEq. (8.3)l to convince yourself that
Eqs. (8.4) and (8.5) are equivalent. Also, realize that Eq. (8.5) is a valid matrix multiplica-
tion because the number of columns n of the first matrix [A] is equal to the number of rows
n of the second matrix {-r}.

This part of the book is devoted to solving Eq. (8.5) lbr {x}. A formal way to obtain a
solution using matrix algebra is to multiply each side of the equation by the inverse of [A]
to yield

tA l  r tA l { r }  : tA l1 i . b }

Because [A] 
'[A] equals the identity matrix, the equation becomes

t r )  :  t A l  r { b } (8 .6 )

Therefbre, the equation has been solved fbr {r}. This is another example of how the inverse
plays a role in matrix algebra that is similar to division. lt should be noted that this is not a
very efficient way to solve a system of equations. Thus, other approaches are employed in
numerical algorithms. However, as discussed in Section 11.1.2, the matrix inverse itself
has great value in the engineering analyses of such systems.

It should be noted that systems with more equations (rows) than unknowns (columns),
m > n, are said to be overdetermined. A typical example is least-squares regression where
an equation with n coefficients is f itto m data points (x,.y). Conversely, systems with less
equations than unknowns, ,?? < n, are said to be nndertletermined. A typical example of
underdetermined svstems is numerical oDtimization.

8.2 SOTVING TINEAR ATGEBRAIC EQUATIONS WITH MATTAB

MATLAB provides two direct ways to solve systems of l inear algebraic equations. The mosl
efficient way is to employ the backslash, or "left-division," operator as in

> > r = A \ b

The second is  to use matr ix  inrers ion:

> >  x  =  i n v ( , q ) * b

l o , t  
o t l  , , , - l

I 
o.t a:2 .,:: 

I
Lrl-r r a): arrJ
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As stated at the end of Section 8.1.3, the matrix inverse solution is less efficient than using
the backslash. Both options are illustrated in the following example.

EXAMPLE 8.2 Solv ing the Bungee Jumper Problem wi th MATLAB

Problem Stotement. UseMATLAB to solvethebungeejumperproblemdescribedatthe
beginning of this chapter. The parameters for the problem are

Spring Constont Unstretched Cord
Jumper Moss (kg) (N/m) Length (m)

T o p ( 1 )
Midd ie  (2 )
Bottom (3)

2A
2A
2A

50
1 0 0
50

6A
7A
BO

Solution. Substituting these parameter values into Eq. (8.1) gives

[-l;: -i:B -,8] {;t} : {::::;l
L o -so so-l [ ', J Izs+.s I

Start up MATLAB and enter the coefficient matrix and the righrhand-side vector:

> >  K  =  t 1 5 0  1 0 0  0 ;  1 0 0  1 5 0  5 0 ; 0  5 0  5 0 1

v -

1 5 0  - 1 0 0  0
1 0 0  1 5 0  5 0

r J  - 5 0  5 0

> >  m q  -  [ 5 8 8 . 6 ;  5 8 6 . 7 ;  1 8 4 . 8 1

5 8 8 . 6 0 0 0
5 8 6 . 7 0 0 0
7 8 4 . 8 0 0 0

Employing left division yields

> >  x  -  K \ m 9

4 r . 2 0 2 0
5 5 . 9 1 7 0
7 1 . 5 1 3 0

Alternatively, multiplying the inverse of the coeflicient matrix by the right-hand-side vec.

to r  g ives  the  same resu l t :



8.3 CASE STUDY

> >  x  =  i n v ( K ) * m g

4 r . 2 A 2 A
5 5 . 9 1 7 0
7 I . 6 1 3 A

Because the jumpers were connected by 20-m cords, their initial
positions relative to the platform is

> >  x l  =  t 2 0 ; 4 0 ; 5 0 1 ;

Thus, their final positions can be calculated as

> >  x f  =  x + x i

6 I . 2 A 2 a
9 5 . 9 r t A

1 3 1 . 6 1 3 0

The results, which are displayed in Fig. 8.6, make sense.
The first cord is extended the longest because it has a lower
spring constant and is subject to the most weight (all three
jumpers). Notice that the second and third cords are extended
about the same amount. Because it is subject to the weight of two
jumpers, one might expect the second cord to be extended Ionger
than the third. However, because it is stiffer (i.e., it has a higher
spring constant), it stretches less than expected based on the
weight it carries.

(a )  (b l

FIGURE 8.6
Positions of three
ind iv iduols connecied
by bungee cords.
(o) Unsiretched ond
(b) stretched

CURRENTS AND VOLTAGES IN CIRCUITS

Bockground. Recall that in Chap. 1 (Table 1.1), we summarized some models and as-
sociated conservation laws that figure prominently in engineering. As in Fig. 8.7, each
model represents a system of interacting elements. Consequently, steady-state balances de-
rived liom the conservation laws yield systems of simultaneous equations. In many cases,
such systems are linear and hence can be expressed in matrix form. The present case study
focuses on one such application: circuit analysis.

A common problem in electrical engineering involves determining the currents and
voltages at various locations in resistor circuits. These problems are solved using Kirclr-
hoff 'scurrentandvoltagerules.Thecurrent (orpoint) rulestalesthatthealgebraicsumof
all currents entering a node must be zero (Fig. 8.812), or

f i :o (8.7)

where all current entering the node is considered positive in sign. The current rule is an
application of the principle of conservation of charge (recall Table 1.1).
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(a )  Chemica l  eng ineer ing
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f,,
(a)

i l
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(b )

FIGURE 8.8
Srhamnt i r  ronro<an ln t innq

of (o) Kirchhoff's current rule
ond (b)Chm's low.

ffi,ryl
M WI

Circuit
(c) Electr ical engineering (d) Mechanical engineering

FIGURE 8.7
Engineering syslems which, ot steody slote, con be modeled wilh l ineor olgebroic
equolrons.

R,

The voltage (or loop) rule specifies that the algebraic sum of the potential differences
(that is, voltage changes) in any loop must equal zero. For a resistor circuit, this is

expressed as

fc-I^:o (8.s)
where f is the emf (electromotive force) of the voltage sources, and R is the resistance of
any resistors on the loop. Note that the second term derives from Ohm's law (Fig. 8.8b),
which states that the voltage drop across an ideal resistor is equal to the product of the

cunent and the resistance. Kirchhoff's voltage rule is an expression of the consentationol
enerSy.

Solution. Application of these rules results in systems of simultaneous linear algebraic
equations because the various loops within a circuit are interconnected. For example, con-
sider the circuit shown in Fig. 8.9. The currents associated with this circuit are unknown

both in magnitude and direction. This presents no great difficulty because one simply
assumes a direction for each current. If the resultant solution from Kirchhoff's laws is

negative, then the assumed direction was incorrect. For example, Fig. 8.10 shows sone

assumed currents.

(b )  C iv i l  eng ineer ing
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continued

R : 5 O
V t : 2 0 0 Y

7 o : 0 V
R : 2 0 f )

A resistor circuit lo be solved using simultoneous
i ; n " ^ '  ^ l ^ . h . ^ ; .  a n ,  r n f  i n n c

FIGURE 8.IO
Assumed cLruenr direct ion5

i l i
, i l' l l

I

! l

Given these assumptions, Kirchhoff's current rule is applied at each node to yield

i n * i s z * j r r : 0

ios * isz - ls+ :0

ia3  -  12 :  Q

i 5 a - i a j : Q

Application of the voltage rule to each of the two loops gives

i o s - i s z - l s + : 0

-is,rRs+ - i+-tR+: * i12Ri2* l52R52 : Q

-iosRos - iszR-sr I  ieRe - 200 : 0

or, substituting the resistances from Fig. 8.9 and bringing constants to the right-hand side,

*151s+ - 5ia3 - 10i32 * 10i52 : Q

- 2 0 i o s - 1 0 i s : f 5 i p : 2 0 0

Therefore, the problem amounts to solving six equations with six unknown currents. These

equations can be expressed in matrix form as

[ r  l  r  0  0  0 l
l 0  

- l  0  I  - l  0  |
l0  0  -1  0  0  r  I
lo  o  o  o  I  -1  |
t 0  l 0  - t 0  0  - 1 5  - - s l

Ls - ro  o  _20 o  o l

l 1 2

r52

t3z

.oJ

r ) 4

iqz

: {,L

a  n=  i so
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continued

Although impractical to solve by hand, this system is easily handled by
The solution is

> > A = t 1 1 1 0 0 0
0  - 1  0  1  * 1  0
0  0  - 1  0  0  1
0  0  0  0  1  - 1

0  1 0  - 1 0  0  - 1 5  * 5

5  * 1 0  A  - 2 0  0  o l ;
> >  b = t 0  0  0  0  a  2 0 0 1 , ;
> >  c u r r e n t = A \ b

c u r r e n t  =

6 . 1 5 3 8
- 4 . 6 L 5 4
- 1 . 5 3 8 5
- 6 . 1 5 3 8
* 1 . 5 3 8 5
- 1 . 5 3 8 5

Thus, with proper interpretation of the signs of the result, the circuit curents and

ages are as shown in Fig. 8. 1 L The advantages of using MATLAB for problems of this

should be evident.

FIGURE 8.I I
The solution for currents ond voltoges obtoined using MATLAB

V :  1 6 9 . 2 3



PROBLEMS

PROBTEMS

Given a square matrix [A], writc a single line MATLAB
that will create a new matrix [Ang] that consists of

original matrix [AJ augnrented by an identity matrix [11.
A number of mafices are defined as

l r t  -( \  ,  _

L G ) : 1 7  6  4 J

the fbl lowing questions regarding thcse matrices:
What are the dimensions of the matrices,l
Identify the square, coluntn, and row matrices.
What are the values of the clcments.. ar,. b.1, dzt, ezz,
/ r : ,8 r :?
Perform the following operations:

(r) trt + tBl (2) IAI + lFl (3) tBl _ tEl
(1) 7 x [B] 1-s1 [A] x tBl  (6) (C],

(7) [Bl x [Al (8) [D]7 (e) tAl x { C}
(10 )  [ 1 ]  x  t 8 l  r n1 [E l r  x  [E l  ( t 2 )  {C } r  x  {C }

8.3 Write the following set of equations in rnatrix forrn:

5 0 : 5 , r : - 7 . r :

4 r z + 7 . \ * 3 0 : o

rr - 7.r.r : ^10, 3xz f 5;:r

Use MATLAB to solve lbr the unknorvns. In addition, use rt
to compute the transpose and the inverse of the coefficient
matrix.
8.4 Three matrices are defined as

(a) Perfbrm all possible nrultiplications lhat can be com_
puted between pairs of these matrices.

(b) Justify why the remainirig pairs cannot be rnultiplied.
(c) Use the results of (a) to illustrate why the order of mul-

tiplication is important.
8.5 Five reactors linked by pipes are shown in Fie. pg.5.
The rate of mass flow through each pipe is computed as the
prodr"rct of flow (Q) and concentration {r.). At steady state,
the mass llow irrto and out of each reactor must be equal.

[ 137 f
l r  2  7 l
L 2  0  4 J

il pt:l: --, i ,'l

,",: f fi l'],",= [,i, l],.,:; , -,'l
[ r  s  8 l

r r l=17 t  r l
L4 0  6_ l

r r r=f r  o  1- l
L l  7  . 1 1

FIGURE P8.5
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For example, for the first reactor, a mass brilance can be

written as

0 o r r : o r  f  Q t t ' t :  Q r s c t  I  Q n c t

Write mass balances for the remaining reactors in Fig. P8.5

and express the equations in matrix fbrm. Then use MATLAB

to solve for the concentrations in each reactor.
8.6 An important problem in sffuctural engineering is that of

finding the forces in a statically determinate truss (Fig. P8.6).

This type of structure can be described as a system of coupled

linear algcbraic equations derived from force balances. The

sum of the forces in both horizontal and vertical directions
must be zero at each node, because the system is at rest.

Therefore, for node 1:

L f , : 0 : - F r  c o s ] 0  - F j c o s 6 0  * F 1 . 7 1

\- n'  :  0 :  -Fr sin -10 F.r sin 60 * Fr ,/ - '  '

for node 2:

) -  n r  : 0 :  F :  I  F 1  c o s 3 0  I  F z n  I  H z/-
5 -  nu  :0 :  F r  s in30 1  F2. ,  I  V :/ - '  '

for node 3:

\ -  r -  :0 :  -F ,  -  F . rcos60 - l  F r . r ,
/ r ' n  

-  
"  

-

D au :  o :  F :  s in6o ' *  F : , ,  r  v :

where F,.,, is the external horizontal force applied to node I
(where a positive force is from left to right) and {.,. is the ex-

ternal vertical force applied to node i (where a positive force

is upward). Thus, in this problem, the 1000-lb downward

fbrce on node I corresponds to F,.,: - 1000. For this casc,

all other F,.,'s and {,,,'s are zero. Express this set of linear

TIGURE P8.7

algebraic equations in matrix form and then use MATLAB

to solve fbr the unknowns.
8.7 Consider the three mass-four spring system in Fig. P8.?,

Determining the equations of motion from XF' : ma,for

each mass using its free-body diagram results in the follow'

ing differential equations:

/ k r +  k " \  / k r \
r r * l r l r r - l - l r : : 0

\  r z r  /  \ m t /

/ , t ' \  / k , * t , \  / l ' \
t r  ( 31 ' '  - (

\ m : /  \  , t :  /  \ m 2  l

/ k . \  / k , ' "  \
; , -  ( a ) * r + { ^ r r ^ 4 } x , : o

\ . n . r /  
-  

\  m 3  /

where f t ,  -  k t :10N/m,  k . : f t r :30N/m,  andmr=mt=
mz: I kg. The three equations can be written in matrix form:

Q : {Acceleration vector}

+ lk I m matrixl {displacement vector x }

At a specific time where:r, : 0.05 m, r: : 0.04 m, andl, =

0.03 m, this forms a tridiagonal matrix. Use MATLAB to

solve for the acceleration of each mass.
8.8 Solve

[3+2 i  + ' l  J : r  [_  I2  + ,  I
I  i  r . l  [ z : f  

- l  
i  I

8.9 Perform the same computation as in Example 8.2, but

use five parachutists with the following characteristics

urltr"*ffi
Cord

tength (m)

+"x?

I

Jumper
Moss
(ks)

Spring
Conslont

(N/m)

I
2
3
4
5

55
75
60
75
90

BO
50
70

r 0 0
20

t 0
10
t 0
r0
t 0

FIGURE P8.6



PROBLEMS

Three masses are suspended vertically by a series of
springs where mass I is at the top and mass 3 is at

bottom. l f  g :  9.81 m/s',  f f i r  :  2 kg, m2: 3 kg, 2, :
kg, and the ft's : l0 kg/s2, use MATLAB to solve for the

nts r
Perform the same computation as in Sec. 8.3, but for

circuit in Fig. P8. I l.
Perform the same computation as in Sec. 8.3, but for

circuit  in Fig. P8.12.
Develop, debug, and test your own M-file to multiply

matrices-that is, [X] : lYl[Zl, where lY] is m by n and
is n by p. Employ f or. . . end loops to implement the

ion and include error traps to flag bad cases. Test
program using the matrices from Prob. 8.4

Develop, debug, and test your own M-file to generate
tmnspose of a matrix. Employ f or. . . end loops to im-

the transpose. Test it on the matrices fiom Prob. 8.4.

R = 3 0 O

R : 8 f )

FIGURE P8. I2

R : 1 0 O

2l l

Vr : 150 volts

Vo : 0 volts

ti

FIGURE P8. I  I

Vr : 10 volts

Vo = 150 volts

R : 2 0 c )

R : 2 O

R = 5 O

,  R = 3 5 O  1
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Gouss Eliminotion

CHAPTER OBJECTIVES
The primary objective of this chapter is to describe the Gauss elimination algorithm
fbr solving linear algebraic equations. Specific objectives and topics covered are

' Knowing how to solve small sets of linear equations with the graphical method
and Cramer's rule.

. Understanding how to implement fbrward elimination and back substitution as in
Gauss elimination.

' Understanding how to count flops to evaluate the efficiency of an algorithm.
. Understanding the concepts of singularity and il l-condition.
. Understanding how partial pivoting is implemented and how it differs from

complete pivoting.
' Recognizing how the banded structure of a tridiagonal system can be exploited

to obtain extremelv ef1icient solutions.

t the end of Chap. 8, we stated that MATLAB provides two simple and direct
methods fbr solving systems of l inear algebraic equations: left-division,

> >  x  =  A \ D

and matrix inversion,

> >  x  =  i n v  ( A )  * b

Chapters 9 and l0 provide background on how such solutions are obtained. This ma-
terial is included to provide insight into how MATLAB operates. In addition, it is intended
to show how you can build your own solution algorithms in computational environments
that do not have MATLAB's built- in capabil it ies.
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The technique described in this chapter is cll lecl Gauss elimination because it involves
combining equafions to climinate unknowns. Although it is clne of the eirrl iest rnethods fbr
solving simultaneous equctions, it remains arnong the most important algorithnrs in use
today and is the basis fur linear equation solving orl many popular sotiware packages in-
clucling MA|LAB.

SOIVING StylAtt NUMBERS OF EQUATIONS

Betbre proceediug to Gauss elinrination, we wil l describe several methods that are appro-
priate fbr solving small (n < 3) sets of simultaneous equations and that do not recluire a
computer. These are the graphical methocl, Cramer's rule. ancl the elimination of unknowns.

9.1.1 fhe Grophicol Method

A graphical solution is obtainable for two linear equations by plotting then on Cartesian
coordinates with one axis colresponding to -r1 and the othel to -r2. Because the equations
are l inear. each equation wil l plot as a straight l ine. For example, suppose that we have the
tbllowing equations:

3 - r r  * 2 . r r :  l 8
- , - .  - - L  l , ^  -  )

I f  vee . \uncrhe t . r ,  i> thezb:c i l : ta , {eaan.>o l rccacht t l th tse teu i lUo i l s ro r - r t !

3
- r l : - - . t l + 9

I
-t-t : t-rl 

-f I

The equations are now in the forrn of straight l ines-that is..t2 : (slope) -rr * inter-
cept. When these equations are graphed, the values of r1 and x2 at the intersection of the
lines represent the solution (Fig. 9. l ). For this case, the solution is ,r 1 : 4 and xz : 3 .

For three simultaneous equations. each equation would be represented by a plane in a
three-dimensional coordinate system. The point where the three planes intersect would rep-
resent the solution. Beyond three equations, graphical methods break down and. conse-
quently, have little practical value fbr solving simultaneous equations. However, they are
useful in visualizing properties of the solutions.

For example. Fig. 9.2 depicts three cases that can pose problems when solving sets of
l inear equations. Fig. 9.2a shows the case where the two equations represent parallel l ines.
For such situations, there is no solution because the l ines never cross. Figure 9.2b depicts
the case whele the two lines are coincident. For such situations there is an inllnite number
of sollrt ions. Both types of systems are said to be singular.

In addition, systerns that are very close to being singular (Fig. 9.2c) can also cause
problems. These systerns are said tobe ill-conditirnecl. Graphically, this conesponds to the
fact that it is diiTicult to identify the exact point at which the l ines intelsect. I l l-conditioned
systems wil l also pose problenrs when they are encountered during the numerical solution
of l inearequations. This is because they wil l be extremely sensitive to roundofTerror.

il

9.1
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EX

FIGURE 9.I
Grcphicol solutlon of o set of Mo
l ines represenls the solut ion.

6 r t

simultoneous lineor olgebroic equotions. The intersection of the

FIGURE 9.2
Grophicol  depict ion of s inqulor ond i l fcondit ioned systems: (o) no solui ion, {b) lnf lnl te solut ions, ond
(c) il i condiiioned system wtrere the slopes ore so close thol ihe point oI intersection is difficuh to detecl visuolly

9.1.2 Determinqnls qnd Cromer 's  Rule

Cramer's rule is another solution technique that is best suited to small numbers of equa'

tions. Before describing this method, we will briefly review the concept of the determinant,

which is used to implement Cramer's rule. In addition, the determinant has relevance t0 the

evaluation of the ill-conditionine of a matrix.
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Determinonts. The determinant can be illustrated for a set of three equations:

[A]{ , t }  :  {b}

where [A] is the coefficient matrix

f  o r t  a n  a n f

[Al :  I  a21 a22 azz I
t l
LA3 t  432  AT  J

The determinant of this system is formed from the coefficients of [A j and is represented as

Although the determinant D and the coefficient matrix [Al are composed of the same
elements, they are completely different mathematical concepts. That is why they are dis-
tinguished visually by using brackets to enclose the matrix and straight lines to enclose the
determinant. In contrast to a matrix, the determinant is a single number. For example, the
value of the determinant for two simultaneous ecuations

l a t t  a t 2  a t 3
D  :  I  u . ,  L t t  o ) 1

i " ; ;  
" . ;  

o. ,

D  :  l a t r  
o t t  

I
I  A ) t  A ) )  |- - l

is calculated by

D : a t l a 2 2 - a n ( 7 z t

For the third-order case, the determinant can be computed as

D :  a , , l a !  o t t  
|  -  o , r l o t t  o " l  

*  o , . , l o "  o t ' l
' l a s z  . ? . r . r l  - l a : r  a . r : l  - l a : r  a J 2  l

where the 2 by 2 determinants are called minors.

(e. 1)

Determinonts

Problem Stotement. Compute values for the determinants of the systems represented in
Figs.9. l  and9.2.

Solut ion.  For  F ig.  9.1 :

D -

For Fig. 9

D -

J L

- 1  2

2a:
L

_ !  |2 -
- - l  1

For Fig.9.2b:

l - 1  r
D : l  2  -

l - r  z

: 3 ( : 2 ) - 2 ( - 1 ) : 8

l  / - 1 \: - ; ( l ) - t l ; l : 0
L  \ L , /

I:  - t ( : 2 )  -  1 ( - l )  : 0
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For Fig. 9.2c:

D _

In the foregoing example, the singular systems had zero determinants. Additionally,
the results suggest that the system thart is ahnost singular' (Fig. 9.2c) has a detenninant that
is close to zero. These ideas will be pursued further in our subsequent discussion of ill-
conditioning in Chap. I l.

Cromer's Rule. This nrle states that each unknown in a system of l inear algebraic equa-
tions may be expressed as a fraction of two determinants with denorninator D and with the
numerator obtained from D by replacing the colurnn of coefficients of the unknown in
quest ion by the constants br .  b2, . . . .  b , , .  For  example,  for  three equat ions,  x1 wouldbe
computed as

l b r  o e  4 r : i

I bz azz azt I
I tr^ a1. 4.. l

. , , :  
,

EXAMPLE 9.2 Cromer's Rule

Problem Stotement. Use Cramer's rule to solve

0 .3 ; r r  +0 .52x2  1  r : :  - 0 .01

0 .5 . r r  +  x2 f  l . 9 r j :  0 .67

0.1rr  + 0.3 x2 *  0.513 :  -0.44

Solution. The determinantD can be evaluated as [Eq. (9.1)]:

A:31.'l3i o:l: -ooo22
The solution can be calculated as

-0 .0r  0 .52 I
0 .67 r  1 .9
-0.44 0.3 0.5 0.03278

:  -14.9. r  I  -

t r
I) '

, ' ,
_ : l : -

I  / - ?  ? \_ _ _ 1 ) _ l l _ l : _ 0 . 0 4
2 \s /

a:o:lol: l?l-o"l3i

-4.0022

1 0 . 3  - 0 . 0 1  I  I
i  o.r 0.67 r.e I
|  0. I  -0.44 0.5 |

-0.0022

10.3  0 .52  -0 .01
I o.s r 0.6l
I o. r 0.3 *0.44

-0.0022

0.0649 _ _)a <
-0.0022

-0.043s6
,0.0022 -0.0022

:  1 9 . 8
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The ae-' Function. The determinant can be computed directly in MATLAB with the det
function. For example, using the system from the previous example:

> >  A - 1 0 . 3  0 . 5 2  I ; 0 . 5  1  1 . 9 ; 0 . 1  0 . 3  0 . 5 1 ;
> >  D = d e t  ( A )

D =

0  . 0 4 2 2

Cramer's rule can be applied to compute.{i as in

> >  A ( : , 1 ) =  t - 0 . 0 I ; 0 . 6 1  ;  - 0 . 4 4 1

i i
t i

- 0 . 0 1 0 0

0 . 6 7 0 0
- 0 . 4 4 0 0

> >  x 1 = d e t  ( A )

0 . 5 2 0 0
1 . 0 0 0 0
0 . 3 0 0 0

/ D

1 . 0 0 0 0
1 . 9 0 0 0
0 . 5 0 0 0

X 1  =

- 1 4 . 9 0 0 0

For more than three equations, Cramer's rule becomes impractical because, as the
number of equations increases, the determinants are time consuming to evaluate by hand
(or by computer). Consequently, more efficient alternatives are used. Some of these alter-
natives are based on the last noncomputer solution technique covered in Section 9.1.3-the
elimination of unknowns.

9.1.3 Eliminotion of Unknowns

The elimination of unknowns by combining equations is an algebraic approach that can be
il lustrated for a set of two equations:

a 1 1 x 1  * a 1 2 X 2 : 1 1 1

a Z t x t l a 2 2 x 2 : f i 2

The basic strategy is to multiply the equations by constants so that one of the unknowns
will be eliminated when the two equations are combined. The result is a single equation
that can be solved for the remaining unknown. This value can then be substituted into either
of the original equations to compute the other variable.

For example, Eq. (9.2) might be multiplied by a21 and Eq. (9.3) by all to give

a z t T l t x t  I  a 2 1 A 1 2 X 2  :  A Z l b t

a 1 1 a 2 1 X y  {  a 1 1 a 2 2 x 2  :  a t t b z

Subtracting Eq. (9.4) from Eq. (9.5) will, therefore, eliminate the x1 term from the equa-
tions to yield

a t ta22x2  -  ay la l2xz  :  a t t bZ  -  ayb t

which can be solved for

(e.2)
(e.3)

(e.4)
(9.5)

a 1 1 b 2  -  a 2 1 b 1
/o  A \
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(9.84)

(9.8r)

(9.8c)

Equation (9.6) can then be substituted into Eq. (9.2), which can be solved fbr

a22b1 -  upb2

d 1 1 4 2 2  -  0 2 y A p

Notice that Eqs. (9.6) and (9.7) follow directly h'om Cramer's rule:

th '  an l
l b ,  a t t l

, . _ t - _ - t _

I  , , ,  an l
l l
1  O t t  A ) )

lo"  u ' l
l r r . '  b t  I

1,.3 _.1____J___i_I 1
I

l Q t r  a n  J
t l
I  c . l r r  t l t t  I

ayb l  -  a12 l t2

0 | t t ) 2  -  A 2 j a l ?

d 1 1 b 2  -  a 2 1 b 1

The elimination of unknowns can be extended to systems with rnore than two or three
eqLrations. However, the numerous calculations that are required for larger systems make
the method extremely tedious to irnplement by hand. However, as described in Section 9,2,
the technique can be formalized and readily programrned lbr the conlputer.

9.2 NAIVE GAUSS ELIMINATION

In Section 9.1.3, the elimination of unknowns was used to solve a pair of simultaneous
equations. The procedure consisted of two steps (Fig. 9.3):

1. The equations were manipulated to elin.rinate one of the unknowns tiom the equations,
The result of this elimination step was that we had one equation with one unknown.

2. Consequently, this equation could be solved directly and the l'esult back-substituted into
one of the original equations to solve for the remaining unknown.

This basic approach can be extended to large sets ofequations by developing a system-
atic scheme or algorithrn to eliminate unkr.rowns and to back-substitute. Gauss elimination
is the most basic of these schemes.

This section includes the systematic techniques tor forward elimination and back sub-
stitution that complise Gauss elimination. Although these techniques are ideally suited for
implementation on computers, some modifications will be required to obtain a reliable
algorithrn. In particular, the computer program must avoid division by zero. The tbllow-
ing method is called "naive" Gauss elimination beciiuse it does not avoid this problem.
Section 9.3 will deal with the additional features required for an et'fective computer
progranl.

The approach is designed to solve a general set of n equations:

d 1 1 1 1  *  q s z x z l 4 r - t x :  *  ' "  I  a y , , x , , :  $ t

ay l l  *  ( r2X2 I  dzr j r :  * '  . '  I  a2 , rx , ,  :  S .

: :

1 a , . - r -  :  b ,
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[ r , '  

d r z  a n

l t "  

d z 2  a z t

Lo!  a32 a t t

I
[ ' "  

o '  

, '  

o ' , '

|  
" "  

o ' , , '

{  4 r r

I
i

h :  b " z /a ' \ z

xt :  (b ' r -  a|34l f t t '22

- t ,  :  (b,  -  dr : . r :  -  aptz l f  a,

,rrl
,,,4(a) Forward

el iminat ion

(b) Back
substi tut ion

FIGURE 9.3
The h.azo phoses of Gouss eliminotion: (ol forword eliminotion ond (b) bock substitution

As was the case with the solution of two equations, the technique for n equations consists
of two phases: elimination of unknowns and solution through back substiturion.

Forword Eliminotion of Unknowns. The first phase is designed to reduce the set of
equations to an upper triangular system (Fig. 9.3a). The initial step will be to elininate the
first unknown r1 from the second through the nth equations. To do this, multiply Eq. (9.8a)
by a21 f al l  to give

a 2 1 x y  * \ o p * z  * L a n x z +  . . ' +  9 o r , * ,  -  e h t  
b r

a l t  a t l a t t Q t t

Now this equation can be subtracted from Eq. (9.8b) to give

( , , ,  -  9u,r) . , ,+ . .  + ( , , , ,  -  
#, , , , ) r ,  

-  b,  -  ! ) !6,

or

tt 'rrxz + . .. I a'"r-r,, : 6,

where thc prime indicates that the elements have been changed from their original values.
The procedure is then repeated for the remaining equations. For instance, Eq. (9.8a)

can be multiplied by a3llayl and the result subtracted from the third equation. Repeating
the procedure for the remaining equations results in the lbllowing modified system:

( t 1 1 x 1  *  c t p l 2  l  n 1 - 3 - t 3  *  . . . *  a 1 u x , , :  $ ,

a\ tx t  *  a\ .x3 a " '  *  r t l , ,x , ,  :  6 \

(e.e)

(9.10a)

r q  I nA \
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E}

(9.1 ld)

(9.11r)

(9. l lc)

c t r , xz |  a1 ] , r 3  * . . . * c t . . , , x , r : 6 \  ( 9 .10c )

a ' r ' r . r x2  l ou r r , r * . . . r  a ' , r r x , , : 6 ' , ,  ( 9 .10d )

For the foregoing steps, Eq. (9.8a) is called the pivot equation and all is called the
pivot elentenr. Note that the process of multiplying the first row by u21 f tr11 is equivalent to
dividing itby all and multiplying it by a21 . Sometimes the division operation is refened to
as nonnalization. We make this distinction because a zero pivot element can interfere with
normalization by causing a division by zero. We will return to this important issue after we
complete our description of naive Gauss elimination.

The next step is to eliminate x2 from Eq. (9.10c) through (9.10d). To do this, multi-
ply Eq. (9.10r) by aj2la\, and subtract the result from Eq. (9. lOc). Perform a simila
elimination for the remaining equations to yield

{ 7 1 1 . \ ' 1  l - a 7 l t , f , t  I  d l r r . r r  " ' L A 1 n X , , : l t ,

tr\ar2 + aztu * .. . I a'r,,x, : 11',

a i { t r . . . l a ' i , , x , : [ ' !

where the double prime indicates that the elements have been modified twice.
The procedure can be continued using the remaining pivot equations. The final ma-

nipulation in the sequence is to use the (n - I )th equation to eliminate fhe x,,-1 term from
the rth equation. At this point, the system will have been transformed to an upper triangu-
lar system:

a t t x t  I  a n x z  I r z 1 3 J 3  *  . . .  I  a 1 r r , r :  f i 1

a'zzrz * c/ar4 + . . . I a'r,rr, : 6,

a'1.,4 * ... * a'1,,r,, - 6\

:
o) , i i ;  t '  * , ,  :  h" t  t  l

Bock Substitution. Equation (9.11d) can now be solved for x,,:

h \ n  t )
- t 1

( r - l )
ann

This result can be back-substituted into the (n - l )th equation to solve for ir,, - 1 . The pn
cedure, which is repeated to evaluate the remaining :r's, can be represented by the follow-
ins fbrmula:

i l

6 r i  t t  _  \ -  , r 1 1 - l ) " ,' r  
/ -  

- - t . l  - - J

i : i + l

: :
a i , l4 1 . . .  t  a l , ,x,  :  b ' , '

f o r i : n - l , n - 2 ,
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EXAMPLE 9.3 Noive Gouss El iminot ion

Problem Stqtement. Use Gauss elimination to solve

3 x r  -  0 . l r z  - 0 . 2 x 2 :  7 . 8 5

0 . l x r  *  7 x 2 - 0 . 3 4 :  - 1 9 . 3

0.3x1 -  0.2x2+ l0; t :  -  71.1

0.2x3 -  7.85

70'0843 : 7.oooo3
10.0120

(Ee .3 . l )

r F q  ?  ? r

(E9.3.3)

rFq 1 4)

(89.3.5)

(E9.3.6)

(E9,3.7)

(E9.3.8)

(E9.3.9)

substitution. First, Eq. (89.3.9) can be

Solution. The first part of the procedure is fbrward elimination. Multiply Eq. (E9.3.1)

by 0.1 l3 and subtract the result from Eq. (89.3.2) to give

7.00333x: - 0.293333n : -19.5617

Then multiply Eq. (89.3.1) by 0.313 and subtract it from Eq. (89.3.3). After these opera-
t ions.  the set  of  equat ions is

0.2x3 :  7 .85

7.00333x: -  0.293333x: -  -  19.5617
- 0.190000x2 * 10.0200x::  70.6150

To complete the lbrward elimination, rr rrIUSt be removed fiom Eq. (E9.3.6). To accom-
plish this, multiply Eq. (E9.3.5) by -0.19000011.00333 and subtract the result from
Eq. (E9.3.6). This eliminates r? from the third equation and reduces the system to an upper
triangular form, as in

3x r  -  0 .  l x z  -

1.00333x2 - 0.293333xt: -19.561'7

10.0120-t j :  70.0843

We can now solve these equations by back
solved for

This result can be back-substituted into Eq. (E9.3.8). which can then be solved for

- t9.5617 + 0.293333(7.00003): -2.50000
7.00333

Finally,"r: : 7.00003 and x2 : -2.50000 can be substituted back into Eq. (E9.3.7), which
can be solved for

7.85 + 0.1(-2.50000) + 0.2(7.00003): 3.00000

Although there is a slight round-off eror, the results are very close to the exact solution of
rr : 3,  ̂ z: -2.5, &I1d ;rj : 7. This can be verif ied by substituting the results into the
original equation set:

-r(-r) - o. I (- 2.-5) 0.2(7.00003) : 7.81999 = 7.85
0 .1 (3 )  +  7 ( -2 .5 )  -  0 .3 (7 .00003 )  :  - 19 .30000  :  - 19 .3
0.3(3)  -  0 .2(-2.5)  + l0(7.00003) :  11.4003 = 11.4
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f u n c t i o n  x  =  c a u s s N a i v e ( A , b )
%  G a u s s N a i v e :  n a i v e  G a u s s  e l i m i n a t i o r r
%  x  =  G a u s s N a i v e ( A , b ) :  G a u s s  e l i m i n a t i o n  w i t h o u L  p i v o t i n g .
?  i n p u t :
%  A = c o e f f i c i e n t m a L r i x
%  b  =  r i g i r r  h a n d  s i d e  v e c t o r
%  o u t p u L ;
?  x = s o l u t i o n v e c t o r

l m ,  n l  =  s i z e  ( A )  ;
i f  m - = n ,  e r r o r ( ' M a t r i x  A  m u s t  b e  s q u a r e ' ) ;  e n d
n b  -  n + 1 ;
A u g  -  [ A  b ] ;
?  f o r w a r d  e l i m i n a t i o n
f o r  k  =  1 : n - 1

f o r  i  =  k + 1 : n
f a c t o r  -  A u g ( i , k )  / A u q ( k , k )  ;
A u g ( i , k : n b )  =  A u g ( i , k : n b )  - f a c t o r * A u g ( k , k : n b )  ;

e n d
e n d
?  b a c k  s u b s r ' r u e  i o n
x  =  z e r o s { n , l ) ;
x ( n )  -  A u g ( n , n b ) . / A u q ( n , n )  ;
i o r  i  =  n - 1 : - i : 1

x ( i )  -  ( A u . J ( i , n b ) - A u g ( i ,  i + 1 : n )  * x ( i + 1 : n )  )  i A u g ( i , i )  ;
e n d

FIGURE 9.4
An MJi le  io  rmpiement  noive Gouss e l iminat ion.

9.2. I  MATTAB M-f i le !  GaussNaive

An M-file that implements naive Gauss elimination is listed in Fig. 9.4. Notice that the
coefficient matrix A and the right-hand-side vector b are combined in the augmented ma-
trix Aug. Thus, the operations are performed on Auq rather than separately on A and b.

Two nested loops provide a concise representation of the tbrward elimination step. Al
oLtter loop moves down the matrix from one pivot row to the next. The inner loop moves
below the pivot row to each of the subsequent rows where elimination is to take plam.
Finally, the actual elimination is represented by a single line that takes advantage of
MATLAB's ability to perform matrix operations.

The back-substitution step follows directly from Eqs. (9.12) and (9.13). Again,
MATLAB's ability to perform matrix operations allows Eq. (9.13) to be programmed asa
sinsle l ine.

9.2.2 Operotion Counting

The execution tine of Gauss elimination depends on the amount of .floating-point operatilv
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Therefore, totaling up these operations provides insight into which parts ofthe algorithm are
most tirne consuming and how computation time increases as the system gets larger.

Before analyzing naive Causs elirnination, we wil l f irst define some quantit ies that
facil i tate operation counting:

il1 il1 111

\ - ,  r , ; '  - ,  \ -  r ' i r  \ -  r , ; r  +  o r i  r/ - - '  '  / - ' " '  / -
;  I  i  I  i - l

\ - r
L

\ - ;
L '

\ - ; r
lJ

where O(rl") means "terms of order tn" and lower."
Now let us examine the naive Gauss elimination algorithm (Fig. 9.4) in detail. We wil l

first count the flops in the elimination stage. On the first pass through the outer loop, k : I .
Therefbre, the l imits on the inner loop are from i: 2ro n. According to Eq. (9.14d), this
means that the number of iterations of the inner loop wil l be

f  t : t t _  2 + l : n -  I/ - -
i : 2

For every one ofthese iterations, there is one division to calculate the factor. The next line
then performs a multiplication and a subtraction tbr each column element from 2 to nb.
Because nb : n f 1, going fiom 2 to izb results in r multiplications and n subtractions.
Together with the single division, this amounts to fl + I multiplications/divisions and n
addition/subtractions tor every iteration of the inner loop. The total for the first pass
through the outer loop is therefore Qt - l)(n 1 l) multiplication/divisions and (n - l)(n)
addition/subtractions.

Similar reasoning can be used to estimate the flops for the subsequent iterations of the
outer loop. These can be summarized as

t l
l i

:  I  *  I  +  |  + . . . 1 1 : n t  I t :  n r _  k + l

t n ( n r  *  l )  n r )
:  |  + 2  + 3  + . . .  + t 1 t  :  -  I  O ( n t )

:  l . +  2 ,+3 -+ . . . +  , r z -m(m l1 ) - (2m l l )  : ! * o@2)
6 - i

(9. |  1a,b)

( 9 . 1 4 c d )

(9 .14e)

(:e.t1.f )

(9.  I  s)

tr,r,", tolp aatiri""Tsritr".tt"r 
'"r,t,tu."n";;;;;,.ion

i Flops Flops

In  tn

- \ - r , ; r r \ - o r i r-  
/ _ . t  

, ' ,  
/ _ 6 " ,

; - t  i - l

Outer Loop
k

I
2

k

r r -  l

2 ,  n
3 ,  r t
:

k l l  n

n ,  n

{rr -  I  j (r)

l n - 2 ) l n - t )

l n  k ) l n  +  I  - k )

( r  ) (2 )

{ , r - l l f u + 1 )
l,' - 2)l,l

( i r  k ) ( n + 2 - k )

( r  ) {3 )

Therefbre, the total addition/subtraction flops for elimination can be computed as
i r  I  r r  I

) - r r -  k ' t ( n+  t - f r ) : f  l r 0 r+ l ) -  k (2n *  t )+ / . 21 (9 .16 )



224 GAUSS ELIMINATION

(9.r9)

(9.2\

(9.221

EXAi

n(n t  t ,  i  t  -  Qt t  *  t )  f r  +  f t '
A : t  k : t  t - l

Applying some of the relationships from Eq. (9.14) yields

ln3 + o( , ) ) -  [n3 + ornzt ] *  [ ] , , t  +  ornz; l :  |  *  or r ,
L.'' J J

A similar analysis lbr the multiplication/division flops yields

[ n3  +  o l f ) ] -  [ n3  +  o (n ) ]  + [ ] , , t  *  o r r ' ; ]  :  |  *  o r r t ,
t ) t l
L _ -  )  '

Summing these results gives

l n '
^  l O ( t t ' )  ( 9 . 2 0 1
J

Thus, the total number of flops is equal to 2nt 13 plus an irdditional component pro-
portional to terms of orcler nr and lower. The result is written in this way because as n gets
large, the O (n?) and lower terms beconre negligible. We are therefore justifiecl in conclud-
ing that for large n, the effort involved in forward elimination converges on 2n3 f 3.

Because only a single loop is used, back substitution is much simpler to evaluate. The
number of addition/subtraction flops is equal to n(n - l) 12. Because of the extra division
prior to the loop, the number of multiplication/division flops is n(n -l l)12. These canbe
added to arrive at a total of

n2  +  o1ny

Thus, the total efTort in naive Gauss elimination can be represented as

T * oUr', + n2 +o(i,) -ll-I1r\ 2! 
* oCl

Forward Back
e l im ina t ion  subs t i tu t ion

Two useful general conclusions can be drawn ftom this analysis:

l. As the system gets larger, the computation time increases greatly. As in Table 9.1, the
amount of flops increases nearly three orders of magnitude for every order of magni-
tude increase in the number of eouations.

TABTE 9.1 Number of  f lops for  noive Gouss e l iminot ion.

Bock
n Eliminqfion Substituiion

Tolol
Flops 2tt313

Percenl Due
to Eliminction

t 0
r 0 0

r 000

r 0 0
r 0000
I  x  l O o

87.58%
98  53%
99 85%

705
671 550

6 6 7 x l a E

805
68  I  550

6 6 8  x  I O B

667
666667

6.67 x IAB
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2. Most of the effort is incurred in the elimination step. Thus, efforts to make the method
n.rore efficient should probably focus on this step.

9.3 PTVOT|NG

The primary reason that the foregoing technique is called "naive" is that during both the
elimination and the back-substitution phases, it is possible that a division by zero can
occur. For examole. if we use naive Gauss elimination to solve

2-r2 11.11 -  8

4rr * 6-ru *7.rt - -3

2x1 - 3x2 -f 613 - 5

the normalization of the first row would involve division by ay1 :0. Problems may also
arise when the pivot element is close, rather than exactly equal, to zero because if the mag-
nitude of the pivot element is small compared to the other elements, then round-off errors
can be introduced.

Therefore, before each row is nomralized, it is advantageous to determine the coefficient
with the largest absolute value in the column below the pivot element. The rows can then be
switched so that the largest element is the pivot element. This is called partial pivoting.

If columns as well as rows are searched for the largest element and then switched, the
procedure is called contplete pivoting. Cornplete pivoting is rarely used because switching
columns changes the order of the .r-'s and, consequently, adds signilicant and usually un-
justified complexity to the computer program.

The following example illustrates the advantages of partial pivoting. Aside from
avoiding division by zero, pivoting also minimizes round-off eror. As such, it also serves
as a partial remedy fbr ill-conditioning.

EXAMPLE 9.4 Poriiol Pivoting

, Problem Stotement. Use Gauss elimination to solve

0.0003xr + 3.0000x2 :2.0001

1.0000xr * 1.0000.12 : 1.0000

, Note that in this fom.r the first pivot element, arr : 0.0003, is very close to zero. Then re-
; peat the computation, but partial pivot by reversing tl're order of the equations. The exact
r solution is 'r1 : I /3 and xz : 213.

Solution. Multiplying the first equation by 1/(0.0003) yields

-r - r  f  10,000x2:6661
' 

which can be used to eliminate r1 from the second equation:

-9999x2: -6666

which can be solved fbr:r2 : 213.This result can be substituted back into the first equa-
tion to evaluate "rr | :

2.0001 - 3(2/3)
^ t -

0.0003
(E9.4. r )
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Due to subtractive cancellation, the
f igures canied in  the computat ion:

Significonr
Figures

result is very sensitive to the number of significant

Absolute Volue of
Percenl Relotive

Error for x,.rtx2

3
4
5
6
7

0 667
0.6667
4 66667
0 666667
0.6666667

I  1 1

0 0000
0 30000
0 330000
0 3330000

r 099
r 0 0
t 0

I
0 t

Note how the solution for.r, is highly dependent on the number of significant figures. Thn
is because in Eq. (E9.4. 1), we are subtracting two almost-equal numbers.

On the other hand, if the equations are solved in reverse order, the row with the larger
pivot element is norrnalized. The equations are

1.0000xr * 1.0000x2 : 1.0000

0.0003xr * 3.0000-tr :2.0001

Elimination and substitution again yields x3 :213. For different numbers of significant
figures, rr can be computed frorn the first equation, as in

|  -  (213)
I

This case is much less sensitive to the number of significant f igures in the computation:

Significont
Figures x lx2

Absolute Volue of
Percenl Relotive

Error for x,

3
4
5
6
7

4 667
4 6667
0.66667
4 666667
0.6666667

0  3 3 3
0 33-?-?
0  3 3 3 3 3
0  3 3 3 3 3 3
0  3 3 3 3 3 3 3

0 l
0 0 r
0  00 t
0 000r
0.0000

Thus, a pivot strategy is rnuch rnore satisfactory.

9.3.1 MATLAB M'fi le3 GaussPivot

An M-file that implements Gauss elimination with partial pivoting is listed in Fig. 9.5. It
is identical to the M-file for naive Gauss elirnination presented prel'iously in Section 9.2.1
with the exception of the bold porlion that implements partial pivoting.

Notice how the built-in MATLAB function max is used to determine the largest avail-
able coefficient in the column below the pivot element. The rnax function has the syntax

[ y , r ]  =  m a x ( x )
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f u n c t i o n  x  =  c a u s s P i v o t ( A , b )
%  G a u s s P i v o t :  c a u s s  e L i m i n a t i o n  p i v o t i n g r

%  x  =  G a u s s P i v o t  ( A , b )  :  G a u s s  e l i m i n a r i o n  v r i t h  p i v o r , i n g

%  i n p u t :
?  A = c o e f f i c i e n L m a t r i x
?  b  -  r i g h t .  h a n d  s i d e  v e c t o r
Z  o u t p u c :
%  x = s o l u t i o n v e c t o r

I m , n ] = s i z e  ( A )  ;
i f  m . - = n ,  e r r o r ( ' M a t r . i x  A  m u s t  b e  s q u a r e ' ) ;  e n d
n b = n +  1  ;
A u g =  [ A  b ]  ;
%  f o r w a r d  e l i m i n a t i o n
f o r  k  -  1 : n - l

eo  pa r t i aL  p i vo t i ng

t b i g ,  i l  = m a x ( a b E  ( A u g ( k : n , k )  )  ) ;
i p r = i + k - 1 ;
i f  i p r - = k

A U S (  [ k , i p r ] , :  ) = A u g (  [ i p r , k ] , :  ) ;
end
f o r  i  =  k + 1 : n

f a c t o r = A u g r  (  i ,  k )  / A u q  ( k ,  k )  ;
A u g  (  i ,  k  :  n b )  = A u g  (  i ,  k  :  n b )  -  f a c t o r * A u g  ( k ,  k  :  n b )  ;

end

?  b a c k  s u b s t i t u t i o n
x = z e r o S ( n , 1 ) ;
x  ( n )  - 4 L 1 g  ( n ,  n b )  / A u g  ( n ,  n )  ;
f o r  i  =  n - 1 : - 1 : 1

x  (  i  )  =  ( A u g  (  i ,  n b )  - A u g r  (  i ,  i + 1  : n )  * x  (  i + 1  : n )  )  / A u g  (  i ,  i  )  ;
end

FIGURE 9.5
An MJ i le  to  imp lemenf  the  Gouss  e l im ino t ron  w i ih  por i io l  p ivo t ing

9.4 TRIDIAGONAT SYSTEMS

Certain matrices have a particular structure that can be exploited to develop efficient solu-
tion schemes. For example, a banded matrix is a square matrix that has all elements equal
to zero, with the exception of a band centered on the main diagonal.

A tridiagonal system has a bandwidth of 3 and can be expressed generally as

f i 8 r
e2 .fz 8z

e3 ft

r l
r.

r 1

. { 1

-
4 1

€ t t  I  . f , , - l  8n - t X n - l '  n -  |

(9.23)
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Notice that we have changed our notation for the coefficients from a's and b's to e's,/s,

,g's, and r's. This was done to avoid storing large numbers of useiess zeros in the square ma-
trix of a's. This space-saving modification is advantageous because the resulting algonthn
requires less computer rnemory.

An algorithm to solve such systems can be directly patterned after Gauss elimination-
that is, using forward elimination and back substitution. Howeveq because most of thc
matrix elements are already zero, much less effort is expended than for a full matrix. This
efficiency is illustrated in the following exarnple.

EXAMPLE 9.5 Solut ion of  o Tr id iogonol  System

Problem Stotement.

Solution. As with Gauss elimination, the tirst step involves transforming the matrixh
upper triangular form. This is done by multiplying the first equation by the f actor e2l f y nl
subtracting the result from the second equation. This creates a zero in place of e2 and trans-
forms the other coefficients to new values.

? a  - l

fz  :  . fz  -  
T+t  

:2 .04 -  
2JJ4e 

1)  :  I  '550

t ' j  :  t ' )  - ? , ' , : 0 . 8 -  I  
t 4 0 . 8 t  : 2 0 , 8

f  ,  1 .04

Notice that g, is unmodified because the element above it in the first row is zero.
After performing a similal calculation lbr the third and fourth rows, the system is tranr

formed to the upper triangular form

f2 .04  
- l

l - r  2 .04

Solve the following tridiagonal system:

-, ll;t t_lTfl':i -:l t:t I t,3;1-l

[204 ,.lo - lI;i I:I i33 I
I t :os ,.i,J l;; I 

- 
I ift','; f

Now back substitution can be applied to generate the linal solution:

,o : 'io : '+#: r 5e 48o
t'3 - 83r-l, r :  

f a

^ l  -

,'z - 82x3

,fz

r l  -  
8 l J 2

.ft

14.22r -  (- l )159.480

1.395

20.800 - (-  l )  124.538
1.550

40.800 - (-  l )93.778

:124.538

: 93.718

:65 .910
2.040



9.5 CASE STUDY

f u n c t i o n  x  =  T r i d i a q ( e , f , g , r )
%  T r i d i a g :  T r i d i a q o n a l  e q u a t i o n  s o l v e r  b a n d e d  s y s t e m
t  x  =  T r i d i a g ( e ,  f , g , r ) :  T r i d i a g o n a l  s y s t e m  s o l v e r .
%  i n p u t :
?  e = s u b d i a g o n a l v e c t o r
Z  f =  d i a g o n a l v e c t o r
2  g  =  s u p e r d i a g o n a l  v e c t o r
2  r  =  r i g h t  h a n d  s i d e  v e c t o r
%  o u t p u t :
?  x = s o l u t i o n v e c t o r
n = l e n g r t h  ( f  )  ;
?  f o r w a r d  e l i m i n a t i o n
f  a r  V  -  ) . r

f a c t o r  =  e ( k )  / f  ( k - 1 - ) ;

f ( k )  =  f { k )  -  f a c t o r * g { k - 1 ) ;
r ( k )  =  r ( k )  -  f a c t o r * r ( k - 1 ) ;

end
%  b a c k  s u b s t i r u r i o n
x ( n )  =  r ( n ) / f  ( n )  ;
f o r  k  =  n - 1 : - 1 : 1

x ( k )  =  ( r ( k ) - s ( k ) * x ( k + 1 )  ) / f  ( k )  ;
end

FIGURE 9.6
An MJile to sove o tridiogonol sysiern.

9.4.1 MATLAB M-fi le! rridiag

An M-file that solves a tridiagonal system of equations is listed in Fig. 9.6. Note that the
algorithm does not include partial pivoting. Although pivoting is sometimes required, most
tridiagonal systems routinely solved in engineering and science do not require pivoting.

Recall that the computational effort for Gauss elimination was proportional to n3.
Because of its sparseness, the effort involved in solving tridiagonal systems is proportional
to n. Consequently, the algorithm in Fig. 9.6 executes much, much faster than Gauss elim-
ination, particularly for large systems.

MODEL OF A HEATED ROD

Bockground. Linear algebraic equations can arise when modeling distributed sys-
tems. For example, Fig.9.7 shows a long, thin rod positioned between two walls that are
held at constant temperatures. Heat flows through the rod as well as between the rod and
the surrounding air. For the steady-state case, a differential equation based on heat conser-
vation can be written for such a system as

d 2 T
_  +h ' ( 7 . -  z ) : 0

ax-
(9.24)



230 GAUSS ELIMINATION

continued

7, , :  20

I
f o :  4 0 Is = 200

ti{it { ,
- -  L x ; ' 7 , , : 2 0

, r = 0

FIGURE 9.7
A noninsuloted uniform rod positioned between two wolls of constont but different temperoture
The {inite-d'f lerence representol ion employs f6ur inls1ie, 66is5.

where I: temperature ("C), x : distance along the rod (m), h' : aheat transfer coefficient
between the rod and the surrounding air 1m-2), ztrdTo: the air temperature ("C).

Given values for the parameters, forcing functions, and boundary conditions, calculus
can be used to develop an analytical solution. For example, if h' :0.01, 4, : 20, T(0) =

40, and (10) : 200, the solution is

T :13.4523n0'tx - 53.4523e-0 t^ + 20 (9.2'

Although it provided a solution here, calculus does not work for all such problems. In
such instances, numerical methods provide a valuable alternative. In this case study, we
will use finite differences to transform this differential equation into a tridiagonal system
of linear algebraic equations which can be readily solved using the numerical methods de-
scribed in this chapter.

Solution. Equation (9.24) can be transformed into a set of linear algebraic equations by
conceptualizing the rod as consisting of a series of nodes. For example, the rod in Fig.9.7
is divided into six equispaced nodes. Since the rod has a length of 10, the spacing between
nodes is A,x :2.

Calculus was necessary to solve Eq. (9.20 because it includes a second derivative.
As we learned in Sec. 4.3.4, finite-difference approximations provide a means to transfom
derivatives into algebraic form. For example, the second derivative at each node can h
approximated as

dzT

d-t

T i + t  - Z T i  * T i - r

Lx2

where I designates the temperature at node i. This approximation can be substituted into
Eq. (9.2q to give

Ti+r  -2Tr  *  T i* t
n, -2

+h ' (7 " -4 ) : 0



9.5 CASE STUDY

continued

Collecting terms and substituting the parameters gives

- T i * r * 2 . 0 4 T i -  4 + r : 0 . 8 (e.26)

Thus, Eq. (9.24)has been transformed from a differential equation into an algebraic equa-
tion. Equation (9.26) can now be applied to each of the interior nodes:

- T o * 2 . 0 4 T 1 - 4 : 0 . 8

- Tt * 2.0472 - Z: : 0.8
- Tz 12.04\ - Z+ : 0.8
- Tt -t 2.0474 - Is : 0.8

(9.27)

The values of the fixed end temperatures, Io : 40 and Ts:200, can be substituted and
moved to the right-hand side. The results are four equations with four unknowns expressed
in matrix form as

(9.28)

So our original differential equation has been converted into an equivalent system of
lineal algebraic equations. Consequently, we can use the techniques described in this chap-
ter to solve for the temperatures. For example, using MATLAB

> >  A =  1 2 . A 4  - 1  0  0
- r  2 . 0 4  - 1  0
a  - r  2  . 0 , 1  - L

t )  0  - 1 , 2 . A 4 ) ;

> >  b = i 4 0 . 8  0 . 8  0 . 8  2 0 0 . 8 1 ' ;
> >  T =  ( A \  b )  '

T =
6 5 . 9 6 9 8  9 3 . ' , i 1 8 a  

' r 2 4 . 5 3 8 2  r 5 9 . 4 1  9 a

A plot can also be developed comparing these results with the analytical solution obtained

with Eq. (9.25),

.  L  
j '  i  -  t ;

> >  x = [ 0 : 2 : 1 0 1 ;
> >  x a n a l = f 0 : 1 0 1 ;
> >  T T - 0  ( r )  1 3 . 4 5 2  - j * e x p  ( 0 . 1 * x a n a l )  - 5 3 . 4 5 2 3 * e x p  .  .  .

( - 0 . 1 * x a n a l ) + 2 0 ;

t - , r . r j = 1 : ( Y d l - - ) ;

> >  p l o t  i t  , ' l  ,  
' o '  ,  r a n a l ,  T a r t a l  )

As in Fig. 9.8, the numerical results are quite close to those obtained with calculus.

ffi' a; 'it;] {i^l:{}i}
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FIGURE 9.8
A plot of temperoture versus distonce olong o heoted rod. Boih onolyticol {line) ond numericol
lpoints) solut ions ore disployed.

In addition to being a linear system, notice that Eq. (9.28) is also tridiagonal. We can
use an efficient solution scheme like the M-file in Fis. 9.6 to obtain the solution:

> >  e = 1 0  - 1  - 1  - 1 1 ;

> >  f = 1 2 . 0 4  2 . 0 4  2 . 0 4  2 . 0 4 ) ;
> >  g = i - 1  - 1  - 1  0 1 .
> >  r =  [ 4 0 . 8  0 . 8  0 . 8  2 0 0 . 8 ]  ;
> >  T r i d i a S  (  e ,  f ,  q ,  r  )

6 5 . 9 5 9 8  9 3 . 7 1 8 5  r 2 , 4 . 5 3 8 2  r 5 9  . 4 1 9 5

The system is tridiagonal because each node depends only on its adjacent
Because we numbered the nodes sequentially, the resulting equations are tridiagonal.
cases often occur when solving differential equations based on conservation laws.

180

1 0



PROBLEMS

PROBTEMS

Determine the number of total flops as a function of
number of equations n for the tridiagonal algorithrn

Use the graphical method to solve
4 . r t  - 8 . r t : - 24

-{ r  *6, r : :  31
your results by substi tut ing rhem back into the

Given the system of equations

- l . l r 1  *  l 0 - r 2 :  l 1 6

- 2xt + l l  .4.b :  174

Solve graphically and check your results by substituting
them bucl into thc equati(rn\.
0n the basis of the graphical solution, what do yor.r expect
regarding the condition of thc system)
Compute the deter minant.
Given the system of equations

-  3 t :  +  1 x ' ,  : 2

x1 12.12 - .rr : 3

5 . t1  -2 - r2  :2

Compute the deterninant.
Use Cramer's rule to solve fbr thc r's.
Use Gauss el imination wi(h part ial  pi l ,ot ing to solve tor
the -r's.
Substitute your results back into the original equations
to check your solut. ion.
Given the equations

0.5 ; t1  -  . r2 : -  9 . -5

1 . 0 2 t 1  - 2 x 2 :  - 1 8 . 8

Solve graphically.

{b) Compute the deterrninant.
(c) 0n the basis of (a) and (b), what would you expect

regarding the system's condition?

{d) Solve by the elinrination of unknowr.rs.
(t)  Solve again. but with a,, modif ied sl ightly to 0.52.

Interpret your results.
9,6 Given the equatiolrs

1 0 - t 1  * 2 - r 2 - , r 3 :  2 7

- 3.t1 - 6-t2 * 2.r3 :  -61.5

. r 1  * . r 2 * 5 . r : : - 2 1 . 5

(l) Solve bv naive Guuss el irnination. Shorr, '  al l  steps of the
computatton.

(b) Substitute your results into the original equations to
check your answL.t's.

9.7 Given the cquations

2 r 1  - 6 x 2 -  - r - r : - 3 8

- 3 r r - ; r : * 7 . r . t : - 3 4

* 8 r r  +  - r 2 - 2 x 1  : - 2 0

(a) Solve bv Gauss c. l imination with part ial  pivoting. Show
all steps ol the computation.

(b) Sr"rbsti tutc your rcsults into the original equations to
check your answers.

9,8 Pcrforn.r thc samc calculations as in Example 9.5, but lbr
the tr idiagonal system:

9.6).

:{f,
9.9 Figure P9.9 shows three reactors linked by pipes. As
indicated, the rate of transf'er of chenticals through each
pipe is equal to a f'low rate (Q, with units of cubic meters
per second) rnultiplied by the concentration of the reactor
fronr which thc f low originates (c, with unirs of mil l igrarns
per cubic metcr). If the systcm is at a steady state, the trans-
f'cr into each reactor will balance the transfer out. Develop
r.niiss-balarrce equations for lhe reactors and solve the
threc simultaneous linear algebraic equations for their
conccntrat lons.

Qnct

Qz(z

200 mg/s

Qr . :  120
Q r r :  4 0
Q,z = 90
Q z : : 6 0
Q y t : 3 o

I o s  - 0 . 4  l l . r
I  t l

|  
-c ) .4  0 .8  -  0 .a  |  |  L1

L  { ) . 4  o 8 j | . r .

FIGURE P9.9
Three reociors l inked by pipes The rote of moss trcnsfer
through eoch pipe is equo to the product of f ow Q cnd
concenirotion c of the reccfor from which the f ow
orgrnoles.
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FIGUR

9 . 1 4  A
viscous
pipe se(
mechan
flows ir
to obtai

Q, I

Q t )

3Qt

o,=
Q t =

o.=
9 .15  A
followi
BC, AL

7 4 k

9.10 A civi l  engincer involved in construction rcquires
.1800, 5800, and 5700 rnr of sand, line gravel, and coarse
gravel, respectivcly, lbr a bui lding plojcct. Thcre arc thrcc
pits from which these materials can be obtaincd. The corn-

1-rosit ion of thcse pits is

the lbllowin-e difl'crential equation rcsults fiom a steady-$ate
mass balance fbr a chemical in a onc-dimensional clnal:

' ) t
d - t  l l t :

0 : D  - - U  , - - k c
d . \ '  d . r

r.'u'hcre c : conccntri.ition, / : tinlc, r : distance, D = diffu-
sion coclllcicnt. U - f-luicl velocity. and li = a first-order
dccay late. Convert this ciitilrcntial ccluation to an equiva.
lent systcm of simultaneous algcbraic equations. Given D =

2, U : l ,  k -- 0.2, r ' (0.1 : 311 and c(10) :  20. str ive these
equations f i 'om.r :  0 to l0 and dcvelop aplot of concentfa'
t ion velsus distance.
9.13 A stage cxtract ion process is depicted in Fig. P9.13. In
sr-rch systems, a stream containirtg a weight tiaction r',,, of a
chemical enters fronr the lcft at a mass f'low late of F,.
Siniultaneously, a solvcnt carrying a rvcight t iact ion x,n of
the same chemical enters flom the right at a flow rate0f F,.
Thus, lbr stagc i ,  a nrass balancc can be reprcsentcd as

( P9. l 3n)

At cach stage. an equil ibr ium is assumcd to be establ ished
bctween,r ' ,  and r, as in

K : 
' ' i  

{P9.l l })

whele K is cal led a distr ibution coeff icient. Equation (P9.13b)

can be solved fbr -r, and substitutcd into Eq. (P9. 13a) to yield

/  F ,  \  / F ,  \
r '  , -  ( ' -  - ' r a  ) r ' ,  |  ( ; = K  I r ,  ' : g  r P g . l j i r

\  r t  /  \ r t  /

l f  Fr :  500 kg/h, . \ ' in :  0. 1, F.: 1000 kg/h, r in = 0, and
K : 4, delermine the values of _r',,u, ancl x.,,,, if a tlve-stage
rcactor is uscd. Note that Eq. (P9. l3c) must be modif ied to
account fbr thc inflou, wei-sht liactions when applied to the
fi lst and last stages.

Sond Fine Grovel Coorse Grovel

P i r  I
?it2
Pir3

30
4 5
2a

55
25
25

t 5
30
55

Hou, nran-v cubic melels rxlrst be haulecl fiorn u'ach pit in
order to meet the cnginecr's nceds?
9.ll Arr clectrical engineer supervise's the ploduction of three
typcs of clectrical componcnts. Three kinds of rr-raterial-
rnctal. plastic, ancl rubber-are rctpriled tirl production. The
amounts needed to prodLrcc each component are

Metol (g/ Plosric (9/ Rubber (9/
Componenf component) component) component)

03c
o4a
0 5-5

I f  totals of 3.89, 0.09-5, and 0.282 kg of rnetal,  plast ic, and
lubber', respectivcly, arc available cach day, how nrany conr-
ponents can be produced per day'?
9.12 As cle.scribed in Scc. 9.3, lineal algebraic equations can
arise in the solution of difl'erential cquations. For example.

o
2

t 5
l 7
t 9

I

2
J

< _ F I O W :  A _

FIGURE P9.I3
A stoqe extrocl ion process

- F l o w :  F , +

FIGUI



PROBLEMS

P9.r4

9.11 A peristaltic pump delivers a unit llow (Q, ) of a highly
viscous tluid. The network is depicted in Fig. P9. 14. Every

section has the same length and dianreter. Thc mass and
I energy balance can be simplitied to obtain thc

in every pipc. Solve the following system of equations
in the flow in every stream.

Q z + 2 Q t -  2 Q : : O

Q s t  2 Q o  -  2 Q r : 0

3Q.  -  2Q( , :0

0 , = 0 , + O ,

Q t =  Q t i  Q s

Q s = Q o *  Q ,

15 A truss is loaded as shown in Fig P9. 15. Using the
l0 unknowns. AB.in-e set of equations, solve for the

,AD. BD. CD. DE, CE, A,. A,, and E,

235

A , + A D : o
A , * A B : 0

- l J  -  C D  A / 5 t C  E  : 0

- A D  r  D E  ( 3 l 5 t B D : 0

7 4 +  B C + ( 3 / s ) B D : 0  C D +  ( 4 1 5 ) B D : O

A B  -  G / s ) B D : 0  - D E  -  ( 3 / s ) C E  : 0
- B C + ( 3 1 5 ) C E : 0  E \ . 1  ( 4 l s ) C E - 0

9.1(t A pentodiagonal system witlr a bandwidth of flve can
be exprcssed generally as

. f t  ,9r  hr
e2 .fz 8z h2
d t  e1  h  B r  h t

d,, t €tt I Jr-t 8n I

d, €rt .f,,

, { l

.rl

xr t

f t t l

Develop
pivoting
onal mat

t_"
t_;
lo
Lo

r l

r2

r3

:ltii
- 2

9
3

,1

0

an M-fi le to etf icientlv solve such systems withor,rt
in a similar fashion to the algorithm used fbr tridiag-
r ices in Sec. 9.4.1. Tcst i t  fbr the fol lowing case:

til
- l  0
-4 I

a l

1  l f

-7  -3

24 kN

P9. r5
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LU Focto rizotion

CHAPTER OBJECTIVES

The primary objective of this chapter is to acquaint you with LIJ factorizationt .

Specific objectives and topics covered are

. Understanding that LIJ factortzation involves decomposing the coetlcient matrix

into two triangular matrices that can then be used to efficiently evaluate different

right-hand-side vectors.
' Knowing how to express Gauss elimination as an LU factortzation.
. Given an LIJ factorization. knowing how to evaluate multiple right-hand-side

vectors.
. Recognizing that Cholesky's method provides an efficient way to decompose a

symmetric matrix and that the resulting triangular matrix and its transpose can be

used to evaluate right-hand-side vectors efficiently.
. Understanding in general terms what happens when MATLAB's backslash

operator is used to solve l inear systems.

s described in Chap. 9, Gauss elimination is designed to solve systems of linear

algebraic equations:

[A ] { r }  :  {b }

Although it certainly represents a sound way to solve such systems, it becomes inefficienl

when solving equations with the sarne coefficients [A], but with different right-hand'side

constants {b}.

| [n the parlance of numerical methods, the tenns "factorization" and "decotttposition" are synonyrnous. To be

consistent with the MATLAB doculnentation, we have chosen to employ the terminology LU factori:ationlor

the subiect of this chapter. Note that LLl tlecomposition is very comntonly used to describe the same approach

(i0.1)



OVERVIEW OF [U FACTORIZAIION

Recall that Gauss elimination involves two steps: fbrward elimination and back sub-
stitution (Fig. 9.3). As we learned in Section 9.2.2, the forwald-elimination step compriscs
the bulk of the conrputational etlbrt. This is particularly true for large systems of equations.

LU factoriz.ation methods separate the time-consuming elimination of the matrix [A]
from the rnanipulations of the right-hand side {b}. Thus, once [A] has been "factored" or
"decornposed," multiple right-hand-side vectors can be evaluated in an efTicient manncr.

Inter-estingly. Gauss elimination itself can be cxpressed as an LU facroriztt l ion. Bcfole
shclwing how this can be done. let us l irst provide a mathernatical oven,iew of the factor-
ization strategy.

I O.I OVERVIEW OF LU FACTORIZATION

Just as was the case with Gauss elimination. LU factorization requires pivoting to avoid
division by zero. However, to simplify the following description, we wil l omit pivoting. In
addition, the fbllowing explanation is l imited to a set of three simultaneous equations. The
results can be directly extencled to ir-dimensional systems.

Equation ( 10. I I can be rearranged to give

l A l { r }  -  { b }  : 0 (  1 0 . 2  )

Suppose that Eq. ( 10.2) could be expressed as au upper triangr"rlar system. For example, fbr
a 3 x 3 s v s t e n r :

['l
L l 1 2  , r ' :  

I
L l t t  l /  r r  I

0 ,r,. - l
:1 t_
..,f-

d 1

dt

dz
t  0 .3 )

(  r0 . r )

(  1 0 . 6 )

(  r0 .7 )

(  1 0 . 8 )

Recognize that this is similar to the manipLrlation that occurs in the first step of Gauss
elimination. That is, elimination is used to reduce the system to upper triangular form.
Equation (10.3) can also be expressed in rnatrix notation anci rearranged 11'r give

t u l { . r }  -  { d }  : 0

Now assume that there is a lower diagonal natrix witl.r l 's on the diagonal,

t / l -
t L t  

- (  r  0 .5 )

that has the property that when Eq. (10.a) is premultiplied by it, Eq. (10.2) is the resulr.
That is.

I r  0  0 l
l i . ,  I  0 l
L l ,  / r :  l  l

t t l I t u ] { , r }  -  { c t l l :  tA l { r } -  [ b ]

If this equation holds, it follows fiom the rules for matrix nultiplication that

l L l l u l  :  lA l

and

IL l ld j  :  lb l
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tut f..torirution 

{

tAl {.r}:  { l l }

A
lul lLl

I
tLl  {d}: {b}._-

I
V

{d}

I
V Substi tut ion

.lul ir) : trl)

I
t

{ri

F IGURE IO . I
ihe steps in 1U loctorizotion.

| ,o  

, " .0

I  o.2

A two-step strategy (see Fig. I 0. I ) for obtaining solutions can be based on Eqs. ( 10.3),
(10 .7 ) ,  and  (10 .8 ) :

1. LU factorization step. [A] is factored or "decomposed" into lower [L] and upper [U]
triangular matrices.

2. Substitution step. [t] and [U] are used to determine a solution {x } for a right-hand side
{b}. This step itself consists of two steps. First, Eq. (10.8) is used to gerrerate an inter-
mediate vector {z/} by forward substitution. Then, the result is substituted into Eq. (10.3)
which can be solved by back substitution fbr {x }.

Now let us shorv how Ganss elinrination can be imnlemented in this wav.

GAUSS ETIMINATION AS [U FACTORIZATION

Although it might appear at face value to be unrelated to LU factorization, Gauss elimina-
tion can be used to decompose [Al into [Ll and IU]. This can be easily seen for [U], which
is a direct product of the fbrward elimination. Recall that the forward-elimination step is
intended to reduce the original coefficient matrix [A] to the form

f  
o t '  ac

lU l : 10  a i ,
t - -

L0 0

4 r r  - l

, Iar., I
; ; lass J

whiclr is in the desired upper triangular formaf.
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I O.2 GAUSS ELIMINATION AS IU FACTORIZATION

Though it might not be as apparent, the matrix [L] is also produced during the step.
This can be readily illustrated for a three-equation system,

-r l
r r

The first step in Gauss elimination is to multiply row I by the f'actor [recall Eq. (9.9)]

0 i l

J z t : -
0 ) l

and subtract the result from the second row to eliminate a.,. Similarly, row I is multi-
plied by

A 2 t

|  1 t  -

L t l l

and the result subtracted fiom the third row to eliminate a,,. The final step is to multiply
the modified second row by

.. a\,
t . . - -
|  1 :  -

azz

and subtract the result from the third row to eliminate a-,,.
Now suppose that we merely perfbrm all these manipulations on the matrix [A].

Clearly, if we do not want to change the equations, we also have to do the same to the right-
hand side {b}. But there is absolutely no reason that we have to perform the manipulations
simultaneously. Thus, we could save the/'s and manipulate {b} later.

Where do we store the factors/,,,J.r, andf...r'? Recall that the whole idea behind the
elirnination was to create zeros in at1, a,,t, and a3,. Thus, we can storerr in a.,,f., in a.r,
andl,, in a.,,. After elimination, the [A] matrix can therefbre be written as

( r 0 . 1 0 )

This matrix, in fact, represents an efficient storage of the LU factorization of [Al,

l A l  -  t L l t u l  ( 1 0 . 1 l )

( r 0 . r 2 )

f  a r r  o t z  . 7 1 3  I
I o., a22 ott I
1o. ;  a j2 ar  )

_ti.:- 
l;:

l - . , ,  '  { / l t  a p  l
I f ,  u r  or , I
L,t , .fp ai:, )

where

f  
o n  a 1 2  n ' ,  

T
l U l  : 1 0  a ' r ,  a \ , ,  1

L o t o;1.)
and

[ r  0  0 l
7 r l : l f t  1  0 l

L .fsr .f:z 1 I

The following example confirms that [A] : tLl[n.

00.  r3 )
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EXAMPLE l0. l  lU Foctor izot ion wi th Gouss El iminot ion

Problem Stqtement. Derive an LU factorization based on the Gauss elimination oer-
formed previously in Example 9.3.

Solution. ln Example 9.3, we used Gauss elimination to solve a set of linear algebraic
equations that had the following coefficient matrix:

[  3  -0 .1 -0.21
lA l  : 10 .1  7  - 0 .3  

1
10.3 -0.2 r0 I

After forward elimination, the fbllowing upper triangular matrix was obtained:

[3  
-0 . r  -0 .2 

I
t u l  : 10  7 .00333  -0 .293333  

1
L0  0  10 .0120  I

The f'actors employed to obtain the upper triangular matrix can be assembled into a lower
triangular matrix. The elements d21 and d11 were eliminated by using the factors

0 .1  0 .3
. f u  : ,  : 0 . 0333333  / , ,  : ,  : 0 . 1000000

and the element d12 woS eliminated by using the factor

- 0 . 1 9
. f . ,  :  7J0333 

:  -0.0271.100

Thus. the lower triangular matrix is

[  1  0  0 l
t l l  : 10 .0333333  r  0 l

L 0.100000 -0.0271300 r J

Conseq uentlv . the LU factorization is

t -  I  0  o t T 3  - 0 . 1  - 0 . 2  I
I  t t  I

[ A ) : [ L i l U ) : 1 0 . 0 3 3 3 3 3 ]  r  0  |  l 0  7 . 0 0 3 3 3  - 0 . 2 9 3 3 3 3  
|

10 .100000 -0 .0271300 l l  L0  0  10 .0120 I

This result can be verified by performing the multiplication of [L][L/] to give

[ 3 -0.1 -0.2 
1

l L l tu l : l } . jeeeeee 7  -0 .3  I
L 0.3 -0.2 9.99996 )

where the minor discreoancies are due to roundoff.

Afier the matrix is decomposed. a solution can be generated for a panicular right-hand-
side vector {b}. This is done in two steps. First, a forward-substitution step is executedby
solving Eq. (10.8) for {d}. It is important to recognize that this merely amounts to perform-
ing the elimination manipulations on {bl. Thus, at the end of this step, the right-hand side

EXAA
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will be in the same state that it would have been had we performed forward manipulation
on [,4] and {}} sirnultaneously.

The fbrward-substitution step can be represented concisely as
i - l
s - ,  ,t l ,  : f i ,  -  
L l , i b i  f o r i  :  1 . 2 . . . . . n
j : l

The second step then merely amounts to irnplementing back substitution to solve
Eq. ( 10.3). Again, it is important to recognize that this is identical to the back-substitution
phase of conventional Gauss eliminarion lcompare with Eqs. (9. l2) and (9. l3)l;

t, : drf Q,,,

il

d; - 
|  u11x1

j : i+1
' f l : - -

u i i

EXAMPLE 
, l0 .2 

The Subst i tu t ion Steps

Problem Stotement' Complete the problem init iateci in Example 10. 1 by generating the
final solution with forward and back substitution.

Soluiion. As just stated, the intent of forward substitution is to impose the elimination
manipulations that we had formerly applied to [A] on the right-hand-side vector {b}. Recall
that the system being solved is

| -3 .  
-0 . r  -92 lJ ,y r  

I  [7 .8s I
l0  |  7  -0 .3  l l  . ,  l :  l - le . . r  ILo. :  -0 .2  ro  I  [  * r  |  |  t r .+  J

and that the forward-elimination phase of conventional Gauss elimination resulted in

T 3  - 0 . 1  - 0 . 2  t f x r  I  (  7 . 8 5

I .  7oo,i3 -02e3333 | I l j  l  :  |  - ' i?i ' t I
L0  0  t0 .0 l t 0  - J  l r r  l  I  zo .os+ :  J

The forward-subsriturion phase is implemented by applying Eq. (10.g):

fo o,J..,.., ? 3l {:l
L 0 .100000 -0 .0271300 I  J  [ ,1 r

7.85
-19.3
1 t . 4

or multiplying out the left-hand side:

d1 :  7 .85

0 . 0 3 3 3 3 3 3 d r +  d 2  : - 1 9 . 3

0.100000dr -- 0.0271300d2 + d3 - 11.4

We cair solve the tirst equation for d, : 7.85, which can be substituted into the second
equation to solve for

d: .  :  -19.3 *  0.0333333(7.85)  :  -19.5617
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Both d, and d, can be substituted into the third equation to give

dt :  7 1.4 -  0.1 (7.85) + 0.02713(-19.,5617) :  70.0843

Thus.

This result can then be substituted into Eq. (10.3), IU]{.r} : {di:

x l

whicl.r can

{d \  :

(see Example 9.3 for details) for the final solution:

The LU factorizatiou algorithm requires the same total flops as for Gauss elimination.
The only difference is that a little less eftbrt is expended in the factorization phase sincethe
operations are not applied to the riglrt-hand side. Conversely, the substitution phasetakesa
little more eflbrt.

lO.2.l MATTAB Function: ru

MMLAB has a built-in function lu that generates the LU factorization. It has the general
syntax:

l L , t - t )  =  l u  ( X )

where I and u are the lower triangular and upper triangular matrices, respectively, derived
fron-r the LIJ factorizalion of the matrix -x. Note that this function uses partial pivoting t0
avoid division by zero. The following example shows how it can be employed to generate
both the factorization and a solution fbr the same problem that was solved in Exam-
ples 10.1 and 10.2.

EXAMPLE 10.3 tU Foctor izot ion wi th MATLAB

Problem Stotement. Use MATLAB to compute Lhe L(l factorization and find the
solution for the same linear system analyzed in Examples 10. I and 10.2:

f  . r  -0 r  -_02 l l r i  
|  12 .8s  1

I  o r  7 -o. i  l l , ,  l :  l - ro. :  II n r  _o1  ro  l l * ,  I  l t t . q l

{,/} : {;r*y

;#*vl13 
-0.r  -0.2 

I
| 0 7.00333 -0.2e3333 

|
L0  0  10 .0120 )

be solved b1 hack subst i tu t ion

I :. I
I t o,io''.. I
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Solution. The coetlicient matrix and the right-hand-side vector can be entered in stan-
dard fashion as

> >  A  =  t 3  - . 1  . 2 ; . I  1  . 3 ; . 3  - . 2  I 0 ) ;
> r  b  =  1 7 . 8 5 ;  - 1 9 . 3 ;  ' l I . 4 l ;

Next, the LU factorization can be computed with

L -

1 . 0 0 0 0  0
0 . 0 3 3 3  1 . 0 0 0 0
0 . 1 ( 1  0 0  - t . r . a 2 7 I

0
0

1 . 0 0 0 0

3 . 0 1 r 0 0  0 . 1 0 0 0  - 0 . 2 0 0 0

a  1 . 0 0 3 3  0 . 2 9 3 3
0  0  t ] . a i 2 a

This is the same result that we oblained by hand in Example 10. 1. We can test that it is cor-
rect by computing the original matrix as

> >  L * L T

3 .  C ) 0 0 1 r '  - 0 .  i L ' 0 0  - 0 . 2 0 0 0

0 . 1 0 0 4  1 . 0 0 0 0  0 . 3 0 0 0
0 . 3 0 0 0  0 . 2 0 0 0  1 0 . 0 0 0 0

To generate the solution. we flrst cornpute

> >  d  =  L \ b

d =
? . 8 5 0 0

1 9  .  5 . . 1 1
7 0 . 0 8 4 3

And then Llse this result to compute the solut ion

> >  x  =  U \ d

3 . 0 0 0 0
2 . 5 0 0 0
7 . 0 0 0 0

These results conlbrm to those obtained by hand in Example 10.2.
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( l0.r t

( r0.r6)

I O.3 CHOTESKY FACTORIZATION

Recall from Chap. 8 tlrirt a s.vmmetric nratrix is one where eij : aji for all i and j. Inother
rvords, [Al : IA)r. Such systems occLlr commonly in hoth mathematical and engineering/
science problem contexts.

Special solution techniques are available fbr such systems. They offer computational
advantages because only half the storage is needed and only half the computation time is
required for their solution.

One crf the most popular approaches involves Choleskt .factoriz.ntion (also calle/
Cholesky decornposition). This algorithm is based on the fact that a syrnmc'tric matrix can
be decomposed. as in

lA l : lufwl  t ro.u)

That is. the resulting triirn-eular factors are the transpose of each other.
The terms of Eq. ( 10. l4) ciln be rnultiplied out and set equal to each other. The factot-

ization can be generatted efTiciently by recurrence relations. For the lth row:

1 l

ai1 -  
|  upl t l11
1 . _ l

'  
t l i i

f o r j - i + 1 , . . . , n

EXAMPLE 10.4 CholeskyFoctor izot ion

Problem Stotement. Compute the Cholesky factorization for the symmetric matrix

I  A t  -
l ? r t  

-

o t z
q  t t  

-

L l l l

a t 3
. r  l . r  

-

L l  l l

1.5
5.5
225

l-5

2.44949
5-5

: 6 . 1 2 3 1 2 4

:22.45366

s5 I22s I
919 )

I b
I r-5
1 5 5

Solut ion. Forthe f i rstrow ( i  :  l ) .  Eq. (10.15) is ernployedtocompute

u 1 1 : J a n : 1 6 : 2 . 4 4 9 4 9

Then. Eq. (10. l6) can be used to deten.nine

2.44949

For-the second row (l : 2):

1r.2 :  , f  a. .  -  rr l ,  :  , /55 (6.12372q2 :  4.1833

EXAM
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4 2 3  -  U l 2 u t 3

Ll22

For the th i rd row ( i  :3) :

225 - 6. | 231 24(22.15366): 1 0 . 9 1 6 5
4.  I  833

u . r :  , f  o . .  -  , i t  *  u l . :  @:6 .1 l o l o l

Thus, the Cholesky factorization yields

r  1  J J q 4 q  6  I  1 1 7 1 1  1 1  4 5 7 6 6 1
t -  |

t u l  :  
|  4 . 1 8 3 3  2 0 . 9 1 6 5  |
L  6 .  I  l 0 l 0 l  I

The validity ofthis factorization can be verified by substituting it and its transpose into
Eq. (10. l4) to see if their productyields the original matrix [Al. This is leflforan exercise.

After obtaining the factorization, it can be used to determine a solution fbr a right-
hand-side vector {b} in a manner similar to LU factorization. First, an intermediate vector

{d} is created by solving

IU l r  { d }  :  { b }

Then, the final solution can be obtained by solving

lu l {x}  :  ld}

lO.3.l MATTAB Funcfion: cuot

MATLAB has a built-in function chol that generates the Cholesky factorization. It has the
general syntax,

t /  -  c h o l  ( x )

where y is an upper triangular matrix so that t/' * t/ = r. The following example shows how
it can be employed to generate both the factorization and a solution for the same matrix that
we looked at in the previous example.

Cholesky Foctorizotion with MATLAB

Problem Stotement. Use MATLAB to compute the Cholesky factorization for the same
matrix we analyzed in Example 10.4.

[6  ls  ss l
tA l  : l l s  ss  22s l

155 225 919 J

Also obtain a solution for a right-hand-side vector that is the sum of the rows of [A]. Note
that for this case. the answer will be a vector of ones.

( 1 0 . 1 7 )

( r 0 . r 8 )

EXAMPLE I O.5
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l0.l Dete
of equatio
tion, and (
version of
10.2 Use
Eqs.  (10.7
10.3 Use
system acl

10.r1 -
-3xr -

x r j

Then, mul
mine that I
10.4 Use,
Prob. 10.3
the system

lblr :

10.5 Solv,
factorizati,

2xr -
-3xr -

Solution. The matrix is entered in standard fashion as

: ' >  A  =  f  6  l 5  5 5 ;  1 5  5 5  2 2 5 ;  5 5  2 2 5  9 1 9 ) ;

A r ight-hand-side vector that is the sum of the rows of [A] can be generated as

> >  b  =  f s u m ( A ( 1 ,  : ) ) / '  s u m \ t t ( 2 , : ) )  ;  s u m ( A ( 3 , : ) l l

1 6
2 9 5

7 2 5 9

Next, the Cholesky tactorization can be computed with

> >  U  =  c h o l ( A )

u=
2  . 4 4 9 5  6  .  r 2 3 t  2 2  . 4 5 , 3 1

0  4 . 1 8 1 3  2 [ ) . 9 1 { , . 5
0  0  6 . 1 1 0 1

We can test that this is correct by computing the original matrix as

> >  U '  * I J

6 . 0 0 0 0  1 5 . 0 0 0 0  5 5 . 0 0 0 0
1 5 . 0 0 0 0  5 5 . 0 0 0 0  2 2 5 . 0 0 0 0
5 5 . 0 0 0 0  2 2 5 . 0 0 0 0  9 7 9 . 0 0 0 0

To generate the solution. we flrst conrpute

> >  d  =  A ' \ b

d =
3 r . 0 2 6 9
2 5 . 0 9 9 8

6 . 1 1 0 1

And then use this result ti'r compute the solution

> > x = A \ y

r . 0 0 0 0
1 . 0 0 0 0
1 . 0 0 0 0

I O.4 MATTAB IEFT DIVISION

We previously introduced left division without any explanation of how it works. Now thu
we have some background on matrix solution techniques, we can provide a simplifid
- t ^ . , ^ - : ^ t i  ^ ^  ^ f  : * -  ^ - ^ - ^ r i . , -
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When we implement left division with the backslash operator, MATLAB invokes a

highly sophisticated algorithm to obtain a solution. ln essence, MATLAB examines the

structure of the coefficient matrix and then implements an optimal method to obtain the

solution. Although the details of the algorithm are beyond our scope, a simplified overview

can be outlined.
First, MAILAB checks to see whether [A] is in a format where a solution can be

obtained without full Gauss elimination. These include systems that are (a) sparse and

banded, (b) triangutar (or easily transformed into triangular form), or (c) symmetric. If any

of these cases are detected, the solution is obtained with the efTicient techniques that are

available fbr such systems. Some of the techniques include banded solvers, back and for-

ward substitution, and Cholesky factorization.
If none of these simplified solutions are possible and the matrix is square.' a general

triangular factorization is computed by Gauss elimination with partial pivoting and the

solution obtained with substitution.

2 It should be noted that in the event that [Al is not square, a least-squares solution is obtained with an approach

c allecJ Q R .f a c t o r i zat i o n.

PROBTEMS

l0,l Determine the total flops as a function of the number

equations n for the (a) factorization, (b) forward substitu-

and (c) back substitution phases of the lU factorization
of Gauss elimination

10.6 Develop your own M-file to determine rhe LU factoiza-

tion of a square matrix without pafiial pivoting. That is, de-

velop a function that is passed the square matrix and returns

the triangular matrices [Ll and [U]. Test your function by

using it to solve the system in Prob. 10.3. Conlirm that your

f'unction is working properly by verifying that [L][Ul : tA]
and by using the builrin function 1u.

10.7 Confirm the validity of the Cholesky factorization of

Example 10.4 by substi tut ing the results into Eq. (10.14) to

verify that the product of l  L/17 and l  Ll yields lA l .
l0.tl (a) Perform a Cholesky factorization of the fbllowing

(b) Verify your hand calculation with the built-in cnol

function. (c) Employ the results of the factorization IL4 to

determine the solution for the right-hand-side vector.

10.9 Develop your own M-file to determine the Cholesky
factorization of a symmetric matrix without pivoting. That

is, develop a function that is passed the symmetric matrix

and returns the matrix [tIl. Test your function by using it to

solve the system in Prob. 10.8 and use the builrin function
ehot to confirm that vour function is working orooerlv.

Use the rules of matrix multiplication
(10.7) and (10.8) fol low from Eq. (10.6).

Use naive Gauss elimination to factor

to prove that

the following
10.2 :according to the description in Section

l 2 r z -  x t :  2 7
- 6rz + 2x', : -61 .5
I  x z + 5 a : . : - 2 1  . 5

multiply the resulting [L] and [{l matrices to deter-

that [A] is produced.
Use lU factorization to solve the system of equations in

10.3. Show all the steps in the computation. Also solve

svstem for an alternative risht-hand-side vector

Ibf = Lt2 18 - 6)

Solve the following system of equations using LU

with partial pivoting:

2 x 1 - 6 x 2 -  1 3 : - 3 8
-3.r1 - -r2 *7x3 : -34
- R r ,  - L  v "  - ) v .  -  - ) O

symmetric system b1 hand:

tl il ill {i: }:t*l
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10.10 Solve the following set of equations with LU factor-
izat ion:

3 x 1  - 2 x 2 * . r r : - 1 0

Z . r t ] _ 6 x z - 4 x 7 :  4 4

- - x 1  - 2 t 2 * 5 . 1 3 : - 2 6

10.U (a) Determine the LU factorization without pivoting
by hand for the fbllowing matrix and check your results by
val idating that [L][U] :  [A|.

[ 8  2  1 l

l 3  7  2 l
L2 -r e_.j

(b) Employ the result of (a) to compute the determinant.
(c) Repeat (a) and (b) using MAILAB.
10,12 Use the following LU factorizalion to (a) compute
tl .re determinant and (b) solve [Al{r} :  {b} with {b]r:
L- r0 44 ,26).

I
-0 .3636

[ 3  
- 2

' 
L 

1.3333

10.13 Use Cholesky

LA) :  W) r l u l :

1().14 Compute the Cholesky factorization of

[e  o  o l
I A l : 1 0  2 , s  0 l

Lo o 4- l

Do your results make sense in terms of Eqs. (10.15) and
0 0 .1  6 )?

factorization to determine IU] so that

[ 2  
- 1  0 l

l - r  2  , t l
Lo - r  2 )

[ 1
l A l : t L l f U l :  |  0 . 6 6 6 7

I

L -0.3333 , ]

-^.lrr*l
3.6364 )



Motrix Inverse ond Condition

CHAPTER OBJECTIVES
The primary objective of this chapter is to show how to compute the matrix inverse
and to illustrate how it can be used to analyze complex linear systems that occur in
engineering and science. In addition, a method to assess a matrix solution's sensitivity
to roundofT error is described. Specific objectives and topics covered are

o Knowing how to determine the matrix inverse in an efficient manner based on lU
factorization.

r Understanding how the matrix inverse can be used to assess stimulus-response
characteristics of engineering systems.

r Understanding the meaning of matrix and vector norms and how they are computed.
o Knowing how to use norms to compute the matrix condition number.
r Understanding how the magnitude of the condition number can be used to

estimate the precision of solutions of linear algebraic equations.

t . l THE MATRIX INVERSE

In our discussion of matrix operations (Section 8.1.2), we introduced the notion that if a
matrix [A] is square, there is another matrix [A]-r , called the inverse of [A], for which

tA l tA l - '  :  [A] - r tA l  :  t / l ( r 1 . 1 )

Now we will focus on how the inverse can be computed numerically. Then we will explore
how it can be used for engineering analysis.

I  l . l . l  Colculot ing the Inverse

The inverse can be computed in a column-by-column fashion by generating solutions with
unit vectors as the right-hand-side constants. For example, if the right-hand-side constant
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has a I in the tirst position and zeros elsewhere,

t h \  -
t . ' t  -

the resulting solution will be the first column of the matrix inverse. Similarly, if a unit vec-
tor with a I at the second row' is used

f0 l
[ b ]  : {  l }  { i l , 1 }

to l
the result wil l be the second column of the matrix inverse.

The best way to implement such a calculation is with LU factorization. Recall that one
of the great strengths of LU factorization is that it provides a very efficient means to evalu-
ate multiple righrhand-side vectors. Thus, it is ideal fbr evaluating the multiple unit vecton
needed to compute the inverse.

EXAMPLE IL l  Mq t r i x Inve rs ion

Problem Stotement. Employ LU factorization to determine the matrix inverse for the
system from Exaurple 10.l:

I  l  - o r  - o ) l
t - " " - l

Al :10 .1  7  _0 .3  
1

10.3 -0.2 10 _.1
Recall that the lactorization resulted in the following lower and upper triangular matrices:

[r -o.r -0.2 I t I o o'l
t u l : 10  7 .00333  -0 .293333  

1  t t l : 10 .0333333  1  0 l
L0 0 10.0120 _ j  L  0.100000 -0.0271300 lJ

Solution. The tirst column of the matrix inverse can be determined by perfbrmingthe
forward-substitution solution procedure with a unit vector (with I in the first row) as the
right-hand-side vector. Thus, the lower triangular system can be set up as (recall Eq. [10,8])

[r*-0.1,,.ui] {l}:{i}
and solved with forward substitr.rt ion for {d}r : l l  -0.03333 -0.10091 . This vector
can then be used as the right-hand side of the upper triangular system (recall Eq. [0.3]):

[ :  -or  -02 l [ . ]  [  r  I
l 0  7 . 0 0 3 3 . 1  - 0 . 2 e 3 3 3 . 1  l l . : l : l  0 . 0 . 1 3 3 3  1
lo  o ro.or2o I [ ' ,J  [ -orooeJ

which can be solved by back substitution for {.r}r : 10.-1-1249 -0.00518 -0.01008j

which is the first column of the u.ratrix inverse:

s)

f o.zzz+s o o-l
lA l  ' : l -o .oosrs o o l

I  n n t o o R  n  n  I
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To determine the second column, Eq. (10.8) is formulated as

[ ro
|  0.0333333 l
L 0.100000 -0.027 r 300

This can be solved for ir l), and the results are used with Eq. (10.3) to determine {r} ' :

10.004944 0.142903 0.0021 11, which is the second column of the matrix inverse:

[A l  ' :

Finally, the same procedures can be implemented with {b}/: l0 0 1l to solve fbr

{r }7 : 10.006798 0.004l 83 0.099881 , which is the final column of the matrix inverse:

t 03324s o.oo4s44 0.006798l
[A]- '  :  |  

-0.00s18 0.142903 0.004183 |
L -0.01008 0.002110 0.0998801

The validity of this result can be checked by verifying that [A][A] ' : Ul.

|  1.t.2 Stimulus-Response Computotions

As discussed in PT 3.1, many of the linear systems of equations arising in engineering and
science are derived from conservation laws. The mathematical expression of these laws
is some form of balance equation to ensure that a particular property-mass, force, heat,
momentum, electrostatic potential-is conserved. For a force balance on a structure, the
properties might be horizontal or vertical components of the forces acting on each node of
the structure. For a mass balance, the properties might be the mass in each reactor of a
chemical process. Other fields of engineering and science would yield similar examples.

A single balance equation can be written for each part of the system, resulting in a set
of equations defining the behavior of the property for the entire system. These equations
are interrelated, or coupled, in that each equation may include one or more of the variables
from the other equations. For many cases, these systems are linear and, therefore, of the
exact form dealt with in this chapter:

[ A ] { x } :  { b }  ( 1 1 . 4 )

Now, fbr balance equations, the terms of Eq. ( I 1.4) have a definite physical interpre-
tation. For example, the elements of {x} are the levels of the property being balanced for
each part of the system. In a fbrce balance of a structure, they represent the horizontal and
vertical forces in each member. For the mass balance, they are the mass of chemical in each
reactor. In either case, they represent the system's state or response, which we are trying to
determine.

The right-hand-side vector {b} contains those elements of the balance that are inde-
pendent of behavior of the system-that is, they are constants. In many problems, they
represent the forcins functions or external stimuli that drive the system.

'lllil :{:}

f o.zzz+e o.oo4s44 o l
| 

-0.00sr8 0.142e03 0 |
L -0.01008 0.0027r0 0_j
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EXAMPLE I  I .2

Finally, the nratrix of coeflicients [lJ usui,illy contains the ;xrrameter.r that expres
how the parts of fhe systern irte ract or are coupled. Consequently, Eq. ( I I .4) mi-qht h
reexpressed as

I Interact ionsl { response} :  {s t imul i }

As we know from plevious chapters, there are a variety of ways to solve Eq. (11.4).
However. using the matrix inverse yielcls at particularly interesting result. The fbrmal solu-
tion can be expressed as

h : l  :  [A l  ] { 1 r }

or (r 'ecall ing our detlnit ion of ntatrix multiplication from Section 8.I .2)
L  t ,  L

. \ ' t  :  { l t  I  / ) l  - f  { / l ,  D .  - f  r l t  l  / ) r

I  l ,  r ,
. \ ' J  :  ( l ) t  l ) l  f  r r . .  l r .  - f  r t . .  l . r 1

l r  l ,  L
. \ ' . r  :  l / r l  l ) t  +  { l { .  l r l  +  ( l r - t  / t t

Thus, we lind that the inverted matrix itself', aside tiom providing a solution, has ex-
trernely useful properties. That is, each of its elements represents the response of asingle
part of the system to a unit stimulus of any other part of the system.

Notice that these lbrmulations are Iinear and, theretbre, superposition and proportion-
ality hold. Supe.rltositirn means that if a system is subject to several difTerent stimuli (the
b's), the responses can be corr-rputed individually and the results summed to obtainatotal
response. P roportionalin' means that multiplying the stimuli by a quantity results in the re.
sponse to those stimuli being multiplied by the sarne quantity. ThLrs, the coefficientour is
ap ropo r t i ona l i t yco r l s tan t tha tg i ves theva lueo f . r -1  due toaun i t l eve lo f l r s .Th i s resu l t r s
independent of the eft-ects of b2 and 6: on ,r1, which are retlected in the coefficients
no' trnda,. ', respectively. Therefore, we can draw the general conclusion that the element
a , , t o f t he inve r tedmat r i x rep resen ts theva lueo fx , c l ue toaun i t quan t i t yo fb , .

Usin-e the exanrple of the structure, element rr,l' of the matrix inverse would represent
the fbrce in member i due to a unit external force at node 1. Even for sntal.l systems, such
behavior of individual stimulus-response interactions would not be intuit ively obvious. As
such. the matrix inverse provides a powerful technique 1br understanding the interrelation-
ships of component parts of complicated systems.

Anolyz ing the Bungee Jumper Problem

Problem Stotement. At the beginning of chap. 8, we set up a problem involving rhree
individuals suspended vertically connected by bungee cords. We derived a s)'stem of linear
algebraic equations basecl on fbrce balances tilr eachjuniper,

I  rso -roo o I
|  

- r00  rsO -s0  
|

L 0 --50 s0 I

I, I _
;;I-

-ss8.6 I

etiil
In Example 8.2, we used MATLAB to solve this system for the vertical positions of the
jumpers (the r's). In the present example, use MATLAB to compute the matrix inverse and
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Solution. Start up MAILAB and enter the coefficienr matrix:

> >  K  -  t 1 5 0  - 1 0 0  0 ;  1 0 0  1 5 0  5 0 ; O  - 5 0  5 0 1 ;

The inverse can then be computed as

> >  K f  =  i n v ( K )

K I  =

0 . 0 2 0 0
0 . 0 2 0 0
0 . 0 2 0 0

0 . 0 2 0 0  0 . 0 2 0 0
0 . 0 3 0 0  0 . 0 3 0 0
0 . 0 3 0 0  0 . 0 5 0 0

Each element of the inverse, k, I of the inverted matrix represents the vertical change
in position (in meters) of jumper I due to a unit change in fbrce (in Newtons) applied to
Jumper/.

First, observe that the numbers in the first column ("1 : l) indicate that the position of
all three jumpers would increase by 0.02 m if the force on the first jumper was increased
by 1 N. This makes sense, because the additional force would only elongate the first cord
by that amount.

ln contrast, the numbers in the second column ( j :2) indicate that applying a force
of I N to the second jumper would move the first jumper down by 0.02 m, but the second
and third by 0.03 m. The 0.02-m elongation of the first jumper makes sense because the
first cord is subject to an extra I N regardless of whether the force is applied to the first or
second jumper. However, for the second jumper the elongation is now 0.03 m because
along with the first cord, the second cord also elongates due to the additional force. And of
course, the third jumper shows the identical translation as the second jumper as there is no
additional force on the third cord that connects them.

As expected, the third column (..j :3) indicates that applying a force of I N to the
third jumper results in the first and second jumpers moving the same distances as occured
when the force was applied to the second jumper. However, now because of the additional
elongation of the third cord, the third jumper is moved farther downward.

Superposition and proportionality can be demonstrated by using the inverse to deter-
mine how much farther the third jumper would move downward if additional forces of 10,
50, and 20 N were applied to the first, second, and third jumpers, respectively. This can be
done simply by using the appropriate elements of the third row of the inverse to compute,

Ar- j  :  / .3r rAFr + kr ja f '2  + k; rAFr :  0 .02(10)  + 0.03(50)  + 0.05(20)  :2.J  m

II,2 ERROR ANALYSIS AND SYSTEM CONDITION
Aside tiom its engineering and scientific applications, the inverse also provides a means to
discern whether systems are ill-conditioned. Three direct methods can be devised for this
purpose:

l. Scale the matrix of coefficients [A] so that the largest element in each row is l. Invert
the scaled matrix and if there are elements of [A] 

| that are several orders of magni-
t t tde  r r rea ter  fh ln  one i t  iq  l i ke l ru  tha f  the  q \ / { fcm ic  i l l -nnnd i t inne . l
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2. Multiply the inverse by the original coefficient matrix and assess whether the resultis
close to the identity matrix. If not, it indicates ill-conditioning.

3. Invert the inverted matrix and assess whether the result is sufficiently close to the orig.
inal coefficient matrix. If not, it again indicates that the system is ill-conditioned.

Although these methods can indicate ill-conditioning, it would be pret'erable to obtail
a single number that could serve as an indicator of the problem. Attempts to formulate such
a matrix condition number are based on the mathematical conceDt of the norm.

|  1.2.1 Vector  qnd Motr ix  Norms

Anonn is a real-valued function that provides a measure of the size or "length" of multi.
component mathenatical entities such as vectors and matrices.

A simple example is a vector in three-dimensional Euclidean space (Fig. l1.l) thatcan
be represented as

l F l : l a  b  c l

where c, b, and c are the distances along the r, 1,, and z axes, respectively. The lengthof
this vector-that is, the distance from the coordinate (0, 0, 0) to (a, b, c)-can be simpty
computed as

lF l l .  :  { / o \  h ,  +  f

where the nomenclature ll F ll,, indicatet that this length is referred to as the Euclidean norn
of Ln.

Similarly, for an n-dimensional vector lX,l : l"r1 x2
would be computed as

t.
l lX l l " :  i f  i

\  i : r

.rn j. a Euclidean norm

FIGURE I  I . I
Grophicol depictton of o vector in Euclideon spoce
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The concept can be extended further to a matrix [A], as in

l l . { l
t i n l l /  - ( i l .s)

which is given a special name-the Frobenius notm. As with the other vector norms, it
provides a single value to quantify the "size" of [A].

It slrould be noted that there are alternatives to the Euclidean and Frobenius norms. For
vectors, there ale alternatives called p norms that can be represented generally by

/  , ,  \ l l
l i  X l l  :  l \ -  

" ,  
1 / ' lt / ' t t l t - l L ' ' , t  I

\ , - l  /

We can see that the Euclidean norm and the 2 norm, l lX l l, , are identical for vectors.
Other important examples are (p : 1)

r Y r  -  \ - r . . r

i =  |

which represents the norm as the sum of the absolute values of the elements. Another is the
maximum-magnitude or uniform-vector norm (p : oo).

l l X l l - :  m a x , l . r i l

which defines the norm as the element with the largest etbsolute vallle.
Using a similar approach, norms can be developed for matrices. For example.

l lAl l  r  :  .max )--  . r ; ,1
l - i - , 1  u

'  i - l

That is, a summation of the absolute values of the coetlicients is performed for each col-
umn, and the largest of these summations is taken as the norm. This is called the column-
sum ,tot'tn.

A similar determination can be made for the rows. resultine in a unifbrm-matrix or
row-sum norm:

l l A l l . : , . u ^  f  l , , , 7 l
l a t a n  -

1 : 1

It should be noted that, in contrast to vectors, the 2 norm and the Frobenius norm for
a matrix are not the same. Whereas the Frobenius norm llAllf can be easily deterrnined by
Eq. ( t I .5), the matrix 2 norm llA l lz is calculated as

l l  A l l :  :  ( / rn ' "* ) ' ' "

where 4,,,"* is the largest eigenvalue of [A]r[A]. In Appendix A, we wil l learn more about
eigenvalues. For the time being, the important point is that the l lAll2. or spectral norm, is
the mirrimum nonl and, therefore. provides the tightest lreAsure of size (Ortega, 1972).

11.2.2 Motrix Condit ion Number

Now that we have introduced the concept of the norm, we can use it to define

C o n d l A l  :  l l A l l '  l l l - '  l l

\- \- "?/ - J  / r - - t  I
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where Cond[A] is called the nntix conditiort number Note that for a matrix [A], this
number will be greater than or equal to l. It can be shown (Ralston and Rabinowitz,1978:
Gerald and Wheatlev. 1989) that

l ^ x l l  , .  .  . l l ^A i l
i l " i l  

=  condlAl  
Mi l

That is, the relative error of the norm of the computed solution can be as large as the rela-
tive error of the norm of the coefficients of [A] multiplied by the condition number. For ex-
arnple, if the coefficients of [A] are known to t-digit precision (i.e., rounding errors are 0n
the order of 10-r) and Cond[Al : 10', the solution [X] may be valid to only r - cdigits
(rounding elrors ry l0' - '  ).

EXAMPLE I  1.3 Moir ix  Condi t ion Evoluot ion

Solution. First. the matrix can be normalized so that the maximum element in each row is 1:

Problem Stotement. The Hilbert matrix, which is notoriously ill-conditioned, can be repre-
sented generally as

[ r  I  +  1 l
l ,  ;  I  ' i  

I
l ,  I  4  , + r  I
t l

l : : : : l
l l  1  i  I  I
l -  -  -  - l

L f l  n r l  n l l  l t l  t J

Use the row-surn norm to estimate the matrix condition number for the 3 x 3 Hilbert matrix;
t - ,1
l r  i  i '

tA l : l {  I  I  I'  
l t  . \  r  I
t l  I  l l
L 3  I  5 l

fr
rA l :  

|  
1

L l

il
iJ

Summing each of the rows gives L833, 2.1667, and 2.35. Thus, the third row has the
Iargest surn and the row-sum norm is

3 1
l l . 4 l l - : l + ;+ ; : 2 .35

+ i

The inverse of the scaled matrix can be computed as

I  g  -18  10 l
l A l - l : l - t r '  r  l

|  _ .  ) b  - bu l

L 30 -e0 60 -l
Note that the elements of this natrix are larger than the original matrix. This is also re-
flected in its row-sum norrn. which is comouted as

EXAM
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Thus. the condition number can be calculated as

Cond[,A] : 2.35(192\ : 451.2

The fact that the condition number is much greater than unity suggests that the system

is ill-conditioned. The extent ofthe ill-conditioning can be quantified by calculating c - log

451.2 :2.65. Hence, the last three significant digits of the solution could exhibit rounding

errors. Note that such estimates aln-rost always overpredict the actual error. However, they

are useful in alerting you to the possibility that roundoff elrors may be significant.

| 1.2.3 Norms ond Condition Number in MATLAB

MATLAB has built-in functions to compute both norms and condition numbers:

> >  n o r m  (  X ,  p )

ano

. _  c o n d { X , p )

where x is the vector or matrix and p designates the type of norm or condition number (1 , z ,
inf , or ' f ro'). Note that the cond function is equivalent to

> >  n o r m ( X , p )  *  n o r m ( i n v ( X )  , P )

Also, note that if p is omitted, it is automatically set to 2'

EXAMPTE I 1.4 Motr ix Condit ion Evoluot ion with MATLAB

Problem Siotement. Use MAILAB to evaluate both the norms and condition numbers

for the scaled Hilbert matrix previously analyzed in Example 11.3:

[ '  i  r l
l ^  2  . r l

tAr: l r  I  + |
t _ - l

l r  I  t l
L '  4  s l

(c) As in Example I 1.3, first compute the row-sum versions (p : inf ). (b) Also compute

the Frobenius (p : ' fro' ) and the spectral (p : 2)condition numbers.

Solution: (a) First, enter the matrix:

> >  A  -  l \  \ / 2  I / 3 ; I  2 / 3  I i 2 ; L  3 / 4  3 / 5 1 ;

Then, the row-sum norm and condition number can be computed as

> >  n o r m  (  A ,  i n f  )

2 . 3 5 0 4

> >  c o n d  (  A ,  r n f  )
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" ' i

These results con'espond to those that were calculated by hand in Example 11.3.

(b) The condition numbers based on the Frobenius and spectral norms are

> >  c o n d  ( A ,  '  f r o '  )

3 6 8 . 0 8 6 6

> >  c o n d  ( A )

3 6 6 . 3 5 0 3

" i . ; ' j \ ' ; 1

I l .

Bockground. As the name implies, indoor air pollution deals with air contamination
in enclosed spaces such as homes, offices, and work areas. Suppose that you are studying
the ventilation system for Bubba's Gas 'N Guzzle, a truck-stop restaurant located adjacent
to an eight-lane freeway.

As depicted in Fig. I L2, the restaurant serving area consists of two rooms for smoken
and kids and one elongated room. Room I and section 3 have sources of carbon monoxide
from smokers and a faulty grill, respectively. In addition, rooms I and 2 gain carbon
monoxide from air intakes that unfortunately are positioned alongside the freeway.

FIGURE I  I .2
Overheod view of rooms in o restouront. The one-woy orrows represent volumetric oirflows,
whereos ihe Mo-woy orrows represent diffusive mixing. The smoker ond gril l  loods odd corbon
monoxide moss fo the system but negllgible oirf low.

Qt = 50 m3lhr

ct = 2 mglm3

Q " : 2 0 Q  m

cu = 2 mglm

Smoker load
(1000 mg/hr)

0,. = 150 m3/hr i Qa: 1oo

I

2
(Kids 'sect ion)

25 m3lht

I

4

c +  t
% _ l _ - l

3lhr

- 3

)

25 m3/hr
1

(Smok ing  sec t ion)

>

E l  I
o i  I

J

I

Gr i l l  load
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l  ,

Write steady-state mass balances for each room and solve the resulting linear alge-
braic equations for the concentration of carbon monoxide in each room. In addition, gen-
erate the matrix inverse and use it to analyze how the various sources affect the kids'
room. For example, determine what percent of the calbon monoxide in the kids' section is
due to (l) the smokers, (2) the gril l , and (3) the intake vents.In addition, compute the im-
provement in the kids' section concentration if the carbon monoxide load is decreased by
banning smoking and fixing the grill. Finally, analyze how the concentration in the kids'
area would change if a screen is constructed so that the mixing between areas 2 and 4 is
decreased to 5 mj/hr.

Solution. Steady-state mass balances can be written for each room. For example. the
balance for the smoking section (room l) is

0 : l V r m o r e . *  Q n c o  -  Q o c r  * f 1 3 ( c a - c 1 )

(Load) *(lnflow) - (Outflow)f (Mixing)

Similar balances can be written for the other rooms:

0 : Qt,ct, + (Q' - Qa)c'+ - Q,cz'l E2a@a - c2)

0 : wern * Qnct I EnGt - c:) * Ey(!+ - cs) - Qoct

0 : Qoc3 * Ez+Gt - c+) * Ezq(cz - c+)' Qoc+

Substituting the parameters yields the final system of equation:

MATLAB can be used to generate the solution. First, we can compute the inverse.

Note that we use the "short g" format in order to obtain five significant digits of precision:

> >  f c r r r r a t  s h o r t  g
> >  A =  1 2 2 5  A  - 2 5  0
0  1 7 5  0  - 1 2 5

2 2 5  0  2 7 4  - 5 C

0  2 5  - 2 5 4  2 1 5 ) ;
> >  A  L = f  n V  ( A , j

l T  -

't- ll:t* i; !i,,;r]{;i }:

0 . 0 4 4 9 9 6 2
0 . 0 0 3 4 4 8 3
0 . 0 0 4 9 5 5 5
^  n A t Q - ) a C

I . 4 3 2  6 e - 0 0 5
0 . 0 0 6 2 0 6 9
0 . 0 0 0 r 3 1 9 3
n  n n n  6 a a G 6

0 . 0 0 0 5 5 L 1 2
0 . 0 0 3 4 4 8 3
0 . 0 0 4 9 6 5 5
n  n n t 9 )  , -  6

0 . 0 0 0 1 0 7 2 8
0 . 0 0 3 4 4 8 3
0 . 0 0 0 9 6 5 5 2
o  a a 4 R 2 ' 7  6
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' '  i ' '$
.,;,0:j {;..., "..;S,'.

{  cont inued. ; " ,.i,15,j:

The solution can then be generated as

> >  b =  1 1 4 0 0  r 0 0  2 0 0 0  0 l  ,  ;
> >  c = A f  * b

c =
8 . 0 9 9 6
1 )  ? / q ,

L 6 . 8 9 7
1 6 . 4 8 3

Thus, we get the surprising result that the smoking section has the lowest carbon
monoxide levels! The highest concentrations occur in rooms 3 and 4 with section 2having
an intermediate level. These results take place because (a) carbon monoxide is conserva-
tive and (b) the only air exhausts are out of sections 2 and 4 (Q, and 0a). Room 3 is so bad
because not only does it get the load from the faulty grill, but it also receives the effluent
from room l.

Although the foregoing is interesting, the real power of linear systems comes fron
using the elements of the matrix inverse to understand how the parts of the system interact.
For example, the elements of the matrix inverse can be used to determine the percent of the
carbon monoxide in the kids' section due to each source:

The smokers:

c2,smokers : uitr W r*ok* : 0.0034483( 1 000) : 3.4483
? 4/l'9.?

d7o,moke,. : 
1L345 

x l00vo : 2'7.93Vo

The grill:

cz.snl : aryt Wsrin: 0.0034483(2000) : 6.891

6.897
Vo" ; t :  x  l 00%o:55 .877o

12.345

The intakes:

c2,irrrakes : arl Q,c' + arrt Qt ct,: 0.0034483 (200)2 + 0.0062069(50)2

: 1.37931 * 0.62069 : 2
)

Vr ' , ,  :'"snrr - 
12.345 

'

The faulty grill is clearly the most significant source.
The inverse can also be employed to determine the impact of proposed remedies such

as banning smoking and fixing the grill. Because the model is linear, superposition holds
and the results can be determined individually and summed:

Lc2: a;tt Lw, ok", + aur LW-*lr:0.0034483(-1000) + 0.0034483(-2000)

:  _3.4483 _ 6.8966:  _10.345

i l . I  I

l 0
- 3

Check
u s e a I
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cont inued

Note that the same computation would be made in MATLAB as

> >  A I  \ 2 , I ) *  ( - 1 0 0 0 ) + A I  ( 2 , 3 \ *  ( - 2 0 0 0 )

- 1 0 . 3 4 5

Implementing both remedies would reduce the concentration by 10.345 mg/m3. The result
would bring the kids'room concentration to 12.345 - 10.345 :2 mg/mt. This makes
sense, because in the absence ofthe smoker and grill loads, the only sources are the air in-
takes which are at 2 mg/m3.

Because all the foregoing calculations involved changing the fbrcing functions, it was
not necessary to recompute the solution. However, if the mixing between the kids' area and
zone 4 is decreased, the matrix is changed

C l

C4

The results for this case involve a new solution. Using MATLAB. the result is

C l

c2

C4

Therefore, this remedy would only improve the kids' area concentration by a paltry
0.265 mp/m3.

PROB[EMS

Determinethenra t r i x inver .se fo l the  fo l low ingsys tem:  l l .2  Dete ln r ine themat l i x inverse fbr the fo l low ingsys tem

r l

i i
l i

i

l : {*}*lf225 0  -2s  0  l t
|  0  rss  0  - r0s lJ

| -22s 0 21s -s0 I I
L  0  - 5  - 2 5 0  2 s 5 J t

l:{r*tr1

l0.rr -F 2.rz - -rj : 2'7
- 3 r 1  - 6 . 1 2 * 2 r : : - 6 1 . 5

r 1  * , r 2 * 5 x . j : - 2 1 . 5

yourresults by veri fying that [A][A]-r :  [1]

- 8 r r +  x 2 - 2 x 3 : - / Q
2 x 1 - 6 x 2 -  x r : - 3 8
3r1 - -t2 * '7x., :  -34

Donot l l .3 The fol lowing system of equations is dcsigned
determine concentrations (the c's in g/m3) in a series

to
ofa plv0tlng stratcgy.
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l l . l 4  Po
unique (z

Such poll

f ( x ) :  P

where th,
way for r

algebraic
the coeff

couplcd reactors as a function of thc antount of nrass input tcr
e-ach reactor (the righrhand sides in g/day):

l 5 c 1  -  3 c 2  -  c l  : 3 8 0 0

3 c r  + l 8 c : -  6 r ' . 1  : 1 2 6 9
- 4 . i  -  t :  *  l 2 c - l  : 2 3 5 0

(a) Dctcrnrinc the lnatr i . \  inverse.
{b) Usc the inversc to dctermine thc solut ion.
(c) Detcrminc horv much the ratc of rnass inpLtt to reactor 3

lnust be increascd to inc[rcc a l0 g/m3 rise in the con-
cen l ru t ion  u l  rcac tor  l .

(d) How much will thc concentraticrn in reactor 3 be rc-
duced i f  thc rate of mass input lo reactors I  and 2 is
reduced by 500 and 250 g/day, rcspeclively?

ll..l Determine lhc rni"rtrix inverse fbr thc systcnr describcd
in  Prob.8 .5 .  Use the  mat r ix  invcrse  to  de tc rmine  the
concentration in reactor ,5 if the inflow concentrations are
changed to c1l : 20 and ci;.1 : -50.
l l .5 Dctermine the matrix invcrse lbr the system dc'scribed
in Prob. 8.6. Use the matrix inversc to dcterrnine the fbrce in
thc thrcc nrembers (,Fr . & and F-r) if thc vertical load at
node I is doubled to F1.,,  :  -2000 lb and ahorizontal load
of F3.1, - -500 lb is appliecl to nodc -3.
l l . 6  D c t e l m i n e  l l A l l r .  l l A l l  1 .  a n d  l l A l l -  f o r

(a) Dctermine the condif ion number based on the row-sum
norm fo r the  case where . r l  -  4 .  . xz :  2 ,  and. r :  =7 .

(b] Usc MATLAB to cornpute thc spcct.ral and Frobenius
concl i t ion nur.nbcrs.

11.10 Usc MATLAB to determine the spectral condition
nutnber tbr a I0-dinrcnsiontrl Hilbclt nratrix. How many dig.
i ts ofprccision are expected to bc lost due to i l l -condit ioningl
Deterrr-rine thc solution for this systern fbr thc case where each
elcnient ofthe r ighrhand-side r,ector {b} consists ofthesum.
mation of the coefTicicnts in its low. In otlrer words. solve for
thc case wherc all thc unknowns should be exactly one. Com.
pal'c thc resultins crrors with those cxpectcd based on the
condition numbcr.
l l . l l  Repeat  Prob .  l l . l 0 ,  bu t  fb r  the  case o f  a  s ix .
dinrensional Vandcnrondc matrix {sce Prob. l l .9) wnere
-f r :  4. I t  = 2, -I :  :  7.-r-+ : 10. xs : 3. and "16 :5.

l l .12 The l ,ower Colorado Rivcr consists of a series of tbur
rescrvoirs as shown in Fie. Pl l .  12.

Mass balances can be written fbr each reservoir. and
the lbl lowing set of sirnultancous I inear algehraic equalions
resu I ts:

t3.122 0 0 0
t3.422 t2.252 0 0

o t2.252 12.3'71 0
0 0 12.377 n.797

where the right-hand-sidc vector consists of the loadingsof
chloride to each o1-thc fbr"rr lakes alld {rl. c2, r'r, and c', = fie
rcsulting chloricle coltcentratious for Lakcs Powell, Mead,
Mohave. and Havasu. respectively.
(a) Use the matrix invelse to solve tbr the concentrationsin

each of thc fbur lakes.
(b) How much must the loading to Lake Powell be reduced

firr thc chlolide concentration of Lake Havasu to be 75?
(c) Using the column-sum norm. compute the condit ion

nurnbcr and how many suspcct digits would be genu-
ated by solving this systcnr.

l l . l3 (a) Dcternrine thc rratr ix invcrse and condit ion num.
ber fbr thc fbllowing rnatrix:

[ t  z
rA t :  I  

-e  I
L  l s  - l

[ t  1  s  16  r , - l

l 4  e  16  2s  361

I  e  16  2s  36  4e l

l 16  2s  36  1e  641
L2.5 36 4e 61 8r .l

[ ' i  r  ' I
l - r l  , r '  l l

l '1,. rl

l.l i-lBelbre detcrmining thc norms, scale thc rnatrix by making
the nraxirnum clement in each row equal to one.
l l .7 Determinc the Frobenius arrd rorv-sum norms f i tr  the
systems in Probs. I  1.2 and I 1.3.
l l.ll Use MATLAB to deternline thc spectfal condition nurn-
ber for the fbl lowin-c system. Do not nornral ize the systcm:

Compute the condition rrumber basccl on the row-sur.n norrn.
l l .9 Bcsides the Hilbert matr ix. there arc olher matrices
that are inherently i l l -condit ioned. Onc such case is the
Vantlcnnotttle rzalnr, u'hich has thc fbllou,ing tbrm:

:tl_
: [ -

[ '  t  , l
1 4  5  6 l
L t 8 e J

(b )  Rcpeat  (a )  bu t  chance a . ,  s l i sh t l v  to  9 .1 .



Polynomial interpolation consists of determining the
(n - 1)th-order polynomial that fits n data points.

polynomials have the general form,

l  p2x" -2  +  .  .  +  pn  rx  *  pn  (P l  1 .14)

the p's are constant coefficients. A straightforward
for computing the coefficients is to generate n linear

equations that we can solve simultaneously for
coefficients. Suppose that we want to determine the

PROBLEMS

Upper
Colorado

River

Lake
Powell

F I G U R E  P I  I . I 2
The Lower Colorodo River

Lake
Havasu

coefficients of the fourth-order polynomial f(r) : p6" *
pzx3 t pzx2 + p$ + psthat passes through the following five
points: (200, 0.7 46), (250,0.675), (300, 0.616), (400, 0.525),
and (500, 0.457). Each of these pairs can be substituted into
Eq. (Pl1. l4) to yield a system of f ive equations with f ive
unknowns (thep's). Use this approach to solve for the coef-
ficients. In addition, determine and interpret the condition
number.
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Iterotive Methods

CHAPTER OBJECTIVES
The primary objective of this chapter is to acquaint you with iterative rnethods for
solving simuitaneous equations. Specific objectives and topics covered are

' Understanding the difference between the Gauss-Seidel and Jacobi methods.
' Knowing how to assess diagonal dominance and knowing what it means.
' Recognizing how relaxation can be used to improve the convergence of iterative

methods.
' Understanding how to solve systems of nonlinear equations with successive

substitution and Newton-Raphson.

I terative or approximate methods provide an alternative to the elimination methodi

I described to this point. Such approaches are similar to the techniques we developed to
I obtain the roots of a single equation in Chaps. 5 and 6. Those approaches consistedof
guessing a value and then using a systematic method to obtain a refined estimate 0f the
root. Because the present part of the book deals with a similar problem-obtaining the val-
ues that simultaneously satisty a set ol'equations-we might suspect that such approximate
methods could be useful in this context. In this chapter, we will present approaches for
solving both linear and nonlinear simultaneous equations.

l2.l IINEAR SYSTEMS: GAUSS-SEIDEL

The Gauss-Seidel method is the most commonly used iterative method for solving lineu
algebraic equations. Assume that we are given a set of il equations:

lA l { " r }  :  {b}

Suppose that for conciseness we limit ourselves to a 3 x 3 set of equations. If the dragonal
elements are all nonzero, the first equation can be solved for.r1, the second for x2, andthe

EXAMI
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third for x.r to yield

xi
,  t : l  , - !
D r - 4 t t X .  - c l r r - { l

a t l

,  i  t l
D )  - A t q X i  - d ) t . t ;

a22

b t - a y r l - a : t x l
1133

whereT and j - I are the present and previous iterations.
To start the solution process, initial guesses must be made for the x's. A simple ap-

proach is to assume that they are all zero. These zeros can be substituted into Eq. (12.1a).
which can be used to calculate a new value for -r1 : bt latr. Then we substitute this new
value of r1 along with the previous guess of zero for-rr into Eq. (12.1b) to compute'a new
value for x2. The process is repeated for Eq. (12.1c) to calculate a new estimate for x3. Then
we return to the first equation and repeat the entire procedure until our solution converges
closely enough to the true values. Convergence can be checked using the criterion that for
. l l i '  

J r i  - r / ' I
e , , . ' :  l - - l  x  1 0 0 %  <  r ,  r l l  r r

l r ; l

:XAMPLE l2. l  Gouss-Seidel  Method

Problem Stqtemeni. Use the Gauss-Seidel method to obtain the solution for

3 x r - 0 . 1 r 2 - 0 . 2 x 3 :  1 . 8 5

0 . l x r  *  7 . r 2 - 0 . 3 x j :  - 1 9 . 3

0 . 3 1 1  - 0 . 2 t 2 +  l 0 r 3 -  7 1 . 4

Note that the solution is ixlr : | 3 -2.5 i ) .

Solution. First, solve each of the equations for its unknown on the diagonal:

7 . 8 5 + 0 . 1 , r 2 f 0 . 1 y l

( t 2 .1a )

(12.l lr)

(12.rc)

. f 1 ( E  r 2 .  r . l )

(Er2 .1 .2 )

(E12.1 .3)

3
- 19.3 -  0. l rr  t  0.3.r ,r

1
1 1.4 - 0.3x r -l 0.2x2

. !  1  
:' 1 0

By assuming that;r2 and x3 are zero,Eq. (E12.1.1) can be used to compute

^ t  -
7 .85+0 . r (0 )+0 .2 (0 )

:2.616661
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This value, along with the assumed value of -rr : 0, can be substituted into Eq' (El2'l

to calculate

-  19 .3  -  0 .1 (2 .616661)  +  0 .3 (0)-  , 1  1qL \ )L

The first iteration is completecl by substituting the calculated values for 'rt and 'r: into

Eq .  (E12 .1 .3 )  t o  y i e l d

1 1.4 -  0.3(2.616661 ) + 0.2(-2.191524):  7.005610
a 1 - l 0

For the second iteration, the same process is repeated to compLlte

7.85 + 0.r(  -2.194524) + 0.2(.1 '0056 I  0)
^ l  -

3

-19.3  -  0 .1Q.990s57)  +  0 .3 (7 .00s610)

7

1 r.4 -  0.3 (2.990s57 ) + 0.2(-2.499625)

:2.990551

-  - 1 4 q q 6 r 5

:1.000291
l 0

The method is, therefore, converging on the true solution. Additional iterations couldh

applied to improve the answers. However, in an actual problem, we would not know th

true answer apriori.Consequently, Eq. (12'2) provides a means to estitnate theenorFr

example, for x1:

' ,  :  | 2 ' 990551  
-  2 ' 616661 |  

. , 00 "  :  12 .5 ( / '
|  2.qe0ss7 |

Forx2anc l ' r r , t hee r ro res t ima tos i l t ' €€ , , . 2 : l l ' 8c /o  o t l de ' ' 3 :A '0J6c /c '  No te tha t ' aswo

the case when determining roots of a single equation, fbrmulations such as Eq' (12'2) usu

ally provide a conservative appraisal ofconvergence. Thus, when they are met, theyensun

that the result is kttown to at least the tolerance specified by e''

As each new r value is computecl for the Gauss-Seiclel method, it is immediately ud

in the next equation to cleter-n-rine another -r value. Thus, if the solution is converging'th

best available estimates will be enrployed. An altemative approach, called Jttcobi iteratiwr'

utilizes a somewhat different tactic. Rather than using the latest available r's, this tch

nique uses Eq. ( 12.I ) to compute a set of new .r's on the basis of a set of old x's. Thus, u

new values are generated, they are not immediately used but rather are retaiued forthenefl

iteration.
The clifTerence between the Gauss-Seidel methocl and Jacobi iteration is depictedin

Fig. 12. I . Although there are cefiain cases where the Jacobi rnethod is useful, Gauss-Seidel!

utilization of the best available estimates usually makes it the method of preference'
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First iteration

x ,  :  I  b2  -  d :  r r r  
-  av . \  1 \  /a .2

\ :  (bz-  a31x . t  -  ap : t1 ) /a1z

-  a tz r2 * arrx)/atr

- u27x.\fu'

- ttyx2)/a1

Second iteration

xr: (b2 - a2trt - ar.x.)faa,

,r. : (bq - a31r.t - ct.r.r2)/ajz

@l

i r  :  ( h r  -  n , . r ,  -  c l , 1 r1 ) / , r 1  i

x, - (bt - azrxt - a.14)/azz

-rr - (b.r tt.rx, - tt.ttr)f ar.

( b )

F I G U R E  I 2 . I
C1opn.ot depicrron of the difference between (o) the GoussSeidel ond (b) theJocobi iferotive

methods for  so lv lnq s lmu ioneous ineor  o lgebroic  equot ions

l2 . l . l  Conve rgence  ond  D iogono l  Dominonce

Note that the Gauss-Seidel method is similar in spirit to the technique of simple fixed-point

iteration that wls used in Section 6. I to solve lbr the roots of a single equation. Recall that

simple fixed-point iteration was sometimes nonconvergent. That is, as the iterations pro-

gressed, the answer moved farther and farther from the correct result.

Although the Gauss-Seiclel methocl can also diverge, because it is designed for linear

systems, its ability to converge is much more predictable than for fixed-point iteration of

nonlinear equations. lt can be shown that if the following condition holds, Gauss-Seidel

wil l converge:

II
\ i 1 t  I

l o ; ; l : >  )  l 0 ; ; l
u l
i - l

i+ i

(  r2 .3 )

That is, the absolute value of the diagonal coefficient in each of the equations must be

larger than the sum of the absolute values of the other coelTicierrts in the equation. Such

systenis are said tobe tl iugonalb dotninant. This cliterion is sufficient but not necessary

for convergence. That is, although the method may sometilnes work if Eq. (12.3) is not

met, convergence is guaranteed if the condition is satisfied. Fortunately. many englneer-

ing and scientific problems of practical imporlance fuhlll this requirement. Therefore.

Gauss-Seidel represents a feasible approach to solve many problems in engineering and

science.
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12.1.2 MATTAB M-f i le :  Gaussseidel

Before developing an algorithm, let us first recast Gauss-Seidel in a form thiit is com-

pltible with MATLAB's ability to pelfbrm matrix operations. This is done by expresstttg

E q .  ( 1 2 . 1 )  a s

b t  
_  

a 1 2  
, o v )  _  , , , ; , 0

C l t l  A t l  
-  

a l l

b2 4f | -.n.r ' l l2-l .-nl. l

;  
-  

; ^ ,  ^ r ^ '

.., i .* : 
U.t - ntl 

xi,.* - !!*uc*
' 

AT a.l rl33

Notice that the solution can be expressed concisely in matrix form as

{ : r }  : { d }  - l c l { : r }

where

and

{,1} : t fl:';':)
[  0  a n l a l  o n l o t t f

t c l  : l a z t l t t z z  0  a y / a 2  l
L a,,t f a.,t osz lctr 0 -l

An M-fi le to irnplernent Eq. (12.a) is l isted in Fig. 12.2.

|  2 .1.3 Reloxol ion

Relaxation represents a slight modification of the Gauss-Seidel method that is designed to

enhance convergence. After each new value of r is compr"rted using Eq. ( 12.1). that value is

modified by a wei-ahted average of the results of the previous and the present iterations:

.r, l '*: lr, l t" + (l ),).ri ld (12.5)

where ). is a weighting f'actor that is assigned a value between 0 and2.

If ). : 1, (1 - i) is equal to 0 and the result is unmodified. However. if I is set at a

value between 0 and I . the result is a weighted average of the present and tl.re previous re-

sr"rlts. Tlris type of modification is called wtderrela.ration. It is typically employed to make

a ltonconvergent system converge or to hasten conversence by dampening out oscillations.

For values of .]. from I to 2, extra weight is placed on the present value. In this in-

stance, there is an implicit assumption that the new value is moving in the correct direction

toward the true solution but at too slow a rate. Thus, the added weight of /. is intended to

improve the estimate by pushing it closer to the truth. Hence, this type of rnodification,

which is called ot'errelaratiort, is designed to accelerate the convelgence of an already con-

vergent system. The approach is also called successive ot'errelaxcfiion, or SOR.
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f u n c t i o l - r  x  =  G a u s s S e i d e l  ( A , b ,  e s , m a x t t )
?  G a u s s S e i d e l :  c a u s s  S e i d e l  n e t h o d
e o  x  =  G a u s : l S e i . d e l  ( A ,  b )  :  c a u s s  S e i c l e I  v r i t h o u t  r e l a x a t i o n
%  l n p u t :
%  A = c o e f f i c i e n t n a t r i x
Z  b  -  r l g h L  h a n d  s i d e  v e c t o r
?  e s  =  s t o p  c r i t e r i o n  ( d e f a u l l -  -  u ' l  . 0 0 0 0 1 2 )
Z  m a x l t  =  r n a x  i t e r a t r o n s  ( d e f a u l t  =  5 0 )
Z  o u t p u t :
Z  x =  s o l u L i o n Y e c t o r

i  I  n a r o i n . 2 , e r r . l  {  d r  l e d S L  2  r  p . l t  d i . g u m e n -  s  y o q u i r e d , r , F t . d

i f  n a r g i n < 4  |  i s e r n p t y  ( m a x i t  )  ,  m a x i t = 5 0 ;  e n d
i f  n a r g i n < 3  |  i s e m p t y ( e s ) ,  e s = 0 .  0 1 1 0 0 1 ; e r L d

I n , n l  -  s i . z e ( A )  ;
i f  m - = n ,  e r r o r ( ' M a t r i x  A  n u s t  b e  s c l u a r e ' ) ;  e n d

f o r  i  =  1 : n
c ( i , i )  =  0 ;
x ( i )  =  0 i

e n d
x = x ' ;
F n r  i  -  l . n

C ( i , 1 : n )  =  C ( 1 , 1 ; n ) i A ( i , i )  ;
e n d
f o r  i  =  1 : n

d ( i )  =  b ( i ) / A ( i , i ) ;
e n d
i  f  a r  n .

w h i l e  ( 1 )

x o l d  -  x ;
F ^ -  I  _  1 , -

x ( i )  =  d ( i ) - C ( i , : ) * x ;
i f  x ( i )  - -  0

e a ( i )  -  a l . s ( ( x ( l )  -  x o l d ( i ) ) / x ( i ) )  *  1 - 0 0 ;
encl

e n d
r t e r  =  r t e r + 1 ;
i f  m a x ( e a ) < - g S  i t e r  > =  m a x i t ,  b r e a k ,  e n d

end

FIGURE I2 .2
MATLAB Mfile fo implemenl Gouss-Seidel

The choice of a proper value for ). is highly problenl-specific ancl is often detern.rined
empirically. For a single solution of a set of equations it is often unnecessary. However, if
the system under study is to be solved repeatedly, the efficiency introdr-rced by a wise
choice of ), can be extremely important. Good examples are the very large systems of linear
algebraic equations that can occur when solvillg partial differential equations in a variety of
engineering and scientific problem contexts.
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EXAM12.2 NONTINEAR SYSTEMS

The following is a set of two sinrultalleous nonlinear equations with two unknowns:

" f + " ' " 2 : l g
. r l  +  J . r t . r ;  :  - )  /

In contrast to linear systems which plot as straight
plot as curves oD an .r2 VeTSUS .r1 graph. As in Fig.
the curves.

Just as we did when we determined roots for single nonlinear equations, such systems
of equations can be expressed generally as

. l i ( , t 1 ,  - r 2 .  . . . .  r , )  :  0

. / : ( x r , r : , . . . . . r , , )  
-  

O  ( 1 2 , 7 )

J , ( r t , . r 2 . . . . .  { , )  :  0

Therefbre, the solution are the values of the r's that make the equations equal to zero.

12.2.1 Successive Substitution

A simple approach fbr solving Eq. (12.7) is to use the same strategy that was employed for
fixed-point iteration and the Gauss-Seidel method. That is, each one of the nonlinear equa.
tions can be solved for one of the unknowns. These equatiolls can then be implemenled
iteratively to compute new values which (hopefully) will converge on the solutions. Thil
irpproach, which is called srcce.rsive substitution, is i l lustrated in tlre lbllowing example.

FIGURE I2.3
Grcphicol depict ion of the solui ic-,n of irvo simultoneous nor, l ineor equoiions

(12.to)

(r26r)

l ines (recall Fig. 9.l), these equations
12.3, the solution is the inte$ection0f

. t 1  + J J t . \ ; = 5 /
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EXAMPLE 12.2 successive subst i tu t ion for  q Nonl ineor  sysfem

Problem Stotement. Use successive substitution
Note that a correct pair of roots is.rl _ 2 ancl ,rr : 3
of  , r1 :  1 .5 and. f ,z  :  3 .5.

Solution. Equation (12.6a) can be solved fbr

l0 - "rri
, t r l  : -

xz

and Eq. (12.6b) can be solved for

^ l12 :  ) /  -  J . r l .y i

On the basis of the init ial guesses,

to determine the roots of Eq. (12.6).
Initiate the computafion with guesses

(E  r2 . : .  I  )

(E12.2.2)

Eq. (E12.2.1) can be used to determine a new value

3 . 5

This result and the init ial value of x2 - 3.5 can be substituted into Eq. (F,12.2.2)to deter_
mine a new value of 't2:

.yz : 5'7 - 3(2.21429)(3.5)2 : -24.3i 516

Thus' the approach seems to be diverging. This behavior is even more pronounced on the
second iteration:

L t  -
I0  -  12.21429t2

o f x l :

10 -  (1 . -s )2
:2 .21429

-24.37  516
: -0.20910

rz : 57 - 3( -0.20910) (-24.37 5 tO2 : 429.709

ObvioLrsly, the approach is deteriorating.
Now we will repeat the conlputation but with the original equations set up in a diff'er-

ent fbrmat. For example, an alternative solution of Eq. ( I 2.6a) is

.t' : ./iblT'r2

and of Eq. (12.6b) is

Now the results are more satistactory:

r ,  :  y T o  -  1 . 5 t 3 5  : 2 . 1 : , 9 1 5

57 -  3 .5
/---

y 3(2.17e4s)
:2 .86051



272 ITERATIVE METHODS

EXAA

(12.l}a)

( 1 2.1 0i)

(12.ltal

( t2 . t tu

51 - 2.86051
3(1 .%0s)

t r : @ : 1 . 9 4 0 5 3

: 3.04955

Thus, the approach is converging on the true values of "r1 : 2 and xz : 3.

The previous example illustrates the most serious shortcoming of successive
substitution-that is, convergence often depends on the manner in which the equations are
formulated. Additionally, even in those instances where convergence is possible, diver-
gence can occur if the initial guesses are insufficiently close to the true solution. These
criteria are so restrictive that fixed-point iteration has limited utility for solving nonlinear
systems.

12.2.2 Newton-Rophson

Just as fixed-point iteration can be used to solve systems of nonlinear equations, other open
root location methods such as the Newton-Raphson method can be used for the sane pur-
pose. Recall that the Newton-Raphson method was predicated on employing the derivative
(i.e., the slope) of a function to estimate its intercept with the axis of the independent
variable-that is, the root. In Chap. 6. we used a graphical derivation to compute this esti-
mate. An alternative is to derive it fiom a first-order Tavlor series expansion:

" f  ( x r * r )  :  f  ( x i )  *  ( x i+ r  -  x , \ f ' \ x i )  ( 128 )

where x; is the initial guess at the root and x;11 is the point at which the slope intercepts the
.r axis. At this intercept, I (.ri*r ) by definit ion equals zero and Eq. (12.8) can be reananged
to yield

f  (x ' )
l ; - 1  :  r i  -  

^ -  t l 2 9 t
l  \x t  )

which is the single-equation form of the Newton-Raphson method.
The multiequation fonn is derived in an identical fashion. However, a multivariable

Taylor series must be used to account for the fact that more than one independent variable
contributes to the determination of the root. For the two-variable case, a first-order Taylor
series can be written for each nonlinear equation as

f t . i  v t  : . f i . i  - |  ( . t1 , ; * ,  -  
" , , ,1H 

I  (x2.1. ,1

f z . i + t  : , f 2 . ,  *  ( x r . i + r  -  * r . , lY f  ( xz . i + r

0 fu-  - r r ; )  ' -
' "  

? x z

d l t ;
-  - \ ' r ; )  " - "

E x z

Just as for the single-equation version, the root estimate corresponds to the values of .r1 and
.d2, where /y .;11 and .[.111 eQual zero. For this situation, Eq. ( 12. l0) can be rearranged to give
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Because all values subscripted with i 's are known (they correspond to the latest guess or ap-
proximat ion) , theonlyunknownsore"r l , ; -1-1 andx2, ia1.Thus,Eq.  (12.11)  isasetof  two
linear equations with two unknowns. Consequently, algebraic manipulations (e.g.,

Cramer's rule) can be employed to solve for

I r

I
I

" 3f2., " 
\J\, i

t ,  . -  -  t ^ , -
J ) . t  n  J Z , r  a

OX2 dx2

x2, i+ t  :  x2 , i  - (12.12b)
3fi,i 0fzl * 3fi,i 3fz.i
\ x t  \ xz  3x2  \xy

The denominator of each of these equations is formally referred to as the determinant of the

Jacobian of the system.
Equation (12.12) is the two-equation version of the Newton-Raphson method. As in

the following example, it can be employed iteratively to home in on the roots of two simul-
taneous equations.

EXAMPLE 12.3 Newton-Rophson for  o Nonl ineqr  System

Problem Stotement. Use the multiple-equation Newton-Raphson method to determine
roots of Eq. (12.6).Init iate the computation with guesses of x1 : 1.5 and xz:3.5.

. { t . i + t  :  - t l . i  -
\fi,i \fz,i _ \fi,i \fzl
0 x 1  0 x 2  3 x 2 ' d x 1

" 3f ,,, " ]fz,i
t ^ . _  _  t , , _

J l . t  n  J t , r  q
dX t  r ,X t

Solution. First compute the partial derivatives and evaluate them at the initial guesses of

-r and y:

# 
:  2x r  +  xz :2 (1 .5 t *  3 .5  :  6 .5  

W 
: r r  :  1 .5

ofz'o -3xi  :  3(3.5) 2 :  36. i5
3xr # 

:  |  *  6xtxz:  I  + 6(r .5)(3.5) :  32.5

Thus. the determinant of the Jacobian for the first iteration is

6.5(32.s) -  1.5(36.75) :  156.125

The values ofthe functions can be evaluated at the initial guesses as

. f r .o  :  ( l .S)2  +  1 .5 (3 .5 )  -  10  :  -2 .5

. fz . , . t  :  3 .5  +  3 (  1 .5 ) (3 .5 )2  -  5 l  :  1 .625

These values can be substituted into Eq. (12.12) to give
-2.s (32.s) - r.62s (r.s)

2.03603

: 2.84388

(12.12a1

- ^ - ? < _

156.125
r.62s(6.s) - (-2.s) (36.7 s)

156.t25

Thus, the results are converging to the true values ofxl : 2 and 12
can be repeated until an acceptable accuracy is obtained.

: 3. The computation
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'(r2. t4)

When the multiequation Newton-Raphson works, it exhibits the same speedy quadratic
convergence as the single-equation version. However, just as with successive subsfitution.
it can diverge if the initial guesses are not sufficiently close to the true roots. Whereas
graphical methods could be employed to derive good guesses for the single-equation case,
no such simple procedure is available fbr the multiequation version. Although there are
some advanced approaches for obtaining acceptable first estimates, often the initial guesses
must be obtained on the basis of trial and error and knowledge of the physical system being
modeled.

The two-equation Newton-Raphson approach can be generalized to solve n simulta-
neous equations. To do this, Eq. ( I 2. I I ) can be written for the ftth equation as

frf *., , d.l 'r, i  ih.i 
" 

itf r,, i  i tJ r. i- ; - . \ ' t . r ,  I  t  l . - - r ' l . i + t  + '  ' ' f  ; - - l r r . i  r t  :  - J ( . 1  f  . t l . t - : : -  f  ' l ' : . t - ; -
dxt  dx2 dxi l  <JI t  t /J2

where the first subscript k represents the equation or unknown and the second subscript de-
notes whether the value or function in question is at the present value (l) or at the next value
(t + 1). Notice that the only unknowns in Eq. (12. 13) are the,rr.i+r terms on the left-hand
side. All other quantities are located at the present value (i ) and, thus, are known at any
iteration. Consequently, the set of equations generally represented by Eq. ( 12. l3) (i.e., with
k:1,2, . . . ,n)  const i tu tes a set  of  l inear  s imul taneous equat ions that  can be solved
numerically by the elimination methods elaborated in previous chapters.

Matrix notation can be employed to express Eq. (12.13) concisely as

l J l [ r i _ r ]  :  - t l l  +  l J l { x i }

where the partial derivatives evaluated at i are written as the Jacobian matri.r consisting of
the partial derivatives:

ofi. i
oxil

t  " '  t  J n . i

UI :

The initial and final values are expressed in vector forrr as

{x ; } r :  l . r 1  ;  xz . i  xn . i  )

and

{ . t , * r ) r : L , r r . r+ r  . x2 . i + r  ) ra , ,+ t  l

Finally, the function values at I can be expressed as

3ft., 0Jt.,
( )X1 OX?

3f2., ofzl
8-r;1 Dxz

: :
0.f n,i 3f , .i
iJxr }xz

Dfi . i
0 r ,

oIz.i

d"h

:
0f,,i
3xn

{ f  }r  :  1. f i . ,  . fz. i f,, i  )
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I
i

Equation (12.14) cirn be solved using a technique such as Gauss elimination. This
process can be repeated iteratively to obtaiu refined estirnates in a f'ashion similar to the
two-equation case in Example 12.3.

Insight into the solution can be obtained by solving Eq. (12. l4) with nratrix invelsion.
Recall that the single-equation version of the Newton-Raphson method is

. /( ' r i  )
^ / + l  -  ^ /

' f  \ x 1 l

If Eq. ( 12.14) is solved by multiplying it by the inverse of the Jacobian, the result is

{ . r i * r } :  { t , } -  [ . 1 ]  
' { . l r 12 .11 )

Clomparison of Eqs. (12.16) and (12.17) clearly illustrates the parallels between the two
equations. In essence, the Jacobian is analogous to the derilative ofa rnultir"ariate tunction.

Such matrix calculations can be implernented very efficiently in MATLAB. We can
ilhrstrate this by using MATLAB to duplicate the calculations fror.n Exalr.rple 12.3. After
defining the initial guesses! we can compute the Jacobian and the function values as

> >  x = [ 1 . 5 ; 3 . 5 ] ;

> >  J = [ 2 * x ( 1 ) + x ( 2 )  x ( 1 )  ; 3 " x ( 2 ) ^ 2  I + 6 * x ( 1 ) * x ( 2 )  I

T -

6 . 5 t 1  0 0  1 . 5 0 0 0
3 6 . 7 5 0 0  3 2 . s 0 0 0

> >  f = t x ( 1 )  ^ 2 + x ( 1 )  * x ( 2 )  - 1 0  ; x ( 2 )  + 3 * x ( 1 )  * x  \ 2 ) ' 2 - 5 1  I

f -
2 . 5 u 0 0
1 . 6 2 5 0

Then, we can implementEq. (12.17) to yield the improved estimates

> >  x = x  , l \ f

X . -

2 . 0 3 6 0
2 . ' - ] / 1 3 9

Although we could continue the iterations in the command mode, a nicer alternative is
to express the algorithm as an M-file. As in Figure 12.4, this routine is passed an M-file that
computes the fbnction values and the Jacobian at a given value of "r. It then calls this func-
tion and implernents Eq. (12. l7) in an iterative fashion. The routine iterates unti l an upper
limit of iterations (maxit) or a specified percent relative enor (es) is reached.

We should note that there are two shortcomings to the foregoing approach. First.
Eq. (12.15) is sometimes inconvenient to evaluate. Theretbre, variations of the Newton-
Raphson approach have been developed to circunrvent tlris dilemma. As might be ex-
pected. most alre based on using finite-difference approxir.nations fbr the partial derivatives
that comprise IJ]. The second shortcoming of the multiequation Newton-Raphson method
is that excellent init ial guesses are usually required to ensure convergence. Because these
are -somefimes difTicult or inconvenient fo obta.in. alternafive approaches that are slower

( 1 2 . 1 6 )
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f  uncL  i - o r r  l x ,  f  ,  ea ,  i t e r l  =ns . ' , ' 5mu1  t  (  f  L l nc ,  x0 ,  es ,  max i t ,  . za ra rg  i n  )
%  new tmu l t :  New ton -Raphson  roo t  ze roes  non l i nea r  sys tems
?  [ x ,  f , e a , i t e r ] = n e v / t m u l t ( f u n c , x 0 , e s , m a x i t , p 1 , p 2 ,  . . .  ) ,
%  uses  t he  Newton -Raphson  me thod  t o  f i nd  t he  roo t s  o f
%  a  sys tem o f  non l i nea r  equa t i ons
?  i n p u t :
% func = name of  funct ion that  returns f  and J
Z  x 0  -  i n i t i a l  g u e s s
%  e s  =  d e s i r e d  p e r c e n t  r e l a t i v e  e r r o r  ( d e f a u l t  =  0 . 0 0 0 1 ? )
a  max i t  =  max imum a l l owab le  i t e ra t i ons  (de fau l t  =  50 )
?  p 1 , p 2 , . . .  =  a d d i t i o n a l  p a r a m e t e r s  u s e d  b y  f u n c t i o n
? r  ou tpu t :
?  x  =  \ / ec to r  o f  r oo t s
Z  f  =  vec to r  o f  f r r nc t i ons  eva lua ted  a r  r oo rs
2  ea  =  app rox ina te  pe rcen t -  r e l a t i ve  e r ro r  (Z )
% i t e r  =  number  o f  i t e ra t i ons

r f  n a r g i n < 2 , e r r a ] .  ( ' a t  l e a s t  2  i n p u t  a r g u m e n t s  r e q u i r e d ' ) , e n d
i f  n a r g i n < 3  |  i s e r L p t y ( e s ) , e s = 0 . 0 0 0 1 ; e n d
i f  n a r g i n < 4  |  i s e m p t y ( m a x i t )  , m a x i t = 5 0 ; e n d
i c e r  =  0 ;
x = x 0 ;
w h i l e  ( 1 )

I J ,  f ]  = f u n c  ( x ,  v a r a r g i n {  :  }  )  ;
dx=J \  f  ;
x=x -dx ;
i t e r  =  i r e r  -  l ;
e a = 1 0 0 * m a x  ( a b s  ( d x .  / x )  )  ;
i f  i t e r>=n rax . i t  l ea<=es ,  b reak ,  end

end

FIGURE I2.4
MATIAB Mljle to implement Newton Rophson method for noniineor syslems of equoiions

than Newton-Raphson but which have better convergence behavior have been developed
One approach is to refbrrrruiate the nonlinear systeu.l as a single function:

F ( x ) l . f iG t , xz ,  .  .  .  .  i r , , ) 12

where I (x1,,{2, ...,.r,,) is the ith rnember of the original system of Eq. (12.7). The values
of r that nlinimize this ftrnction also reprcserlt the solution of the nonlinear system. Thfle.
fore, nonlinear optimization techniques can be employed to obtain solutions.

_ \ -_ L
; - l
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Bockground' Nonlinear systems of equations occur frequently in the characterizationof chemical reactions. For example, the following chemical reactions take place in a closedsysrem:

CHEMICAL REACTIONS

2 A  + B

A+D*c

At equilibrium, they can be characterized by

K l  : 3 -
cicu

Kz-  3 -
cac,t

Sofution. Using rhe stoichiometry of Eqs. (t2.lg) and
each constituent can be represented in terms of -r., and _r, as

c a : c u . o - 2 x 1  -  1 2

c b : c b , \ - x I

c c = c c , o * - t t * . r z

C d = C d , \ - X z

K r :
( c . . 0 * x L + x 2 )

(12 . r8 )

(12.19)

(12.20)

(12.2t \

(12.19), the concenrrations of

(r2.22)

(12.23)

(12.24)

(r2.25)

(12.26)

(12.21)

--->
C

<-_

where the nomenclature ci represents the concentration of constituent i. If x, and x" are thenumber of moles of C that are produced due to the first and second reactions, respectively,formulate the equilibrium,relationships as a pair of two simultaneous nonlinear equations.
ll 

tt : 4_x 
!o-4, K, = 3:7. x lo-2, 

.co.o: 
50, c6.s : 20, c,,o: 5, and cr,6 : 10, employ theNewton-Raphson method to solve theie equations.

where the subscript 0 designates the initial concentration ofeach constituent. These valuescan be substiruted inro Eqs. (12.20) and, (12.21) ro sive

(co.o - 2x1 - x)2{c6,0 - xr)

( c " , 0 + x r * x z )
(c",0 * 2x1 - x2)@a,o * x:)

Given the parameter values, these are two nonlinear equations with two unknowns. Thus,the solution to this problem involves determining the roots of

5 * x r + x z
f 1 @ 1 , x )  -

f2@1, x2)  :

( 5 0 - 2 x r - x ) 2 ( 2 0 - x )
- 4 x 1 0 - a

- 3.7 x 10-2( 5 0 - 2 x t - x ) ( 1 0 - x z )
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iiir";illr ir.1

. , . ' ' continued

In order to use Newton-Raphson, we must determine the Jacobian by taking the partial
derivatives of Eqs. (12.26) and (12.27). Although this is certainly possible, evaluating the
derivatives is time consuming. An alternative is to represent them by finite diff'erences inr
fashion sinilar to the approach used lbr the modified secant method in Sec. 6.3. For exan-
ple, the partial derivatives comprising the Jacobian can be evaluated as

. f i (xt  + 6x1, x2) * f i (xr,  xz) . f i (xr,  xz * 6x2) -  J\$r,  xz)

6xr

3fr
d x t

3fz
o.rr

3xr

fz(xr + E.r1, x2) -  . f t (xt , . rz)

3.uz

fz(xt, xz + d,r2) - .fz\r, xz)

, '  ( d e 1 * x  t  1 )  )  ;

/  ( d e l . * x ( 2 ) ) ;

, r ( r l e l * x ( 1 , ) ) ;

/  ( c i e l * x ( 2 ) ) ;

x )  -  0 . 0 0 0 4 ;

a .  a : , - i  :

ofr- :
3xz

3fz
oxz 3x,

These relationships can then be expressed as an M-file to compute both the function
values and the Jacobian as

f  u n c t i o n  l J , l r  = j f  r - c ; r c t  { x ,  v a r . r r g i n )
d e l = 0 . 0 0 0 0 0 1 ;
c l f  l d x l -  ( r r  ( x  ( I ) + c l e l * x ( I )  ,  x  ( 2  )  ) - r r  ( x  ( 1 ) .  x  ( 2  ) )  )
d f l d x 2 =  ( r  ( x ( 1 )  , x ( 2 )  + d e l " x ( 2 )  )  - u ( x ( 1  )  , x ( 2 )  )  )
c l f  2 d x 1 =  ( . . . ( x  ( 1 ) + d e l * x  ( l -  )  ,  x  ( 2  )  )  - . u  ( x  ( 1 )  ,  x  ( 2  )  )  )
d f  2 c 1 : : 2 =  ( r . '  ( x  (  L  ) ,  x  (  2  )  + d e l  * x  (  2  )  )  - v  ( x  (  f  ) ,  x  (  2  )  )  )
J = f c l f 1 d x 1  d f  L d x 2 ; d f 2 c i x i  d f 2 r . l x ? , 1  ;
f  1 = u ( x ( 1 ) , x { l t ) ) ;
f 2 = ' 1  ( x ( 1 . ) , x ( l ) ) ;
a - f  f  1 . f  ? t

f  u n c t  i o n  f  = u  ( x ,  ! ' )
f  -  ( 5  +  x  +  y )  , /  ( 5 0  -  , a  x  x  - ' ! )  ^  ' 2  

i  1 2 0

f u n c t  i o n  f - v  (  x ,  y  )
f  =  ( i .  +  x  +  . , ' )  I  ( 5 0  *  -  *  ' : < , . . . / )  i  ( 1 L l  - . 7 1

The function nevrtmul t (Fig. 12.4) can then be employed to determine the roots given ini-
t ia l  guesses ofx,  :  xz:3:

- ->  fo r i i - .a i ,  shorL  e

3 . 3 , r 6 6 c + 0 0 0
2 . a , - f  2 l + 0 0 0

f =
- ' l  . I 2 B 5 e - 0 1 . 7

8 . 5 ? 7 - r € , - 0 1 ' 1

a . 2 2 3  7 e  0 1 0

i  L e r  =

4

t2.t (^)
system ul

T O. I
I
t - o
I
L

(b) Repe
12.2 Us<
system u

| 0-r1
-3xt

X l

12.3 Re1
12.4 Tht
termine (
reactors
reactor (1

Solve tl
Es  :5Vo

12.5 Ust
and (b) v
tem to a
equation



PROBLEMS

continued

After four iterations, a solution of x, - 3.3366 &Dd x, : 2.6772 is obtained. These values
can then be substituted into Eq. (12.22) through (12.25) to compute the equilibrium con-
centrations of the four constituents:

ca : 50 - 2(3.3366) - 2.6772 : 40.6496

cn :20 - 3.3366 : 16.6634

cc :  5 + 3.3366 + 2.6112: 1 1.0138

ca :  lO - 2.6772 :7.3228

I i1 4i ;T] {i:

I (a) Use the Gauss-Seidel method to solve the followine
until the percent relative error falls below s, : 5olc:

Repeat (a) but use overrelaxation with I : 1.2
Use the Gauss-Seidel method to solve the followine

until the percent relative error falls below e" - 57o: Set One Set lwo

J r r + 2 ; r : -  j r j :  2 7
3 r t  - 6 x 2  1 } s l : - 6 1 . 5
. r r  *  - t t * 5 x - r : - 2 1 . 5

Repeat Prob. 12.2 but use Jacobi iteration.
The following system of equations is designed to de-

ine concentrations (the c's in g/m3) in a series of coupled

PROBTEMS

as a function of the amount of mass inout to each
Ithe r ight-hand sides in g/day):

t -  3 c : -  r ' : : 3 8 0 0
'r * l8r2 - 6cr :  1200

I  -  c2 ' t  l2ca :  2350

this problem with the Gauss-Seidel method to

Use the Gauss-Seidel method (a) without relaxation
(b) with relaxation (,)" : 1.2) to solve the following sys-
t0 a tolerance of s. : 57o. If necessary, reanange the

to achieve c'onvergence

2" t1  -6 . r ;  -  " r3 :  -38
-3r1  -  . t :  l ' 7 t . , :  -34
- R r , t  r " - ) r . - - ) O

12.6 Of the following three sets of linear equations, identify
the set(s) that you could not solve using an iterative method
such as Gauss-Seidel. Show using any number of iterations
that is necessary that your solution does not converge.
Clearly state your convergence criteria (how you know ir is
n()1 converglng).

Set Three

4 l
25
l0-s

9 ; *  3 y * : :  l 3  . r * _ y * 6 : :  B
6 ; r + B : : 2  r * 5 . y  : : 5

2r+ 5r-  - :  :  6  A.r  I  2y -  2z:  4

- 3 . r * 4 y * 5 : : 6
- 2 : + 2 t - - 3 : : - 3

? r  - ' - -  l

12.7 Determine the solution of the simultaneous nonlinear
equatlons

l ' : - - l - + x + u . / )

) * 5 x - r ' : - r 2

Use the Newton-Raphson method and ernploy initial guesses
of .r  :  _t '  :  1.2.
12.8 Determine the solution of the simultaneous nonlinear
equatlons:

) - )
^  - J - !

) i l : , r 2

(a) Graphically.
(b) Successive substi tut ion using init ial  guesses of r :

(c) Nervton-Ranhson usins init ial  puesses of r :  r ,r  :  1.5.
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FIGURE P12.9

12.9 Figure P12.9 depicts a chemical exchange process
consisting of a series of reactors in which a gas flowing from
left to right is passed over a liquid flowing from right to left.
The transfer of a chemical from the gas into the liquid occurs
at a rate that is proportional to the difference between the gas
and liquid concentrations in each reactor. At steady state, a
mass balance for the first reactor can be written for the sas as

Q c c c o -  Q c c c r +  D ( c u -  c c r ) : 0

and for the liquid as

Qrc tz  -  Qrcu  I  D(ccr  -  c r r )  :  0

where Q" and Q, are the gas and liquid flow rates, respec-
tively, and D : the gas-liquid exchange rate. Similar balances
can be written for the other reactors. Solve for the concentra-
t ions given the fol lowing values: Q6 :2, Q t:  l ,  D : 0.8,
c c o  :  1 0 0 ,  c m : 7 0 .
12.10 The steady-state distribution of temperature on a
heated plate can be modeled by the Laplace equation:

o: * * *
dx' dy-

If the plate is represented by a series of nodes (Fig. P I 2. I 0),
centered finite differences can be substituted for the second

derivatives, which result in a system of
equations. Use the Causs-Seidel method
temperatures of the nodes in Fig. Pl2.10.

25"C 25"C

1 00"c

75.C / 5  L

FIGURE P I2 . IO

cL6
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100'c
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T c c t -

l
>  c c z -

l
2 C c : -

l
I cc,t -

I
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l
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I
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I
- c t z l
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+
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+
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Curve Fitting

4.1 oVERVIEW

WhEr ls Curve Fiffing?

Dara is often given for discrere varues arong 
" "11111111; "o*,.1.1you 

may require esri-males at points between the discrete values. chapters 13 througtr to oescribe-techniques to 
:"fit curves to such data to 

lftaln ilterm"diute esti-ates. In addi-rion, you rnay require a sirn., ri
plified version of a complicared funcrion. One *uy to ooil;;;;oure values of the : ,::.,funct'ion at a number of discrete value s alon^g the range. of inr"r"r,. rn.n. a simpler function i : 

.
may be derived to fir these values. Both of these applications are known.as curre trtting. ,,;;

other'on the basis of rhe arnount of error assqciared ;rh ;;;. ;ii;;;ffi;;;;,.,*'r,,.exhibits a significant degree of error or "scatter,,, ,t. ,t u,"gf i, t." j.rr". , singre curve that
represents the general trend of the data. Because any
individual dadpoint *"V l. i"."r.cr. we make no
efiort to ln^tersect every point. Rather. the curve is de_
srgned to follow the pattern of the points .taken as a
tJi,i';,"):,::!::1'j-"H',narureis"uudt,o,t'

' 
,! ! squares ,rgrriiion (Fig. pT4. tar).- 

-

l\l fc1nd,. 
where the data is known ro be very pre_s.\, . rluuru! wucrs rue oaul ls Known to be very Dre_

cise. the_ basic approach is to fit.a curve or u ,".1., of
curves rhat pass directly through each of the points.
such data usually orii,inates from tables. Examples
are values For the density of water or for the heaica_
pacity of gases as a function of temperature. The esti_
mation of values between well-known discrete points
is called inrerpolarion (Fig. pT4. lb and e.

Curve Fitt ing ond Engineering ond Science. your
ftrst exposure [o curve fitting may have been to deter_
mtne lntermediate values from mbulated data_for
instance, from interest tables for *";;;; ;;:

Tri.r. 
or from steam fables for thermodynamics.

,rnroughout 
the remainder of your career, you will

e fave 
irequent occasion to estimate intermediate values

trom such tabJes.

' 28 | ;
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f(x)

(c)

FIGURE PT4. I
Three ottempts fo fit o "best" curve through five doto points: io) leosl-squores regression, (b) l ineor
i n l e rpo  o i  on  ono  ( c )  c - , r  f l eo f  r r t e t oo  o l  on .

Although many of the widely used engineering and scientific properties have been tab'

ulated, there are a great many more that are not available in this convenient form. Special

cases and new problem contexts often require that you measure your own data and develop

your own predictive relationships. Two types of applications are generally encountered

when fitting experimental data: trend analysis and hypothesis testing.

Trend analysis represents the process of using the pattern of the data to make predic-

tions. For cases where the data is measured with high precision, you might utilize interpo-

lating polynomials. Imprecise data is often analyzed with least-squares regression.

Trend analysls may be used to predict or forecast values of the dependent variable.

This can involve extrapolation beyond the limits of the observed data or interpolation

within the range of the data. All fields of engineering and science involve problems of

this type.
A second application of experimental curve fitting is hypothesis testing. Here, an

existing mathematical model is compared with measured data. If the model coefficients are



4.2 PARI ORGANIZATION

ulrknown, it nray be necessary to determine values that best f lt the observed data. On the
other hand, if estimates of the model coetTicients are already available, it may be appropri-
ate to compare pledictecl values of the nrodel with observed values to test the adequacy of
the model. Ofien. alternative nodels are compared and the "best" one is selected on the
basis of empirical observations.

In addition to the foregoing engineering and scientif ic applications, curve fitt ing is irn-
portant in other nurnerical methods such as integration and the approxirnate solution of dil'-
ferential equations. Finally, culve-fitt ing techniqtres can be used to derive simple functions
to approximate cornplicated functioDs.

4.2 PART ORGANIZATION

After a brief review of statistics. Chap. l3 focuses on linear regre.ssion; that is. hol'r' to de-
termine the "best" straight l ine through a set of uncertain data points. Besides discussing
how to calculate the slope and intercept of this straight l ine. we also present quantitativc
and visual methods fbr evaluating the validity of the lesults. In acldit ion, we describe ser'-
eral approaches fbr the l inearization of nonlinear equations.

Chapter /4 begins with brief discussions of polynomial and multiple l inear reglessiou.
Pctlynomial regres.sirtn deals with developing a bc'st fit clf parabolas. cubics, or higher-order
polynomials. This is followed by a clescription of multiple linear regression, which is de-
signed tbr the case where the dependent variable ), is a l inear function of two or more
irrdependent variables r1, 12, . , xtn. This approach has special uti l i ty for evaluating ex-
perimental data where the variable of interest is dependent on a nunlber of different factors.

After multiple regression, we il lustrate how polynomial and multiple regression are
both subsets of a generul l inear least-squares model. Among other things, this wil l allow
us to introduce a concise matrir representation ofregression and discuss its general statis-
tical properties. Finally. the last sections of Chap. l4 ale del'otedto nonlinear regression.
This approach is de signed to compute a least-squares fit of a nonlinear equaticln to data.

In Clnp. /5, the alternative clrrve-tittillg technique caTled interpolution is describecl.
As discussed previously, interpolation is used fbr estimating intermediate values between
precise data pclints. ln Chap. 15, polynomials are derived for this purpose. We introduce the
basic concept of polynomial interpolation by using straight l ines and parabolas to connect
points. Then. we develop a generalized procedure ior f itt ing an rrth-ordel polynomill. Two

fbrmats are presentcd fbr expressing these polynomials in equation fbrm. The first, called

Newton's interpolotirrg polt 'nontial, is preferable when the appropriate order of the polyno-

mial is unknown. The second, called the Lagrange interpoloting poltrutmial, has advan-
tages rvhen the proper older is known befbrehand.

Finally, Chup. l6 presents an alternative technique for fitting precise data po.ints. This

techniclrre, callecl spline irrterytolation, l i ts polynomials to data but in a piecewise fashion.

As such. it is particularly well suited fbr f itt ing data that is genelally smooth but exhibits

abrupt local clranges. The chapter encls with an overview of how piecewise interpolation is

imolemented in MATLAB.

i

!
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CHAPTER OBJECTIVES
The primary objective of this chapter is to introduce you to how least-squares
regression can be used to fit a straight line to measured data. Specific objectives and
topics covered are

' Familiarizing yourself with some basic descriptive statistics and the normal
distribution.

. Knowing how to compute the slope and intercept of a best-fit straight line with
linear regression.

' Knowing how to compute and understand the meaning of the coefficient of
determination and the standard error of the estimate.

. Understanding how to use transformations to linearize nonlinear equations so that
they can be fit with linear regression.

' Knowing how to implement linear regression with MATLAB.

YOU'VE GOT A PROBTEM

I n Chap. | , we noted thaf a free-falling object such as a bungee jumper is subject to the

I upward tbrce of air resistance. As a first approximation, we assumed that this forcewas
I  proport ional  to  the square of  ve loc i ty  as in

Fu : cdu2 (13 l)

where Fy: the upward fbrce of air resistance [N : kg m/sr]. c,t : a drag coefficient

(kg/m), and u : velocity [m/si.
Expressions such as Eq. ( I 3.1) come from the lield of fluid mechanics. Although such

relationihips derive in part fl-orn theor,v. experiments play a critical role in their formuia-
riorr. One such experinrent is depictcd in Fig. / j. l . An irrcJiridual is susperrded inawind

R"g ression
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FIGURE I3 . I
Wind tunnel experimenl fo mecsure how the force of o r reslstonce depends on veoci ly

z
t\ 800

1 600

1 200

40
u, m/s

FIGURE I3.2
Plot of force versus wind velocifu for on obiecl susoended in o w nd lunnel

TABTE l3.t Experimentol doto for force (N) ond velocity (m/s) from o wind tunnel
exoeriment.

u, m/s
F , N

2A 30
7A 380

t o
25

4A
550

50
6 1 0

60
l 2 2 A

70
830

BO
I 450

tunnel (any volunteers?) and the force measured for various levels of wind velocity. The
result might be as l isted in Table l3.l .

The relationship can be visualized by plotting force versus velocity. As in Fig. 13.2,
several features of the relationship bear mention. First, the points indicate that the force
increases as velocity increases. Second, the points do not increase smoothly, but exhibit
rather significant scatter, particularly at the higher velocities. Finally, although it may not
be obvious, the relationship between force and velocity may not be linear. This conclusion
becomes more apparent if we assume that force is zero for zero velocity.
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r  3.r

In Chaps. l3 and 14, we wil l explore how to flt a "besf' l ine or curve to such data. In
so cloing, we wil l i l lustrate how relationships l ike Eq. ( 13. I ) arise from experimental data.

STATISTICS REVIEW

Before describing least-squares regression, we wil l f irst review some basic concepts
frorn the field of statistics. These include the mean. standard deviation, residual sum of
the squares, and the normal distribution. In addition. we describe how simple descriptive
statistics and distributions can be generated in MATLAB. If you are familiar with these
subjects, feel t iee to skip the following pages and proceed directly to Sec. 13.2. If you
are unf'amiliar with these concepts or rrre in need of a review, the fbllowing material is
designed as a brief introduction.

I 3. t .l Descriptive Stotistics

Suppose that in the course of an engineering study, several measurements were made of a
particular quantity. For example, Table | 3.2 contains 24 readings of the coefllcient of ther-
mal expansion ofa structural steel. Taken at face value, the data provides a l inrited amount
of information-that is, that the values range from a minimum of 6.395 to a maximum of
6.775. Additional insight can be gained by summarizing the data in one or more well-
chosen statistics that convey as much information as possible about specific characteristics
of the data set. These descriptive statistics are most otien selected to l 'epresent ( l) the loca-
tion of the center of the distribution of the data and (2) the degree of spread of the data set.

Meosure of Locotion. The most comlron measure of central tendency is the arithmetic
mean. The urithntetic ntean (l) of a sample is defined as the sunr of the individual data
points (,r;) divided by the number of points (n), or

(  13.2)

where the summation (and all the sr.rcceeding summaticlns in this section) is from I = I
through n.

There are several alternatives to the arithmetic rnean. The median is the midpoint of a
group ofdata. It is calculated by first putting the data in ascending order. Ifthe numberof
measurements is odd. the rnedian is the middle value. If the number is even. it is the arith-
metic mean of the two middle values. The median is sometimes called the 50th percentile.

The mode is the value that occurs most fiequenlly. The concept usually has direct util-
ity only when dealing with discrete or coalsely rounded data. For continuous variables such
as the data in Table 13.2. the concept is not very practical. For example, there are actually

TABLE 13.2 Meosuremenis of the coefficient of thermol exponsion of siructurol steel
[ (x  to 6)  in l { in  .  ' 'F) ] .

6  485 6 55;
6 7 1 5  6 6 5 5
6.655 6 605
6775  668_5

\ - . . .

n

6 495
6 665
6 7 5 5
6 56_s

6 595
6 505
6 625
6 5 r 5

6  6 1 5
6 435
6 . 7 1  5
6  555

o  635
6 625
6 575
6 395
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ii
l l
ti

four modes for this data: 6.555. 6.625,6.655, and 6.715, which all occur twice. If the num-
bers had not been rounded to 3 decimal digits, it would be unlikely that any of the values
would even have repeated twice. However, if continuous data are grouped into equispaced
intervals. it can be an informative statistic. We will return to the mode when we describe
histograms later  in  th is  sect ion.

Meosures of Spreod. The simplest measure of spread is the range, the difference be-
tween the largest and the smallest value. Although it is certainly easy to determine, it is not
considered a very reliable measure because it is highly sensitive to the sample size and is
very sensi t ive to extre lne values.

The rnost comlnon measure of spread for a sample is the standard deviation (s,, ) about
the mean:

(  1 3 . 3  )

where S' is the total sum of the squares of the residuals between the data points and the
mean, or

$ :  I t r ' ,  -  i r 2 (13.4)

Thus, if the individual measurements are spread out widely around the mean, s, (and, con-
sequently. s, ) will be large. If they are grouped tightly, the standard deviation will be small.
The spread can also be represented by the square of the standard deviation, which is called
the variance:

.  f r v ;  -  \ : ) l
r r 

- ------------l-
'  n -  |

Note that the denominator in borh Eqs. (13.3) and (13.5) is ru - 1. The quantity ru - I
is ref'ened to as the tlegrees of freedont. Hence s, and s,, are said to be based on rr - I de-
grees of fieedom. This nomenclature derives from the fact that the sum of the quantities
u p o n w h i c h g i s b a s e d ( i . e . , f - y t , y - ) 2 , . . . , , ) r - y , ) i s z e r o . C o n s e q u e n t l y , i f y i s
known and rr - I of the values are specified, the remaining value is fixed. Thus, only n - 1
of the values are said to be freely determined. Another justification for divicling by n - 1 is
the fact that there is no such thing as the spread of a single data point. For the case where
n : 7, Eqs. (13.3) and (13.5) yield a meaningless resulr of infinity.

We should note that an alternative, more convenient forrnula is available to compute
the variance:

- 2,) r ,  :
f u,? - (Dt',)' l,

n - l
(  I  3 .6)

This version does not require precomputation of ! and yields an identical result as Eq. ( 13.5).
A final statistic that has utilrty in quantifying the spread of data is the coefficient of

variation (c.v.). This statistic is the ratio of the standard deviation to the mean. As such, it
provides a normalized measure of the spread. It is often multiplied by 100 so that it can be
expressed in the form of a percent:

(  13 .5 )

s).

t
x 1007o (  13 .7 )
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EXAMPLE l3 . i  S imp le  S to t i s t i cs  o f  o  Somp le

Problem Stotement. Compute the mean, median, variance, standard deviation, and coeffi-
cient of variation for the data in Table 13.2.

Solution. The data can be assembled in tabular form and the necessary sums computed

""HJt;Jl3"un t" compured as [Eq. (13.2)],

t -  :  
1 5 8 ' 4  

: 6 . 6
24

Because there are an even number of values, the median is computed as the arithmetic
mean of the middle two values: (6.605 + 6.615)12:6.61.

As in Table 13.3, the sum of the squares of the residuals is 0.217000, which can be
used to compute the standard deviation [Eq. (13.3)]:

sr, : : 0 . 0 9 7 1 3 3

TABTE 13.3 Doto ond summotions for compuiing simple descriptive stotistics for the
coefficients of thermol exoonsion from Toble 

,l3.2.

(Jl  - .yr

0.217000
*
z + -  L

I
2
3
4
5
6
7
8
9

t 0
t l
) 2
t 3
l 4
t 5
t 6
l 7
I B
t 9
2A
2 l
2 2
2 3
a A

T

6 395
6 435
6 485
6 495
6 505
6  5 1 5
6 555
6 .555
6 565
6 575
5 595
6 605
6 . 6 1  5
6 625
6 625
6.635
6.655
6 655
6 665
6.685
6 . 7 1 5
6 . 7 1  5
6 7 5 5
6.775

I s8zdo

o 04243
4.02723
0  0 t  3 2 3
0 . 0 1 1 0 3
0 00903
o.oo723
0.00203
0.00203
0  001  23
0 00063
0 00003
0.00002
0.oao22
0.00062
0.00062
o . o a t 2 2
0 00302
0.00302
a 00422
a.ao722
o 41322
a  o ) 3 2 2
o.02402
0 03062
67Tn6

40 896
41 449
42 055
42 . )85
42.315
42.445
42568
42968
43 099
43.23)
43 494
43.62b
43 758
43 891
43 B9l
44 023
44 285
44.289
44 422
44.689
45 091
45 091
45 630
45 901

u4) 0J/
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the variance [Eq. (13.5)];

s,? : (0.097133)2 :0.009435

and the coefficient of variation [Eq. (13.7)]:

0 .097133
c . v . : _  x 1 0 0 7 a : 1 . 4 7 V o

6 .6

The validity of Eq. (13.6) can also be verif ied by computing

1045.651 - (1 58.400)' /24 : 0.009435
2 4 - l

13.1.2 The Normol Distr ibution

Another characteristic that bears on the present discussion is the data distribution-that is,
the shape with which the data is spread around the mean. A histogram provides a simple
visual representation of the distribution. A histogrant is constructed by sorting the mea-
surenrents into intervals, or bins. The units of measurement are plotted on the abscissa and
the frequency of occurrence of each interval is plotted on the ordinate.

As an example, a histogram can be created for the data from Table 13.2. The result
(Fig. l3.a) suggests that most of the data is grouped close to the mean value of 6.6. Notice
also, that now that we have grouped the data, we can see that the bin with the most values
is from 6.6 to 6.64. Although we could say that the mode is the midpoint of this b|n,6.62,
it is more common to report the most frequent range as the modal class interval.

If we have a very large set of data, the histogram often can be approximated by a
smooth curve. The symmetric, bell-shaped curve superimposed on Fig. 13.3 is one such
characteristic shape-the normal distribution. Given enough additional measurements, the
histogram for this particular case could eventually approach the normal distribution.

FIGURE I3.3
A histogrom used to depict the distr ibution of doto. a. rh^  ̂ "-h^, ^{ l^r^ ^^inis increcses, ihe
n:srr-a, i-  ofron nnn.rn.fpq 1l^p q-66+\ hcl l . . t-cned .r ' ,"" . i  r l i  ' i " l l ] r [ io ,r .  br. ion.

a\ :

O J

0)

L 2
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The concepts of the rrrean, standard deviation, residual sum of the squares, and nor-
mal distribution all have great relevance to engineering and science. A very simple exam-
ple is their use to quantify the confidence that can be ascribed to a particular measurement.
If a quantity is norrnally distributed, the range defined by.v - s., to y * .1, will encompass
approximately 68Vc of the total rneasurements. Similarly, the range def ined by tr - 2s, to
)r + 2.s, will encornpass approximately 95Vo.

For example, for the data in Table 13.2, we calculated in Example 13.1 that ) = 6.6
and s., :0.097133. Based on our analysis. we can tentatively make the statement that
approximately 95Vo of the readings should fall between 6.405'734 and6.794266. Becauseit
is so far outside these bounds, ifsomeone told us that they had rneasured a value of7.35, we
would suspect that the measurement might be erroneous.

13.1.3 Descriptive Stotistics in MATLAB

Standard MATLAB has several functions to compute descriptive statistics.r For example,
the arithmetic mean is computed as mean (x). If x is a vector, the function returns the mean
of the vector's values. If it is a matrix, it returns a row vector containing the arithmetic
mean of each column of >r. The following is the result of using mean and the other statisti-
cal functions to analyze a column vector s that holds the data from Table 13.2:

> >  f o r m a t  s h o r t  g

> >  m e a n  ( s ) , m e d i a n  ( s ) , m o d e  ( s )

h h

6 . 6 1 ,

6 . 5 5 5

> >  m i n ( s ) , m a x ( s )

: n e

6 . 3 9 5

o ,  t / a

> >  r a n g e = m a x ( s )  m i n ( s )

O . 3 B

> >  v a r ( s ) , s t d ( s )

: n c

0 . 0 0 9 4 3 4 8

a n c  -

0 . 0 9 7 1 3 3

I MATI-AB also ofiers a Statistics Toolbox that provides a wide range of common statistical tasks, from random
rrrrmher oenerat ion fn . ' r rrve f i f f inq fo desiqn ol  exnerimenfs and stat ist i ( :al  nrocess control
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These results are consistent with those obtained previously in Example 13.1. Note that
although there are four values that occur twice, the mode function only returns one of the
values: 6.55,5.

MATLAB can also be used to generate a histogram based on the hist function. The
hist function has the syntax

l n ,  x l  =  h i s L  ( Y ,  x )

where n : the number of elements in each bin, x : a vector specifying the midpoint of
each bin, and y is the vector being analyzed. For the data fiom TabIe 13.2, the result is

> >  h i s t ( s )

3

6 . 4 I 4  6 . 4 5 2  6 . 4 9  6 . 5 2 8  6 . 5 6 6  6 . 6 0 4  6 . 6 4 2  6 . 6 8  6 . 7 1 8  6 . 7 s 5

The resulting histogram depicted in Fig. 13.4 is similar to the one we generated by hand in
Fig. 13.3. Note that all the arguments and outputs with the exception of y are optional. For
example, his'* (y) without output arguments just produces a histogram bar plot with
l0 bins determined automatically based on the ranqe of values in r.'.

FIGURE I3.4
Hisfogrcm generoied with the MATLAB hist funci ion

6.5 6.55 6.6 6.65 6_7 6.75 6.8 6.85



292 LINEAR REGRESSION

13.2 TINEAR TEAST.SQUARES REGRESSION

Where substantial error is associated with data, the best curve-fitting strategy is to derive
an approximating function that fits the shape or general trend of the data without neces-
sarily matching the individual points. One approach to do this is to visually inspect the
plotted data and then sketch a "best" line through the points. Although such "eyeball"
approaches have commonsense appeal and are valid for "back-ot'-the-envelope" calcula-
tions, they are deficient because they are arbitrary. That is, unless the points define a perfert
straight line (in which case, interpolation would be appropriate), different analysts would
draw different lines.

To remove this subjectivity. some criterion must be devised to establish a basis forthe
fit. One way to do this is to derive a curve that minimizes the discrepancy between the data
points and the curve. To do this, we must first quantify the discrepancy. The simplest exam-
p le i s f i t t i ngas t ra igh t l i ne toase to f  pa i redobse rva t i ons :  ( r r , ) l ) . ( xz , y ) , . . . , ( . r , , ) n ) ,
The mathematical expression for the straight line is

y :  ao *  z t lx  1e (13.8)

where a6 and a 1 are coefficients representing the intercept and the slope, respectively, and
e is the error, or rcsidual, between the model and the observations, which can be repre-
sented by rearranging Eq. (13.8) as

e : ! - a s - a 1 x  ( 1 3 . 9 )

Thus, the residual is the discrepancy between the true value of y and the approximate value,
a0 + atx, predicted by the linear equation.

I 3.2. I Criteriq for o "Best" Fit

One strategy for fitting a "best" line through the data would be to minimize the sum of the
residual errors for all the available data. as in

i  
" ,  

:  i  ,r ,  - as - a1x;) ( l3. lo)
L ' t  

-  
/ - ' r l

r : l  i : l

where n : total number of points. However, this is an inadequate criterion, as illustratedby
Fig.  l3 .5a,whichdepicts thef i to f  ast ra ight l inetotwopoints.Obviously , thebest f i t is the
line connecting the points. However. any straight line passing through the midpoint of the
connecting line (except a perfectly vertical line) results in a minimum value of Eq. (13,10)
equal to zero because positive and negative erors cancel.

One way to remove the effect of the signs might be to minimize the sum of the ab
solute values of the discrepancies. as in

i , " , ,  :  i , ' , ' ,  -  a o  -  a l x i l  ( l 3 l l )
L t ' r t  

-  
L t . ' t

i = l  i : l

Figure 13.5b demonstrates why this criterion is also inadequate. For the four points shown,
any straight line falling within the dashed lines will minimize the sum of the absolute val-
ues ofthe residuals. Thus, this criterion also does not yield a unique best fit.
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i l
, l

1 i l
l r l

i l

l i
i l

t t l t t '

- l , t t ' t7 ' j - ' ' ' - -

oo2ote '

, l
i l

i i
, i

(c)

FIGURE I3.5
Fxnmn les  n [  son -e  611 tos r6  { 9 .  bes ' r i ,  t ho t  o r c  : ng len r rn t c  f n r  . e , t , ess i on  l , - r l  m  ^  m ;zes  t he  sum
of  the res iduols,  (b)  min imizes the sum of  the obsolute volues of  ihe res iduols,  ond (c)  min imizes
lhe moximum error  of  ony indiv iduol  point .

A third strategy for fitting a best line is the minitna-r criterion. In this technique, the line
is chosen that minimizes the rnaximum distance that an individual point falls from the line.
As depicted in Fig. 13.5c, this strategy is ill-suited forregression because it gives undue
influence to an outlier-that is, a single point with a large error. It should be noted that
the mininax principle is sometimes well-suited for fitting a simple function to a compli-
cated function (Carnahan, Luther, and Wilkes, 1969).

A strategy that overcomes the shortcomings of the aforementioned approaches is to
minimize the sum of the squares of the residuals:

i l t I

S, :  5-" i  :  f -  (v;  -  as -  arxi)z
L - t  / - - ' : '
; - 1  ; - l

( 1 3 . 1 2 )
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This criterion, which is called least squares, has a number of advantages, including that it
yielcls a unique line lor a given set of data. Before discussing these pr-o-pertles, we wil l pre-
sent a technique for cletermining the varuc-s of (h and at that minimize Eq. ( 13. r 2).

13.2.2 leost-Squores Fir of o Srroight Line
To determine varues for .,s and at, Eq. (13.12) is differentiated with respect to each
unknown coeflicient:

i )s '  
:  -? \-  r , ,

i l L t i  
u n  -  t t  1 x ; )

t ' t  
:  - 2 \ - r r , ,

A ^ :  
- z  

L l l . \ ' l  
- ( / { )  -  a 1 ' r , ) r ,  l

Note that we have simplified the summation symbols; unless otherwise indicated, all sum-
mations are fiorn r : I to rl. Setting these clerivatives equal to zero will result in a minimurn
S,.. Ifthis is done, the equations can be expressed as

o: f .n ; - f , ,u - f , ,1 , ,

o : f r;.r', - f ,n,.,-, - f ,,,*i. 
L

Now, realizing that I a0 : noy, we can express the equations as a set of two simultaneous
lirrear equations with two unknowns (ao and nr).

tr (1,, * (f ",) ,, 
: f .r,

O- . . , \ r , , + ( \ -  
' \  r -

\ s  t  \ L J ' r i ) t t 1  
: L r , . t ' '

These are called the nonnal equation.t. They can be solved simultaneously for

,  _  , r I . r , . r ' ;  -  I . r ,  I . r . i
l tT. '? - (I  ' ,) '

This result can rhen be used in conjunction with Eq. (r3.r3) to solve for

a o :  i  -  a t x

where v andi are the means of .v and.r, respectively.

( 1 3 . r 5 )

EXAMPLE 13.2 L ineor  Regression

Problem Stotement. Fit a straight l ine ro rhe values in Table i3.1.

Solution. In this application, fbrce is the clependent variable (,v) and velocity is the
independent variable (.r). The data can be set up in tabulirr fbrm and the necessarv sums
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TABTE 13.4 Doto ond summotions needed to compule the best-fit l ine for the doto

from Toble, ]3,, I

xi li x! xJi

t o
2A
30
4A
50
60
7A
BO

:
J O U

I
2
3
4
5
6
7
B
I

25
7A

380
550
6 1 0

t  224
8 3 0

1  ,450
q  I  ? <

r 0 0
4AO
900

r ,600
2 500
3,600
4,904
6,404

2a 404

254
t ,400

I  1 ,400
22 AAO
30 500
73 204
58,  r  00

I  16 ,000
3 r 2  8 5 0

The means can be computed as

_  3 6 0  _  5 , 1 3 5
i - _ - 4 5

8  
} :  g

The slope and the intercept can then

8(312,8s0)  -  360(s.  r35)
o '  :  

8 (20 .400 ) - (360P

: 641.815

be calculated with Eqs. (13.15) and (13.16) as

:19 .41024

ao : 641.875 * 19.47024(45) : -234.2857

Using force and velocity in place ofy and;, the least-squares fit is

F : -2342851 -t 19.41024u

The line, along with the data, is shown in Fig. 13.6.

FIGURE I3.6
leosf-squores fit of o strclght ine to the doto from Toble

1 600

1200

1 3  t

800z
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(13.18)

Notice that although the line fits the data well, the zero intercept means that the equa"
tion predicts physically unrealistic negative forces at low velocities. In Section 13.3, we
will show how transformations can be employed to derive an altemative besrfit line thatis
more physically realistic.

| 3.2.3 Quontificotion of Error of lineor Regression

Any line other than the one computed in Example 13.2 results in a larger surn of the squares
of the residuals. Thus, the line is unique and in terms of our chosen criterion is a "best" line
through the points. A number of additional properties of this fit can be elucidated by
examining more closely the way in which residuals were computed. Recall that the sum of
the squares is defined as [Eq. (13.12))

n

, t , :  f  ( l i  - a o - a r x i ) 2  ( 1 3 . 1 7 )
- i : t

Notice the similarity between this equation and Eq. (13.4)

s , : f t l r - l )2

In Eq. (13.18), the square ofthe residual represented the square ofthe discrepancy between
the data and a single estimate of the measure of central tendency-the mean. In Eq. (13.17),
the square of the residual represents the square of the vertical distance between the data and
another measure of central tendency-the straight line (Fig. 13.7).

The analogy can be extended further for cases where (1) the spread of the points
around the line is of similar magnitude along the entire range of the data and (2) the distri-
bution of these points about the line is normal. It can be demonstrated that if these criteria

FIGURE I3.7
The residuol in lineor regression represents the verticol dlstonce between o doto point ond ihe
s t ro igh t  l ine .

Measurement- - - - - - - *o

a0+ a f i i
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s,
n - 2

are met, least-squares regression will provide the best (i.e., the most likely) estimates of ag
and a1 (Draper and Smith, 1981). This is called the maximum likelihood principle in statis-
tics. In addition, ifthese criteria are met, a "standard deviation" for the regression line can
be determined as [compare with Eq. (13.3)]

J ] , / r  - ( 1 3 . 1 9 )

where s_"7, is called the standard error of the estimate. The subscript notation "y /x" desig-
nates that the error is for a predicted value of y corresponding to a particular value of x.
Also, notice that we now divide by n - 2 because two data-derived estimates----as and a1-
were used to compute S,; thus, we have lost two degrees of freedom. As with our discus-
sion of the standard deviation, anotherjustification for dividing by n - 2 is that there is no
such thing as the "spread of data" around a straight line connecting two points. Thus, for
the case where n : 2,F,q.(13.19) yields a meaningless result of infinity.

Just as was the case with the standard deviation, the standard error of the estimate
quantifies the spread of the data. However, syTx Quantifies the spread around the regression
line as shown in Fig. 13.8b in contrast to the standard deviation s,. that quantified the
spread around the mean (Fig. 13.8a).

These concepts can be used to quantify the "goodness" of our fit. This is particularly
useful for comparison of several regressions (Fig. 13.9). To do this, we return to the origi-
nal data and determine the total sum of the squares around the mean for the dependent
variable (in our case, y). As was the case for Eq. ( 13. 18), this quantity is designated g . This
is the magnitude of the residual error associated with the dependent variable prior to
regression. After performing the regression, we can compute Sr, the sum of the squares of
the residuals around the regression line with Eq. (13.17). This characterizes the residual

F IGURE I3 .8
Regression doto showing (o) the spreod of the doto oround the meon of the dependent vorioble
ond (b) lhe spreod of the doto oround the best-fit l ine. The reduction in the spreod in going from
(o) to (b), os ind;cored by t[e be'l sl^'oped cu'ues ot the rigl^t, represenls the improvement due to
l inecr  regression.

tbl
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o
o

FIGURE I3 .9
Eror ' .p les  o f  ineo  egress ion  wr tn  (o )  smol '  ond {b )  

'o rge  res id ro l  e ' ro rs

error that remains after the regression. It is, therefore, sometimes called the unexplained
sum of the squares. The difference between the two quantities, S, - $ , quantifies the im-
provement or error reduction due to describing the data in terms of a straight line rather
than as an average value. Because the magnitude of this quantity is scale-dependent, the
difference is normalized to S, to vield

,'2 :
S ' - S ,

s,
where 12 is called the coefficient of determination and r is the correlation coefficient
. /-.
\: J r)). For a peri-ect fit, t. : 0 and 12 : l, signifying that the line explains 100% of the
variability of the data. For 12 : 0, S, : Sr and the fit represents no improvement, An
alternative formulation for r that is more convenient for computer imolementation is

n  f ( x i r i )  -  ( I r ' ) ( I y , )
r :

EXAMPLE 13.3 Est imotion of Errors for the Lineor Leqsl-Souores Fi t

Problem Stqtement. Compute the total standard deviation. the standard error of the esti-
mate, and the correlation coefficient for the fit in Example 13.2.

lrlyl'?: . 
The data can be set up in tabular form and the necessary sums computed as in

(L, , ) 'J , I  r ,? -  ( I  r , ) '
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TABTE 13.5 Doto ond summotions needed to compute the goodness-of-fit stotistics
for  the doto f rom Toble 13. , ] .

l i  eo i  atx i  (y i  -  t )2 ( ! i  -  ao -  a$)2

t 0
20
30
4A
50
60
7A
BO

J O U

l
2
3
4
5
6
7
B
L

25
7A

380
550
6 1 0

t  224
8 3 0

I  , 454

-39  58
t 5 5  t 2
349 82
544 .52
7 3 5 . 2 3
933  93

I , t 2 8 6 3
1 , 3 2 3  3 3

380 ,535
327 ,441
68,579

8 ,441
1 , 0 r 6

334 229
3 5  3 9 r

65 3,066
t  ,808,297

4 , 1 7 1
7 ,245

9i l
30

I6 ,699
B ]  , 8 3 7
89 ,  I  BO
16,444

2 1 6 , 1 t B

The standard deviation is [Eq. (13.3)]

:  508.26

and the standard error of the estimate is [Eq. (13.19)]

:  189 .79

Thus, because sr,/.r ( s,,, the linear regression model has merit. The extent of the improve-
ment is quantif ied by [Eq. ( 13.20)l

I 1 . 8 0 8 , 2 9 7  -  2 1 6 . 1 1 8
: 0.880-5

l  .  808. 297

or r : \/0.88[5 : 0.9383. These results indicate that 88.05clc of the orisinal uncertaintv
has been explained by the l inear model.

Before proceeding, a word of caution is in order. Although the coefficient of determi-
nation provides a handy measure of goodness-of'-fit, you should be careful not to ascribe
more meaning to it than is warranted. Just because r'2 is "close" to I does not mean that the
fit is necessarily "good." For example, it is possible to obtain a relatively high value of r ' l
when the underlying relationship between -y and ;r is not even linear. Draper and Smith
( 198 l) provide guidance and additional material regarding assessment of results for linear
regression. ln addition, at the rninimum, you should always inspect a plot of the data along
with your regression curve.

An i ceexa rnp lewasdeve lopedbyAnscombe(1973 ) .As inF ig .  13 . l 0 ,hecameupw i th
four data sets consisting of I I data points each. Although their graphs are very different, all
have the same best-fit equation, .)' : 3 + 0.5r, and the same coefficient of determination,

)  n z z t  r r - r -  -  - - - - r -  r - - - - - , - 1 : - - r r
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t : )

1 0

t 3

1 0

1 0

F T G U R E  t 3 . l O
Anscombe's four doto sets olong with ihe bestf i t  J ine, ,y:  3 + O.5x

I3.3 TINEARIZATION OF NONTINEAR RETATIONSHIPS

Linear regression provides a powerful technique for fitting a best Iine to data. However, it
is predicated on the fact that the relationship between the dependent and independent vari-
ables is linear. This is not always the case, and the first step in any regression analysis
should be to plot and visually inspect the data to ascertain whether a linear model applies.
In some cases, techniques such as polynomial regression, which is described in Chap. 14,
are appropriate. For others, transformations can be used to express the data in a form that
is  compat ib le wi th l inear  regression.

One example is the exltonential model:

!  :  o l reP" ( l  3 .22)

where a1 and B1 are constants. This model is used in many lields of engineering and sci-
ence to characterize quantities that increase (positive B1 ) or decrease (negative B1 ) at a rate
that is directly proportional to their own magnitude. For example, population growth or
radioactive decay can exhibit such behavior. As depicted in Fig. 13.11a, the equation rep-
resents a nonlinear relationship (for fu l0) between ,v and x.

Another example of a nonlinear model is the simple power equation:

)- : a2xP) ( 1 3.23)

where a2 and B2 are constant coefficients. This model has wide applicability in all fields of
engineering and science. It is very frequently used to fit experimental data when the
underlying model is not known. As depicted in Fig. 13.11b, the equation (for B2 l0)is
nonlinear.

FIGU
{o) Th<
(fJ ore
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: - :  a z x Q l

( f )GI(d l

HGURE r3.r I
lol Theerponentiol equotion, (b) the power equolion, ond (c) the soiurotron-growth-role equotion. Ports (d), {e), ond
ll l ore l ineorized versions oi these equolions lhct resu i trom simple tronstormotions.

A third example of a nonlinear model is the saturation-growth-rate equation:

J

. \ ' : 0 . r _  ( 1 . 1 . 2 + )
D r  + , r

where a3 and B3 are constant coefficients. This model, which is particularly well-suited
for characterizing population growth rate under limiting conditions, also represents a
nonlinear relationship between -y and r (Fig. l3.1lc) that levels off, or "saturates," as x
increases. It has many applications, particularly in biologically related areas of both engi-
neering and science.

Nonlinear regression techniques are available to fit these equations to experimental
data directly. However, a simpler alternative is to use mathematical manipulations to trans-
form the equations into a linear form. Then linear regression can be employed to fit the
equations to data.
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(13.2t

( r 3.26)

log x; logy;

r 398
2.AAl
3  B l l
4 390
4.732
5.488
5 386
6  0 1 6

ilbn

For example, Eq. (13.22) can be linearizedby taking its natural logarithm to yield

lny :  lncvr  *  f rx

Thus, a plot of ln y versus r will yield a straight line with a slope of B1 and an intercept of

ln o1 (Fig. 13.|ld).
Equation (13.23) is linearized by taking its base-l0logarithm to give

l o g y : l o g a 2 * B 2 l o g x

Thus, a plot of log y versus log x will yield a straight line with a slope of B2 and an inter'

cept of log cv2 fig. l3.Ile). Note that any base logarithm can be used to linearize this

model. However, as done here, the base-10 logarithm is most commonly employed.
Equation (13.24) is linearized by inverting it to give

1  I  f u l+ ' - -  ( 13 .21 )
I  q S  a 3 x

Thus, a plot of 1/y versus l/x will be linear, with a slope of Bzluz and an intercept of 1/o3

(Fie.  13.1 l / ) .
In their transformed forms, these models can be fit with linear regression to evaluate

the constant coefficients. They can then be transformed back to their original state and used

for predictive purposes. The following illustrates this procedure for the power model.

EXAMPLE 13.4 Fi t t ing Doto with the Power Equot ion

Problem Stqtement. Fit Eq. (13.23) to the data in Table 13.1 using a logarithmic trans-
formation.

Solution. The data can be set up in tabular form and the necessary sums computed as in

Table 13.6.
The means can be computed as

, :Yy:1.5 i5 ' t t: ?Tr :2'5644

TABTE | 3.6 Doto ond summotions needed to fit the power model to the doto from
r l ll o b l e  l 3 . l

log ri IogJi (log r;)2l ixi

I  t 0
2 2 0
3 3 0
4 4 0
5 5 0
6 6 0
7 7 4
B B O
I

25
7A

380
550
6 1 0

l 2 2 A
830

I 450

L 7 7 8
I  . 845
L903

t l o u o

1  398
t B45
2 .584
2.744
2 .785
3 .086
2 . 9 1 9
3 . t 6 r

l u )  )

I 000
I 693
2 . 1 8 2
2 567
2 .886
3 . 1 6 2
3.404
3 .622

/ 0  )  1 a

000
3 0 1
477
642
699
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log v
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100 log . r
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1 200

800
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0
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F I G U R E  I 3 . I 2
Leost squores fir of c po*er model lo the doto from Toble l3 I {oJ lhe fit of the li 'onsfoi'med doto
(b) The power equotion fit olong with the dolo.

806040

The slope

a l  :

and the intercept can then be

8(3-r .622)  -  I  2 .606120.5 l5)

calculated wi th Eqs.  (13.15)and (13.16)  as

: 1 . 9 8 4 2
8 ( 1 0 . 5 1 6 r  -  ( 1 2 . 6 0 6 ) 2

ct l  :  2 .5644 -  1.9812(1.5151) :  -0.5620

The least-sqLrares fit is

log r '  :  -0 .5620 t  l .9842log r

The fit along with the data is shown in Fig. 13.12a.
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We can also display the fit using the untransformed coordinates. To do this, the coeffi-
cierrts of the power nrodel are determined oS cy2 : 19 05610 :0.2741 and B. =1.9942.
Using fbrce and velocity in place of ,r 'andr, the least-squares fit is

F  : 0 .2J4 lu t  e8a2

This equation, along with the data, is shown in Fig. 13.12b.

The fits in Example 13.4 (Fig. 13.12) should be compared with the one obtained
previously in Example 13.2 (Fig. 13.6) using l inearregression on the untransformeddata
Although both results would appear to be acceptable, the transformed result has the advan-
tage that it does not yield negative force predictions at low velocities. Further, it is known
from the discipline of fluid mechanics that the drag force on an object moving through a
flLrid is often well described by a model with velocity squared. Thus, knowledge from the
field you are studying often has a large bearing on the choice of the appropriate mode,
equat ion you use for  curve I ' i t t ing.

t3.3.1 Genercrl Commenls on Lineor Regression

Before proceeding to curvilinear and multiple linear regression, we mr.rst ernphasize the in-
troductory nature of the foregoing material on linear regression. We have focused on the
simple derivation and practical use of equations to fit data. You should be cognizant ofthe
fact that there are theoretical aspects of regression that are of practical importance but are
beyond the scope of this book. For example, some statistical assumptions that are inherent
in the linear least-squares procedures are

l. Each x has a fixed valuel it is not random and is known without error.
2. The -y values are independent random variables and all have the same variance.
3. The I' vslusr for a given x must be normally distributed.

Such assumptions are relevant to the proper derivirtion and use of regression. For
example, the first assumption rneirns that (l) the "r values must be en'or-tiee and (2) the
regression of -t' versus x is not the same as r versus 1. You are urged to consult other refer-
ences such as Draper and Smith ( 1981) to appreciate aspects and nuances of regression that
are beyond the scope of this book.

I3.4 COMPUTERAPPLICATIONS

Linear regression is so commonplace that it can be implemented on most pocket calcula-
tors. In this section, we will show how a simple M-file can be developed fo determine the
slope and intercept as well as to create a plot of the data and the best-fit line. We will also
show lrow linear regression can be implemented with the built- in po ly f i t f unction.
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13.4.1 MATLAB M-f i le :  l inresr

An algorithm for linear regression can be easily developed (Fig. 13.13). The required
summations are readily computed with MATLAB's sum function. These are then used to
compute the slope and the intercept with Eqs. (13.15) and (13.16). The routine displays the
intercept and slope, the coefficient of determination, and a plot of the best-fit line along
with the measurements.

A simple example of the use of this M-file would be to fit the force-velocity data that
was analyzed in Example 13.2:

> >  x  =  1 1 0  2 0  3 0  4 0  5 0  6 0  7 0  B 0 l ;
> >  y  =  1 2 5  1 A  3 8 0  5 5 0  6 1 0  1 2 2 0  8 3 0  1 4 5 0 1  t
> >  l i n r e g r  ( x , y )

0 .  B B 0 5

r 9  .  4 1  A 2  - 2 3  4  . 2 8 5 1

1 600

1 400

1200

1 000

800

600

400

200

-200
801 0

It can just as easily be used to fit the power model (Exarnple
Iosl0 function to the data as in

> >  l i n r e g r  ( l o g 1 0  ( x ) , 1 o q l 0  ( y )  )

0 . 9 4 8 1

7 . 9 8 4 2  - 0 . 5 6 2 4

13.4) by applying the
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3.5

2 . 5

1 . 5

1 . 8t . o1 . 4t . t

FIGURE I3 . I3
An M{i le lo implement l ineor regression.

f u n c t i o n  I a ,  1 2  ]  =  l i n r e q r  ( x , y )
%  l i n r e g r :  l i n e a r  r e g r e s s i o n  c u r v e  f i t t i n g
%  1 . ,  1 2 l  =  l i n r e g r ( x , y ) :  L e a s t  s q u a r e s  f i t  o f  s t r a i g h t
?  l i n e  t o  d a t a  b y  s o l v i n g  t h e  n o r m a l  e q u a t i o n s

Z  i n p u t :
?  x  =  i n d e p e n d e n t  v a r i a b l e
Z  y =  d e p e n d e n t v a r i a b l e
Z  o u t p u t :
Z  a  =  v e c t o r  o f  s l o p e ,  a ( 1 ) ,  a n d  i n c e r c e p t ,  a ( 2 )
%  1 2  =  c o e f f i c i e n t  o f  d e t e r m i n a t i o n

n  =  l e n g t h ( x ) ;
i f  l e n g t h ( y ) - = n ,  e r r o r ( , x  a n d  y  m u s f  b e  s a m e  l e n g t h , ) ;  e n d
x  =  x ( : ) ;  y  =  y ( : ) ;  ?  c o n v e r t  i _ o  c o l u m n  v e c t o r s
S X  =  3 s 1 1 t  ( x )  ;  S y  =  S u m  ( y )  ;
s x 2  =  s r t n ( x . * x ) ;  s x y  -  S u m ( x . * y ) ;  s y 2  =  S u m ( y . * y ) ;
a  ( 1 )  =  ( n * s x y - s x * s y )  /  ( n * s x 2 - s x , ' 2 )  ;
a ( 2 )  =  s y / n - a ( 1 ) * s x / n ;
T 2  =  ( ( n * s x y - s x * s y )  / s q r t  ( n * s x 2 - s x ^ 2 )  / s q r t  ( n * s y 2 -  s y ^ 2 )  )  ̂ Z  

;
%  c r e a t e  p l o t  o f  d a t a  a n d  b e s t  f i t  l r n e
x p  =  l a n s p a c e  ( m i n  ( x )  ,  m a x  \ x \  , 2 )  ;
y F  a ( l ) * x p - a ( 2 ) ;
p l o t ( x , y , , o , ,  x p , y p )
grr- i  d on
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13.4.2 MATTAB Functions: polyf ir ond polwal

MAILAB has a built-in function polyf it that fits a least-squares nth-order polynomial to
data. It can be applicd as in

> >  p  =  p o l y f i t  ( x ,  y ,  n )

where x and y arc the vectors of the independent and the dependent variables, respectively,
olld n : the order of the polynomial. The function returns a vector p containing the poly-
nomial's coefficients. We should note that it represents the polynomial using decreasing
powers of -r as in the following representation:

f  ( x ) :  I t t x "  *  p 2 x " - t  + . . . +  p n x  *  p n , r 1

Because a straight l ine is a first-order polynomial, potyf ir (x,y , t) wil l return the
slope and the intercept ofthe best-fit straight line.

> > x

> > y

> > a

t 1 0  2 0  3 0  4 0  5 0  6 0  7 0  B 0 l ;
1 2 5  7 A  3 8 0  5 5 0  6 1 0  1 2 2 0  8 3 0  1 4 5 0 1 ;
p o l y f  i t  ( x , y , 1 )

I 9  .  4 7  0 2  - 2 3  4  . 2 8 5 7

Thus, the slope is 19.4702 and the inrercepr is -234.2857.

Another function, polyval, can then be used to compute a value using the coeffi-
cients. It has the seneral fbrmat:

> >  y  =  p o l y v a l  ( p ,  x )

where p : the polynomial coefficients, and y: the best-fit value at x. For example,

> >  y  =  p o l y v a l ( a , 4 5 )

6 4 7  .  B 7  5 A

, it}fS9..,."fl,.!l;q,"1' 1
ENZYME KINETICS

r r  ,  , . : d . .  . . -

Bockground. Enzymes act as catalysts to speed up the rate of chemical reactions in
living cells. In most cases, they convert one chemical ,the substrate, into another, the prod-
uct.The Michaelis-Menten eqvation is commonly used to describe such reactions:

u_ [,s]
u - - k" + [s] (  13.28)

where u : the initial reaction velocity, u-: the maximum initial reaction velocity, [.i] :
substrate concentration, and ft" : a half-saturation constant. As in Fig. 13.14, the equation
describes a saturating relationship which levels off with increasing [.S]. The graph also
illustrates that the half-saturation constant corresponds to the substrate concentration at
which the velocity is half the maximum.
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continued

Second-order
Michaelis-Menten

mode l

0.5u,,,

k"

FIGURE I3 .T4
Two versions of the Michoelis-Menien model of enzyme kinetics.

Although the Michaelis-Menten model provides a nice starting point, it has been re-
fined and extended to incorporate additional features of enzyme kinetics. One simple
extension involves so-called allosteic enzymes, where the binding of a substrate molecule
at one site leads to enhanced binding of subsequent molecules at other sites. For cases with
two interacting bonding sites, the following second-order version often results in a bettu
fit:

This model also describes a saturating curve but, as depicted in Fig. 13.14, the squared
concentrations tend to make the shape more sigmoid, or S-shaped.

Suppose that you are provided with the following data:

u- [s]2' t ) :  -- 
ft"2 + [S]2

1 . 3
o.a7

(t3.29)

B 9
0.35 0 36

tsl
U

I B
0 . 1  3

3
0 .22 d  a 7  F .

6
0 . 3  3 5

Employ linear regression to fit this data with linearized versions of Eqs. (13.28) and
(13.29). Aside from estimating the model parameters, assess the validity of the fits with
both statistical measures and graphs.

Solution. Equation (13.28), which is in the format of the saturation-growth-rate model
(Eq. 8.2D, can be linearizedby inverting it to give (recallEq. 13.27)

k, I
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;ryifiru::ri x. ,. ii{. .i:.

: i  cont inued

The linreqr function from Fig. 13.13 can then be used to determine the least-squares fit:
> >  S = 1 1 . 3  1 . 8  3  4 . 5  G  8  9 l ;
> >  v = f  0 . 0 7  0 . L l  0 . 2 ? ,  O . 2 j a  A .  j . l  5  0 . . i i r  0 . 3 t ,  1 ;
> >  L a , r ' 2  l = L i n r e g r  ( 1 .  r . . - j ,  . 1  . , / v )

1 6 . 4 A 2 2
1 2 =

0 . 1 9 u 2

t l  . 9 t 4 l

The model coefficients can then be calculated as
> >  v m - I r a ( 2 )

\  r rr  -

i :  a R r a l

- ' : '  . { S = \ . 1 n * J  (  1  j

k s =
3 r :  . 2 : t  6 ( )

Thus, the best-fit model is

, ,  _  5 .25701S1

86.2260 + [s]
Although the highralue of 12 might lead you to believe rhat this result is acceptable,

inspection of the coefficients might raise doubts. For example, the maximum velocity
15'2510) is much greater than the highest observed velociry tb.sol. In addition, the half-
saturation tate (86.2260) is much bigger than the maximum substrate concentration (9).

The problem is underscored when the fit is plotted along with the clata. Figure l3.I5ta
shows the transformed version. Although the straight line iollows the upward trend, the
data clearly appears to be curved. When the original equation is plotted along with the data
in the untransformed version (Fig. 13.15b), the fit is obviously unacceptable. The data is
clearly leveling off at about 0.36 or 0.37. If this is correct. an eyeball estimate would
suggest that u^ should be about 0.36, and ft, should be in the rung. of 2 to 3.

Beyond the visual evidence, the poorness of the fit is also reflected by statistics like the
coefficient of determination. For the untransformed case, a much less acceptable result of
I - 0.6406 is obtained.

Equation (13.28)

The linreqr function from Fig. 13.13 can again be used to determine the least-squares fit:

The foregoing analysis can be repeated for the second_order model.
can also be linearized by inverting it to give

I I k? I
+ j _

u D, u. [Sl2

l 9 . . l 7 i i O
i : l  =

? .  . 4 4 9  )
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#i*,i ;

0.8

0.6

a 0.4

o.2

0

(a) Transformed model

0.50.4
14,r1

(b) Original model

isl

F IGURE I3 . I5
Plots of leosl-squores fit {line) of the Michoelis-Menten model olonq with doto (points}. The plotin
{o) shows the tionsformed fit, ond {bl shows how lhe fit looks when viewed in ihe untronsformed,
oilgrnor rorm.

The model coefficients can then be calculated as

> >  v m = I / a ( 2 )

0 . 4 0 8 3

> >  k s - s q r t ( v m * a ( 1 ) )

2  .  B I ? , 1

Substituting these values into Eq. (13.29) gives

0.4083ts12
u :7 .91r+ [s :p

Although we know that a high I does not guarantee of a good fit, the fact that it is very
high (0.9929) is promising. In addition, the parameters values also seem consistent with the
trends in the data; that is, the ft- is slightly greater than the highest observed velocity and
the helf-sqfirrction rnfe iq lnwer than the mcvimtrm stthcfrqfc nnnnanfrofinn /o\
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(a) Transformed model

ffi'-ru conrinued
i,lt+F.$fii:{:ifl

t /$12

(b)  Or ig ina l  mode l
0.4

0.3

.  0.2

0 .1

0

tsl

F IGURE T3. I6
Plots of leost-squores fit (line) of the second-order Michoelis-Menfen model olono with doto
{points). The plot in (o) shows the trqnsformed fit, ond ib) shows ihe untronsformed, originol form

The adequacy of the fit can be assessed graphically. As in Fig. 13. 16a, the transformed
results appear linear. When the original equation is plotted along with the data in the
untransformed version (Fig. 13.16b), the fit nicely follows the trend in the measurements.
Beyond the graphs, the goodness of the fit is also reflected by the fact that the coefficient
of determination for the untransformed case can be computed as I : 0.9896.

Based on our analysis, we can conclude that the second-order model provides a good
fit of this data set. This might suggest that we are dealing with an allosteric enzyme.

Beyond this specific result, there are a few other general conclusions that can be drawn
from this case study. First, we should never solely rely on statistics such as I as the sole
basis ofassessing goodness offit. Second, regression equations should always be assessed
graphically. And for cases where transformations are employed, a graph of the untrans-
formed model and data should always be inspected.

Finally, although transformations may yield a decent fit of the transformed data, this
does not always translate into an acceptable fit in the original format. The reason that this
might occur is that minimizing squared residuals of transformed data is not the same as for
the untransformed data. Linear regression assumes that the scatter of points around the
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best-fit line follows a Gaussian distribution, and that the standard deviation is the same at
every value of the dependent variable. These assumptions are rarely true after transforming
data.

As a consequence of the last conclusion, some analysts suggest that rather than using
linear transformations, nonlinear regression should be employed to fit curvilinear data. In
this approach, a best-fit curve is developed that directly minimizes the untransformed
residuals. We will describe how this is done in Chap. 14.

PROBI.EMS

l3. l  Given the data That is, detelmine the slope that results in the least-squares
fit for a straight line with a zero intercept. Fit the following
data with this model and display the result graphically,

t 0 i l l 4 1 7 2 0
8 7 6 9 1 2

13.5 Use least-squares regression to fit a straight line to
Determine (a) the mean, (b) median, (c) mode, (d) range,
(e) standard deviation, (f) variance, and (g) coefficient of
variation.
lJ,2 Construct a histogram from the data from Prob. 13. I.
Use a range from 7.5 to 11.5 with intervals of 0.5.
13.-l Given the data

8.8
9.4

10.0
9.8

1 0 . 1

28.65 26.55
28.65 29.65
27.65 28.15
29.25 2'7.65

9.5
l 0 . l
10.4
9.5
9.5

9 .8
9.2
7.9
8.9
9.6

9.4
1  1 .3
10.4
8 .8

10.2

t0.0
9.4
9.8

10.6
8.9

x 2 4 6 7
y 4 5 6 5

1 2  t 5
7 1 0

x 0 2 4 6 9
y 5 6 7 6 4

l l
I

l 7  1 9
l 2  t 2

Determine (a) the mean, (b) median, (c) mode. (d) range,
(e) standard deviation, (f) variance, and (g) coefficient of
variation.
(h) Construct a histogram. Use a range from 26 to 32 with

increments of 0.-5.
(i) Assuming that the distribution is normal, and that your

estimate of the standard deviation is valid, compute the
range (that is, the lower and the upper values) that en-
compasses 68Vo <>f the readings. Determine whether this
is a valid estimate for the data in this problem.

13,.1 Using the same approach as was empioyed to derive
Eqs. (13.15) and (13.16), derive the least-squales f i t  of the
following model:

\ t - n 1 r ' - l p

26.65 27.65 27.35 28.35 26.85
2'/.8s 27.05 28.25 28.85 26.75
28.65 28.45 3 r .65 26.35 27 . '75
28.6s 27.65 28.s5 27.65 21.2s

Along with the slope and intercept, compute the standardenor
of the estimate and the correlation coefficient. Plot the data
and the regression line. Then repeat the problem, but regress x
versus }-that is, switch the variables. Interpret your results.
13.6 The following data was gathered to determine the rela-
tionship between pressure and temperature of a fixed vol-
unte of I  kg of nitrogcn. The volume is l0 mr.

T , 'C  -aO 0  40  B0 t  2A 160
p,N lm2 6900 B 100 9300 10 ,500 I  1 ,200 t2  900

Enrploy the ideal gas law pV - nRT to deterrnine rt on the
basis of this data. Note that for the 1aw, I must be expressed
in kelvins.
13.7 Beyond the examples in Fig. l3.ll, there are other
models that can be linearized usins transformations. FoI
example,

\) : a.^rep1r
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this model and use it to estimate ar and 6.r based
the follou,ing data. Develop a plot of your fit along rvith
data.

13.12 Determine an equation to pledict metabolism rate as a
function of mass based on the followinc data:

Animol Moss (kg) Metqbolism (wofts)

0 t  0 2  0 4  0 6
a / 5  1 2 5  1 4 5  1 2 5

t 5  1 7  t B
0 3 5  0 2 8  0  r B

t 6  2 A  2 4
900 650 560

c )  9  t 3
0 8 5  0 5 5

Cow
Humcn
Sheep
Hen
Rcr i

Dove

400
7A
45
2

0 3
0  1 6

270
B 2
50
4 B
1  / <

4 9 7
13,8 Fit  a power model to the data f iom Table 13.l ,  but use
nafural logarithms to perform the transformations.
13,9 The concentration of E. c'oli bacteria in a swimnrins
uea is monil.ored after a slorm:

l-1.1-1 Fit an exponential modei to

,{h4 4 B
c(CFU/l0O mL) ls9O I 320

Ihe time is measured in hours following the end of the storrn
ard the unit CFU is a "colony lbrrning unit." Use this data to
estimate (a) the concentration at the end of the storm (t: 0)
and (b) the time at which the concentration will reach
200 CFU/100 mL. Note that yor.rr choice of model should
be consistent with the fact that negative concenrations ale
inpossible and that the bacteria concentration ah.r,ays de-
creases with time.

x
v

2  2 3
2900 3600

Plot the data and the equation on both standard and semi-
logarithmic graph paper.
13.14 An investigator has reported the data tabulated below
fbr an experiment to determine the growth rate of bacteria
ft (per d) as a function of oxygen concentration c (mg/L). It
is known that such data can be modeled by the fbllowing
equatiou:

t a

, Krnaxc-
/< : ---;

c r + c '

where c, and ftnra\ are parameters. Use a transformation ro

linearize this equation. Then use linear regression to esti-

mate c. and ftn,.,x and predict the growth rate at c :2 mg/L,.

c
k

0 .5
t t

O B
2 . 4

4
B 9

13.15 Develop an M-f i le function to compute descript ive
stafistics for a vector of values. Have the function detennine
and display number of values. mean, median. mode. range,
standard deviation, r'ariiince. and coefficient of variation. In

addition, huvc it gencralc .r hisloglinr. Trrsl il wilh lhc rl;tl;r
lrom Prob. 13.3.
13.16 Modify the lrnresr funcrion in Fig. 13. l3 so that i t
(a) computes and returns the standard error of the estimate,
and (b) uses the sDbptor function to also display a plot of
the resicluals (the predicted minLrs the measured -r.) versus -r-.
13.17 Develop an M-f i le function to f i t  a power model.
Have the function return the best-fit coefficient a2 and
powerB, along with the 12 fbr the untransfbrmed model. In
addition, use the .jubp l ot function to display graphs of both
the transfbrmed and untransformed equations along with the
data. Test il with the data from Proh t3 t?

0 4  0 8
800 975

I ' , 2
I 500

1 . 6
I 950

13.10 Rather than using the base-e
{Eq.  I3 .22 t .  u  comnlon  a l te rna t ive  is
model:

exponential nrodel
to employ a base-10

t 5  2 5
5 3  7 6When used fbr curve iitting, this equatior'l yields identical

results to the base-r, version, but the value of thL- exponent
parameter ( lr)  wi l l  di f f 'er from that est irnated with Eq.13.22
(0,).  Use the base-IO version to solve Prob. 13.9. In addi-
tion, develop a formulation to relate ut ro frs
l3,ll On average. the surface area A of human beings is
rclated to weight W and height H. Measurements on a nun-
ber of individuals of height 180 cm and di l- lerent weishts
(kg) -eive values of A (m2) in the lbllowing rable:

W(kS) 7A 75 77 BO 82 84 87 90
A ( r n 2 l  2 1 0  2 t 2  2 t 5  2 2 A  2 2 2  2 2 3  2 2 6  2 3 0

Show that a power law A : oil' fits these data reasonablv
well. Evaluate the conslants a and b. and predict what the
o r r f . ^ a . r p r  i c  f n r  r  Q 5 _ L o  n e r s r r n
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determir
This rela
when or
followin

Procipi-
fqtion,

Flow,
m3/s

(a) Plot
(b) Fit r

Supt
(c) Use

the 1
(d) rf th

of th
ratio
use.

13.26 "t)

10.65 cn
alloy. Te
tween stl

Slroin,
cm/cm

Stress,
N/<m2

The stres
force in r
value car
the mast
mast's le
estimate
13.27 Tl
that mee
voltages:

V , V
i r A

(a) On
cur
an{

(b) Re

l3.ltl The tbllowing data shows the relationship between
the viscosity of SAE 70 oil and temperature. After taking the
log of the data, use linear regression to find the equation of
the l ine thrt best f i ts the data and the r2 value.

Tempero ture ,  '€  26 .67  93  33  I48  Bq 3 I5 .56
Viscos i ry  p ,N.s /m2 I  35  O 0B5 0  012 O OoO/5

13.19 You perform experiments and determine the fbllow-
ing values oi heat capacity c at various temperatures Z for a
gas:

are shown beloll,. Which model best describes the data (sl&

tistically)? Explain your chorce.

Model A Model B ModelC

s"
Number of Model

Porometers Fif

1 3 5

2

r 0 5

3

i00

T 5 0 - 3 0 0 6 0
c  l 25O I  280  I  350  I  480

13.23 Below is data taken from a batch reactor ofbactenal
growth (after lag phase was over). The bacteria are allowed
to grow as fast as possible for the first 2.5 hours, and then
they are induced to produce a recombinant protein, the pro
duction of which slows the bacterial growth significantly.
The theoretical growth of bacteria can be described by

'4: r,x
d t

where X is the number of bacteria, and p is the specrfic
growth rate of the bacteria during exponential growth. Basd
on tbe data, estimate the specific growth rate of the bacteria
duling the tirst 2 hours of growth and during the next 4 houm
of erowth.

90  i lO
I  5 8 0  l 7 0 A

Use regression to determine a nrodel to predict c as a func-
tion of I.
13.20 lt is known that the tensile strength of a plastic in-
creases as a tunction of the time it is heat treated. The fol-
lowing data is collected:

Time l0 )5 2A 25 40 50 55 60 Z5
Tensife Strength 5 2A I B 40 33 54 70 6A 78

(a) Fit a straight line to this data and use the equation to
determine the tensile strength at a time of 32 min.

(b) Repeat tl.re analysis but for a straight line with a zercr
intercept.

13.21 The following data was taken from a stirred tank re-
actor for the reaction A - B. Use the data to determine the
best possible estimates for ft,,, and E, fbr the following
kinetic model:

dA
- ---:- : A0le A

A T

where R is the gas constant and equals 0.00198 kcal/mol/K.

Time,
h 0 t 2 3

ICells],
S l L  0 1 0 0 0 3 3 2 t t 0 2 I 6 4 4 2 453 3 660 5 460

13.24 A transportation cngineering study was conductedto
dctL'rmine the proper design of bike lanes. Data was gathered
on bike-lane widths and average distance between bikes and
passing cars. The clata frorn I I streets is

D i s l o n c e , m  2 4 l 5 2 4 I B 1 . 8 2 . 5  l 2  3 1 2
l o n e W i d r h ,  m  2 9  2 . 1  2 . 3  2 1  I  B  2 7  1 . 5  2 9  1 5

-dAldt (moles/Us) 46A 960 2485 l600
A (moles/t) 200 150 50 20
r  (K)  2BA 320 45O 500

(a) Plot the clata.
(b) Fit a straight line to the data with linear regression. Add

this line to the plot.
(c) If the minimum safe average distance between bikes and

passing cars is considered to be 2 m, determine the cor.
responding minimum lane width.

11.25 In water-resourccs engineering, the sizing of reser-
voirs depends on accurate estimates of water flow in the
river that is being impounded. For some rivers, long-term
historical records o1'such flow data are difficult to obtain. In
contrast, meteorolo-vical data on precipitation is often avail-
n h l -  t - -  ^ - - r  T L ^ - ^ f ^ - ^  ; + : - , . + ' ] ^ -  , , , . ^ & , 1  r ^

1 4 . 4 <

t 0
550

13.22 Concentration data was taken at l5 time points for the
polyrnerization reaction:

x A * , t B  -  A , B : .

We assume the reaction occurs via a complex mechanism
consisting of many steps. Several models have been hypoth-
esized, and the sum of the squares of the residuals had been
^ ^ l ^ , , 1 ^ r ^ J  f ^ -  . L ^  f : r ^  ^ f  r L . -  ' - . . ' J , - 1 .  ^ f  r l i ^  , l ^ . -  T L , .  - , , - , , 1 . .



PROBLEMS 3 1 5

determine a relationship between flow and precipitation.
thisrelationship can then be used to estimate flows for years
when only precipitation measurements were made. The
following data is available tbr a river that is to be dammed:

13.28 An experiment is performed to determine the Vo elon-
gation of electrical conducting material as a function of tem-
perature. The resulting data is listed below. Predict the 7o
elongation for a temperature of 400 'C.

Temperofure, oC 200 25a 300 375 425 475 600
1 6 B 9 9 1  T " E l o n g o t i o n  7 5  8 6  8 7  l O  l l 3  1 2 7  1 5 3

I I  I  1 6 . 6

11.29 The population p of a small community on the out-
skirts of a city grows rapidly over a 2O-year period:

?ncipi-
tot ion,  cm BB 9 l0B 5 104 I

lbw
m 3 / s  1 4 6  1 6 7  1 5  3

139.7  127 94  r

2 3 2  1 9 5  ) 6 1

(a) Plot the data.

0) Fit a sffaight line to the data with linear regression.
Superimpose this line on your plot.

(c) Use the besffit line to predict the annual water flow if
the precipitat ion is 120 cnr.

(d) I f  rhe drarnage area is I  100 km:. est irnate what fract ion
of the precipitation is lost via processes such as evapo-
ration, deep groundwater infiltration, and consumptive
use.

13,26 The mast of a sailboat has a cross-sectional area of
10.65 cmr and is constructed of an experimental aluminum
allo1. Tests were performed to define the relationship be-
tween stress and strain. The test results are

As an engineer working for a utility company, you must
forecast the population -5 years into the future in order to an-
ticipate the demand for power. Employ an exponential
model and linear regression to make this prediction.
13,30 The velocity r of air flowing past a flat surface is
measured at several distances l away from the surface. Fit a
curve to this data assuming that the velocity is zero at the
surface (y : 0). Use your result to determine the shear stress
(du/dy) at the surface.

t a
p  1OO

5
204

t o
450

t 5
950

20
2000

*"
cm/cm

5lrcss,
N/cm2

0 0 0 3 2  0 0 0 4 5  0 0 0 5 5  0 0 0 r 6  0 0 0 8 5  0 0 0 0 5

4970 5170 .5500 3590 6900 t24A
J , h  0 . 0 0 2  0 0 0 6
u, mls A 2B7 0 899

o 0 l 2  0 0 r B  o o 2 4
r 9 r 5  3 0 4 8  4 2 9 9

the stress caused by wind can be computed as F/A, where F :

force in the mast and /. : mast'. cross-sectional area. This
value can then be substituted into Hooke's law to determine
the mast's deflection, Al- : strain x l, where L : the
mast's length. If the wind force is 25,000 N, use the data to
estimate the deflection of a 9-m mast.
13,27 The following data was taken from an experiment
that measured the cunent in a wire for various imposed
voltages:

13,31 Andrade's ecluation has been proposed as a model of
the elfect of temperature on viscosity:

P :  P s B / r "

where p : dynamic viscosity of water ( l0-3 N's/m2), 4 :
absolute temperature (K), and D and B are parameters. Fit
this model to the following data for water:

7 0 5 r 0 2 0 3 0 4 0
p I  7B7 I  .519 I  3A7 I  002 O 7975 A.6529

v,v
i ,A

2
5 2

3
7 B

4
l o 7

5
t 3

7 l a
1 9  3  2 7 . 5

(a) 0n the basis of a linear regression of this data, determine
cunent for a voltage of 3.5 V. Plot the line and the data
and evaluate the fit.

(b) Redo the regression and force the intercept to be zero.
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Generol Lineor Leost-Squores ond
Nonlineor R"gression

CHAPTER OBJECTIVES
This chapter takes the concept offitting a straight line and extends it to (d) fitting a
polynomial and (D) fitting a variable that is a linear function of two or more independent
variables. We will then show how such applications can be generalized and applied to a
broader group of problerns. Finally, we will illustrate how optimization techniques can be
used to implement nonlinear regression. Specilic objectives and topics covered are

o Knowing how to implement polynomial regression.
o Knowing how to implement multiple linear regression.
o Understanding the formulation of the general linear least-squares model.
o Understanding how the general linear least-squares model can be solved with

MATLAB using either the normal equations or left division.
. Understanding how to implement nonlinear regression with optimization

techniques.

I4.I POTYNOMIAL REGRESSION

In Chap. 13, a procedure was developed to derive the equation of a straight line using the
least-squares criterion. Some data, although exhibiting a marked pattern such as seen in
F ig .  l r t . f . i spoo r l y rep resen tedbyas t ra igh t l i ne .Fo r thesecases ,acu rvewou ldbebe t te r
suited to fit the data. As discussed in Chap. 13, one method to acconrplish this objective
is to use transformations. Another alternative is to fit polynomials to the data using poly-
notnial regression.

The least-squares procedure can be readily extended to fit the data to a higher-order
polynomial. For example, suppose that we fit a second-order polynomial or quadratic:

, y : u o t a l . r +  a z r :  + e  ( 1 4 . 1 )
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(b )

FIGURE I4 . I
(o) Doto ihot is il l-suited for lineor leost-squores regression
preferoble.

(b)  lnd icoi ion thoi  o porobolo is

For this case the sum of the squares of the residuals is
I I

s, : t (y, - nu - atxi - orri)t \14.2)
i - l

To generate the least-squares fit, we take the derivative of Eq. (14.2) with respect to

each of the unknown coefficients of the polynomial, as in

as ,  . \ - r
-  :  - / '  

)  \ . \ ' ,  
- c ' l t t  - a , ' t ,  - t ' 1 * ; )

d 0 t

a t  ^ s a
; -  :  - t  )  . x i  ( ) l  -  u s -  d 1 x ;  -  a 2 x l )
d 0 t

aS,  r  \ -  . .2  l -
: - -  :  - L  

/  r t  \ - \ r
rt u.

These equations can be
normal equations:

- a0 - a1x1 - u7.t l)

set equal to zero and reananged to develop the following set of

( n ) a o +  ( I t ' ) a r  +  ( f  - t ' ' z )  a z : L v i

( I  r ' )  oo + ( I- t , t )  n '  + ( t  t i )  a2 :  lx iYi

( Ir ,?) oo + (T.",1)" '  + ( I- '1) tL2: lx!) ' i
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where all summations are from i : I through n. Note that the preceding three equations are
linear and have three unknowns: a0, ctt, and a2. The coefficients of the unknowns can be
calculated directly from the observed data.

For this case. we see that the problem of determining a least-squares second-order
polynomial is equivalent to solving a system of three simultaneous linear equations. The
two-dimensional case can be easily extended to an mth-order polynomial as in

!  :  a o t d l x  f  a 2 x 2  + . . .  a  a . x ' '  I  e

The foregoing analysis can be easily extended to this more general case. Thus, we can
recognize that determining the coefficients of an mth-order polynomial is equivalent to
solving a system of m I I simultaneous linear equations. For this case, the standard enot
is formulated as

(14.3)

This quantity is divided by n - (m I l) because (m * l) data-derived coefficients-
o0, at,..., an-were used to compute Sr; thus, we have lost z * I degrees of freedom.
In addition to the standard error, a coefficient of determination can also be computed fot
polynomial regression with Eq. (13.20).

EXAMPLE 
. l4.1 

Polynomiol Regression

Problem Stotement. Fit a second-order polynomial to the data in the first two columns
ofTable 14.1.

TABTE l4.l Compuiotions for on error onolysis of the quodrotic leost-sguores fif.

( J i  - J ) - tg,- ao-arx,-aS)rv,xi

s,
n -  (m - l1)

0
I
2
j?

4
5
I

2 l
7 7

t 3 . 6
2 7 2
40.9
6 t  t

152.6

544 44
314 .47
140  03

3 . 1 2
239 .22

1 2 7 2 . 1 )
2 5 r 3  3 9

0.t 4332
r 00286
r  08 r60
0 80487
0 61 959
0 09434
3.7 4657

Soluiion. The following can be computed from the data:

n : 6

; - r <

r - ) 5 4 7 7

\ ' - .  -  r <
/ r ^ t  

-  r J

I l'i : 152.6

\ - ' l - s s

\ - ' J - l l s
L ' - t

Lx ! : 9 tg

I " , ) t  :585 '6

L*?Y, :  2488'8
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Therefore, the simultaneous linear equations are

tr 'i, iil'i,l:hfx
These equations can be solved to evaluate the coefficients. For example. using MMLAB:

> >  N  =  l 6  1 5  5 5 ; 1 5  5 5  2 2 5 ; 5 5  2 2 5  9 j 9 ) ;
> >  r  =  1 1 5 2 . 6  5 3 5 . 6  2 4 B B . B l ;
> >  a  =  l . i \ r

2  . 4 1  B 6
2 . 3 5 9 3
1 . 8 5 0 7

Therefore. the least-squares quadratic equation for this case is

!  :  2 .4186 *  2 .3593r  *  1 .860712

The standard error of the estimate based on the regression polynomial is tEq. (14.3)l

|  _1. /+b) /
1 , . , . :  /  : l l l 7 5

!o - rz+ l )  " " ' -

The coefficient of determination is

r -  -
2513.39 - 3.74651

2513.39
: 0 . 9 9 8 5 1

and the comelation coefficient is r :0.99925.

F IGURE I4 .2
Fil of o second order polvnomiol
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EXA

These results indicate that 99.851 percent of the original uncertainty has been ex-
plained by the model. This result supports the conclusion that the quadratic equation rep-
resents an excellent f it, as is also evident from Fig. 14.2.

14.2 'T4UITIPIE TINEAR REGRESSION

Another useful extension of linear regression is the case where f is a linear function of two
or more independent variables. For example, 1 might be a linear function of r, and xr. as in

. y : r r o { c t 1 - t 1  l a 2 x z a s

Such an equation is particularly useful when fitting experimental data where the variable
being studied is often a function of two other variables. For this two-dimensional case. the
regression "l ine" becomes a "plane" (Fig. 14.3).

As with the previous cases, the "best" values of the coefficients are determined by
formulating the sum of the squares of the residuals:

$ :  
i  

( ) ' i  -  ao-( r - t l . i  -  az. r t . i )?

and differentiating with respect to each of the unknown coefficients:

aS,  _ \ - r .
; - : - l )  ( l ' i  - t t 1 1  - t 1 1 . x 1 . 1  - o 2 x 2 . i l
dao

as, ^ 11
, : -  :  - 2  

)  x t . i ( ) i  -  ( t 0 -  a 1 x l . i  -  a z x z . i )
dLl  l

as, ^ \--
; -  :  -2  )  . r2 . ,0 " i  -  ao  -  c t tx t . i  *  azxz . i )
O Q )

( r4..1)

FIGURE I4.3
Grophicol  depict ion of mult ip le l ineor regression where y is o l ineor funct ion of . r ,  ond rr .

_ - _ _ - - - ! - _ //
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The coefficients yielding the minimum sum of the squares of the residuals are obtained by
setting the partial derivatives equal to zero and expressing the result in matrix form as

f  n  I * ' . ,  I r r . ,  I f oo
I  I " ' t . ,  I " t i . '  I x r . i r z . i  I  l a r
L I tr.r Ir,.,.rr., I .rt., _.1 [ nt

EXAMPLE 14.2 Mult iple Lineor Regression

Problem Sfotement. The following data
4x1 - 3r2'.

was calculated from the equation y : 5 +

;?;r: l (  14.5)

x2.rt

0 0 s
2  I  t 0
2 . 5 2 5
r 3 0
4 6 3
7 2 2 7

(  14.6)

which can be solved for

( 1 0 : 5  a t : 4  a Z : - 3

which is consistent with the original equation from which the data was derived.

The foregoing two-dimensional case can be easily extended to m dimensions, as in

)  :  a o  I  a 1 x 1  *  a 2 x 2 + .  "  +  a r x ^  *  e

TABTE I o:? c:Tp':olio1'.:"".:'i':d 
1o dey3lon 

li:. '::::l ::q,,oti:,i: fo1 Elomele la'2
! xr xz x! xl xrx2 .rilr x2y

Use multiple linear regression to fit this data.

Solution. The summations required to develop Eq. (1a.5) are computed in Table 14.2.
Substituting them into Eq. (14.5) gives

54
243.5
100

6 .25
I

t 6
49
, /  a . l )

2 2 5
0

l 2
t 8 9
)77-

[  6  16 .5  r l l

I  16.5 16.2s 48 |
L  t4  48  54 )

a0

A l

A1

0
t 0
I B
0

] B
\ ,4

lao

0
20

o
2
5
3

24
l 4
T6

0
l
4
I

36
4

J 4

0
4

0
I
2
3
6
2

t 4
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s

n - ( n t + D

where the standard error is formulated as

and the coefficient of determination is computed as in Eq. ( 13.20).
Aithough there rnary be certain cases where a variable is linearly related to two or mole

other variables, multiple linear regression has additional utility in the derivation of power

equations of the general form

)' : ctox';t x;t .' . x::i,"

Such equations Are extremely useful when fitting experimental data. To use multiple lineat

regression, the equation is transformed by taking its logarithm to yield

log ,y  :  l oga0  *  a1  l ogx l  *  a2 logx2+ ' ' '  +  an  l og t .

I4.3 GENERAT TINEAR LEAST SQUARES

In the preceding pa-qes, we have introduced three types of regression: simple linear,
polynomial, and multiple linear. In fact, all three belong to the following general linear

least-squares model:

) '  :  a o z o  I  a r z t  *  a y Z z  - l ' ' '  I  a n , z m  I  € ( 14.?)

where :0, zl,..., z.m arem * I basis functions. It can easily be seen how simple l inear

and multiple l inear regression fall within this model-that is, ;s: l, zr :.r l,t2=

x2, . .., Znt :.xm. Further, polynomial regression is also included if the basis functionsate

s imp fe  monomia l s  as  i n :o  :  l , ; r  :  x , . t t  :  x2 , . . . ,  Zp1  :16m.

Note that the terminology "linear" refers only to the model's dependence on its

parameters-that is, the a's. As in the case of polynomial regression, the functions them'

selves can be highly nonlinear. For example, the :'s can be sinusoids. as in

y : ao * a1 cos(a;r) I azsin(o_tx)

Such a format is the basis of Fourier analysis.
On the other hand, a simple-looking model such as

) :  d o ( l  -  e - o l ' )

is truly nonlinear because it cannot be manipulated into the format of Eq. ( 14.7).

Equation (14.7) can be expressed in matrix notation as

[ y ] : f z l { a }+ le l (14.8)

where [Zl is a matrix of the calculated values of the basis functions at the measured values

of the independent variables:

z l l

.

[ : : :

:*t-f

a,:,,l
t 7 l  -
t - t -

EXA,
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where m is the number of variables in the model and n is the number of data points.
Becattse n > m * 1, you should recognize that most of the time, [Z] is not a square marrix.

The column vector {y} contains the observed values ofthe dependent variable:

{-v}r : L,vr !2. -}n l

The column vector ia] contains the unknown coefficients:

{a)r  :  la11 at  a, ,  )

and the column vector {e} contains the residuals:

{e}r  :  le1 e2 eu )

The sum of the squares of the residuals for this model can be defined as

n  /  .  \ 2

s, : I l t ,  - lo1r1, l
i - l  \  j = t t  /

(  14.9)

This quantity can be minimized by taking its partial derivative with respect to each of the
coefficients and setting the resulting equation equal to zero.The outcome of this process is
the normal equations that can be expressed concisely in matrix form as

[z ] r  V\ {a}  :  { tz l r  {y} ) (14 .  r0 )

It can be shown that Eq. (14. l0) is, in fact, equivalenf to the normal equations developed
previously for simple linear, polynomial, and multiple linear regression.

The coefficient of determination and the standard error can also be formulated in terms
of matrix algebra. Recall that r: is defined as

t  S , - S ,  S ,-  |  _ _
s ,$

Substituting the definitions of S, and S, gives

I(vr - -urt'
r - - l -

I(),r - .t i  t2

where ! : the prediction of the least-squares fit. The residuals between the best-fit curve
and the data, y; - j, can be expressed in vector form as

{y} - f"zl la}
Matrix algebra can then be used to manipulate this vector to compute both the coefficient of
determination and the standard error of the estimate as illustrated in the following example.

Polynomiol  Regression wi th MATLAB

Problem Siotement. Repeat Example 14.1, but use matrix operations as described in this
section.

Solution. First, enter the data to be fit

> >  x  -  t 0  1 2  3  4  5 l ' ;
> >  y  =  1 2 . I  1  . 1  1 3 . 6  2 ' 7  . 2  4 A . 9  6 1  . 1 1  '  ;

EXAMPLE I4.3
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EXr

Next, create the [Z] matnx:

> >  Z  =  [ o n e s ( s l z e ( x )  )  x  x . ^ 2 ]

7 4 1 6
1  5  2 5

We can verify that LZf lzl results in the coefficient matrix for the normal equations:

> >  z ' * z

6  1 5  5 5
1 5  s s  2 2 5
5 5  2 2 5  9 7 9

This is the same result we obtained with summations in Example 14. I . We can solve for the
coefficients of the least-squares quadratic by implementing Eq. (14. l0):

> >  a  =  \ Z ' * Z )  \ ( Z ' * y )

2  . 4 7  B 6
2 . 3 5 9 3
1 . 8 6 0 7

In order to compute 12 and s"7-, , first compute the sum of the squares of the residuals:

> >  S r  =  s u m  (  ( y - Z * a )  . ^ 2 )

3  . ' t  4 6 6

Then r2 can be computed as

> >  1 2  =  I - S r  /  s u m  (  ( y - m e a n  ( y )  )  .  ̂ 2  )

0 . 9 9 8 s

and sr,7,. can be computed as

> >  s y x  -  s q r t  ( S r /  ( l e n q t h  ( x )  - l e n q t h  ( a )  )  )

1 . 1 1 7 5

Our primary motivation for the foregoing has been to illustrate the unity among the

three approaches and to show how they can all be expressed simply in the same matrix no-

tation. It also sets the stage for the next section where we will gain some insights into the
preferred strategies for solving Eq. (1a.10). The matrix notation will also have relevance

when we tum to nonlinear regression in Section 14.5.

1 0 0
1 1 1
1 , 2 4
1 3 9



,I4.4 
QR FACTORIZATION AND THE BACKSLASH OPERATOR 32s

14.4 QR FACTORIZATION AND THE BACKSIASH OPERATOR

Generating a best fit by solving the normal equations is widely used and certainly adequate
for many curve-fitting applications in engineering and science. It must be mentioned, how-
ever, tlrat the normal equations can be ill-conditioned and hence sensitive to roundoff errors.

Two more advanced methods, QR factorization and singular value decomposition, are
more robust in this regard. Although the description of these methods is beyond the scope
of this text, we mention them here because they can be implemented with MATLAB.

Further. QR factorization is automatically used in two simple ways within MATLAB.
First, for cases where you want to fit a polynomial, the built-in polyf it function auto-
matically uses QR factorization to obtain its results.

Second, the general linear least-squares problem can be directly solved with the back-
slash operator. Recall that the general model is formulated as Eq. (14.8)

1yy  :  l Z l { a l  ( 14 .  I  l )

In Section 10.4, we used left division with the backslash operator to solve systems of linear al-
gebraic equations where the number of equations equals the number of unknowns (n : n).
For Eq. ( 14.8) as derived fiom general Ieast squares, the number of equations is greater than
the number of unknowns (n.> m).Such systems are said to be overdetermined. When
MATLAB senses that you want to solve such systems with left division, it automatically uses

QR factorization to obtain the solution. The following example illustrates how this is done.

EXAMPLE 14.4 lmplement ing Polynomiol  Regression wi th po,y i  j  t  ond Lef t  Div is ion

Problem Stotemeni. Repeat Example 14.3, but use the builrin polyf ir function and
left division to calculate the coefficients.

Solution. As in Example 14.3, the data can be entered and used to create the lZl matrix
as in

> >  x  =  l A  I 2  3  4  5 l ' ;
> >  y  =  1 2  . I  1  . 1  1 3  . 6  2 1  . 2  4 A  . 9  6 I . I l '  ;
> >  z  =  [ o n e s  ( s i z e  ( x ) )  x  x . . 2 ) ;

The potyf it function can be used to compute the coefficients:

> >  a  =  p o l y f  i t  \ x , V , 2 )

1 . 8 6 0 7 2  . 3 5 9 3 2 . 4 1  B 6

The same result can also be calculated using the backslash:

> > a = Z \ y

2  . 4 1  8 6
2 . 3 5 9 3
1  8 6 0 7

As just stated, both these results are obtained autornatically with QR factorization.
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I4.5 NONTINEAR REGRESSION

There are many cases in engineering and science where nonlinear models must be fit to
data. In the present context. these models are defined as those that have a nonlinear depen-
dence on their oarameters. For example.

- v : a o ( l  - r - a t " r ) * e (  14.1 2)

This equation cannot be manipulated so that it conforms to the general form of Eq. (14.7).
As with linear least squares, nonlinear regression is based on determining the values

of the parameters that minimize the sum of the squares of the residuals. However, for the
nonlinear case, the solution must proceed in an iterative fashion.

There are techniques expressly designed for nonlinear regression. For example, the
Gauss-Newton method uses a Taylor series expansion to express the original nonlinear
equation in an approximate, linear form. Then least-squares theory can be used to obtain
new estimates of the parameters that move in the direction of minimizing the residual. De-
tails on this approach are provided elsewhere (Chapra and Canale, 2002).

An alternative is to use optimization techniques to directly determine the least-squares
fit. For example, Eq. (la.l2) can be expressed as an objective function to compute the sum
of the squares:

f  ( a q ,  a 1 )  : -  ao \  -  , -a t r '  112 ( t4.r3)

An optimization routine can then be used to determine the values of ae and a1 that mini-
mize the function.

As described previously in Sec. 7.3.1. MATLAB's fminsearch function can be used
for this purpose. It has the general syntax

l x ,  f v a L l  =  f m l n s e a r c h ( f u n ,  x a ,  o p t i o n s , p l , p 2 ,  . . . )

where x = a vector of the values of the parameters that minimize the function f un, f va7 =
the value of the function at the minimum. x0 : a vector of the initial guesses for the para-
meters, options: a structure containing values of the optimization parameters as created
with the optimset function (recall Section 6.4), and pl, p2, etc.: additional arguments
that are passed to the objective function. Note that if options is omitted, MATLAB uses
default values that are reasonable for most problems. If you would like to pass additional
arguments (p1. p2,...). but do not want to set the aptions, use empty brackets [] as a
place holder.

EXAMPLE 14.5 Nonl ineor  Regression wi th MATLAB

Problem Stotemeni. Recall that in Example 13.4, we fit the power model to data from
Table l3.l by linearization using logarithms. This yielded the model:

F : 0.2741ut e\a2

Repeat this exercise, but use nonlinear regression.
coefficients.

n

)- [ t ,

Employ initial guesses of I for the
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Solution. First, an M-file function must be created to compute the sum of the squares.
The following file, called f ssR. m, is set up for the power equation:

f u n c t i o n  f  =  f S S R ( a , x m , y m )
y p  =  a ( 1 ) * x m . ^ a ( 2 ) ;
f  =  s u m (  ( y m - y p )  . ^ 2 )  ;

In command mode, the data can be entered as

> >  x  =  t 1 0  2 0  3 0  4 0  5 0  6 0  7 O  B 0 l ;
> >  y  -  1 2 5  7 A  3 8 0  5 5 0  6 1 0  1 2 2 0  8 3 0  1 4 5 0 1 ;

The minimization of the function is then implemented by

> >  f m i n s e a r c h  ( @ f S S R ,  [ 1 ,  1 ]  ,  t  L  x ,  y )

2 . 5 3 8 4  r . 4 3 5 9

The besrfit model is therefore

F : 2.5384u1 a35e

Both the original transformed fit and the present version are displayed i-li'Frg. 14.4.
Note that although the model coefficients are very different, it is difficult to judge which fit
is superior based on inspection of the plot.

This example illustrates how different best-fit equations result when fitting the same
model using nonlinear regression versus linear regression employing transformations. This
is because the former minimizes the residuals of the orisinal data whereas the latter mini-
mizes the residuals of the transformed data.

FIGURE I4.4
Comporison of tronsformed ond unlronsformed model fits for force versus velocity dcto from

O D I E  J

40
u, m/s

,
ta

a,a
a

a

z
{ 800

4
Untransformed



328 GENERAL LINEAR LEAST-SAUARES AND NONLINEAR REGRESSION

FITTING SINUSOIDs

Bockground. Engineers and scientists often deal with systems that oscillate or vi-
brate. As might be expected, sinusoidal functions play a fundamental role in modeling such
problem contexts.

In this discussion, we will use the term sinusoid to represent any waveform that canh
described as a sine or cosine. There is no clear-cut convention for choosing either function,
and in any case, the results will be identical. For this chapter, we will use the cosine, which
is expressed generally as

f (t) : As * Cv cos(a-rst * d) (14.14)

Thus, four parameters serve to characterize the sinusoid (Fig. 14.5a). The mean valued
sets the average height above the abscissa. The amplitude C, specifies the height of the

FIGURE I4.5
{o }  Ap lo to f  t hes inuso ido l  f unc t i on } ( r )  :Ao*C ,cos (a ro r *9 ) .  Fo r th i scose ,  An=1 .7 ,C ,= ) ,
ao: 2n/l 1 .5 s), ond 0 : r/3 rodions (b) An olternotive expression of the some curve is
I(r) : Ao + A) + A,cos{coor} * B,sin{arol). The three components of this function ore depicted in
{b), where A, : 0.5 ond B, : -0 866. The summotion of the three curves in (b) yields the single
curve in {o).

t , s

at, fad

cl
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continued

oscillation. The angular frequency o.4 characterizes how often the cycles occur. Finally, the
phase angle, or phase shift 0 parameterizes the extent to which the sinusoid is shifted
horizontally. It can be measured as the distance in radians from / : 0 to the point at which
the cosine function begins a new cycle.

The angular frequency (in radians/time) is related to frequency/(in cycles/time) by

oo :2r . f  (14.15)

and frequency in turn is related to period I (in units of time) by
I

r - T

Although Eq. (14.14) is an adequate mathematical characterization of a sinusoid, it is
awkward to work with from the standpoint of curve fitting because the phase shift is in-
cluded in the argument of the cosine function. This means that it is not in the form of the
general linear least-squares model (Eq. U.7), and we must use nonlinear regression to es-
timate the coefficients.

This deficiency can be overcome by invoking the trigonometric identity:

Cr cos(abl + d) : C1[cos(rr-rst) cos(p) - sin(cosr) sin(p)]

Substituting Eq. (14.17) into Eq. (14.14) and collecting terms gives (Fig. 14.5b)

f (t) : Ao * Ar cos(a-lol) * 81 sin(arer)

where

Ar : Ct cos(0) Br : -Cr sin(9)

Dividing the two parts of Eq. (14.19) gives

/  B ' \
0 : arctan | --- |

\  A r l

where if A r < 0, add z to 9. Squaring and summing the two parts of Eq. ( 1a. 19) leads to

(14.2r)

Thus, Eq. (14.18) represents an alternative formulation of Eq. (14.14) that still requires
four parameters but that is cast in the format of a general linear model (Eq. 4.7). Thus, it
can be simply applied as the basis for a least-squares fit.

The average monthly maximum air temperatures for Tucson, Aizona, have been
tabulated as

(14 . r6 )

(r4.r7)

(14.  l8)

(14 .19 )

(14.20)

Month
T ' "C

.J F
l B 9  2 1 . 1

A M
27.8 32.223.3

J
37.2

A
36.  I

S
1.1  ^

O N D
2 e . 4  2 3 . 3  r 8 . 9
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continued

Observe that the July value is missing. Assuming each month is 30 days long, fit a sinusoid
to this data. Use the resulting equation to predict the value in mid-July.

Solution. In a similar fashion to Example 14.3, we can enter the data and create the

lZl matrix:

> >  v r O = 2 * p i / 3 6 0 ;
> >  t = t 1 5  4 5  7 5  1 0 5  1 3 5  1 6 5  2 2 5  2 5 5  2 8 5  3 1 5  3 4 5 1 ' ;
> >  r = 1 1 8 . 9  2 r . r  2 3 . 3  2 7 . 8  3 2 . 2  3 1  . 2  3 6 . 1 ,  3 4 . 4  2 9 . 4  2 3 . 3  1 8 . 9 1 ' ;
> >  z =  [ o n e s ( s i z e ( t ) )  c o s ( w 0 * L )  s i n ( w 0 * t ) ] ;

The coefficients for the least-squares fit can then be computed as

> >  a =  l Z ' * Z  )  \  ( Z ' * T )

2 8 . 3 8 1  B
- 9  . 2 s 5 9
, 2  .  B A 0 2

The statistics can also be determined as

> >  S r = s u m ( ( T - Z * a )  . ^ 2 )

6  . 4 3 9 8

> >  r 2 = I - S r  /  s u m  (  ( T - m e a n  ( T )  )  . ^ 2 )

0 . 9 8 6 2

> >  s y x = s q r t  ( S r /  ( l e n g t h ( t )  - l e n g c h ( a )  )  )

s y x  =

0 . 8 9 7 2

A plot can be developed as

> >  t p = [ 0 : 3 6 0 ] ;
> >  T p = a  ( 1 ) + a  ( 2  )  * c o s  ( w 0 * t p ) + a  ( 3  )  * s i n  ( w 0 * t p )  ;
> >  p l o t  ( t , T , ' o ' ,  t p , T p )

The fit, which is displayed in Fig. 14.6, generally describes the data trends.

Equations (14.20) and (14.21) can be used to express the best-fit sinusoid in themore

descriptive format of Eq. (14.14):

> >  t h e t a = a t . a n 2  ( - a  ( 3  )  ,  a  ( 2 J  )  * 3 6 0  i  ( 2  * p i  )

t h e t a  =

L 6 3 . r 6 ' 7 6
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continued

1 5
300 350

FIGURE I4.6
Leost-squores fit of o sinusoid to temperoture doto for Tucson, Arizono

> >  C 1 = s e r t  ( a ( 2  )  ̂ 2 + a  ( 3 )  ̂ 2 )

9  . 6 7  A 2

Note that because it is more physically meaningful, the phase shift is expressed in days

rather than in radians. Therefore, the final model is

/ 2 n  \
R :28 .3878 +9.6702cos  |  * - t r  +  163.1676)  |

\Jbu /

We can see that the mean is 28.3878, and the amplitude is 9.6702. Hence, the maximum
monthly temperature in Tucson ranges from about 18.7 to 38. 1 'C. The phase shift tells us
that the peak temperature occurs about 163 days prior to the start of the year, which trans-
lates to about day 197 (July 17). The value in mid-July (/ : 195 d) can therefore be
computed as

> >  T p J u l = a  (  1  )  + C 1 * c o s  ( w 0 *  (  1 9 5 + t h e t a )  )

TpJu l  =
3 8 . 0 5 3 0
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PROBLEMS

. r 3 4
J  1 6  3 6

5 7 8
4 4  3 4  2 . 2

9  t )  ) 2
2 8  3 B  4 . 6

14.1 Fit a parabola to the data lrom Table 13.1. Determine
the r2 for the fit and comment on the ef ficacy of the result.
14.2 Using the same approach as was employed to derive
Eqs. (13.15) and (13.16), derive the least-squares f i t  of the
following model:

_ \ ' : . t l i r  + a 2 . t 2 + e

That is, determine the coefficients that reslllts in the least-
squares fit for a second-order polynomial with a zero inter-
cept. Test the approach by using it 1(J fit the data fiom
Tab le  13 .1 .
14.3 Fit  a cubic polynornial to the fol lowing data:

Note that the true value is 9.09 mg/L. Compute the percent
relative error for vour prediction. Explain possible causes fot
the discrepancy.
14.7 As compared with the rnodels fiom Probs. 14.5 and
14.6, a somewhat more sophisticated model that accounts
fbr the eflect of both temperature and chloride on dissolved
oxygen saturation can be hypothesized as being of the form

o :  h G )  * . / r ( c )

That is, a third-order polynomial in temperature and a linear
relationship in chloride is assumed to yield superior results.
Use the general linear least-.squares approach to fit tlis
model to the data in Table Pl4.5. Use the resulting equadon
to estimate the dissolved oxygen concentration for a chloride
concentration of 15 g/L aI T : 12 'C. Note that the true
valuc is 9.09 rng/L. Compute the percent relative enorfor
your predict ion.
14.8 Use multiple linear regression to fit

x r O 1 ) 2 2 3 3 4 4
x2 0 I 2 1 2 I 2 I 2
y  1 5 1  t 7 . e  t 2 7  2 5 6  2 0 5  3 5  I  2 9 7  4 5 4 4 4 2

Compute the coefTicients. the standard error of the estimate.
and the conelation coefticient.
14.9 Thc lbltowing data was collected fbr the steady flow of
u a(er in a concretc ci lcular pipe:

Experiment Diomeler, m Slope, m/m Flow, m3/s

Along with the coefficients. determine rr and -s,.7_..
lzl.4 Develop an M-file to implement polvnomial regres-
sion. Pass the M-file two vectors holding the -r and ) values
along with the desired order rn. Test it by solving Prob. 14.3.
14.5 For the data from Table P14.5. use polynornial relles-
sion to derive a predictive equation for dissolved oxygen
concentration as a function of temperature lor the case where
the chloride concentration is equal to zero. Employ a polyno-
mial that is of sufficiently high order that the predictions
match the number of significant digits displayed in the table.
14.6 Use multiple linear regression to derive a predictive
equation fbr dissolved oxygen concentration as a function of
temperature and chloride based on the data liom Table P14.5.
Use the equation to estimate the concentration of dissolved
oxygen fora chloride concentrat ion of 15 glL atT : 12"C.

TABTE P14.5 Dissolved oxygen concentrot ion in
woier os o function of lemoerofure
("C) ond chloride concentrot ion (g/L).

Dissolved Oxygen (mglt) for
Iemperolure ('C) ond Concenlrotion

of Chloride (g/t)

T, "C c : O g l L c = l O g / L  c = 2 0 g / L

l
2
3
4
5
6
7
B
I

0 3
0 6
0 .9
0 3
0 6
O 9
0 .3
0 6
0 9

0  00 t
0  0 0 1
0  00 r
0 0 1
0 0 r
0  0 t
0 0 5
0 0 5
0 0 5

a a 4
4.24
0 6 9
0  1 3
a 8 2
2 3 8
0.3 r
1 9 5
5 6 6

0
5

t 0
r 5
20
25

4 5
2 B
t 3
0 r
9 0 9
B . 2 6

12.9
I t 3
r 0  t
9 0 3
B . l 7
7 4 6
A  e 5

1 1 4
t 0  3
B 9 6
B O B
7 3 5
5 7 3
6 ) O

Use multiple linear regression to fit the fbllowing model to
this data:

Q - a11D"' 5" '

where Q : flow, D : diameter, and S: slope.
l4.ll) Three disease-canying organisms decay exponen-
tially in scawater according to the following model:
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I
i
I
t,r  05  l  ' 2  3  4  5  6  7  9

, , , \  A  A A  ) - )  . t  2  1 . 9  1 . 7  1 . 4  L l
f \ t  I

E$imate the initial concentration of cach organisrn (A, B,
and C) siven the followins mcaslrremcnts:

l4.ll The following model is uscd to represent the efl'cct ol
solar fadiat ion on the photosynthesis ratc of aquatic plants:

P = P , , ,  
I  

, - 1 ; * t
I  , , , ,

where P : the photosynthesis rate 1mg m 3d-l),  P,, :  the
maximum photosynthcsis ratc (mg m-id l .) ,  1 :  solar
radiat ion ( lrE nr 2s l) .  and 1,,, /  :  optimal solar radiat ion

lpEm 
rs-l) .  Usc nonlinear rcgression to evaluate P,, and

1,u, based on the fbllowing data:

r 5a\

P 9 9

l { ,12 In Prob. I3.8 we used transtbrmations to l inearrze
and fit the following moclel:

B ,  r
)' 

- n1't g'- '

Use nonlinear regression to estimate aa arrd p.r based on the
following data. Develop a plot ol your fit along with thc da1a.

I i ,  a2  04  06  oe  r3  r 5  t 7
1 4 . 7 5  ) 2 5  I 4 5  1 2 5  0 8 5  0 5 5  0 3 5  0 2 8

11.13 Enzymatic rcactions arc usetl extcusively to charac-
terize biologically rnediated reactions. The following is rn
example of a model that is used to fit sr-rch reactions:

k,, ,  IS]3
' ' - K + [ . t l l

u,here u0 : the initial rate of the reaction (M/s). [S] : tne
substrate concentration (M). and ft,,, and K are paramcters.
Ihe following data can be tit with this modcl:

uo, M/s

(a) Use a transfbrnration to linearize the nrodel and evaluate
thc paramcters. Display the data and the rnodel fit on a
grapn.

(b) Pcrforrn thc sanre evaluation as in (a) bul use nonlinear
regrcsslon.

14.14 Givcn thc data

usc least-squares legression to { l t  (a) a straight l inc, (b) a
power equation, (c) a saturation-growth-rate equirt ion. and
(d) a parabola. For (b) and (c), employ transfbnnations to
I incarizc the data. Plot the data along with al l  the curves. Is
arly one of fhe curve-s superior? If so, jLrstify.

14.15 The following data represents the bacterial grorvth in
a l iquid culture over of number of days:

a  4  B  t 2  t 6  2 0
Amounl x

1 0 6  6 7  3 8  7 4 6 7  8 2 7 4  9 l 6 9  r o t  6 C  l ] 2  5 8

Find a best-f l t  equation to the data trend. Tr)r several
possibi l i t ies-polynomial,  logarithmic, and exponential.
Determine thc best equation to predict the amouut. of bacte-
riu atier 30 days.
14.16 Derive the lcast-squares f l t  ol  the fbl lowing model:

. f ' :  l ] 1 , \ : l a z x 2 + e .

That is, determine the coefficients that results in the leasl
squares tit tbr a second-order polyuomial with a zero
intercept. Test thc approach by using it to fil the data fron.r
T a b l e  1 3 . 1 .
14 .17  Dynamic  v iscos i ty  o f  water  p (10  3  N.s /m2;  i s  l c -
latecl to telnperaturc I( 'C)in the ftr l lowing lranner:

r  5  l 0  1 5  2 0  2 5  3 0  3 5  4 A  4 5  5 0
y  l 7  2 4  3 1  3 3  3 7  3 7  4 0  4 0  4 2  4 l

80 r  30 200 254 350 454 550 7AA
) 7 7  2 A 2  2 4 8  2 2 9  2 1 9  1 7 3  1 4 2  7 2

I B
0 1 8

Doy

T
lL

0  5  t 0  2 0
i . 7 8 7  I 5 t 9  I 3 Q 7  I 0 0 2

30 4a
a 7,)75 0 6529

lsl,M
c  c r
0 0 5
0 l
0 - \

,5
r c
50
r00

6 O Z B  x  l O
7 . 5 9 5  x  l a  

' )

6 C ) 6 3  r  l 0  3

5 Z B B x l O r '
1 . 7 3 7  x  l O '
2 4 2 3 v . ) a 5
2 4 3 0 x l C '
2 4 3 1  x  l a '
2 , 1 3 1  .  t O  5

(a) Plot this data.
(b) Use l inear intcrpolat ior.r to predict p at T :7 .5 "C..
(c) Use polynornial regression to lit a parabola to thc data in

order lo make the si.rme prediction.
14.18 Use the fol lowing set of pressure-volume data to f ind
the best possiblc virial constants (A, and Ar) fbr the follow-
ing equation of state. R : 82.05 rnL atm/gnlol K. and I :

-r03 K.
P V  A t  A t
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P (orm) O 9B5
V (mt) 2s aoo

I  3 6 3  1  6 3 t
r B 0 0 0  r 5 0 0 0

I  t 0 B
22 ,204

collected to quantify this relationship. Develop best-fit equa-
tions fbr both the thinking and braking components. Use
these equations to estimate the total stopping distance for a
car travcl ing at l l0 km/h.

l.l.l9 Environmental scientists and engineers dealing with
thc impacts of acid rain must detcrmine the value of the
ion product of water K,, as a lunction of temperature. Scien-
tists have sr.rggested the following equation to model this
relat ionshio:

-  l o916  K . * D log,o 7,, I cT,, I d

where I, : absolute temperature (K), and a, b, c, and d are
parameters. Employ the fbllowing data and rcgression to es-
timate the parameters:

r (K)

ll.2l The pH in a reactor varies over the course of a day.
Use least-squares regression to fit a sinusoid to the following
data. Use your fit to determine the mean, amplitude, and
time of maximum pH.

h  0  2  4  5  7  I  l 2  t 5  2 A  2 2 2 4
7 6  7 2  7  6 . 5  7 . 5  7 2  8 . 9  9 t  B S  7 9  7

1.1.22 The solar radiation fbr Tucson. Arizona. has been
tabulated as

Speed, km/h 30 45
Th ink ing ,m 56  8 .5
Broking,  m 5.0 l2  3

60 75 90 t2A
l t t  1 4 5  ) 6 7  2 2 4
2 l . o  3 2 . 9  4 7  6  8 4 7

a

fime,
pH

K,

0
t 0
2A
30
4A

t 0  :
l 0  r 5

l 0 - r 5
t 0 - '
t 0 -  '

I  . 1 6 4  x
2 9 5 0 x
6 8 4 6 x
1 4 6 7 x
2 . 9 2 9  x

Time, mo I F
Rodiotion,

w/m2 144 tBB

O N D

3 r  r  3 5 r  3 5 9  3 0 8  2 8 7  2 6 4  2 r  l  r 5 9  r 3 r) / \

11.20 The distance requircd to stop an automobile consists
of both thinking and braking components, each of which is a
function of its speed. The fbllowing cxperimental data was

Assuming each month is 30 days long, fit a sinusoid to this
data. Use the resulting equation to predict the radiatron rn
mid-August.
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Polynomiol Interpolotion

CHAPTER OBJECTIVES
The primary objective of this chapter is to introduce you to polynomial interpolation.
Specific objectives and topics covered are

' Recognizing that evaluating polynonrial coefficients with simultaneous equations
is an ill-conditioned problem.

' Knowing how to evaluate polynomial coetficients and interpolate with
MATLAB's poly f  i t  and po17va1 funct ions.

' Knowing how to pelfbrm an interpolation with Newton's polynomial.
' Knowing how to pertbrm an interpolation with a Lagrange polynomial.
' Knowing how to solve an inverse interpolation problem by recasting it as a roots

problem.
' Appreciating the dangers of extrapolation.
' Recognizing that higher-order polynomials can manif-est large oscillations.

YOU'VE GOT A PROBTEM

I f we want to improve the velocity prediction for the free-falling bungee jumper, we might

I expand our model to account for other fhctors beyond mass and the drag coefTicient. As
I was previously mentioned in Section 2.7,the drag coefficient can itself be formulated as
a function of other factors such as the area of the jumper and characteristics such as the
air's density and viscosity.

Air density and viscosity are commonly presented in tabular form as a function of
temperature. For example. Table 15.1 is reprinted from a popular fluid mechanics textbook
(Whire, 1999).

Suppose that you desired the density at a temperature not included in the table. In such
a case, you would have to interpolate. That is, you would have to estimate the value at the
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EXA

TABTE l5.t Density (p), dynomic viscosily (p), ond kinemotic viscosity (u) os o functiono[
temperoiure (f) ot I otm os reported by White (1999).

T , 'C p,kg /m3 1t, N . s/m2 v , m2ls

/ A

0
2A
50

1 0 0
1 5 0
200
254
300
400
500

4.946
0  8 3 5
0 746
0 675
0 6 r 6
0  525
a.457

2 . 1 7
2 . 3 8
2 .57
2 75
/  Y J

3 5 5

x  l O  5

x  l O  5

x  l 0  5

x  l O  r

x  l O - 5
x  l 0  5

x  l O - r
X  I U '

x  l 0  r

X  ] U  -

X  U '

5 2
29
2A
09

5 t
7 l
BO
95

0.99  x  l0  r

1  33  x  l0 - r
l . 5 O  x  l 0  j

l  / 9  x  1 0 5
2 3 0 x l 0 j
2  85  x  l0 -5
3 .45  x  l0 - j
4  OB x  lO- j
4 75 x lA':
6  20  x  lO- j
7 7 7  x l a 5

desired temperature based on the densities that bracket it. The simplest approach is t0 de-
termine the equation for the straight lirre connecting the two adjacent values and use thls
equation to estimate the density at the desired intennediate temperature. Although such
linear interpolation is perfectly adequate in many cases, error can be introduced when the
data exhibits significant curvature. In this chapter, we will explore a number of different
approaches for obtaining adequate estimates for such situations.

I5.I INTRODUCTION TO INTERPOTATION

You will frequently have occasion to estimate intermediate values between precise data
points. The most common method used for this purpose is polynonial interpolation. The
general formula for an (a - l)th-order polynomial can be written as

, f ( x ) : a r * a z x l a 3 x 2  + . . ' + e r x " t  ( 1 5 . 1 )

For n data points, there is one and only one polynomial of order (n - l) that passes through
all the points. For example, there is only one straight line (i.e.. a first-order polynomial)
that connects two points (Fig. 15.1a). Similarly, only one parabola connects a setof three
points (Fig. l5.lr). Polltnomial interpolation consists of determining the unique @ - l)th-
order polynomial that fits n data points. This polynomial then provides a formula to
compute intermediate values.

Before proceeding. we should note that MATLAB reprcsents polynomial coefficients
in a different manner than Eq. (15.1). Rather than using increasing powers of .r, it uses de-
creasing powers as in

f  ( x ) :  p l x "  I  I  p : . t '  ' + ' . .  1 1 t , ,  1 t  I  p , ,  ( 1 5 . 4

To be consistent with MATLAB. we will adont this scheme in the followins section.
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F I G U R E  I 5 . I
Exomples of nierpolot ing polynomiols: (o) f i rsl-order ( l ineor) connecfing two poinis,
{b )  secord-orde ' {ouod 'o l :6  o 'oo 'obo l i c )  connecr ing  tL ree  po in ts  ond {c )  rh i rd -order  {cub 'c l
conneci ino iour ooints.

l5 . l . l  Defermin ing Polynomiol  Coef f ic ients

A straightforward way for computing the coefficients of Eq. (15.2) is based on the fact that
n data points are required to determine the n coefficients. As in the following example, this
allows us to generate n linear algebraic equations that we can solve simultaneously for the
coefficients.

EXAMPLE 15. . l  Determin ing Polynomiol  Coef f ic ients wi th Simul toneous Equot ions

Problem Stotemeni. Suppose that we want to determine the coefficients of the parabola,

. f  (x) :  p t . t2  1 p2- \  + p l , thatpassesthroughthelast threedensi tyvaluesfromTable l5 . l :

rr  :  300 "f  (rr)  :  0.6t6

x z : 4 0 0  f ( x ) : 0 . 5 2 5

. r : :500 . f  (x ) :0 .45 '7

Each of these pairs can be substituted into Eq. (15.2) to yield a system of three equations;

0.616 : pt(30q2 + p2Q00) + p3

0.525 : p1@00)z + p2(400) + p3

0.451 : pr(500)2 -t p2600) -l pt

or in matrix form:

I  oo.ooo 3oo rl I  p, |  [  o.oro I
I  160.000 4oo t l lnz | : lo .szs]
1250.000 s00 lJ I p, J 10.4s7 |

Thus, the problem reduces to solving three simultaneous linear algebraic equations for
the three unknown coefficients. A simple MATLAB session can be used to obtain the
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solution:

> >  f o r m a t  l o n g

> >  A  -  1 9 0 0 0 0  3 t l  0  1 ; 1 6 0 0 0 0  4 0 4  I ; 2 5 0 0 0 0  5 0 0  1 l ;

> >  b  =  [ 0 . 6 r 6  4 . 5 2 5  0 . 4 5 1  ) ' ;
> > P = A \ b

0 . 0 0 0 0 0 1 1 5 0 0 0 0 0 0
- 0 . 0 0 1 7 1 s 0 0 0 0 0 0 0 0

r . 4 2 1 0 0 c t 0 0 0 0 0 0 0 0

Thus, the parabola that passes exactly through the three points is

f  ( .x)  :0 .00000115.r2 -  0.001715.r  + 1.021

This polynomial then provides a means to determine intermediate points. For example, the
value of density at a temperature of 350 oC can be calculated as

/ (350 )  : 0 .00000115 (350 )2  -  0 .0017 t5 (350 )  +  1 .027  :0 .561625

Although the approach in Example 15.1 provides an easy way to perform interpola-
tion, it has a serious deficiency. To understand this flaw, notice that the coefficient matrix
in Example l5.l has a decided structure. This can be seen clearly by expressing it ingen-
eral terms:

Coefficient rnatrices of this tbrm arc ref-eflrd to as Vctndennonde nntrices. Such ma-
trices are very ill-conditioned. That is, their solutions are very sensitive to round-offenon.
This can be illustrated by using MATLAB to compute the condition number for the coeffi-
cient matrix from Examole 15.1 as

> >  c o n d  ( A )

5 . 8 9 1 2 e + a ) 0 t - ,

This condition number, which is quite large for a 3 x 3 matrix, implies that about six digits
of the solution would be questionable. The ill-conditioning becomes even worse as the
number of simultaneous equations becomes larger.

As a consequence, there are altemative approaches that do not nranifbst rhis short-
coming. In this chapter, we will also describe two altematives tlrat are well-suited for
computer implementation: the Newton and the Lagrange polynomials. Before doing this,
however. we will first briefly review how the coefficients of the interpolating polynomial
can be estimated directlv with MAILAB's builrin functions.

l-"i -rr I I
l r . ' . t r )  l l
t ' . - l
Lxi  , r . r  I  J i\l:{ ilii }
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15.1.2 MATTAB Funct ions:  poly f  i t  d l rd potyval

Recall from Section 13.4.2, that the polyf it function can be used to perform polynomial
regression. In such applications, the number of data points is greater than the number of
coefficients being estimated. Consequently, the least-squares fit line does not necessarily
pass through any of the points, but rather follows the general trend of the data.

For the case where the number of data points equals the number of coefficients, po ly
f it performs interpolation. That is, it returns the coefficients of the polynomial that pass
directly through the data points. For example, it can be used to determine the coefficients
of the parabola that passes through the last three density values from Table 1 5.1:

> >  f o r m a t  l o n g t

> >  r :  [ 3 0 0  4 0 0  5 0 0 ] ;
> >  d e n s i t y  =  i 0 . 6 1 6  0 . 5 2 5  0 . 4 5 1 ) ;
> >  p  =  p o l y f i t  ( T ,  d e n s i t y , 2  )

O . O O O O O l l 5 O O O O I ] O  _ O . O O 1 7 1 5 O O O O O O O O  I . 0 2 ' I O O O O O T ] O O O O O

We can then use the polyval function to perform an interpolation as in

> >  d  =  p o l y v a l  ( p ,  3 5 0  )

d ,

0 . 5 6 7 6 2 5 0 0 0 0 0 0 0 0

These results agree with those obtained previously in Example l5.l with simultaneous
equations.

15.2 NEWTON INTERPOTATING POTYNOMIAT

There are a variety of alternative forms for expressing an interpolating polynomial beyond
the familiar format of Eq. (15.2). Newton's interpolating polynomial is among the most
popular and useful forms. Before presenting the general equation, we will introduce the
first- and second-order versions because of their simple visual interpretation.

15.2.1 l ineor  Interpolot ion

The simplest form of interpolation is to connect two data points with a straight line. This
technique, called linear interpolation, is depicted graphically in Fig. 15.2. Using similar
triansles.

f i(r) - f  (rt)
^  4 l

f ( x ) - f ( x t ) ( 15.,1)

which can be rearranged to yield

f r ? ) : f ( x )+
f ( x r ) -  f ( , r r ) (  1s.s)

x 2 * x l

which is the Newton linear-interpolation formula. The notation /r (-r) designates that this
is a first-order interpolating polynomial. Notice that besides representing the slope of the
line connectins the ooints. the term If(xr)* f(x')l/(x" --rr) is a finite-difference

x 2 - x l
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d

rii
t---_------- :--  

I,/
, ' -/

./
-/

, . 4

._*\ \

f(xz)

.li (r)

"f(,x r )

FIGURE T 5.2
C.phicol  depict ion of ineor inierpolof ion. The shoded oreos indiccrte the slmi lor t r iongles used
i o  der ive  ihe  Newton l lneor  in le rpo lo l ion  fo rmulo  lFq  {15 .5) ]

approximation of the first derivative {recall Eq. (a.20)1. In general, the smaller the interval

between the data points, the better the approximation. This is due to the fact that, as the

interval decreases, a continuous function will be better approximated by a straight line.

This characteristic is demonstrated in the following example'

L ineor  Interpolot ion

Problem Stotement. E,stimate the natural logarithm of 2 using linear intelpolation. First,

perform the computation by interpolating between ln I :0 and ln 6: 1.791759. Then,

repeat the procedure, but use a smaller interval liom ln I to ln 4 ( I .386294). Note that the

true value of ln 2 is 0.6931412.

Solution. We use Eq. ( 15.5) from :r1 : I to rz : 6 to give

1 . 7 9 1  7 5 e  -  0
. f i (2)  :o + f f  

(2 -  1)  :  0 '358351e

whichrepresentsanerrorof  e, :4S.3Vc.Usingthesmal ler in terval f romxl  :  I  to ; r :=4

yields

t . - r86294 -  0
l re \  :0+  f f (2  t )  :0 .4620e81

EXAMPLE 
'I5.2
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J(.;r)

2

0 5 r

FIGURE I5.3
Two lrneor interpolol ions lo esi imole ln 2 Note how the smoller inlervol provides o better
es i imote .

Thus. usirrg the shorter interval reduces the percent relative error to €t :33.3Vo. B<tth
interpolations are shown in Fig. 15.3, along with the true function.

| 5.2.2 Gluqdrotic Interpolotion

The error in Exaniple 15.2 resulted from approximating a curve with a straight line. Con-
sequently, a strategy for improving the estimate is to introduce some curvature into the line
connecting the points. If three data points are available, this can be accomplished with a
second-order polynomial (also called a quadratic polynomial or a parabola). A particularly
convcnient  lbr rn lbr  t l r is  pulpose is

l : (x)  :  b t  *  bz\  -  : r r )  - |  D:( . t  -  . r r ) (x  -  : ;z)  (15.6)

A simple procedure can be used to determine the values of the coefTicients. For b1,
Eq. (15.6.t with -r :.r l can be used to conrpLlte

b1 :  . f  ( .xy)  (15.7)

Equation (15.7) can be substituted into Eq. (15.6), which can be evaluated at r : -r2 for

, .f (x) - l '(,tr)b r : -  ( 1 5 . 8 )
"{2 - .\'l

Finally, Eqs. (15.7) and (15.8) can be substituted into Eq. (15.6), which can be evaluated at
-t : -r-.r and solved (after some algebraic rrranipulation.s) for

. f ( - t : )  -  / ( - r : )  f ( . rz)  -  l ( . r r )

h - -
1 l  -  . { 2

{.1 - .rt
(  I  5 .9 )
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Notice that, as was the case with linear interpolation, b2 still represents the slope of the
line connecting points xy and "r2. Thus, the first two terns of Eq. (15.6) are equivalent to
linear interpolation between x, and rr, as specified previously in Eq. (15.5). The last term,
b:(-r - xr)(.r -.r:2), introduces the second-ordercurvature into the formula.

Before illustrating how to use Eq. (15.6), we should examine the form of the coeffi-
cient &.,. It is very similar to the finite-difference approximation of the second derivative
introduced previously inEq. (4.27'). Thus, Eq. (15.6) is beginning to manifest a structure
that is very similar to the Taylor series expansion. That is, terms are added sequentially t0
capture increasingly higher-order curvature.

EXAMPLE 
. l 5 .3  

Quodro t i c  I n i e rpo lo t i on

Problem Stotement. Employ a second-orcler Newton polynomial to estimate ln 2 with
the same three ooints used in Example 15.2:

r l : 1  " / ( x t ) : 0

. \ z : 4  J $ ) : 1 . 3 8 6 2 9 . 1

r-r : 6 -f(.r:) : l . '791159

Solut ion.  Apply ing Eq.  (15.7)  y ie lds

b t : o

Equation ( 15.8) gives

|.386294 - 0
b 1  :  _ : 0 . 4 6 1 0 9 8 1

+ -  |

F IGURE I5 .4
The use of  quodrot ic  rnterpoot ion lo  est  mole In 2.  The l ineor  in lerpolo i ion f rom,r :  I  to  4 is
o lso inc luded for  compor ison.

| \.r)

2 f l .r)  :  In.t

Ouadratic est imate

Linear est imate
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and Eq.  (15.9)  y ie lds

1.791759 -  1.386294- 0.462098r
6 - 4 :  - 0 . 0 5 1 8 7 3 1

6 -  I

Substituting these values into Eq. (15.6) yields the quadratic formula

. fz@) :0 + 0.4620981(r  -  l )  -  0 .0-518731(x -  l ) ( : r  -  4)

which can be evaluated At ,r : 2 for fz(2) : 0.5658444, which represents a relative
error of e, : 18.47o. Thus, the curvature introduced by the quadratic formuia (Fig. 15.4)
improves the interpolation cornpared with the result obtained using straight lines in
Example 15.2 and Fig. 15.3.

| 5.2.3 Generol Form of Newfon's Interpolofing Pofynomiqfs

The preceding analysis can be generalized to fit an (zz - l)th-order polynornial to n data
points. The (n - I )th-order polynomial is

. f " _ t f )  :  b r  1 -  b z j  -  x r )  * .  .  . *  b u \  - ; r r ) ( x  -  x ) . .  . ( x  *  - t , _ r )  ( 1 5 . 1 0 )

As was done previously with linear and quadratic interpoliition, data points can be used to
evaluate the coef f ic ients b1.b2, . . . ,b , .  For  an (n -  1) th-order  polynomial ,  n  data points
a r e r e q u i r e d :  l r r , l ' ( - r r ) 1 , l x z , J Q ) 1 , . . . , [ - r , ,  f ( x , 1 1 .  W e u s e t h e s e d a t a p o i n t s a n d t h e
following eqnations to evaluate the coefficients:

b 1 : f Q 1 )

6' : .f ' [r2,.r]

fu  :  f  fv ,  xz,  x t l

:

b , ,  :  f  l x , r ,  xn -1 ,  . . . ,  " r z , , r r ]

where the bracketed tunction evaluations are finite divided differences. For exanrole. tlre
first finite divided difference is represented generally as

r ,  ,  I k i t - f ( r l )
J  l ^ i .  r i l :  -

" -t, _ _yl

The second finite divided difference.
differences, is expressed generally as

f lx;, .q, x1,l : f  [ x ; ,  .qJ  -  f  [ r i .  x r l
ri - .rt

( 1 5 . r  l )

(1s.12)

( r 5 . r 3 )

(  r -5 .14)

(  1 s .  1 5 )

which represents the difference of two first divided

( 1 5 . 1 6 )

Similarlv. the nth finite divided difference is

.\n - 
"Yl

(  r  s .17 )
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xi f(x) First Second Third

flxo, xt, x2, xlx l ';:rl it: :ti=;[] .: ..l
ii,j.':^:),a4t;'^'

r

FIGURE I5 .5
Grophicol depiction of ihe recursive noture of finite divided differences. This representotion is
,eferred to os o divided difference toble.

These differences can be used to evaluate the coefficients in Eqs. (15.11) through (15.14),
which can then be substituted into Eq. (15.10) to yield the general form of Newton's inter-
polating polynomial:

f , - rG ) : . f  ( x t )  +  ( r  -  x t ) f l x z . . r r l *  ( " r  - x r ) ( x  -  x ) f l . 4 , x2 , x1 l

+ . "  +  ( x  - x r ) ( x  - . r z ) . . . ( r  -  x n - t ) . f l x n , t r n - t , . . . , x z , x r l  ( 1 5 . 1 8 )

We should note that it is not necessary that the data points used in Eq. (15.18) be
equally spaced or that the abscissa values necessarily be in ascending order, as illustrated
in the following exarnple. Also. notice how Eqs. (15.15) through (15.17) are recursive-
that is, higher-order differences are computed by taking differences of lower-order differ-
ences (Fig. 15.5). This property will be exploited when we develop an efficient M-file in
Section 15.2.4 to implement the method.

EXAMPLE 15.4 Newton Interpolot ing Polynomiol

Problem Siotement. In Example 15.3, data points at xt : l , xz:4, and ,r3 = ( 1ry91s
used to estimate ln 2 with a parabola. Now, adding a fourth point [xa : 5; ,f (.r,{) =
L6094381, estimate ln 2 with a third-order Newton's interpolating polynomial.

Solution. The third-order polynomial, Eq. (15.10) with n : 4, is

f z@)  :  b r  *  bz@ -  x r )  *  bz?  - x r ) ( , r  -  x )  *  bq (x  - , r r ) ( x  - x2 ) ( x  - x3 )

The first divided differences for the problem ale [Eq. (15.15)]

1.386294 - O
" f [ " r : . r r ]  

:  - -  
4  _ ,  

-  : 0 . 4 6 2 0 9 8 1

r.791159 - r.386294
f  [4,  x2]:

f r . . .  - _  l  -
. , /  L ^ 4 1  ^ - { l  -

6 - 4

1.609438 - 1.19r '759

:0 .2027326

:0.1823216
5 - 6
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The second divided differences are [Eq. (15.16)]

o.2021326 - 0.4620981
/ [ . t 3 ,  . t 2 ,  - r 1 ]  :

. f  fxa,  x3,  x2) :

6 - l

0.1823216 - 0.2027326

:  -0 .0518731 I

:  -0.02041100
5 - 4

The third divided diff 'erence is [Eq. (15.17) with n :4]

J ' [x+ ,  r t .  - t2 ,  x1 ]  :
-0.02041 r00 - (-0.05 1873 1 l )

J -  |

Thus. the divided difference table is

f (xi)

: 0.007865529

j

4
6
5

0
386294
791759
609438

a 462A9Bt
0.2427326
o  l 8 2 3 2 1 6

-cc5 lBZ3 i l  00a786552a
-0  02041  r00

The resul ts  for  / (xr ) ,  f [xz,x t ] , . f [x t ,xz,x1] ,  and f lxq,xz,x2, . t l l  represent  the
coefficients b1, b2, b3, and b',, respectively, of Eq. (l-5.10). Thus, the interpolating cubic is

- f : ( r )  : 0  +  0 .4620981 (x  -  l )  -  0 .0518731 l ( " t  -  l ) ( x  -  4 )
+ 0.007865529(x - l)(x - 4)(r - 6)

which can be used to evaluate .fzQ) :0.6287686, which represents a relative error of
€t :9.3Vo. The complete cubic polynomial is shown in Fig. 15.6.

FIGURE I5 .6
The use of cubic interoolof ion lo est imote n 2

f(x)

z
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15,2.4 MATTAB M-fi le: Newtinr

It is straightforward to develop an M-file to implement Newton interpolation. As in Fig. 15.7,
the first step is to compute the finite divided differences and store them in an array. The dif-
ferences are then used in conjunction with Eq. (15.18) to per-form the interpolation.

An example of a session using the function would be to duplicate the calculation we
just performed in Exarnple 15.3:

> >  f o r m . e t  L o n g t

> >  x  =  t l  4  6  5 l

FIGURE I5.7
An M f l  e lo imp ement Newton inferpolot ion.

f u n c t i o n  y i n t  =  N e w t i n t ( x , y , x x )
%  N e w t i n t :  I ' J e w t o n  i n t e r p o l a l - i n g  p o l y n o m i a l

?  y i n t  =  l l e w t r n t ( x , y , x x ) :  U s e s  a n  ( n  -  1 ) - o r d e r  N e w t o n
" o  i n r  e r p o f d t r n g  p o l y n r m i a l  b o s e d  o r  n  d a l a  p o i n r s  , x ,  y l

%  t o  d e t e r m i n e  a  v a f u e  o f  t h e  d e p e n d e n t  v a r i a b l e  l y r n t )

%  a t  a  g i v e n  v a l u e  o f  t h e  i n d e p e n d e n c  v a r i a b l e ,  x x .

%  i n p u t :
%  x -
z  v -
%  x x =
z
?  o u t p u t
%  y i n t

! }  . o m n r l  e  r l r e  f i n i r - e  d i v i d e d  d i f f e r e n c e s  i n  t h e  f o r m  o f  a
%  d i f f e r e n c e  t a b l e
n  =  l e n g t h ( x ) ;
:  r  1 F r  i f n l v , - : -  F r - ^ 1  !  |  s  r l i  z  m r  c  h o  c a m o  e t n t  h r i :  6 n c l

b  =  z e r o s  ( n , n )  ;
?  a s s i g n  d e p e n d e n L  v a r i a b l e s  t o  t h e  f i r s t  c o l u m n  o f  b .
b ( : , 1 )  =  y ( : ) ;  %  t h e  ( : )  e n s u r : e s  t h a t  y  i s  a  c o l u m n  v e c t o r
f o r  j  -  2 , n

f o r  i  =  1 : n  j + 1 -

b ( i , j )  -  ( b ( i + 1 , j - 1 ) - b ( i , j - 1 ) ) / ( x ( i + j - r ) - x ( i ) )  ;
end

end
?  u s e  L h e  f i n i t e  d i v i d e d  d i f f e r e n c e s  t o  i n L e r p o l a t e
1. ts  ,  1  -

y i n t  =  b ( 1 , i ) ;
f o r  j  =  1 ; n - 1

x r  x t " { x x  x ( j r ) ;
y i n t  =  y r n t + b ( 1 ,  j + 1 )  * x t ;

end

: - . l a n o r  1 F r  F  v a  '  '  
r h ' c

r . l a n o n r l a n f  r r : r i  : h - l  o

v a l u e  o f  i n d e p e n d e n t  v a r i a b l e  a t  w h i c h
I n t r l y n ^  a - ' o -  ; -  f d f  C - I a L e O

i

=  i n i e r p o l a t e d  v a l u e  o f  d e p e n d e n t  v a r i a b l e
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> >  y  =  t o S f  ( x ) ;
> >  N e w t i n t ( x , y , 2 )

0 . 6 2 8 7 6 8 5 " t 8 9 0 8 4 1

I5.3 TAGRANGE INTERPOTATING POTYNOMIAT

Suppose we formulate a linear interpolating polynomial as the weighted average of the two
values that we are connecting by a straight line:

. / ( . r)  :  Lt  J @r) - t  Lzf Qz) ( r s . r9 )
where the Z's are the weighting coefficients. It is logical that the first weighting coefficient
is the straight line that is equal to I at x1 and 0 at x2:

x t - x 2

Similarly, the second coefficient is the straight l ine that is equal to I at "r2 and 0 at,r1 :

r  t r - t r I

12  -  . r l

Substituting these coefticients into Eq. 15.19 yields the straight l ine that connects the
points (F ig.  15.8) :

. .  . r - X 2  ^  . \ ' - . X r

"/r (x) : ' 
J 6) -l J',6) (1s.20)

x l - X 2  X 2 - X t

where the nomenclatnre fi(l) designates that this is a iirst-order polynomial. Equa-
tion (15.20) is refered to as the Linear Lagrange interpolating polynomial.

The same strategy can be employed to fit a parabola through three points. For this case
three parabolas would be used with each one passing through one of the points and equal-
ing zero at the other two. Their sum would then represent the unique parabola that connects
the three points. Such a second-order Lagrange interpolating polynomial can be written as

A t . t  -
( . r - r r ) ( . r - x r )

. . - -  . J r i l r - r

( x - x 1 ) ( x - x 3 )
-  j  t t 2 t
( . { :  -  x r ) ( . r :  - - r t )(x r

(.t

xz)( - r l  -  x : )

+
- . \ ' r ) ( r  - . 1 r )

/ ,  - .  \- - . , - = 1 . /  r r l , (  r  5 . 2 1 )
( r 3 - x 1 ) ( x j - r 2 )

Not i ce l row the f l r s t t e rn r i sequa l t o / ( . r 1 )a t11  and i sequa l t oze roa t . r2and . r - l .Theo the r
terms work in a similar fashion.

Both the first- and second-order versions as well as higher-order Lagrange polynomi-
als can be represented concisely as

(1s.22)
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Lt fU)

FIGURE I5.8
A v isuo l  dep ic t ion  o f  the  ro f iono e  beh lnd  Logronge in te rpo lo i ing  po lynomio ls .  The f igure  shows
t h e f i r s i  o r d e r c o s e  E o c h o f  t h e t r " o l e r m s o [  E q  ( 1 5 2 0 )  p o s s e s t h r o u o h o n e o f  l h e p o i n t s o n d
is zero ot the other. The summoiion of ihe two ferms musi, iherefore, b"e the unique stroiqhl l ine
thot connects ihe h^/o pornts.

where

t l  _ -
-  r  - f l

L ; ( . r ) :  |  |  -'  
!  I  y .  _  |  .
j = l  

^ 1  r /

. I F I

where ,r : the number of data points and fl designates the "product of."

( 15 23)

EXAMPLE 
, |5.5 

Logronge Interpolot ing Polynomiol

Problem Stotement. Use a Lagrange interpolating polynomial of the first and second
order to evaluate the density of unused motor oil at T : 15 'C based on the following data:

r r  : 0  f ( x r ) : 3 . 8 5

r : : 2 0  l ( . r : ) : 0 . g t l O

. { : : 4 0  f ( r t ) : 0 . 2 1 2

Solution. The flrst-order polynomial tEq. (15.20)l can be used to obtain the estimateal
, r  :  I 5 :

t 5 - 2 0  t 5 - o
f r  ( . r ) : ' "  -  

- 1 . 8 5 + ' "  " 0 . 8 0 0 : 1 . 5 6 2 5
'  0 - 2 0  t 0 - 0
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In a similar fashion, the second-order polynomial is developed as [Eq. ( 15.21)]

-  ( 1 5 - 2 0 ) t l 5 - 4 0 . r ^ ^ _  ( 1 5 - 0 ) ( 1 5 - 4 0 ) ^ ^ ^ ^
/ . { r ) :  - i . 6 1  +  - t ] . 6 t . , U

(0 - 20)(0 - 40) (20 - 0)(20 - 40)

( l 5 - O ) f l 5 - 2 0 ) . , _ , _
+  U . 2 1 2 : 1 . J 3 1 6 8 7 5

( 4 0 - 0 ) ( 4 0 - 2 0 )

| 5.3.1 MATTAB M-file: Lasranse

It is straightforward to develop an M-file based on Eqs. (15.22) and (15.23). As in
Fig. 15.9, the function is passed two vectors containing the independent (x) and the
dependent (y) variables. It is also passed the value of the independent variable where you
want to interpolate (xx). The order of the polynomial is based on the length of the x vector
that is passed. If n values are passed, an (n - 1)th order polynomial is fit.

FIGURE I5.9
An MJile lo implement Logronge inlerpolction

t r r c c i o n  y  n L  -  L a g " 6 n g e r x , \ , x x l

Z  L a g r a n g e :  L a g r a n g e  i n t e r p o l a t i n g r  p o l y n o m i a l

2  y i n t  =  L a g r : a n g e ( x , y , x x )  :  U s e s  a n  ( n  -  1 ) - o r d e r

?  L a g r a n g e  i n L e r p o l a t i n g  p o l y n o m i a l  b a s e d  o n  n  d a t a  p o i n t s

%  t o  d e t e r m i n e  a  v a l u e  o f  t h e  d e p e n d e n t  v a r i a b l e  ( y i n t )  a t

Z  a  g i v e n  v a l u e  o f  t h e  i n d e p e n d e n t  v a r i a b l e ,  x x .

Z  i n p u t :
Z  x  -  i n d e p e n d e n t  v a r i a b l e

%  y =  d e P e n d e n t v a r i a b l e
%  x x  =  v a l u e  o f  i n d e p e n d e n t  v a r i a b l e  a t  w h l c h  t h e
%  i n t e r : p o l a t i o n  i s  c a l c u l a t e d
?  o u t p u t :
?  y i n t  =  i n t e r p o l a t e d  v a l u e  o f  d e p e n d e n c  v a r i a b l e

n  =  l e n q t h ( x ) ;
i f  l e n q t h ( y ) - = n ,  e r r o r ( ' x  a n d  y  m u s t  b e  s a m e  l e n g t h ' ) ;  e n d
-  _  n .

f o r :  i  =  1 : n

P r o d u c e  -  I ' i  ;
f o r  j  =  1 ; n

i f  i  - =  i

p r o d u c t  =  p r o d u c t *  ( x x - x ( : )  )  /  ( x ( i )  - x ( j )  )  ;
end

end
s  =  s + p r c , d u c t ;

e n d
y i n t  =  s ;
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An example of a session using the function would be to predict the
I atm pressure at a temperature of 15 "C based on the first lour values
Because four values are passed to the function, a third-order polynomial
mented by the r-aqrange function to gile:

> >  f o r m a t  l o n g r

> > T = t - 4 0 0 2 4 5 4 1 ;

> >  d  =  1 r . 5 2  1 . 2 9  i . 2  t . 0 9 1 ;
> >  d e n s i t Y  -  L a Q f  r a n g e  ( T ,  d ,  1 5  )

o - n s  i  I  \

I  . 2 2 I I 2 B  4 1  2 2 2 2 2  2

I5.4 INVERSE INTERPOLATION

density of air at
from Table 15.1.
would be imple-

As the nomenclature implies, the .f ('.r) and.t values in most interpolation contexts are the
dependent and independent variables, respectively. As a consequence, the values of the
r's are typically unilbrmly spaced. A simple example is a table of values derived for the
tunc t i on  f ( r ) :  l / x :

2
0 5

3
0  3 3 3 3

x

f@)
4

0 2 5
5

o 2
6

0 . 1 6 6 7
7

0 . t  4 2 9

Now suppose that you must use the same data, but you are given a value for ./(r) and
must determine the corresponding value of x. For instance, for the data above, suppose that
you were asked to determine the value of I that corresponded to l (-r) : 0.3. For this case,
because the lunction is available and easy to manipulate, the correct answer can be deter-
mined d i rect l )  &S -{  :  110.3 :3.3333.

Such a problem is called inverse interpolatiort For a rnore conrplicated case, you
might be tempted to switch the /(;r) and.r values [i.e.. merely plot x versus /(x)] and use
an approach like Newton or Lagrange interpolation to determine the result. Unfortunately,
when you reverse the variables, there is no guarantee that the values along the new abscissa
[the /(.r)'s] will be evenly spaced. In fact. in many cases, the values will be "telescoped."
That is, they will have the appearance of a logarithmic scale with some adjacent points
bunched together and others spread out widely. For example, for /(r) : l lx the result is

f (x)
x

o  t 4 2 9
7

o 1667
6

0 2  4 2 5
5 4

0 3 3 3 3  0 5
3 2

Such nonunitbrm spacing on the abscissa often leads to oscillations in the resulting in-
terpolating polynomial. This can occur even for lower-order polynomials. An alternative
strategy is to fit an nth-order interpolating polynomial, /, (r), to the original data [i.e., with

f (r) versus .rl. In most cases, because the.r's are evenly spaced, this polynomial will not
be ill-conditioned. The answer to your problem then amounts to finding the value of .r that
makes this polynomial equal to the given /(,r). Thus. the interpolation problem reduces to
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For example, for the problern just outlined, a simple approach would be to fit a qua-
dratic polynomial to the three points: (2, 0.5). (3, 0.3333), and (4, 0.25). The resr.rlt would be

/ : ( r )  : 0 . 0 4 1 6 6 7 r r  -  0 . 3 7 5 r  +  1 . 0 8 3 3 : l

The answer to the inverse interpolation problem of finding the .r corresponding to

l (.r) : 0.3 would therelbre invol'r,e determining the root of

0.3 :  0 .0416 6 '7 12 -  0.315x + 1 .08333

For this simple case, the quadratic fbrmula can be used to calculate

0.375 +
:

3.2958422(0.041667)

Thus, the second root, 3.296, is a good approximation of the true value of 3.333. If addi-
tional accuracy were desired, a third- or tburth-order polynomial along with one of the
root-location methods from Chaps. 5 or 6 couid be employed.

I5.5 EXTRAPOTATION AND OSCITLATIONS
Before leaving this chapter, there are twcl issues related to polynornial interpolation that
must be addressed. These are extrapolation and oscillations.

15.5.1 Extropolof ion

Ertapolation is the process of estimating a value of ./ (,r) that lies outside the range of the
known base points,  r r , - r2, . . . . . t , , .  As depicted in  F ig.  15.  10,  the open-ended nature of

.f (x)

F I G U R E  I 5 . I O
lllustrolion of the possible divergence of on extropoloted prediction. The extropolofion is bosed
on fittinq o porobolo through thL first three known poinfs

, .  In te rpo la t ion  . 'Ex t rapo la t ion-

r, Extrapolat ion
r- of interpolat i
I
I  01  t n te roo la t t no
l .  po l ynom ia l
I
I
I
I
I
I
t >
l " r

(-0.37s)2 -  4Q.041661)0.78333 5.704158
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extrapolation represents a step into the unknown because the process extends the curve
beyond the known region. As such, the true curve could easily diverge liom the prediction.
Extreme care should, therefore, be exercised whenever a case arises where one mu$
extrapolate.

EXAMPLE 15 .6  Donge rs  o f  Ex t ropo lo l i on

Problem Stqtement. This example is patterned after one originally developed by Forsythe,
Malcolm, and Moler.r The population in millions of the United States from 1920 to 2000 can
be tabulated as

Dote )S2O I 930 l94O I 950 I 960 l97O I 980 I 990 2000
P o p u l a l i o n  1 0 6 4 6  1 2 3 . 0 8  1 3 2 1 2  1 5 2 2 7  t B A 6 7  2 A 5 0 5  2 2 7 2 3  2 4 9 4 6  2 8 1 4 2

Fit a seventh-order polynomial to the first 8 points (1920 to 1990). Use it to cornpute the
population in 2000 by extrapolation and compare your prediction with the actual result.

Solution. First, the data can be entered as

> >  t  =  L \ 9 2 4 : 1 0 : 1 9 9 0 1 ;
> >  p o p  =  1 1 0 5 . 4 5  I 2 3 . 0 8  1 3 2 . I 2  L 5 2 . 2 7  1 8 0 . 6 1  2 0 5 . 0 5  2 2 7 . 2 3

2 4 a  .  r 6 l  ;

The polyf it function can be used to compute the coefficients

> >  p  -  p o l y f r t  ( t ,  p o p , 7  )

However, when this is implemented. the following message is displayed:

V J a r n l n c J :  P o l y n o m i a l  i s  b a d L y  c o n d i l - i o n e d .  R e m o v e  r e p e a t e d  d a t a

p o ' n t  s  o r  r r 2 l  c o n t e r  i n o  d r i d  s c d r  j n g  d s  d e s c t  i b e o  i n  H E L D

P O L Y F I T .

We can follow MATLAB's suggestion by scaling and centering the data values as in

> >  r s  =  ( r  -  1 9 5 5 ) / 3 5 ;

Now po11,f it works without an error message:

r . ' >  p  =  p o l y f  i t  ( t s , p o p , 1 ) ;

We can then use the polynomial coefficients along with the Fo1yr731 function to predict
fhe population in 2000 as

: ' >  p o l y v a l  ( p ,  ( 2 0 0 0 - f  9 5 5 ) i  3 5 )

1 7 5 . 0 8 0 0

which is much lower that the true value of 281 .42.Insight into the problem can be gained
by generating a plot of the data and the polynomial,

> >  t t  =  l i n s p a c e  ( I 9 2 A , 2 0 0 A )  ;
> >  p p  =  p o l y v a l  ( p ,  ( t t - 1 9 5 5 )  / 3 5 ) ;
> ,  n l o i  ( r . { ) o D . , o , , t t , p p )

E}
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250

200

150

1920 1930 1940 1950 1960 1970 1980 1990 2000

F IGURE I5 . I  I
Use oto seve^t l 'o 'de 'poly^oniot  ro r ro i .e  o predict ion o[  U.S.  pooulo on , "  2OOO boseo on
doto i rom l92O fhrouqh 1990.

,,.*1;;?,[i;1]ii*:;:;*::TJ:il:1Jl:J,",'n::ilT::;:il#i"l'":1f:',#fi"y,
extrapolation, the seventh-order polynomial plunges to the erioneous prediction in 2000.

|  5.5.2 Oscil lot ions

Although "more is better" in many contexts, it is absolutely not true for polynomial inter-
polation. Higher-order polynomials tend to be very ill-conditioned-that is, they tend to be
highly sensitive to round-off eror. The following example illustrates this point nicely.

EXAMPLE l5.Z Dongers of  Higher-Order  Polynomiol  In terpolot ion

Problem Stotement. In 1901, Carl Runge published a study on the dangers of higher-
order polynomial interpolation. He looked at the following simple-looking function:

I
t l l t :r  \ - - '  

l  * 2 5 x 2
(t5.24)

which is now called Runge's function. He took equidistantly spaced data points from this
function over the interval t-l, ll. He then used interpolating polynomials of increasing
order and found that as he took more points, the polynomials and the original curve differed
considerably. Further, the situation deteriorated greatly as the order was increased. Dupli-
cate Runge's result by using the polyf it and polyval functions to fit fourth- and tenth-
order polynomials to 5 and 1l equally spaced points generated with Eq. (15.2$. Create

r\
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t 5 . l  (

x

"f(r)

(a) C
al
fc

/tr\ P

Solution. The five equally spaced data points can be generated as in

> >  x  -  l i n s p a c e ( . - I , L , 5 ) ;

> >  Y  =  I . / ( I + 2 5 * x . ^ 2 ) ;

Next, a more finally spaced vector of rx values can be computed so that we can create a
snooth plot of the results:

> >  x x  =  l i n s p a c e ( - 1 , 1 ) ;

Recall that l inspace automatically creates 100 points if the desired number of points is
not specified. The po ly f r t function can be used to generate the coefficients of the founh-
order polynomial, and the polval function can be used to generate the polynomial inter-
polation at the finely spaced values of xx:

> >  p  =  p o 1 1 ' f  i t  ( x , y  ,  4 )  ;
> >  1 . 4  =  p o l y v a l  ( p ,  x x )  ;

Finally. we can generate values for Runge's function itself and plot them along with the
polynomial fit and the sampled data:

> >  y r  -  I . i  ( 1 + 2 5 * x x . " 2 ) ;
> >  p l o t  ( x , y , '  o ' , x x , y 4 , x x , y t : , '  - - '  )

As in Fig. 15.12, the polynomial does a poor job of following Runge's tunction.
Continuing with the analysis. the tenth-order polynomial can be generated and plotted

with

l i n s p a c e (  1 , 1 , 1 1 ) ;
I  .  /  ( I + 2 5 * x .  ^ 2 )  ;

FIGURE I5 . I2
Cornporison o[ Runges funct]on {doshed line) wiih o fourth-order polynomiol fit to 5 poinis
somp leo  l r om  l ne  i unc l r on .

> >  X  =

> >  y  =

-0.2

-0.4

/ t
I t

l !
t ;
t t| ,

i

r \

r \
t \r \
i \

t a \
tta

- 1 -  0 .5
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a

-0.5
- 1 - n F

F I G U R E  I 5 . I 3
Comporison of, Runge's functlon {doshed l ine) with o tenih-order polynomiol f i t  to I  I  points
somoled from lhe lunction

> >  p  =  p o l y f r t  ( x , y , 1 0 )  ;
> >  y 1  0  =  p o l y v a l  (  p ,  x x  )  ;
> >  p l o t ( x , y , ' o ' , x x , y 1 0 , x x , y r , '  - '  )

As in Fig. 15.13, the fit has gotten even worse, particularly at the ends of the interval !
Although there may be certain contexts where higher-order polynomials are necessary,

they are usually to be avoided. In most engineering and scientific contexts, lower-order
polynomials of the type described in this chapter can be used effectively to capture the
curvins trends of data without sufferins from oscillations.

0.5

PROBTEMS

Given the data l5. l  Given the data

2 . 5
7

3
6 5

5 r
o "f (r)

I
4 7 5

5
) 9 . 7 5

3
5 . 2 5

6
36

Calculate /i3.4) using Newton's interpolating polynomi-

als oforder I through 3. Choose the sequence ofthe points

for your estimates to attain the best possible accuracy.
-  a L ^  r  ^ _ - ^ - _ ^  - ^ l . , n n m i n l

Calculate /(4) using Newton's interpolating polynomials of

order I through 4. Choose your base points to attain good

accuracy. What do your results indicate regarding the order
ofthe oolvnomial used to generate the data in the table?
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15.3 Repeat Prob. 15.2 using the Lagrange polynomial of
order I through 3.
15.,1 Table P14.5 l ists values for dissolved oxygen concen-
tration in water as a function of temoerature and chloride
concentratlon.
(a) Use quadratic and cubic interpolation to determine the

oxygen concentrat ion for I  :  12 'C and c:10 glL.
(tl) Use linear interpolation to determine the oxygen con-

centration for I : 12 "C and c : 15 glL.
(c) Repeat (b) but use quadratic interpolation.
15.5 Employ inverse interpolation using a cubic interpolat-
ing polynomial and bisection to determine the value of x that
corresponds to /(-t) : 1.6 for the following tabulated data:

best estimate? Employ this best estimate and inverse inten
polation to determine thc conesponding temperature.

T ' K
Densiry

kglm3

204 254 300 350 404 450
\  708 I  367 I  r  39 0.961 0 854 0 /59

15.9 Ohm's law states that the voltage drop V across an
ideal resistor is linearly proportional to the currcnt I flowing
through the resister as in V : I R, where R is the resistance.
However, real resistors may not always obey Ohm's law.
Suppose that you performed some very prccise experiments
to measure the voltage drop and corresponding curent for a
rcsistor. The following results suggest a curvilinear relation-
ship rather than the straight line represented by Ohm's law:. r 1 2

f ( x )  3 6  l B
2 , 4 (

1 2  0 9  0 7 2
6 7
I  5  A . 5 t  4 2 9

t

v
- 2  - t
637 96 5

- 0 5  0 5  t  
* " ;

- 2 4 5  2 0 5  9 6 5  6 3 7

r 0 1
J@)  0  0 . s

2 3
0 B  0 9

15.6 Employ inverse interpolation to determine the value of
r that coresponds to l (-t) : 0.93 for the following tabu-
lated data: To quantify this relationship, a curve must be fit to the data.

Because of mcasurcmcnt error, regression would typically
be the preferred method of curvc litting fbr analyzing such
experimental data. However, the smoothness of the relation-
ship, as well as the precision of the experimental methods,
suggests that interpolation might be appropriate. Use a fifth-
order interpolating polynornial to fit the data and compute V
f o r  i  :  0 . 1 0 .
15.10 Bessel functions often arise in advanced engineering
analyses such as the study of electric fields. Here are some
selcctcd values lbr the zero-order Bessel function ofthe first
kind

4 5
o  9 4 l t 7 6  0  9 6 t  5 3 8

Note that the values in the table were gencrated with the
function f (x) : x2 I 0 + x2).
(a) Determine the correct value analytically.
(b) Use quadratic interpolation and the quadratic formula to

determine the value numerically.
(c) Use cubic interpolation and bisection to determine thc

value numerically.
15.7 Use the portion of the given steam table for super-
heated water at 200 MPa to tind (a) the conesponding
entropy s for a specific volume u of 0. I l8 with linear inter-
polation, (b) the same coffesponding entropy using qua-
dratic interpolation, and (c) the volume corresponding to an
entropy of 6.45 using inverse interpolation.

Estimate "/1 (2. I ) using third-, and fourth-order interpolating
polynomials. Determine the percent relative enor for each
case based on the true value, which can be determined with
MATLAB's bui lr in tunction bessel j .

15.11 Repeat Example 15.6 but using tirst-, second-, third-,
and fourth-ordcr interpolating polynomials to predict the
population in 2000 based on the most recent data. That is, for
the linear prediction use the data from I 980 and I 990, for the
quadratic prediction use the data from I 970, I 980, and I 990,
and so on. Which approach yields the best result?
15.12 The saturation concentration of dissolved oxygen in
water as a function of temperature and chloride concentra-
t ion is l isted in Table Pl5. l2. Use intemolation to estimate

x  I B
, t ' ( r )  0 .58 l5

2 0  2 . 2
o 5767 0 5560

2 4  2 6
4 5242 0 4/08

u, m3/kg
s, kJl(kg K)

o to377
6  4 1 4 7

0 i l  144
6 5453

4  12547
6 7664

l5.lt The following data for the density of nitrogen gas ver-
sus temperature comes from a table that was measured with
high precision. Use firsl through fifth-order polynomials to
estimate the density at a temperature of 330 K. What is your
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I nfU Pt5. l2 Dissolved oxygen concentrotion in woter os o function of iemperoture {"C) ond chloride

I  _ 
concentrot ion (g/L) .

f Dissolved Oxygen (mglt) for Temperoture ("C) ond

I 
Concentrotion of Chloride (g/Ll

l t , " a  s = O g l L  c = l } g / L  c = 2 O g / L

I
I  

' ,  1 4 6  l ? 9  1 1 4

I r: t? 3 lJt '33u
I l; '3A, 3?9 93!
I  2 5  B t 6  7  4 6  6 7 3
I  ; 0  7 5 6  6 8 5  6 2 A
I

I 
the clissolve,l oxygcn levcl for ?': 18'C with chloride : 

l-- n
I  Iosrr-.
I 15.13 For thc data in Table P15.12, use polynomial inter- m-----lT

I EU:-',;-*':::.iliH;i:J^"Ti::#T?.,*"H"t; /"/ 
" 

/ i
| r h e e a s e r , l h e l . c c h | o r . i d e c o l l c c n t r a t i o n i s e q u a | t o l 0 g / L . U s e J , # |

I  f f ; :ul.ro 
esrimare rhe di:solvcd o\yscn conce-nrrarirrn / fo 

_ _+

I  
lS.U Thc.speci l ' ic rolunre ol 'u :upcrl icrte(l  steanr is l istct l  

T

I ;;:'.',ll:l*,iffiiil:temrcraturcs 
Forexampre at a I

I  F rcuRE Prs . l s

I t "t /oo 72.) z*a 7(;a 7Ba
I  u , l t3 / lb -  a  aa-7  a  l2 t14  a  l4060 a  l i5o9  c - r  16613

l t a b u l a t e c I , a p o r t i o n o l ' w h i c h i s g i v e n i n T a b l e P l 5 . 1 5 . I f a :
I ^ 1.6 and h : 14, use a third-order interpolating polynomiat to

I .D.t:tj'Tltt 
I at 

.r 
: 750 'F 

compufe o- at it depth I (i rl beiou' thc corner of a rectangu-

J 
15'15 The 

.venl11t 
\tre\s,"- under thc c.rncr of a rectangu- lar footing that is sub.iect to a total ]oad of 100 t (metric

l I r r a r e a : t r b j c c t e d | o l u n i | t r t . t t t l r l a t J t r | ' i n 1 c n s i t . r r 7 i r e i r e n b r
L , ' . - ' , - . ' . - ' - ; : ' " * " ' . " "  

' - : ' '  " ' ' "  "  t t r r r s ) . E r p r e s s ) o u r . t n s $ c r i n ( o n n e s p e r s q u a r e n l c t c r . N ( ) t c
I  the  ro lu t ion  o l  Bous : incsq 's  equat ion :
I 

'  inat 4 ts cquat to Inc tol lo per area.

q I  z*nJ.2 +-,7 + t  r ]  + n2 +2
J ; r  I t r r : + n : i l + m 2 n 2 m 2 + n 2 + l  T A B I E P l 5 . l 5

L

t t  = 1.2 n = 1 . 4 n = 1 . 6-si. (#.+#)l
c 42a26
4.45733
0  08323
0  t 0 6 3 t
c  1 2 6 2 6
0  14309
0 I  5203
0 I  6843

0 a3aa7
0 a5Bq4
0.0856 r
0  t 0 9 4 1
0 1 3003
o . 1 4 7  4 9
0 1 6 1 9 9
0  r z 3 B 9

0 03058
a a59q4
a aB709
0 l ] t 3 5
a .13241
a . l 5 a 2 7
0  1 6 5 1  5
4 . 1 7 7 3 9

0 l
o 2
0 3
a 4
0 5
0 6
a 7
O B

Bccau.sc this cquation i .s incorrvenient fo solye nranually,,  i t
has been reformulated as

o- -- t1.f-\nt,  n)

where.f(rrr.  n) is cal led the inf luencc valut-.  and lr and rr are
dirnensionless rat ios, with nt :  al:  and rr :  b/;  and a and
b are defined in Fis. Pl5. l-5. The inf lucnce value is then
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15.16 You measure the voltage drop Vacross a resistor for a
number of ditl'erent values of current L The results are

TABTE P I 5. | 9 Temperotures ("C) ot vorious points
on o squore heoted plote.

x = O  x = 2  x = 4  x = 6  x = 8
4 2 5
-o.45

4 7 5 1 .2,5
a 7 0

t 5
] B B

2 0
6 0 " y = O  1 0 0 0 0

y  = 2  8 5  0 0
t = 4  2 0 0 0
t  = 6 s5.00
J = 8 40.00

48 .90  38  43  35  03
38.78 30 39 27.07
35.00 30 00 25.00

90 00 B0 00 70.04 60 00
64.49 5 3.50 48 I  5  50 00

Use first- through fourth-order polynomial interpolation to
estimate the voltage drop tbr i: 1.15. Interpret your results.
| 5. I 7 The current in a wire is measured with great precision
as a function of time:

t  a  0 1 2 5 0  0 2 5 0 0  0 3 2 5 0  0 . 5 0 0 0
t  0  6 2 4  7 7 5  4 . 8 5  0 0 0 0 0

Determine ia l t :0 .23 .
l5.llJ The acceleration due to gravity at an altitude y above
the surface of the earth is given by

!, m 0 30,000 60,000 90 000 120,000
g,  m/s2 9 8100 9 7487 9.6879 9 6278 9 568'2

cornpute g ar -y : -55,000 m.

l-i. 19 Temperatures are measured at various points on a
heated plate (Table P15.19). Estimate the temperature at
(a ) . r  :  4 ,  ) '  :  3 .2 ,and (b )  r  :  4 .3 .  y  :  2 ;7 .
15.20 Use the portion of the given stearn table for super-
heated HrO at 200 MPa to (a) tind the conesponding
entropy s for a specific volurne u of 0.108 mi/kg with linear
interpolation, (b) find the same corresponding entropy usrng
quadratic interpolation, and (c) find the volume conespond.
ir-rg to an entropy of 6.6 using inverse interpolation.

40 00
30 00
20 00

u (m3lkg)
s (kJlke.K)

a. |  144 0 . r25 ;
6.5453 6.7664

0  14377
6 . 4 1 4 7
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CHAPTER OBJECTIVES
The primary objective of this chapter is to introduce you to splines. Specific objectives
and topics covered are

. Understanding that splines minimize oscillations by fitting lower-order
polynomials to data in a piecewise fashion.

. Knowing how to develop code to perform a table lookup.
o Recognizing why cubic polynomials are preferable to quadratic and higher-order

splines.
. Understanding the conditions that underlie a cubic spline fit.
. Understanding the differences between natural, clamped, and not-a-knot end

conditions.
o Knowing how to fit a spline to data with MATLAB's builrin functions.
' Understanding how mr.rltidimensional interpolation is implemented with MATLAB.

I6.I INTRODUCTION TO SPLINEs

ln Chap. 15 (n - l)th-order polynomials were used to interpolate between n data points.
For example, for eight points, we can derive a perfect seventh-order polynomial. This
curve would capture all the meanderings (at least up to and including seventh derivatives)
suggested by the points. However, there are cases where these functions can lead to erro-
neous results because of round-off error and oscillations. An alternative approach is to
apply lower-order polynomials in a piecewise fashion to subsets of data points. Such con-
necting polynomials are called spline functions.

For example, third-order curves employed to connect each pair of data points are
called cubic spl.ines. These functions can be constructed so that the connections between
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F I G U R E  I 6 . I
A visuol representotion of o situotion where spl ines ore superior to higher-order interpolot ing
polynomiols. The funci ion to be f i t  undergoes on obrupt increose ol -r :  O. Porls (o) through (c)
ind ico te  tho t  the  obrupt  chonge induces  osc i l lo t ions  in  in te rpo lo i ing  po lynomlo ls .  ln  cont ros t ,
becouse i t  is l i rnited to strcigl-Lt- l ine connections, o l ineor sp ine {d) provides o much more
occeolobJe coproximotron.

adjacent cubic equations are visually smooth. On the surface, it would seem that the third-
order approximation of the splines would be inferior to the seventh-order expression. You
might wonder why a spline would ever be preferable.

Figure 16.1 illustrates a situation where a spline performs better than a higher-order
polynomial. This is the case where a function is generally smooth but undergoes an abrupt
change somewhere along the region of interest. The step increase depicted in Fig. 16.1 is
an extreme example of such a change and serves to illustrate the point.

Figure 16.la through c illustrates how higher-order polynomials tend to swing through
wild oscillations in the vicinity of an abrupt change. In contrast, the spline also connects
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FIGURE I6 .2
T[e orc l t ing technique of  ls ing o spl ine lo  orow . 'nooh c l rue.  l l  ro lg-  o ser ies of  ponis \ot ice
how o l  t e  end  po in l s  l [ e  sp l i ne  s t ro igh -ens  ou i .  

- [ i '  
i s  <o l  ed  o ' "o ' u ro l  sp ine

r6.2

minimum. As such, the spline usually provides a superior approximation of the behavior of
functions that have local, abrupt changes.

The concept of the spline originated from the drafting technique of using a thin, flexi-
ble strip (called a spline) to draw smooth curves through a set of points. The process is de-
picted in Fig. I 6.2 for a series of five pins (data points). In this technique, the drafter places
paper over a wooden board and hammers nails or pins into the paper (and board) at the lo-
cation of the data points. A smooth cubic curve results from interweaving the strip between
the pins. Hence, the name "cubic spline" has been adopted for polynomials of this type.

In this chapter, simple linear functions will first be used to introduce some basic con-
cepts and issues associated with spline interpolation. Then we derive an algorithm for fitting
quadratic splines to data. This is followed by material on the cubic spline, which is the most
common and useful version in engineering and science. Finally, we describe MATLAB's
capabilities for piecewise interpolation including its ability to generate splines.

TINEAR SPTINES

The notation used fbr splines is displayed in Fig. 16.3. For n data points (l : I, 2, . . . , n),
there are n - I intervals. Each interval i has its own spline function, s;(x). For linear
splines, each function is merely the straight line connecting the two points at each end of
the interval, which is formulated as

si (r) : ar I bi(x - ;ri)

where ai is the intercept, which is defined as

a i :  J i

and b; is the slope of the straight line connecting the points;

, Ji+r - Ji
u i - -

( 1 6 . r )

(16.2)

(  16.3)
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J ( . t t

a t t t t r r _

FIGURE I6 .3
l \o 'or  on uted lo  de ' ' ,e  sol '^esNotice thot there cre n - I  intervols ond n dcio points

EXAMPLE I6. I

where l i is shorthand for l(r;). Substituting Eqs. (16.1) and (16.2) into Eq. (16.3) gives

f . . ,  _  f .

Ji (.r ) : .l ; -r L)----l' (.r - .ti )
r i r l - r i

( r6.4)

These equations can be used to evaluate the function at any point between x1 ard.l,,
by first locating the interval within which the point lies. Then the appropriate equation is
used to determine the function value within the interval. Inspection of Eq. (16.4) indicates
that the l inear spline amounts to using Newton's first-order polynomial [Eq. (15.5)] to
interpolate within each interval.

F i rs t -Order  Spl ines

Problem Stotement. Fit the data in Table 16. I with first-order sulines. Evaluate the
f u n c t i o n o t x : 5 .

TABIE l6. l Doto to be l it with spline func]ions.

i x , f ,

3 0  2 5
4 5  I 0
7 .4  2 .5
9 0  0 . 5

I
2
3
A

Solution. The data can be substituted into Eq. (16.4) to generate the l inear spline
functions. For exarnple, for the second interval from x : 4.5 to x :7, the function is

2 5 - 1 . 0
sr(x ) : 1.0 + 

--::-------:t.r - 4.51-  
1.0 -  4. .5
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FIGURE T6 .4
Spl ine f i ts  of  o sel  of  four  poin is .  {o)  L ineor  spl ine,  (b)  quodrof ic  sp l ine,  ond (c)  cubic spl ine,  wi th
o cubic in ferpolo l ing polynomiol  o lso p lot ted.

The equations for the other intervals can be computed, and the resulting first-order splines
are p lot ted inFig.  l6 .4ct  The value atx:5 is  1.3.

2 .5  -  t . 0
s r ( x ) : 1 . 0 +  - ( 5  - 4 . 5 ) :  l . - l-  

1 .0 -  4. .5

Visual inspection of Fig. 16.4a indicates that the primary disadvantage of first-order
splines is that they are not smooth. In essence, at the data points where two splines meet
(called a knot), the slope changes abruptly. In formal terms, the first derivative of the func-
tion is discontinuous at these points. This deficiency is overcome by using higher-order
polynomial splines that ensure smoothness at the knots by equating derivatives at these
points, as will be discussed subsequently. Before doing that, the following section provides
an application where linear splines are useful.
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16.2.1 Toble lookup

A table lookup is a common task that is frequently encountered in engineering and science
computer applications. It is useful tbr performing repeated interpolations fiorrr a table of
independent and dependent variables. For example, suppose that you would like to set up
an M-file that would use linear interpolation to determine air density at a particular tem-
perature based on the data from Table 1-5.1. One way to do this would be to pass tlre M-file
the temperature at which you want the interpolation to be performed along with the two ad-
joining values. A more general approach would be to pass in vectors containing all the data
and have the M-file detennine the bracket. This is called a table lookup.

Thus, the M-file would perform two tasks. First, it would search the independent vari-
able vector to find the intervirl containing the unknorvn. Then it would perform the lineat
interpolation using one of the techniques described in this chapter or in Chap. 15.

For ordered data, there are two simple ways to find the interval. The first is called a
sequential search. As the name implies. this method involves comparing the desired value
with each element of the vector in seqnence until the interval is located. For data in as-
cending order, this can be done by testing whether the unknown is less than the value being
assessed. lf so, we know that the unknown falls between this value and the previous one
that we examined. lf not, we move to the next value and repeat the comparison. Here is a
simple M-fi le that accomplishes this objective:

f u n c t i o r - i  y i  =  T a b l e l o o k ( ; < ,  y ,  r r )

n  c n g r n ' X ) ;

i f  x x  <  r ( 1 )  x x  >  x ( n )

e r r o r  ( '  I n t e r 1 ; , o l a t i o n  o u t s i d e  r a n g e '  )
e n d
1 3  s e c l L r e n t i a l  s e a r c h

i  -  r ;
w h i l e  (  1  )

i f  x x  . =  x ( i  +  1 ) ,  b r e a k ,  e n d
i  =  i  +  1 ;

end
?  l i n e a r  . i n t e r p o l a t i o n
y r  =  1 . ( i )  +  ( y ( i + 1 )  y ( i ) ) / ( x ( i + 1 )  x ( i ) ) * ( x x  x ( i ) ) ;

The table's independent variables are stored in ascending order in the array x and the
dependent variables stored in the array y. Before searching, an error trap is included to en-
su re tha t thedes i redva luexx fa l l sw i th in the rangeo f  t hex ' s .A r r r [ ] l s .  .  b reak loop
compares the value at which the interpolation is desired, xx, to determine whether it is less
than theva luea t the topo f the in te rva l , x ( i +1 ) .Fo rcaseswherexx i s i n thesecond in te t -
val or higher, this will not test true at first. In this case the counter i is incremented by one
so that on the next iteration, xx is compared with the value at the top of the second intet-
val. The loop is repeated until the xx is less than or equal to the interval's upper bound,in
which case the loop is exited. At this point, the inter-polation can be performed simply as
shown.

For situations for which there are lots of data. the sequential sort is inetTicient because
it must search through all the preceding points to find values. In these cases, a simple
alternative isthe binan- search. Here is an M-file that performs a binary search followed
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by linear interpolation:

f  u n c t i o n  y i  =  T , r b l e L o o k B r n  ( x ,  \ ' ,  x x )

n  =  L e n q l - h  ( x  )  ;
t f  z x  <  x ( 1 )  |  z x  >  x ( . n )

€ i r r o r :  (  ' I n t e r I , o l a t i o n  o u t s i d e  r a n g e ' )

e n d

%  b i n a r y  s e a r c h

l ;  i u  t ;

r vh  i  l e  (  1  )
r . f  i U  r L  . =  l ,  b r e a k ,  e n - l

t L / L : ' t Y ( ( t t  u )  /  z ) ;

r f  x ( i M )  <  x x

r T  =  r I { :

/  ( x ( i L + 1 ) - x ( i L )  ) * ( x x  -  : . ( r L )  )  ;

The approach is akin to the bisection method fbr root location. Just as in bisection, the
index at the rridpoint r1.4 is computed as the average of the filst or "lower" index i L = 1
and the last or "upper" index iu : n. The unknown xx is then compared with the value of
x at the midpoint r (iM) to assess whether it is in the lower half of the anay or in the upper
half. Depending on where it lies, either the lower or upper index is redefined as being the
middle index. The process is repeated until the difference between the upper and the lower
index is less than or equal to zero. At this point, the lower index lies at the lowel bound of
the interval containing x:.:, the loop terminates, ilnd the linear interpolation is pertbrmed.

Here is a MATLAB session illustrating how the binary search function can be applied
to calculate the air density at 350 "C based on the data fi 'orn Table l-5.1. The sequential
search would be similar.

> -  r  =  t  4 0  0  2 0  5 0  1 0 0  1 5 0  2 0 0  2 5 0  3 0 0 . 1  0 0  5 0 o l ;
> >  d e n s i t v  =  f  1 . 5 :  1 . 2 9  I . 2  I . Q 9  . 9 4 6  . ' , : r 3 1 ,  . ' l  4 6  . 6 1 1  . 6 1 6

> >  T a b l e L o o ] < B i n  ( T , d e n s i t \ ' ,  - l  5 O l

0 . 5 7 0 5

This result can be veri f iecl by the hand calculat ion:

o s ? 5 - o 6 1 5
I (350) : 0.616 * 1ffi(3s0 

- 300) : 0.s70s

I6.3 QUADRATIC SPTINES

To ensure that the nth derivatives are contiDuous at the knots. a spline of at least n * I
order r.nust be used. Third-order polynomials or cubic splines that ensure continuous l lrst
and second derivatives are most frequently used in practice. Although third and higher

t : l s e

a: Ilal

e n d

%  L i n e a r  i n L e r p o l a t i . o n

y i  1 i  , ,  i  l ,  t ' 1 "
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EXI

derivatives can be discontinuous when using cubic splines, they usually cannot be detected
visually and consequently are ignored.

Because the derivation of cubic splines is somewhat irrvolved, we have decided to first
illustrate the concept of spline interpolation using second-order polynomials. These "qua-
dratic splines" have continuous first derivatives at the knots. Although quadratic splines are
not of practical in.rportance, they serve nicely to demonstrate the general approach for de-
veloping hi gher-order splines.

The objective in quadratic splines is to derive a secoud-order polynomial for each inter-
val between data points. The polynonial for each interval can be represented generally as

s i ( r )  :  a i  t  b tQ -  x i )  *  c ;1x -  r i  )2  (16.5)

where the notation is as in Fig. 16.3. For n data points (i : 1,2, . . . , n), there are n - 1
intervals and, consequently, 3(n - l) unknown constants (the d's. b's, and c's) to evaluate.
Therefore. 3rr equations or conditions are required to evaluate the unknowns. These canbe
developed as fbllows:

l. The function must pass through irll the points. This is called a continuity condition.It
can be expressed mathematically its

. f i  :  a i  I  b , ( . t ; -  x i )  *  c ; ( r i  -  x ; ) l

which sinrplif ies to

ai : Ji (16.6)

Therefore, the constant in each quadratic must be equal to the value of the dependent
variable at the beginning of the interval. This result can be incorporated into Eq. (16.5):

.r; (r ) : l , t- lt;\.t - .r; ) f r i (.r - -r; ) l

Note that because we have detennined one of the coefficients. the nurnber of condi-
tions to be evaluated has now been reduced to 2(n - l).

2. The function values of adjacent polynomials must be equal at the knots. This condition
can be writterr fbr knot i -F I as

. f i l b i \ i + r  - t i ) f  c i ( r i + r  -  x i ) 2 : . f i + r * b i + r ( x i + r  - - r i + r ) f  c ; a 1 ( - r ; 1 1  - - t i + r ) 2

(  16.7)

This equation can be simplified nrathematically by defining the width of the ith inter-
val as

h i  : x i + t - x i

Thus, Eq. ( 16.7) simplif ies to

.fi I bihl -t c;hl : f i+t (16.8)

Th i s  equa t i on  can  be  wr i t t en  f o r  t he  nodes ,  i : 1 , . . . . n -  l .  S ince  th i s  amoun ts to
n - l  cond i t i ons ,  i t  means  tha t  t he re  a re  2 (n -1 ) - (n -7 ' ) : n -  1  rema in ing
conditions.
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3. The first derivatives at the interior nocles must be equal. This is an important condition,
because it means that adjacent splines will be joined smoothly, rather than in the jagged
fashion that we saw for the linear splines. Equation ( 16.5) can be ditferentiated to yield

s j ( . r 1  :  b i  l 2c i i . r  -  x i )

The equivalence ofthe derivatives at an interior node, i f I can therefore be written as

b i  * 2 c i h t : b i + r 1 16.v.1

Writing this equation for all the interior nodes amounts to ,? - 2 conditions. This
means that there is n - | - (n - 2) : I remaining condition. Unless we have some
additional intbrmation regarding the functions or their derivatives, we must make an
arbitrary choice to successfully compute the constants. Although there are a number of
different choices that can be made, we select the fbllowing condition.

4. Assume that the second derivative is zero at the first point. Because the second deriv-
ative of Eq. (16.5) is 2c;, this condition can be expressed mathematically as

c t  : 0

The visual interpretation of this condition is that the first two points will be connected
by a straight l ine.

EXAMPLE 16 .2  Quqdro i i c  Sp l i nes

Problem Stotement. Fit quadratic splines to the same data employed in Example 16. I
(Table 16. l). Use the results to estimate the value at,r : 5.

Solution. For the present problem, we have fourdata points and rz : 3 intervals. There-
fore, after applying the continuity condition and the zero second-derivative condition, this
m e a n s t h a t 2 ( 4 - 1 ) - l : 5 c o n d i t i o n s a r e r e q u i r e d . E q u a t i o n ( 1 6 . 8 ) i s w r i t t e n f b r i : 1
through 3 (with cr : 0) to give

. f i l b r l t 1  : 7 ,

l 'z  *  b2h2 - l  c2hi :  f t
- )

J t  l b , h , l c f i \ : 7 . ,

Continuity of derivatives, Eq. (16.9), creirtes an additional 3 - I :2 conditions (again,
recall that cr : 0):

The necessary furrction and interval width values are

b r : b z

b z  * 2 c z h z :  b t

Jz  :  1 .0
l . - ? s

l , : o 5

l ? ,  : 4  
. \  -  {  l l :  I  

' \

h t  : 1 . 0  -  4 . 5  :  2 . 5

1 4 : 9 . 9 - 1 . 0 : 2 . 0
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These values can be substituted into the conditions which can
form as

be expressed in matnx

fl[I i'i' j ll {l}
These equations can be solved using MATLAB with the resulrs:

b r : - l

b:. : -1

h , - ) )

, ._  -  A  A, l

r , . - - 1  6. . J  -

These results, along with the values for the a's (Eq. 16.6), can be substituted into the
original quadratic equations to develop the following quadratic splines for each interval:

s r ( x ) - 2 . 5 - ( x - 3 )

s ; ( . r )  :  1 .0  -  r - r  -  - 1 .5 t  +0 .64 (x  -  + .5 ) r

. r .1(x)  :  2 .5 + 2.2( . r  -  7 .0)  -  1 .6(r  -  7 .0)r

Because x : -5 lies in the second interval, we use .r2 to make the prediction,

. r1(5)  :  1 .0 -  ( -5 -  4. .s)  + 0.6.1(-s  -  4.512 :  9 .66

The total quadratic spline lit is depicted in Fig. 16.4b. Notice that there are two short-
comings tlrat detract from the fit: ( l) the straight l ine connecting the first two pointsand
(2) the spline fbr the last interval seems to swing too high. The cubic splines in the next
section do not exhibit these shortcomings and, as a consequence, are better methods for
spline interpolation.

16.4 CUBTC SPL|NES

As stated at the beginning of the previous section, cubic splines are most frequently used
in practice. The shortcomings of Iinear and qr"radratic splines have already been discussed.
Quarlic ol higher-order splines are not used because they tend to exhibit the instabilities
inherent in higher-order polynomials. Cubic splines are prefered because they provide the
simplest representation that exhibits the desired appearance of smoothness.

Tlre objective in cubic splines is to derive a third-order polynomial for each interval
between knots as represented generally by

s , ( , r ) :  a i  ' l b , ( . r  - . r , )  * c i ( . r  - , r i ) 2  + r / , ( . r  - . r i ) 3

Thus,  for  n data points ( i  :1 ,2. . . . ,1) ,  there are / ,  -  I  in tervals  and 4(n-  l )  un-
known coefficients to evaluate. Consequently,4(, - l) conditions are required for their
evaluation.

(r6.r0)
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The tirst conditions are identical to those used lbr the quadratic case. Tlrat is, they are
set up so that the functions pass through the points and that the first derivatives at the knots
are equal. In additron to these, conditions are developed to ensure that the second deriva-
tives at the knots are also equal. This greatly enhances the fit's smoothness.

After these conditions are developed. two additional conditions are required to obtain
the solution. This is a much nicer outcome than occurred for quadratic splines where rve
needed to specify a single condition. In that case, we had to arbitrarily specily a zero sec-
ond derivative for the first interval, hence making the result asymmetric. For cubic splines,
we are in the advantageous position of needing two additional conditions and can, there-
fore, apply them evenhandedly at both ends.

For cubic splines, these last two conditions can be formulated in several different
ways. A very common approacl.r is to assurne that the second derivatives at the first and last
knots are equal to zero. The visual interpretation ofthese conditions is that the function be-
comes a straight l ine at the end nodes. Specification of such an end condition leads to what
is termed a "natural" spline. It is given this name because the drafting spline naturally
behaves in this fashion (Fig. 16.2).

There are a variety of other end conditions that can be specified. Two of the more pop-
ular are the clamped condition ancl the not-a-knot conditions. We will describe these op-
tions in Section 16.4.2. For the following derivation. we wil l l irnit ourselves to natural
splines.

Once the additional end conditions are specitied, we would have the 4(n - 1) condi-
tions needed to evaluate the 4(n - I ) unknown coefficients. Whereas it is certainly possible
to develop cubic splines in this fashion, we will present an altenrative approach that requires
the solution of only n - I equations. Further, the simultaneous equations will be tridiagonal
and hence can be solved very efficiently. Although the derivation of this approach is less
straightforward than for quadratic splines, the gain in efficiency is well worth the effort.

16.4.1 Derivqtion of Cubic Splines

As was the case with quadratic splines, the lirst condition is that the spline must pass
through all the data points.

J ' i :  a i  I  b i 6 i -  x i )  *  c i ( , r r  - . t i ) 2  *  d i ( x r  -  x , ) l

which simplifies to

a i  :  . f i  ( 1 6 . 1 1 )

Therefore, the constant in each cubic must be equal to the value of the dependent variable
at the beginning ofthe interval. This result can be incorporated into Eq. (16.10):

s ; ( -v )  :  J^ i  - l  b i ( r  - , t i )  *  c i (x  -  x i )2  *  d i ( - r  - . r ; ;3 ( t 6 .12 )

Next, we wil l apply the condition that each of the cubics must join at the knots. For
knot i * 1, this can be represented as

J ' i  I  b ih i - l  cyhi  - t  t )1hl  :  . f i+r  (16.13)
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where

h i : x i + t - x r

The first derivatives at the interior nodes must be equal. Equation (16.12) is dift'eren-
tiated to yield

s j (x)  :  b i  {2c, (x  -  r r )  *  3t l i7  -  x i )2

The equivalence of the derivatives at an interior node, I

b i  l 2c ih t  +3d ih l  :  b i+ l

The second derivatives at the interiot'nodes must also be equal.
be difTerentiated to yield

sj'(-r) : 2ci * 6di(x - xi)

The equivalence of the second derivatives at an interior node, I
wntten as

c i  l 3d ih i  :  c i+ t

Next, we can solve Eq. ( 16.17) fbr d1 :

t  c i + l  -  c i
u ; : -

J11;

This can be substituted into Eq. (16.i3) ro give

h ?
I i  I  b ih i  - t  l t2c i*  c ; -  1  )  :  f i * t

-t

Equat ion (16.18)  can a lso be subsr i rured in to Eq.  (16.15)  ro g ive

b i + t  :  b i  I  h i k i i  c i + r )

Equation (t6.19) can be solved for

,  f ,  , r - t i  h i  . ^o , :  
h ,  

- i l / - c i  t c ; r 1 )

The inder of this equation canbe reducedbl' |;

,  f ,  -  f ' - r  h i -  t  . ^
l ) , - 1  :  - - l l C ;  t r C ; ' l

l l i - 1  - ,

The index of Eq. (16.20) can also be reduced by l:

b i  :  b i - r  *  f t r  r (c i - r  *  c ,  )

Equations (16.21) and (16.22) can be sr"rbstituted into Eq. (16.23) and the result simplif ied
to yield

I t1-1c1-1 - t2(h i  r  -  h i )c i

( r6 . r4)

* I can therefore be written as

(16 .15 )

Equation (16.14) can

(  I  6 .16)

f 1 can therefore be

(  16.17)

(  r6  r8)

(r  6.r9)

( r 6.20)

( r 6.21)

(16.72)

( 16.23)

f f f r

*  h ; c ;  , r  : 3 1 I } - J '  *  r J i  -  J r - l

h . ;  h ,  - t
( 16.21)
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This equation can be made a little more concise by recognizing that the terms on the

right-hand side are finite differences (recall Eq. 15.15):

f . - f .

/ t r i , . r i ]  
-  J t  r l

'  r i - r l

Therefore, Eq. (16.2a) can be written as

/ r 1 - 1 c i - 1  * 2 \ h r - r  -  h ) c i  I  h i c i + t :  3  ( . 1  [ - " - i + r , . t i l  -  
" f  [ . r i .  r i  r ] ) (  16.2s)

Equation (16.25) can be written for the interior knots. i :2.3, '.. 'n - 2' which

results in n - 3 sinrultaneous tridiagonal equations with n - I unknown coefficients.

cr, c2. ..., (-,r-r. Therefore, r 'f we have two additional conditions, we can solve for the c's.

Once this is done, Eqs. ( 16.21) and (16.18) can be used to determine the remaining coeffi-
cients. b and d.

As stated previously, the two additional end conditions can be torrnulated in a number
of ways. One common approach, the natural spline, assumes that the second derivatives at
the end knots are equal to zero. To see how these can be integrated into the solution
sche rne , thesecondde r i va t i vea t the f i r s tnode (Eq .  16 .  l 6 ) canbese t toze roas in

s i ' ( , r r )  :  0 :2c t  *  6d1  ( x1  - . r 1 )

Thus, this condition amounts to setting c1 eQual to zero.
The same evaluation can be made at the last node:

s j j - , ( x , , )  : 0  : 2c , - t  t  6d ,  t l t , - t (16.26)

Recalling Eq. (16. 17), we can conveniently define an extraneous parameter c,,, in which
case Eq. (16.26) becomes

cu - t  *  3d , , - l t r - 1  :  c r r  : 0

Thus, to impose a zero second derivative at the last node, we set ('/? - 0.
The final equations can now be written in matrix form as

[ 1
I  ht  2(ht  1-  h)  hz
I
I
I

I  h,- t  2(.h,-z I  h, ,- t1
L

0
3(, f  [x: , . tz. l  -  / [ . r2. ,rr ] )

C l

C2

C n - l

cil

I
,r,l
hence efficienf to qolve

3( f l x , ,  rn  r l  -  f l x , - t , x ,
0

fhc  s r rq tem is  t r id i ronna l  and

(16.2'7)
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EXAMPLE 
. l6 .3 

Noturo l  Cubic Sol ines

Problem Stotement. Fit cubic splines to the same data used in Examples 16.1 and 16,2
(Table 16.1) .  Ut i l ize the resul ts  to est imate the value at . r  :5 .

Solution . The first step is to employ Eq. (16.27 ) to generate tl.re set of simultaneous equa-
tions that will be utilized to determine the c cocfficients:

| ;, 20,,.t hz) I I:l I : I
I 

o' 2tht-rhtt ' l l  
l : l  I  

- 
I

The necessary lunction and interval width values are

- l t / l r r .  . , lo  /1 . , . * ,1 ,  I
3 t / l r r .  r r l  -  /  I . r r . x3 l r  

I

1 t  : 2 ' 5

fz :  1.0
f - - ) \

l+ : O.-s

h 1  : ! . J - 3 . 0 : 1 . 5

h z : 7 . 0 - 1 . 5 : 2 . 5
h t : 9 . 0 - 1 . 0 : 2 . 0

These can be substituted to yield

I r
l r - 5  8  2 .5

L 
,r e ,l{ii}rt. t1'l

These equations can be solved using MATLAB witlr the results:

c r  : 0  cz :0 .831 )543726

ct : -0.166539924 c+ : 0

Equat ions (16.21)  and (16.18)  can be used to compute the b 's  and d 's

b1 :  -1.119711863 dt  :0 .186565212

b2 : -1).160456274 dz : -0.214144181

h :0.022053232 dt :0.121156654

These results, along with the values fbr the a's lEq. (16. 1l)1. can be substituted into
Eq. (16. l0) to develop the following cubic splines for each interval:

sr ( , r )  -  2 .5 -  1.419771863(x 3)  +0.1865652721r -  - r .11

s2(x)  :  1 .0 -  0.160456214(r  -  4 . -s)  + 0.839-5+37261r -  -1. -5, t r

0.2 Il l- l- l-167t.r -1..5)r

sj(,r) : 2.5 +0.022053232(x - 7.0) - 0.166539924(.r - 7.0)r

t  0 .1277.s66-s- l (  r  7 .0) '

Tlre three equations can then be employed fo compute values rvithin each interval. For
example, the value at r : 5, which talls within the second interval, is calculated as

s2(5) :  1.0 -  0. t60456214(5 -4. -5)  + 0.839543126(5 -  4.5)2 -0.214t44487(5 -4.5)3

:  L102889734 .

The total cubic spline fit is depicted in Fig. 16.4c.
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Theresul tsof  Examples l6 . l  through l6.3aresummarizedinFig.  l6 .4.Not icethepro-
gressive improvement of the flt as we move from linear to quaclratic to cubic splines. We
have also superirnposed a cubic interpolating polynomial ou Fig. 16.4c. Although the cubic
spline consists of a series of third-order curves, the resulting fit differs fronr that obtained
using the third-order polynomial. This is due to the fact that the natural spline requires zerir
second derivatives at the end knots. whereas the cubic polvnomial has no such constraint.

16.4.2 End Conditions

Although its graphical basis is appealing, the natural spline is only one of several end con-
ditions that can be specified for splines. Two of the most popular are

. Clunlted End Condition. This option involves specifying the first derivatives at tlre first
and last nodes. This is sometimes called a "clamped" spline because it is what occurs
when you clamp the end of a drafting spline so that it has a desired slope. For example,
if zero lirst derivatives are specilied, the spline will level off or become horizontal at the
ends.

. " Not-a-Knot" End Condition. A third alternative is to fbrce continuity of the third de-
rivative at the second and the next-to-last knots. Since the spline already specifies that
the tunction value and its first and second derivatives are equal at these knots. speci-
fying continuous third derivalives means that the same cubic functions wil l apply to
each ofthe first and iast two adjacent segments. Since the first internal knots no longer
represent thejunction of two different cubic functions, they are no longer true knots.
Hence. this case is refened to as the "not-a-knot " contlition. It has the additional prop-
erty that for f irur points, it yields the same result as is obtained using an ordinary cubic
interpolating polynomial of the sort described in Chap. 15.

These conditions can be readily applied by using Eq. tt6.25t fbr the interior knots.
i : 2 , 3 , . . . , n -  2 ,  a n d u s i n g f i r s t ( l ) a n d l a s t e q u a t i o n s  ( n - 1 )  a s w r i t t e n i n T a b l e  1 6 . 2 .

Figure 16.5 shows a comparison of the three end conditions as applied fo tit the data from
?rble 16. l. The clamped case is set up so that the derivatives at the ends are equal to zero.

As expected, the spline fit for the clarnped case levels off at the ends. In contrast, the
natul'al and not-a-knot cases follow the trend of the data points nrore closely. Notice how
the natural spline tends to straighten out as would be expected because the second deriva-
tives go to zero at the ends. Because it has nonzero second derivatives at the ends, the not-
a-knot exhibits more curvature.

TABTE 16.2 The first ond lost equotions needed to specify some commonly used end
condi t ions for  cubic sol ines.

Condition Firsi ond lost Equotions

Noiuro r : 1  : Q , 6 , , : Q

Cicmped (rvhere . l i  cnd 7; l  ore the speci led f irst
dt--r lvot lves ct the f irst ond iost nodes, respeci vely)

2 h 1 t 1  1 '  f t 1 r ' 2  -  i 7 J , . . . , t r l -  3 . / i

h r = 1 c ,  1 a 2 h , ,  1 t , , , : 3 l , ' ,  -  3 . l l - , r , , . x , ,  1 l

l lo to knol h : t  t  -  { l t t  *  h : l c z  *  / z r r ' :  :  O
h n  t c n  ) - 0 t , : I 1 1 ,  i < r , t I h u  2 c ' , : Q
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f(x)

2

1

0

FIGURE I6 .5
Comporison of the clomped (wilh zero f irsl  derivotives), nof-o-knot, ond noturol spl ines for lhe
doto from Toble 16 l

I6.5 PIECEWISE INTERPOTATION IN MATTAB

MATLAB has several built-in functions to implement piecewise interpolation. The spline
function performs cubic spline interpolation as described in this chapter. The pchip func-
tion implements piecewise cubic Hermite interpolation. The interpl function can also
implement spline and Hermite interpolation, but can also perform a number of other types
of piecewi se interpolation.

16.5.1 MATTAB Funct ion:  sp l ine

Cubic splines can be easily computed with the built-in MATLAB function, spli-ne. Ithas
the general syntax,

y y  =  s p l  i n e  ( x ,  y ,  ) < x ) (  16.28)

where x and y : vectors containing the values that are to be interpol ated, and yy = a vector
containing the results of the spline interpolation as evaluated at the points in the vector xx.

By default, splir.re uses the not-a-knot condition. However, if y contains two more
values than x has entries. then the first and last value in y are used as the derivatives at the
end points. Consequently, this option provides the means to implement the clamped-end
condi t ion.

EXAMPLE 16.4 Spl ines in  MATLAB

Problem Stqtement. Runge's function is a
be fit well with polynomials (recall Example

I
f ( x ) :

| + 25x2

notorious example of a function that cannot
r5.7):

t
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Use MATLAB to fit nine equally spaced data points sampled from this function in the
interval [-1, l].Employ (a) a not-a-knot spline and (b) a clamped spline with end slopes
of  f i  :  1  and f i - , :  -4 .

Solution. (a) The nine equally spaced data points can be generated as in

> >  x  =  l i n s p a c e ( - I , I , 9 ) ;

> >  ] 1  -  L . ,  ( i + 2 5 * x . " 2 )  ;

Next, a more finely spaced vector of values can be generared so tFlat we can crearc a sn?ooai
plot of the results as generated with the spline function:

> >  x x  =  l i n s p a c e (  1 , 1 ) ;

> >  Y Y  -  s P L i n e  ( x , Y , x x )  ;

Recall that I inspace automatically creates 100 points if the desired number of points are
not specified. Finally, we cau generate values for Runge's function itself and display them
along with the spline fit and the original data:

> >  y r  =  L . /  ( 1 + 2 5 * x x . ^ 2 ) ;
> >  p l o t  ( x , y  ,  

' o  '  ,  x x ,  y y ,  x x ,  y r ,  '  -  )

As in Fig. 16.6, the not-a-knot spline does a nice job of following Runge's function with-
out exhibiting wild oscillations between the points.

(b) The clamped condition can be implemented by creating a new vector yc that has the
desired first derivatives as its first and last elements. The new vector can then be used to

FIGURE I6.6
Comporison of Runge's funci ion (doshed lrne) with o 9-poinl noto-knot spl lne f i t  generoted wilh
MATLAB (sol id l ine).
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EXA/

0.5

FIGURE I6.7
Comporison of Runge's functlon (doshed line) wiih o 9 point clomped end spline fit generoted
with MATLAB isolid-ine) Note thot f irst derivoiives of I ond -4 ore specifred ct thJlelt ond
r i gh '  boundo . i es ' espec r ; , e l ,

generate and plot the spline fit:

> >  y c  =  [ 1  y  4 ] ;
> >  y y c  =  s p l i n e ( x , y c , x x ) ;

> >  p l o t  ( x , y ,  ' o '  
, x x  / y l j c , x x , y r , ' - - ' )

As in Fig. 16.7, the clamped spline now exhibits some oscillations because of the artificial
slopes that we have imposed at the boundaries. In other examples, where we have knowl-
edge of the true first derivatives, the clamped spline tends to improve the fit.

16.5.2 MATTAB Function: interpl

The built-in function interpl provides a handy means to implement a number of differ-
ent types of piecewise one-dimensional interpolation. It has the general syntax

y i  =  i n t e r L ,  1  ( x ,  1 : ,  x i ,  ' r n e L h a d  t

wherexandy-vectorsconla in ingvaluesthataretobeinterpolated,  y i :a ,vectorc0n-
taining the results of the interpolation as evaluated at the points in the vector xj, and
'methocJ' : the desired method. The various methods are

. 'nearest '-nearest nei-ehbor interpolation. This method sets the value of an inter-
polated point to the value of the nearest existing data point. Thus, the interpolation
looks like a series of plateaus, which can be thought of as zero-order polynomials.

. ' I inear ' -linear interpolation. This method uses straight lines to connect the points.
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. 'spL.ine'-piecewise cubic spline interpolation. This is identical to the spline

. iTItt"Ji una ' cubic '-piecewise cubic Hermite inrerpolarion.

If the 'method' argunrent is omittecl. the default is l inear interpolation.
The pchip option (short for "piecewise cubic llermite lnterpolation") merits more

discussion. As with cubic splines, pchip uses cubic polynomials to connect data points
with continuous first derivatives. However, it ditTers frorn cubic splines in that the second
derivatives are not necessarily continuous. Further the first derivatives at the knots will not
be the sarne as for cubic splines. Rather, they are expressly chosen so that the interpolation
is "shape preserving." That is, the interpolated values do not tend to overshoot the data
points as can sometimes happen with cubic splines.

Therefore, there are trade-offs between the spline and the pchip options. The results
of using spline wil l generally appear smoother because the human eye can detect dis-
continuities in the second derivative. In addition. it will be more accurate if the data are val-
ues of a smooth function. On the other hand. pchip has no overshoots and less oscillation
if the data are not smooth. These trade-ofI\. as well as those involving the other options. are
explored in the following example.

EXAMPLE 1 6.5 Trode-Offs Using in; e,' '1r l

Problem Stotement. You perfom.r a test drive on an automobile where you alternately
accelerate the automobile and then hold it at a steady velocity. Note that you never decel-
erate during the experiment. The time series of spot nleasurements of velocity can be
tabulated as

2a
20

4A
2A

56
3 B

6B
80

BO
BO

B4
r 0 0

96

t 0 0

l o 4  I  t 0
t 2 5  1 2 5

Use MATLAB's incerpl fr"rnction to fit this data with (a) linear interpolation, (b) nearest
neighbor. (c) cubic spline with not-a-knot end conditions. and (d) piecewise cubic Hermite
interpolation.

Solution. (a) The data can be entered, f it with l inear interpolation, and plotted with the
following commands:

> >  r  -  [ 0  2 0  4 0  5 6  6 8  B 0  3 4  9 5  t 0 4  1 1 0 ] ;
> >  v  =  l 0  2 A  2  0  3 8  B 0  8 0  1 0 0  1 0 A  \ 2 5  7 2 5 1 ;
> >  t t  =  f i n s p a c e  (  O ,  1 1 0  )  ;
> >  v l  =  i n c e r p l ( t , v , r - t ) ;

> >  p l o t  ( t , . . ' , '  o ' ,  t t , v l )

The results (Fig. 16.8c) are not smooth, but do not exhibit any overshoot.

(b) The commands to implement and plot the nearest neighbor interpolation are

> >  v n  -  i n t e r p l  ( t , v , t t , ' n e a r e s t '  )  ;
> >  n l  o l -  ( t - , . / , '  o '  .  t t , \ - n )
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FIGURE I6.8
Use of severol options of the rnterpt funci ion to perform piecewise polynomiol nterpolci ion on o veloci ly i ime serles

to r  on  ou iomobi le .

As in Fig. 16.8b. the results look like a series of plateaus. This option is neither a smooth
nor an accurate depiction of the underlying process.

(c) The commands to implement the cubic spline are

> >  v s  =  i n t e r p l  ( t ,  v ,  t t ,  ' s p l i n e '  )  ;

> >  p l o t  ( t ,  - " - ,  ' o '  ,  t t ,  v s  )

These results (Fig. 16.8c) are quite smooth. However, severe overshoot occurs at several
locations. This makes it appear that the automobile decelerated several times during the
exneriment.

120100'120100
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(d) The commands to implement the piecewise cubic Hermite interpolation are

> >  v h  =  i n t e r p l ( t , \ / , t t , ' p c h i p ' ) ;

> >  p l o t  ( t , V , ' o ' ,  t t , v h )

For this case, the results (Fig. 16.8d) are physically realistic. Because ofits shape-preserving
nature, the velocities increase rnclnotonically and never exhibit deceleration. Although the
result is not as smooth as for the cubic splines, continuity of the f irst derivatives at the knots
makes the transitions between points more gradual and hence more realistic.

I 6.6 MUTTIDIMENSIONAL INTERPOTATION

The interpolation n.rethods for one-dimensional problems can be extended to multidimen-
sionerl interpolation. In this section, we wil l describe the simplest case of two-dimensional
interpolation in Cartesian coordinates. In addition, we will describe MATLAB's capabili-
ties for rnultidimensional interpolation.

16.6.1 Bil ineor Interpolotion
'lnao-dintensional 

interpolctrion deals with determining intermediate values for functions
of two variables z: .f (xi, ]r). As depicted in Fig. 16.9, we have values at four points:

" f ( x r , . r ' r ) , , f ( r z , . r ' r ) , , f ( r r , , r ' : ) , and l ( . t : ,  
yz ) .Wewan t to in te rpo la tebe tween thesepo in t s

FIGURE I6.9
G ' o p r ; c o l  o e p c l i o n o {  r v o - d r r r e r s i o n o l  o r l r n e o ' i n e p o l o ' i o r w l e e o n . l e ' n e o o e , o - " { l i  l e d
c i rce)  is  est imcted bosed on four  g iven volues {open c i rc les)

f(xz, yt)
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EX,

FIGURE I6 . IO
Two dimensionol bi l ineor inlerpolct ion con be implemenled by f i rst opplyinq one dir-nensioncl'  

eo  ^ l ^ r  oc lo l i ^n  o ronq 'ne  . r  o imens,or  ro  de-^ ,  r r  ne  ,o  Lec  o- . r ,  he-e  , io  les  cor  t ^en  be
u s e d t o  i n e c r l y i n t e r p o l o t e o l o n g l h e . r ' d i m e n s i o n t o y i e l d t h e f i n o i  r e s u l t o t - r , , , r , ,

to estimate the value at an intermediate poi nt / (-ri . _vi ) . If we use a linear function, the re.
sult is a plane connecting the points as in Fig. 16.9. Such functions are called bilinear.

A simple approach for developing the bilinear tunction is depicted in Fig. 16.10. First,
we can hold the v value fixed and apply one-dimensional l ineu interpolation in the.rdi-
rection. Using the Lagrange form, the result at (r;, .r 1) is

. f  ( r i ,  r ' r )  :  3 f  , - r r ,  Jr )  +  Sf  t r : ,  -vr )  (16.2s)
Jt  -  . fZ x2 -  . r t

and at (,r;, rrr) is

/ (x i , . r , : )  : } . r ry r . , r : )  +  " t - { !  l ' ( , r r , , v : )  16 .10)
I t  - -V2  , t 2  - . , r l

These points can then be used to linearly interpolate along the I'dimension to yield the finat
result:

-  l r  -  \ ' '  \ ' ;  -  \ ' r

. l  { , r ; . . r ' , )  :  - / ( x ; . . r ' 1  )  -  - , f  l . r i . J : )  1 1 6 . 3 1 1
)t - }: ,'t): - .\'l 

'

A single equation can be developed by substi tut ing Eqs. (16.29) and (16.30) into Eq. (16.31)
to give

. f t . r , . 1 - ) -  
r ' '  - ' t 2  ' t  -  

"  l , r , . r r )  f  
' { i  - x t  ' \ ' i  - . v :  

f ( x . .  v ,  )r l  -  . \ '2 ) ' r  -  )Z X2 - Xt . t ,r  _ -r ' :

,  -r i  -  - t :  ] i  -  ) ' r  . . .  -{ i  -  rr ) , i  -  l r  ^, 
(16 34

. r l  -  r t  ) :  - . r ' r  1 2  - . { l  ) z  _  ) . r  
-
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EXAMPLE 16 .6  B i l i neo r l n te roo lo i i on

Problem Stotement. Suppose you have measured temperatures at a number of coordi-
nates on the surface of a rectangular heated plate:

T ( 2 , 1 )  : 6 0

T(2,6) :  55

T(:9,1) :  5l  .5

T ( 9 , 6 ) : 1 0

Use bilinear interpolation to estimate the temperature at.rr : 5.25 and 1', - 4.8.

Solution. Substituting these values into Eq. (16.32) gives

5 . 2 5 - 9  4 . 8 - 6  5 . 2 5 - 2  4 . 8 - 6
/ ( ) . j ) . _ { . 6 )  :  - o u  +  -  - ) / . - \
"  2 - 9  l - 6  9 - 2  t - 6

5 . 2 5 - 9 4 . 8 - l  s - } s - 2 4 R - l
+  - ; ;  

u - ,  
s s  +  - ; ;  

u - ,  
zo  :  6 r . 2113

| 6.6.2 Multidimensionol Interpolotion in MATLAB

MATLAB has two builrin functions for two- and three-dimensional piecewise interpola-
tion: interp2 and interp3. As you might expect from their names, these functions oper-
ate in a similar fashion to interpl (Section 16.5.2). For example, a simple representation
o f  t he  syn tax  o f  i  n  e  o2  i s

z i  =  L t \ r - e ( p 2  l x ,  y ,  z ,  x i ,  y i ,  ' m e c h o d '  )

where x and y - matrices containing the coordinates of the points at which the values in
the matrix z are given, zi : d matrix containing the results of the interpolation as evalu-
ated at the points in the matrices xr and yr, and method: the desired method. Note that
the methods are identical to those used by in*'erpi; that is, l inear, nearesf , spline,
and cubic.

As with interpl, if the,nethod argument is omitted, the default is linear interpolation.
For example, interp2 can be used to make the same evaluation as in Example 16.6 as

> >  X =

> >  y =

> >  z -

2  9 ) ;
1  6 l ;
6 A  5 1  . 5 ; 5 5  7 0 1 ;
e r p 2 ( x , y , 2 , 5 . 2 5 , 4 . 8 )> >  l n l -

5 r  . 2 r 4 3
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.  . ,  HEAT TRANSFER

Bockground. Lakes in the temperate zone can become thermally stratified during the
summer. As depicted in Fig. 16.11, warm, buoyant water near the surface overlies colder,
denser bottom water. Such stratification effectively divides the lake vertically into two lay-
ers: the epilitnnion and the hypolimnion, separated by a plane called the thermocline.

Thermal stratification has great significance for environmental engineers and scientists
studying such systems. In particular, the thermocline greatly diminishes mixing between the
two layers. As a result, decomposition of organic matter can lead to severe depletion of oxy-
gen in the isolated bottom waters.

The location of the thermocline can be defined as the inflection point of the temperatur€-
depth curve- that  is .  the point  ar  which d2T/dz2:0.  l t  is  a lso the point  at  which the
absolute value of the first derivative or gradient is a maximum.

The temperature gradient is important in its own right because it can be used in con-
iunction with Fourier's law to determine the heat flux across the thermocline:

d T
J : - D p C ,

az

where "f : heat flux [call(cm' . s)], cv : an eddy diffusion coefficient (cm'ls), p : density
(31 g/cm3), and C: specific heat [: I call(g . C)].

In this case study, natural cubic splines are employed to determine the thermocline
depth and temperature gradient for Platte Lake, Michigan (Table 16.3). The latter is also
used to determine the heat flux for the case where a = 0.01 cm2/s.

FIGURE I6 . I  I
Temperoiure versus depth during summer for Plotte Loke, Michigon

Epi l imn ion

Thermoc l ine

Hypo l imn ion

TABTE 16.3 Temperoture versus depth during summer for Plotte Loke, Michigon.

( r6.33)

2 , 6  0  2 . 3  4 . 9  9  I
T , " C  2 2 8  2 2 . 8  2 2 8  2 A 6

18  3  22 .9  27 .2
1 1 . 7  t l . t  i l t

1 3 7
t 3 I

r ('c)
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con t i nued" . . , . . : .

Solution. As just described, we want to use natural spline end conditions to perform this
analysis. Unfortunately, because it uses not-a-knot end conditions, the built-in MATLAB
spl ine function does not meet our needs. Further, the sp1 ine function does not return the
first and second derivatives we require for our analysis.

However, it is not difficult to develop our own M-file to implement a natural spline
and retum the derivatives. Such a code is shown in Fig. 16.12. After some preliminary error
trapping, we set up and solve Eq. (16.27) for the second-order coefficients (c). Notice how

FfGURE r6.12
MJile fo deiermine intermediole volues ond de," ivof ives with o noiurol spl ine. Note fhot fhe oif  f
{uncl ion employed for error tropping is described in Secl ion 19.7.1 .

l \ . / \ ;  , . 1 - ;  , , t : .
, = :  r , ' d l i i  l r l

:  a ) n  l a . )

ua  t  t  r :  s

j  n d e p e n L l e n L  . , ' a  r i  ; : b r e s

r i c p e n r l e l t  . , ' a  : : i  a h . e s

i , i . - ' : ' ; i  r : e , J ' i a l t : e s  t f  c l e ! ) € : n , - . l r t l : ' , ' - - -  i . t h  L e : :

i . t  €  f  i l o  l . r i  e . f  \ . a  l  u e s  a r ,  x r

i i r s i  d e r , v a L i v - : r  a :  ; { ) {

: : = i : , 1 :  r i  a i i r r  i - i a t  i i ' e :  a i  r : :

r l
; i

-  r r a r - : i p l  i n e  1  r , y ,  x x )

s ; , 1  i r e  r " : i  ! : ] ,  r j i  f  l - - r  e n t  : . r L  1 ( , r l

s p i . i r r r , ' ( x , y , - x r i l :  u s e s  . l  n . l t s - r - r r ; l  c , r b i c  : p L t n e

f r f r d  j . y ,  t - h e  v a r u e s  o i  t h e  r t n d e r l v i n g  f u r r : L i o n

i n  : : , r -  y e c t o r  x x .  T h e  v e c L c f  r  s l l e . t t f  i e  :  l ; , -

l ,  ,  /  l . . . r .

a n r , l  y  r r r : s t  b e  s a m e  L . r ! { t - h '  )  ;  e n d
x  n o t  s t : - i c "  L y  . r s c e n c r r : r r '  ) , e n d

' . f E L  I ' )  L a l -  h .  I

r  h l r : ,  i ) ) ;

x ,  i ' )  f c i ( j ,  i  -  1 ,

i r
I I

I l '  -

-  1 t ( r ,  I  i ) ;
2  *  r l r  { x ,  i  L )
- . h i - , .  i l

*  1 l - r i l i  +  1 ,  i , v ) ) ;

? s o l v e  i - o l  c  i : o e t f i c i e r , t s

i  : " S O l . - j e  J - c , r -  a ,  b . - . n d  d  r : c - e l - f i , : i + n j - s

l l ;

( r  +  l ,  t ,  x ,  t , r )  -  h ( x ,  i )  /  i  *  ( 2  *  c ( : )  =  c 1 i  -  1 ) )
l r  + - l j  c r { : L ) )  , /  3  /  l i l x ,  i ) ;

(continued)
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coniinued

f o r  I  -  1 : m  % p e r f o r n  i n t e r p o l a L i o n s  a t  d e s i r e d  v a l u e s
l y t ' ( r ) , d y { r ) , d . 2 ( i ) l  -  S p l i n e l n r e r p ( x ,  n ,  a ,  b ,  c ,  d ,  x x ( : . ) ) ;

e n d
e n C
f r r r l c t f o n  h t i  =  1 1 * ,  i )
h l ' r  =  x ( r  +  i )  -  x ( i ) ;
end
i u n  - l  n  i . C ' J  f d r i ,  ,  x ,  , 1  )
f c l d  -  ( y ( i )  -  y ( j ) )  r '  ( . . r ( i )  x ( j ) ) ;
e n C
f u n c t i o n  l y y y ,  d y y ,  d 2 y l  - g p ]  i n e l n t e r p  ( x .  n ,  a ,  b ,  c ,  d ,  x r  )
f  n r  i  i  1  , h  1

i f  x i  > =  x ( r i )  ,  0 . 0 0 U 0 0 1  &  x r  < _ , -  x ( i i  +  i )  +  0 . 0 0 0 0 0 1
y y y - a  (  1 i )  + b  (  i i )  *  ( x i - x  (  r i )  )  + c  (  i i )  *  ( x ! , x  (  i r  )  )  ̂ 2 + o (  i i )  .  .  .

* ( x i  x ( r i ) ) ^ 3 ;
d y i , = 5  1  i  I  )  + . 1  * c  (  i ,  i  )  *  ( x l  - x  (  i i  )  )  +  I  * r l  (  i  i  )  *  ( x i  - x  { ,  i  )  )  ̂ 2  ;
d 2 y  - 2 * c  ( i i  )  + 5 * d  (  i i )  *  ( z . i - x  ( i i  )  )  ;
b r  e a k

end
e n d
e n d

FIGURE t6.t2 lContinued)

we use two subfunctions, h and fd, to compute the required finite differences. Once
Eq. (16.27) is set up, we solve for the c's with back division. A loop is then employed t0
generate the other coefficients (a, b, and d).

At this point, we have all we need to generate intermediate values with the cubic
equation:

f (x) : ai * bt(x - rr) + ct(x * x)2 * di@ - xi)3

We can also determine the lirst and second derivatives by differentiating this equation
twice to give

f 
'(x) : bi * ci(x - x;) * 3diQ - x;)z

. f " {x1 :2c i  + 6di ,  -  x i )

As in Fig. 16.12, these equations can then be implemented in another subfunctign,
splineTnterp, to determine the values and the derivatives at the desired intermediate
values.

Here is a script file that uses the naLspl ine function to generate the spline and creats
plots of the results:

z  =  i 0  2 . 3  4 . 9  9 . 1  1 3 . 7  I B . 3  2 2 . t )  2 7  . 2 1  ;
r = 1 2 2 . 8  2 2 . 8  2 2 . 8  2 0 . 6  1 3 . 9  1 7 . 7  I 1  . l  1 7 . L 1  ;
? i  -  l  i n q n a e o ( z ( 1 \ . z i  e n o f h ( z ) ) ) :



I6.7 CASE STUDY

" 
continued

-  n a t s p t i n e  \ 2 , T ,  z z J  ;
I  ) , P i o i  ( T ,  z , '  a ' , T T ,  z z )
'  l ,  i e q r e i . i . l l ' c i a c a ' , '  l  

"
/  r c v c ! - s  / . 9 r - ! v

, p f o r ( a i , z z t
c 1 z '  )

, ' r e v e r s e ' ) , g r i d
,  ! r l o t  ( d ' t 2 ,  z z )

As in Fig. \6.13, the thermoc\ine appears to be \ocated at a depth of about 11 .5 m. We

can use root \oeation (zero second denrative) or optimization methods (minimum fust

denvative) to refine this estimate. The result is that the thermocline is located at 11.35 m
where the gradient is - 1.61 'C/m.

FIGURE T6. I3
Plots of {o) temperoture, {b} g'odient, ond (c} second derivotive uers,,s depth (ml generoted with
the cubic sprine progro.n. The rhermocline islocoted ot the in[ lecrion point o[ ihe temperorure-
deplh curve.
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The gradient can be used to compute the heat flux across the thermocline with
Eq. (16.33):

J :  - 0 . 0 r t * '  *  r 4  *  r - : " 1 ^  *  ( -  t 6 r I )  *  . ^ l = -  *  
8 6 ' 4 o 0 s  c a l

s  c m r  g . . L  \  m /  l 0 o c m  d  
- : t 3 ' 9 . n 2 ' a -

The foregoing analysis demonstrates how spline interpolation can be used for engi-
neering and scientific problem solving. However, it also is an example of numerical differ-
entiation. As such, it illustrates how numerical approaches from different areas can be used
in tandem for problem solving. We will be describing the topic of numerical differentiation
in detail in Chap. 19,

PROBTEMS

16.l  Given the data

x l 2

f{x1 I 5
2 5
7

5
I

Fit this data with (a) a cubic spline with natural end condi-
tions, (b) a cubic spline with not-a-knot end conditions, and
(c) piecewise cubic Hermite interpolation.
16.2 A reactol is thermaily stratified as in the tbllowing
table:

Use a clamped cubic spline tit with zero end derivatives to
determine the thermocline depth. If k:0.01 cal/ (s . cm . "C)
compute the tlux across this interface.
16,3 The following is the built-in humps function that
MATLAB uses to demonstrate some of its numerical
clpabilities:

( x - 0 . 3 ) 2 * 0 . 0 1 ( x - 0 . 9 ) 2 * 0 . 0 4
- 0

The humps function exhibits both flat and steep regions ovet
a relatively shon.r range. Here are some values that have
been generated at intervals of 0. I over the range from.r = 0
t o  l :

Depih, m

Temperoture,'C

0  0 5  I
7A 7A 55

t 5  2  2 5  3
2 2  1 3  l 0  l 0 r  O  0 l

f t t )  5 . 1 7 6  1 5 4 7 t

x  0 6  0 7

f  $ )  ] t  6 9 2  1 2 3 8 2

0 2  0 3  4 . 4  0 5
45 887 96 500 47 448 19 400

0 8  0 . 9  I
t 7 .846  2 t  703  r6 .000Based on these temperatures, the tank can be idealized as

two zones separated by a strong temperature gradient or
thennocliue. The depth of the thermocline can be defined
as the inflection point of the temperature-depth curve-that
is, the point at which d2Tldzz:0. At this depth, the heat
flux from the surface to the bottom layer can be computed
with Fourier's law:

.  . d r
J : - K - -

a z

Fit this data with a (a) cubic spline with not-a-knot end con-
ditions and (b) piecewise cubic Hermite interpolation. In
both cases, create a plot comparing the fit with the exact
humps function.
16.4 Develop a plot of a cubic sptine fit of the following
data with (a) natural end conditions and (b) not-a-knot end
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conditions. In addition, develop a plot using (c) piecewise mathematical tables. For example,
cubic Hermite interpolation.

/(r)

/(x)

0
0

600
0 4060 l

ro0 2aa 400
0 82436 I 00000 0 73576

800 r 000
0  t 9 9 r 5  0 0 9 r 5 8

. r  l B  2  2 2  2 4  2 6

"I r (J)  0 58 t5 0 5767 0.556 A 5202 A 47OB

Estimate Jl2. l) .  (a) using an interpolat ing polynomial and
(b) using cubic splines. Note that the true value is 0.5683.
16.9 The following data defines the sea-level concentra-
tion of dissolved oxygen for fresh water as a function of
tempelature:

T , ' C  0  B  t 6  2 4  3 2  4 0
o , m g / L  1 4 6 2 )  I l B 4 3  I B Z 0  B 4 l B  7 3 A 5  6 4 ) 3

Use MATLAB to fit the data with (a) piecewise linear inter-
polation, (b) a fifth-order polynomial, and (c) a spline. Dis-
play the results graphically and use each approach to estilnate
o(27). Note that the exact result is 7.986 mg/L.
16.10 (a) Use MATLAB to fit a cubic spline to the follow-
ins data:

x

v
0
2A

2
2A

4
12

7
7

l 0
6

l 2
6

Determine the value of 1, at "t : 1.5. (b) Repeat (a). but with
zero first derivatives at the end knots.
l6. l l  Runge's function is writ ten as

I
"  | * 2 5 r t

Generate five equidistantly spaced values of this function
over the interval: [, 1]. Fit this data with (a) a fourth-order
polynomial, (b) a linear spline, and (c) a cubic spline. Pre-
sent your results graphically.
16.12 Use MAILAB to generate eight points lrom the
function

/ (/)  :  stn- t

from r : 0 to 2n. Fit this data using (a) cubic spline with
not-a-knot end condit ions, (b) cubic spl ine with derivative
end conditions equal to the exact values calculated with dif-
ferentiation, and (c) piecewise cubic hermite interpolation.
Develop plots of each fit as well as plots of the absolute error
(8, : approximatioll - true) for each.

Ineach case, colnpare your plot with the following equation
which was used to generate the dala:

"  
x  - r ! r

I { , { ) :  - e  t ' ) r r
200

16.5 The following data is sarnpled from the step function
depicted in Fig. 16. I :

/(r)

- t

0 0

- 0 2  0 2  0 . o  I
0 l r t

Fitthis data with a (a) cubic spline with not-a-knot end con-
ditions, (b) cubic spline with zero-slope clamped end condi-
trons, and (c) piecewise cubic Hermite interpolation. [n each
case, create a plot comparing the fit with the step function.
16,6 Develop an M-file to cor.npute a cubic spline 11t with
natural end conditions. Test your code by using it to dupli-
cate Example I 6.3.
16.7 The fbllowing data was generated with the liftlr-
order polynomial:.f(x) : 0.018515 - 0.411.14 * 3.9125xr -

15.456i + 27 .069x - l4. l :

r 1 3 5 6 7 9

/ ( r )  1  0 0 0  2  1 7 2  4  2 2 O  5  4 3 0  4 . 9 1 2  9 . ) 2 4

(a) Fit this data with a cubic spline with not-a-knot end con-
ditions. Create a plot comparing the fit with the tunction.
(b) Repeat (a) but use clamped end conditions where the end
slopes are set at the exact values as determined by differen-
liating the function.
16,8 Bessel functions often arise in advanced engineering
and scientific analyses such as the study of electric fields.
These functions are usually not amenable to straightforward
evaluation and, therelbre, are olien compiled in standald
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In high school or during your first year of college, you were introduced to differential and
integral calculus. There you learned techniques to obtain analytical er exact derivatives and
integra ls .

Mathematically, the derivurive represents the rate o[ change of a clependent variable
willr respect to an independent variable. For example. if we are given a function Xt) that
specifies an object's position as a function of t ime. differentiation provides a means to de-
termine i ls velocity. as in:

d
u ( l ) :  - y ( l )

d t '

As in Fig. PT5.1n, the derivative can be visualized as
the slope of a function.

Infegration is the inverse of differentiation. Juqt
as differentiation uses differences to quantify an in-
stantaneous process, integration involves summing in-
stantaneous information to give a total result over an
interval. Thus. iI-we are provided with velocity as a
function of time, integration can be used to determine
the distance lraveled:

v(/) u(t)  dr: fr'
As in Fig. PTs.lb, for functions lying above the ab-
scissa, the integral can be visualized as the area under
the curve of u(r) from 0 to r. Consequently, just as a
clerivative can be thought of as a slope, an integral can
be envisaged as lsummation.

Because oflhe close relationship between differ-
entiation and integmtion, we have opted to devore this
part of lhe book to both processes. Among other

389
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0

)
400

200

0

ta l

FIGURE PT5.I
The confrost behr;een (o) dif ferentiot ion ond {b) integrotion

things, this will provide the opporlunity to highlight their similarities and differences from
a numerical perspective. ln addition, the material will have relevance to the next paft of the
book where we will cover differential equations.

Although differentiation is taught before integration in calculus. we reverse their order
in the following clrapters. We do this for several reasons. First, we have already introduced
you to the basics of numerical differenltiation in Chap. 4. Second. in part because it is much
less sensitive to roundoff errors, integration represents a more highly developed area of
numerical methods. Finally, although numerical differentiation is not as widely employed,
it does have great significance for the solution of differential equations. Hence, it makes
sense to cover it as the last topic prior to describing differential equations in Part Six.

5.2 PART ORGANIZATION

Chapter 17 is devoted to the most common approaches for numerical integration-the
Newton-Cotes formulas. These relationships are based on replacing a complicated function
or tabulated data with a simple polynomial that is easy to integrate. Three of the most
widely used Newton-Cotes formulas are discussed in detail: the trapezoidal rule, Simpson's
1 l3 rule, and Simpson's 318 rule. All these formulas are designed for cases where the data
to be integrated is evenly spaced. In addition, we also include a discussion of numerical

0
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integration of unequally spaced data. This is a very important topic because many real-
world applications deal with data that is in this forrn.

All the above material relates to closed integratiott, where tlre function values at the
ends of the limits of integration are known. At the end of Chap. 17, we present open inte-
gration fonnulas, where the integration limits extend beyond the range of the known data.
Although they are not commonly used for definite integration. open integration formulas
are presented here because they are utilized in the solution of ordinary differential equa-
tions in Part Six.

The formulations covered in Chap. 17 can be employed to analyze both tabulated data
and equations . Chapter 18 deals with two techniques that are expressly designed to integrate
equations and functions: Romberg integration and Gaass quadrature. Computer algorithms
are provided for both of these methods. In addition, adaptive integration is discussed.

ln Chap. 19, we present additional intbrn.ration on numeric:al di.fferentiation to supple-
ment the introductory material from Chap. 4. Topics include high-accuracl, finite-dffirence
formulas, Richardson extrapokttion, and the differentiation of unequally spaced data. The
effect of errors on both numerical diff'erentiation and intesration is also discussed.
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CHAPTER OBJECTIVES
The primary objective of this chapter is to introduce you to numerical integration.
Specific objectives and topics covered are

. Recognizing that Newton-Cotes integration formulas are based on the strategy of
replacing a complicated function or tabulated data with a polynomial that is easy
to integrate.

' Knowing how to implement the following single application Newton-Cotes
formulas:

Trapezoidal rule
Simpson's 1/3 rule
Simpson's 3/8 rule

' Knowing how to implement the following composite Newton-Cotes formulas:
Trapezoidal rule
Simpson's 113 rule

. Recognizing that even-segment-odd-point formulas like Simpson's 1/3 rule
achieve higher than expected accuracy.

. Knowing how to use the trapezoidal rule to integrate unequally spaced data.

. Understanding the difference between open and closed integration formulas.

YOU'VE GOT A PROBTEM

h ecall that the velocity of a free-falling bungee jumper as a function of time can be

ftf computed as
l \

uu\ :  .14 ,unn ( , f  8a ,)  rrr  rr
V ,'.i \ ' ' l n 

')

:



I  Z. I  INTRODUCTION AND BACKGROUND 393

Suppose that we would like to know the vertical distance z the jumper has fallen after a
certain time r. This distance can be evaluated by integration:

f l

: ( r ) :  /  t ' ( n d r  ( 1 j . 2 )
.to

Subst i tu t ing Eq.117.1)  in to Eq.  (17.2)  g ives

( I 7.-r.1

Thr.rs, integration provides the means to deterrrrine the distance fiom the velocity. Calculus
can be used to solve Eq. (17.3) for

z(t): I,' ,8""n(

,E')l

,l*,)0,

( t 7 . 4 )

Although a closed form solution can be developed for this case, there are other func-
tions that cannot be integrated analytically. Furlher. suppose that there was some way to
measure the jumper's velocity at various times during the lall. These velocities along with
their associated times could be assembled as a table of discrete values. ln this situation, it
would also be possible to integrate the discrete data to determine the distance. In both these
instances, numerical integration methods are avail irble to obtain solutions. Chapters l7 and
l8 wil l introduce vou to some of these methods.

I7.I INTRODUCTION AND BACKGROUND

17. l . l  Whof  ls  In tegrot ion?

According to the dictionary definition, to integrate means "to bring together, as parts, into
a whole; to unite; to indicate the total amount. . . ." Mathemafically, definite integlation is

f '" [.."'n(

represented by

t : 
l,,o f {.r) a^ (  r7 .5 )

which stands for the integral of the function f (x) with respect to the independent variable
.r. evaluated between the limits x : a to ,r : b.

As suggested by the dictionary definit ion, the "meaning" of Eq. (17.5) is the roral
value. or summation, of /("r) dx over the range x : a to b. In fact, the symbol / is actu-
ally a stylized capital S that is intended to signify the close connection between integration
and summation.

Figure 17.1 represents a graphical manifestation of the concept. For functions lying
above the x axis, the integral expressed by Eq. (17.5) corresponds to the area under the
curve of l (x) between r : a and b.

Numerical integration is sometimes referred to as quadrature. This is an archaic terrn
that originally meant the construction of a square having the same area as some curvilinear
figure. Today, the term quadrature is generally taken to be synonymous with numerical
definite integratior.r.



394 NUMERICAL INTEGRATION FORMULAS

I

FIGl
Exor
nee(
knov
non l

FIGURE I7 . I
Grophicol representotion of the integro o1
equivo enl lo the oreo under lhe curve.

.{

l ( x )  be tween the  l im i ts  r :  t t  lo  D The in tegro l  i s

17.1.2 Integrotion in Engineering ond Science

Integration has so many engineering and scientific applications that you were required to
take integral calculus in your first year at college. Many specific examples of such appli-
cations could be given in all fields of engineering and science. A number of examples re-
Iate directly to the idea of the integral as the area under a curve. Figure 17.2 depicts a few
cases where integration is used tbr this purpose.

Other common applications relate to the analogy between integration and summation.
For example, a common application is to determine the mean of a continuous function. Re-
call that the mean of discrete of n discrete data points can be calculated by tEq. (i3.2)1.

i,,
14s2n - 5r

n
where -yi are individual measurements. The determination of the mean of discrete points is
depicted in Fig. 17.3a.

In contrast, suppose that ,r is a continuous function of an independent variable .r, as
depicted inFig. 17.3b. For this case, there are an infinite number of values between a and
b. Just as Eq. (17.6) can be applied to detennine the mean of the discrete readings,
you might also be interested in computing the mean or average of the continuous function

.l : / (x) for the interval fron a to b. Integration is used for this purpose, as specified by

t17 .6 )

(11.1)

This formula has hundreds of engineering and scientific applications. For example, it is
used to calculate the center of gravity of irregular objects in mechanical and civil engi-
neering and to determine the root-mean-square current in electrical engineering.

l ' !  f  t .utax
Mean: , " -

D - A
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i
_l-l

TIGURE I7.2
Exomples of how integrotion is used to evoluole oreos in engineering cnd scientif ic opplicotions. (o) A surveyor might
need to know the oreo of o fied bounded bv o meonderinq streom ond hryo roods. {b) A hvdroloqist miqht need to
know ihec rosssec l i ono  o reoo f  o r i ve r  i c )  As t ruc tu ro l  eng i ' , ee rm igh t  need iode te rm ine thene i  f i , cedJe too
nonuniform wind blowing ogo nsf the side of c skyscroper.

(c)(b )

4

(a )

r : "f(-r)

(b )

FIGURE I7.3
An illustrotion of the meon for (o) discreie ond (b) continuous dotc
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Integrals are also employed by engineers and scientists to evaluate the total amount0r
quantity ofa given physical variable. The integral may be evaluated over a line, anNea,sr
a volume. For example. the total mass of chemical contained in a reactor is girenasth
product of the concentration of chemical and the reactor volume, or

Mass : concrentration x volume

where concentration has ur.rits of mass per volume. However, suppose that concentration
varies from location to location within the reactor. In this case, it is necessary to sum the
products of local concentrations c; and corresponding elemental volumes A Vi:

Mass : 
I. ,on

where rr is the number of discrete volumes. For the continuous case, where c(x, y, t) is a
known function and x, y, and : are independent variables designating position in Cartesian
coordinates, integration can be used for the same purpose:

M a s s : t , .  z)  dr  dv dz

which is referred to as a volume integrctL. Notice the strong analogy between summation
and integration.

Similar examples could be given in other fields of engineering and science. For exam-
ple, the total rate of energy transfer across a plane where the flux (in calories per square
centimeter per second) is a lunction of position is given by

? ?

Flux:  l lnu*ae
" "r.

which is referred to as an areal integral. where A : areo.
These are just a few of the applications of integration that you might tace regukuly in

the pursuit of your profession. When the functions to be analyzed are simple, you will nor-
mally choose to evaluate them analytically. However, it is often difficult or impossible
when the function is complicated, as is typically the case in more realistic examples. In ad-
dition, the underlying function is often unknown and defined only by measurement at dis-
crete points. For both these cases, you must have the ability to obtain approximate values
for integrals using numerical techniques as described next.

17.2 NEWTON-COTES FORMULAS

The Newton-Cotes.formulas are the most common numerical integration schemes, They
are based on the strategy of replacing n complicated function or tabuiated data with a poly-
nomial that is easy to integrate:

7 b  7 b

I : l f ( r \ d r = 1 f . . ( , r \ t l . x  r r T R '

III,,-
t t t

M i r s s :  l l l r t v t d V
J J J

v
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where ll, (,r) : a polynomial of'the form

. f r ( . . r ) : a 0 + a l x  + " ' +  a , ,  r t r "  
I  l a , t x "

where n is the order of the polynomial. For example, inFig. 17 .4a, a first-order polynomial
(a straight line) is used as an approximation. In Fig. 17.4b, a parabola is employed for the
same purpose.

The integral can also be approximated using a series of polynomials applied piecewise
to the function or data over segments of constant length. For example, in Fig. 17.5, three

FIGURE I7 .4
The opproximction of on integrol by the creo under (o) c stroight ine ond (b) o porobolo

"f(;r) .f (tt)

(17.9)

FIGURE I7 .5
The opproximotion of on integro by fhe oreo under three stroight l ine segmenis

l(r)
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(17.10

FIGURE I7.6
The difference behween {o) closed ond ib) open inlegrotion formulos

straight-line segmerlts are used to approximate the integral. Higher-order polynomialscan
be utilized for the same purpose.

Closed and open forms of tlre Newton-Cotes formulas al'e available. The closedlorns
are those where the data points at the beginning and end of the limits of integration ac
known (Fig. 17.6a). The open fornrs have integration limits that extend beyond the rangc
of the data (Fig. 17.6b). This chapter emphasizes the closed forms. However, material m
open Newton-Cotes formulas is briefly introduced in Section 17.7.

17.3 THE TRAPEZOIDAT RUIE

The trapezoidal rul.e is the first of the Newton-Cotes closed integration formulas. It con+
sponds to the case where the polynomial in Eq. (17.8) is f irst-order:

t :

The resul t  o f  the in tegrat ion is

f kl) + .[(b)l : ( b  -  r r ) '
2

.f (b) - .f (a) ,1- ,  ( . r-
D - 0l""lt^

I
" )  ] d ,

which is called the trapezoidal rule.
Geometrically, the trapezoidal rule is equivalent to approximating the area of fu

trapezoid under the straight line connectin g I O1 and J @) inFig. l7 .7 . Recall from geor
etry that the formula for computing the area of a trapezoid is the height times the average
of the bases. In onrcase, the concept is the sarrie but the trapezoid is on its side. Therefog
the integral estimate can be represented as

/ - width x ,verage height U1.l2l

EXAM,
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FIGURE I7 .7
Grophicol  depicr ion of the tropezoidol rule

I : (b - rr) x average height ( r 7 . r 3 )
where, fbr the trapezoidal rule, the average height is the average of the function values atthe end points, or l.f (o) + J @)112.

All the Newton-cotes closed lormulas can be expressed in the general fbrmat ofEq' ( 17' 13)' That is, they difl'er only with respect to the formulation of the average height.

| 7.3.1 Error of the Tropezoidol Rule
when we employ the integral under a straight-rine segment to approximate the integralunder a curve, we obviously can incur 

"n 
.oo, that rnay be substantial (Fig. l 7. g). An esti_mafe forthe local truncation enorof a single application of the trapezoidal rule is

I
E , : - - ; f " t E ) t l ,  - u l .

t !

where f l ies somewhere in the interval from a to b. Equation(:i.14)indicates that if thetunction being integrated is linear, the trapezoidal rule wiil be exact because the second de-rivative of a straight line is zero. otherwise. for functions with second- and higher-order
derivatives (i.e., with curvaturc), some error can occur.

EXAMPLE 
' lZ. l  

S ingle Appl icor ion of  rhe Tropezoidol  Rule

Problem Stqiement. Use Eq. (I j. lD ro numerically integrate

l ( r) : 0.2 _t 25x _ 200x2 * 615x3 _ 900ra f 40015

from a : 0 to D : 0'8. Note that the exact value of the integral can be determined analyt-ically to be 1.640533.

( 1 7 . 1 1 )



400 NUMERICAL INTEGRATION FORMULAS

lnteqral est imate

0.8

FIGURE I7.8
Grcphicol depiction of the use of o single-opplicotion of the tropezoidol rule to opproximote
i h e i n t e q r o l  o l l ( . r ) - - A . 2 + 2 5 x - 2 o a ^ - r * 6 7 5 r r - 9 O O - r + * 4 O O r ' t r o m ; t - : 0 t o 0 . 8 .

Solut ion.  The funct ion values l (0) :0.2 and . f (0.8) :0.232 can be subst i tu tedinb
Eq .  ( l 7 . t I )  t o  y i e l d

0 .1  +  0 .231
1 : { 0 . 8 - n ,  

,  
: 0 . 1 7 : 8

which represents an effor of E, : 1.640533 - 0.1128 : 1.461133, which conespondsh
a percent relatil,e error of st :89.5c/c. The reason for this large error is evident fron|b
graphical  depict ioninFig.  lT.8.Not icethat theareaunderthestra ight l ineneglectsasig
nificant portion of the integral lying above the line.

hr actual situations, we would have no for-eknowledge of the true value. Therefoq
an approxirnate error estimate is required. To obtain this estimate, the function's serord
derivative over the interval can be computed by differentiating the original function twicc
to give

f" (x) : -400 + 4,050.t - 10.80012 t 8,000x3

The average value of the secorrd derivative can be computed as lEq. (17.7)l

/1'* t-+oo * 4.050x - 10,800:rr * 8,00013) r/:r
f  / , . \  _' '  ' ^ ' -  

0 . 8 -o

which can be substituted into Eq. (17 .14) to yield

I
E, ,  :  -  | ( -60)(0.8)3 -  2.56

| ./,
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which is of the same order of magrritude and sign as the true error. A discrepancy' does exist,
however, because of the fact that tbr an interval of this size, the average second derivative
is not necessarily an accurate approximation of l"(6). Thus, we denote that the error is
approxin.rate by using the notation E,,, rather than exact by using E,.

17.3.2 The Composite Trqpezoidol Rule

One way to improve the accuracy of the trapezoidal rule is to divide the integration interval
liom a to b into a number of segments ernd apply the ntethod to each segment (Fig. 17.9).
The areas of individual segments can then be added to yield the integral fbr the entire in-
terval. Tlre resulting equations are called compo,site, or muhiple-application, integration

.fitrmulas.
Figure 17.9 shows the general fbrmat and nomenclature we will use to characterize

composite integrals. There are n * I equally spaced base points (ro,,rr, x2,..., -r,,). Con-
sequently, there are ,l segments of equal width:

b - a
l a -  -

t7

If a and b are designated as ,rs and 1,,.
sented as

(  l 7 . l - s )

respectively, the total integral can be repre-

r : L'' .f 
(x)ru + 1,,,'f  ( t )dx+. . '+  

l . ' '  f  , r ru ,

FIGURE I7.9
Comoosite trcoezoidcrl ru e

,  b - c t
n : ---il-
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Substituting the trapezoidal rule for each integral yields

,  ,  I ( r n \  *  / t r r )  ,  " [ ( r r ) . 1  / ( x : ]
-  t t -

2 2

or, grouplng terms:

, T  n l  I
n t  I

I  :  :  l  / ' ( xo)  +  2  )  I ( r i )  l -  J  (x , , )  |
. r l  I- L  i - l  J

or, using Eq. ( 17. l5) to express F.q. (17 .17 ) in the general form of Eq. ( 17.l3):

n - l

f  ( rn )  r  2  \ -  /  t .1 ,  )  r  r ( . r / i  )- / r r \ ' - I '  r
j - 1

t : ( b - a )\.....--
widlh

2rt

Avcragc hcight

Because the summation of the coefficients of /(:r) in the numerator divided by 2il is equal
to I , the average height represents a weighted average of the function values. According to
Eq. ( 17. l8), the interior points are given twice the weight of the two end points /(.ro) and

. f  (x , ) .
An error fbr the composite trapezoidal rule can be obtained by summing the individ-

ual errors for each segment to give

, '  . 1  i l
l D  -  t l l '  -E, : _,:;:: f /,,re, ) {r7 re)

t l n '  -

where /" (6i ) t, ,n" ,".ond derivative at a point {; located in segment i. This result can be
simplified by estimating the mean or average value of the second derivative for the entire
interval as

t1

\ -  f ' l r l .  r
1 '  J  \ \ i ' ,

n

Therefore L, .l'" (€,) = n f " and Eq. (.11 .19) can be rewritten as

, l  . 1
t D  -  o t '  - .

L , , - - - I

|  1,n '

Thus, if the number of segments is doubled, the truncation error will be quarlered. Note
thatEq.  (11 .21)  isanapproximateerrorbecauseof  theapproximatenatureof  Eq.(17,20) .

EXAMPLE I2.2 Composi te Appl icot ion of  the Tropezoidol  Rule

Problem Stotement. Use the two-segment trapezoidal rule to estimate the integral of

f (x) : 0.2 * 25x - 200x2 -t 675r.3 * 900x4 * 400x5

from a : 0 to D : 0.8. Employ F,q. (17 .21) to estimate the error. Recall that the exact value
of the intesral is 1.640533.
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So lu t i on .  Fo rn  :  2 (h  : 0 .4 ) :

/ (0)  :  0 .2 f  (0.4)  :2 .456 , f  (0.8)  :0 .232

1 : 0 . 8
0.2+2(2.4s6)  +0.232: 1 . 0 6 8 8

4

E , : 1 . 6 4 0 5 3 3  -  1 . 0 6 8 8  : 0 . 5 1 1 7 3 €t  :34.97c

0.gr
[ , n  :  - - 1  -  ( - 60 )  : 9 .64"  t 2 (2 \ t

where -60 is the average second derivative determined previously in Example 17.1.

The results of the previous example, along with three- through ten-segment applica-
tions of the trapezoidal rule, are surnmarized in Table l7.l. Notice how the error decreases
as the number of segments increases. However, also notice that the rate of decrease is grad-
ual. This is because the error is inversely related to the square of r [Eq. (1,1 .21)). Therefore,
doubling the number of segments quarters the error. In subsequent sections we develop
higher-order fbrmulas that iue more accurate and that converge more quickly on the true in-
tegral as the segments are increased. However, belbre investigating these formulas, we will
first discuss how MATLAB can be used to implement the trapezoidal rule.

| 7.3.3 MATTAB M-fi le: trap

A simple algorithm to implement the composite trapezoidal rule can be written as in
Fig. 17. l 0. The function to be integrated is passed into the M-file along with the limits of
integration and the number of segments. A loop is then employed to generate the integral
fo l lowing Eq.  (17.18) .

TABLE | 7. I Resulis for the composite hopezoidol rule to
estimote the integrol of /(.r ' l  :0.2 + 25.\ -

200-t2 + 675x3 - 9O0r+ + 4OO,rs from
-r  :  O to 0.8.  The exoct  vo lue is  1.640533.

e, ("/"1

2
3
4
5
6
7
B
I

t 0

3 4 9
t 6 . 5
9 5
6 l
4 . 3
3 2
2 . 4
1 . 9
t 6

0 .4
a 2667
0 . 2
0  t 6
0 .  r  3 3 3
0 l 1 4 3
0 t
0.0889
0 0 8

06B B
3695
484B
5399
5703
5B87
6008
609 I
6 t 5 0
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f u n c t i o n  I  =  t r a p ( f u n c , a , b , n , v a r a r g i n )
%  t r a p :  c o m p o s i . t e  t t : a p e z o i d a l  r u l e  q u a d r a L u r e
' Z  I  -  t r a p ( f  u n c , a , b , n , p i , p 2 , . . .  ) :
%  c o m p o s i t e  t r a p e z o i d a l  r u l e
%  i n p u t :
?  f u n c  =  n a m e  o f  f u n c t i o n  L o  b e  i n t e g r a t e d
Z  a ,  b  =  i n t e q r a t i o n  l i m i t s
?  n  -  n u m b e r  o f  s e g , m e n t s  ( d e f a u l L  =  1 0 0 )
?  p l  , p 2 ,  .  . .  -  a d d i t i o n a l  p a r a m e t e r s  u s e d  b y  f u n c
Z  o u t p u t :
%  I = i n t e g r a l e s t i m a t e

i f  n a r g i n < 3 , e r r o r ( ' a t  l e a s t  3  i n p u t  a r g u m e n t s  r e q u i r e d ' ) , e n d
i f  - ' ( b > a ) , e r r o r ( ' u p p e r  b o u n d  m u s t  b e  g r e a t e r  t h a n  l o w e r , ) , e n d
r  f  n a r q i n - 4  r  i s e m p L y l n t , n - 1 0 0 ; e n d
x  =  a ;  h  =  ( f  -  a ) / n ;
S - f u n c  ( q , v d r a r g  i  - , {  : '  )  ;
f o r i = 1 ; n - 1

X  =  X  +  h ;
s  =  s  +  2 * f u n c ( x , v a r a r g : i n { : } ) ;

end
s  -  s  +  f u n c ( b , v a r a r g i n { : } ) ;
I  =  ( b  -  a )  *  s / ( 2 * n ) ;

F I G U R E  I 7 . I O
M-f le -o imp enr-cnl 'he conpo:i ie rope./o oo 'J e.

An application of the M-file can be developed to determine the distance fallen by
the free-falling bungee jurnper in the first 3 s by evaluating the integral of Eq. ( 17.3), For
this exarnple, assume the following parameter values: g : 9.81 mlsz, m : 68.1 kg, and
ca :0.25 kg/m. Note that the exact value of the integral can be computed with Eq. (17.4)
as 41.94805.

The function to be integrated can be developed as an M-file or with an anonymous
function,

> >  v = @ ( t )  s q r t  ( 9 . 8 1 * 6 8 . L / 0 . 2 5 )  * t a n h ( s q r t  ( 9 . 8 1 * A . 2 5 i 6 8 . 1 ) * t )

C  (  t  )  s q r i  (  9 .  3 1 * 6 8 .  1 , '  t )  .  2 5  )  * t a n h  (  s q r t  (  9 .  B 1  *  A  .  2 5  /  6 8 .  1  )  * t )

First, let's evaluate the integral with a crude five-segment approximation:

f o r m a L  l o n g

> ; '  t t  a p  ( v ,  0 ,  3 ,  5  )

-  

o ,  . . 6 o o 2 o  : , a r "  ) - 1  > 5
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As would be expected. this result has a relatively high true enor of 18.67o. To obtain a more
accurate result, we can use a very fine approximation based on 10,000 segments:

> >  t . r a p ( r r ,  O ,  3 ,  1 0 t 1 0 0 )

4 ! . 9 4 8 0 4 9 9 9 9 r 1 5 2 8

which is very close to the true value.

17.4 SIMPSON'S RULES

Aside from applyin-q the trapezoidal rule with finer segmentation, another way to obtain a
more accurate estimate of an integral is to use higher-order polynomials to connect the
po in t s .Fo rexamp le , i f  t he re i sanex t rapo in tm idwaybe tween  f (a )and  / (b ) , t he th ree
points can be connected with a parabola (Fig. 17.11a). lf there are two points equally
spaced between .f (a) and f (b), the tbur points can be connected with a third-order poly-
nomial (Fig. l7.l1b). The formulas that result from taking the integrals under these poly-
nonrials are called Sintpson's rules.

17.4.1 Simpson's l /3 Rule

Simpson's I /3 rule coresponds to the case where the polynomial in Eq. ( 17.8) is second-
order:

( x - x r ) ( ; - r z ) (x - xo)1.r-  rz)
(x1y  -  xy ) (xs

.  /  ( r t t )
-  x 2 )

+
(xr  -  xe)(x1 -

:  l ( x r )

+ 4 rr',rla,
Y t )  I

- xo) ("t - :rr )

, : I:,'l
(,r

(x2 - xe)(.r2 -

FIGURE I7 . I  I
(o)  Grophlcol  depic l ion of  Simpsons 1/3 ru ie:  l t  consis ls  of  tok ing the oreo under o pcrobolo
conneci ing three points.  (b)  Grcphico depicf ion of  Simpson's 3/6 ru le:  l t  consis is  of  tok ing the
^ r A ^ ,  n / l ^ r  ^ ^ . ^ r i  

I
-  1 - -  ,On  CO 'nec l  ' g  'OJ r  pO tn ' 5 .

f(x)1(/.)
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rs glven by

where a and b arc designated &s -:16 and 12, respectively. The result of the intesration is
- lt
/ : 

1 [/(xo) -r 4.f (x) + J-(.y)l (n

where , fo r th i scase , / z  
- ( ! -  

a ) / 2 .Th i sequa t i on i sknown  asS in tpson ,s  I / 3 ru le .T 'e
r rw r4vr  r r14r  / t  l s  u tv l ( jeo  Dy J  ln

also be expressed using the format of Eq. (17. l3):
:?::,,^t1]_ 

srems from the fact that /r is atvided by 3 in Eq. r7.22). Sil2t. Simpson's l/3 rule can

I - ( b - a .l (:to) + 4f (r) * .f (xzl-
f)

where a : xo,b:.r2, ' f ld.rr : the point midway between a and b,which is si
::,:!11 ,"otice 

that, according to Eq. (17.23), the middle poiint is weighted by two-thirds and rhe rwo end points by one_sixih.
It can be shown that a single_segment applicatiication of Sinnpson's l/3 rule has a trunca.tion enor of

I
E , :  -  h 5  / ' f r t . l t'  

9 0  r  ' \ '

o r , b e c a u s e h : ( b - a ) 1 2 :

-  ( b - u t s
E , - - '  

- "  
f t 1 , t b ,'  

2990 " \  /

where f lies somewhere in the interval from a to b. Thus, Simpson's 1/3 ruleis more ac-curate than the trapezoidal rule' However, comparison with Eq. (17.] )indicates that it isnore accurate than expected' Rather than being proportional to the third denvative, theetror is proportional to the fourth derivative. consequently, Simpson,s l/3 rule is third-order accurate even though it is based on only three points. In other words, it yields exactresults for cubic porynomials even though it is derived from a parabora!

EXAMPLE 17.3 Single Appl icor ion of  Simpson,s l /3  Rule

Problem Siotement. Use Eq. (17.23) ro inregrate

f  ( . x ' ) : 0 .2 *25 "u  -20012  *6 i5x3  _900xa  *400 rs

frorn.l 
- 

0 
!9 

b : 0'8' Employ Es. o7.24) to esrimare rhe enor. Recall that the exacr in-regrat is 1.640-533.

S o l u t i o n .  n  : 2 l h :  0 . 4 ) ;

J ' (0)  :  0 .2 f  (0.4)  :  2 .456 / (0.8)  :  0 .232

1  : 0 . 8 0 .2+4(2 .456)+0.232
= 1.367467

E, : 1.640533 - 1.36746j : 0.2730667 € t : 1 6 . 6 7 o
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which is approximately five times more accurate than for a single application of the trape-
zoiclal rule (Example 17. I ). The approximate error can be estimated as

o R s
E,,  :  -  l t -2400) :  0 .17-10667" 1880

where -2400 is the average fourth derivative lbr the interval. As was the case in Exam-
ple 17.1, the error is approximate (E,,) because the average fourth derivative is generally
not an exact estimate of / '+rt{ ). Hower,'er, because this case deals with a fifth-older poly-
nomial, the result matches exactly.

17.4.2 The Composite Simpson/s l /3 Rule

Just as with the trapezoidal rule. Simpson's rule can be improved by dividing the integra-
tion interval into a number of segments of equal width (Fig. I7 .12). The total integral can
be represented as

r :  [^ , , ' f {*)ar+ l , ' .f  
(x) ttx+ . .  '  + 1." '  .rU, 

o, ( 1 7.2-s)

F IGURE 17.12
f n r r n n < l f o  l i m ^ . ^ n ' <

Not-^ thoi the method
1/3 rule. The relot ive rveights ore depicted cbove the funcl ion vclues
con be employed only i f  the number of segmenls is even.
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Substituting Simpson's I /3 rule fbr each integral yields

I  : 2 l t I  (xo) +
6 6

J (r,, z) * 4 J'Q,, r) + l (r,, )+ . . ' +2h

or, grouping terms and using

6

Eq.  (17 .1-5) :

J : ( b - t t )

n  I  n 2

l ( , r o )+4  I  fQ i )+2  L  fG )+ f ( r , , )
i -  1 . 3 . 5  j : 2 , 4 . 6

Notice that, as illustrated in Fig. 17.12, an even number of segments must be utilized
to implement the method. In addition, the coefficients "4" and "2" in F,q. (17.26) might
seem peculial at f irst glance. However. they follow natul'ally from Simpson's l/3 rule. As
il lustrated in Fig. 17.12, the odd points represent the rniddle term tbreach applicationand
hence carry the weight of four from Eq. (11 .23). The even points are common to adjacent
applications and hence are counted twice.

An error estimate for the composite Simpson's rule is obtained in the same fashionas
tor the trapezoidal rule by summing the individual errors for the segnlents and averaging
the derivative to vield

r h  -  ' , 1 5

t , ,  :  - "  ,  
' '  

!  I ' o '  \1 j .21)"  l 80na  
'

where f (l) is the averase tourth derivative tbr the interval.

EXAMPLE I2 .4  Compos i t e  S impson ' s  I  / 3  Ru le

Problem Siotement. Use Eq. (17 .26\ with n : 4 to estimate the integral of

f (.x) : 0.2 * 25r - 200x2 -| 675;;3 - 900x4 * 400x5

from a : 0 to b : 0.8. Employ Eq. (11 .27) to estinlate the error. Recall that the exact
integral is 1.6.10533.

S o l u t i o n .  n  : 4 ( h :  0 . 2 ) :

. f  (o') :  o.z f \0.2) : 1.288

I  ( ) .1)  :2 .456 . f  (0 .6)  :3 .464

l (0.8) : 0.232

From Eq. (11.26):

0.2 + 4( 1.288 + 3.464) + 2(2.456) + 0.232
: 1.623467/  - n r l

I2

3n

Et :  1 .64053- l  -  1 .623461 :0.017061 €t :  I .04Vo
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The estimated error 1Eq. 17.27'; is

-  ( o ' 8 )5
E, ,  :  -  .  _  t -2100) :  ( ) .U17067'  

l t t0(4 )+

which is exact (as was also the case for Example 17.3).

As in Example 17 .4, the composite version of Simpson's 1 /3 rule is considered supe-
rior to the trapezoidal rule fbr most applications. However, as mentioned previously, it is
Iimited to cases where the values are equispaced. Further, it is l imited to situations where
there are an even number of segments and an odd number of points. Consequently, as dis-
cussed in Section 17.4.3, an odd-segment-even-point formula known as Simpson's 3/8
rule can be used in conjunction with the I /3 rule to permit evaluation o1'both even and odd
numbers of equispaced segments.

17.4.3 Simpson's 378 Rule

In a similar manner to the derivation of the trapezoidal and Simpson's l/3 rule, a fhird-
order Lagrange polynomial can be fit to four points and integrated to yield

3h
f  :  

o  I f ( . r r 1 ) * - ] l ( . r r )  - t 3 f ( x )  + . f ( . f r ) l

whe re / r : ( b -  a ) /3 .Th i sequa t i on i sknownasS impsons3 I8 ru lebecause / r i smu l t i p l i ed
by 3l8.It is the third Newton-Cotes closed integration formula. The 3/8 rule can also be

Thus, the two interior points are given weights of three-eighths, whereas the end points are
weighted with one-eighth. Simpson's 3/8 rule has an emor of

expressed in the fbrm of Eq. (17.13):

- f  (x r , ) *  3 / ( r r )  *3 . f  ( . x )  + . / ( - r : )
i : \ U - U r T

E ,  :  - ] / , ' f  ' t ' t e  t
6t/

or, because h : (l) - a) 13:

, ,  :  - 'b . , . iL l ' . / ' ' ' r {  r
64rJ0

(11.28)

(1.29)

Because the denor.nina.tor of Eq. (11 .29) is larger than for Eq. (17.24), the 3/8 rule is some-
what more accurate than the 1/3 rule.

Simpson's l/3 rule is usuaily t lre rnethod of pref-erence because it attains third-order
accuracy with three points rather than tlre tour points required tbr the 3/8 version. How-
ever, the 3/8 rule has utility when the nunrber of segments is odd. For instance, in Exam-
ple 17 .4 we used Simpson's rule to integrate the function for four segments. Suppose that
you desired an estimate for five segments. One option would be to use a composite version
of the trapezoidal rule as was done in Example 11 .2. Thts may not be advisable, however,
because of the large truncation error associated with this method. An alternative would be
to applv Simpson's l/3 rule to the first two seqments and Simoson's 3/8 nrle to the last
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TABTE I

Segmentr
(n)

0 0.2 0.4 0.6 0.8
#

1/3 ru le 3/8 ru le

EXAMPLE 12.5

FIGURE 17.13
l l lusirot ion of how Simpsons 1/3 cnd 3/B rules con be oppl ied jn tondem 1o hondle muriple
opp l ico l ions  w i th  odd numbers  o f  jn te rvo ls .

three (Fig. ll .13). In this way, we could obtain an estimate with third-order accuracy across
the entire interval.

S impson 's  378 Ru le

Problem Stqtement. (a) Use Simpson's 3/8 rule to integrare

./(r) : 0.2 r 25x - 20012 * 675x'r - 900;r+ -l400x5

from a :0 to b :0.8. (b) Use it in conjunction with Simpson's l/3 rule to integratethe
same function tbr five segnlents.

Soluiron. (c) A single application of Simpson's 3/8 rule requires four equally spaced
points:

/ ( 0 ) : 0 . 2  f  ( 0 . 2 6 6 j ) : t . 4 3 2 j 2 4

/(0.,5333) :3.4811'71 , f  (0.8) :0.232

Using Eq. (17.28):

,  ^ -0.2 + 3(t  .432724 + 3.487117) + 0.232l : t ) . l J  : 1 . 5 1 9 7 0
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(b) The data needed for a five-segment app I ication (/z : 0. 1 6) is

.f (0) : 0.2 ./ (0.16) : | .296919

f (0 .321 :  1 .743393 l (0 .48)  :3 .186015

f Q.A+1 :  3.181929 , f  ( l .St l ;  :0.232

The integral for the first two segnrents is obtained using Simpson's 1 /3 rule:

I  : 0 . 3 20.2 + 4(.1 .2969t9) + t.143393
:0 .3803237

0

For the last three segments, the 3/8 rule can be used to obtain

1 .143393  +  3 (3 .186015  +  3 . r8 r929 )  +0 .232
1 : 0 . 4 8  g  

: 1 . 2 6 4 1 5 4

The total integral is computed by summing the two results:

1 :  0 .3803237 + 1.264754 :  1.645017

17.5 HIGHER-ORDER NEWTON.COTES FORMUTAS

As noted previously, the trapezoidal rule and both of Simpson's rules are menbers of a
family of integrating equations known as the Newton-Cotes closed integration formulas.
Some of the formulas are summarized in Table 11 .2. along with their truncation-eror
estimates.

Notice that, as was the case with Simpson's I l3 and 3/8 rules, the five- and six-point
formulas have the same order error. This general characteristic holds for the higher-point
fornrulas and leads to the result that the even-segment-odd-point fonnulas (e.g., l/3 rule
and Boole's rule) are usually the methods of preference.

IABLE 17,2 Newton-Cotes closed integrotion formulos. The formulos ore presented in the formot of Eq. {l Z. I 3)
so thoi the weighting of the doto points to estimote the overoge height is opporent. The step size is
g i v e n b y h : ( b - a ) l n .

Poinls Nome Formulo Truncolion Error

5

Trcpezoidol rule

Simpsor ' :  1 3 ' r -^

S m p s o n s  3 / 8  r u e

Bccle s rr,le

. ,  . / ( r o ) + l ( - r r )
\ t )  n ,  

)

. ,  .  , f ( ro )  +  4 . f  ( - r r )  +  f ( - r : )
\ p  -  r , ) -

,  / { . \ , , r - ' . / { . r 1 r -  3 t t . r ' , - 7 r . t . r
. " . . , 8

- l l  / I 2 l h t  l " t I )

- l  1 , '9O1tr :  1 ' r ' t ,  ,

-13l80)15 f11)(6)

182 Q45) l i r . ; r ( ' r  161

-127 5 / I 2,a9dnt .1 rt': 16,

\ 1 ,  -  u )

\ b - 0 )

7 .1  60 )  +  32  1  ( x t )  +  l 2  l  ( x l  +  32 .1  ( r t )  +  7  J  \ t 1 )
90

I 9 l  (-rx) + Z5.l  ( .rr )  + 501 (.r:)  + 501 (,{r) + 7 5 l  (xa) + I 9 l  (r5)
288
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However, it must also be stressed that, in engineering and science practice, the higher-
order (i.e., greater than four-point) lbrrnulas are not commonly used. Sirnpson's rules are
sufficient for most applications. Accuracy can be improved by using the composite version.
Furthermore, when the function is known and high accuracy is required, methods such as
Romberg integration or Gauss quadrature, described in Chap. 18, offer viable andattrac-
tive altematives.

17.6 INTEGRATION WITH UNEQUAL SEGMENTS

To this point, all lbrrrrulas for numerical integration lrave been based on equispaced data
points. In practice, there are ntany situittions where this assurnption does not hold and we
r.nust deal with unequal-sized seqments. For example, experimentally derived data is often
of this type. For these cases, one method is to apply the trapezoidal rule to each segment
and sum the results:

I  - h t . f ( . r i l+ f@r) f (u) + f (r.)*  " . r  h , ,. l  G, t)  *  .1(x, ,)
l h z

where ft; : the width of segment i. Note that this was the same approach used for the com-
posite trapezoidal rule. The only difference between Eqs. ( 17.16) and ( 17.30) is that the ft 's
in the formel are constant.

EXAMPLE I2.6 Tropezoidol  Rule wi th l ' l1s^"^ l  saamanlc

Problem Stotemeni. The information in Table 17.3 was generated using the same poly-
nomial employed in Example 17.1. Use Eq. ( 17.30) to determine the integral for this data.
Recall that the correct answer is 1.640533.

TABTE 17.3 Doto for "f(.r) : 0.2 + 25x - 200x2 I 67513 - 9O0ra + 400"t',
with uneguolly spoced volues of :r.

f (-x) f {x1

0 0 0
0 t 2
o 2 2
o 3 2
0 3 6
0 4 0

0 4 4
o 5 a
0 6 4
o 7 0
0 8 0

2 842985
3 547297
3  r B r 9 2 9
2 363000
0 232AAA

0 200000
1 .ic9729
t 345241
) 7,13393
2 074943
2.456040

Solut ion.  Apply ing Eq.  (17.30)  y ie lds

I  : 0 . 1 20.2 + r.309129 1.309129 + 1.305241
+  0 .10

2 . 1 6 1  +  0  2 1 2
+ . . . + O t 0 : _ : : ' l j : _ : : : = t . - s 9 - 1 8 0 1

which represents an absolute perceut relative error of €t :2.8Vc.



12.6 INTEGRATION WITH UNEOUAL SEGMENTS 4 1 3

17.6.1 MATLAB M-fi le: trapuneq

A simple algorithm to implement the trapezoidal rule for unequally spaced data can be
written as in Fig. 17.14. Two vectors, x and y, holding the independent and dependent vari-
ables are passed into the M-file. Two error traps are included to ensure that (a) the two vec-
tors are of the same length and (b) the x's are in ascending order.r A loop is employed to
generate the integral. Notice that we have modified the subscripts from those of Eq. (17.30)

to account for the fact that MATLAB does not allow z.ero subscripts in anays.
An application of the M-file can be developed for the same problem that was solved in

Example 17.6:

> >  x  -  l 0  . I 2  . 2 2  . 3 2
> >  v  -  4 . 2 + 2 5 * x - 2 0 0 * x .
> >  l -  r a p L l n e q  ( x ,  y  )

:  ( o  t !

which is identical to the result obtained in Example 17.6.

. 3 6  . 4 . 4 4 . 5 4  . 6 4 . 1  . B l ;
'  2 + 5 1  5 * x .  ^ 3 - 9 0 0 " x  .  ̂  4 + 4 0 0 * x .  "  5  ;

FIGURE 17.14
M{ile io lmplement the tropezoidol rule lor unequolly spoced dofo.

f u n c t i o n  f  =  t r a p u n e q ( x , y )
o .  i r _ n  . - r - . i , .  -  , . : d _ l  , t t  o  d l t : a l t _ f t t eo  J r . u  \ y .  J , - - 4 ) a  L  > l J d L F u  L  r a p s T u ' v ( , r  r - L  Y J

Z  T  =  t r a p u n e q  ( x ,  y )  :
?  A p p l i e s  t h e  t r a p e z o i d a l  r u l e  t o  d e t e r m i n e  t h e  i n t e g r a l

*  f o r  n  d a L a  p o i n t s  ( x ,  y )  w h e r e  x  a n d  y  m u s t  b e  o f  t , h e

%  s a m e  l e n g r t h  a n d  x  m u s t  b e  m o n o t o n i c a l l y  a s c e n d i n g

%  i n p u t :

%  x  =  . / e c t o r  o f  i n d e p e n d e n t  v a r : r a b l e s

?  y  =  v e c t o r  o f  d e p e n d e n E  v a r i a i : l e s

%  o u t p u t :
2  I = i n t e q r a l e s t i m a t e

i f  n a r g i n < 2 , e r r o r ( ' a t  l e a s t  2  i n p u t  a r g u m e n t s  r e s u i r e d ' ) , e n d

i f  a n y ( d i f f  ( x ) < 0 ) , e r r o r ( ' x  n o t  m o n o t o n i c a l l y  a s c e n d r n q '  ) , e n d
n  =  l e n g r t h ( x ) ;
i f  l e n g c h  ( y )  - = n ,  e r r o r  (  ' x  a n d  y  m u s t  b e  s a m e  l e n g t h '  )  ;  e n d

s  =  0 ;
f o r  k  =  1 ; n - 1

s  :  s  +  ( x ( k + 1 ) - x ( k ) ) - ( y ( k )  + y \ k + \ \ )  / 2 ;
end
T  -  c '

'  The  r :  l unc t i on  i s  Jese r i heJ  i n  Scc t i o r r  19 .7 .  I
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17.6.2 MATTAB Functions: trapz Qrd cumcrapz

MATLAB has a built-in function that evaluates integrals for data in the same fashion asthc
M-fi le we just presented in Fig. i7.14. It has the general syntax

z  -  t  r a p z  ( x ,  l ' )

where the two vectors, x &od -r,. hold the independent and dependent variables, respectively.
Here is a simple MATLAB session that uses this function to integrate the data from
Table 17.3:

> >  x  =  t 0  . I 2  . 2 2  . 3 2  . 3 , h  . 4  . 4 4  . 5 4  . 6 4  . 7  . 8 1 ;
> >  y  =  0 . 2 + 2  5 * x - 2 0 0 " x .  " ' 2 + 6 1  5 * x .  ̂ 3 - 9 0 0 * x .  ̂ 4 + 4 0 0 * x .  ̂5 ;

> >  t r a p z  ( x , y )

1 . 5 9 4 8

In addition, MAILAB has another function, cumr rapz. that computes the cumulativc

inte_ural.  A sirnple representation of i ts syntax is

z  -  c u m t r a p z  ( .  x ,  y . )

where the two vectors, x and y, hold the independent and dependent variables, respectively,
and z :  a  vec torwhosee lenrents  z (k )  ho ld  the  in tegra l  f ro rn  x (1)  tox (k )  .

EXAMPLE l7.7 Using Numericol  Integrot ion to Compute Distonce from Veloci iy

Problem Stotement. As described at the beginning of this chapter, a nice application
of integration is to compute the distance z(r) of an object based on its velocity u(t) as in
(recall Eq. 17.2):

: t r l :  I  u \ t l  d t
J ( \

Suppose that we had measurements of velocity at a series of discrete unequally spaced tirno
during free fall. Use Eq. (17.2) to synthetically generate such inforrnation for a 70-kg
jumper with a drag coefficient of 0.275 kg/m. Incorporate some random error by rounding
the velocities to the nearest integer. Then use cum1, rapz to determine the distance fallen and
compare the results to the analytical solution (Eq. 17.a). In addition, develop a plot of th
analytical ar.rd cornputed distances along with velocity on the same graph.

Solution. Some unequally spaced times and rounded velocities can be generated as

' .  l o r n o t  s h u ' r  ( J

; ' ; 5 = [ Q  1  L . 4  2  3  4 . 3  5  5 . 1  B ) ;
> >  9 - 9 .  8 L ; m = 7 0  ;  c c t = O  .  2 ' 1 5  ;
> >  v = r o u n d ( s q r t  ( g * m , / c d )  * t a n h  ( s q r t  ( g * c d / m )  * t )  )  ;

The distances can then be comouted as

/  J ^ L t o p t (  , v J

o  5  9 . 6  1 - 9 . 2  4 L 1  8 0 . 7  I 4 4 . 4 5  1 7 3 . 8 5  2 3 r . t
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Thus, after 8 seconds, the jumper has fallen 231.7 m. This result is reasonably close to the
analytical solution (Eq. 11.4):

A graph of the numerical and analytical solutions along with both the exact and rounded
velocities can be generated with the following commands:

> >  r a = l i n s p a c e  ( t  ( 1 )  ,  t  ( l e n g t h ( r )  )  )  ;
> >  z a = n /  c d * 1 o g  ( c o s h  ( s q r t  ( q r * c d / m )  * t , a )  )  ;
> >  p l o L  ( L a ,  z a , t ,  z , '  a '  )
> >  t i t l e ( ' D i s t a n c e  v e r s u s  t - 1 m e ' )

> >  x l a b e l  ( ' t  ( s )  ' )  , y l a b e l  ( ' x  ( m )  ' )

> >  L e g e n d  (  ' a n a l y t i c a L '  
,  

' n u m e r i c a l  
t

As in Fig. 17.15, the numerical and analytical results match fairly well.

FIGURE 17.15
Ploi of distonce versus time The line wos compufed with the onolyticol solufion, wnereos rne
po i ' r ' s  we e  de le ' r i red  ^ lne  co l  ,  , , r  - [ .  -he  ur  - .  ,  fu^c l io . .

Distance versus t ime

a nalyt ical

O numer ica l
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TABTE | 7.4 Newton-Cotes open integrotion formu/os. The formulos ore presenied in the formot of Eq. {17. l3)
so thot the weighting of the doto points to estimote the overoge height is opporent. The siep size
is  g iven by h :  (b -  u) ln .

Segmenls
(n\  Poinls Nome Formulq Truncotion Enor

EXA

2

3

I

2

M dpolf t rn-.1hod (b  -  a ) . f  ( . r t )

. .  . . f  (x t )  +  l ( - r2 .1
\ D  -  a ) -

|  /3V13 f"G)

t,314)h3 f"G)

( l4 rJ5 l l5 . ; ia r161

(95/ l44lr5.f  (1)(6)

l+t,  l14A)h1 f\6)Gl

( b  a \

l D  d )

( b - u )

2 J ( r t ) - . 1  ( r : ) I  I I ( r r )
3

I  l . / ( . t r  )  + . 1  (  f r )  * . f ( , r r )  *  1  l . l ( - r 1 )
2A

i  l . l ( - t r )  -  l : 1 1 ( f r )  +  2 b l  ( x t )  -  1 4 . f  ( x r , )  *  I  1 . 1 ' 1 . r r 1
2A

17.7 OPEN METHODS

Recall t iorn Fig. 11 .6b that open integration formulas have limits that extend beyond the
range of the data. Table 17.4 summarizes the Newton-Cotes open inteT4rotion.fbnnulas.The
fbrmulas are expressed in the tbmr of Eq. ( 17. I 3 ) so that the weighting factors are evident.
As with the closed versions, successive pairs of the formulas have the same-order enor.
The even-segment-odd-point fbrmulas are usually the methods of pref'erence because they
require f'ewer points to attain the same accuracy as the odd-segment-even-point fbrmulas.

The open formulas are not ofien used for definite integration. However, they have util-
ity for analyzing improper integrals. In addition, they will have relevance to our discussion
of methods for solving ordinary differential equations in Chaps. 20 and 21.

17.8 MULTIPLE INTEGRATS

Multiple integrals are widely used in engineering and
equatiorl to compute the average of a two-dimensional
Eq .  ( t 1  . 1 ) l

l . ' '  ( I i l t r , 1 ' ) t 1x )
( r7.3 r)

( d - c ) ( b - a )

The numerator is called a double integntl.
The techniques discussed in this chapter (and Chap. l8) can be leadily employedto

evaluate multiple integrals. A simple exarnple would be to take the double integral of a
function over a rectangular area (Fig. 17.16).

Recall from calculus that such integrals can be computed as iterated integrals:

(17.32)

Thus, the integral in one of the dimensions is evaluated first. The result of this first inte-
gration is integrated in the second dimension. Equation (11 .32) states that the orderof in-

science. For example, a general
function can be written as lrecall

L' (1,';(.r,,v) a,) at : L' (1,'/(r' r) or)
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EXAMPLE 12.8

FIGURE 17.16
Double infegrol os the oreo under the function surfoce

A numerical double integral would be based on the same idea. First, methods such as
the cornposite trapezoidal or Simpson's rule would be applied in the first climension with
each valtte of the second dimension held constant. Then the method would be applied to in-
tegrate the second dimension. The approach is illustrated in the following example.

Using Double Integro l  to  Deiermine Averoge Temperoture

Problem Stotement. Suppose that the temperature of a rectangular heatecl plate is de-
scribed by the following function:

I ( t .  - r , )  :  2x )  *  2 r  -  x2  -  2 t ' 2  +12

If the plate is 8 m long (;r dimension) and 6 m wide (,y dimension), compute the average
temperature.

Solution. First, let us merely use two-segment applications of the trapezoiclal rule in each
dirnension. The temperatures at the necessary,r and y values are depicted in Fig. 17.17.
Note that a simple average of these values is 47.33. The function can also be evaluated an-
alytically to yield a result of 58.66667.

To make the same evaluation numerically, the trapezoidal rule is first implemented
along the ,r climension for each -r' value. These values are then integrated along the I' di-
mension to give the final result of 2688. Dividing this by the area yields the average tem-
perature as 2688/(6 x 8)  :56.

Now we can apply a single-segment Simpson's l/3 rule in the same fashion. This results
in an integral of 28 l6 and an average of 58.66667, which is exact. Why does this occur? Re-
call that Simpson's | /3 rule yielded perfect results for cubic polynomials. Since the highest-
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U 40 48

54 70

2472 64

X

Iftiit
^ . 0 + 2 { 4 0 ) + 4 8( u - u )  

4  
+ 2 5 6

( 8 - 0 ) 54+2| \70 ] .  +54
4 - +

448

I
( 6 - 0 ) 2 5 6 + ? ( 4 9 6 1 + 4 4 8

FIGURE 17.17
Nurnericol evoluotion of c double integrol using the two-segmenl tropezoidol rule

For higher-ordel algebraic functions as well as transcendental functions, it wouldbe
necessary to use composite applications to attain accul'ate integral estimates. In addition,
Chap. l8 introduces techniques that are more efficient than the Newton-Cotes formulasfr
evaluating integrals of given f-unctions. These often provide a superior means to implement
the numerical integrations for multiple integrals.

17.8.1 MATTAB Functions: dblquad ond triplequad

MATLAB has functions to implernent both double (dnlquad) and triple (rriptequad)
integration. A simple representation of the syntax tbr dbtquad is

q  =  d b l q u a d  ( f  u n  ,  x n t i n ,  x m a : . ,  y m i n ,  y m a x ,  t o l )

where q is the double integral of the function fun over the ranges from xmrn to xmaxad
,vm,zn to ymax.If rol is not specified, a default tolerance of I x 10-6 is used.

Here is an example of how this function can be used to compute the double integral
evaluated in Example 17.7:

> >  q  -  d b l q u a d ( @ ( x , y )  2 * x * y + 2 x x  x .  " 2 - 2 * y . ' ' 2 + 7 2 , A , 8 , 0 , 6 )

2 8 1 6

496

8 _ u 7 ? : 3 g e j 4 +



CASE STUDY 419

Bockground. The calculation of work is an important component of many areas of
engineering and science. The general formula is

Work:force x distance

When you were introduced to this concept in high school physics, sirnple applications were
presented using forces that remained constant throughout the displacement. For example,
if a force of 10 N was used to pull a block a distance of 5 m, the work would be calculated
a s 5 0 J ( l j o u l e : l N . m ) .

Although such a simple computation is useful for introducing the concept, realistic
problem settings are usually more complex. For example, suppose that the force varies dur-
ing the course ofthe calculation. In such cases, the work equation is reexpressed as

(  17.33)

where W: work (J), xo and x, : the initial and final positions (m), respectively, and F(x) :

a force that varies as a function of position (N). ff f(-r) is easy to integrate, Eq. (17.33) can
be evaluated analytically. However, in a realistic problem setting, the force might not be ex-
pressed in such a manner. In fact, when analyzing measured data, the force might be avail-
able only in tabular form. For such cases, numerical integration is the only viable option for
the evaluation.

Further complexity is introduced if the angle between the force and the direction of
movement also varies as a function of position (Fig. 17.18). The work equation can be
modified further to account for this effect. as in

F(,r) cos[9(x)] dx (r7.34)

Again, if F(-r) and e @) arc simple functions, W 07.34) might be solved analytically. How-
ever, as in Fig. 17.18, it is more likely that the functional relationship is complicated. For
this sifuation, numerical methods provide the only alternative for determining the integral.

Suppose that you have to perform the computation for the situation depicted in
Fig. 17.18. Although the figure shows the continuous values for F(x) and d(x), assume that,
because of experimental constraints, you are provided with only discrete measurements at
x : 5-m intervals (Table 17.5). Use single- and multiple-application versions of the trape-
zoidal rule and Simpson's 1/3 and 3/8 rules to compute work for this data.

Solution. The results of the analysis are summarized in Table 17.6. A percent relative
error r/ was computed in reference to a true value of the integral of 129.52 that was esti-
mated on the basis of values taken from Fig. 17.18 at 1-m intervals.

The results are interesting because the most accurate outcome occurs for the simple
two-segment trapezoidal rule. More refined estimates using more segments, as well as
Simpson's rules, yield less accurate results.

The reason for this apparently counterintuitive result is that the coarse spacing of the
points is not adequate to capture the variations of the forces and angles. This is particularly

w : 
1.,,' 

F(x) dx

w: 1""
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continued

,{, m

FIGURE 17.18
The cose of o vorioble force octing on o block. For lhis cose the ongle, os well os ihe
mognitude, of the force vories.

0

TABLE t 7.5 Doto for force F("r) ond ongle 0(x) os o function of
position -r.

F(r), N 0, rod F(x) cos d

0
5

t 0
t 5
20
25
30

0.0
9.0

r 3 . 0
l 4 . o
1 0 5
1 2 . 0
5 .0

0 5 0
1 . 4 0
0.75
0 9 0
r 30
I  .48
r . 5 0

0.0000
1 .5297
9.5 r  20
8.7025
2.8082
1  .0881
0 .3532
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cont inued

TABIE 17.6 Estimoies of work colculoted using the tropezoidol rule ond
Simpson's rules. The percent relotive error €, os computed in
reference to o true volue of the integrol 1129.52 Po) thot wos
estimoted on the bosis of volues ot l-m intervols.

Technique Segmenls Work e[ o/o

T r n n p z n i . l n l  r , ' l o

Simpson! 1 /3 rule

Simpson's 3/B rule

I
2
3
6
2
6
3

5  3 t
1 3 3  r 9
124.98
r  19 .09
175.82
I  l 7  . 1 3
r39 .93

95.9
2 .84
3  5 r
8.05

35 75
L 5 7
8 0 4

5

5

F|GURE 17.19
A continuous plot of F(x) cos [d(r)] versus posilion with the seven discrete points used to develop
ihe numericol integroi ion estimotes in Toble 17.6 Notice how the use of seven points to
chorccterize this confinuously vorying function misses two peoks ot x :2.5 ond 12.5 m.

evident in Fig. 17.19, where we have plotted the continuous curve for the product of F(.r)
and cos [0(x)]. Notice how the use of seven points to characterize the continuously varying
function misses the two peaks at r :2.5 and 12.5 m. The omission of these two points ef-
fectively limits the accuracy of the numerical integration estimates in Table 17.6. The fact
that the two-segment trapezoidal rule yields the most accurate result is due to the chance
positioning of the points for this particular problem (Fig. 17.20).

The conclusion to be drawn from Fig. 17.20 is that an adequate number of measure-
ments must be made to accurately compute integrals. For the present case, if data were
^. '^ i r4rrr6 af  E"/ t  { \  onc tA(1 5\ l  -  ? QOOT anr l  F( ' l t  \ \  cnc IAl1r  5\ ' t  :  l1  ?q4n rrze norr ld
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PROBtEMS

a.

6

continued

determine an improved integral estimate. For example, using the MAILAB trapz
tion, we could compute

(a) anal)
(c) coml
applicati
| /3 rule
the num
cent rela
17.4 Ev

1 a
I  t t

(a) analy
(c) coml
applicati
and (f) E
through
17.5 Th

f (x)

can be r
spaced d

r O

f(x) 2

Evaluate
lytical rn
of the tri
attain thr
cent rela
17.6 Ev

e l

I
J  - t  J

(a) anal
with n =

1 /3 rule

,t, ft

FfGURE 17.20
Grophicol depiction of whv the two-seqment lropezoidol rule vields o oood estimote of the
integrol for this poriictrlor cose. By choice, the use of trro tro[ezoids h"oppens to leod to on
even bolonce between posifive ond negotive errors.

> >  x = t 0  2 . 5  5
> >  y = [ 0  3 . 9 0 0 7 -

> >  t r a p z  (  x ,  y  )

r 3 2  . 6 4 5 8

r 0  L 2 . 5  1 5  2 0  2 5  3 0 1 ;
L . 5 2 9 1  9 . 5 t " 2 0  1 1 . 3 9 4 0  8 . 1 0 2 5  2 . 8 0 8 7  . . .

1 . 0 8 8 1  0 . 3 5 3 7 1 ;

Including the two additional points yields an improved integral estimate of I
(e,:2.l6Eo). Thus, the inclusion of the additional data incorporates the peaks that
missed previously and, as a consequence, lead to better results.

17.1 Derive Eq. ( 17.4) by integrating Eq. (17.3).

17.2 Evalnte the lbllowing integral:

r4

I t t  -  e-2'1 t lx
J O

application of Simpson's l/3 rule, (e) composite Simpson\
1/3 rule with n : 4, and (f) Simpson's 3/8 rule. Foreachof
the numerical estimates (b) through (f), determine the pr-
cent relative error based on (a).

17.3 Evaluate the following integral:

r n  / 2
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(a) analytically, (b) singlc application of the trapezoidal rule,
(c) conrposite tlapezoidal rule with n :2 iutd 4, (d) single
application of Sirnpson's l /3 rule, (e) composite Simpson's
1/3 rule with n : 4. and (f) Simpson's 3/8 rule. For each o1'
the numerical estimates (b) through (f), determine the per-
cerrt rel l t i rc erlor hased on 1a.1.
17.,1 Evaluate the lirllowins inte-eral:

+ 2xs) ri-r

(a) analytically, (b) singlc application of thc trapezoidal rule,
(c) composite trapezoidal rule with n : 2 antl .1, (d) single
application of Sirr.rpson's l /3 rule, (e) Simpson's 3/8 rulc.
and (f) Boole's rule. For cach of the numerical estimate s (b)

through (f), determine thc percent relative error based on (a).

17.5 The firnction

,f (-r) :  2e r 5'

can be usecl to generate the following table of unequally
spaced data:

r  O  O O 5  0 1 5  4 2 5  0 3 - 5  A . { 5  0 o

f ( x )  2  1 8 5 5 - 5  1 5 9 7 0  1 3 7 4 6  l l 8 3 l  0 s 3 0 8  0 8 1 3 1

Evaluate the inlc-eral from rr :0 to b :0.6 using (a) ana_
lyt ical means, (b) the trapezoidal rule, and (c) a combinlt ion
of the trapezoidal and Simpsou's rules wherever possible to
aurin the highest accuracy. For (b) and (c), compute the per-
cent relative error'.
17.6 Evaluate the double intesral

(a) analytically, (b) using thc composite trapezoidal rule
with ir  :  2. and (c) using single appl icat ions of Simpson's
l/3 rule. For (b) and (c). compute the percent relative eror.

17.7 Evaluate the triplc integral

1 . r3  -  3 r ' : )  d t  d t 'd :

(a) analyt ical ly. and (b) using single appl icat ions of
Simpson's l /3 rule. For (b), compute the percent relat ive
efror.
17.8 Detcrmine the distance travelcd tionr the follouinc
velocity data:

n )  n )  r l

I .J,, J ̂

t l 2

u 5 6

3 2 5  4 5
5 5  7

6

B 5

7
B

B
6

B 5
7

9 3 t 0
5

(a) Use the tlapezoidal rule.
(b) Fit  the data with a cubic equation usine polynomial

regression. Integrate the cLrbic equation 1o determine the
distance.

I 7.9 Walcr exerts pressure on thc upstream face of a dam as
shown in Fig. P17.9. The prcssure can be characterized by

p Q ) :  p g ( D  -  z )

where p(;) - pressure in pascals (or N/ml) exerted at an
elevation i mcters above the rescrvoir bottorn; p : density ol
water, which fbr thi.s problem is a.ssunred to be a constant
103 kg/rn3; .9 :  accelerat ion due to -eravity t9.81 m/s2): antl
D : elevation (in m) ofthe water surfacc above the reservoir
bottom. According to Eq. (P17.9), pressure increases linearly
with dcpth, as depicted in Fig. Pl7.9rz. Ornitting atmospheric
prcssure (because it works against both sides of the dam facc
and essentially cancels out). the total force ./, can be dcter-
mined by multiplying pressure times the area of the dam tace
(as shown in Fig. P17.9b). Because both pressurc and area
vary with elevation, thc total force is obtained by evaluating

r  I )

f ,  :  I  psw(z ) (D - i , ) ( 1 .
J O

OU

40

zu

FIGURE P17.9
Woter exerting pressure on lhe upslrecm

( b )

foce of o dom

200
190
175
160

{ o J  : ; d e  r i e w  s L o * r n g  f o ' t e . ^ r r e o s , n g
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where u(l):  width of the dam face (m) at elevation .:
(Fig. Pl7.9b). The l ine of act ion can also be obtained by
evaluating

IoD pgzu:(z)(D - z.) tJz,

ft p,su( : ) (D ; )  t1 :

Use Simpson's rule to compute J, and cl .
17.10 The tbrce on a sailboat mast can bc reprcscntcd by the
following function:

/ - \
J r . - r : 2 0 0 ( . , . ) , : s ' a

\ / T ' l

where: : the elevation above the deck and H : thc height
of the mast. The total force F exerted on the mast can be dc-
termined by integrating this function over the height of the
mast:

I f  M,, iszero and.r :  I  l ,  calculate M using (a) analyt ical in-
tcgration, (b) multiple-application trapezoidal rulc, and (c)
multiplc-application Simpson's rules. For (b) and (c) use l-m
lncrements.
17.13 The total mass of a variable density rod is given bi-

7 1 .
, r :  I  pG)A , . ( r )dx

Jt)

where rz : filoSS, p(,r) : dcnsity, A,(,r) : cross-sectional area,
-r : distance along the rod and L : the total length ofthe rod,
The following data has been measured for a l0-m length rod.
Determine the mass in grams to the best possible accurac),

x , m  a  2  3  4  6  B  l 0
p , g l c m 3  4 a o  3 9 5  3 8 9  3 B o  3 . 6 0  3 4 t  3 3 l
A , ,  cm2  l oo  l o3  l 06  I  l o  )2a  I  33  l sc

I k.) dz

The linc of action can also be deterrnined by integratron:

r H
r  J 0  : . I t : t a :

- u

J,, '  . f  r : \  ' l :

(a) Use the composite trapezoidal rule to compute F rnd d
for the case whcre 11 : 30 (n : 6).

0  30  60  90  t2a
0 340 l2aa t600 27aa

I  5 0  I  B 0  2 ) A  2 4 0
3 r  00 3200 3500 3800

17,14 A transportation engineering study requires that you
determine the numbcr of cars that pass through an intersec-
tion traveling during morning rush hour. You stand at the
side ol the road and count the number of cars that pass every
4 minutes at several times as tabulated below. Use the best
numerical method to determine (a) the total number of can
that pass betwecn 7:30 and 9:15, and (b) the rate ofcan
going through the interscction pcr minute. (Hint: Be careful
w i th  un i ts . )

B:45 9:  i5

2 1  9

1 7.1 5 Determine the average value for the data in Fig. P I 7. 15.
Perfbrm thc intcgral necded tbr thc avcragc in the order shown
by the following equation:

r ,  f  r , -  I
l -  I  l l  / ( \ . r ) , . / . r l , 1 r

J , .  L / " ,  . l

17.16 Integration provides a means to compute how much
mass enters or leaves a reactor over a specified time period.
as  in

f t )

M:  I  e t  t l r
J t

where I, and t2 - the initial and final times, respectively,
This formula makes intuitive sense if you rccall thc analogy
between integration and summation. Thus, the integral rep-
rcscnts the summation of the product of flow times concen-
t r r f ; o n  f o  q i v o  t h e  f o l r l  m r { q  e n t e r i n q  o r  l e e v i n q  f r n m  l .  t o  t "

Use numerical

data listed bel

t,  mln

Q, m3/mi;r
c, fng/Jn"

17.17 The cr

Puted as

A, :  I
. /0

where R : t

and,r :  dist l

average tlov

(b) Repeat (a), but use the composite Simpson's l /3 rule.
l7. l l  A wind fbrce distr ibuted against the side of a sky- Time (hr) 73A 7 45 B:OO B:15
scraper is measured as Rote (cors

per  4  min)  I  B  24  l4  24

Height /, m
Force, F(/),  N/m

Height l, m
Force, F(/), N/m

Compute the net fbrce and thc line of action due to this dis-
tr ibuted wind.
17.12 An I l -m beam is subjected to a load, and the shear
force follows the equation

V ( - r ) : 5 + 0 . 2 5 1 2

where V is the shear force, and,r is length in distance along
the beam. We know that V : dM ldx, and M is the bending
moment. Integration yields the relationship

r I
M : M . , +  I  V t t  t '

. l , t

o : 1,,'
where  U:

a numerical
data:

) r f i
I;1, ffi

U, mls
-
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-u -8 4

- 4 -3 I 7

1 0-z 1

0

F I G U R E  P I 7 . I 5

Use numerical inte_uration to evaluate this equation fbr the
data l isted bclow:

l, min

Q, m3/min
c, mg/m3

l7.lll The average concentfation ofa substance -(g/rn3) in a
lake u,herc the arca A.1m:) varies with depth l(m) can be
computcd by integration:

, t ' ( ,+ ,da,

wherc Z : the total depth (ni). Determine the average con-
can bc com- cenlration based on thc followins data:

z , n  O  4  B  1 2  ) 6
A , l a6  m2  9  8175  5  t 05 t  1 .9635  A  3527  O  OOOO
c , g / m 3  ) a ' 2  8 5  7 . 4  5 2  4 l

1 2

0 t0 2a 30 35 4A 45 50
4  4 B  5 2  5 0  4 . 6  4 3  4 3  5 . 0  ( - :
t0  3_s . -55 52 4A 37 32 34

17,17 The cross-sectional area of a channel
puted as

r l l
A , =  I  H ( r ' ) r 1 r .

J 0

wherc B : the total channel width (rn), H : rhe depth (m),
and r '  :  distance l iom the bank (m ). In a similar fashion, thc
average l1ou,' 0 (mr/s) can be contputccl as

r l ]
0  :  I  U{ . r . l r r l r , r . )z / r .

Jo

where U : water velocity '  (m/s). Use these relat ionships and
a nurnerical method to determine A,. and B fbr the fbllorving
data:

17.19 As was done in Section 17.9. cletermine the work per-
fbrmed ifa constant force of I N applied at an angle gresults

in the iollowing displacernents. Use the curnLrcipz function
1o detcrmine the cunrulativc work and plot the result versus g.

r , h  0  I  2 . 7  3 8  3 7  3  1 . 4
0 , r a d  0  3 0  6 0  9 0  l 2 O  1 5 0  l B 0

J , m
H, ftr
U, m/s

n ) / 1

0 5  r 3  1 . 2 5
0 0 3  0 0 6  0 0 5

5 6
l 7  l

4 1 2  0 I r
a.25
o a 2
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Numericol Integrotion

CHAPTER OBJECTIVES
The primarv objective of this chapter is to introduce you to numerical methods for
integrating given firnctions. Specific objectives and topics coverecl are

' Understanding how Richardson extrapolation provides a means to create a more
accurate integral estimate by combining two less accurate estimates.

. Understanding how Gauss quadrature provides superior integral estimates by
picking optimal abscissas at which to evaluate the function.

o Knowing how to use MATLAB's built- in functions q,-r.:d and r-1uadl to integrate
functions.

I 8.I INTRODUCTION

In Chap. 17, we noted that functions to be integrated numerically will typically be of tno
lbrms: a table of values or a tunction. The form of the data has an important influenceon
the approaches that can be used to evaluate the integral. For tabulated information, you are
limited by the number of points that are given. In contrast. if the fuuction is available, yut
can generate as many values of.l (r) as are required to attain acceptable accuracy.

At tace value. the composite Sirnpson's l/3 rule might seem to be a reasonable toolfa
such problems. Although it is certainly adequate for many problems, there are more effi-
cient methods that are available. This chapter is devoted to three such techniques. Bolt
capitalize on the ability to generate funetion values tcl develop efflcient schemes fr
numerical integration.

The flrst technique is based on Richardson extr(tpolatiorz, which is a method fa
combining two nunrerical integral estimates to obtain a thild, more accllrate value. Tlc
computational algorithm lbr implementing Richardson extrapolation in a highly efficied
rnanner is called Romberg integration. This technique can be used to generate an integnl
esrimate wifhin a nresnecified eror tolerance.
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The second method is called Gcuss qundrnfure. Recall that, in Chap. 17, values of

/(x) for the Newton-Cotes formulas were determined at specified values of ,r. For exam-
ple, if we used the trapezoidal rule to determine an integral, we were constrained to take the
weighted average of /(x) at the ends of the interval. Gauss-quadrature formulas employ,r
values that are positioned between the integration limits in such a manner that a much more
accurate integral estimate results.

The third approach is called adaptive quadrature. This techniques applies composite
Simpson's I /3 rule to subintervals of the integration range in a way that allows error esti-
mates to be computed. These error estimates are then used to determine whether more
refined estimates are required for a subinterval. In this way, more refined segmentation
is only used where it is necessary. Two built-in MATLAB functions that use adaptive quad-
rature are illustrated.

18.2 ROMBERG INTEGRATION

Romberg integration is one technique that is designed to attain efficient numerical integrals
of functions. It is quite similar to the techniques discussed in Chap. 17 in the sense that it
is based on successive application of the trapezoidal rule. However, through mathematical
manipulations, superior results are attained for less effort.

18.2.1 Richordson Extropolotion

Techniques are available to improve the results of numerical integration on the basis of the
integral estimates themselves. Generally called Richardson extrapolallon, these methods
use two estimates of an integral to compute a third, rnore accurate approximation.

The estimate and the error associated with the composite trapezoidal rule can be rep-
resented generally as

r : t ( h )+E (h )

where 1 : the exact value of the integral, I (h) : the approximation from an n-segment
application of the trapezoidal rule with step size h : (b - a) I n, and E (h) : the truncation
error. If we make two separate estimates using step sizes of h1 and h2 and have exact val-
ues for the error:

I  ( h r )  - t  E (h t )  :  I  ( h )  - f  E (hz )

Now recall that the error of the composite trapezoidal rule can be represented
mately  by Eq.(17.21)  [wi th n :  (b -  a) lh) :

b - u  .
E - _ _ h t f "

1 2

lf rtis assumedthat f" is constantregarcl\ess of stcp sizc,Eq. (18.2) canbc uscdto <lctcr-

mine that the ratio of the two errors will be

E ( h t )

E(hz)
(  1 8 . 3 )

of removing the term 1" from the computation.
utilize the information embodied by Eq. (18.2)

(  1 8 . 1 )

approxl-

(  18 .2 )

_hi- h !

This calculation has the important effect
In so doing, we have made it possible to
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fl8.4)

EXA,

EXAMPLE 1B . I

without prior knowledge of the function's second derivative. To do this, we reanange
Eq.  (  18.3)  to  g ive

/  h ,  \ :
E ( h t t  =  E ( h : t l ;  I

\ n 2  /

which can be substituted into Eq. (18.1):

/ h , \ 2
I ( h 1 t L E t h r t l  ,  |  

- I ( h 2 t l E ( h t l
\ t t 2  /

which can be solved for

I t l t t l  -  I \ h z l
E ( / r ' ) :p \ " 1 /  

1 - ( h t l h ) 2

Thus, we have developed an estimate of the truncation elror in tenns of the integral esti-
mates and their step sizes. This estimate can then be substituted into

I  :  I (hz)  _t  E] tz)

to yield an improved estimate of the integral:

I  :  l ( hz )  +  -  - 1 - t - - .  l l  t t t : l  -  t t t t r t l
\ t t  1 /  h 2 ) '  -  |

It can be shown (Ralston and Rabinowitz, 1978) that the error of this estimate is
O(h4). Thr-rs, we have combined two trapezoidal rule estimates of O(h2) to yield a newes-
timate of O(h\. For the special case where the interval is halved (h2: hr12), this equa-
tion becomes

4 l
'  :  

a ' ( " )  
-  

l t ( n t ;  
( 1 8 5 )

Richordson Extropolot ion

Problem Stotement. Use Richardson extrapolation to evaluate the integral of /(.r) =
0.2 t 25x - 200x2 t 675x-r - 900r+ *400x5 tioma : 0 to b : 0.8.

Solution. Single and composite applications of the trapezoidal rule can be used to evalu-
ate the integral:

Segments h Integrol E

o  t72B  89 .5%
I 0688 34 9%
t 4B4B 5.5%

Richardson extrapolation can be used to combine these results to obtain improved estimates
of the intesral. For example. the estimates for one ancl two sesments can be combined

I  0 B
2  a 4
4  0 2
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to yield

t  : l t . oazs r  -  l ro . rzz8) :1 .36146 i
3 '  3 '

The errorofthe improvedintegral is Et : 1.640533 1.361461 : 0.2130(t1 (st : 76.6c/r:),
which is superior to the estirnates upon which it was based.

In the same manner, the estimates for two and four segments can be combined to give

4 1
I  :  - ( 1 . 4 8 4 8 )  - ; ( 1 . 0 6 8 8 ) :  1 . 6 2 3 4 6 1

- 5 3

which represents an error of E, : 1.640533 1.623461 :0.011061 (et : l. ja/c).

Equation (18.4) provides a way to combine two applications of the trapezoidal rule
with error O (h2) to compute a third estimate with error O (ha 1. This approach is a subset of
a more general method for combining integrals to obtain irnproved estimates. For instance,
in Example I 8. l, we computed two improved integrals of O (ha ) on the basis of three trape-
zoidal rule estimates. These two improved integrals can, in turn, be combined to yield an
even better value with Oth6l. For the special case where the original trapezoidal estimates
are based on successive halving of the step size, the equation used fbr O(li6) accuracy is

16  r
I  :  -1 , , ,  - l t

1 .5  I -5

where f,, and 11 arc the more and less accurate estimates, respectively. Similarly, two
O(ft6) results can be combinecl to compute an integral that is O(/r8) using

64 I
[  :  - 1 , , ,  -  - l l

6 3 " '  6 1  
'

(  r8 .6 )

(  1  8.7)

:XAMPLE 
, l 8 .2  

H ighe r -Orde rCor rec t i ons

Problem Stotement. In Example 18.1, we used Richardson extrapolation to compute two
integral estimates of Othl). Uti l ize Eq. (18.6) to combine these estimates to compute an
in teg ra l  w i t h  O t l r 6 t .

Solution. The two integral estimates of O(h1) obtained in Example l8.l were 1.361461
and 1 .623461. These values can be substituted into Eq. ( I 8.6) to yield

r  :  ! l .en4f l )  -  ! t . rurour) :  r .640533
t 5 '  t 5

which is the exact value of the intesral.

18.2.2 The Romberg Infegrotion Algorirhm

Notice that the coefficients in each of the extrapolation equations [Eqs. (18.5), (18.6), and
(18.7)l add up to l. Thus. thev reoresent weichtine factors that. as accuracv increases.
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place relatively greater weight on the superior integral estimate. These formulations can be
expressed in a general fbrm that is well suited for computer implementation:

I . .  -
4 r  t l j * r . r  

1 - 1 1 . r < , 1

4 i - l  -  I

where 17-.1.1-1 and I1.r r : the more and less accurate integrals, respectively, andllt =

the improved integral. The index ft signifies the level of the integration, where ft : I cot-
responds to the original trapezoidal rule estimates,k:2 conesponds to the O(ft4) e$i-
mates, ft : 3 to the O (ho ).and so forth. The index j is used to distinguish between the more

U + l) and the less (l) accurate estimates. For example, for ft : 2 and j : 1, Eq. (18.8)
becomes

t r . t : !4
J

which is equivalent to Eq. ( I 8.-5).
The general form represented by Eq. ( 18.8) is attributed to Romberg, and its system-

atic application to evaluate integrals is known as Romberg integratiut. Figure 18.1 isa
graphical depiction of the sequence of integral estimates generated using this approach.
Each matrix corresponds to a single iteration. The first column contains the trapezoidal rule
evaluations that are designated 1,.r, where "r 

: I is for a single-segment application ($ep
s i z e i s b - a ) , j : 2 i s f o r a t w o - s e g m e n t a p p l i c a t i o n [ s t e p s i z e i s ( b - d ) 1 2 ] , j = 3 i s f o r
a four-segment application [step size is (b - a) l4], and so forth. The other columns of the
matrix are generated by systematically applying Eq. (18.8) to obtain successively better
estimates of the integral.

For example, the first iteration (Fig. 18.1a) involves computing the one- andtwo-
segment t rapezoidal ru leest imates(11 1and12 1) .Equat ion(18.8) is thenusedtocompute
the element It.z: 1.361461 , which has an error of O(h41.

FIGURE I8 . I
G'opn ico  dep iq f ien  o f  t l .e  seq ,e 'ce  o f  in  egroJ  ec  imo le5  gene 'o led  r  s ing  Rorn [619 in iegro t ion
(o) First i terot ion. ib) Second i ferot ion. (c) Third i terot ion.

o(h2) o(h4) o(h6) o@8)

t'r ?:163333-1s67467

0j72800 1.367467 ---------? 1.640533

,r, l:13?333-1623467 
F

0.172800 1.367467 1.640533 ----* 1.640533
1.068800 1.623467 --..* 1.640533 

'

," 1:333333---163s467
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I  8.2 ROMBERG INTEGRATION

Now, we must check to determine whether this result is adequate fbr our needs. As in
othe-r approxirnate rnethclds in thi.s book, a lernrinrrtion. e1 5lpppin!. criterion is required to
assess the accuracy of the results. One method that can be employed for the present pur-
poses is

( 1 8 . e )

where t,, : an estinrate of the percent relative error. Thus, as was done previously in other
iterative processes. we conrpare the new estimate with a previous value. For Eq. (18.9), the
previous value is the most accllrate estimate fiom the previous level of integration (i.e., the
fr - I level of integration with j :2). When the change between the old aucl new values
as represented by r:,, is below a prespecified error criterion 0,. the computation is termi-
nated. For Fig. 18.1a, this evaluation indicates the following percent change over the
colrrse of the first iteration;

I r.36i461 - | .068800 |
l p . , ' : l  l x 1 0 0 1  : 2 1 . 8 q

I t..167-167 I

The objcct of the second iteration (Fig. 18.10) is to obtairr the O(h6l estirnate-Ir..r.
To do this, a four-segment trapezoidal rule estimate, 1:. r : 1.4848, is determined. Then it
is combined with 11 I using Eq. (18.8) to generate I:t : |.623461 . The result is, in turn,
cornbined with /1,1 to yielcl 1r : : 1.640-533. Equation i18.9) can be applied to determine
that this result represents a change of 1.}c/r. when compared with the previous result 12.2.

The third iteration (Fig. l8.lc) continues the process in tlre same fashion. In this case,
an eight-segment trapezoidal estimate is added to the first column. and then Eq. (18.8) is
applied to compute successively more accurate integrals along the lower diagonal. Afier
only three iterations, because we are evaluating a fi l ih-order polynomial, the resr-rlt
( l t  t  :  1 .640-533) is  exact .

Romber-e integlation is more efficient than the trapezoidal rule and Sinrpson's rules.
For example, fbr determination of the integral as shown in Fig. 18. l, Sirnpson's l/3 rulc'
would require about a 2lS-segment application in double prccision to yield an estimate of
the integral to seven significant di-sits: 1.640533. ln contrast, Romberg integration pro-
dr-rces the same result basecl on cornbining one-, two-, fbur-. and eight-segnrent trapezoidal
rules-that is, with only l5 function evaluations!

Figure 18.2 presents an M-fi le lbr Romberg integration. By using loops. this algorithm
implements the method in an eficient manner. Note that the function uses another function
trrep to implement the composite tl 'apezoidal rule evalutrtions (recall Fig. 17.10). Here is
a MAILAB sessior.r showing how it can be used to determine the integral of the polynomial
fiom Examole 18. l:

> >  f  = ( i  l x )  0 . 2 + 2 5 * x  2  0 i ]  * t ' - + b 7 5 * x

> >  r o m b c r g ( f , 0 , 0 . 8 )

1 . 5 4 0 5

1,,,r: lu;;-l xroo"/.
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f u n c t i o n  l e ,  e a ,  i  t e r l ' r o m b e r g  (  f u n c , a , b , e s , m a x j r , v a r a r g i n )
?  r o m b e r g :  R o m b e r g  i n t e g r a t i o n  q u a d r a t u r e

%  q  =  r o m b e r g ( f u n c , a , b , e s , m a x i t . , p I , p 2 , . . . )  :
%  R o m h e r o  i n t e o r a t i o n .

%  i n p u t :
?  f u n c  -  n a m e  o f  f u n c t i o n  C o  b e  i n t e g r a t e d
%  a ,  b  =  i n t . e g r a t i o n  l i r n i t s
%  e s  =  d e s i r e d  r e l a t i v e  e r r o r  ( d e f a u l t  =  0 . 0 0 0 0 0 1 ? )
?  m a x i t  -  m a x i m u m  a l l o w a b l e  i t . e r a t i o n s  ( d e f a u l t .  =  3 0 )
%  p l , p 2 , . . .  =  a d d i t i o n a l  p a r a m e t e r s  u s e d  b y  f u n c
%  o u t p u t :
%  q - i n t e g r a l e s t i m a t e

Z  e a  =  a p p r o x i m a t e  r e l a t i v e  e r r o r  ( % )

?  i t e r  =  n u m b e r  o f  i t e r a t i o n s

i f  n a r q i n .  l , e r r o t  ( ' d L  l e a s u  :  i n p u c  a r g u m e n r s  r e q u i r e o ' ) , e n d
r t  n a r g i n < 4  i s e m p t y  ( e s  )  ,  e s - 0  . 0 0 0 0 0 1 ;  e n d
i  I  n a r g i n - 5 t i s - m p f y ( m a x l r .  ) ,  m a x i t = 5 0 ; e n d

r  -  1 .

I ( 1 , 1 )  =  t r a p ( f u n c , a , b , n , v a r a r g i n { :  } )  ;
i t e r  =  0 ;
w h i l e  i t e r < m a x i t .

i t e r  =  i t e r + l ;
n  =  2 ^ i t e r ;
I  ( i t e r + 1 ,  1 )  -  t r a p ( f u n c , a , b , n , v a r a r g i n {  :  }  )  ;
f o r  k  =  2 : i t e r + l

j  =  2 + i t e r - k ;
I ( j , k ) = ( 4 ̂  ( k - 1 ) * I ( j + 1 , k - 1 ) - r ( j , k - 1 ) | / ( 4 ̂  ( k - 1 ) - 1 ) ;

end
e a  =  a b s (  ( I ( 1 , i t e r + l )  - T ( 2 , i t e r )  )  / I ( 1 , i t e r + l )  )  " 1 0 0 ;
i f  e a < - e s ,  b r e a k ;  e n d

end
q  =  I ( 1 , i t e r + l ) ;

FIGURE I8.2
MJile to implement Romberg integrotion.

I8.3 GAUSS QUADRATURE
In Chap. 17, we employed the Newton-Cotes equations. A characteristic of these formulas
(with the exception of the special case of unequally spaced data) was that the integral esti-
mate was based on evenly spaced function values. Consequently, the location of the base
points used in these equations was predetermined or fixed.

For example, as depicted in Fig. 18.3a, the trapezoidal rule is based on taking the area
under the straight line connecting the function values at the ends ofthe integration interval.
The formula that is used to compute this area is

r  = (h -  r rJ '@) 
+ f  (u)  

i , r , r  r . \
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"f("r)

(b)

FIGURE I8 .3
{o) Grophicol depiction of the lropezoidol rule os fhe oreo under the stroight l ine loinino fixed
end points {b) An improved integrol eslimofe obtoined by toking the oreo under the stroight l ine
possing through two intermediote points, By positioning these points wisely, the positive ond
negclive errors ore beller bolonced, ond on improved integrol estimote resulls

whereaandb: thel imi tsof in tegrat ionandb-a: thewidthof theintegrat ioninterval .
Because the trapezoidal rule must pass through the end points, there are cases such as
Fig. 18.3a where the fbrmula results in a large error.

Now, suppose that the constraint of tixed base points was removed and we were free to
evaluate the area under a straight line joining any two points on the curve. By positioning
these points wisely, we could define a straight line that woLlld bllancc thc positil'c tnd ncg-
ative errors. Hence, as in Fig. 18.3b, we would arrive at an improved estimate of the integral.

Gttuss quadrature is the name for a class of techniques to implement such a strategy.
The particular Gauss quadrature formulas described in this section are called Gauss-
Legendre formulas. Before describing the approach, we will show how numerical integra-
tion formulas such as the trapezoidal rule can be derived using the method of undetermined
coefficients. This method will then be employed to develop the Gauss-Legendre formulas.

18.3.1 Method of Undetermined Coefficients
In Chap. 17, we derived the trapezoidal rule by integrating a linear interpolating polynomial
and by geometrical reasoning. The method of undetermined coefficienrs offers a rhird an_
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FIGURE I8.4
Two integrols thct should be evoluoted exocfly by
(b) c stroight l ine

l ha  ' r6p" ro ,6o l  ru l^ .  {o )  o  Lons io" r ro ' ro

To il lustrate the approach, Eq. (18.10) is expressed as

I  =  cgJ@)  +  c t f  ( b ) ( r8 . i l )

where the c's : constants. Now realize that the trapezoidal rule should yield exactresults
when the function being integrated is a constant or a straight line. Two simple equations
that represent these cases are J : I and ) : -r (Fig. 18.4). Thus, the following equalities
should hold:

{ i ; l - t ; l d x
r ( h -u \  12
I: l

J  - ( b -u )12

b - a

2

and

*,,+ : I',0,,_,",'j,, o,
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or, evaluating the integra.ls,

c o * c t : b - a

and

-cu

These are two equations with two unklrowns that can be solved for

b - a
L ( )  -  L l  -  

^  
-

z

which, when substituted back into Eq. (18.11), gives

.  b - a ^  b - u ^ .
I :  -  J ( I t +  ^  J ( b lz z

which is equivalent to the trapezoidal rule.

| 8.3.2 Derivqtion of the Two-Point Gouss-legendre Formulo

Just as was the case for the previous derivation of the trapezoidal rule, the object of Gauss
quadrature is to detennine the coefficients of an equation of the lbrm

I  =  co f  6 i l  +  c l f  { . r t )  r r g . r z )

where the c's : the unknown coefficients. However, in contrast to the trapezoidal rule that
used fixed end points a and b, the function arguments 16 and r1 &re rot fixed at the end
points, but are unknowns (Fig. 18.5). Thus, we now have a total of four unknowns that
must be evaluated, and consequently, we require four conditions to determine them exactly.

Just as for the trapezoidal rule, we cirn obtain two of these conditions by assuming
that Eq. ( I 8. 12) fits the integral of a constant iurd a linear function exactly. Then, to anive at
the other two conditions, we merely extend this reasoning by assuming that it also fits the
integra l  of  apar lbol ic  ( )  :  x2)  and acubic ( ,y  :  xr )  l -unct ion.  tsy doing th is .  we determine

F IGURE I8 .5
Grophicol depiction of the unknown voriobles.rs ond r1 for integrotion by Gouss quodrolure

b - o
n

2
b - a

2
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EX,

all four unknowns and in the bargain derive a l inear two-point integration formula thatis

exact for cubics. The fbur equations to be solved are

( r8 .13)

(18 .14)

(r  8.15)

( r8 . r6 )

Equat ions (18.13)  through (18.16)  can be solved s inru l taneously for  the lburun-

knowns .F i r s t . so l veEq . (18 .1a ) fo rc r  andsubs t i t u te the resu l t i n toEq . (18 .16 ) ,wh i chcan
be solved for

. 2 _ - 2- r )  -  ^  |

Since x6 and 11 cannot be equal, this rneans that.re - -.r1. Substituting this result into

Eq.  (18.14)  y ie lds cs :  cr .  Consequent ly  f iom Eq.  (18.13)  i t  tb l lows that

f l
c r t l t t :  I  l d r : 2

J  - l

f l
r i r . \ r r  - f  (  t . r t  :  |  . t  d , r  : 0

J l

r t  2
c u t ;  t . 1 * i  :  /  1 2 r l r : =

l t  3
p l

c , r x i l  + c l x f  :  /  . r r , / x : o.  
J t

c a  : 6 1  :  I

Substituting these results into Eq. (18.15) gives

I
, f r r  :  - -  :  - 0 .5173503 . . .

/ a
V J

. r '  : ] : 0 . 5 7 7 3 5 0 3 . . .
V 3

Therefbre, the trvo-point Gauss-Legendre fbrmula is

t:r(i)*/f+)"  \ , . / 3 /  
' \ ' / 3 / (r 8. r7)

Thus, we arrive at the_interesting result that the simple addition of the function values at

.\ : - 1 / J3 andl/V3 yields an integrirl estimate that is third-order accurate.
Notice that the integration l irnits in Eqs. ( 18.13) through ( I8.I6) are from - I to l. This

was done to simplify the mathematjcs and to make the fbmrulation as general as possible.

A simple change of variable can be used to translate other limits of integration into this

form. This is accomplished by assuming that a new variable x,7 is related to the original

variable -r in a linear fashion. as in

- r : a l  + a z x d ( 1 8 . r 8 )

If t lre lower l imit,. l : r.r, corresponds to-r,/: -1, these values can be substituted into

Eq .  (18 .18 )  ro  y i e l d

a  :  a t  +  a 2 e l )  ( 1 8 . 1 9 )

Similarly, the upper limit, r : b, corresponds to x4 : 1, to give
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Equat ions (18.19)  and (  I8 .20t  can be solved s imul taneously for

b l c r b - a
o t  :  

2  
a n t l  a : :  

2

which can be substituted into Eq. (18.18) to yield

(b + rr) 'l (b - a)r,1

2

This equation can be differentiated to give

b - u
dx - _ dr.l

2 '

( 1 8 . 2 1 )

r l 8 . l l r

EXAMPLE I8.3

(  r8 .23)

Equarigns (18.22) and ( 18.23) can be substituted fbr,r and d,r, respectively, in the eqtration

to be integrated. These substitutions eff'ectively transform the integration interval without

changing the value of the integral. The fbllowing example illustrates how this is done in

practice.

Two-Point Gouss-Legendre Formulo

Problem Stotement. Use Eq. (18.17) to evaluate the integral of

,f(r) : 0.2 * 25r - 200.rr + 675-rr - 900"ra + 400.15

between the l imits r : 0 to 0.8. The exact value of the integral is 1.640533.

Solution. Before integrating the function, we must perform a change of variable so that

the l imits are fiom - I to +1. To do this, we substitute rz : 0 and b : 0.8 into Eqs. (18.22)

and  (18 .23 )  t o  y i e l d

x :  0 .4 *  0.4x7 and dx :0.4dxd

Both of these can be substituted into the original equation to yield

r  0.8

I n2 + 25r - 200:12 + 6j5x3 - 900x4 + 400x5) dx|  ' "  -  '  - " "
J t )

:  I  [0.2 + 25(0.4 * 0.4x,1) -  200(0.4 * 0.4x.1;2 + 675(0.4 10.4r7)3
J _ l

- 900(0.4 * 0.4-t.1)a + 400(0.4 + 0.4xi5l0.4dra

Therefore, the right-hand side is in the form that is suitable for evaluation using Gauss
quailrature. The transtormed function can be evaluated atxT : - | I \4 as 0.5 167ttl and at

i u : 1 / J 1  a s  l . 3 0 5 S 3 T . T h e r e f o r e , t h e i n t e g r a l a c c o r d i n g t o E q . ( 1 8 . 1 7 ) i s 0 . 5 1 6 7 4 1 *
1.305837 : 1.822578, which r-epresents a percent relative eror of -11.17c. This result is

comparable in magnitude to a four-segment application of the trapezoidal rule or a single

application ol'Simpson's 113 and 3/8 rules. Tlris latter result is to be expected because

Sirnpson's rules are also third-order accurate. However, because of the clever choice of

base poinfs, Gauss quadrafure attains this accuracy on the basis of only two function

evaluarions.
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EXA

all fbur unknowns and in the bargain derive a linear two-point integration lbrmula that is
exact for cubics. The fbur equations to be solved are

ca  * c1  :  
l ' , r r t x : 2

p t
( i r - r u T ( l , r l  :  

|  . r J x : 0
J I

p t  )
. i , t , j  ' , 1 r i  :  /  * l , 1 t : =

J - ,  - l

r l

c r r x i ]  * c1x f  :  |  , f  ax :O  (18 .16 )
J  " - 1

Equations (18.13) through (18.16) can be solved sir.nultaneously for the fourun-
knowns.  F i rs t ,  so lve Eq.  (18.14)  forcr  and subst i tu te the resul t  in to Eq.  (18.16) ,  whichcan
be solved for

- t  -  - l^ o  -  ' 1

Since xe and x1 cannot be equal, this r.neans that.re - --.r1. Substituting this result into
Eq. ( 18.14) yields c1; : cr . Consequently from Eq. ( | 8.l3) it follows that

c r t  : c t - l

Substituting these results into Eq. ( 1 8. t 5) gives

I
. \ ' r )  :  -  

^ .  :  
-  0 . . 5773503 . . .

v ' )
I

x t :  / : : 0 . - 5 7 7 3 5 0 3 . . .
v --)

Therefore, the two-point Gauss-Legendre formula is

/ . t \  r  l \
t : f l  ^ l+ f l  - l  (18 .17)

" \ . ' / 3 /  
\ ' / 3 /

Thus, we affive at the_interesting result that the simple addition of the function values at
r : - | l./3 and I /V3 yields an integral estimate that is third-order accurate.

Notice that the integration limits in Eqs. ( 18. I 3) through ( 18. 1 6) are from - 1 to 1. This
was done to simplify the mathematics and to make the formulation as general as possible.
A simple change of variable can be used to translate other limits of integration into this
form. Tlris is accomplished by assuming that a new variable .r7 is related to the original
variable x in a l inear tashion. as ir.r

"x  :  a t  I  azxa (18.18)

If the lower l imit, x : d, corresponds to xt: -7, these values can be substituted into
Eq .  1  18 .18 )  t o  y i e l d

0 : a 1 * a : ( - l )  ( 1 8 . 1 9 )

Similarly, the upper l imit, .t : b, corresponds to x,7 : 1. to give
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Equations (18.19) and (18.20) can be solved simultaneously for

b ' t a  b - a
at : -;- and (tZ: -;

: _

which can be substituted into Eq. ( I 8. I 8) to yield

( b * a ) l ( b - t t ) x , r
. t  :  - ---

2

This equation can be diffbrentiated to give

b - n
dx : - d.t,t

2 '

( i8 .21)

(  18.22)

EXAMPLE 18.3

(  18.2.1)

Equations \18.22) and (18.23) can be sLrbstituted for-r- and dx, respectively, in the equation
to be integrated. These substitutions effectively transform the integration interval without
changing the value of the integral. The following example illustrates how this is done in
practice.

Two-Point Gouss-Legendre Formulo

Problem Slotement. Use Eq. (18.17) to evaluate the integral of

.f (.x) :0.2 * 25.r - 200x2 * 67513 - 900.14 + 400x5

between the l imits x : 0 to 0.8. The exact value of the integral is 1.640533.

Solution. Before integrating the function, we must perform a change of variable so that

t h e l i m i t s a r e t i o m - l t o + l . T o d o t h i s , w e s u b s t i t u t e a : 0 a n d b : 0 . 8 i n t o E q s . ( 1 8 . 2 2 )
and ( I 8.231 to yield

r : 0.4 * 0.4,r,i and th :O.4elxd

Both of these can be substituted into the otiginal equation to yield

n 0 .u

I rc.2 * 25.r - 20012 + 6i5r3 - 900,11 * 400x5)r/r,  ' " ' - ' - ' '
J o  

n l

:  I  n.2+25rc.4i_0.4x,;  -  200(0.4 t0.4x,)2 +675Q.4*0.4-r.7) l- l L v ' ! ' - " \

J  _ l

- 900(0.4 * 0.1x,)a + 400(0.4 + 0.4.r 4 15 10.4d x,1

Therefore, the right-hand side is in the form that is suitable for evaluation using Gauss
quaclrature. The transformed function can be evaluated at x.1 : - | I J1 as 0.5 I 674 I and at
, { , / :  I  l "E as 1.305837.  Therefbre,  the in tegra l  according to Eq.  (18.17.)  is  0.516741+
1.305837 : 1.822518, which represents a percent relative error of -lI. l7o. This result is
compa'able in magnitude to a four-segment application of the trapezoidal rule or a single

application of Simpson's l/3 and 3/8 rules. This latter result is to be expected because
Simpson's rules are also third-order accurate. However, because of the clever choice of

base points, Gauss quadrature attains this accuracy on the basis of only two function
evaluations.
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TABTE | 8.t Weighting foctors ond function orguments used in Gouss-Legendre formulos.

Points
Weighting

Foclors
Function

Argumenls
Truncolion

Error

I

2

c o : 2

c o :  I
l

co : 5/9
( t  :  B /9
cz -* 5/Q

c 6 : { l B - " t r 6 l t s o
c j  : ( 1 8 + ' t r d t s a
c : : l u + V . , U l  / J O

c . r : { tB - , t r o t za
q1 :1322 - t3.na) PO]
c1  :1322  +  )3y ry1 )  pA j

c 2 :  1 2 8 / 2 2 5
q  :1322  +  )  3 ! r yo  pAO

ca :1322 -  l3 ! ryd /9OA
r x : 0 1 7 1 3 2 4 4 9 2 3 7 9 1 7 4
t ' t :O360761  573048139
cz  :0 .467913934572691
cz :  0 .46791 393457269 I
c t  :0 .364761523048 I  3 l
r - :  : 0  17132449237917A

;16 :  0.0

-ro : I lJ3
- t l  :  l / V J

r11 : -nl3/5

; r t  :  0 .0
X 2 :  \ /  J / )

xo :  * , /  525 +70\ /30135-
rr  :  -v  525 -  7O\/30135
x2: y'\15 -7sJfr135

'. : Jili +7aJi6t35-
ro : - t / 245+14 \ /7A l2 l
,y : -l i45- 14Jfi121
.r,: : 0.0

- 
1t2){{)

= 7t1) G)

= . / t o ' ( { )

= 1t8){ { )

-  
/ { to)16,

, . :n /1[ i -14f f ip1
u: '/ltii1tJfrlzt
ro : -a 9324695142031 52 - 

1{tzr 16,
,rr : -0.66 I 249386466265
, r z  :  - 0  238619 l  86083  I9Z
x : : O 2 3 8 6 l 9 l 8 6 0 8 3 l 9 7
-ra = 0 661209386466265
x s : 0 . 9 3 2 4 6 9 5 1 4 2 A 3 1 5 2

EXAMPLE I8.4

I 8.3.3 Higher-Point Formulos

Beyond the two-point formula described in the previous section, higher-point versions can
be developed in the general form

I  =  c s f  ( x 0 )  + c l l ( x r ) + . . . +  c u - r f  ( x n - t )  ( 1 8 . 2 4 )

where r? : the number of points. Values for c's and x's for up to and including the six-point
fonnula are summarized in Table 18.I .

Three-Point  Gouss-Legendre Formulo

Problem Siotement. Use the three-point formula from Table 18.1 to estimate the integral
for the same function as in Example 18.3.

Solution. According to Table 18.1 , the three-point formula is

1 : 0.5555556f (-0.114s967) + 0.88888891'(0) + 0.555s556 f (0.7'74s961)

which is equal to

/ : 0.28 t3013 + 0.8132444 + 0.4859876 : 1.640533

which is exact.
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Because Gauss quadrature requires tunction evaluations at nonuniformly spaced points
within the integration interval, it is not appropriate for cases where the function is unknown.
Thus, it is not suited forengineering problems that deal with tabulated data. However. wlrere
the function is known, its efficiency can be a decided advantage. This is particularly true
when numerous integral evaluations must be performed.

I8.4 ADAPTIVE QUADRATURE

Although the composite Simpson's I /3 rule can certainly be used to estimate the integral
of given functions, it has the disadvantage that it uses equally spaced points. This constraint
does not take into account that some functions have regions of relatively abrupt changes
where more refined spacing might be required. Hence, tcl achieve a desired accuracy, the
fine spacing must be applied everywhere even though it is only needed for the regions of
sharp change. Adaptive quadrature methods remedy this situation by automatically adjust-
ing the step size so that small steps are taken in regions of sharp variations and larger steps
are taken where the function changes gradually.

Most of these techniques are based on applyin-u the corrrposite Simpson's l/3 rule to
subintervals in a manner similal to how the trapezoidal rule was used in Romberg integra-
tion. That is, the 1/3 rule is applied at two levels of reflnement and the difference between
these two levels is used to estimate the truncation error. If the truncation error is acceptable,
no fi,rrther refinement is required and the integral estimate fbr the subinterval is deemed
acceptable. If the error estimate is too large, the step size is r-efined and the process repeated
until the enor falls to acceptable levels.

MMLAB includes two built-in functions to implerrrent adaptive quadrature: cluad
and quad1. The following section describes how they can be applied.

18.4.1 MATTAB Functions: quad ond quadl

MATLAB has two functions. botlr based on algorithrns developed by Cander and Gautschi
(2000), for irnplementing adaptive quadrature:

. quad. This function uses adaptive Simpson quadrature. lt may be more efficient fbr
low accuracies or nonsmooth functions.

. quadl. This function uses what is called Lobotto quadrature.It may be more efficient
for high accuracies and smooth functions.

The following function syntax for the quacl function is the same for the qr-Ladl

function:

g  =  q u . a d ( f u n ,  a ,  b ,  t a f  ,  t . r a c e ,  p l ,  p 2 ,  . )

where fun is the function to be integrated. a and b: the integration bounds, rol : the
desired absolute error tolerance (default : l0 6). rra.-e is a variable that when set to a
nonzero value causes additional computational detail to be displayed, and pt, p2,

are parameters that yor-r want to pass to f rrn. It should be noted that array operators . * . . /
and .^ should be used in the definit ion of fun. ln addition. pass empty matrices fbr rol or
tt ace to use the def-ault values.
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EXAMPLE 
, l8.5 

Adopt ive Quodroiure

Problem Stotement. Use quad to integrate the following function:

- s
( ,  -  q)2 + 0.01 (x -  r)2 + 0.04

b e l w e e n t h e l i m i t s r : 0 t o l . N o t e t h a t f o r Q : 0 . 3 , r : 0 . 9 , a n d s : 6 , t h i s i s t h e b u i l t -
in humps function that MATLAB uses to demonstrate some of its numerical capabilities.
The humps t-unction exhibits both flat and steep regions over a relatively short .r range.
Hence, it is uselul for demonstrating and testin-s routines l ike quad and quadl. Note that
the t.r,-rmps function can be integrated analytically between the given limits to yield an exact
integral of 29. 858325 39549861 .

Solution. First, let's evaluate the integral in the simplest way possible, using the built-in
version of humps along with the default tolerance:

> >  f o r m a t  l o n E t
> >  q u a d  (  @ h u m p s ,  0 ,  1  )

2 9 . 8 5 8 3 2 6 1 2 8 4 2 1 6 4

Thirs. the .solution i.s correct to .seven -si-clnificant digits.
Next, we can sojve the sarne problem, but using a looser tolerance and passing q, r, and

.r as parameters. First, we can develop an M-file for the function:

f u n c t i - o n  y  =  m " y h u m p s ( x , q , r , s )

Y  -  1 . / ( ( x  c l ) . ^ Z  +  O . 0 1 )  +  l . /  ( ( x  r ) . ^ 2 + 0 . 0 4 )  -  s i

Then. we can integrate it with an error tolerance of l0-a as in

> >  q u a d ( @ m y h u m p s ,  O ,  1 ,  l e - 4 ,  1 1 , 0 . 3 ,  0 . 9 ,  6 )

2 9 . 8 5 8 1 2 1 3 3 2 1 4 4 9 2

Notice that because we used a larger tolerance, the result is now only accurate to five sig-
nificant digits. However, although it would not be apparent liorn a single application, fewer
function evaluations were made and. hence, the computation executes f'aster.

Bockground. Because it results in efficient energy transmission, the current in an AC
circuit is often in the form of a sine wave:

i : ipeat sin(arr)

where i : the current (A : c/s), lo.ur : the peak current (A), ar : the angular frequency
(radians/s) and / : time (s). The angular frequency is related to the period r(s) by a =zrlT.
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continued

The power generated is related to the magnitude of the current. Integration can be used
to determine the average current over one cycle:

-  I  f r .  i . " , r .
, : 

T Ju 
lpear sln(tr;/) dt - -!:= (- cos(2n) + cos(Q)) :0

Despite the fact that the average is zero, such a cuffent is capable of generating power.
Therefore, an alternative to the average cuffent must be derived.

To do this, electrical engineers and scientists determine the root mean square current
i*, (A), which is calculated as

ipea.k

/; (r8.2s)

(18.27)

(18.21) into (18.26) gives

Thus, as the nameimplies, the rms current is the square root of the mean of the squared cur-
rent' Because 1/ \/2 : 0.70707 , l'.., is equal to about j}vo of the peak current for our as-
sumed sinusoidal wave form.

This quantity has meaning because it is directly related to the average power absorbed
by an element in an AC circuit. To understand this, recall that Joule's lai statesthat the in-
stantaneous power absorbed by a circuit element is equal to the product of the voltage
across it and the current throush it:

P : i V (18.26)

where P: the power (W: J/s), and y: voltage (V: J/C). For a resistor, Ohm,s lqw states
that the voltage is directly proportional to the currenr:

V : i R

where R : the resistance (Q : V/A: J . s/Cz). Substituting Eq

P : i z R

The average power can be determined by integrating Eq. (lg.2g) over a
result:

E - ; 2  p
r  _ . m c r \

(18.28)

period with the

Thus, the AC circuit generates the equivalent power as a DC circuit with a consrant current
of 1*r.

Now, although the simple sinusoid is widely employed, it is by no means the only
waveform that is used. For some of these forms, such as triangular or squzue waves, the l*"
can be evaluated analytically with closed-form integration. However, some wavefbrms
must be analyzed with numerical integration methods.

In this case study, we will calculate the root-mean-square current of a non-sinusoidal
wave form. We will use both the Newton-Cotes formulas from Chap. 17 as well as the
- _ _ - - ^ ^ ^ L ^ ^  ) ^ ^ ^ ; l ^ ^ A  i -  t } | i c  n h a n f a r

il"ssin?(att) dt
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continued

Solution. The intesral that must be evaluated is

(18.29)

For comparative purposes, the exact value of this integral to fifteen signilicant digits is
15.41260804810169.

Integral estimates for various applications of the trapezoidal rule and Simpson's 1/3
rule are listed in Table 18.2. Notice that Simpson's rule is more accurate than the trapezoidal
rule. The value for the integral to seven significant digits is obtained using a 128-segment
trapezoidal rule or a 32-segment Simpson's rule.

The M-file we developed in Fig. 18.2 can be used to evaluate the integral with
Romberg integration:

> >  f o r m a t  l o n g i
> >  i 2 - @ ( t )  ( 1 0 * e x p ( - t )  . * s i n ( 2 * p i * t )  |  . ^ 2 ;

1 5  . 4 r ' 2 6 0 8 A 4 2 8 8 9 7 7

1  .  4 8 0 0  5 8 7 8 7 3 2 6 9  4 6 e - 0 0 8

5

Thus, with the default stopping criterion of es : 1 x 10-6. we obtain a result that is cor-

rect to over nine significant figures in five iterations. We can obtain an even better result if

we impose a rnore str ingent stopping cri terion:

r 5 . 4 L 2 6 0 8 0 4 8 1 0 1 6 9

0
i  r a -  -

l

Gauss quadrature can also be used to make the same estimate. First, a change in vari-
able is performed by applying Eqs. (18.22) and (18.23) to yield

1 l I
t : - * - t . r  d t : - d t , t

4  4 "  4  "

These relationships can be substituted into Eq. (18.29) to yield

-  l t  - )
t,1", : / [l0e-,o 

zs+o zs',) sinzt(0.25 + 0.25q)l'0.25 dt (18.30)
J - t  

-

,k,: 
Io' '  

eoe-t sin2nt)2 dr
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i i r '  r h - T : ' -  
"  c o n t i n u e d

TABTE 18.2 Volues for the iniegrol colculoted using Newton-Cotes
formulos.

Iechnique Segmenls Inlegrol e,l"/ol

Tropezoidol rule I
2
4
B

) b
3 2
o4

I ? B

Simpsons 1 /3  ru le 2 0 2 1 7 6 8 8 6 5 7  3 \  1 7 6 3
t 5 .480816629 4.4426
r 5  4 1 5 4 6 8 i l 5  0 . 0 r 8 6
I 5  4 1 2 7 7 1 4 1 5  I  0 6  x  1 O - 3
l5 412618037 6 48 x l0-5

TABTE 18.3 Results of using vorious-point Gouss quodroture
formulos to opproximote the integrol.

Poinfs Estimote e, l"/"1

0.0 r00 0000
1s.163266493 )  6178
15.401429095 0.A725
l5  41  1958360  4 .22  x  1O-3
1 5 . 4 1 2 5 6 8 1 5 1  2 5 9 x 1 O - a
1 5 4 1 2 6 0 5 5 6 5  I 6 l x l O - s
1 5 . 4 1 2 6 0 7 8 9 3  l O l  x  1 0 - 6
15  412608038  6 .28  x  lO -b

2
4
B

t 6
3 2

2
3
,4

5
6

t L9978243
15.65755A2
r5 4058023
I  5 .4126391
1 5 4 1 2 6 1 0 9

2 2 . 1
1 . 5 9

4.42 x l0-2
2 .01  x  l 0 -a
LB2  x  l 0 -5

Forthe two-point Gauss-Legendre formula, this function is evaluated at t,t : -1 I J3 and,
1/V3. with the results being 7.684096 and 4.313728, respectively. These values can be
substituted into Eq. (18.17) to yield an integral estimate of 11.99182, which represents an
error of €r : 22.1c/o.

The three-point formula is (Table 18.1)

1:0.5555556(1.237449)+0.8888889(15.16321)+0.5555556(2.684915):15.65755

which has €t: l.6Vo. The results of using the higher-point forrnulas are summarized in
Table 18.3.

Finally, the integral can be evaluated with the built-in MATLAB function quad and
quadL:

> >  i r m s 2 - q u a d ( i 2 ,  0 ,  .  5 )

i. rms:2 ,-,
\ t r , . 4 I 2 , b 0 8 C 1  4 9 3 4 5 0 9
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18.4 Tt

erf(cl

Use the
formula
error for
terminer
r8.5 Th
followir

1 ; :

where ;
of the n
(a) Rom
two-poir
quad fu
It i .6 Th

I *^

F o r T  =

t  ( r)

i ( I )

Evalual
ance ol
formulr
18.7 T
represe

where
the pip
meter.
using (

two-p(
quad ' l

18.8 l
riod oi

M

continued

> >  i r i r s 2 = q u a d 1  ( i : ,  0 ,  .  5 )

i r m s 2  =

1 5 . . 1  1 : 6 0 8 0 4 8 C r  9 9 5 7

Both these results are very accurate, with quadt being a little better.

We can now compute the i,n 
" 

by merely taking the square root of the integral. For ex-

arnple, using the result computed with quadl, we get

> >  i  r r r s = s q r t -  ( i r r n s 2  )

i r m s  =

3 . 9 2 5 8 8 9 4 5 9 4 8 5 5 4

This result could then be employed to guide other aspects of the design and operation of the

circuit such as power dissipation computations.

As we did for the simple sinusoid in Eq. (18.25), an interesting calculation involves
comparing this result with the peak current. Recognizing that this is an optimization prob

lem, we can readily employ the fminbnd tunction to determine this value. Because we are

looking for a maximum, we evaluate the negative of the function:

0 . 2 2 4 B 1 9 4 0 3 1, 9 3 2 L
i n a x  =

- 7  .  B B 6 B 5 3 8 l  3 9 3 2 5 A

A maximum cuffent of 7.88685 A occurs at t : 0.2249 s. Hence, for this particular wave

form, the root-mean-square value is about 49.87o of the maximum.

PROBTEMS

l8.l Use Romberg integration to evaluate

f :  /  1 \ -

1 :  I  { : , -  - ) , / r
J t  \  r , /

to an accuracv of s. : 0.5 a/.. Your results should be presented
in the tbnnat of Fig. 18.1. Use the analyt ical solut ion of the
integral to deterrnine the percent relative error of the result ob-
tained r.vith Romberg integration. Check that e , is less than e..
18.2 Evaluate the following integral (a) analytically,
rk\ Dnmhprc inreorarion (F" :0.5%). (c) the three_point

Gauss quadrature tbrmLrla, and (d) MATLAB quad function:

, "8
| : I - ().0547.rr -r 0.s6-t6.rr - -1. 1562.i:

, to

]  6 .2917x  I2d . r

18.3 Evaluate the tbllowing integral with (a) Romberg inte-
eration (tr :0.5%), (b) the two-point Gauss quadrature
formula. and (c) MATLAB quad and quadl functions:

7 3
t :  I  x e ' d . t

J i
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18.4 There is no closed fcrrnr solution fbr the error functiol

a  r d

sySqal = :f  |  , .- '  , / ,r
J n  J t

Use the (a) two-point and (b) rhree-point Gauss-Legendre
formulas to estimate eri( 1.5). Determine the percent relarive
enorforeach case based on the true value. which can be de-
termined rvith MATLAB's built-in tirnction +r:f .
18.5 The force on a sailboat mast can be represented by the
following function:

r H

F = I too{ ----, ),, ,, n d.-
J o  \  /  t - - , /

where;: the elevation above the deck and 11 : the heighr
of the mast. Compute F fbr the case where I1 : -10 using
(a) Romberg integration to a tolerance of e. : 0.5olc. (b) the
tu,o-point Gauss-Legendre formula. and (c) rhe MNLAB
q:r;d I'unction.
18,6 The root-mean-square cunent cln tre cornputed as

' rrr:  E I\nu,
For f :  l .  suppose that i  (r) is defined as

Evaluate the 1o-5 using (a) Rornberg integration to a toler-
ance of 0. I 7o. (b) the two- and three-point Gauss-Legendre
formulas. and (c) the MATLAB quac function.
18,7 The velocity profile of a fluid in ir circular pipe can be
represented as

where u : velocity, r : radial distance measured out front
the prpes centerline, r0 : the pipe's radius, and n : a para-
meter. Determine the f'low in the pipe if r() = Q.75 and n = J
usin-e (a) Romber_e integlarion to a tolerance of 0. I %. (b) the
Ilo-poinl GaLrss-Legendre fbunula, ancl (c) the MATLAB
qu:r,i tunction. Note that flow is eqLral to velocity times area.
l8,ll The alrount of nrass transported via a pipe over a pe-
riod of tirne can be cornputed as

where M = nlass (mg), rr : the initial time (min), r: : rhe
llnal tirne (rnin), Q1r) : flow rare (m3/min), and c(r.) :
concentration (mg/rn3). The following functional repre-
sentations define the temporal variations in flow and
croncentrat ion:

Q Q ) : 9 + , i c o s 2 1 o . 4 r 1

c( t )  -  5e- ( )  '5 /  *Ze t t '1s r

Determine the mass transported between 1r : 2 and
l: : 8 min rvith (a) Romberg integration to a tolerance of
0.1Vc: and (b) the MMLAB qu,: i l  function.
18.9 Evaluate the double integlal

(.r2 - 3-r,2 * -r,r'3) r1.r r1-r,

(a) analytically lnd (b) usinr the MATLAB dl.t cr,.r,:cr func-
tion. Use hetp to understand hor.v to implement the tunction.
18.10 Compute work as described in Sec. j7.9, but use the
tbllowing equations for F(_r) and d1.r):

F ( . r ) : 1 . 6 x - 0 . 0 4 5 . 1 2

d(t) :  -0.000-5-5rr * 0.0123;12 * 0. l3.r

The force is in new,tons ancl the angle is in radians. perfbrm
the integration f}onr -r : 0 to 30 m.
l8. l l  Perfbrnr the same computarion as in Sec. 18.5, but fbr
the curlent as specified by

i ( i 1 : 5 r ' l s ' s i n 2 z r  f t ' t r O  < t  < T l 2

i(t)  :0 for Tl2 < t < T

"vhere 
1= I s.

18.12 Compute the power absorbed by an element in a cir-
cuit  as described in Sec. 18.5, but for a simple sinusoidal
current i : sin(2trt/T') where I = I s.
(a) Assume that Ohm's law holds and R : -5 e.
(b) AssLrrne that Ohm's law does not hold and that voltage

and current are related by the fol lowing nonlinear.rela-
t ionship: I / :  (5i -  I .25i3).

I t t . l3 Suppose that the currenr through a resistor is de-
scribed by the function

i ( r )

and the resistance is a function of the current:

R  :  l O i  + 2 i 2 / 3

Compute the average voltage over / : 0 to 60 using the
mult iple-segment Simpson's 1 /3 rule.

l_, l,'

-  /  r \
t ( r )  :  l o d - /  '  s i n ( Z r  

7 J [ o r 0 < t  < T 1 2

f o r T l 2 < t < Tl ( t )  : 0

,= ro ( r  - ; ) " "

= (60 -  / )2 + (60 -  r i . in  ( "4)

n, = L,'Qft )c ( t )  d t
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where
center

where
using
resultr
18.18
stretcl
t o r :

F , I Q

x, fn

F ,  l (

r r f i

18.19
the vr

U

u

U

0.02
0.05
0 . 1 0
0 . 1 5
0.20
0.25

40.0

43.0
52.0
60.0
55.0

Ruptu re

( a l

F I G U R E  P I 8 . I 6
(o)  A rod under ox io l  ooding ond (b)  the resul ing st resssl ro in curve,  where
stress is  in  k ips per  squore inch i l0r  lb / in '7) ,  ond st ro in is  d lmensionless

t ' 3

i ,  Io -3  A

l l t . l {  I f  a capacitor ini t ial ly holds no charge, the voltage
across it as a function of time can be computed as

l f r
V t t t : ;  I  i t t l l t

L J o

If C: l0 s farad, use the fbllowing current data to develop
a plot of voltage versus time:

The area under the curve from zero stress out to the point 0f
rupture is called the modulus of toughness of the material. It
provides a measure of the energy per unit volume required to
cause the material to rupture. As such, it is representative ol
the material's ability to withstand an impact load. Use nu-
merical integration to compute the modulus of toughness fol

the stress-strain curve seen in Fig. Pl 8. I 6b.
Itt.l7 If the velocity distribution of a fluid flowing through
a pipe is known (Fig. Pl8. l7), the f low rate Q (that is, the
volume of water passing through the pipe per unit time) can
be computed by Q : J u tl A, where u is the velocity, and A
is the pipe's cross-sectional area. (To grasp the meaning ol
this relationship physically, recall the close connection be-
tween summation and integration.) For a circular pipe,

A:  r12  anddA:2r r  d r .  There fore .

r l

O -- I u(2rr) dr
J I J

0
o2

a 2  0 4  0 6
0 3 6 8 3  0 3 8 t 9  0 . 2 2 8 2

t , s  0 B  )  1 2
i ,  Io-3 A 0 0486 0.0082 0 )441

Itl.l5 The work done on an object is equal to the fbrce times
the distance moved in the direction of the force. The veloc-
ity of an object in the dircction of a fbrce is given by

u : 4 t

u : 1 6 * ( 4 - r ) t

where r is in m/s. Determine the work if a constant force of
200 N is appl ied for al l  r .
l l t .16 A rod subject to an axial load (Fig. Pl8. i6n) wi l l  be
deformed. as shown in the stress-strain curve in Fi e. P I 8. I 60.

0 < t < 4

4 < t < 1 4

Modu lus  o j
tough ness

I
A l

I
r

F I G U R E  P I 8 . I 7



PROBLEMS 447

where r is the radial distance measured outward from the
center ol the pipe. I f  the veloci ly distr ibution is given by

/  ,  \ l ' 6
r , = l I l - ] l

\  l t t , /

where r, ,  is the total ladir"rs ( in this case, 3 cm), conrpute 0
using the multiple-application trapezoidal rule. Discuss the
results.
18,18 Using the following data, calculate the work done by
slretchrng a spling that has a spring constant of ft : 300 N/nr
to;r :  0.35 m:

18.20 The upward velocity of a rocket can be computed by
the fcl l l t>win-e tomula:

/  - . .  \
r , - r r l n {  " ' ' - ) - s ,

\ . tno  -  q t  /

where rr :  upward velocity, rr :  velocity at which fuel is ex-
pelled relative to the rocket, rno - initial mass of the rocket
al t ime / :0, q :  fuel consumption rate. and g : downward
acceleration of gravity (assumed conslant : 9.8 m/sr). If I :
1800 m/s. n,,  :  160.000 kg. and q : 2500 kg/s, determine
how high the rocket will f1y in 30 s.
18.21 ]'he not'rral distribution is definecl as

t , ^
. / t - r  t  :  - -E :e- \ - t2

\/ L]T

(a) Use MATLAB to integrate this function fiom.r : - I to
I and frorn -2 to 2.

(b) Use MATLAB to determine the inflection points of this
function.

18,22 Use Rornberg integration to evaluate

^ ) -
/  -  € ' s l n - \
I  - d ,

J o  l  + . \ -

to an accuracy of e, : 0.57c. Your results should be pre-
sented in the form of Fig. I 8. L

F ,  l 0 3 .  N

r r f ,

4  t 0 3 .  N
r r f ,

0 063
0 2 0

0 0 r
0 0 5

O C)82
0 2 5

0 l l

0 . 3 0

0  1 3
0 3 5

0 028 0 046
o  l 0  0  1 5

0
0

18.19 Evaluate the vertical dislance traveled by a rocket if
the vert ical velocity is given by

r ' : l l l - - - \ 1

r ,  = 1 1 0 0 - 5 r

r ' = - 5 0 I + 2 ( t - 2 0 ) )

0 < l < 1 0

l 0  <  r  <  2 0

2 O < t < 3 0



Nu mericol Differentiotion

CHAPTER OBJECTIVES
The primary objective of this chapter is to introduce you to numerical diftbrentiation.
Specific objectives and topics covered are

' Understanding the application of hish-accuracy numerical differentiation
lbrmulas for equispaced data.

' Knowing hclw to evaluate derivatives tbr unequally spaced data.
' Understanding how Richardson extrapolation is applied fbr numerical

differentiation.
' Recognizing the sensitivity of numerical differentiation to data error.
' Knowing how to evaluate derivatives in MATLAB with the dif f and qlradient

functions.
' Knowing how to generate col.rtour plots and vector fields with MATLAB.

YOU'VE GOT

R::*,*::TJ
A PROBTE'I/I

velocity of a free-talling bungee jurnper as a function of time can be

u( r  )

At the beginning of Chap. 17, we used calculus to integrate this equation to determine the
vertical distance z the jumper has fallen after a time /.

z( t . ) (19.2)
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Now suppose that you were given the reverse problem. That is, you were asked to de-
termine velocity based on the jumper's position as a function of time. Because it is the in-
verse of intergration. differentiation could be used to make the determination:

d z 0 )
r ' ( l ) :  ,  1 1 9 . 3 )

a t

Substituting Eq. (19.2) into Eq. (19.3) and differentiating would bring us back to Eq. ( 19.1).
Beyond velocity, you might also be asked to compute the jumper's acceleration. To

do this, we could either take the first derivative of velocity, or the second derivative of
displacement:

d u ( t  \  d 2 z t t  l
. t \ i / : - - - - - : - :

dt  dt2

In either case. the result would be

a( t )  :S  , " . f t t  (

(19.4\

(  19 .5 )

Although a closed-form solution can be developed for this case, there are other func-
tions that may be difficult or irnpossible to differentiate analytically. Further, suppose that
there was some way to measure the jumper's position at various times during the fall.
These distances along with their associated times could be assembled as a table of discrete
values. In this situation, it would be useful to differentiate the discrete data to determine the
velocity and the acceleration. In both these instances, numerical difTerentiation methods
are available to obtain solutions. This chapter will introduce vou to some of these methods.

I9.I INTRODUCTION AND BACKGROUND

| 9. | . I Whor ls Differentiorion?

Calculus is the mathematics of change. Because engineers and scientists must continuously
deal with systems and processes that clrange. calculus is an essential tool of our profession.
Standing at the heart of calculus is the mathematical concept of differentiation.

According to the dictionary definition, to dffirentiate means "to mark off by differ-
ences; distinguish; . . . to perceive the difference in or between." Mathematically, the derivet-
tive, which serves as the fundamental vehicle for diff-erentiation, represents the rate of change
of a dependent variable with respect to an independent variable. As depicted in Fig. 19. l, the
mathematical definition of the derivative begins with a difference approximation:

f (xi + Ar) - /(.t;) (  19 .6 )
Ar

where -y and /(:r) are alternative representatives for the dependent variable and x is the
independent variable. If A:r is allowed to approach zero, as occurs in moving from Fig. 19.1a
to c, the difference becomes a derivative:

.f (xi + Ar) - /("r;)

A.y

A.r

- '  -  l i m
d r  { r+0

#,)

A.r
(t9.7)
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.l(.r-, + Ar;

f(x)

r, .r, + ar

AI

(b)

FIGURE I9. I
The grophicol defrnit ion of o derivotive: os Ax opprooches zero in going from (o) to (c), the difference opprorimolion
becomes o derivotive.

where h ldx [which can erlso be designated oS .l/ o. .f 
'(.ri) 

]' is the first derivative of .r'with
respec t to - reva lua teda t r , .Asseen in thev i sua ldep i c t i ono f  F ig .  l 9 . l c , t hede r i va t i ve i s
the slope of the tangent to the curve at,rr.

The second derivative reDresents the derivative of the first derivative.

( 19.8)

Thus, the second derivative tells us how fast the slope is changing. It is commonly refened
to as the cun,ature, because a high value for the second derivative means high curvature.

Finally. partial derivatives are used for lunctions that depend on more than one variable.
Partial derivatives can be thought of as taking the derivative of the function at a point with
all but one variable held constant. For example, given a function / that depends on both .r
and y, the partial derivative of/with respect to.{ at an arbitrary point (x, 1,) is detined as

./(r * A.r, t') - ./(;r. r') ( 19.9)
Ax

Similarly, the partial derivative of./with respect to y is defined as

a f" - l i m
3y  A r -o

/ ( ; r ,  - r ' *  A.r ' )  -  / (x , l ' )

To get an intuitive grasp of partial derivatives, recognize that a function that depends on
two variables is a surface rather than a curve. Suppose you are mountain climbing and have
access to a function.f that yields elevation as a function of longitude (the east-west oriented

'The fbrm dt'ldx was devised by Leibnitz, whereas y' is attributed to Lagrange. Note that Newton used the
so-called dot notation: i. Todav. the dot notation is usuallv used fbr time derivatives.

(c)

#:*(#)

af
3;r A,r+o

( 19. r0)
A y
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.r axis) and latitude (the north-south oriented -r' axis). If you stop at a particular point (,rn, -r'e),
the slope to the east would be 0f (xu, y,) I 0.r, and the slope to the noth would be 8/(xo, y6)/ 3"r.

19.1.2 Differentiotion in Engineering ond Science

The differentiation of a function has so rnany engineering and scientific applications that
you were required to take differential calculus in your first year at college. Many specific ex-
amples of such applications could be given in all fields of engineering and science. Differ-
entiation is commonplace in engineering and science because so much of our work involves
characterizing tlre changes of variables in both time and space. In fact, many of the laws and
other generalizations that figure so prominently in our work are based on the predictable
ways in which change manifests itself in the physical world. A prime example is Newton's
second law, which is not couched in terms of the position of an object but rather in its change
with respect to time.

Aside from such temporal examples, numerous laws involving the spatial behavior of
variables are expressed in terms of derivatives. Among the most colnmon of these arc the
cortstitutive /au's that define how potentials or gradients influence physical processes. For
example, Fourier's law oJ heat conduction quantifies the observation that heat flows from
regions of high to low temperature. For the one-dimensional case, this can be expressed
mathematically as

(19 .  r  r )

where q (.r) : heat flux (Wm2), k : coefficient of thermal conductivity tW(m . K)1, f :
temperature (K), and x : distance (m). Thus, the derivative , or gradient, provides a measure
of theintensityofthespatial temperaturechange,whichdrivesthetransferofheat(Fig. 19.2).

, d T
Q :  

- K  
, '

a x

FIGURE I9 .2
Grophlcol depiciion of o temperoture grooient. Becouse heol moves "downhil l" from high lo low
lemperoture, ihu flo* in {o) is from leftio rlght However, due to the orientotion of Corteiion
coordinoies, the slope is negotive for this cose. Thus, o negolive grodient leods to c positive
flow. This is ihe origin of lhe"minus sign in Fourier's low of Xeot cJnduction. The reverse cose is
depicied in {b), where the positrve grodlenl leods lo o negotive heot f low from right to left

Direction of
heat f low
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EXA

TABTE | 9. I The one-dimensionol forms of some constitutive lows commonly used in
engineer ing ond sc ience.

Low Equotion Physicol Areo Grodient Flux Proportionolily

Fourier's lor,v

Fick's lcw

D'Arcy's ow

Ohm's low

Newion's
viscosily low

flooke's ow

, d7'
q : - K *

dc

a.r

, d h
d T

d v
I  -  _ ^  _

d.r

du
|  - t ^  ,

a x

o : EL-!
L

!eot conducl ion

Moss dif fusion

Flow through
porous medicr

Currenl f low

Flu ids

E ostici ly

C o r  , e , r o r i o 1  M c . .  I u  D r r u : i u ]

Heod F or'v flux

- [ :mperoture 
Heot f iux

Veloci ty Sheor
Sfress

Deformct ion Siress

Thermoi
Conductivily

Hydrou ic
Conductivi\

Current  f lux Elecfr icol
ConductivilY

Dynomic
Viscosily

Young s
Modulus

Sirnilar laws prcvide workable models in nrany other areas of engineering and science,
including the modeling of lluid dynurmics, mass transf'er. chernical reaction kinetics. elec-
tricity, and solid mechanics (Table 19. 1). The ability to accurately estimate derivatives is an
important facet of our capability to work effectively in these areas.

Beyond direct engineering and scientific applications, numerical differentiation is also
important in a variety of general mathernatical contexts including other areas of numerjcal
methods. For example, recall that in Chap. 6 the secant method was based on a finite-
difference approximation of the derivative. ln addition, probably the most important appli-
cation of numerical differentiation involves the solution of differential equations. We have
already seen an example in the fbrm of Euler's method in Chap. 1. In Chap. 22, we will in-
vestigate how numerical differentiation provides the basis for solving boundary-value
problems of ordinary differential equations.

These are just a few of the applications of differentiation that you might face regularly
in the pursuit of your profession. When the functions to be analyzed are simple, you will nor-
mally choose to evaluate them analytically. However, it is often difficult or impossible when
the function is complicated. In addition, the underlying function is often unknown and de-
fined only by measurement at discrete points. For both these cases, you rnust have the ability
to obtain approximate values for derivatives, using numerical techniques as described next.

HIGH.ACCURACY DIFFERENTIATION FORMUTAS

We have already introduced the notion of numerical differentiation in Chap. 4. Recall tha
we employed Taylor series expansions to derive finite-difference approximations of deriva-
tives. In Chap. 4. we developed forward, backward, and centered difference approximations
of tirst and higher derivatives. Remernber that, at best. these estimates had errors that were
O(h2)-that is, their enors were proportional to the square of the step size. This level of

r9.2
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derivation of these fbrnrulas. We wrll now illustrate how high-accuracy finite-difference for-
mulas can be generated by including additional terms from the Taylor series expansion.

For example, the forward Taylor series expansion can be written as [recall Eq. (a.13)]

In Chap. 4, we truncated this result by excluding the second- and higher-derivative tenns
and were thus left with a fbrward-difference formula:

f  ( r i + t )  :  f  ( x i )  +  . f ' ( x )h  *  
f " ! : t )  ^ z  * . . .

which can be solved for

f '(r): {!tP - 
+r+ o(h2)

f'(,,): tSt# + o(h)

. f , ,Gi ) :W+o&)
in to Eq.  (19.13)  to y ie ld

( 1 e . 1 2 )

( 1 9 . 1 3 )

In contrast to this approach, we now retain the second-derivative term by substituting
the following forward-difference approximation of the second derivative [recall Eq. (4.27)]:

( r9 . r4 )

( 1 9 . 1 - 5 )

( r9 . r7 )

J  l x i+z t  -  2 f  ( r ; - 1 )  +  . /  t x ;  )  .
; ; ;  h + O t l r )  ( l s .  1 6 )
zn '

or, by collecting terms:

. f ' ( .x):-ry+o(h2)
Notice that incl-rsion of the second-derivative term has improved the accuracy to O\h21.

Similar irnproved versions can be developed for the backward and centered formulas as
well as for the approximations of higher-order derivatives. The formulas are summarized in
Fig. 19.-l through Fig. 19.5 along with the lower-order versions from Chap.4. The follow-
ing example illustrates the utility of these formulas for estimating derivatives.

EXAMPTE l9. l  High-Accurocy Di f ferent io t ion Formulos

Problem Stotement. Recall that in Exarnnle 4.4 we estimated the derivative of
t .

f  ( r )  :  -0 .  1, r*  -  0 .  15x '  -  0 .5, r '  -  0 .25x *  1.2

at -r : 0.5 using finite-differences and a step size of h: 0.25. The results are summarized
in the following table. Note that the errors are based on the true value of

I  / ' ( 0  5 )  :  - 0 ' 9125 '

Bockword
o(h)

Centered Forword
o(h\ o(h)

Estimote - 4  7 1 4 -a 934
a / a

- t  1 5 5
a ^  q a /

Renear fhis comnutation- hut emolov the hish-accuracv formulas from Fis. 19.3 throueh
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Firs l  Der ivol ive

f  ( x  i + t t  -  f  l x , l
|  \ x i l :  -

Enor

0(h\

oftll

o(h)

o(h2)

0(h)

o(h2)

o(h)

0T'?)

Second

-f (r,*21 + 4f (xi+) - 3f (x)

2h

Derivotive

-f (,rr*J - 2f (x,*,) * f (.r,)

h2
--f (xin:) + 4.f (xi+) - 5"f (.t,*,) + 2f (x,)

h2

Third Derivotive

;1"' (x,) =

f"" (x,) =

f "" (r,) =

Fourth Derivoiive

f @i*) - 3f (ti*z) * 3/(;,*') - /(.r,)
h3

-31 (1.,+1) -l 14f (x,n.1 - 24f $i+2) + iB.f(r.+r) - 5,f (r,)

l n '

f (x,*) - 4f (t,+r) * 6/('r;*r) - 4l'6i+) + f (ri)

h1
-2 . f  (x , * )  +  l l / (x ,++)  -24 f  ( .x i * ) *2671. rn1*  14 . f  (x , * , )  +  3 / ( . r , )

Ita

FIGURE I9.3
Forword f ini te-dif ference formulos: hryo versions ore presented for eoch derivotive. The lot ier version
incorporcles more terms of the icyior series exponsion ond rs, consequenlly, more occurole.

Solution. The data needed for this example are

x i - 2 : 0  f ( t i - ) : 1 . 2
x i , r  : 0 . 2 5  f ( x i - t ) :  1 . 1 0 3 5 1 5 6

.r i  :  0 .5 J 'Gi)  :0 .925

r i+ r  : 0 ' 75  , f ( x i+ r )  : 0 .6363281

l i + l  :  I f  ( . r i+ )  :0 .2

The forward difference of accuracy O (h2) is computed as (Fig. 19.3)

-0.2 + 4(0.636328 r)  -  3(0.9t5)
/  (0 .5 )  :  

2 (0 j ,  
:  -0 .859375 €r  :5 .82Vt

The backward difference of accuracy O \h2 I iscornputecl as (Fig. 19.4)

l ( 0 . 9 2 5 )  -  4 ( 1 .  1 0 3 5  1 5 6 )  +  1 . 2
/  t t . l . - s )  :  

2 (025)  
:  -0 .878125 € ,  :3 . l lV t

The centered difference of accuracy Otha; is computed as (Fig. 19.5)

-0 .2  +  8 (0 .6363281)  -  8 (1 .103s1s6)  +  1 .2
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Firsl Derlvotive
+ r r \  -  f r Y  \

J  ' 4 i  t ,
J  \  i '  

-

n

f 
' ( - t , )  :

Error

o(h)

o(hr)

o(h)

o(h?)

o(h)

o(.h'1)

o(h)

o(h2)

The lotier
more occurote

3J(.\ i)  -  4f (r,-J + J(.\ i  1)

Second Derivolive

Lt1

Ihird Derivoiive

f"(xi) =

.f" (r') :

f"'( r',) =

.f (r) - 2f (,r, ,) * f (x,'r)

h2

2f (x) - 5/[r'-r) * 4f (x,-r) - -f (.r, ,)
h7

3,f (xir,) + 3f (xi,.2) - l (r;-:)

h l

5.f (il - 18f (x,_) + 24f (.t,_r) - 14f (.r,_) -t 3f (.r,_,)

2h3

Fourth Derivotive

f l t , t  -  4f rr,_,t  + 6f (r,_r) - 4.f  (xi_t) * /(r: ,_r)
lr'

1 " " ( t )  =
3"f (.r;) - I 4 f (x,- ) + 26 f @ -.) - 24 f (ti ) + I I /(.{,,4) - 2f(x,-s)

FIGURE I9.4
Bockword f inl te-di i ference formulos. h.rzo versions cre r. ,resenled for eoch derivotive.
version incorpoTotes more ferms of ihe Toylor serres exponsion ond is, corrsequently,

As expected, the errors for the forward and backward differences are considerably
more accurate than the results ffom Exanrple 4.4. However, surprisingly, the centered dif-
ference yields the exact derivative at .v : 0.5. This is because the tbrmula based on the
Taylor series is equivalent to passing a fourth-order polynomial through the data points.

I9.3 RICHARDSON EXTRAPOTATION

To this point, we have seen that there arc two ways to improve derivative estimates when
employing llnite diff'erences: (l) decrease the step size or (2) use a higher-order forrnula
that eniploys more poiuts. A third approach, based on Richardson extrapolation, uses two
derivative estimates to compute a third, more accurate. approximation.

Recall from Sec. 18.2.i that Richardson extrapolation provided a means to obtain an
improved integral estimate by the formula [Eq. ( I 8.4)]

I  :  I ( r r : )  *  - - - - l  -  l r t t t l , t  -  r t h l \ l  ( t e . r 8 )
\ . t t t /  t t ) ) -  -  l

wlrere /(ft1) and I(h) are integral estimates using two step sizes: /r1 and /22. Because of
its convenience when expressed as a computer algorithm, this formula is usually written
for the case where hz : ht 12, as in

4



456 NUMERICAL DIFFERENTIATION

Firsl Derivoiive Error

o(h'1\

o(h')

0(h')

o(hn\

oft'1)

0(hn)

oftI)

0(ho)

f  ( x , r , )  - f  ( . x i - )
-------;-;-

l n

-f (x,*2) + B/(iri+r) - Bf (.r,-,) + l (.t,-1)

I  l t r

Second Derivotive

f  t . t ,+t) -  2f $,) + f  \x, )
h2

-f (xi*) + l6/(.r,*,) * 3O/(ri) + 16/(:r,_,) - f (x, z)
l 2 t t 2

Third Derivotive

f"  (x):

f "'(x,) =

f"'(x) =

f"" (x) =

f"" (x,1 :

Fourth Derivotive

-f (r,*r) * 2.f (t+) + 2f (xi r) -./(.r,,)

2hl
- . f ( r i+r)  + B/(x i+2) -  131 1"r ,* , . )  + l3/ ( r r - r )  -  B. f  (x i_z)*  f  (x ;_)

8ft3

f (r,*) - 4f {x,n) + 6f (r,) - 4f (xi_)-l .f (xi z)
h4

-_f (t,o.,) + 12f (x.+2i\ + 39/(.rr+r) + 56f (x,) - 39/(r,-r) + 12.f (x_r) 1- f (xi_z)

6h1

TIGURE I9.5
Cenie'ed [ '^rle-d'{Ie'ence fo'rnulos: rvvg ve s ons o'e oresetred
version incorporotes more terms of the Toylor series exponsion
occurote.

for eoch derivotive. The lofier
^ . . 1  i a  a ^ n a o ^  ' a n l l r r  m n r o

In a similar fashion. Eq. (19.19) can

4 l
D : : D ( h : t _ : D \ h t )

1
- ) J

For centered difference approximutions with O\h2),
yield a new derivative estimate of O(h+).

EXAMPLE 19.2 Richordson Extropolot ion

be written fbr derivatives as

( I 9.20)

the application of this formula will

can be computed with centered differences as

*9.67c

Problem Stqtement. Using the same function as in Example 19.1. estimate the first de-
r ivat ive at . r  :  0 . -5 employing step s izes of  h1 -  0.5 and hz:0.25.  Then use Eq,  (19.20)
to compute an improved estimate with Richardson extrapolation. Recall that the true value
i s  -0 .9125.

Solution. The first-derivative estimates

0 . 2  -  1 . 2
D(0.5) : -----:- : *1.0 tt :

I

and
0.6363281 -  r .1035t6

D(0.25) :
0.5

: -0.934375 €r : -2.47a
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The improved estirnate can be determined by applying Eq. ( 19.20) to give

4 I
D : 4 ( - 0 . 9 3 4 3 1 5 )  -  

J ( - l ) :  
- 0 . 9 1 2 5

which l 'or  the present  case is  exact .

The previous example yielded an exact result because the function being analyzed was
a fourth-order polynomial. The exact outcome was due to the fact that Richardson extrap-
olation is actually equivalent to litting a higher-order polynomial through the data and then
evaluating the derivatives by centered divided differences. Thus, the present case matched
the derivative of the foLrrth-order polynomial precisely. For most other functions, of course,
this would not occur, and our derivative estirnate would be irnproved but not exact. Conse-
quently, as was the case for the application of Richardson extrapolation. the approach can
be applied iteratively using a Romberg algorithm until the result falls below an acceptable
en'or criterion.

19.4 DERIVATIVES OF UNEGIUATTY SPACED DATA

The approaches discussed to this point are primarily designed to determine the derivative of
a given function. For the finite-difference approximations of Sec. 19.2, the data had to be
evenlyspaced.FortheRichardsonextrapolat iontechniqueofSec.  l9 .3, thedataalsohadto
be evenly spaced and generated for successively halved intervals. Such control ofdata spac-
ing is usually available only in cases where we can use a function to generate a table of values.

In contrast, ernpirically derived information-that is. data from experiments or fic-ld
studies-are often collected at unequal intervals. Such intormation cannot be analyzed
with the techniques discussed to this point.

One way to l-randle nonequispaced data is to fit a Lagrange interpolating polynomial

[recall Eq. (15.21)J to a set ofadjacent points that bracket the location value at which you
want to evaluate the derivative. Remernber that this polynomial does not require that the
points be equispaced. The polynomial can then be diff'erentiated analytically to yield a for-
mula that can be used to estimate the derivative.

For example. you can fit a second-order Lagrange polynomial to three adjacent points
(- to, . r t i ) ,  ( . r i . I r ) .  and ( . ru, . r . 'z ) .  Di f ferent ia t ing the polynomial  y ie lds:

l ' (x)  :  l ' ( - re)
2 . r - . r 1  - . t 2 2 x - . r g - . r 2

(xo - xr )(xe - x;)
-t . f  (rr),

(xr-  rs ) (x1  -  12)

*  l G z )
2 x - r g - x 1

(le.21)
( , r :  - , r o ) ( - l r  -  r r )

where -r is the value at which you want to estimate the derivative. Although this equation is
certainly more complicated than the first-derivative approximation frorn Fig. 19.3 through
Fig. 19.5, it has some important advantages. First, it can provide estimates anywhere
within the range prescribed by the three points. Second, the points thernselves do not have
to be equally spaced. Third. the derivative estimate is of the same accuracy as the centered
difference t&q.9.25)1. In fact, for equispaced points, Eq. (19.21) evaluated at t : xt re-
duces to Eo.4.25\.
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EXAMPLE I9.3 Differentioting Unequolly Spoced Doto

Problem Stotement. As in Fig. 19.6, a temperature graclient can be measured down into the
soil. The heat flux at the soil-air intert'ace can be computed with Fourier's law (Table l9.l):

d r l
q ( : : 0 t : - f t ,  Ia_  l . =u

where q (r) : heat flux 1W/m2). k : coetllcient of thennal conductivity fbr soil [: 0.5 W
(m . K)1, I : temperature (K), &rd 1 : distance measured down fron the surface into the
soil (m). Note that a positive value for f'lux rneans that heat is transf-erred frorn the air to the
soil. Use numerical ditTerentiation to evaluate the gradient at the soil-air interface anden-
ploy this estimate to determine the heat flux into the ground.

Solution. Equation (19.21)canbeusedtocalculatethederivativeattheair-soil interfaceas

/ ' (0 )  :  13 .5
2(0) - 0.0r 2s - 0.037-5 z (0 ) -0 -0 .0375

(0 -  0.0125.)(0 -  0.037-5)
+ t2 ffi

+ 1 0  
2 ( 0 ) - 0 - 0 . 0 t 2 5

(0.037s - 0)(0.0375 - 0.012s)

:  __1140 + 1440 - 133.333 :  -  133.333 K/m

which can be used to compute

w/  K \  wq ( z  : 0 )  :  - 0 . 5 ,  
K ( - 1 3 3 . - l - 1 3  _ J  

:  6 6 . 6 0 1  -

FIGURE I9.6
Tempercfure versus depth info the soi i

I9.5 DERIVATIVES AND INTEGRATS FOR DATA WITH ERRORS
Aside fronr unequal spacing, another problern relatecl to diff'erentiating ernpirical data is
that it usuallv includes measurement error. A shortcoming of numerical cliff'erentiation is
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4I
dl

4
dr

FIGURE I9 .7
ll lustrolion of how smcrLl doto errors cre omplif ied by numericol dif iereniioiion. (o) ootc with no
error, (b) the resuhing numericol differenfiofion of curve {o), (cJ dotc modified slightly, ond (d) the
resrlt ing differenfiotion of curve (cJ mcnifesting irrcrecsed voricbil i ty ln controst, the reverse
operolion o,f integrotion Imoving frorn (dJ to (c) by toking the oreo under (d)] tends to ottenuofe
or srnooTn oolo errors.

Fig. 19.7tt shows smooth, error-fiee data that wlren numerically dilferentiated yields
a smooth result (Fig. 19.7b).In contrast, Fig. 19.7c uses the same data, but with alternat-
ing points raised and lowered slightly. This minor modification is barely apparent fiom
Fig. 19.7c. However, the resulting et-fbct in Fig. 19.7tl is significant.

The error arnplification occurs because differentiation is sr-rbtractive. Hence, random
positive ancl negirtive errors tetrd to add. In contrast, the fact thatintegration ib a sumrring
process makes it very forgiving with regard to uncertain data. In essence. as points lre
summed to fbrm an integral, random positive and negative errors cancel out.

As might be expected. the primary approach fbr deterrnining derivatives tbr imprecise
data is to use least-squares regression to fit a smooth. ditferentiable function to the data. In
the absence of any other information, a lower-order polynomial regression might be a good
first choice. Obviously, if the true functional relationship between the dependent and inde-
pendent variable is known, this relationship should lbrnr the basis for the least-squares fit.

PARTIAT DERIVATIVES
Partial derivatives aloug a single dimension are computed in the same fashion as ordinary
derivatives. For example, suppose that we want to determine to partial derivatives for a

r9.6
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EXIapproximated with centered diff'erences:

A f  / ( r * A r , . r ) -  l ( r - A " . . u )
i.).r 

-
2A.r

Af "f 
(.r, ,v * A.y) - ./(x,,t '  - A,t ')

(19.22\

( 19.23)

( l 9.21)

(  19.25)

d l ' 2 A r

All the other fbrmulas and approaches discussed to this point can be applied to evaluate
partial derivatives in a similar fashion.

For higher-orcler derivatives. we mi-eht want to differentiarte a function with respect t0
two or rnore ditl'erent variables. The result is called a ntixed partiaL derivcttive. For exam-
ple, we rnight want to take the partial derivative of/(-r,,r) with respect to both independent
variables

#:*(#)
To develop a finite-ditference approximation, we can first form a diff'erence in .r of the par-
tial derivatives in r':

a f  a fj ( t  I  A r . . r ' )  -  - 1  ( r  -  A - l  . r ' )
;) \' i, r'( t -  . [

d-rr d I' 2Lx

a2 .f

Then, we can use tlnite differcnces to evaluate each of the partials in r':

l (x  *  Ax,  I  *  At ' )  -  l ( : r  f  Ax,  I  -  A.y)  _ l ( r  -  Ax, .v  *  Ay)  -  / (x  -  A-r . , r '  -  Ay)

l A r ' 2A r
( 1 9.26)

(i-r d 1' 2L.r

Collecting terms yields the final result

/(r * Ax,,r' * A1') - f(r + A,r,.y - Af') - "/("r 
- A.r, l ' * A.r') * /(,ta tJ -  A . r ,  r ' -  A r ' )

0x01
(19.27)

4A;rAy

19.7 NUMERICAT DIFFERENTIATION WITH MATTAB

MATLAB software has the ability to cletermine the derivatives of data based on two built-
in  funct ions:  d i f  f  and grradient .

19.7.1 MATTAB Function: ai.tr

When it is passed a one-dimensional vector of length n, the di f f function retunls a vector
of length zr - I containing the differences between adjacent elements. As described in the
fbllowing example, these can then he employed to determine finite-dift-erence approxirna-
t ions of  f i rs t  der ivat ives
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EXAMPLE 19.4 Using i t  i  r  i  for  Di f ferent io t ion

Problem Stqtemenf. Explore how the MAILAB dif f function can be employed to dif-
ferentiate the function

l (x) : 0.2 -t 25x - 20012 l61513 - 900x4 + 400r-5

from x : 0 to 0.8. Compare your results with the exact solution:

f 
'(x) : 25 - 400x2 + 202512 - 3600"t3 * 2000.14

Solution. We can first express ./( 'T ) as an anonymous function:

> >  f = G  ( x )  a  . 2 + 2 5 * x - 2  0 0 * x .  " 2 + 6 1  5 * x .  ̂ 3  9 0 0 * x .  ̂ 4 + 4 0 0 * x .  ̂ 5 ;

We can then generate a series of equally spaced values of the independent and dependent
variables:

> >  x = 0 : 0 . 1  : 0 . 8 ;
> >  Y - f  ( r )  ;

The dif f function can be used to determine the differences between adjacent elements of

each vector. For examPle,

> >  d i f f  ( x )

C o l u m n s  l  t h r o u g t h  5

0 . 1 0 0 0  0 . 1 0 0 0 0 . 1 0 0 0  0 . 1 0 0 0  0 . 1 0 0 0
C o l u m n s  6  t h r o u g h  B

0 . 1 0 0 0  0 . 1 0 0 0  0 . 1 0 0 0

As expected, the result represents the differences between each pair of elements of x. To

compute divided-difference approximations of the derivative, we merely perform a vector

division of the y differences by the x differences by entering

> >  d = d i f  f  ( y )  .  / d r f  f  ( x )

C o l u m n s  1  t h r o u g h  5

1 0 . 8 9 0 0  - 0 . 0 1 0 0  3 . 1 9 0 0  8 . 4 9 0 0  8 . 6 9 0 0

C o l u m n s  6  t h r o u g h  B

1 . 3 9 0 0  - 1 1 . 0 1 0 A  - 2 1  . 3 1 " 0 0

Note that because we are using equally spaced values, after generating the x values, we

could have simply performed the above computation concisely as

> >  d = d i f f ( f ( r ) ) i 0 . 1 ;

The vector d now contains derivative estimates corresponding to the midpoint be-

tween adjacent elements. Therefbre, in order to develop a plot of our results, we must first

generate a vector holding the x values for the midpoint of each interval:

> >  n = L e n g t h  ( r )  ;
> >  x m = ( x ( 1 : n  1 )  + x ( 2 : n )  J  .  / 2 ;
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E)

FIGURE I9.8
Comporison of the exoct derivotive ( l ine) wi ih nunrericol esi imofes (circles) compufed with
MATIAB's dif  f  function.

As a final step, we can compute values for the analytical derivative at a finer level of reso-
lution to include on the plot for comparison.

r - ' >  X a = O :  .  C l :  .  E ;
> -  i . ' a = 2 5  4 0 0 * x a + 3 * 5 7 5 * x . a . ^ 2  4 * 9 0 0 * r , r .  ̂ 3 + 5 * 4 O O * x a .  ^ 4 ;

A plot of the nurnerical and analytical estimates can be generated with

> >  p l o t  ( x m , d , ' o ' , ) : a , y a )

As displayed in Fig. 19.8, the results compare lavorably for this case.

Note that aside from evaluating derivatives, the dif f function comes in handy as a
progranming tool fbr testing certain characteristics of vectors. For example, the following
statement displays an error nlessage and terminates an M-file if it determines that a vector
:i has unequal spacing:

i f  a n y  ( d r f  f  ( d r f  f  ( x )  ) - = 9 1  ,  e r r o r  (  ' u r . i e q u a l  s p a c i n g '  )  ,  e n d

Another common use is to detect whether a vector is in ascending or descending order.
For example, the following code rejects a vector that is not in ascending order (ntonotoni-

" " ' t , t : t : : : : : * . f , . , . r . : , : - f ,  
e r r o ] - ( , n . r  i n , : s e e n , J i n o  o r r r e r ,  r  e n r J
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19.7.2 MATTAB Function: sradienr

The gradienr- function also returns differences. However. it does so in a manner that is
more compatible with evalr.rating derivatives at the values themselves rather tharr in the
intervals between values. A simple representation of its syntax is

' x  -  9 . , ' . 1  . ' l  ( ' '

where f : a one-dimensional \/ector of length n, and fx is a vector of length n containing

differences based on f. Just as with the dirf function, the flrst value returned is the dif-
ference between the first and second value. However, for the intermediate values, a cen-

tered dif'fbrence based on the adiacent values is returned

. l , t r  -  . f i  r
dtlIi : 

2
(  19 .28 )

The last value is then computed as the difference between the final two values. Hence, the

results are akin to using centered differences for all the intermediate values, with forward

and backward diflbrences at the ends.
Note that the spacing between points is assumed to be one. If the vector represents

equally spaced data, the following version divides all the results by the interval and hence
returns the actual values of the derivatives,

f ; E  =  g r a d i e n t  (  f ,  h )

where h : the spacing between points.

EXAMPLE 
, l9 .5 

Using u,  . r i i i+rL for  Di f ferent io t ion

Problem Stotement. Use the qiradient tunction to dif lbrentiate the same f'unction that
we analvzed in Example 19.4 with the di tf function.

Solution. In the same fashion as Exanrple 19.4, we can generate a series of equally

spaced values of the independent and dependent variables:

> >  f  - @  ( x )  A  . 2 + 2 5 * x - 2  0 O * x .  ̂ 2 + 6 1  5 * x .  ̂ 3  9 0 0 * x  . ^ 4 + 4  0 t J * x .  ̂5 ;

> >  x = 0 : 0 . 1 :  O .  B ;
Y  I  r l ;

We can then use the graclient function to determine the derivatives as

> >  d v _ s r a d i e n t 1 y , 0 . 1 )

^ . ,
C o l u m n s  1  t h r o u g h  5

1 0 . 8 9 t ) 0  5 . 4 4 C \ 0  1 . 5 9 0 0

C o l u m n s  6  t h r o u g h  9
5 . 0 4 0 0  - 4 . 8 1 0 0  1 6 . 1 5 0 0

As in Example 19.4, we can generate values for the analytical derivative and display both

tlre numerical and analytical estimates on a plot:

> >  x a = O : . 0 1 : . 8 ;
> >  ! a = 2 5  , 1  0 0 * x a + 3 * 6 7 5 * x a . ^ 2  4 * 9 0 0 * x a .  ' ' 3 + 5 * 4 0 0 * x a .  ^ 4 ;

> '  p l o t ( x , d y , ' o ' ,  r . r , y a )

5 . 8 4 0 0

- 2 1 . 3 1 0 0

8 . 5 9 0 0
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25

20

1 0

FIGURE I9.9
Compcrison of the exccf derivotive ( l ine) wi ih numericol esl imotes (circles) computed with
MATLAB s qradient function.

As displayed in Fig. 19.9, the rcsults arc not as accurate as those obtained with the
dif f function in Example 19.4. This is due to the f'act that gradient ernploys intervals
that are two times (0.2) as wide as for those used for dl rf (0. 1).

Beyond one-dinrensional vectors, the gradient function is particularly well suited
for determining the partial derivatives of matrices. For example, for a two-dimensional ma-
trix, f, the function can be invoked as

I  f x ,  f y l  =  g r a d i e n t  (  f ,  h )

where fx corresponds to the differences in the r (column) direction, and 4.corresponds
to the ditferences in the y (row) direction, and .h : the spacing between points. If .n is
ornitted, the spacing between points in both dimensions is assumed to be one. In the next
section, we will illustrate how gradient can be used to visualize vector fields.



I9.8 CASE STUDY 465

VISUALIZING FIELDS

Bockground. Beyond the determination of derivatives in one dimension, the sradienr
function is also quite useful for determining partial derivatives in two or more dimensions.
In particular, it can be used in conjunction with other MATLAB functions to produce visu-
alizations of vector fields.

To understand how this is done, we can return to our discussion of partial derivatives
at the end of Section 19.1.1. Recall that we used mountain elevation as an example of a
two-dimensional function. We can represent such a function mathematically as

z :  f k , y )
where z : elevation, x : distance measured along the east-west axis, and "y : distance
measured along the north-south axis.

For this example, the partial derivatives provide the slopes in the directions of the
axes. However, if you were mountain climbing, you would probably be much more inter-
ested in determining the direction of the maximum slope. If we think of the two partial de-
rivatives as component vectors, the answer is provided very neatly by

a f  a fvf :+ i++ j
d x  d v

where V/ is referred to as the gradient of I This vector, which represents the steepest
slope, has a magnitude

and a direction

^  _ r  /  A f / A y \0 : tan-' 
\ffi )

where I : the angle measured counterclockwise from the r axis.
Now suppose that we generate a grid of points in the x-y plane and used the foregoing

equations to draw the gradient vector at each point. The result would be a field of arrows
indicating the steepest route to the peak from any point. Conversely, if we plotted the neg-
ative of the gradient, it would indicate how a ball would travel as it rolled downhill from
any point.

Such graphical representations are so useful that MATLAB has a special function,
called quiver, to create such plots. A simple representation of its syntax is

q u i v e r ( x , y , u , v )

where x and y are matrjces containing the position coordinates and u and v are matrices
containing the partial derivatives. The following example demonsffates the use of quiver
to visualize a field.

Employ the srradient function to determine to partial derivatives for the following
two-dimensional function :

/ f r  r r \  :  1 ,  -  y  - 7xZ  -2 . x t ,  -  t Z

(#)'. (#)'
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continued

from 
1 

: -2 to 2 and y : l to 3. Then use quiver to superimpose a vector field on a con-tour plot of the function.

Solution. We can first express/(.t, y) as an anonymous function
> >  f  = G  ( x , y )  y - x - 2 * x . ^ 2 - 2 . * x . * y _ y . ^ 2 ;

A series of equally spaced values of the independent and dependent variables can be gen-erated as

> >  z _ f  ( x , y - ) ;

The gradient function can be emproyed to determine the paftiar derivatives:

We can then develop a contour plot of the results:

> >  c s - c o n t o u r ( x , y , z  ) ; c l a b e l  ( c s ) ; h o 1 d  o n

As a final step, the resultant of the partial derivatives can be superimposed as vectors on thecontour plot: r - '  -"--

> >  q u i r z e r ( x , y , _ f x , , f y ) ; h o 1 d  o f t  :

FIGURE I9.IO

ffil$?":rui5r*n'".ruj:lof o twodimensionol function with rhe resulionr of the porriol
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Note that we have displayed the negative of the resultants, in order that they point
"downhil l."

The result is shown in Fig. 19.10. The function's peak occurs at x : *1 and y : 1.5
and then drops away in all directions. As indicated by the lengthening arrows, the gradient
drops off more steeply to the northeast and the southwest.

PROBTEMS

19.1 Compute forward and backward difference approxi-
rnations of O(h) ard O(h]), andcentral clif'furencc approri-
mations of O(h)\ and O(h1l for the f lrst derivative of

. l '=  cos- r  a t  - r  :  r /4  us ing  a  va luc  o f  h :  r112.  Es t ima le
the true percent relative error rr fbr each approximation.

19.2 Use centered dif l 'erence approrinrrt ions to estimate the
first and second derivatives of -r 

- e' ar x : 2 fot' ft : 0. I .
Employ both O(h?) and O(ft4) formulas fbr your cst imates.

19.j Use a Taylor series expansion to derivc a ccntercd
finite-difference approximation to the third clerivalive that is
second-order accurate. ' Ib do this, you wil l  have (o use four
diff'erent expansions fbr the points li :. ri I . r'r+t . ilnd,r;+2.
In each case, the cxpansion wil l  be around the point -r; .  The
interval A,r will be used in each case of i - i and i * l, and
2A.r will bc used in each casc of i - 2 antli * 2. The four'

equations must then be combined in a way to climinate the
first and second deril'atives. Carry enou-{h terms along ilt

each expansion to evaluate the first term that will be trun-
cated to determine the orilcr oi the approximation.

19.4 Use Richardson extrapolation to estimate thc first de-
r ivat ive of r '  :  cos.r at t  :  n l lusing step sizes of h 1: n f  I

and h. : r/6. Ernploy centered difl'erences of O(/rr) for the
initial estimates.

19.5 Repcat Prob. 19.4. but fbr the first derivative of ln.r at
. r  =  5  us ing  h t  :2  a ru l  hz  - -  | .

19.6 Employ Eq. (19.2[) to determine the f irst dcrivative
o f  r  :2 - ra  -6 - t3  -  l2 . r  -8  a t  r  :  0  based on  va lues  a1
xo =  -0 .5 ,  J r  :  1 ,  a t td  x2 :2 .  Comparc  th is  resu l t  rv i th
the true value and with an estimate obtained using a centered
differencc approxiniation based on /i : l.

19.7 Provc that fbr cquispaced data points, Eq. (19.21)

reduces to Eq. 6.25) at .r : -r | .

19.8 Develop an M-fllc to apply a Romberg algorithm to
- . . . : - - - - ! -  i L  -  - l - , - : , , ^ + : - , , .  . - f  ^  f t ; r , d h  { ' , , r , - t i , r n

19.9 Develop an M-filc to obtain flrst-tlerivative estimates
for unequally spaced data. Tcst i t  with thc fbl lowin-e data:

x  0 . 6  1 5
f  (x)  0 9036 4.3734

2 5  3 5
o  oB422  0  01  596

rvhcre .l (r) : 5z-2'.r. Cornpare your rcsulls with the true
derivati  ves.

19.19 Devclop an M-file function that computcs first and
second clerivativc estirnates of olt le r O1lir1 brsed on the fbr-
mulas in Figs. 19.3 through 19.5. Thc function's f lrst l ine
should be sct up as

f  unc t io t r  l r l l ' dx ,  OrOO*2I  =  f l i f  f  rzq  ( ; ,  - . ' 1

wherc x and y are input vectors of length n containing the
values of the indepcndent and dependeut variables, rcspec-

tively, and dydx and dy2d.;2 are output vectors of lcngth il

containing the f irst- and second-derivative estimates at
cach value of thc indcpendcnt variable. The function shoulcl
generate a plot of c1y'dx arrd dy2dx2 versus x. Havc your

M-file return an error messlge if (a) the input vectors are not

the same length, or (b) the values lor the independent vari-

able are not equally spaced. Test your program with the data
f iom Prob.  19 . I  l .

19.11 The fbl lowing data was col lectcd for the distance
traveled versus time fbr a rocket:

t 6
0 .3  26  l

I t  S

J, km
25
3'2

50
5 B

75
7B

t 0 0
9 2

125
r 0 0

Usc numerical diff'erentiation to estimate the rocket's veloc-
i l r  : r n r l  r . ' t  e l o r r l i o n  : r l  c r c h  l i m c .
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19.12 A jet f ighter 's posit ion on an aircraft carier 's runway
was timed during landin-u:

19.17 The fbl lowing data
distr ibution:

was generated ftom the normal

t , s  0  o : . -  l A A
x , m  1 5 3  l 8 5  2 a B

t  75 2 37
'249 261

3 2 5  3 8 3
271 273

x  2  - l  - s
/ (x)  { l0 ,s399 O )2952

r  0 5  l
f  ( x \  0 .352A7  4  24197

I  - 0 5  0
a.2atq7 (1 35207 0 3e894

r . 5  2
4 .12952 0  05399

where x is the distance from the end of the carricr. Estimate
(a) velocity @.rldt') and (b) acccleration (duldrl using nu-
nrerical differentiation.

19.13 Use the fbl lowing data to f ind the velocit l '  and accel-
erat ion at /  :  l0 seconds:

l i m e , t , s  O  2  4  6  B  l 0  l 2  l 4  1 6
P o s i t i o n , x , m  O  a 7  I B  3 4  5 l  6 3  7 : 3  B 0  B 4

Use sccond-order correct (a) centered flnite-diftcrence,
(b) fbrward finite-difl'erence, and (c) backward finite-
clifTercnce methods.

lg. l1 A plane is being trackcd by radar, and data is taken
every sccond in polar coordinates I and r

Use MATLAB to estimate the inflection points of this data.

19.18 Usc the .t i f  f  iy; commancl to develop a MATLAB
M-file tunction to compute flnite-difftrence approximations
to the first and sccond derivative at each -r value in the table
below. Usc finitc-ditfbrence approximations that are second-
order corrcct. O (.r2 ):

, r O  I  2
y  1 4  2 )  3 . 3

J

4 B

t, s 2AA 2A2
0 , ( rod l  A75  A72
t', tn 5l 20 5374

244 246
o 7 a  0 6 8
5560 5800

2 0 8  2 t O
4 57 4.66
6030 624a

At 206 seconds, use the centercd finite-diflerence (second-

order correct) to find the vector cxpressions lor vclocity il
and acceleration rl. The velocitv and acceleratiorr given rn
polar coordinates ale

i :  ia ,  +  t040 and a :  G -  r0 : )2 , ,  I  \ r0  +2 i0 )Ae

19.15 Use regrcssion to estimatc the acceleration at each
time fbr the following data with second-, third-, and fburth-
order oolvnomials. Plot the results:

4  5  6  7  B  9  1 0
6 B  6 6  8 . 6  7  5  8 . 9  1 0 9  t 0

19,19 The objcctive of this problem is to compare second-
orclel accurate forwiucl, backward, and centered finite-
ditfbrence approxirrations of thc first clerivative of a function
to the actr.ral value of the derivativc. This will be done for

l G ) : e - 2 ' - x

(a) Use calculus to dctclmine the corrcct value of the denv-
a t i v e a t r : 2 .

(b) Develop an M-f ile function to evaluate the centered
fi nite-difl'erence approximation s, starting with .r = 0.5.
Thus, for the first evaluation, the .r values for the cen-
tered differencc approximation will be .r : 2 t 0.5 or
r :  1.5 and 2.5. Then. decreasc in increments of 0.1
down to a nrinimum value of A-r = 0.01.

(c) Repeat part (b) lbr the second-order fbrward and back-
ward difTerences. (Note that these can be done at the same
time that the centered difl'erence is computed in the loop.)

(d) Plot the results of (b) and (c) versr.rs r. Include the exact
rcsul l  on the plot lol  eomparison.

19.20 You have to measure the flo$,rate of water througha
surall pipe. In order to do it, you place a bucket at the pipe's
outlet and measure the volumc in the bucket as a function of
titnc as tabulated below. Estimate the flow rate at t = 7 s.

Time, s
Volume, cm3

0
0

B
1 6 4

19,21 The velocity rr (m/s) of air flowing past a flat surface
i s  n rers r r rcd  r f  sever r l  d is l rnces  r ,  /m)  r rv rv  f rom fhe  s r t r face

t  1  2  3 . 2 5  4 5
u  l O  ) 2  l l  1 4

6 7 8
1 7  t 6  t 2

B 5  9 3  t 0
t 4  l 4  t 0

19.16 The nolr lal  distr ibution is defined as

I  .  , ^
f ( r )  -  - r - t - 1 z
" 

J2tr

Use MAILAB to determine the inflection points of this
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) , h  0

u,m/s 0
0 0r B
3 048

Use Newtott's r:i.rczrsln' larl to determine the shear stress
r (N/m:) at the surface (.v : 0),

in
L - l L -

a I

Assumeava lueof  dynamicv iscos i ty  4 :1 .8  x  l0 -5  N '  s / rn2 .

19.25 Ths horizontal surface area A, (nr21 of a lake atapar-
ticular depth can be computed fionr volume by difTerentiation:

d V
4 . 1 ; 1  :  ,  ( : )

aa.

rvhere I./ : volur.ne (ml) and ; : tlepth (nr) as nreasured

.[,] r:Q)A,(z) ctz.

1'd e,s1az
where Z: the total depth (rr). Determine the average con-
centralion based on the following data:

z , n  O  4  B  1 2  1 6
v ,  l o 6 m 3  I 8 1 7 5  5  1 0 5 I  I  9 6 3 5  Q 3 9 2 7  0 0 0 0 0
c ,9 /m3  l o .2  B  5  7 .4  5 .2  4 .1

19.26 p;orr4^r's law characterizes the r'oltage drop across
an inductor as

d i
V t . :  L ;

t 7 l

where V.: r ,oltage drop (V), L: indtrctance ( i1 henrys:
I H : I  V. s/A), I  :  current (A), and I:  t ime (s). Deter-
mine the voltage drop as a function of t ime from the fbl low-
ing data for an inductance ol4 H.

0 . 0 0 2  0 0 0 6  0 0 r 2
a 2 B 7  0 8 9 9  I 9 1 5

fiom the surface down to the bottom. The average concen-
A A?! t lat ion of a substance that varies with depth. - (g/m3), can be
4 299 computecl by integlatron:

19'22 pi711',e 71vst diffir.sion /rnl stales that

Mass f lux : -Dd'
dr

where mass flux : the quantity of mass that passes across a
unit area per unit tirne (g/cmr/s.1. D : a dil-fusion coefTicient
(cmr/s), c :  concentrat ion (g/cm3). and ,r :  distance 1cm).
An environmental engineer measures the fbllowing con-
centration of a pollutant in the pore waters of sediments un-
derlying a lake (.r : 0 at the sediment-water interface ancl
increases downward):

(Pt9.22)

r, Cm
c, l0-6 g/cm3

0
0 0 6 a 3 2

3
0 6

Use the best nr,rmerical difl'erentiation techniclue available to
estimate the derivalive at "rr : 0. Ernploy this estimate in
corlunction with Eq. (PI9.22) to colr lpute the mass l lux of
pollutant out of the sediments and into the overlying walers
Q--1 .52  x  10-6  cm2/s) .  For  a  lake  w i th  3 .6  x  106 rn2  o f
sediments. how much pol lutant u'ould be transported into
the lake over a year's time?
19.23 fne fbl lowing data was col lected when a large oi l
tanker was loading:

0 2  0 3  0 5  0 /
a 3 2  0 5 6  0 8 4  2 A

t  a  0 I
i  0  0 1 6

/, min
I', 106 borrels

0  r 0  2 0  3 0  4 5
0 4  0 7  0 2 7  0 B B  r  0 5

Calculate the flow rate Q (that is, tll/ ldt) fbr each tirne to the

order of /r I .
19'24 psudsp's law is used routinely by architectural engi-
neers to detennine heat flow through walls. The fbllowing

temperatures are measured fiorn the surface (.r : 0) into a

19.27 gxr.4 on Faraday's law 1Prob. 19.26), use the fol low-
ing voltage data to estimate the inductance if a current of 2 A

(:,  is passerJ thlough the inductor over'400 mil l iseconrls.

0 t0 20 40 60 B0 12a lB0 280 400
a ) 8 2 9 4 1 4 9 4 6  3 5  2 6  1 5  7

stant (per minute). Thus, this equation (called Ncruton's /aw

of cooling) specifies that the rate of cooling is proportional to

l9.2tt 15s rare of cooling of a body (Fig. P19.28) can be ex-
pressed as

J T
k l T  T u l

d T

O. t U where I: temperature of the body ("C), 4, : temperature of

the surrounding rnedium ( 'C), and l : :  a propofl ional i ty con-

60
\ 1 7

t, ms
V, volts

I, lf,

T, 'C
0
t 9

0 0 8
l 7

If the flux at x : 0 is 60 W/mr, cornpute ft.
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dioxi
deter
lated
and <

T ' K

!
19.3,
react
reacti

wher,
reacti
(min-

evalu
logar

lo

Thert
log(-
slope
meth,
follor
urea:

t, mi
c, ml

19.31

El(m:

d ,
-
a

made tbr air flowing over a flat plate where,r' : distance nor-
rnal to thc surface:

Jr cll l

T , K
0

900
I

4 8 0
3 5

270 2t0

FIGURE PI9.28

the ditlcrence in thc tempcratures ol the body and of thc sur-
rounding medium. If a metal ball heated to 80 'C is dropped
into water that is held constant at f,, : 20'C, the temperature
of the ball changes, as in

If thc plate's dimensions are 200 cm long and 50 cm wide,
and I : 0.028 J/(s . Irr . K), (a) deterrnine the flux at the sur-
face. and (b) the heat transf'er in watts. Note that I J = 1W.s.
I 9.3 I The pressure gradient for larninar flow through a con-
stant radius tube is given by

8 u Q
f t 1 4

where p = pressure iN/rn:), -r : distance along the tube\
centerl ine (m), fr  :  dynamic r iscosity {N.s/nrr; ,  0 = f low
(mr/s) ancl r:  radius (m).
(a) Detcrminc the pressure drop for a l0-cm length tuh

for a viscous l iquid (p :  0.005 N . s/mr, density = p =
I x I03 kg/mr) with a f low of l0 x 10-6 m3/s andthe
fbllowing varying radii along its length:

dn

d.r

Time, min
r, "c

0  5  r 0
8 0  , 1 4 5  3 0 0

t 5  2 0  2 5
2 4 t  2 t 7  2 A 7

Utilize nunrerical diff'erentiation to determinedT ldr ateach
value of tirnc. Plot dT f dt versw T - 7,, and employ lir"rear
regression to evaluate fr.
19'29 Tl1s enthalpy of a real gas is a function of pressure as
dcscribccl below. The data was takcn lbr a real fluid. Esti-
mate the enthalpy of the f'luid at zl00 K and 50 atm (evaluate

thc integral frorn 0. I atm to 50 atm).

7 P  . ; l t /
H : I  ( r '  r (1 '  

' )  
) , rp

J u  \  \ d T / p l

V , L

P, otm r = 3 5 0 K r = 4 0 0 K T = 4 5 0 K

r , c m  O  2  4  5  6
r , m m  2  1 3 5  1 . 3 4  l 6  l 5 8

7 1 0
1 4 2  2

19.30 p61 fluid tlorv over a surface. the heat l]ux to the sur-
face can be computed with Fourier's law: ,y : distance nor-
mal to the surf-acc (m). The tbllowing measurements are

(b) Comparc your result with the pressure drop that would
have occured if thc tubc had a constant radius eoual to
the averagc radius.

(c) Dctelminc the average Reynolds nuntber for the tube to
verit'y that flow is truly laminar (Re : pu D I 1t < 21N
wherc u: velocity).

19.32 the following data for the specific heat of benzene
was generated with an /rth-order polynomial. Use numerical
difl'erentiation to dctermine n.

T, K 300 4AO 500 600
C r , k l / l k m o l . K )  8 2  B B B  I l 2  1 3 6  1 3 6 9 3 3  1 5 7 7 4 4

T, K 700 800 900 1000
C,, kll(kmol ' K) I Z5 036 ) 89 273 20A 9n 210 450

19.33 Tllg specific heat at constant pressure q, tJ/(kg . K)l
of an ideal gas is related to enthalpy by

dh
, ,  dT

whcre ft : enthalpy (kJ/kg), and I : absolute lempera-
ture (K). The fbllowing enthalpies are provided for carbon

0 t
5

t 0
20
25
30
4A
45
50

224

2 2
r 3 5
t l
0 9 0
O 6 8
o 6 t
a 5 4

250
4 7
2 , \
I 4 9
t 2
0 9 9
4 7 5
4 .67  5
0 6

2 8 2 . 5
5 2 3
2 7
I 5.5
I ).4

I 0 3
a 7 8
4 . 7
4 6 2
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dioxide (COr) at several temperatures. Use these values to
determine the specific heat in J/(kg . K) fbr each of the tabu- Lid
lated temperatures. Note that the atomic weights of carbon
and oxygen are 12.01 I and I -5.9994 g/mol, r 'espectively 

Water
I
H

IT,K  754
h,kt/kmol 29 629

800 900 1000
32 ,179  37 ,445  42 ,769

19.34 An nth-order rate law is often used to model chemical
reactions that solely depend on the concentration of a single
reactant:

:  *kc"

where c : concentration (mole), I : time (rnin), n :

reaction order (dimensionless), and ft : reaction rate
(min I moler "). The di.fferential method can be used to
evaluate the parameters k and rt. This involves applying a
logarithmic transform to the rate law to yield,

.  /  r l c r
I o g {  -  ,  } = l o g k  L , ? l o g (- \  d t  /

Therefore, if the nth-order rate law holds, a plot of the
log(-dcldf) versus log c should yield a straight line with a
slope of n and an intercept of logfr. Use the dilferential
method and linear regression to deternrine t and n for the
following data fbr the conversion of arnmonium cyanate to
urea:

Sed iments

FIGURE PI9.35

dissolved oxygen content of a natural water. 11 is measured
by placing a sediment core in a cylindrical conniner
(Fig. P I 9.35). After carefully introducing a layer of distilled,
oxygenated water above the sedinrents, the container is cov-
ered to prevent gas transfer. A stirel is used to rnix the water
gently, and an oxygen probe tracks how the water's oxygen
concentration decreases over time. The SOD can then be
computed as

do
S O D :  - I 1 :

a t

where 11: the depth of water (m). o : oxygen concentration
(g/mr), and t:  t ime (d).

Based on the following data and H : O.l m, use nu-
merical differentiation to generate plots of (a) SOD versus
l ime and (b) SOD versus oxygen concentral iol l :

dc--
d l

l, min 0
c ,  mo le  A750

l 5  30  45
a 420 a 29t  0.223 t , d  0  0 1 2 5

o , m g / L  1 o  7 . l l
0 5  0 6 2 5  4 7 5
r  r s  0  3 3  0 . 0 3

5
o 594 4 2 5  0 3 7 5

4.59 2 57

19.35 The sedirnent oxygen demand [SOD in units of
g/1mr . d.11 is an important parametel in determining the
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The fundamental laws of physics. mechanics, electricity, and thermodynamics are usually'

based on empirical observations that explain variations in physical properties and states of i'
systems. Rather than describing the state of physical systems directly, the laws are usually_ .r" *F
couched in terms of spatial and temporal changes. These laws define mechallt** 

.oj ., 
'* ,

change. When combined with continuity laws for enorgy, mass, or momentum, differenliol 
-

equations result. Subsequent integration of these differential equations results in mathe-
matical functions that describe the spatial and temporal state of a syslem in terms of energy, -, " 

"

mass, or velocity variations. As in Fig. FT6,1, the integration can be implemented analyti* 
'

cally with calculus or numericalli with the computer l,,
The free-fall ing bungee jumper problem intro-

duced in Chap. I is an example of the derivation of a
ditferential equation from a fundamental law. Recall
that Newton's second law was used to develop an
ODE describing the rate of change of velocity of a'"
fall ing bungee jumper:

du c,t t
i : r - - : -u -  

(PT6 ' l )

where g is the gravitationa.l constant. rr is the mass,
and c, is a drag coefficient. Such equations, which are
composed of an unknown function and its derivatives.
are called dffirential equntions,,:TheY ate sometimes
referred to as rate equations because they express the
rate of change of a variable as'a"'function of variables
and parameters.

In Eq. 1PT6.l ), the quantity being differentiated u
is called the dependent variable. The quantity with
respect to which u is differentiated t is calledthe inde-
pendent variable. When the function involves one in-
dependent variable, the equation is called an ordinary

' 
,.:: .: ..1.r..

, r, i:, ir.,.,,
t.,..

473
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Physical law

I
I
f

F = m a

I
I
I

d u  - ^  c J . . 2
,  - 6

a I mn
ODE

I
V

Solution

Analyt ical
(ca lcu lus)

/
l o m  /  l o ^ ,  \

u  -  . / " " ' t a n h  [  , / r y r  ]
\  t , j  \V  /n  /

Numer ica l
(computer)

\
ur+r  =  u i  +  (s  - ' ! r ' )  n ,

FIGURE PT6.I
i Ie  seouenre  o t  events  in  rhe  deue lopr ren '  o^d  so l - l lo^  o l  ODEs fo  eng -eer ing  ond sc ience
Ihe exomple shown is for the velocity of the freefcl i ing bungee iumper.

dffirential equation (or ODE). This is in contrast to a partial dffirentiul equation (or
PDE) that involves two or more independent variables.

Differential equations are also classified as to their orderFor example. Eq. (PT6. l) is
called afirst-order equatio,? because the highest derivative is a lirst derivative. Asecond-
order equation would include a second derivative. For example, the equation describing the
position x of an unforced mass-spring system with damping is the second-order equation:

, )  ,
d ' x  d x

m  - * t .  * A - x : 0
d t '  d t

(PT6.2)

(PT6.3)

(PT6.4)

where ,fl is mass, c is a damping coefficient, and k is a spring constant. Similarly, an nth-
order equation would include an nth derivative.

Higher-order differential equations can be reduced to a system of first-order equations.
This is accomplished by defining the first derivative of the dependent variable as a new
variable. For Eq. (PT6.2), this is done by creating a new variable u as the first derivative of
disolacement

dx

dt

where u is velocity. This equation can itself be differentiated to yield

( l  t '  o ' - l

dt  d tz

Equations (PT6.3) and (PT6.4) can be substituted into Eq. (PT6.2) to convert it into a first-
order equation:

du
m 7 - t c u + k r : 0 (PT6.s)
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As a final step, we can express Eqs. (PT6.3) and (PT6.5) as rate equations:

c k

tn nt

dx
l-
u t

t lu
'

d T

(Pr6.6)

(PT6.t)

(Pr6.8)

Thus, Eqs. (PT6.6) and (PT6.7) are a pair of first-order equations that arre equivalent
to the original second-order equation (Eq. PT6.2). Because other nth-order ciiff'erential
equations can be similarly reduced, this part of our book fbcuses on the solution of f irst-
order equations.

A solution of an ordinary difl'erential equation is a specific function of the independent
variable and parameters that satisfies the original differential equation. To illustrate this
concept, let us start with a simple fourth-order polynomial,

. t ,  :  -0 .514 +4.r3 -  l0x2 + 8.5. r  *  I

Now. if we differentiate Eq. (PT6.8). we obtain an ODE:

d.r
dx

- _2r3 * l2,rr - 20r * 8.5 (Pr6.e)

This equation also describes the behavior of the polynomial, but in a manner different from
Eq. (PT6.8). Rather than explicit ly representing the values of ,r for each vahre of .r,
Eq. (PT6.9) gives the rate of change of -y with respect to.r (that is, the slope) at every vall le
of .r. Figure PT6.2 shows both the function and the deriv'ati le plotted verslls.{. Notice how
the zero values of the derivatives correspond to the point at which the original function is
flat-that is, where it hiis a zero slope. Also, the maximum absolute values of the deriva-
tives ale at the ends ofthe interval where the slopes ofthe function are greatest.

Altlrou-eh, as just denronstrated, we can determine a differential equation given the
original function, the object here is tt.r determine the original function given the differential
eqr.ration. The original function then represents the solution.

Without computers, ODEs are usually solved analytically with calculus. For example,
Eq. (PT6.9) could be multiplied by dx and integrated to yield

(PT6. I 0)

The righrhand side of this equation is called an indefinite integraL because the limits of in-
tegration are unspecified. This is in contrast to the definite integrals discussed previously
in Part Five [compare Eq. (PT6.l0) with Eq. (17.5)].

An analytical solution for Eq. (PT6. l0) is obtained if the irrdefinite integral can be eval-
uated exactly in equation fblnr. For this sinrple case, it is possible to do this witlr the result:

r '  :  -0 .514 *4. t1 -  10.12 + 8.5. r  *  C (PT6. r r )

which is identical to the original function with one notable exception. In the course of dif-
ferentiating and then integrating, we lost the constant value of I in the original equation
and gained the value C. This C is called a u)nstant of integrorion The f'act that such an ar-
bitrary constant appears indicates that the solution is not uniclue. In fact, it is but one ofan

t : 
lr-ztt 

1 l2.r'r - 2ox * 8.5) r/.r-
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FIGURE PT6.2
Plo ts  o f  (o )  \ ' ve rsus  rond lb )  d - r . / rh  versusr fo r the func t ion l , :  -O 5ra  *  4x3  -  lO;  +  B  5 j r  +  I

infinite number of possible functions (con'esponding to an infinite number of possible val-
ues of C) that satisfy the differential equation. For example, Fig. PT6.3 shows six possible
functions that satisfy Eq. (PT6.l I ).

Therefore, to specify the solution completely, a ditTerential equation is usually accom-
panied by auxiliary conditions. For first-order ODEs, a type of auxiliary condition called
ln init ial value is required to determirre the constant and obtain a unique solution. For
example, the original diff'erential equation could be accompanied by the initial condition
that  at  r :  0 . .1 ' :  l .  These values could be subst i tu ted in to Eq.  (PT6.  l l )  to  determine
C : l. Therefore, the unique solution that satisfies both the differential equation and the
speci l ' ied in i t ia l  condi t ion is

-r' : -0.5x1 f 4rr - l0rr -r- 8.5r * I

Thus, we have "pinned down" Eq. (PT6. l1) by forcing it to pass through the init ial condi-
tion, and in so doing, we have developed a unique solution to the ODE and have corne full
circle to the original function [Eq. (PT6.8)].

Initial conditions usually have very tangible interpretations for diff'erential equations
derived from physical problem settings. For example. in the bungee jumper problem, the
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C = 3

(  = Z

C = 1

C = 0

FIGURE PT6.3
Six possibe solutions for the iniegrol of -2-r'r I l2x2 - 2Or* 8.5. Eoch conforms to o differenl
vo ue of lhe constont of inteqrol ion C.

init ial condition was reflective of the physical lact that at t ime zero the vertical velocity
was zero. If the bungee jumperhad already been in vertical nlotiorl at t ime zero, the solu-
tion would have been modified to accoLlllt for this initial velocity.

When dealing with an nth-order differential equation, n conditions are required to ob-
tain a unique solution. If all conditions are specified at the same value of the independent
variable (fbr example, at,v or t : 0), then the problem is called an initial-value problem.
This is in contlast to boundary-value problems where specification of conditions occurs at
difTerent values of the independent variable. Chapters 20 and 2l will fbcus on initial-value
problems. Boundary-value problems are coveled tn Chap.22.

6.2 PART ORGANIZATION

Chapter 20 is devoted to one-step methods for solving initial-value ODEs. As the name
suggests, one-step methods compute a future prediction y;a1 , based only on information at
a single point r; and no other previous information. This is in contrast to multistep ap-
proaches that use inlbrmation from several previous points as the basis for extrapolating to
a new value.

With all but a rninor exception, the one-step methods presented in Chap. 20 belong to
wh:rt are called, Runge-Kutta techni4lle.s. Although the chapter rnight have been organized
around this theoretical notion, we have opted for a more graphical. intuitive approach to in-
troduce the rnethods. Thus, we begin the chapter wrth Euler's ntethod, which has a very
straightforward graphical interpretation. In addition, because we have already introduced
Euler's method in Chap. l, our emphasis here is on quantifying its truncation eror and de-
scribine its stabil itv.
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Next, we use visually oriented arguments to develop two improved versions of Euler's
nretlrod-tlre Heun and the midpoint techniques. After this introduction, we formally de-
velop the concept of Runge-Kutta (or RK) approaches and demonstrate how the foregoing
techniques are actually first- and second-order RK methods. This is followed by a discus-
sion of the higher-order RK fbrmulations that are fi'equently used fbr engineering and
scientific problem solving. In addition, we cover the application of one-step methods to
.t-y.r/erns oJ ODEs. Note that all the applications in Chap. 20 are limited to cases with a fixed
step size.

ln Chop. 21, we cover more advanced approaches for solving initial-value problems.
First. we describe adaptive RK ntethods that automatically adjust the step size in response
to the truncation error of the computation. These methods are especially pertinent as they
are employed by MATLAB to solve ODEs.

Next, we discuss nrulti,step methods. As mentioned above, these algorithms retain in-
fbrn'ration of previous steps to more ell'ectively capture the trajectory of the solution. They
also yield the truncation error estimates that can be used to implement step-size control. We
describe a sinrple method-the non-self-starting Heun method-to introduce the essential
f-eatures of the multistep approaches.

Finally, the chapter ends with a description of ,stiff ODEs. These are both individual
and systems of ODEs that have both fast and slow components to their solution. As a con-
sequence, they require special solution approaches. We introduce the idea of an implicit
solution technique as one commonly used remedy. We also describe MMLAB's built-in
functions for solving stiff ODEs.

ln Cha1t. 22, we focus on two approaches for obtaining solutions to boundary'-value
problems: the shooting andJinite-dffirence methods. Aside from demonstrating how these
techniques are implemented, we illustrate how they handle clerivatiye boundorv conditions
and nonlinear ODEs.
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I nitiol-Volue Problems

CHAPTER OBJECTIVES
The primary objective of this chapter is to introduce you to solving initial-value
problems fbr ODEs (ordinary differential equations). Specific objectives and topics
covered are

t Understanding the meaning of local and global truncation errors and their
relationship to step size for one-step methods for solving ODEs.

. Knowing how to implement the following Runge-Kutta (RK) methods for
a single ODE:

Euler
Heun
Midpoint
Fourth-older RK

. Knowing how to iterate the coffector of Heun's method.

. Knowing how to irnplement the following Runge-Kutta methods fbr systems
of ODEs:

Euler
Fourth-order RK

YOU'VE GOT A PROBLEM

e started this book with the problem of simulating the velocity of a free-falling
bungee jumper. This problem amounted to formulating and solving an ordinary
diffbrential equation, the topic of this chapter. Now let's return to this problem

and make it more interesting by computing what happens when the jumper reaches the end
of the bunsee cord.
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To do this, we should recognize that the jumper will experience different forces de-
pending on whether the cord is slack or stretched. If it is slack, the situation is that offree
fall where the only forces are gravity and drag. However, because the jumpel can now
move up as well as down, the sign of the drag force must be nrodified so that it always tends
to retard velocity,

-  g  -  s rgn( r , )?u2 (20.1a)

where u is velocity (m/s), t is time (s), g is the acceleration due to gravity (9.81 m/s'), c7 is
the drag coefficient (kg/m), and m is mass (kg). The .signum Jilndion.t sign, returns a - I or
a I depending on whether its argument is negative or positive, respectively. Thus, when the
jumper is falling downward (positive velocity, sign - l), the drag fbrce will be negative
and hence will act to reduce velocity. In contrast. when the jumper is moving upward
(negative velocity. sign: -l), the drag fbrce wil l be positive so that it again reduces the
velocity.

Once the cord begins to stretch, it obviously exefis an upward force on the jumper. As
done previously in Chap. 8. Hooke's law can be used as a first approximation of this force.
In addition, a dampening force should also be included to account for frictional effects as
the cord stretches and contracts. These f'actors can be incorporated along with gravity and
drag into a second fbrce balance that applies when the cord is stretched. The result is the
fo l  lowine d i  f ferent ia l  eouat ion:

d u
-

d t

where k is the cord's spring constant (N/m), x is vertical distance measured downward from
the bungee jump platform (m). L is the length of the unstretched cord (m), and 7 is a damp-
ening coefticient (N . s/m).

Because Eq. 120.1b) only holds when the cord is stretched (x > L), the springforce
will always be negative. That is, it will always act to pull the jumper back up. The damp-
ening force increase.s in magnitude as the jumper's velocity increases and always acts t0
slow the jumper down.

If we want to simulate the jumper's velocity, we would initially solve Eq. (20.1a) until
the cord was fully extended. Then, we could switch to Eq. (20. 1b) for periods that the cord
is stretched. Although this is fairly straightforward, it rneans that knowledge of the
jumper's position is required. This can be done by formularting another differential equa-
tion lbr distance:

du c,t ) k y
-  : , 9  -  S l g n ( u ) - U -  -  - ( r  -  I . l  -  - U

al tn ilt m

dx

d t

(20,\b)

(20.2)

Thus, solving tbr the bungee jurrrper's velocity amounts to soiving two ordinary dif-
ferential equations where one of the equations takes different forms depending on the value

I Some computer languages represent the signum function as sgr (x). As represented here, MATLAB uses the
nomenclature s ion 1x).
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of one of the dependent variables. Chapters 20 and 21 explore methods for solving this and
similar problems involving ODEs.

20.t ovERvrEw
This chapter is devoted to solvine ordinarv diflerential equations of the form

d.y

dr
:  I  ( l '  -Y) (20.3)

In Chap. l, we developed a nnmerical method to solve such an equation for the velocity of
the free-falling bungee jumper. Recall that the method was of the general form

New value : old value * slope x step size

or, in mathematical terms,

. V i + r :  ) ' i  * Q h (20.4)

where the slope @ is called an incrcnzent Junction. According to this equation, the slope es-
timate of @ is used to extrapolate liom an old value -yr to a new value y;11 over a distance
/2. This fornrula can be applied step by step to trace out the trajectory of the solution into
the future. Such approaches are called ute-ste1t ntethods because the value of the increment
function is based on information at a single point i. They are also refelred to as Rwrge-
Kutta ntethods after the two applied mathematicians who first discussed them in the early
1900s. Another class of rnethods called multistep methods use information from several
previous points as the basis for extrapolating to a new value. We will describe multistep
rnethods briefly in Chap. 21.

All one-step methods can be expressed in the general form of Eq. (20.4), with the only
difference being the manner in which the slope is estimated. The sirnplest approach is to
use the differential equation to estimate the slope in the fbrm of the first derivative at /;. ln
other words, the slope at the beginning of the interval is taken as an approximation of the
average slope over the whole interval. This approach, called Euler's method, is discussed
next. This is followed by other one-step methods that employ alternative slope estimates
that result in more accurate predictions.

2O.2 EULER's METHOD

The first derivative provides a direct estimate of the slope at /i (Fig. 20. I ):

q : f ftr,), i)

where /(t;,1;) is the differential equation evaluated at /; and _r'i. This estimate can be sub-
stituted into Eq. (20.1 t:

) ' i + r :  t " i *  f G i , v " t ) h (20.s)

This formula is ref-ened to as Euler's rnethod (or the Euler-Cauchy or point-slope method).
A new value of -"- is predicted using the slope (equal to the first derivative at the original
valtte of r) to extrapolate linearly over the step size h (Fig.20.1).
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FIGURE 20.I
Euler s meihod.

EXAMPLE 20. . l  Euler 's  Method

Problem Stotement. Use Euler's method to integrate ! ' - 4ro s' - 0.5.r' from r : 0 to 4
with a step size of 1. The initial condition at / : 0 is y : 2. Note that the exact solution can
be determined analvticallv as

^ '

r ) : 
r-lrtrut' 

* e o5r') 12n-o5r

Solution. Equation (20.5) can be used to implement Euler's method:

, ] , ' ( l )  :  ) , (0)  + J (0,  2)( l )

where 1,(0) :2 and the slope estimate at / : 0 rs

. f  (0,2)  :  4eo -  0 '5(2)  :  3

Therefbre,

] ( l ) : 2 + 3 ( l ) : 5

The true solution at r : 1 is

4  r  o * r t r
r  :  

, - ,  
( eus t  t t  -  e  05 ( l ) )  +2e -05n \  : 6 .19463

Thus. the percent relative error is

t 6 . 1 9 4 6 3 - 5 1
F,  :  l - l  x  1007o:  l9 .28Vo

6.19463 l

For the second step:

) ( 2 )  :  y ( l )  *  / ( l .  s ) ( l )

:  - 5  +  f 4e08 ( r t  -  0 .5 r5 t l 0 )  :  11 .40216
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TABLE 20.l Comporison of true ond numericol volues of the integrol

of  . r "  :  4e( t8t  -  0 .5,v,  wi th the in i t io l  condi t ion thoty:2 q1

r : O. The numericol volues were computed using Euler's

method with o steP size of I '

Jt"u" JEur". lerl (%)

0
I
2
3
4

2 00000
6 19463

I4.84392
3 3  6 7 7 l 7
7 5.33896

2 00000
5 00000

t 1 .442t 6
25 51321
56  8493 l

1 9  2 8
2 3  1 9
24 24
24.54

FIGURE 20.2
Comporison of fhe.rrue solurion wiih o numericol solution using Eulers me,tf o! 

!,]^"I59|.1 ?t-*  
i " , \ ; , - -  6  i "  f , . r  ; :O;4 w1h o s iep s ize of  I  o  ThJln i t io l  condi l ion ot  / :  O is  1 ' :  2

The true solution at t : 2.0 is 14.84392 and, therefore, the true percent relative error is

23.l97o.The computation is repeated, and the results compiled in Table 20' 1 and Fig' 20'2'

Note that although the computation captures the general trend of the true solution, the error

is considerable. As discussed in the next section, this error can be reduced by using a

smaller step size.

20.2.1 Error Anolysis for Euler's Method

The numerical solution of ODEs involves two types of error (recall Chap' 4):

l. Truncation, or discretization, errors caused by the nature of the techniques employed

to approximate values of Y.
2. Roundnfi'enofs caused by the limited numbers of significant digits that can be retained

by a comPuter.

The truncation errors are composed of two parts. The first is a local truncation effor

that results from an application of the method in question over a single step' The second is

a propagatetl truncation error that results from the approximations produced during the

True so lu t ion
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previous steps. The sum of the two is the total enor. It is referred to as the gbbal trunca-
tion error.

Insight into the magnitude and properties of the truncation error can be gained by de-
riving Euler's method directly from the Taylor series expansion. To do this, realize that the
differential equation being integrated will be of the general fbrm of Eq. (20.3), where
dyldt : -y', and t and y are the independent and the dependent variables, respectively. If
the solution-that is, the function describing the behavior of y-has continuous derivatives,
it can be represented by a Taylor series expansion about a starting value (/;,.yr). as in
[recall Eq. (4.13)]:

t  l n |

] i + r  :  t i  * y i t t  + * n ' +  "  + ' r ' i '  7 , "  * 4 n
: !  n l

where /u : ti+t - /; and Ra : the remainder term, defined as

, , 0 t * l ) 1 9 1
R,, - j------::-/r"+l

'  ( t z  *  1 ) !

(20.6)

(20.7)

t20 .q l

(20. l0)

(.20.1)

to the square of
also be demon-
to the step size

where f lies somewhere in the interval from /; to /; 1 1. An alternative form can be devel-
oped by substituting Eq. (20.3) into Eqs. (20.6) and (20.7) to yield

where O(h'+l) specifies that the local truncation etror is proportional to the step size
raised to the (n * l)th power.

By cornparing Eqs. (20.5) and (20.8), it can be seen that Euler's rnethod conesponds
to the Taylor series up to and including the term /(r;,,yi)/r. Additionally, the comparison
indicates that a truncation enor occurs because we approxirnate the true solution using a fi-
nite number of terms from the Taylor series. We thus truncate, or leave out, a part of the true
solution. For example, the tluncation error in Euler's method is attributable to the remain-
ing terms in the Taylor series expansion that were not included in Eq. (20.5). Subtracting
Eq. (20.5) from Eq. (20.8) yields

.yr+r : ) ' i  t f (t i, l ')h + 
f '(t j '-Yi) ,,2 *

E, -  [1+Ph2 +. . .  + o(h,+i  I

where E, : the true local truncation error. For sufficiently small lz, the higher-order terms
in Eq. (20.9) are usually negligible, and the result is often represented as

^  . f  
, \ r , ,  

) , ,  ) ,  r
F  -  - h '

or

Eo :  O(h2)

where E, : the approximate local truncation effor.
According to Eq. (20. ll), we see that the local error is proportional

the step size and the first derivative of the differential equation. It can
strated that the global truncation error is O(/r)-that is, it is proportional
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(Carnahan et al., 1969). These observations lead to some useful conclusions:

1. The global error can be reduced by decreasing the step size.
2. The method wiil provide error-free predictions if the underlying function (i.e., the

solution of the differential equation) is linear, because for a straight line the second
derivative would be zero.

This latter conclusion makes intuitive sense because Euler's method uses straight-line seg-
ments to approximate the solution. Hence, Euler's method is referred to as a first-order
method.

It should also be noted that this general pattern holds for the higher-older one-step
methods described in the following pages. That is, an nth-order method will yield perfect
results if the underlying solution is an rrth-order polynomial. Further, the local truncation
error wil l be O (h"+1) and the global error O (h').

20.2.2 Stobility of Euler's Method

ln the preceding section. we learned that the truncation error of Euler's method depends on
the step size in a predictable way based on the Taylor series. This is an accuracy issue.

The stability of a solution rrrethod is another important consideration that must be con-
sider-ed when solving ODEs. A nurnerical solution is said to be unstable if enors grow
exponentially for a problem for which there is a bounded solution. The stability of a par-
ticular application can depend on three f-actors: the differential equation, the numerical
method, and the step size.

Insight into the step size required for stability can be exanined by studying a very
simple ODE:

dt'
; - -ay (20.12)

a t

If r(0) - )0, calculus can be used to determine the solution as

V :  l t r€  
- ' '

ffrrr, tf," *fution starts at 1,e and asymptotically approaches zero.
Now suppose that we use Euler's method to solve the same problern numerically:

d)', ,
- y i+ l  :  l i  + ,

Suhs t i t u t i ng  Eq .  t l 0 .  I  2 t  g i ves

-Y r+ l  :  j i  -  
\ ' i h

or

- ) ' i + r : 1 , i ( l  - a h )  ( 2 0 . 1 3 )

The parenthetical quantity 1 - ah is called an cunplifictttion foctor. If its absolute value is
greater than unity, the solution will grow in an unbounded fashion. So clearly, the stability
depends on the step size /r. That is, if /z > 2la,lyil --+ oo as i -+ oo. Based on this analy-
sis, Euler's method is said to be conditionall,v stable.

Note that there are certain ODEs where errors always grow regardless of the method.
Srrch ODEs are called ill-conditioned.
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Inaccuracy and instability are often confused. This is probably because (a) both repre-
sent situations where the numerical solution breaks down and (b) both are affected by step
size. However, they are distinct problems. For example. an inaccurate method can be very
stable. We will retum to the topic when we discuss stilT systems in Chap. 21.

20.2.3 MATLAB M-fi le Function: eulode

We have already developed a simple M-file to implement Euler's method for the falling
bungee jumper problem in Chap. 3. Recall from Section 3.6, that this function used Euler's
nethod to compute the velocity after a given time of tiee fall. Now. let's develop a rnore
general, all-purpose algorithm.

Figure 20.3 shows an M-file that uses Euler's method to compute values of the depen-
dent variable y over a range of values of the independent variable t . The name of the function
holding the right-hand side of the differential equation is passed into the function as the

FIGURE 20.3
An MJile to implemeni Euler's method

f  unc  r ,  i on
B  e u l o d e :
z  [ r , y ]

I t , y ]  =  e u l o d e ( d y d t ,  t s p a n , y 0 , h , , r a r a r g i n )
E U I E T  O - D E  S O I V C T

. e u .l o d e r d y d t , r s p o n , y 0 , h , p l , p l , . . . , :
u s e s  E u l e r ' s  m e t h o d  t o  i n t e g r a t e  a n  O D E

r n p u t :
d y d t  =  n a m e  o f  t h e  M - f i l e  C h a t  e v a l u a t e s  t h e  O D E
t s p a n  =  l t i ,  t f l  w h e r e  t i  a n d  t f  =  i n i t i a l  a n d

f i n a l  v a l u e s  o f  i n d e p e n d e n t  v a r i a b l e
y 0  =  i n i t i a l  v a l u e  o f  d e p e n d e n t  v a r i a b l e
h  =  s t e p  s i z e
p I , p 2 ,  .  .  .  =  a d d i t i o n a l  p a r a m e t e r s  u s e d  b y  d y d t

o u t p u t  :
t  -  v e c t o r  o f  i n d e p e n d e n t  v a r i a b l e
y  =  v e c t o r  o f  s o l u t i o n  i o r  d e p e n d e n t  v a r i a b l e

n a r g i n . 4 , e l r o r  { ' a r  l e a s t  4  i n p u u  a r g u m e n - s  r e q L  r q . 6 ' r , e n d
=  t s p a n ( 1 ) ; t f  -  t s p a n ( 2 ) ;
'  l L f > r i ) , e r r o r  { ' J p p e r  l r m i t  m u s l  b e  g r e a r e r  L h a r '  . o w e r ' l , e n d

=  ( t i : h : t f ) ' ;  n  =  l e n g t h ( t - ) ;
i f  n e c e s s a r y ,  a d d  a n  a d d i t i o n a l  v a l u e  o f  t
q ^  r h ) l  1 a " - . 4  ^ ^ a c  r I O m  L  -  r i  t O  C t

r  ( n ) < t f

t ( n + 1 )  =  t f  ;
n  =  n + 1 ;

end
y  =  y 0 ' o n e s { n , I r ;  % p r e a L l o c a t e  y  L o  i m p r o ' . r e  e F f  i c i e n . y
f o r  i  =  1 : n - l  ? i m p l e m e n t  E u l e r ' s  m e t h o d

y ( i + 1 )  =  y ( i )  +  d y d t ( t ( i ) , y ( i ) , v a r a r q i n i : ] ) * ( t ( i + 1 ) - t ( i )  )  ;
e n d

z
%
96

z
z
z
9a

z
%

z
z

i f
r i
i f
t

z
z
i f
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variable dydt. The initial and llnal values of the desired range of the independent variable
is passed as a vector tspan. The initial value and the desired step size are passed as y0 and
h, respectively.

The lunction first generates a vector t over the desired range ofthe dependent variable
using an increment of t'r. In the event that the step size is not evenly divisible into the range,
the last value will fall short of the final value of the range. If this occurs, the final value is
added to r so that the selies spans the complete range. The length of the r vector is deter-
mined as n. In addition, a vector of the dependent variable y is preallocated with n values
of the initial condition to improve efficiency.

At this point, Euler's method (Eq. 20.5) is implemented by a simple loop:

y ( i + 1 )  =  y ( i )  +  d y d t ( t ( i ) , v ( i ) ) * ( t ( i + l ) - t ( i ) , v a r ) ;
e n d

Notice how a function is used to generate a value for the derivative at the appropriate val-
ues of the independent and dependent variables. Also notice how the time step is automat-
ically calculated based on the difference between adjacent values in the vector t.

The ODE being solved can be set up in several ways. First, the differential equation can
be defined as an anonymous funcfion object. For example, fbr the ODE from Example 20. I :

> >  t i 1 ' c i t = G  ( t , V ' )  4 * e x p  ( 0 .  3 * t ) o . 5 " y t

The solution can then be generated as

> >  d i s P ( t t , Y l  )

with the result (compare with Table 20.1):

0  2 . 0 0 0 0
1 . 0 0 0 0  5 . 0 0 0 0
2 . 4 4 0 0  1 r . 4 4 2 2
3 . 0 0 0 a  2 5 . 4 1 3 2
4 . 0 0 0 0  5 5 . 8 4 9 3

Although using an anonymous function is feasible for the present case. there will be
more complex problems where the definition of the ODE requires several lines of code. In
such instances, creating a separate M-file is the only option.

20.3 IMPROVEMENTS OF EULER'S TI,IETHOD
A fundamental source of error in Euler's method is that the derivative at tlre beginning of
the interval is assumed to apply across the entire interval. Two simple modifications are
available to help circumvent this shorlcoming. As will be dernonstrated in Section 20.4,
both modifications (as well as Euler's method itself ) actually belong to a larger class of so-
lution techniques called Runge-Kutta methods. However, because they have very straight-
forward graphical interpretations, we will present them prior to their forrnal derivation as
Runse-Kutta methods.
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2O.3.1 Heun's Method

One method to improve the estimate of the slope involves the determination of two deriv-
atives for the interval-one at the beginning and another at the end. The two derivatives are
then averaged to obtain an improved estimate of the slope for the entire interval. This ap-
proach, called Heun's method, is depicted graphically in Fig. 20.4.

Recall that in Euler's method. the slope at the besinnins of an interryal

)"i : .f (t i,-vi)

is used to extrapolate linearly to y111 :

) ) + r : l i t J ' G i , Y i ) h

For the standard Euler method we would stop at this point. However, in Heun's rnethod the
r ' , 1 * ,  ca l cu la tec l i nEq . (20 .15 ) i sno t the t ' i na l  answer .bu tan in te rn red ia tep rec l i c t i on .Th i s i s
why we have distinguished it with a superscript 0. Equation (20. 15) is calledaprcdictor equa-
tiott. It provides an estimate that allows tlre calculation of a slope at the end of the interval:

) '1+r :  , f  ( r t* t , l ' j ! , ) (20. l6)

Thus, the two slopes [Eqs. (20. 14) and (20. 16)] can be combined to obtain an average slope
for the interval;

- ,  _  / ( r , , - r ' r )  * , f ( r r+r , r ' ,9+r)

This average slope
method:

2
l s then used to extrapolate linearly frorn -1'; to li+r using Euler's

(20. r 4)

(20.r5)

(20. r 7),  f  ( r , . y i l '  . l Q i - t . . , ' l ' ,  ' ) ,
) r r l : ) ' i r - - - - - - -  , )  / l

which is called a corrector eguation.

FIGURE 20.4
Grophicol depici ion o[ Heun's melhod (o) Predictor ond (b) correctof

= .f(ri* r. YP* r )

:  f ( t i ,y  i )
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FIGURE 20.5
Grophicol representotion of i terot ing fhe corrector of Heun's method to obloin cn improved
estimcte.

The Heun method is a pretlic'tor,(orrector approach. As just derived, it can be ex-
pressed concisely as

Preclictor (Fig.20.4a): y,o*r: y j " *  f  ( t i , y i ) h

l ' (r t ,yi) +
Corector (Fig. 20.4b): y/+r : l'i' I

( f o r ; : 1 . 2 " " ' m )

Note that because Eq. (20. 19) has l ial on both sides of the eclual sign, it can be applied in

an iterative fashion as indicated. That is. an old estimate can be used lepeatedly to provide

an improved estimate of -v;11. The process is depicted in Fig. 20.5.
As with similar iterative methods discussed in previous sections of the book, a termi-

nation criterion for conversence of the corrector is frrovided by

/( t , * , ,1 ' ,1* ' ' )

(20. r 8)

(20. r 9)h

t c  t -

where 1,f,r and .v/* 1 are the result tiom the prior and the present iteration of the corrector,
respectively. lt should be understood that the iterative process does not necessarily con-
verge on the true answer but will converge on an estimate with a finite truncation error, as
demonstrated in the following example.

EXAMPLE 20.2 Heun's Method

Problem Stotement. Use Heun's methocl with iteration to integrate .] ' / - 4e0 8' - 0.5y

f rom t  :0  to4 wi th a step s ize of  LThe in i t ia l  condi t ionat  I  :0  is . r  :2 .  Employ astop-
ping criterion of 0.00001c/o to terminirte tlre corrector iterations.

Solution. First, the slope at (16, ,rg) is calculated as

! 'o :  4e"  -  0 .5(2)  :  3

Then, the predictor is used to compute a value at 1.0:

v 9 : 2 * 3 ( t ) : 5

t#l"ouo"
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TABTE 20.2 Comporison of true ond numericol volues of the integrol ol tr - 4e0E -
0.51 ' ,  wi th the in i t io l  condi t ion thot-y :  2 ot  t :  O.  The numer icol  vo lues
were computed using the Euler ond Heun methods with o step size of 1.
The Heun method wos imolemented both without qnd with i ierqtion o[
the corrector.

Without lterqlion With lterotion

Jtiur". le,l ("/"1 l€,1("/"1 .VH"un le,l ('hlJt.uo

0  200000  200000
I 6. I 9463 5 00000
'2  l 4  84392  t  1  40216
3  3 3  . 6 7 7  l 7  2 5  . 5 I  3 2 1
4 75 33896 56 84931

l 9  2 8
2 3  1 9
24 24
24 54

2 00000
6  7 0 1 0 B

I  6  31978
37  19925
83 33777

2 00000
B . tB  636487  268
9 9 4  I 5 3 4 2 2 4  3 0 9

la  46  34  74328  3  l l
t 4 .62  77  7351A  3  tB

Note that this is the result that would be obtained by the standard Euler method. The true
vellue in Table 20.2 shows that it corresponds to a percent relative error of 19.28a/o.

Now, to improve the estimate for .v;..1, we use the value.r'f' to predict the slope at the
end of the interval

t . i  :  . / ( x r ,  r , l ' )  : 4e08 ( r )  -  0 .5 (5 )  : 6 .402161

which can be combined with the initial slope to yield an average slope over the interval
f ronr  f  :0  to l :

3 + 6.102164
r ' :  ^  : 4 . 1 0 1 0 8 2

L

This result can then be substituted into the corrector [Eq. (20.19)] to give the prediction at
t  -  l ,

t , i  : 2  +  4 . 7 0 1 0 8 2 ( l )  : 6 . 7 0 1 0 8 2

which represents a true percent relative error of -8.18c/c. Thus, the Heun method without
iteration of the corrector reduces the absolute value of the error by a f'actor of about 2.4 as
compared with Euler's method. At this point, we can also compute an approximate error as

l 6 7 0 r o R ) - s l
l r . r :  l' " '  - l  

6 . 70 r082  l ^ ' " "

Now the estimate of r'1 can be refined by substituting the new result back into the
right-hand side of Eq. (20.19) to give

-2 - '> -t.-
. ' l  

- '  t

3 14"o t r tD -  0.5(6.701082)
I  :  6 .27581  I

which represents a true percent relative error of 1.3 I percent and an approximate enor 0f

1 6.2758 i l  -  6.70 r082 1
l c . ,  l : l - l x  1 0 0 1  : 6 . 1 1 6 ( / t

|  6 . 1 7 5 8 1  1  I
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The next iteration gives

) ^
) l  -  L - r

3 a 4rrt 'xr t t  -  0.5(6.275g1 1)
I  :6.382129

which represents a true error of 3.03vo and an approximate error of 1 .666vc.
The approxirnate error will keep dropping as the iterative process convelges on a sta-

ble final result. In this example, after l2 iterations the approximate error falls below the
stopping criterion. At this point, the result at r : I is 6.36087, which represents a rrue rel-
ative error of 2.687c. Table 20.2 shows results for the remainder of the computafion along
with results for Euler's method and for the Heun method without iteration of the corrector.

Insight into the local error of the Heun method can be gained by recognizing that it is
related to the trapezoidal rule. In the previous example, the derivative is a function of both
the dependent variable y and the independent variable /. For cases such as polynomials.
where the ODE is solely a function of the inclependent variable, the predictor step
[Eq. (20. l8)] is not required and the corrector is applied only once fbr each ireration. For
such cases, the technique is expressed conc.isely as

Notice the sirnilarity between the second terrn on the right-hand side of Eq. (20.20) anc1 the
trapezoidal rule [Eq. (l7.l l)]. The connection between the two methods can be formally
demonstrated by starting with the ordinary differential equation

fu t (20.2t)

This equation can be solved lbr.r 'by integration:

(20.22)

(20.23)

.  . l  t r i ) - f  [ ( r i . r ) ..l ', 
-l : l ', + /,

2

f t ' + t
. \ . i + l  : l . i +  

/  I t t l r l t
JI,

Now, recall that the trapezoidal rule [Eq.

f  ( t i )  +  J  Q i+ r )  ,---- 
2 

'

tl 1'- :
d t

(20.20)

(20.24\

f  
, , ' ,  

f  t , - t

I  d t : l  f r nd t
J .t', J r,

which yields

f t ' t l
. r ' i , r  -  . t ' ,  :  

J , ,  
[ ( t \d t

[ "  
' '

f  ( r ) d t :

( l7 . l l ) l  is  def ined as

(20.25)
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where /r : ! i+1 - 4. Subsriruring Eq. (20.25) into Eq. (20.24) yields

.  l ( t i t l  l ( t ; , 1 1 .
J / r t - . t r - - - 2  -  t r

f " ( t r
r  J  \ \  '  '  I

'  1 a

which is equivalent toEq. (20.20). For this reason, Heun's method is sometimes refemed t0
as the trapezoidal rule.

Because Eq. (.20.26) is a direct expression of the trapezoidal rule, the local truncation
error is given by [r 'ecall Eq. (17.14)l

(20.26)

(20.27 )

(20.28)

(20.29)

where f is between ti afid t;y1. Thus, tl.re method is second order because the second deriv-
ative of the ODE is zero when the true solution is a quaclratic. In acldition. the local and
global errors are o(h3) and o(lf), respectively. Therefbre, decreasing the step size
decreases the error at a laster rate than fbr Euler's rnethod.

20.3.2 The Midpoint Merhod
Figure 20.6 illustrates another simple modification of Euler's method. Called the nitlpoittt
ntethod, this technique uses Euler's method to predict a value of .y af the miclpoint of the
interval (Fig.20.6a):

, r ' i+1, / r  :  ) ' i  *  J ' ( t , .y |L

Then, this predicted value is used to calculate a slope at the midpoint:

)"t+ r 1 :. : .f (.t i + r lz, t- i +t p)

FIGURE
Grophico

v

20.6
depict ion of Heun's method. (o) Predictor ond (b) corrector

= J ( .1 i11  12 ,  ) '  i1  1  12)
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which is assumed to represent a valid approximation of the average slope for the entire
interval. This slope is then used to extrapolate linearly from /1 to /111 (Fig. 20.6b):

r ' r+ t  :  ) ' i  I  f  Q i  * t , ' , , ) ' i  + t  n ) l t (:0.-r0)

Observe that because -r';a I is not on both sides, the corrector [Eq. (20.30)] cannot be applied
iteratively to improve the solution as was done with Heun's method.

As in our discussion of Heun's method, the rnidpoint rnethod can also be linked to
Newton-Cotes integration lbrmulas. Recall fron Table 11 .4 that the simplest Newton-Cotes
open integration tbrmula, which is calied the nridpoint method, can be rcpresented as

r h
t . .
I  J ' t  r l  dx =- (b -  a) J ' (r)  (20.31)

J t

where ,r1 is the midpoint of the interval (n, D). Using the nomenclature fbr the presenl case,
i t  can he expressed as

r l t t t|  . .
I  f ] td rZh. t ' f t ia1P)  Q0.32)

J t i

Substitution of this formula into Eq. 120.24) yields Eq. (20.30). Thus, just as the Heun
method can be called the trapezoidal rule, the midpoint method gets its name from the
underlying integration formula on which it is based.

The midpoint method is superior to Euler's method because it utilizes a slope estimate
at tlre miclpoint of the prediction interval. Recall from our discussion of numerical difTeren-
tiation in Section 4.3.4 that centered finite differences are better approximations of deriva-
tives than either lbrward or backward versions. In the same sense. a cenlered approximation
such as F.q. (20.29) has a local truncation eror of O1h:1in comparison with the forward
approximation of Euler's method, which has an en'or of O (h). Consequently, the local and
global erors of the midpoint method are O(h3) and O(h2), respectively.

2O.4 RUNGE-KUTTA METHODS

Runge-Kutta (RK) methods achieve the accuracy of a Taylor series approach without
requiring the calculation of higher derivatives. Many variations exist but all can be cast in
the generirlized fbrm of Eq. (20.4):

)r+r : ) ' i  l- Qh (20.33)

where @ is called an incrcment function, which can be interpreted as a repl'esentative slope
over the interval. The incremerrt function can be written in general form as

Q  :  a r k t  I  a z k z  + ' ' ' '  - l  a , , k , ,

where the a's are constants and the k's are

k1 :  J 'Q; ,  t ' i )

l ; .  :  f  ( t i  *  p1h.  ) ' i  *  qrrkr l t )

k . , :  j ' ( t i  - t  pzh,  - , * i  I  q t tk t l t  i  qnkzh)

:

k , ,  :  f '  ( t ;  *  p ,  th ,  t - i  *  q ,  r . rk th I  qu, t .zkzh I

( 20.i4)

(20.34a)

(20.34b)

(20.3:lc)

*  q, - t .u- :k , , rh)  (20.34d)
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where the p's and 4's are constants. Notice that the ft's are recurrence relationships. That is,

ft1 appears in the equation for k2, which appears in the equation for ftr, and so forth. Be-

cause each ft is a functional evaluation, this recurrence makes RK methods efficient for

computer calculations.
Various types of Runge-Kutta methods can be devised by employing different num-

bers of terms in the increment function as specified by n. Note that the first-order RK

method with n : I is, in fact, Euler's method. Once n is chosen, values for the a's, p's, and

q's are evaluated by setting Eq. (20.33) equal to terms in a Taylor series expansion. Thus,

at least for the lower-order versions, the number of terms n usually represents the order of

the approach. For example, in Section 20.4.1, second-order RK methods use an increment

function with two terms (n : 2). These second-order methods will be exact if the solution

to the differential equation is quadratic. ln addition, because terms with /rr and higher are

dropped during the derivation, the local truncation enor is O1ft31 and the global enoris

O (h2). ln Section 20.4.2, the fourth-order RK method (n : 4) is presented for which the

global  t runcat ion error  is  Ot f t l  t .

20.4.1 Second-Order Runge-Kuttq Methods

The second-order version of Eq. (20.33) is

. l i + l  : l i  l ( a . k 1  + a 2 k ) h

where

ky  :  J 'Q i '  1 t ; )

k 2 :  f  Q i  - t  p t h ,  l i  i  q l h h )

The values tbr ar, a2, pt, and qy1 are evaluated by setting Eq. (20'35) equal to a

second-order Taylor series. By doing this, three equations can be derived to evaluate the

four unknown constants (see Chapra and Canale, 2006, fbr details). The three equations are

(20.35)

(20.35c)

(20.35b\

a 1  I  c t 2 :  l

azPr  :  l 12

azQt r  :  I  12

Because we have three equations with four unknowns, these equations are said to be

underdetermined. We, therefore, must assume a value of one of the unknowns to determine

the other three. Suppose that we specify a value for a2. Then Eqs. (20.36) through (20.38)

can be solved simultaneously fbr

u t : l - o : (20.39)

(20.40)

Because we can choose an infinite number of values for a2, there are an infinite num-

ber of second-order RK methods. Every version would yield exactly the same results if the

solution to the ODE were quadratic, linear, or a constant. However, they yield different re-

sults when (as is typically the case) the solution is more complicated. Three of the most

commonlv used and preferred versions are presented next.

(20.36)

(20.37\

(20.38)

I

/42
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Note tha t f r l  i s t hes lopea t thebeg inn ingo f the in te rva landk2 i s thes lopea t theendo f the
interval. Conseqr-rently, this second-order Runge-Kutta nethod is actually Heun's tech-
nique without iferation of the corrector.

The  M idpo in tMe thod  (oz  :  11 .  l t  a2 i sassumed tobe  l , t hena1  :  0 ,  p r  :  4 t r  :  l 12 ,
and Eq. (20.35) becomes

.l ' i+r : ) ' i ' l  k2h (20-42)

where

Heun Method wi thouf  l terot ion (o,  :  1 /2)
and (20.40) can be solved for a1 : 1/2 ancJ pt
tuted into Eq. (20.35), yield

/ t  
+ l t , \ 1 ,. \ ' i j r : . t ' i + [ ; f t r  j  - l

\ z  -  /

where

f t r  : . / ( r , , , r ' i )

k2: f  f t ;*  /1, ,r , ;  - t  kth)

/<1  :  / ( t ; ,  r , ; )

k2: f  f t i  + h/2, J ' i  *  krhl2)

This is the midpoint method.

If a2 is assumed tobe ll2, Eqs. (20.39)
: Qu : L These parameters, when substi-

(20.4r )

(20.41a)

(20.4tb)

(20.42a)

(20.42b)

(20.43)

(20.13a)

(20.43b)

Rqlston's Method lo, : 2/3). Ralston (1962) and Ralston and Rabinowitz (1978) de-

termined that cltoosing o? :213 provides a minimum bound on the truncation eror for

the second-order RK algorithrus. For this version, (11 : lf3 and 7r1 :7tt:314, and

Eq. (20.35) becomes

.r',+r : r', + (]t, +f,rr) n

where

f t1 :  / ( , t ; ,  r ' ; )

kt :  l ( t ,  n 'or , r , ,+  l r ' l )

20.4.2 Clqssicol Fourth-Order Runge'Kutto Method

The most popular RK methods are fourth order. As with the second-order approaches, there

are an inlinite number of versions. The following is the most commonly used tbrm, and we

therefore call it the classical fourth-order RK ntetlrcd:

I
. v , + i  :  ) ' i  *  

U ( k r  
* 2 k : * 2 h * k + ) h (20.44)
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i
L l*'/-*-

<l
a :

a :
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u :
a ' ./ '

"l 
*, '.k'

, ! - ) '  - t - l +
, t I

\Alo
\

FIGURE 20.7
C.pt-,i.ot depiction of the slope estimotes comprising the fourth-order RK melhod

where

k 1 :  f  f t i , ! i )

kz :  f  ( ' ,  * ) r , t ,  + ! ; ' ,n )

t . :  f  ( t ,*)r , r ,+1, ,n)
k a : f ( t i t h , y , + h h )

(20.44a)

(20.44b)

(20.44c)

(20.44d)

Notice that for ODEs that are a function of / alone, the classical fourth-order RK

method is similar to Simpson's 1/3 rule. In addition, the fourth-order RK method is simi-

lar to the Heun approach in that multiple estimates of the slope are developed to come up

with an improved average slope for the interval. As depicted in Fig. 20.7, each of the ft's

represents a slope. Equation (20.44) then represents a weighted average of these to arrive

at the imProved sloPe.

EXAMPLE 20.3 Clossicql  Four th-Order  RK Method

Problem Stqtement. Employ the classical fourth-order RK method to integrate y'=

4 r08 t  -  0 .5y  f r om/ :0 to  l  us ingas teps i zeo f  I  w i t h  y (0 ) :2 .

Solution. For this case, the slope at the beginning of the interval is computed as

k ,  :  f  ( 0 .2 \  -  4eo8 (o \  -  0 .5 (2 )  :  3
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This value is used to compute a value of .r and a slope at the midpoint:

l ' ( 0 . 5 ) : 2 + 3 ( 0 . 5 ) : 3 . 5

kr  :  l ' (0 .5.  3. -5)  :  4c0 8(0 5)  -  0 . -5(3.5)  :  4 .211299

This slope in turn is used to compute another value of ,v and another slope at the midpoint:

r(0..5) : 2 + 1.211299(0.5) : 4. 108649

k7 : .f (0.5,4.108649) - 1e08(0 5) - 0.-5(4. 108649) : 3.912974

Next. this siope is used to compute a value of .r, and a slope at the end of the interval;

,y(1.0)  :  2  + 3.912914(1.0)  :  5 .912974

ka :  f  ( 1 .0 ,5 .9 |2974 )  -  4e08 ( t0 )  -0 .5 (5 .912974 ) :5 .945677

Finally, the four slope estimates are combined to yield an average slope. This average slope
is then used to rnake the final prediction at the end of the interval.

Q : 
u 

[3 + 2(1.211 2e9) + 2(3.9 1291 1) + 5.9 45611 ] : 4.201031

.\'( 1.0) : 2 + 4.201031( 1.0) : 6.201031

which cornpares favorably with the true solution of 6.19463 I (e, :0. 103Vo).

It is certainly possible to develop fifth- and higher-order RK methods. For example,
Butcher's (196,+) fiflh-order RK method is written as

I
(20.45)

(20.45a)

(20.4sb)

(20.45c)

(20.4sd)

(20.45e)

(20.4sf )

Note the similarity between Butcher's method and Boole's rule in Table 17.2. As expected,
this rnethocl has a global truncation error of O (h5 ).

Although the fifth-order version provides more accuracy, notice that six tunction eval-
uations are required. Recall that up through the fourth-order versions, n flnction evaluations

) ' i+r  :  ) ' i  *  
, (7kr  

*  - l lAr  + 12k1* - l2As +7k)h

where

k 1  :  f  G i , ) , i )

k : :  . t ( , ,  *  ) , , - r ,  -  ] l  l )
a /

t, : /(,' * Io,r',+ jr'r + jr,r,)

k+ : .r (,, * )0,t, 
- 

\r, 'n + hh)

rr5: y(t i  * ton., . ,  + f tr ,n+ft*.n)
ro :  f  ( , , *  h ,  t - i  - ) r , ,  +2rr 'n  + | r .n  

-  
l r^o +] r , rn)
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20,5

are required lbr an nth-order RK method. Interestingly, for orders higher than four, one or

two additional function evaluations are necessary. Because the function evaluations acc0unt

for the most computation time, methods of order five and higher are usually considered rel-

atively less efficient than the fourth-order versions. This is one of the main reasons for the

popularity of the fourth-order RK method.

SYSTEMS OF EQUATIONS

Many practical problems in engineering and science require the solution of a system of si-

multaneous ordinary differential equations rather than a single equation. Such systems may

be represented generally as

The solution of such a system requires that n initial conditions be known at the stafting

value of /.
An example is the calculation of the bungee jumper's velocity and position that we set

up at the beginning of this chapter. For the free-fall portion of the jump, this problem

amounts to solving the following system of ODEs:

d)'t

i  
:  / 1 ( t . . r ' 1 . . r ' . . . . . .  \ t i )

4z

"  

:  J : ( r .  l t .  ) . : . . . . .  ) t , )

:
, t , ,
: ! : !  : . f , , ( 1 .  . r . r .  ) . : .  .  .  .  .  ) ) i  )
d t

wat )
- 6

m

(20.46)

(20.47)

(20.48)

from which the jumper launches is defined as r : 0, the initial
:  u(0)  :  0 .

dx
'

d t

du
-

d t

If the stationary platform
conditions would be x(0)

20.5.1 Euler's Merhod

All the methods discussed in this chapter for single equations can be extended to systems

of ODEs. Engineering applications can involve thousands of simultaneous equations. In

each case, the procedure for solving a system of equations simply involves applying the

one-step technique for every equation at each step before proceeding to the next step. This

is best illustrated by the following example for Euler's method.

EXAMPLE 20.4 Solv ing Systems of  ODEs wi th Euler 's  Method

Problem Stotement. Solve for the velocity and position of the free-falling bungee jumper

using Euler's method. Assuming that at / : 0, r : u : 0, and integrate to / : l0switha

step size of 2 s. As was done previously in Examples 1.1 and 1.2, the gravitational accelera-

tion is 9.8 I m/sr, and the jumper has a mass of 68. I kg with a drag coefficient of 0.25 kg/m.
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Recall that the analyrical solurion for velocity is tEq. (1.9)l:

i::^ t i-l- '

r,(/ ) : l !!! 61nn( lE!!,\
V c.i \V ,z )

This result can be substituted into Eq. (20.41) which can be integrated to derermine an
analyt ica l  so lut ion for  d is tance as

m  f  t  G r ,  l l
. r ( I ) :  -  I n l cosh { . / a r r  l l

c l  L  \V ,n ' J )

Use these analytical solutions to conpute the true relative errors of the results.

Soluiion. The ODEs can be used to compute the slopes at / :0 as

dr- : U
d t

du  0 .25: : : 9 . 8 1  - : : : : ( 1 4 2 : 9 . 8 1
d t  68 .1

Euler's method is then used to compute the values at t : 2 s,

. r : 0 * 0 ( 2 ) : 0

u  : 0  *  9 . 8 1 ( 2 )  : 1 9 . 6 2

The analytical solutions can be computed as.t(2) : 19.16629 and r'(2) : 18.72919. Thus,
the percent relative effors are 1007o and 4.1567a, respectively.

The process can be repeated to compute the results at t : 4 as

, r : 0 * 1 9 . 6 2 ( 2 ) : 3 9 . 2 4

/  0 .25  . \
u  :  19.62+ f  9.8t  -  l f '  r  19.62)2 )z  :  30.+t . lo8

\  6 8 . t  l

Proceeding in a like manner gives the results displayed in Table 20.3.

TABTE 2O.3 Distonce ond velocity of o freeJoll ing bungee iumper os computed
numericolly with Euler's method.

ur"u* rEul". uEul". e, (x) e, (a)rt.u"

0
2
4
6
B

t 0

0
1 9  1 6 6 3
7t 9304

147.9462
2 3 7  5 ) 0 4
334  )782

0 0
t  8 .7292  0
33 il tB 39.240A
42 4762 I  t2  A674
469575 2A4 664A
49.4214 305 4244

o
r 9 6200
3 6 . 4 1 3 7
46 2983
50 I  802
5 r  3 t 2 3

r00  00% 476%
45 45% 9.97%
? 4 2 5 %  1 0 0 3 %
]3  83% 6 .86%
B 72% 3 B3:d
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Although the fbregoing example illustrates how Euler's method can be implemented for

systems of ODEs, the results are not very accurate because of the large step size. In addition,

the results for distance are a bit unsatisfying because ;r does not change until the second

iteration. Using a much snraller step greatly mitigates these deficiencies. As described next,

using a higher-order solver provides decent results even with a relatively iarge step size.

20.5.2 Runge'Kutfo Methods

Note rhat any of the higher-order RK methods in this chapter can be applied to systems of

equations. However. care must be taken in determining the slopes. Figure 20.7 is helpful in

visualizing the proper way to do this for the fourth-order method. That is, we first develop

slopes fbr all variables at the initial vah-re. These slopes (a set of ft1 's) are then used to make

predictions of the dependent variable at the midpoint of the interval. These midpoint val-

ues are i1 turn used to cornpute a set of slopes at the midpoint (the ft2's). These new slopes

are then taken back to the starting point to rnake another set of midpoint predictions that

leacl to 1ew slope predictions at the midpoint (the l-1's). These are then employed to make

predictions at the end of the interval that are used to develop slopes at the end of the inter-

val (the fta's). Finally, the fr's are combined into a set of increment functions [as in

Eq. (20.41)) rhat are brought back to the beginning to make the final predictions. The fbl-

lowing exarnple i l lustrates the approach.

EXAMPLE 20.5 Solving Systems of ODEs with the Fourth-Order RK Method

Problem Stotement. Use the fburth-order RK method to solve fbr the same problem we
addressed in Example 20.4.

Solution. First, it is convenient to express the ODEs in the functional lbrmat of
Eq. (20.46) as

:  f i ( t , , r ,  u )  :  1 ,

- Ct t:  . f z j ,  x ,  u )  :  I  -  : u '
tn

The first step in obtaining the solution is to solve for all the slopes at the beginning ofthe
interval:

kr.r : J'r(O, 0. 0) : 0

k1.2 :  12(0.0,  0)  :  9 .81 -  9J1t : { t l2 :  9.81
68.1 

'  ' ,

where ki..; is the lth value of ft for theTth dependent variable. Next, we must calculate the
first values of .r and u at the rnidpoint of tlre first step:

r ' ( l )  :  r (0 )  r  f , . , !  :O+Oi  :  o
22

u( r )  :  u (o )  +  r r . r t ]  : o+  9 .81 ]  :  n . t t

dx

E
0 I l

,tr
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which can be used to compute the first set of midpoint slopes:

kz :  :  . f t  ( 1 ,  0 ,  9 .81 )  :  9 .8100

k2 .2  :  f 2 (1 .0 ,  9 .81  )  :  9 .4561

These are used to deternine the second set of midpoint predictions:

. r ( l )  : . r (0 )  *  t . . , !  :o  +  9 .81001 :  9 .8 loo

; ;
u ( l ) :  u ( 0 )  +  t z : i  0 + 9 . 4 5 6 7 ; : 9 . 4 5 6 1

which can be used,o.oilpur. the second'set of midpoint slopes:

kt. t  :  . f r (1.  9.8100, 9.456' t)  :  9.4561
k3..  :  f i (1,  9.8100, 9.4561) :9.4817

These are used to determine the predictions at the end of the interval:

x(2) :  r(0) + k3.1h - 0 + 9.4567 (2) :  18.9134
u ( 2 ) :  u ( 0 )  +  k 3 . 2 l t : 0 + 9 . 4 8 1 1 ( 2 ) :  1 8 . 9 6 3 4

wltich can be used to compute the endpoint slopes:

kq . t  :  J t (2 ,  18 .913.1 ,  18 .9634)  :  18 .9634

ka.2 :  t ' . (2,18.9134, 18.9634) :  8. ,1898

Tlre values of t can then be used to compute [Eq. (20.4a)l:

I
x (2 )  :0  +  

6  t0  +  2 (9 .8100 +9.4561)  +  18 .963412:19 .1656

u\2)  :0  +  ;  [9 .8100+2(9 .4567 +  9 .4817)  +  8 .489812:  18 . ]256
6 -

Proceeding in a like manner for the remaining steps yields the values displayed in
Table 20.4. In contrast to the results obtained with Euler's method, the fourth-order RK
predictions are much closer to the true values. Further, a highly accurate, nonzero value is
computed for distance on the first step.

TABLE 2O.4 Distonce ond velocity of o freeJoll ing bungee iumper os computed
numericolly with the fourth-order RK method.

ut.u" JnKr unx{ e, (x) e, (u)rt.u"

0
2
4
6
8

t 0

0
1 9  1 6 6 3
71 9304

147.9462
237  5104
334  1782

0
) B 7292
3 3  1 | 8
42.0762
46.9575
4 4  4 2 \ 4

0
1 9 . r 6 5 6
7 )  . 93 )  I

t  47 9s21
2 3 7  5 t O 4
334  1626

0
I8.7256
33 0995
42.4547
46.9345
49.4427

0.004% 0.0 r 9%
0  0 0 r %  o o 3 7 %
0 004% 0  051%
0 000?{ a a49iL
0 005% 0 038%
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20.5.3 MATLAB M-fi le Funclion: rk4sys

Figure 20.8 shows an M-file called rk4 sys that uses the fourth-order Runge-Kutta method
to solve a system of ODEs. This code is similar in many ways to the function developed
earlier (Fig. 20.3) to solve a single ODE with Euler's method. For example, it is passed the
function name defining the ODEs through its argument.

FIGURE 2O.8
An MJile lo implemenl ihe RK4 meihod for o system oltCDEs.

€ , 1 h - F ; ^ h  f  f  ^  . ' ^ l  -  - l t a ' t - , J . ' i '  I  ^ ^ - h  . , 4  L  ' . - '  r - ^ i - \
t L I l ' y . | , l  -  ! N l b y 5 \ u l q L ,  L - I J a r t '  y v '  t t t  v o r a r v  r r r r

g  r k 4 s y s :  f o u : - t h - o r d e r  R u n g e - K u r t a  f o r  d  s y s t e m  o l  O D t s
%  l t , y l  =  r k 4 s y s ( d y d t , t s p a n , y 0 , h , p 1 , p 2 , . . . )  :  i n t . e q r a t e s
Z  a  s y s t e m  o f  O D E s  w i t . h  f o u r t h - o r d e r  R K  m e E h o d
?  i n p u L :
? '  d y d t  =  n a m e  o f  t h e  M - f i l e  t h a t  e v a l u a L e s  t h e  O D E S
?  t s p a n  =  t t i ,  t . f l ;  i n i t i a l  a n d  f i n a l  t i m e s  w i L h  o u t p u t .
Z  g e n e r a L e d  a c  i n t e r v a l  o f  h ,  o r
%  =  l t O  t 1  . . .  t f l ;  s p e c i f i c  t i m e s  w h e r e  s o l u t i o n  o u t p u t
?  y 0  =  i n i t i a l  v a l u e s  o f  d e p e n d e n t  v a r i a b l e s
%  h  =  s t e p  s i z e
%  p 1  , p 2 ,  .  . .  =  a d d i t i " o n a l  p a r a m e t e r s  u s e d  b y  d y d t
%  o u t p u t :
%  t p  =  v e c t o r  o f  i n d e p e n d e n t  v a r i a b l e
%  y p  =  v e c t o r  o f  s o l u t i o n  f o r  d e p e n d e n t  v a r i a b l e s

i t  n a r g i n . 4 , e r r o r ( ' a r  r e d s L  4  i n p u t
I  ) ;  F  +  1 ,  - ^ - -  \  -  _ O  I  a :  / ^ r  /  ' r c n : r

r !  a r r J  L r l J a r r r  L J P c r r

h  -  l a n d f h / f  c ^ r r \

t i  =  t s p a n ( 1 , ) ; t f  =  t s p a n ( n )  ;
I  F  -  _ _  f

L  =  ( t i : h : t f ) ' ;  n  =  l e n g t h ( t ) ;
i f  t  ( n )  < t . f

t ( n + 1 )  =  t f ;
n  =  n + 1 ;

e n d
e l s e

t  -  t s p a n ;
end
t t  =  t i i  y ( I  , : )  =  y 0 ;

n p  =  1 r  t p ( n p )  -  t L ;  y p ( n p , : )  =  y ( 1 ,
i  - 1  .

w h i l e ( 1 )

E e n d  =  t ( n p + 1 ) ;
h h  =  g ( n P + 1 )  -  t ( n P ) ;

a r g u m e n r s  r e q u  i r e d '  t ,  e n d
n o t  a s c e n d i  n g  o r d e r ' )  ,  e n d

; ) ;

(Continued)
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i  f  hh>h ,  h ] - i  =  h ;  end

w h i l e ( 1 )
i  f  c t + h h > t e n d ,  h h  =  t e n d - t t , ' e n d

k l  =  d y d t  ( t t . y 1 i ,  : ) , v a r a r q i n {  :  } ) '  ;
y m i d  =  y ( 1 , : )  +  k L . * h r h , . / 2 ;

k 2  =  d y d t  | . t t + h Y \ / 2 , y m i d , v a r a r g i n i  :  ]  ) '  ;
y m i d  =  y ( i , : )  +  k 2 * h r h / 2 ;

k 3  -  d y d t  ( t t + h h , / 2 , y m i d , v a r a r q r i n {  :  }  ) '  ;

V e i - r d = y ( i , : )  + k 3 * h h ;

k 4  =  d y d L ( t L + h h , y e n d , v a r a r g i n {  ;  }  ) '  ;
p h i  =  ( k 1 + 2 * ( k 2 + k 3 )  + k 4 )  / 6 ;
y ( i + l , : )  =  y ( i , : )  +  p h i * h h ;
r  t s  t s  |  r l i h  .

i f  t t > = L e n d ,  b r e a ] : ,  e n d

end
n p  =  n p + 1 ;  t p ( n P )  =  t t ;  Y P ( n P , : )  =  Y { 1 , : )
i  f  t t > = t  f ,  b r e a k ,  e n d

end

FfGURE 20.8 lContinued)

However, it has an additional feature that allows you to generate output ln two ways,

depending on how the input variable tspan is specified. As was the case fbr Fig. 20.3, you

can set rspan = tri rf l , where ri arld tf are the init ial and final t imes, respectively.

lf done in this way, the routine automatically generates output values between these limits

at equal spaced intervals h. Alternatively, if you want to obtain results at specific times. you

can define r span = i t 0 , t 1 , . . . , t f I . Note that in both cases, the L span values must

be in ascending older.
We can employ rk4sys to solve the same problem as in Example20j. First, we can

develop an M-file to hold the ODEs:

f  u n c t i o n  c t y  =  d y d t s y s  ( t ,  y )
d y  =  l V  ( 2 , \  ; 9  . B \ - 0  . 2 ' :  /  6 8 . 1 * Y  ( 2 )  ̂ 2 1  ;

where y ( 1) : distance (:r) and y 12 ) : velocity (u). The solution can then be generated as

> >  d i s p (  [ 1 - '  ] ' ( : , 1 )  Y (  t , 2 ) ) \

0
2 . 0 0 0 0
4 . 0 0 0 0
6 . 0 0 0 0
8 . 0 0 0 0

1 0 . 0 0 0 0

0
1 9 .  r 6 5 6
1 L . 9 3 I I

! 4 7 . 9 5 2 r
a ? ?  ( 1 4 1

3 3 4 . 1  5 2 6

0
t B . 1 2 a 6
3 3 . 0 9 9 5
4 2  . 0 5 4 1
4 5 . 9 3 4 4
4 9  . 4 4 2 7
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We can also use t span to generate results at specific values of the
able. For example,

> >  t s P a n = t 0  5  1 0 1 ;

> >  d i s p ( l t '  y ( : , 1 )  y ( : , 2 ) ) )

0 0 0
6 . 0 0 0 0  1 4 1 . 9 5 2 1  4 2 . A 5 t 1 1

1 0 . 0 0 0 0  3 3 4 . 1 6 2 6  4 9 . 4 0 2 1

PREDATOR.PREY MODELS AND CHAOS

Bockgrcund. Engineers and scientists deal with a variety of problems involving sys-
tems of nonlinear ordinary differential equations. This case study focuses on two of these
applications. The first relates to predator-prey models that are used to study species inter-
actions. The second are equations derived from tluid dynamics that are used to simulate the
atmosphere.

Predator-prey models were developed independently in the early part of the twentieth
century by the Italian mathematician Vito Voltena and the American biologist Alfred
Lotka. These equations are commonly called Lotka-Volterra equations. The simplest ver-
sion is the following pairs of ODEs:

dx

E : a x - o x Y

dv

E - - ' Y + a x Y

(20.49)

(20.50)

where x and y - the number of prey and predators, respectively, a = the prey growth rate,
c : the predator death rate, and b and d : the rates characterizing the effect of the predator-
prey interactions on the prey death and the predator growth, respectively. The multiplica-
tive terms (that is, those involving xy) are what make such equations nonlinear.

An example of a simple nonlinear model based on atmospheric fluid dynamics is the
Lorenz equations created by the American meteorologist Edward Lorenz:

- - 6 x - o y

- - r x - ) - J c l .

: - b z * x y

Lorenz developed these equations to relate the intensity of atmospheric fluid motion r to
tAmhArotrrra rrar iot innc 1r enr l  7 in thp hnriznntql  qnA rrerf icel  r l i rccf innc rpcncnt irrelrr  Ac

dx

E
u
dt

dz
,tt
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coniinued

with the predator-prey model, the nonlinearities stem from the simple multiplicative terms:
xz and xy.

Use numerical methods to obtain solutions for these equations. Plot the results to
visualize how the dependent variables change temporally. In addition, graph the dependent
variables versus each other to see whether any interesting patterns emerge.

Solution. The following parameter values can be used for the predator-prey simula-
tion: a : 1.2, b :0.6, c: 0.8, and d: 0.3. Employ init ial conditions of _r :2 andy : I
and integrate from t: 0 to 30, using a step size of h:0.0625.

First, we can develop a lunction to hold the differential equations:

f u n c t i o n  y p  =  p r e d p r e y  { t , y ,  a , b .  c , d )
y p  =  [ a * y  ( 1 )  - b * y  ( 1 )  * y  ( 2  )  ;  - c " y  ( 2  ) + d * y  ( L J  * y  ( 2 )  ]  ;

The following script employs this function to generate solutions with both the Euler

and the fourth-order RK methods. Note that the function eulersys was based on modify-
ing the rk4sys function (Fig. 20.8). We will leave the development of such an M-file as a
homework problem. In addition to displaying the solution as a time-series plot (.r and y

versus /), the script also generates a plot ofy versus x. Such phase-plane plots are often

useful in elucidating features of the model's underlying structure that may not be evident

from the time series.

h = 0 . 0 6 2 5 ; t s p a n = t 0  4 0 1  ; y 0 = [ 2  i l  i
a = L . 2 ; b = 0 .  6 ; c = 0 .  B  ; d = 0 .  3  ;
I t  y l  =  e u l e r s y s ( @ p r e d p r e y ,  L s p a n , y 0 , h , a , b , c , d )  ;
s u b p l o t  ( 2 , 2 , L )  ; p l o t ( t , y ( : , L ) , t , Y  { : , 2 ) , ' - - '  )
l e g e n d ( ' p r e y ' , ' p r e d a r o r '  )  ; t i t l e ( '  ( a )  E u l e r  t i n e  p l o t '  )
s u b p l o t  \ 2 , 2 , 2 )  ; p l o t  ( y (  : ,  1 ) , v  (  : , 2 1  |
t i t l e  ( '  ( b )  E u l e r  p h a s e  p l a n e  p l o t ' )
t t  V )  =  r k 4 s y s ( G p r e d P r e Y , t s p a n , y 0 , h , a , b , c , d )  ;
s u b p l o t  ( 2 , 2 , 3  )  ; p l o t ( t , y  (  ,  , 1 )  ,  t  , Y  ( :  , 2  )  ,  ' - - ' )

t i t l e  ( '  ( c )  R K 4  r i m e  p l o t ' )
s u b p l o t  \ 2 , 2 , 4  )  ; p l o t  ( y  (  :  , 1 )  , V  ( :  , 2 1  j
t i t l e  (  '  ( d )  R K 4  p h a s e  p l a n e  p l o t ' )

The solution obtained with Euler's method is shown at the top of Fig. 20.9. The time

series (Fig. 20.9a) indicates that the amplitudes of the oscillations are expanding. This is
reinforced by the phase-plane plot (Fig. 20.9b). Hence, these results indicate that the crude
Euler method would require a much smaller time step to obtain accurate results.

In contrast, because of its much smaller truncation error, the RK4 method yields

good results with the same time step. As in Fig. 20.9c, a cyclical pattern emerges in time.
Because the predator population is initially small, the prey grows exponentia\. At a

certain point, the prey become so numerous that the predator population begins to grow'

Eventually, the increased predators cause the prey to decline. This decrease, in turn, leads

to a decrease ofthe predators. Eventually, the process repeats. Notice that, as expected' the
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ti,

:i, . 
i -+"t '.ii* continued

10 20 30
(a)  Euler  t ime p lot

10 20 30
(c) RK4 time plot

5  1 0
(b)  Eu le r  phase p lane p lo t

2 4
(d) RK4 phase plane plot

40

FIGURE 2O.9
Solution for the Loiko-Volterro model. Euler's method {o) fime-series ond {b) phose-plone plots, ond
RK4 meihod (cJ time-series ond ld) phcse-plone plots.

predator peak lags the prey. Also, observe that the process has a fixed period-that is, it
repeats in a set time.

The phase-plane representation for the accurate RK4 solution (Fi9.20.9Q indicates that
the interaction between the predator and the prey amounts to a closed counterclockwise
orbit. Interestingly, there is a resting or critical point at the center of the orbit. The exact lo-
cation of this point can be determined by setting Eqs. (20.49) and (20.50) to steady state
(dy ldt : dx /dt : 0) and solving for (x, y) = (0, 0) and (c ld, alb). The former is the
trivial result that if we start with neither predators nor prey, nothing will happen. The latter
is the more interesting outcome that if the initial conditions are set at x:cld and

! : a /b, the derivatives will be zero, and the populations will remain constant.
Now, let's use the same approach to investigate the trajectories of the Lorcnz equations

with the following parameter values: a = 10, b = 8 I 3,and r : 28. Employ initial conditions

I
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confinued

- 5

- 1 0

-  t c

-20

FIGURE 20.IO
Time-domoin representotion of x versus t for fhe Lorenz equotions. The solid time series is for the
init iol conditions {5, 5, 5). The doshed line is where the init iol condttion for.r is perturbed slighily
i s  00 r  ,  5 ,  5 )

20

1 5

1 0

o f " r : . ) ' : z : 5and in teg ra te f rom/ :0 to20 .Fo r th i scase ,wew i l l use the fou r th -o rde r
RK method to obtain solutions with a consrant time step of h :0.03125.

The results are quite different from the behavior of the Lotka-Volterra equations. As in
Fig. 20. 10, the variable .r seems to be undergoing an almost random pattern of oscillations,
bouncing around from negative values to positive values. The other variables exhibit
similar behavior. However, even though the pattems seem random, the frequency of the
oscillation and the amplitudes seem fairly consistent.

An interesting feature of such solutions can be illustrated by changing the initial con-
dition for "r slightly (from 5 to 5.001). The results are superimposed as the dashed line in
Fig. 20. 10. Although the solutions track on each other for a time, after about / : l5 they
diverge significantly. Thus, we can see that the Lorenz equations are quite sensitive to
their initial conditions. The term chaotic is used to describe such solutions. In his origi-
nal study, this led Lorenz to the conclusion that long-range weather forecasts might be
impossible!

Lorenz model "{ versus r

E

5.001,  r '  -  : :  5
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continued

1 0

n

- 1 0

-20

45

40

35

30
a 2 5 25

20
l 5

1 0
5

45

40
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1 q

1 0
5-20 -10 0

"r
-40 -20

FIGURE 20.I I
Phose-plone represeniot;on for fhe Lorenz eqL.rot ions (oJ rr,  (bl .r : ,  ond (cJ yl proiect ions

201 0 0
)

(a) y versus r (b) z versus -r (c) .  versus !

The sensitivity of a dynamical system to small perturbations of its initial conditions is
sometimes called the butte(Iy ffict.The idea is that rhe flapping of a butterfly's wings
might induce tiny changes in the atmosphere that ultimately leads to a large-scale weather
phenomenon like a tornado.

Although the time-series plots are chaotic, phase-plane plots reveal an underlying
structure. Because we are dealing with three independent variables, we can generate
projections. Figure 20.11 shows projections in the x.y, xz, and the yz planes. Notice how a
structure is manif-est when perceived from the phase-plane perspective. The solution forms
orbits around what appear to be critical points. These points are called strange attractorsin
the jargon of mathematicians who study such nonlinear systems.

Beyond the two-variable projections, MATLAB's p1or3 function provides a vehicle
to directly generate a three-dimensional phase-piane plot:

> >  p l o t 3  ( y ( :  , L )  , y ( : , 2 )  , y ( : , 2 )  )
> >  x l a b e l ( ' x '  )  ; y l a b e l ( ' y '  )  ; z 1 a b e }  ( ' 2 ,  )  ; g r i d

As was the case for Fig. 20.1i, the three-dimensional plot (Fig20.12) depicts trajecrories
cycling in a definite pattem around a pair ofcritical points.

As a final note, the sensitivity of chaotic systems to initial conditions has implications
for numerical computations. Beyond the initial conditions themselves, different step sizes
or different algorithms (and in some cases, even different computers) can introduce small
differences in the solutions. In a similar fashion to Fig. 20. 10, these discrepancies will
eventually lead to large deviations. Some of the problems in this chapter and in Chap. 21
are designed to demonstrate this issue.

20.
intt
res

(a)
(b)
(c)
(d)
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FIGURE 2O.12
Three-dimensionol phose-plone representoiion for lhe Lorenz equolions generoted with MATLABs
p}o t  3  iunc t ion .

PROBLEMS

20.1 Solve the fol lowing init ial  value problem over the
interval frorn / : 0 to 2 where r'(0) : l Display all your
results on the same graph.

dr '
- : \ , / - - l  l \ .
d t

(a) Analyt ical ly.
(b) Using Euler 's method with / i  :  0.5 and 0.25.
(c) Using the midpoint method u' i th f t  :  0.5.
(d) Using the fburth-order RK method with i  :  0.5.

20.2 Solve the following problem over the interval from
-r : 0 to I using a step size of 0.25 where -l (0) - l. Display
all your results on the same glaph.

- : -  -  r  I  I  ) . \  / i ;

, 1 r  
- "  r ' r ' v /

(a) Analytically.
(b) Using Euler 's method.
(c) Using Heun's method without iteration.
(d) Usine Ralston's method.
(e) Using the fburth-order RK method.
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2{).3 Solve the iollowing problem over the interval fi'om
I :0 to 3 using a step size of 0.-5 where y(0) :  l .  Display
al l  your results on the same graph.

Obtain your solut ions with (a) Heun's method without
iterating the conector, (b) Heun's method with iterating the
corrector unti l  s, < 0.1%. (c) the midpoint method, and
(d) Ralston's methc)d.
20.J The growth of populations of or,ganisms has rrany en-
gineering and scicnti f lc appl icat ions. One of the simplest
rnodels assumes that the rate ofchange ofthe population 7' is
proportional to the existing population at any time /:

dLt
-  :  k p p  ( P 2 0 . 4 . 1 )

u l

where ftq : the growth rate. The world population in mil-
l ions from 1950 throush 2000 was

This is referred to as the logistic model. The analytical solu-
t ion to this model is

Pmax

I  t 9 B 0  t 9 B 5
p 4454 4850

I 990 I 995 2000
5276 5686 6079

(a) Assuming that Eq. (P20.4.1) holds, use the data from
I 950 through I97O to estimate ks.

(b) Use the fburth-order RK method along with the results
of (a) to stimulate the world population from 1950 to
2050 with a ste-p size of 5 yeals. Display your simulation
results along rvith the data on a plot.

20.5 Although the model in Prob. 20.4 works adequately
when population growth is unlinrited, it breaks down when
factors such as fbod shortages, pollution, and lack of space
inhibit growth. ln such cases, the growth rate is not a con-
stant. but can be formulated as

k, :  kr,r( l  -  p/p,, , , , ,  )

where t,rr, : the maximum growth rate under unlimited
condit ions, p - populat ion, and /max : the rnaximurn
population. Note that 2n,", is sontetimes called the curn-ing
t'upucin. Thus, at low popr"rlation density p {{ p^u,,
k, -+ kr,,. As p approaches 7r,,,"*. the growth rate ap-
proaches zero. Using this growth rate fbrmulation, the rate
of change of population can be modeled as

dp

dt

y - P \ l

Po * (2nr"" - Po)e 
kc^t

Simulate the world's population from l950 to 2050 using
(a) the analytical solution, rnd (b) the fourth-order RK
method with a step size of 5 years. Employ the tbllowing
initial conditions and parameter values for your simulation:
px ( in 1950) :2,55-5 mil l ion people, kgtn:0.0261yr, and
pmrr : 12,000 million people. Display your results as a plot
along with the data fiorn Prob. 20.4.
20.6 Suppose that a projectile is launched upward flom the
earth's surface. Assume that the only force acting on the ob-
ject is the downward force of gravity. Under these condi-
tions. a fbrce balance can be used to derive

d t ,  K -
-  -  - d l f ) \ -

t l t  
o " ' ( R + . r 1 2

where u : upward velocity (m/s), t : time (s), x: altitude
(m) measured upward from the earth's surface, g(0) : the
gravitational acceleration at the earth's surface (? 9.8 rnAr).
end R:  the  e l r th 's  rad ius  { }  6 .37  z  106 m) .  Recogn i t ing
that dxldt:  u. use Euler 's method to deterrnine the
maximum height that would be obtained if u(t = 0; =

1400 m/s.
20,7 Solve the lbllowing pair of ODEs over the interval
frorr r : 0 to 0.4 using a step size of 0. L The initial condi-
tions are .y(0) : 2 and ;(0) : 4. Obtain your solution with
(a) Euler's method and (b) the fourth-order RK method. Dis-
play your results as a plot.

: - 2 1 . t 4 e t

-ya-
3

20.tt The van der Pol equation is a model of an electronic
circuit that arose back in the days of vacuum tubes:

. t 2 , ,  . t , ,
- - - ( l  - . r ' ' )  .  f  t . : 0
a t '  d t

Given the init ial  condit ions, 1(0) :  ) ' (0) :  1, solve this
equation from 1 : 0 to 10 using Euler's method with a step
size of (a) 0.2 ancl (b) 0. i .  Plot both solut ions on the same
grrph.
20.9 Given the init ial  condit ions, )(0): I  and 1, '10; =6,

solve the fbllowing initial-value problem from t : 0 to 4:

r/ l l
- l Q \ . - O
d t t

d:"

d t

r  1 9 5 0
p  2555

r 955 I 960 r 965
2780 3040 3346

l sTa  1975
3743 4AB7

(/l '

dl

,h

:  * c , , ( l  -  p  f  1 t , , , , , * )  1 t
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Obtain your solutions with (a) Euler's rr.rethod and (b) the

fourth-order RK method. In both cases, use a step size oi 0. I .

Plot both solutions on the same graph along with the exact

solut ion .t '  :  cos 34.

20.10 Develop an M-f i le 1t l  solve a single ODE with Heun's

method with iteration. Design the M-file so that it creates a

plot of the results. Test your program by using it to solve for

population as described in Prob. 20.5. Employ a step size of

5 1'eiirs and iterate the correctol'until c., < 0' l7o.

20.11 Develop an M-t i le lo solve a single ODE with the

miclpoint method. Design the M-f i le so that i t  creates l  plot

of the results. Test your prograrn by using it to solve fbr pop-

ulation as described in Prob. 20.5. Employ a step size of

5 years.

20.12 Develop an M-file to solve a single ODE with the

tburth-order RK method. Design the M-file so that it creates

a plot of the results. Tesl your program by using it to solve

Prob. 20.2. Employ a step size of 0. l .

20.13 Develop an M-file to solve a system of ODEs with

Euler 's method. Design the M-t i le so that i t  creates a plot ol

the results. Test your program by using it 1o solve Prob. 20.7

$ith a step size of 0.25.

20.14 Isle Royale National Park is a 2[0-square-mile archi-

pelago composed of a sinele large island and many snral l

islands in Lake Superior'. Moose arrived around 1900, and

b1 l9-10. their populat ion rtpprouched.i000. ravaging vege-

tation. In 19.19, wolves crossed an ice bridge from Ontario.

Since the late 1950s, the numbers of the moose and wolves

have been tracked.

FIGURE P2O.I5

(a) tntegrate the Lotka-Volterra equations (Section 20.6)

liom 1960 through 2020 using the tbllowing coeflicient

va lues :  a  :  0 .23 ,0  :  0 .0133,  t :  :  0 . '1 ,  andd :  0 .0004.

Compare your simulation with the data using a tinre-

series plot and determine the sum of the squares of the

residuals between your model and the data for both the

nrclose and the wolves.
(b) Develop a phase-plane plot olyour solut ion.

20,15 The motion of a damped spring-nrass system

(Fig. P20. l5) is described by the fbllowing oldiniuy difl-er-

ential equation:

d2x dx
l r - , ; + t  -  + k . i : 0

L l t -  d I

where x : displacement from equiliblium position (m)' t :

time (s), rn :20-kg mass, and c : the damping coefficient

(N . s/m). The damping coefficient c takes on three values

Yeor Moose Wolves Moose Wolves Yeor Moose WolvesYeor

I  959
I 960
1 9 6 l
1962
I  963
1964
I 965
1966
1967
I  968
1 969
t97a
) 9 7  l

1973
1974

563
6 1 0
628
639
663
747
733
765
9 ) 2
la42
I  268
)2c )5
I 439
1,193
143-5
1 467

2A
22
2 2
2 3
20
26
2 B
26
2 2
2 2
l 7
I B
20
2 3
24
3 l

l  991
1992
1993
1994
I 995
1996
1997
I 998
I 999
2000
200 l
2AO2
2003
l vJ4

2005
2046

t 3 r 3
r 590
l B 7 9
l 77A
2422
I  1 6 3
500
699
750
B5O
900
I  1 0 0
400
7 5Ct
544
450

1 2
l 2
t 3
l 7
t 6
2 2
24
l 4
25
2a
t 9
t 7
l 9
29
30
30

1 9 7  5
1976
1977
t 9 7 B
1979
I  980
r 9 8  I
t 9 B 2
I  9 8 3
l s B 4
I  985
I  986
l 9 B 7
]  9BB
I  989
r 990

I  001
I  028
9 r 0
863
872
932
I  038
l l  t 5
)  t92
t 2 6 8
r  3 3 5
I  397
1 2 1 6

4 )
44
34
40
43
50
30
l 4
2 3
24
22
2A
t 6
t 2
t 2
l 5
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FIGURE P2O.I6
A sphericol  tonk.

of 5 (underdamped), 40 (critically damped), and 200 (over-

damped). The spring constant k : 20 N/m. The initial ve-
locity is zero, and tlre initial displacement ,r : I m. Solve
this equation using a numerical method over the time period
0 < / < 15 s. Plot the displacement versus tirne for each of
the three values of the damping coefficie nt on the same plot.

20.16 A spherical tank has a circular orifice in its bottom
through which the liquid flows out (Fig. P20.16). The flow
rate through the hole can be estimatcd as

Q.,r:  C AnEii

where Qou, : outflow (mr/st. C : an empirically derived
cocff icient. A : the area of the ori l ' ice (mr).3 :  the gnrvita-
l ional constant (:9.81 m/srt.  und h: the depth of l iquid in
the tank. Use one of the numerical methods described in this
chapter to determine horv long it will take for the water to flow
out of a 3-m diameter tank with an initial height of 2.15 m.
Note that the orifice has a diameter of 3 cm and C: 0.55.
20.17 ln the investigation of a honricide or accidental death,
it is often important to estimate the time of death. From the
experimeutal observations, it is known that the surface tem-
perature of an object changes at a rate proportional to the dif-
ference between the temperature of the object and that of the
surrounding environment or ambient temperature. This is
known as Newton's law of cooling. Thus, if f(/) is the tem-
perature of the object at time /, and i"., is the constant ambi-
ent temperature:

d T
.  : - K ( T  - 7 . )

d t

where K > 0 is a constant of proportionality. Suppose that
at time I : 0 a corpse is discovered and its temperature is
nreasured to be I,. We assume that at the time of death, the
h r r r l r r  f p m n o r r f r r r o  7  r r r a c  o f  f h e  n n r m q l  . ' ' l r r e  n f  ? 7  o a -

Suppose that the temperature of the corpse when it was dis-
covered was 29.5 "C, and that two hours later, it is 23.5 "C.
The ambient temperature is 20 'C.

(a) Determine K and the time of death.
(b) Solve the ODE nunerically and plot the results.
20.18 The reaction A --+ B takes place in two reactors in
series. The reactors are well mixed but are not at steady
state. The unsteady-state mass balance for each stirred tank
reactor is shown below:

ICA '  I
;  : - ( C A u - C A : ) - k C A r

a t r

dCB, I
;  :  - C B t I k C A t

a I t

dCA, I- - j : - ( C A t - C A ) - k C A t
d t  T

dCBt I----:-- : -tCBt - CB:-l - kCB:
d l  T

where CA6 : concentration of A at the inlet of the first
reactor. CA 1 - s6nqsrtration ofA at the outlet of the first re-
actor (and inlet of the second), CA2 - ssnssrtration ofA at
the outlet of the second reactor. CB r : concentration of B at
the outlet of the first reactor (and inlet of the second), CB2 =

concentration of B in the second reactor, r : residence time
fbr each reactor. and k : the rate constant for reaction ofA to
produce B.lf C:Ao is equal to 20, find the concentrations of,4
and B in both reactors during their first 10 minutes of opera-
tion. Use t : 0. l2lmin and r : 5 nrin and assume that the
initial conditions of all the dependent variables are zero.
20.19 A, nonisothermal batch reactor can be described by
the following equations:

_ _r\ - t ) / (T+273))  g

:  1000e(-r0/( r+273))C -  l0(T -  20)

where C is the concentration of the reactant and I is the tem-
perature of the reactor. lnitially, the reactor is at I 5 "C and has
a concentration of reactant C of 1 .0 gmoyl-. Find the concen-
tration and temperature ol' the reactor as a function of time.
2(1.20 The following equation can be used to model the de-
flection of a sailboat mast subiect to a wind force:

t )  . .(1-) '  . /  (a )  -  )
-  -  - 1 ,  -  1 1 -

t l : :  ?E I

where /(l) : wind force, E : modulus of elasticity, I =
m r c t  l p n n r L  - ^ A  I  -  f f ^ ' . ^ n +  ^ f  : - ^ - 1 : -  \ T ^ r ^  ] L ^ *  + L ^ . ^ - ^ ^

dC---
d l

d T-;-
d I

varl(

J
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FIGURE P2O.2I

varies with height according to

"  200;  )  ,1 , ,

- /  T . ,

Calcu la te  the  de f lec t ion  i f  r ' :0  and dv ldz :0  a t  z  =  0 .
Ure paranreter l 'alues of L :30, E : 1.2-5 x 108, arrd
/ :  0.05 for your computation.
20.21 A pond drains through a pipe as shown in Fig. P20.21.
Under a number of simpli fying assumptions. the fbl lowing
differential equation describes how depth changes with time:

. t t .  - , t )
u t t  . t u  f - - . ,
- :  - - \  / - q \ t l  L e )

d r  1 A ( h ) '  '

u,her-e / i  :  depth (m), r:  t ime (s), al:  pipe diarneter (nr),

A\h): pond surf 'ace area as a function oldepth (m2t. g :

grar. ' i tat ional constant (:  9.81 m/s2), and c :  depth of pipe
outlet below the pond bottom (m). Based on the fol lowing
area-depth table, solve this diff'erential equation to deter-
mine how long it takes tbr the pond to empty, given that
l , (0 )  :  6 rn ,d  :  0 .25  m,  e  :  I  m.

1800 kN/m

2400 kN/m

3000 kN/m

FIGURE P2O.22

Simulate the dynamics of this structure from , : 0 to 20 s,
siven the initial condition that the velocity of the ground
floor is d.r1/th : I m/s, and all other initial values of dis-
placements and velocities are zero. Present your results as
two time-series plots of (a) displacements and (b) velocities.
In addition, develop a three-dimensional phase-plane plot of
the displacements.
20.23 Repeat tlre the sarne sirnulations as in Section 20.6
for the Lorenz equations but generate the solutions with the
rnidpoint method.
2(1.24 Perfornl the same simulations as in Section 20.6 for
the Lorenz equations but use a value of r :99 .96. Compare
vour results with those obtained in Section 20.6.

h, ffr 6

A ( h ) ,  m 2  I  l 7

5 4 3 2 1 0

a 9 7  A 6 7  4 4 5  A 3 2  0 1 B  0

20.22 Engineers and scientists use mass-spring models to
gain insight into the dynamics of structures under the influ-
ence of disturbances such as earthquakes. Figure P20.22
shorvs such a representation fbr a three-story building. For
this case, the analysis is limited to horizontal motion of the
structure. Using Newton's second law, force balances can be
developed for this system as

d - - t r  l t r  ( l

, + :  - r r r  *  j ( ' r :  - . r r )
d l '  I l t |  ] t l |

r 2 - .  t  t .( {  l 1  ^ )  ^ l

-  =  - - - : ( . \ r  -  - \ \ ) -  - { . t t  -  ) l )
d t :  t n :  m 2

t ) t

A'x3  K1 .

/ 1 t -  m 1

-_-_t_
e

d

n: = 8,000 kg

ftr

k.

k1

L--]"il1\

In2 = 10,000 kg

qT0-\--

/7rr  = 121000 kg

qTn'-r



Adoptive Methods
ond Stiff Systems

CHAPTER OBJECTIVES
The primary objective of this chapter is to introduce you to more advanced methods
for solving initial-value problems for ordinary differential equations. Specific
objectives and topics covered are

r Understanding how the Runge-Kutta Fehlberg methods use RK methods of
difl'erent orders to provide error estimates that are usecl to adjust the step size.

r Familiarizing yourself with the bLrilt-in MATLAB lunctions for solving ODEs.
o Learning how to adjust the options for MATLAB's ODE solvers.
o Learning how to pass parameters to MATLAB's ODE solvers.
. Understanding the difference between one-step and multistep methods for solving

ODEs.
o Understanding what is meant by stiffness and its implications for solving ODEs.

2I.I ADAPTIVE RUNGE.KUTTA METHODS

To this point, we have presented methods tor solving ODEs that employ a constant step
size. For a signiticant nuinber of problems, this can represent a selious limitation. For
example, suppose that we are integrating an ODE with a solution of the type depicted in
Fig. 21.1. For most ofthe range, the solution changes gradually. Such behaviol'suggests
that a fairly large step size could be employed to obtain adequate results. However, for a
localized region from t : | .l 5 to 2.25, the solution undergoes an abrupt change. The prac-
tical consequence of dealing with such functions is that a very small step size would be
required to accurately capture the impulsive behavior. If a constant step-size algorithm
were employed, the srnaller step size required for the region of abrupt change would have
to be applied to the entire computation. As a consequence. a much smaller step size than
necessary-and, therefore, many more calculations-would be wasted on the regions of
gradual change.



I
21.1 ADAPTIVE RUNGE-KUTTA METHODS 5 r5

FIGURE 2 I . I
A^ exomo e o i  o so - r 'or  of  on CDI
n l i , r < l m a n t  h n <  n r n n t  ^ l , r ^ ^ , ^ ^ o .  { ^ ,

tha l  exh ib i ts  on  obrupt  chonge.  Automoi ic  s teps ize
such coses.

Algorithms that automatically adjust the step size can avoid such overkill and hence be
of great advantage. Because they "adapt" to the solution's trajectory, they are said to have
adaptive step-sii.e control. Implementation of such approaches requires that an estimate of
the local truncation error be obtained at each step. This error estimate can then serve as a
basis for either shortening or lengthening the step size.

Betbre proceeding, we should mention that aside from solving ODEs, the methods
described in this chapter can also be used to evaluate definite integrals. The evaluation of
the definite integral

r b
_ t
t :  I  J $ t d x

J a

is equivalent to solving the differential equation

d y
,  - / r r ,

,o, , lr 'Urgiven the init ial condition y(a) : 0. Thus, the fbllowing techniques can be em-
ployed to efficiently evaluate definite integrals involving functions that are generally
smooth but exhibit regions of abrupt change.

There are two primary approaches to incorporate adaptive step-size control into one-
step methods. Step halving involves taking each step twice, once as a full step and then as
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two half steps. The difference in the two results represents an estimate of the local trunca-
tion eror. The step size can then be adjusted based on this error estimate.

In the second approach. called etnbedded RK methods, the local truncation enor is es-
timated as the difference between two predictions using diff'erent-order RK methods. These
are cun'ently the methods of choice bectruse they ale more efficient than step halving.

The embedded methods were first developed by Fehlberg. Hence. they are sometimes
refen'ed to as RK-Fehlberg methods. At face value, the idea of using two predictions of dif-
ferent order might seem too computationally expensive. For example, a fburth- and fifth-
order prediction amounts to a total of I 0 function evaluations per step [recall Eqs. (20.44)
and 120.45)1. Fehiberg cleveriy circur.nvented this problern by deriving a fifth-order RK
method that employs most of the same function evaluations required for un accompanying
fourth-order RK rnethod. Thus, the approach yielded the error estimate on the basis of only
six function evaluationsl

2l.l.l MATTAB Functions for Nonstiff Systems

Since Fehlberg originally developed his approach. other even better approaches have been
developed. Several of these are available as built-in functions in MATLAB.

ode23. The ode23 function uses the BS23 algorithm (Bogacki and Shampine, 1989;
Shampine, 1994), which simultaneously uses second- and third-order RK fbrmulas to solve
the ODE and make error estimates for step-size adjustment. The formulas to advance the
solution are

I
J'i+r : li -t 

n(.2h 
-t 3kz 1-  kt)lt

where

(2  r .1 )

(71.2)

(2t .2a)

t1 : ./(r;, ,r; )

r , : f ( , , * ) r , r ,

t r :  f  ( r ,  * ' r r , r ,

lr,r)

ir")

(2Lla)

(2t.tb)

(2 1.1 c)

The error is estimated as

I
Er+t : * (*5kr -t 6kz + 8k1 - gk+)h

/ l

where

kq :  . f  ( t i+ t ,  ) ' i+ t )

Note that although there appear to be fbur function evaluations, there are really only three
because after the first step, the k1 for the present step will be the fta from the previous step.
Thus, the approach yields a prediction and error estimate based on three evaluations rather
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than the five that would ordinarily result tiom using second- (two evaluations) and third-
order (tlrree evaluations) RK formulas jn tandem.

After each step, the error is checked to determine whether it is within a desired toler-
ance. If it is, the value of y;a1 is accepted, and k+ becomes k1 lbr the next step. If the error
is too large. the step is repeated with reduced step sizes until the estimated error satisfies

E < ntax(RelTol  x  ly l .  AbsTol  I (21.3)

where RelTol is the relative tolerance (default : l0 j) 
and AbsTol is the absolute tolerance

(default : l0-6). Observe that the criteria for the relative effor uses a fraction rather than a
percent relative error as we have done on many occasions prior to this point.

ode45. The ode45 function uses an algorithm developed by Dormand and Prince (1990),
which simultaneously uses fburth- and fifth-order RK formulas to solve the ODE and make
error estimates fbr step-size adjustment. MATLAB recommends that ode45 is the best
function to apply as a "first try" for most problems.

odeL13. The ode113 function uses a variable-order Adams-Bashforth-Moulton solver. It
is useful for stringent emor tolerances or computationally intensive ODE functions. Note
that this is a multistep n'rethod as we wil l describe subsequently in Section 21.2.

These functions can be called in a number of different ways. The simplest approach is

I r ,  - t . ' 1  =  o c l e 4 5 ( o d e f u n ,  t - s p a n ,  - r . ' d )

where y is the solution array where each column is one of the dependent variables and each
row corresponds to a time in the column vector t, odefun is the name of the function
returning a column vector of the right-hand-sides of the difTerential equations, t span spec-
ifies the integration interval, and y0 : a vector containing the initial values.

Note that . s-pan can be lbrmulated in two ways. First. if it is entered as a vector of two
numbers.

f - s p a r  -  L t t  t f ) ;

the integration is perfornred from ti to tf. Second. to obtain solutions at specific times
t0, t l tn (all increasing or all decreasing), use

t - q p a l  =  l t A  t 1  t n ) ;

Herc is an example of how ode45 can be used to solve a single ODE. .r":
4e08t - 0.-5.r, f iom /:0 to 4 with an init ial condition of y(0):2. Recall from Exam-
ple 20. I that the analytical solution at t:4 is 75.33896. Representing the ODE as an
anonymous function, ode4 5 can be used to generate the same result numerically as

> >  d y d t = G ( t , y )  4 * e x p ( 0 . 8 * L )  - 0 . 5 * y ;
> : ,  I t , y 1 = 6 6 " 4 ! . ( d y d t , l A  4 ) , 2 1  ;
> >  y ( L e n g t h ( t t  )

7 5 . 3 3 9 0

As described in the following example, the ODE is typically stored in its own M-file when
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EXAMPLE 2l . l Using MATLAB to Solve o System of oors

Problem Stotement. Employ ode4 5 to solve the following set of nonlinear ODEs from
t : 0 t o 2 0 :

d t ' '  dv ,

; : l . 2 y t -  
0 . 6 ) r l z  

E :  
- 0 . 8 1 ' ,  * 0 . 3 y 1 y 2

where .r'1 : 2 and.1'2 : 1 at 1 : 0. Such equations are refered to as predator-pre)' cquations.

Solution. Before obtaining a solution with MATLAB, you must create a function to com-
pute the right-hand side of the ODEs. One way to do this is to create an M-file as in

r  u f l C L  i  o n  y p  =  p r  e o p i  e /  (  L , y )

y p  =  l ' 1 . 2 * y  l I )  0 . 6 * y ( 1 )  * y \ 2 \  ; - A . B " y ( 2 ) + 0 . 3 * y ( 1 )  * y ( 2 )  I  ;

We stored this M-fi le under the name: predprey. m.
Next, enter the following commands to specify the integration range and the initial

conditions:

' .  s p d n  f n  2 0  ;
> >  y a  =  1 2 ,  7 l ;

The solver can then be invoked by

This command will then solve the differential equations in predprey.m over the range
defined by tspan using the init ial conditions found in yo. The results can be displayed by
simply typing

> 1  p l o t ( t , y )

whiclr yields Fig. 21.2.

FIGURE 2 I .2
Solution of predotor-prey moo'el with MATLAB
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In addition to a time series plot, it is also instructive to generate a phase-plane plot-

that is, a plot of the dependent variables versus each other by

> >  p l o t  ( y (  : ,  1 ) , v  ( : , 2 )  )

which v ie lds Fis .2 l .3 .

FIGURE 2 I .3
Sloie spoce plot of predofor-prey model wiih MATLAB

?.

! . 2

1

oot ?

y 1

As in the previous example, the MAILAB solver uses default parameters to control var-

ious aspects ofthe integration. In addition, there is also no control overthe differential equa-

tions' parameters. To have control over these features, additional arguments are included as in

l t , y l  =  o d e 4 5 ( o d e f u n ,  t s p a n ,  y A ,  o p t i o n s '  p 1 '  p 2 , " ' )

where options is a data structure that is created with the odeset function to control fea-

tures of the solution, and pJ , p2, .. . are parameters that you want to pass into odefun.

The odeset function has the general syntax

o p t i o n s  =  o d e s e t  ( ' p a r r '  , v a f , , ' p a r  
'  , v a f  '  -  - . )

where the parameter par, has the value vaf .. A complete listing of all the possible para-

meters can be obtained by merely entering odeset at the command prompt. Some com-

monly used parameters are

Allows you to adjust the relative tolerance.

Allows vou to adiust the absolute tolerance
,rnirialsrep' The solver automatically determines the init ial step. This option al-

lows you to set your own.
The maximum step defaults to one-tenth of the t span interval. This

' R e l T o l  '

' A b s T o l  '

' M a x S f  e n  '
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EXAMPLE 2I .2 Using odeset  to Coniro l  In tegrot ion Opt ions

Problem Stotement. Use ode2 3 to solve the followine ODE, from I : 0 to 4:
/ t  a l

2  :  10e  
{ r  l )  [ 2 r0 .075 r  |  -  0 . 6 t

d t

where 1(0) :0.5. Obtain solutions for the default (10-3) and for a more stringent (l0r)
relative error tolerance.

Solution. First, we wil l create an M-fi le to compute the right-hand side of the ODE:

f u n c t i o n  y p  =  d y d t  ( t ,  y )
y P  =  1 O * e x p  ( -  ( L - 2  I  *  ( t - 2  )  /  ( 2 *  . A 7 5 ^ 2 )  )  0 . 6 * y t

Then, we can implement the solver without setting the options. Hence the default value for
the relative enor ( l0 3) is automatically used:

> >  o d e 2 3 ( @ c 1 y d r ,  t A  4 l  ,  0 . 5 ) ;

Note that we have not set the function equal to output variables tr , y I . When we imple-
ment one of the ODE solvers in this way, MATLAB automatically creates a plot of the
results displaying circles at the values it has computed. As in Fig. 2 l .4a, notice how ode2 3
takes relatively large steps in the smooth regions of the solufion whereas it takes smaller
steps in the region ol'rapid change around I : 2.

We can obtailt a more accurate solution by using the ocleser function to set the rela-
t ive error  to lerance to l0  a:

> >  o p t l o n s = o d e s e t  (  ' R e L T o l  '  
,  I e - 4 )  ;

> >  o d e 2 3 ( @ d y d t ,  t 0 ,  4 ) ,  0 . 5 ,  o p t i o n s ) ;

As in Fig. 2l.4b.the solver takes more snall steps to attain the increased erccuritcy.

FIGURE 2 I .4
Solution of CDE with MATLAB For (b), o smoiler relotive error toleronce is useo ono nence monv
n o ' e s t e o : o e r o l , e r ' .

(b )  Re lTo l  =  10-a
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21.2 MUITISTEP METHODS

The one-step methods described in the previous sections utilize information at a single
point tr to predict a value of the dependent variable .y,+r rt a future point 1;11 (Fig. 21.5a).
Alternative approaches, called multistep methods (Fig. 21 .5b), are based on the insight that.
once the computation has begun, valuable infbrmation from previous points is at our
command. The curvature of the lines connecting these previous values provides informa-
tion regarding the trajectory of the solution. Multistep methods exploit this information to
solve ODEs. In this section, we will present a simple second-order method that serves to
demonstrate the general characteristics of multistep approaches.

21.2.1 The Non-Self-Sforfing Heun Method

Recall that the Heun approach uses Euler's rnethod as apredictor [Eq. (20.15)]:

. ) ) + r  : ) ' i * f Q i , v ) h

and the trapezoidal rule as a corector [Eq. (20.17)]:

-1 ' ;1g :  J ' ;  *
f  (t , .  y,) + f (t ,*,,  y!*,) 

n (21  .s )

Thus, the predictor and the corrector have local truncation erors of O(/rr) and O(h3 ),
respectively. This suggests that the predictor is the weak link in the method because it has
the greatest error. This weakness is signilicant because the efficiency of the iterative cor-
rector step depends on the accuracy of the initial prediction. Consequently, one way to im-
prove Heun's method is to develop a predictor that has a local error of Othi). This can be

FIGURE 2 I .5
Grophicol depiction of the fundomentol drfference beiween {o) one-step ond {b) multlstep
merhods for solving ODLs

(21.4)
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EXA/

accomplished by using Euler's method and the slope at, '!;, and extra information from a
previous point  l ' r , r ,  as in

l j+r :  - l ' r-r  * . f  ( t i , t ' i )2h (2r.6)

This fornrula attains O(h3) at the expeuse of employing a larger step size 2h. In addition,
note that the equation is not self-starting because it involves a previous value' of the depen-
dent variable )r-r. Such a value would not be available in a typical init ial-value problem.
Because of this fact, Eqs. (21.5) and (21.6) are called the nort-self sterting Heun method.
As depicted in Fig. 21.6, the derivative estimate in Eq. (21 .6) is now located at the midpoint
rather than at the beginning of the interval over which the prediction is rnade. This center-
ing inrproves the local error of the predictor to O1h3 1.

FIGURE 2 I .6
A grophicol depiction of lhe non self-sfirrling Heun method (o) The midpolnt method thot is used
os o predictor {b) The tropezoidol rrle thot is employed os c corrector

S4-ri

Slope - / ( r , * , . r , f * , )
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The non-self-starting Heun method can be summarized as

Predictor (Fig. 21.6a): f' j '*r : .)'; ' lr + t' (t,, yi)Zn

'  J  ( r ' ' ' 1 " )  -  ' t ( t "  ' ' t / ' " )
Corrector (Ftg.2l .6b): l /+r :  _1', l tr  1 

'  '  
/ r

I  t  i - l
l o  t _ 1 . ' / + l  - ' i + l
r . t r r - l i

I .!i+ r

( 2 t . 1 )

(21  .8 )

( f o r . l : 1 , 2 , " " n r )

where the superscripts denote that the corrector is applied iteratively fiom 7 : I to la to
obtain refined solutions. Note that -r'j" and y'l_., are the final results of the corrector
iterations at the previous tirne steps. The iterations are terminated based on an estimate of
the approximate error,

x  l00 lo (2  r .9 )

When len I is less than a prespecified error tolerance e., the iterations are terminated. At this
point ,  T :  m.The use of  Eqs.  (2 1.7)  through (21.9) to solve an ODE is  derr ronstrated in  the
followine examnle.

EXAMPLE 2l  .3  Non-Sel f -Stor t ing Heun's Method

Problem Stotement. Use the non-self-starting Heun method to perform the same com-
putations as were peltbrmed previously in Example 20.2 using Heun's method. That i.s,
in tegrate l "  

-  +n"* '  -0. -5t  f rom / :0 to4 wi th a step s ize of  l .As wi th Example 20.2,
the init ial condition at / : 0 is -t '  : 2. However, because we are now dealing with a multi-
step method, we require the additional infbrmation that 1 is equal to -0.3929953 at / : -1.

Solution. The predictor tEq. (2 1.7)l is used to extrapolate l inearly frorn r : - l to 1:

.r| : -0.3929953 + [4"'r ' iu' 
- 0.5(2)] 2 : 5.607005

The conector IEq. 121.8)] is then used to conpute the varlue:

v i  :2+
-1"0 j l i t t r  -  0 .5(2)  J  - ler )x ' I ' -  t - t .s ts .oozoo-st

I  :  6.-s493-31

which represents a true percent relative error of -5.139o (true value :6.194631). This
error is somewhat smallerthan the value of -8.1Solc incun'ed in the self-startins Heun.

Now. Eq. (21.8) can be applied iteratively to irnprove the solution:

l ^

. t l  
-  z - T

3 1 4.,o srtr  -  0.5(6.54933 l)
I  :  6 .313149

1

which represents an error of -1.927o. An approximate estimate of the error can be deter-
mined using Eq. (21.9):

2

l "  L  -  |
r ( ( i r -  

|

6.313749 - 6.54933 r

l x  
r00" / "  :3 .J7c

6.313149
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Equation (21.8) can be applied iteratively unti l e,, falls below a prespecified value ofe..As
was the case with the Heun method (recall Example 20.2), the iterations convelge on a
value of 6.36087 (et : -2.68%). However, because the init ial predictor value is more
accurate. the rnultistep method converges at a somewhat faster rate.

For the second step, the predictor is

.] ' l '  : 2 * l4ett 
sitt - 0.5(6.36087)2: 13.44346 €t :9.43a/c

wlrich is superior to the prediction of 12.0826 (et : l87o) rhar was computed with the
original Heun method. The first corrector yields 15.76693 (e, - 6.8vc), and subsequent
iterations converge on the same result as was obtained with the self-starting Heun method;
15.30224 (t, : -3.097o). As with tlre previous step. the rate of convergence of the conec-
tor is somewhat irrproved because of the better init ial prediction.

21.2.2 Error Estimqtes

Aside from providing increased efficiency, the non-sell-starting Heurr can also be used to
estimate the local truncation ernrr. As with the adaptive RK methods in Section 21.1, the
error estimate then provides a criterion fbr changing the sfep size.

The error estintate can be derived by recognizing that the predictor is equivalent to the
midpoint rule. Hence, its local truncation error is (Table 17.4)

t , ,  I
6 r : - / r ' . r ' ' " ' { € , , t : - l t ' f " t € , , )  ( 2 1 . 1 0 )' . 1 - 1

where the subscript 7r designates that this is the error of the predictor. This error estinrate
can be cornbined with the estimate of )'i+ r from the predictor step to yield

True value: t. ,1r + 
f ir , .u,,,r{, ,r

By recognizing that the corrector is equivalent to the trapezoidal
mate of the local truncation error lbr the corrector is (Table 17.2)

l l
E ,  :  - i h  ) ' t ' ( { ,  )  :  - - h t  l " l € ,  1

This error estimate can be combined with the conector result .1';11 to give

True value: ) ' ,1r -  
i f t3.r .(3){6,)  (21.13)

Equat ion (2I.1 I)  .un b. ,ub,ructed from Eq. (21.13) ro yield

0: .y,1ir - r,9+r - 
*r,tr, t ' ,U,

(21 . i l )

rule, a similar esti-

(2t . l2 l

(21.14)

where { is now between r; 1 and f . Now, dividing Eq. (21.14) by 5 and reanangingthe
result gives

) , 9 + r  - . r i i '  : - 1 7 r - r u r r r 1 6 )  ( 2 r . 1 5 )<  I t
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Notice that the right-hand sides of Eqs. (21 .12) and (21.15) are identical, with the excep-
tion of the argument of the third derivative. If the third derivative does not vary apprecia-
bly over the interval in question, we can assume that the right-hand sides are equal, and
therefore, the left-hand sides should also be equivalent, as in

. , 0  _  1 ' r i

E  -  -  )  i - t  r i - t  ( l  l . 1 6 )' 5

Thus, we have arrived at a relationship that can be used to estimate the per-step truncation
error on the basis of two quantities that are routine by-products of the computation: the
predictor (1,9*r ) anA the corrector ("vlir ) .

EXAMPLE 21.4 Est imqte of Per-Steo Truncot ion Error

Problem Stotemenf . Use Eq. (21.16) to estimate the per-step truncation error of Exam-
ple 21.3. Note that the true values at / : I and 2 are 6.194631 and 14.84392, respectively.

Solution. At /;a1 : l, the predictor gives 5.607005 and the comector yields 6.360865.
These values can be substituted into Eq. (21. l6) to give

6.360865 - 5.607005
F _ : -0.150722

which compares well with the exact effor,

Et : 6.194631 - 6.360865 : -0.1662341

At /;11 :2, the predictor gives 13.44346 and
can be used to comDute

the corrector yields 15.30224, which

15.30224 - 13.44346
F  - _ :  -0.31176

which also compares favorably with the exact error, Et : 14.84392 - 15.30224 :
-0 .45831 .

The foregoing has been a brief introduction to multistep methods. Additional
information can be found elsewhere (e.g., Chapra and Canale, 2006). Although they
still have their place for solving certain types of problems, multistep methods are usu-
ally not the method of choice for most problems routinely confronted in engineering and
science. That said, they are still used. For example, the MATLAB function odel13 is a
multistep method. We have therefore included this section to introduce you to their basic
principles.

2r.3 STTFFNESS

Stiffness is a special problem that can arise in the solution of ordinary differential equa-
tions. A stiff system is one involving rapidly changing components together with slowly
changing ones. In some cases, the rapidly varying components are ephemeral transients
that die away quickly, after which the solution becomes dominated by the slowly varying
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FIGURE 2 I .7
Dlo '  o r  o  , l  r [  so  i t ' on  o r  o  r ing le  CDL
octuo ly o fost ircnsieni from y : g 1e
.  pe 'cep ib le  en l ,  when he  re :ponse

Although lhe solut ion oppeors to slorl  ot l ,  there is
I thct occurs in less thnn the 0 OO5 l ime uni l .  This tronsienl
is viewed on the f iner t imescole in the insel.

components. Although the transient phenomena exist for only a short part of the integration
interval, they can dictate the time step lbr the entire solution.

Both individual and systems of ODEs can be stilT. An example of a single stitT ODE is

,/ r'

;  
:  - 1000 r '  * . 1000  -  1000e '

If I (0) : 0. the analytical solution can be developed as

. l  :  3  -  0 .998e- l { ) {x t  -  2 .oo2e'

(2r.17)

(21 .18 )

As in Fig. 21.1 ,the solution is init ially dominated by the fast exponential term (e-rmr).

After a short period (t < 0.005), this transient dies out and the solution besomes governed
by the s low exponent ia l  (e /  ) .

Insight into the step size required for stability of such a solution can be gained by ex-
aminirrg tlre hor.nogeneous part of Eq. (21 .17):

dt '

d t

If f'(0) - )t), calculus can be used to determine the solution as
t t l

-t' : -1'ue

Thus, the solution starts at ).0 and asymptotically approaches zero.
Euler's method can be used to solve the same problem numerically:

dt,,
- ] i + t  : ) ' i t  ,  n

d t

Suhs t i t u t i ng  Eq .  t 2  |  .  l 9  t  g i ves

. l ' t + l  : ) ' i  - a l i h

(2t.t9)
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EXAMPLE 2I 5

or

. \ ' i+r  :  t ' i ( l  -  ah\  e |  .20)

The stabil it l '  of this formula clearly depends on the step size h.That is. l l  - a/zl mLrst be
less than l .  Thus,  i f  h  : ,2 /a, l .yr l  - -  oo as i  -+ oo.

For the fast transient part of Eq. (2 I . I 8 ), this criterion can be used to show that the step
size to maintain stabil ity must be <2/1000:0.002. In addition. we sl.rould note that,
whereas this criterion maintains stabil ity (i.e., a bounded solution). an even smaller step size
would be required to obtain an accurate solution. Thus, although the transient occurs 1or only
a sntall f i 'action of the integration interval, it controls the maximum allowable step size.

Rather than using explicit approaches, implicit methocls of'ter an alternative remecly.
Such representations are called intplicit because the unknown appears on both sides ofthe
equation. An implicit forrn of Euler's method can be developed by evaluating the deriva-
tive at the future tirne:

.  d . r . ; r r ,
- \ ' , ' l : \ ' ; - | -  ' -  l l

d t

This is called the baclovutd, or inrlt l icir, Euler's methotl. Substituting Eq. (2 I . l9) yielcls

, ) , + t  :  ) ' i  
- a l i + t h

which can be solved fbr

\ i j

. \ l - l : -  1 l l . 2 l lI  t ( t n

For this case, regardless of the size of the step, l_r,'i | -+ 0 as r ,> oo. Hence, the approach is
called unc on di t i o n al I v stubl e.

Exp l i c i t  ond  lmp l i c i t  Eu te r

Problem Stotemeni. Use both the explicit and rmplicit Eulermethods ro solve Eq. (21 .11),
where r'(0) : 0. (a) Use the explicit Euler with step sizes of 0.000-5 and 0.0015 to solve for
,t' between / : 0 and 0.006. (b) Use the implicit Euler with a step size of 0.05 to solve fbr I'
between 0 and 0.4.

Solution. (a) For this problem, the explicit Euler's methocl is

J,r+r : .r,r f (_1000],i * 3000 _2000e ')h

The result for h:0.000-5 is displayed in Fig. 21.8a along with the analytical solution.
Although it exhibits some truncation elror, the result captures the general shape of the ana-
lytical scllution. In contrast, when the step size is increased to a valuejust below the stabil-
ity l imit (ft : 0.0015). the solution manifests oscil lations. Using ft > 0.002 would resulr in
a totally unstable solution-that is, it would go infinite as the solution progressed.

(b) The implicit Euler's merhod is

.J,r+r : .yi * (_1000],i+r f 3000 _ )eeeg-ti+t1p
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.v

1 . 5

I

0.5

0.002

(bl

FTGUR.E 2r.8
Soiut ion of  o s t i f f  CDE wi th (o)  the expl ic i t  ond (b)  impl ic i t  Euler  methods

Now because the ODE is l inear. we can rearrange this equation so that y;11 is isolated on
the left-hand side:

]i -F 3000/r - )QQQlls Li 't
' ' t ' r -  l + rooo f t

The result for h :0.05 is displayed in Fig. 2l.8b along with the analytical solution. Notice
that even though we have used a much bigger step size than the one that induced instabil-
ity for the explicit Euler, the numerical result tracks nicely on the analytical solution.

Systems of ODEs can also be stifT. An example is

dy t
_ _ : _ - _ 5 r , . r 1 . , ^
dr

dv-; : 1001'1 - -l0 ly2
d r

For the init ial conditions .rr (0) : 52.29 and l,:(0) : 83.82, the exact solution is

lt : 52.96e-3.e8eet - g.67 r-302.{\10tt

lz : lJ .83e--r.e8eel + 65.gge-302.01t)1t

0

)

z

0.40.30.20 .1

(21.22a)

(2t.22h)

(21.23a)

(2t .23b)

0
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Note that the exponents are negative and dilTer by about two orders of magnitude. As with
the single equation, it is the large exponents that respond rapiclly and are at the heart ofthe
system's stiffness.

An implicit Euler's method fbr systems can be formulated for the present exarnple as

, \ ' r . i+ l  :  l  r  i  *  ( - -5 , t ' r  i+ r  f  3 .vz . i+ r ) / l

. \ ' 2 . i + t  : r ' 2  1 f ( 1 0 0 r ' 1  ; 1 1  - 3 0 1 . y 2 . ; " . 1 ) / z

Collect ing terms gives

( l  +  -5 /z ; .1 '1 . ' * r  -  3 ) ' : . i+ t  :  ) t  i

- 1 0 0 , r ' 1  ; 1 r  *  ( l  t  3 0 1 / z ) 1 ' 1 . i 1 1  :  1 ' . , ;

(21.24a)

(21.24b)

(21.25a)

( 2 L 2 5 b )

EXAMPLE 21 6

Thus. we can see that the problem consists of solving a set of simultaneous equations fbr
each time step.

For nonlinear ODEs, the solution beconres even rnore dilficult since it involves solving a
system of nonlinear simultaneous equations (recall Section 12.2). Thus, although stability is
gained through implicit irpproaches. a price is paid in tlre form of added solution conrplexity.

21.3.1 MATTAB Funclions for Stiff Systems

MMLAB has a number of built- in functions tbr solving stiff systems of ODEs. These are

odel-5s. This function is a variable-order solver based on numerical differentiation
formulas. lt is a multistep solver that optionally uses the Gear backward differentiation
forrnulas. Tltis is used for stiff problems of low to medium accuracy.

ode2 3 s. This function is based on a modified Rosenbrock formula of order 2. Because it
is a one-step solver, it miry be more efficient than ode15s at crude tolerances. It can
solve some kinds of stifTproblents better than odel5s.

ode23t. This function is an implementation of the trapezoidal rule with a "free" inter-
polant. This is used for moderately stiff problems with low accuracy where you need a
solution without numerical danrping.

ode2 3tb. This is an implementation of an implicit Runge-Kutta formula with a first
stage that is a trirpezoidal rule and a second stage that is a backward differentiation for-
mula of order 2. This solver may also be more efficient than ode 15s at crude tolerances.

MATTAB for Stiff ODEs

Problem Stotement. The van der Pol equation is a model of an electronic circuit that
arose back in the days ofvacuum tubes,

(E21 .6 .1 )

The solution to this equation becomes progressively stiffer as 1r gets large. Given the ini-
t ia l  condi t ions,  . r ' r (0)  :h) l ld t :1,  use MATLAB to solve the lb l lowing two cases:
(a ) fb r  I L :  l .  use  ode45  to  so l ve f rom/ :0 to20 ;  and (b )  f o r  1 t : 1000 ,  use  ode23s  to
s o l v e f r o m / : 0 t o 6 0 0 0 .

# -p(r - l i ) !  *,-, :o
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Solution. (a) The first step is to convert the second-order ODE into a pair of first-order
ODEs by defining

1/l 'r
, 

- 
-f I

d T

Using this equation. Eq. (E2l .6.1) can [ 're written irs

d)':

d t

?

2

1

0

- l

- z

0

* 1

:  s ( l  -  r ' i ) . u .  - . \ , r  : 0

An M-file can now be created to hold tlris pair of diff'erential equations:

u n -  i o n  ) p  ,  v . n d - r p o  r  , \ ' , 1 u ,
y p  =  l y  ( 2 )  ; m u *  ( 1 - y ( 1 )  ^ 2 , ) * y  ( 2 )  - - {  ( r )  I  ;

Not i cehowtheva r l ueo f  1 . r  i spassedasapa ramete r ' .As inExamp le2 l . l , ode ,1  5canbe in -
voked and the results plotted:

> >  p i o f ,  ( t , y ( : , 1 ) ,  '  '  
, i - , y  ( : , 2 )  , '  

' )

> >  l e s e n d ( ' y l ' , ' y 2 ' ) ;

Observe that because we are not specitying any options, we must use open brackets ll as
a place holder. Tlre srnooth nature of the plot (Fig. 21.9a) suggests that the van der Pol
equation with p : I is not il stiff system.

(b) If a standard solver like oc1e45 is used for the stiff case (p : 1000), it will fail miser-
ably (try it, i f you l ike). However, ocle,t I s does an efficient job:

> >  p l o t ( t , y ( : , 1 ) )

FIGURE 2 I .9
Soutions for von der Pol's equolion. io) Nonstiff form solved with ode45 ond (b) stiff form solved
wi l h  o t l . : 21s .
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We have only displayed the r1 component because the result for .yz has a much larger scale.
Notice how this solution (Fig. 2l .9b) has much sharper edges than is the case inFig.21 .9a.
This is a visual manifestation of the "stiffness" of the solution.

21.4 MATTAB APPLICATION: BUNGEE JUMPER WITH CORD
In this section. we will use MATLAB to solve for the vertical dynamics of a jumper con-
nected to a stationary platform with a bungee cord. As developed at the beginning of
Chap. 20, the problem consisted of solving two coupled ODEs fbr vertical position and
velocity. The differential equation for position is

dr
- - - u

d t

The diff'erential equation for velocity is different depending on whether the jumper has fallen
to a distance where the cord is fully extended and begins to stretch. Thus, if the distance
fallen is less than the cord length, the jumper is only subject to gravitational and drag fbrces,

:  g  -  s ignlx)31rr
nt

(2t .27a)

Once the cord begins to stretch, the spring and dampening fbrces of the cord must also be
included:

dr t ' . t  t  k  v-1 .  :8  -  s ign(u)  ju-  -  - ( , r  -  L)  - : -u (21.2 '7b)
a t n t m m

The following example shows how MATLAB can be used to solve this problem.

EXAMPLE 2l  .7  Bungee Jumper wi th Cord

Problem Stotement. Determine the position and v^elocity of a br.rngee jumper with
the fo l lowing parameters:  I  :30 m, g :9.81 r t /s t ,  nr :68.1 kg.  . , r  :0 .25 kg/m.
k :40 N/m, and / : 8 N.s/rn. Perfom the computation from t :0 to 50 s and assume
that the init ial couditions are r(0) : u(0) : 0.

Solution. The following M-file can be set up to compute the right-hand sides of the ODEs:

dtt
'

d T

(2t .26)

f o r c e

c o r d l ;

because this is the format

f  u n c t  i o n  d y c l t  -  b u n q e e  (  t  ,  y ,  L ,  c d ,  m ,  k ,  g a r n m a  )
n  Q  Q l .

c o r d  =  0 ;
i f  y ( 1 )  >  L  % d e t e r m i n e  l f  t h e  c o r d  e x e r t s  a

c o r d  =  k / m *  ( y  ( 1 ) - L ) + q a m m a , / m * y  ( 2 ) ;

e n d
d y d t  -  l y ( 2 l i  g  -  s i g n ( y ( 2 ) ) * c d r ' m * y ( 2 ) ^ 2  -

Notice that the derivatives are returned as a column vector
.^n, ' i rert hrr the MA'l 'T,AR solvefs.
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Because these equations are not stiff, we can use ode4 5 to obtain the solutions and dis-
play them on a plot:

> >  p l o t ( t , - y (  : , 1 ) , ' - ' , t , y ( : , 2 ) , '  : '  )
> >  l e q e n d ( ' x  ( m )  ' , ' v  ( m / s ) ' )

As in Fig. 2l.10, we have reversed the sign of distance for the plot so that negative distance
is in the downward direction. Notice how the simulation captures the jumper's bouncing
motion.

F I G U R E  2 I . I O
Plot of distonce ond ve ocily of o bungee jumper
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it PLINY'S INTERMITTENT FOUNTAIN

Bockground. The Roman natural philosopher, Pliny the Elder, pulportedly had anin-

termittent fountain in his garden. As in Fig. 21. 1 1, water enters a cylindrical tank at a con-

stant flow rate Qrnand fills until the water reaches )r,igr,. At this point, water siphons out of

the tank through a circular discharge pipe, producing a fountain at the pipe's exit. The foun-

tain runs until the water level decreases to )1oy, whereupon the siphon fills with air and the
fountain stops. The cycle then repeats as the tank fills until the water reaches )rrigh, and the

fountain flows again.
When the siphon is running, the outflow Qo,, can be computed with the following

formula based on Torricelli's law:

eou, -- c J2gyn r2 (21.28)

l\,",''\'l " t a - r r  
- a r  

- i .  
- r -
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continued

- - - - - - - - - - ) = ) h i g h

FIGURE 2 I . I  T
An intermittent founioin

Neglecting the volume of water in the pipe, compute and plot the level of the water in the
tank as a function of time over 100 seconds. Assume an initial condition of an emptv tank

)(0) - 0, and employ the following parameters for your computation:

Rr: 0 '05 m

) r , i g n : 0 ' l  m

0,' : 50 x 10-6 m3/s

r: 0.007 m .Iro* : 0.025 m

C  : 0 . 6 g = 9.81 m/sz

Solution. When the fountain is running, the rate of change in the tank's volume V(m3)
is determined by a simple balance of inflow minus the outflow:

dv
4,  

:  Q i " -  Qou, (2r.29)

where V : volume (m3). Because the tank is cylindrical , y : r Rll.substituting this re-
lationship along with Eq. (21.28) into Eq. (21.29) gives

Q,,- CJTfrrrz
(21.30)

1T R;

d1,
dt

When the fountain is not running, the second term in the numerator goes to zero. We
can incorporate this mechanism in the model by introducing a new dimensionless variable
siphon that equals zero when the fountain is off and equals one when it is flowing;

d1,

dt
Qin-s iphonxCJTf in rz (21.3 r  )

TR?

In the present context, siphon can be thought of as a switch that turns the fountain off and
on. Such two-state variables are called Boolean or loqical variables, where zero is equiva-

-  r  - _ - _  : . _  ̂ ^ . , : , , ^ t ^ - +  + ^  + r r a
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rl

Next we must relate siphon to the dependent variable y. First, siphon is set to zero

whenever the level falls below.)!,,.. Conversely, siphon is set to one whenever the level rises

above yn,*n. The following M-file function follows this logic in computing the derivative:

f u n c t i o n  d y  =  P l i n y o d e ( L , y )
g  i .  o b a  I  s  i p h o n
R t  -  0 . 0 5 ;  r  =  0 . 0 0 7 ;  y h r  -  0 . 1 ;  y l o  =  0 . 0 2 5 ;
g  =  0 . 6 ;  I  =  9 . 8 1 ;  Q i n  =  0 . 0 0 0 0 5 ;
i f  y ( 1 )  < =  y 1 o

s r p h o n  =  O ;
e l s e i f  y  (  f ;  > =  y h i

s i p i r o n  =  1 ;
e n d

Q o u t  -  s i p h o n  *  C  *  s q r t ( 2  *  g  *  y ( 1 ) )  *  p i  *  r  " ' 2 ;
d y  =  ( Q i n  -  Q o u t )  , /  ( p i  *  R t  ^  2 ) ;

Notice that because its value must be maintained between function calls, siphon is de-

clared as a global variable. Although the use of global variables is not encouraged (partic-

ularly in larger programs), it is useful in the present context.

The following script employs the built-in ode45 function to integrate Plinyode and

generate a plot of the solution;

g l o b a i  s i p h o r - i
s i p h o n  =  0 ;
t s p a n  =  l 0  f 0 0 l ;  y 0  -  0 ;

I t p , l ' p ]  = o d e 4 5  ( G P l i l t 1 z e 6 s ,  t s p a n , l / 0  ) '
p l o t  ( t p , y p )

x l a b e l ( ' l . i i n e ,  ( s ) ' )
y l a b e l ( ' w a t e r  L e . r e l  i n  t a n k ,  ( m )  ' )

As shown in Fig. 2I.12, the result is clearly incorrect. Except for the original filling

period, the level seems to start emptying prior to reaching -vn,rn. Similarly, when it is drain-

ing, the siphon shuts off well before the level drops to,v1qp,.

At this point, suspecting that the problem demands more firepower than the trusty

ode4 5 routine, you might be tempted to use one of the other MATLAB ODE solvers such

as ode2 3 s or ode2 3 tb . But if you did, you would discover that although these routines

yield somewhat dift'erent results, they would still generate inconect solutions.

The difficulty arises because the ODE is discontinuous at the point that the siphon

switches on or off. For example, as the tank is filling, the derivative is dependent only on the

constant inflow and for the present parameters has a constant value of 6.366 x l0-l m/s.

However, as soon as the level reaches yn,*n, the outflow kicks in and the derivative abruptly

drops to -1.013 x l0-2 m/s. Although ihe adaptive step-size routines used by MATLAB

work marvelously for many problems, they often get heartbum when dealing with such

discontinuities. Because they infer the behavior of the solution by comparing the results 0f

different steps, a discontinuity represents something akin to stepping into a deep pothole on
q drrk qtreet
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FIGURE 21.12
The level in Pl iny's founloin versus t ime os simuloied with ode45.

At this point, your first inclination might be to just give up. After all, if it's too hard for
MAILAB, no reasonable person could expect you to come up with a solution. Because
professional engineers and scientists rarely get away with such excuses, your only recourse
is to develop a remedy based on your knowledge of numerical methods.

Because the problem results from adaptively stepping across a discontinuity, you
might revert to a simpler approach and use a constant, small step size. If you think about it,
that's precisely the approach you would take if you were traversing a dark, pothole-filled

street. We can implement this solution strategy by merely replacing ode45 with the

constant-step rk4sys function from Chap. 20 (Fig. 20.8). For the script outlined above, the
fourth line would be formulated as

I t p , y p ]  =  r k 4 s y s  (  @ P l i n y o d e ,  t s p a n ,  y 0 ,  0  '  0 6 2 5  )  ;

As in Fig. 21 .13, the solution now evolves as expected. The tank fills to yn'rn and then emp-
ties until it reaches )1o*, when the cycle repeats.

There are a two take-home messages that can be gleaned from this case study. First,

although it's human nature to think the opposite, simpler is sometimes better. After all, to
paraphrase Einstein, "Everything should be as simple as possible, but no simpler." Second,
you should never blindly believe every result generated by the computer. You've probably
heard the old chestnut. "sarbase in. sarbase out" in reference to the impact of data quality

1009080



536 ADAPTIVE METHODS AND STIFF SYSTEMS

2 l . l
Plin

thre
21.2
a n e

whe
the r
rate.
(a)

;
21.3
inter

Use
o f C
v(2.1
Corr
the e
and .
2r.4
inter

Use

makr

:
I

:
I

:

(b)

!
a

continued

0.09

0.08

0.02

0.01

-0 
10 20 30 40 50 60 70 80 90 100

Time (s)

FTGUR.E 2r.r3
The level in Pliny's {ounloin versus time os simuloted with o smoll, consiont step size using fie
rk4sys funcl ion (F ig.  20.8)

on the validity of computer output. Unfortunately, some individuals think that regardlessof
what went in (the data) and what's going on inside (the algorithm), it's always "gospeloul"
Situations like the one depicted in Fig. 21.12 are particularly dangerous-that is, althou$
the output is incorrect, it's not obviously wrong. That is, the simulation does not go unst&
ble or yield negative levels. In fact, the solution moves up and down in the manner of an
intermittent fountain, albeit incorrectly.

Hopefully, this case study illustrates that even a great piece of software such as
MATLAB is not foolproof. Hence, sophisticated engineers and scientists always examine
numerical output with a healthy skepticism based on their considerable experience ad
knowledge of the problems they are solving.
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PROBLEMS

2l, l  Repeat the the same sinrr.r lat ions as in Section 21.-5 for
Pl iny's fountain. but generate the solut ions with c. i1e2j,
ode23s, and ode113. Use :subpl ot to develop a vert ical
three-pane plot of the t ime series.
21,2 The following ODEs have been proposed as a model of
an  ep idemic :

d S-  :  - / r . s I
a t

d t
,  : a S I  - r l

a t

d R- - : r l
a t

where S : the susceptible individuals, / = the infected, R :

the recovered, a : the int'ection rate. and r: the recovery
rate. A city has 10,000 people, al l  of whonr are susceptible.
(a) If a single infectious individual enters the city at . : 0,

compute the progression of the epidenric until the number
of infected individuals falls below | 0. LIse the following
parameters: a : 0.0021@erson . week) and r : 0.15/d.

Develop time-series plots of all the state variables. Also
generate a phase-plane plot of S versus 1 versus R.

(b) Suppose that after recovery, there is ir loss of immunity
that causes recovered individuals to hecome susceptible.
This reinfection mechanism can be computed as pR,

where p : the reinf'ection rate. Modify the model to
include this mechanism and repeat the computations in
( a ) u s i n g P : 0 . 0 3 / d .

21.3 Solve the fol lowing init ial-value problem over the

i n t e r v a l f i o m r : 2 t o 3 :

d v-  -  -0 .5 r '  l -  e - '
dt

Use the non-self-starting Heun method with a step size

of 0.5 and init ial  condit ions of -r,-(1.5):5.222138 and

.r(2.0) :  4.143883. I terate the corrector to s. :0.17o.

Compute the percent relative enors for your results based on
the exact solut ions obtained analyt ical ly: v(2.5) :  1.27-1888
and -r '(3.0) :  2.577988.
21.4 Solve the following initial-value problem over the
interval from I : 0 to 0.5:

dy
dt

- 
-r'tZ - )

Use the fourth-order RK method to predict the first value at

t:0.25. Then use the non-self:start ing Heun method to
* - r . ^  r l r ^  ^ - - J i ^ r ; , - n  . t  |  -  n  5  N T n t p .  r r t O )  -  I

21 .5  G i ven

t ly

; 
: -1oo'ooo)' r 99.999e-'

(a) Estimate the step size requiled to maintain stability
r"rsing the expl ici t  Euler method.

(b) lf .v(0) : 0, use the implicit Euler to obtain a solution
from / : 0 to 2 using a step size of 0. l.

21.6 Given

z1 t'
,  : 3 f l r  s i n  1  .  r ) +  3 c 0 s 1

t l I

If f (0) : 0, use the implicit Euler to obtain a solution from
t : 0 lo 4 using a step size of 0.4.
21 .7  G iven

:999xt -f  1999x2

: -1000rr - 2000rr

I f  ; r1 (0) :xu(0) :  l .  ob ta in  a  so lu t ion  f rom t :0  to  0 .2
using a step size of 0.05 with the (a) explicit and (b) implicit
Euler rnethods.
21.8 The fbllowing nonlinear. parasitic ODE was suggested
by Hornbeck (1975):

d t '
-  : 5 ( l ' -  r ' r

A T

If the initial condition is -r.'(0) : 0.08. obtain a solution from
/ : 0 t o 5 :
(a) Analytically.
(b) Using the fourth-order RK method with a constant step

size of 0.03 l2-5.
(c )  Us ing  the  MATLAB func t ion  oc te4  .
(d )  Us ing  the  MATLAB l 'unc l ion  ooe)  :  .
(e) Using the MATLAB function ode23tb.
Present your results in graphical form.
21.9 Recall  from Example I7.5 that the fol lowing humps
function exhibits both flat and steep regions over a relatively
short.r range,

+ - o
( ' I - 0 . 3 ) ? + 0 . 0 1 ( x - 0 . 9 ) 2 f 0 . 0 4

Determine the value of the deflnite integral of this function

between.r :0 and I using (a) the quad and (b) the ode45
f r rnc l ions

cl.t t

d t

dr:
dr
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21.10 The osci l lat ions of a swinging pendulum can be sitn-
ulated with the following nonlinear model:

, t ) a  o
: :  +  I  s i n d  : 0
t l t)  I

wherc 0 : the angle of displacernent, .q : the gravitational
constant, and / : the pendulum lcngth. For small angular
displacements. the sin d is approxirnately equal to d and the
model can be linearized as

L1 r,u o

d12-

Use ode45 to solve fbr d as a function of time for both
the linear and nonlinear models wherc I :0.6 m and
g:9.81nr./s2. First,  solve for thc case where the init ial

condition is fbr a small displaccment (d : :r/8 and

d0 I dt :0). Then repcat the calculat ion fbr a large displace-
ment (A : r 12 and d0 I dt : 0). For each case, plot the lin-

ear and nonlinear simulations on the same plot.

21.11 The following system is a classic cxample of stiff

ODEs that can occur in the solution of chemical reaction

kinetics:

9 : - o . u t , c r  - l o o o r : r c 3
dt

dc.- - -2-500crcr
d r

- ' *  :  - 0 . 0  1 3 t . r  -  1 0 0 0 r ' r c r  -  2 5 0 0 c 2 t  - r
dt

Solve these equations from l : 0 to 50 with initial conditions

c1(0) : cr(0) : I and c.(0) : 0. If you have access to

MAILAB software, use both standard (e.g., oce45) and stiff
(e.g., ode23s) functions to obtain your solut ions.
21.12 The following second-order ODE is considered to be
stiff:

1 1  r

- - _ t o o r ; - t o o o ra. r -  ox

Solve this differential equation (a) analytically and
(b) numerically fbr .r : 0 to 5. For (b) use an implicit

apploach with /z : 0.5. Note that thc initial conditions are

.v(0) : 1 and 1'(0) : 0. Display both results graphically'

21.13 Consider the thin rod of length 1 moving in the

x-,r '  plane as shown in Fig. P2l .13. Thc rod is f ixed with a pin

on one end and a mass at the other. Note that I : 9.81 m/sl

and 1 : 0.5 m. This systcm can be solved using

FIGURE P2I . I3

Let fr(0) :0 and A1O) : CI.ZS radls. Solve using any method
studicd in this chapter. Plot the angle versus time and the
angular velocity versus time. (Hint: Decompose the second-
order ODE.)

21.14 Given the first-ordcr ODE:

d t

- r ( t : 0 ) : 4

Solve this stiff diff'erential equation using a numerical

method over the time period 0 < r < 5. Also solve analyti-

cally and plot the analytic and numerical solution for both

the tast transient and slow transition phase of the time scale.

21.L5 Solvc the following differential equation from
t  : 0 I o  2

d t
-  :  - l 0 r

o t

with the initial condition 1'(0) : l. Use the following tech-

niques to obtain your solutions: (a) analytically, (b) the ex-

plicit Euler rnethod, and (c) the implicit Euler method. For
(b) and (c) use /r : 0. I and 0.2. Plot your results.
21.16 The Lotka-Volterra equations described in Sec-

tion 20.6 have been refined to include additional factors that

impact predator-prey dynamics. For example, over and

above predation, prey population can be limited by othet

factors such as space. Space limitation can be incorporated

into the model as a carrying capacity (recall the logi$ic

model describcd in Prob. 20.5) as in

s ,  _ , ,
t

r  , { r
: r r ( l - V ) x - b x t

: -61' f r/_ry

where K : the carrying capacity. Use the same parameter

values and initial conditions as in Section 20.6 to integrate
these eouations f iom I :  0 to 100 usins ode45.

dx
-

d t

d),

d r

. . e
e - L 0 - n
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(a) Employ a very large value of ;g: 10" to val idate that
you obtain the same results as in Section 20.6.

(b) Conrpare (a) with the more realistic carrying capacity of
K : 2QO. Discuss your results.

21.17 Two masses are attached to a wall  by l inear sprinus
tFig. P2 l .  I  7). Force balances based on Newton's second law
can be written as

:  - I f  1 , r ,  -  t . t ) , 1 ! ( r ,  -  . \ 1  -  w '  -  L2 )
m t  n 1  |

- . t 1  - t r r l  - 1 2 )

where k: the spring constants.,n :  n-rass, L: the length of
the unstretched spring. and w : the width of the mass. Com-
pute the posit ions of the masses as a function of t ime usin-t
the fbl lowing parameter values: t ,  :  f t :  :  5, mt :  m):2,

L l

FIGURE P2I . I7

t t ) , :  y l . : 5 ,  a n d  L t :  L t : 2 .  S e t  t h e  i n i t i a l  c o n d i t i o n s  a s

"\t :  Lt tutd x, :  L, I  u, + L2+ 6. Perfbrrn the simulat ion
from / : 0 to 20. Construct time-series plots of both the dis-
placements and the velocities. In adclition, produce a phase-
plane plot of .r ,  versus r, .

w2L2w 1

d - - { I

, l , t

d2.r t
-

d t '

k .-  - - - - : ( - t2
m 2
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CHAPTER OBJECTIVES
The primary objective of this chapter is to introduce you to solving boundary-value
problems for ODEs. Specific objectives and topics covered are

. Understanding the difference between initial-value and boundary-value problems
o Knowin-q how to express an nth-order ODE as a systern of n first-order ODEs.
. Knowing how to implement the shooting method 1br linear ODEs by using linear

interpolation to generate accurate ''shots."

. Understanding how derivative boundary conditions are incorporated into the
shooting method.

. Knowing how to solve nonlinear ODEs with the shooting method by using root
location to generate accurate "shots."

. Knowing how to implement the finite-difference method.

. Understanding how derivative boundary conditions are incorporated into the
finite-difference method.

. Knowing how to solve nonlinear ODEs with the finite-difference rnethod by using
root location methods for systens of nonlinear algebraic equations.

YOU'VE GOT A PROBTEM

o this point, we have been computing the velocity of a free-falling bungee jumper by
integrating a single ODE:

tlu c,t t
- ;  : 8  -  - - : u -  t l l . l t
a t m

Suppose that rather than velocity, you are asked to determine the position of the jumperas
a f i rnc r in r r  n f  t ime Onp urev  tn  dn  th ic  iq  tn  recosn ize  th r t  ve loc i tv  iq  the  f i rq t  der iv r t i ve

:i;
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of distance:

dr

dr
(22.2)

Thus, by solving the system of two ODEs representedby Eqs. (22.1) and(22.2), we can
simultaneously deterrnine both the velocity and the position.

However, because we are now integrating two ODEs, we require two conditions to
obtain the solution. We are aheady tamiliar rvith one way to do this for the case where we
have varlues for both position and velocity at the initial time;

x ( r : 0 ) : r : ,

t r ( l : 0 ) : u r

Given such conditions, we can easily integrate the ODEs using the numerical techniques
described in Chaps. 20 and 2l . This is refened to ils an initial-value problem.

But what if we do not know values lbr both position and velocity at / : 0? Let's say
that we know the initial position but rather than having the initial velocity, we want the

.jumper to be at a specified position at a later time. In other words:

. t ( l  :  0)  : .v ;

x ( t : t 1 ) : r y

Because the two conditions are given at ditferent values of the independent variable, this is
called a boundary-value problem.

Such problems require speciai solution techniques. Son.re of these are related to the
methods for initial value problems that were described in the previous two chapters. How-
ever, others emplov entirely different strategies to obtain solutions. This chapter is de-
signed to introduce you to the more comnlon of these methods.

22.1 INTRODUCTION AND BACKGROUND

22.1.1 Whot Are Boundory-Volue Problems?

An ordinary differential equation is acconrpanied by auxiliary conditions, which are used
to evaluate the constants of integration that result during the solution of the equation. For
an rzth-order equation, n conditions are required. If all the conditions are specified at the
same value of the independent variable, then we are dealing with an ilritial-vaLue problem
(Fig.22.1a). To this point, the material in Part Six (Chaps. 20 and 21) has been devoted to
this type of problem.

ln contrast. there are often cases when the conditions are not knor.vn at a single point
but rather are given at different values of the independent variabie. Because these values
are often specified at the extreme points or boundaries of a system, they are customarily
referred Io as bounrlary--value pntblerns (Fig.22.lb). A variety of significant engineeling
applications tall within this class. In this chapter, we discuss some of the basic approaches



542 BOUNDARY-VALUE PROBLEMS

where  a t  r  -  0 .  r I  . -  J  r .o  and \ '2  -  ) .  r ,
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FIGURE 22.I
lni t io lvolue versus boundoryvolue problems {o) An inrt io l-volue problem where o l lhe condit ions
ore  spec  l ied  c '  l Ie  sorne  vo lue  o f  the  inoepenoen '  vo ' ioo le .  (b )  A  oor^dc .y -vo lue  p 'ob le r
where lhe condit ions ore specif ied oi dif ferent volues of the independent vorioble.

22.1.2 Boundory-Volue Problems in Engineering ond Science

At the beginning of this chapter, we showed how the determination of the position and ve-
locity of a falling object could be formulated as a boundary-value problem. For that exam-
ple, a pair of ODEs was integrated in time. Although other time-variable examples can be
developed, boundary-value problems arise more naturally when integrating in space. This
occurs because auxiliary conditions are often specified at different positions in space.

A case in point is the simulation of the steady-state tenperature distribution for a long,
thin rod positioned between two constant-temperature walls (Fig. 22.2).The rod's cross-
sectional dimensions are small enough so that radial temperature gradients are minimal
and, consequently, temperature is a function exclusively of the axial coordinate x. Heat is
transfeffed along the rod's longitudinal axis by conduction and between the rod and the
surrounding gas by convection. For this example, radiation is assumed to be negligible.r

lWe incornorate radiation into this nrohlem later in this chaoter in Examnle 22.4.
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FIGURE 22.2
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As depicted in Fig. 22.2, a heat balance can be taken around a differential element of
thickness A,t as

Q : q(r ' )A,.  -  q(x + Ar)A,.  + hA,(Tn - T) (22.3)

where q(.r) : f lux into the element due to conduction [J/tm:'s)]: q(r * Ax) : f lux out
of the element due to conduction U/(m2 ' s)]; A,. : cross-sectional area [m2 ] : 7T 12 , r : the
radius [m]; h : the convection heat transfer coefTicient [J/1m2 ' K ' s)l: A' : the element's
surface area [m2 ] - 2n r Lr Z- : the temperature of the surrounding gas [K]; and Z :

the rod's temperature [Kl.
Equation (22.3) can be divided by the element's volume (1rr'A,x) to yield

0  _  . / ( r )  - . / ( r  +  A ' { )  
+ 2 h  t T _  _  T l

A-r r

Taking the limit Ax -> 0 gives

da 2h
0 :__ ;+_ (T__T)

a r r

The flux can be related to the temperature gradientby Fourier's law:

d T
q : - K ,

ax

where, t  : thecoef f ic ientof  thermal  conduct iv i ty  U/(s.m'K) l .Equat ion(22.5)  canbedi f -

ferentiared wirh respect ro x, substituted into Eq. (22.q, and the result divided by k to yield,

, ! 27
0 :T+h ' tT - -T l

d x -

(22.4)

(22.s)

(22.6)

where ft' : a bulk heat-transfer parameter reflecting the relative impacts of convection and

conduction [- 
2] : 2hl?k).

Equation (22.6) represents a mathematical model that can be used to compute the tem-

haror, r ra o lnno rhe rn, l 'q  eyie l  r l imenqion Recause i t  is  a second-order ODE, two condi t ions
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EXAMPLE 22. I

are required to obtain a solution. As depicted inFig.22.2, a comnron case is where the tem-
peratures at the ends ofthe rod are held at fixed values. These can be expressed mathemat-
ically as

T (0) : 7,,

T(L)  :  T| '

The fact that they physically represent the conditions at the rod's "boundaries" is the origin
of the terminology: boundary conditions.

Given these conditions, the model represented byEq. (22.6) can be solved. Because
this particular ODE is linear, an analytical solution is possible as illustrated in the follow-
ing example.

Anolyticol Solution for o Heqted Rod

Problem Stotement. Use calculus to solve
0 . 0 5 m - 2 [ / z : l  J l ( m 2  ' K ' s ) ,  r : 0 . 2 m ,  k :
boundary conditions:

z(0) : 300 K z(10) : 4s0 K

Eq. (22.6) fbr a 10-m rod with h'=
200 J/(s . m ' K)1, T* = 200 K, and the

Solution. This ODE can be solved in a number of ways. A straightforward approach is to
first express the equation as

d 2 T- -  - l t T : - 1 7 ' l n

Because this is a linear ODE with constant coefflcients, the general solution can be readily
obtained by setting the right-hand side to zero and assuming a solution of the form
T : eL' . Substituting this solution along with its second derivative into the homogeneous
form of the ODE yields

7 2 n L x  _ h , d , r : 0

which can be solved for L : +JA Thus. the gener-al solution is

T : A e ^ ' + B e - i '

where A and B are constants of integration. Using the method of undetermined coefficients
we can derive the particular solution T : T-. Therefore, the total solution is

T  : T o  *  A e , '  1  B r '  "

The constants can be evaluated by applying the boundary conditions

7 , , : T n + A + B

Tr, :  Tn I  Ad'L I  Be- t ' r

These two equations can be solved simultaneously for

( 7 , - T n ) e - ^ t  - ( 7 , , - T n \
A -

e,Lr, _ d,L

( T o - T * ) - ( 7 . - T n ) / ' L
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I . K

400

10 "r, m

FIGURE 22.3
Anolytico solulion for the heoted rod

Substituting the parameter values from this problem gives A:20.461 1 and B:
19.5329. Therefbre. the final solution is

r : 100 + 20.461 1 n. tt os ' + lg .532ge ffi5' (22.1 )

As can be seen inFig.223, the solution is a smooth curve connecting the two bound-
ary temperatures. The temperature in the middle is depressed due to the convective heat
loss to the cooler sunounding sas.

In the following sections, we will illustrate numerical approaclres for solving the same
problem we just solved analytically in Example 22.l.The exact analytical solution will be
useful in assessing the accuracy of the solutions obtained with the approximate, numerical
methods.

22.2 THE SHOOTING METHOD

The shooting method is based on convefting the boundary-value problem into an equiva-
lent initial-value problem. A trial-and-error approach is then implemented to develop a so-
lution for the initial-value versiorl that satisfies the given boundary conditions.

Although the method can be employed for hi-eher-order and nonlinear equations. it is
nicely illustrated fbr a second-order, linear ODE such as the heated rod described in the
previous section:

d ) T
0 :  

a _ * .  
a l t t T o - T )

subject to the boundary conditions

r (0) - f,,
T ( L ) : T b

(22.8\

We convert this boundary-value problem into an initial-value problem by defining the
rate of change of temperature, or gradient, as

d T
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and reexpressing Eq. (22.8) as
) -

t t  .

d x

Thus, we have converted the single second-order equation (Eq. 22.8) into a pair of f irst-
order ODEs (F.qs.22.9 and22.10).

If we had initial conditions for both Z and :. we could solve these equations as an initial-
value problem with the methods described in Chaps. 20 and 21. However, because we only
have an initial vafi"re tbr one of the variables I (0) : 7., we simply mtrke a guess for the other
:(0) : {.r ord then perforrn the integration.

After perfbrming the integration, we will have generated a value of I at the end of the
interval, which we wil l call 4r. Unless we are incredibly lucky, this result wil l differ from
the desired result Zr,.

Now, let's say that the value of f,1 is too high (Tr,t > Tt) , it would make sense thar a
lower value of the initial slope z(0) - ;(2 might result in a better prediction. Using this
new guess, we can integrate again to generate a second result at the end ofthe interval f,,2.
We could then continue guessing in a trial-and-error fashion until we arrived at a guess for
:(0) that resulted in the corect value of T (L) : 7r.

At this point, the origin of the name .shootirtg method should be pretty clear. Just as you
would adjust the angle of a cannon in orcler to hit a target, we are adjusting the trajectory of
our solution by guessing values of z(0) until we hit our targetT(L) : Ty.

Although we could cefiainly keep guessing. a more efficient strategy is possible for
linear ODEs. In such cases, the trajectory of the perf-ect shot 1, is linearly related to the re-
sults of our two erroneous shots (s,,1, 4r) and (zoz,Tnz).Consequently, l inear interpola-
tion can be ernployed to arrive at the required trajectory:

i , ,  :  l , , r  + ; f  -ar  71,  -  T1 '1)
1 b 2 -  I b l

The approach can be illustrated by an example.

The Shooting Method for o Lineor ODE

Problem Stotement. use the shooting method to solve Eq. (22.6) for the same condi-
t i ons  as  Exa rnp le  22 .1 :  L :  l 0m,  h '  : 0 .05m-2 .  T - :200K ,  f ( 0 ) : 300K ,  and
7(10)  :  400 K.

Solution. Equation (22.6) is f irst expressed as a pair of f irst-order ODEs:
. I T

E : , .
. t -
a t ^_ : _0.05(20tJ _ T)
ax

Along with the initial value for temperarure Z(0) : 300 K, we arbitrarily guess a value of
ia | : -5 K/m for the initial value for r (0). The solution is then obtained by integrating the

l:.11-":_10u-'^';".1'l^: 
:"9,:""11;Y::il,f^'Li:.y':l.r*LAB's ocre45 ru'-ion bv first

(22.  l0)

(22.1r)

EXAMPLE 22.2
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L u - ] e r  .  o r  . . i y = E x 2 l 0 2  r x , y  I
d y =  l y  ( 2  )  ;  - 0 . 0 5 "  ( 2 o o - y  ( t )  ) l  ;

We can then generate the solution as

> >  T b l = Y  ( l e n S t h  ( Y )  )

5 6 9 . 1 5 3 9

Thrrs. we obtain a value at the end of the interval of 761 : 569.7539 (Fig.
differs fronl the desired boundary condition of T6:400. Therefore, we
gu€ss in2 : -20 and perform the computation again. This time,
Ttz:259.5131 is  obta ined (Fig.  22.4b) .

22.4a), which
make another
the result of

FIGURE 22.4
Temperofure {K) versus cistonce im.) compuied wrth the shocting method; io) the firsr "shot,"
{b) the seconC "shoi," ond lc) the finol exoci "hit."
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EXAMPLE 22.3

Now, because the original ODE is linear, we can use Eq. (22.11) to determine the cor-
rect trajectory to yield the perfect shot:

-20 -  (-5)
-  (4oo - 569.7539) :  -13.2075
569.15392 5 9 . 5 1 3 1  -

This value can then be used in conjunction with ode45 to generate the conect solution, as
depicted inFig.22.4c.

Although it is not obvious from the graph, the analytical solution is also plotted on
Fig.22.4c. Thus, the shooting method yields a solution that is virtually indistinguishable
from the exact result.

22.2.1 Derivqtive Boundory Conditions

The fixed or Dirichlet boundary condition discussed to this point is but one of several types
that are used in engineering and science. A common alternative is the case where the de-
rivative is given. This is commonly referred to as a Neumann boundary condition.

Because it is already set up to compute both the dependent variable and its derivative,
incorporating derivative boundary conditions into the shooting method is relatively
straightforward.

Just as with the fixed-boundary condition case, we first express the second-order ODE
as a pair of first-order ODEs. At this point, one of the required initial conditions, whether
the dependent variable or its derivative, will be unknown. Based on guesses for the miss-
ing initial condition, we generate solutions to compute the given end condition. As with the
initial condition, this end condition can either be for the dependent variable or its deriva-
tive. For linear ODEs, interpolation can then be used to determine the value of the missing
initial condition required to generate the final, perfect "shot" that hits the end condition.

The Shoot ing Method wi th Der ivot ive Boundory Condi t ions

Problem Stotement. Use the shooting method to solve Eq. (22.6) for the rod in
Examp le  22 .1 :  L :  l 0  m .  f t '  :  0 .05  m-2  [ f t  :  I  J / (m2  .  K . s ) .  r  :  0 .2  m .  k :200  J l
(s ' m ' K)1, f- : 200 K, and 7(10) : 400 K. However, for this case, rather than having
a fixed temperature of 300 K, the left end is subject to convection as in Fig.22.5.For

FIGURE 22.5
A rod wiih o conveci ive boundory condit ion oi one end ond o f ixed temperoture oi the olher.

Convection

T-
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I simplicity, we will assume that the convection heat transfer coefficient for the end area is
the same as for the rod's surface.

Solution. As in Example 22.2, Eq. (22.6) is f irsr expressed as

d T

dx
n 7

i : -0.0s Q00 - 71
ax

Although it might not be obvious, convection through the end is equivalent to speci-
fying a gradient boundary condition. In order to see this, we must recognize that because
the system is at steady state, convection must equal conduction at the rod's left boundary
(-r : 0). Using Fourier's law (8q.22.5) to represent conduction, the heat balance at the end
can be formulated as

hA , (To - f ( 0 )  l : _ - f e ,#01

This equation can be solved for the gradient

d T h

E(0):  t (7(0) 
-  7*)

(22.12)

(22.13)

If we guess a value for temperature, we can see that this equation specifies the gradient.
The shooting method is implemented by arbitrarily guessing a value for z(0). If we

choose a value of Z(0) :Tnt:300K, Eq. (22.13) then yields the init ial value for the
gradient

d T . ^  1
zn r  :  

; ( 0 )  
:  - ( 300  -  200 )  : 0 .5

The solution is obtained by integrating the pair of oDEs from r : 0 to 10. We can do this
with MATLAB's ode45 function by first setting up an M-file to hold the differential equa-
tions in the same fashion as in Example 22.2. we can then generate the solution as

> >  [ t , y ] = o d e 4 5 ( @ E x 2 3 A 2 ,  l 0  1 0 1 ,  t 3 0 O , O . 5 l  )  ;
> >  T b 1 = y ( l e n g r h ( y )  )

6 B 3 .  s 0 B B

As expected, the value at the end of the interval of 71,1 :683.5088K differs from the
desired boundary condition of T6 - 400. Therefore, we make another guess f,2 : 150 K,
which corresponds to Znz : -O.25, and perfbrm the computation again.

> >  T b 2  = y  (  l e n g t h  ( y  )  )

- 4 7 . 1 5 4 4
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7 'K

400

300

200
1 0  r , m

FIGURE 22.6
The solut ion of o second-order CDE with o conveci ive boundory condlt ion ot one end ond o
fixed lemoerolure ot the other.

Linear interpolation can then be employed to compute the correct initial temperature

150 -  300
4 , : 3 0 0 f - @00 - 683.5088) : 241.3643 K-41.7544 -  683.s088 '

which corresponds to a gradient of Zu - 0.2068. Using these initial conditions, ode45 can
be employed to generate the conect solution, as depicted in Ftg. 22.6.

Note that we can verify that our boundary condition has been satisfied by substituting
the init ial conditions into Eq. (22.12) to give

J J K
|  *  i r  x ( 0 . 2 m ) ' x ( 2 0 0 K - 2 4 1 . 3 6 4 3 K ) : - 2 0 0  - - -  .  r r  x t 0 . 2 m ) ' x 0 . 2 0 6 8 -

m r K s  m K s  m

which can be evaluated to yield *5.1980J/s: -5.1980J/s. Thus, conduction and con-
vect ionareequalandtranSferheatoutof thelef tendof therodatarateof

22.2.2 The Shooting Merhod for Nonlineor ODEs

For nonlinear boundary-value problems, linear interpolation or extrapolation through two
solution points will not necessarily result in an accurate estimate of the required boundary
condition to attain an exact solution. An alternative is to perform three applications ofthe
shooting method and use a quadratic interpolating polynomial to estimate the proper
boundary condition. However, it is unlikely that such an approach would yield the exact
answer, and additional iterations would be necessary to home in on the solution.

Another approach for a nonlinear problem involves recasting it as a roots problem. Re-
call that the general goal of a roots problem is to find the value of r that makes the function

f (x) :0. Now, let us use the heated rod problem to understand how the shooting method
can be recast in this form.

First, recognize that the solution of the pair of differential equations is also a "func-
tion" in the sense that we guess a condition at the left-hand end of the rod zn, and the inte-
gration yields a prediction of the temperature at the right-hand end 76. Thus, we can think
of the integration as

Tu :  f  k , )
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That is, it represents a process whereby a guess of 2,, yields a prediction of 16. Viewed in
this way, we can see that what we desire is the value of ;,, that yields a specific value of 71,.
I1', as in the example, we desire To : 400. the problem can be posed as

400 : .l k.)

By bringing the goal of 400 over to the right-hand side of the equation, we generate a new
function res(zn) that represents the difference, or residual, between what we have, l (2,,),

and what we want. 400.

res (7 . , , ) :  J ' ka ) -400

If we drive this new function to zero, we will obtain the solution. The next example illus-
trates the approach.

EXAMPLE 22.4 The Shooting Method for Nonlineor ODEs

Problem Stotement. Although it served our pu{poses for i l lustrating the shooting
rnethod, F,q. (22.6) was not a completely realistic model for a heated rod. For one thing,
such a rod would lose heat by mechanisms such as radiation that are nonlinear.

Suppose that the following nonlinear ODE is used to simulate the temperature of the
heated rod:

(1:T
0 : = + h,(T& _ Tt + o, '  q! _ ra1

dx'

' where o' : a bulk heat-transfer parameter reflecting the relative impacts of radiation and
r conduction:2.J x l0 e K 3 m-2. This equation can serve to i l lustrate how the shooting
' method is used to solve a two-point nonlinear boundary-value problem. The remaining

, problem conditions are as specified in Example 22.2: L : 10 r7t,h' :0.05 m 2,

7-  :  200 K,  f  (0)  :  300 K,  and 7(10)  :400 K.

, Solution. Just as with the linear ODE, the nonlinear second-order equation is first ex-

, oressed as two first-order ODEs:

tlT

d -: . '  :  -0 .05 t200 T)  -  2 .1
tlx

x  l 0  u (1 .6  x  lOq  -  14 . )

An M-file can be developed to compute the right-hand sides of these equations:

f u n c t i o n  d y = f l y d x n  ( x ,  Y )
d y = t y  ( 2 )  ; - 0 . 0 5 *  ( 2 0 0 - y ( 1 , )  )  2 . 1 e - 9 *  ( 1 .  6 e 9  y ( 1 ) ^  )  I  ;

Next, we can build a function to hold the residual that we will try to drive to zero as

f u n c t i o n  r = r e s  (  z a )

f x , y l = o d e 4 5 ( @ d y d x n ,  t 0  1 0 1 ,  l 3 A a  z a l ) ;
r = y  (  l e n g t h  ( r ) ,  1 )  - 4 0 0  ;
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l K

400

300

10 r. rn

FIGURE 22,7
The result of using fie shooting method to solve a non ineor prob em

Notice how we use the ode45 function to solve the two ODEs to generate the temperature
at the rod's end: y (length (x) , 1) . We can then find the root with the f zero function:

> >  f z e r o  ( @ r e s ,  - 5 0 )

A 1  ? . 4 1 , 1

Thus,weseethat i f  weset thein i t ia l  t ra jectoryz(0)  :  -41.1431.  theresidual funct ionwi l l
be driven to zero and the temperature boundary condition Z(10) :400 at the end of the
rod should be satisfied. This can be verified by generating the entire solution and plotting
the temperatures versus x:

> >  l x , y l = o d e 4 5 ( @ d y d x n ,  t 0  1 0 1 ,  1 3 0 0  f z e r o ( @ r e s ,  - 5 t l )  l  )  ;
> >  p l o t ( x , t ' ( : , 1 ) )

The result is shown inFig.22.7 along with the original l inear case fionr Example 22.2.
As expected, the noniinear case is depressed lower than the linear model due to the addi-
tional heat lost to the surrounding gas by radiation.

22.3 FINITE.DIFFERENCE METHODS

The most colrmon altematives to the shooting method are finite-ditlerence approaches. In
these techniques, tinite differences (Chap. l9) are substituted for the derivatives in the
original equation. Tlrus, a linear differential equation is transformed into a set of simulta-
neous algebraic equations that can be solved using the methods frorn Part Three.

We can illustrate the approach fbr the heated rod model (Eq.22.6):

. l ) r
o : ;+h ' (T - -T ) (22.t4)

The solution domain is first divided into a series of nodes (Fig. 22.8). At each node, finite-
difference approximations can be written fbr the derivatives in the equation. For example,
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a-{

FIGURE 22.8
In order to implement the finitedifference opprooch, the heoted rod is divided into o series o{
nodes

at node l. the second derivative can be represented by (Eq. 19.15):

d ) T
dx2

T i - t  - 2 T i  * T i + t (22.1s)
Ax2

This approximation can be substituted into Eq. (22.14) to give

T i  r - 2 T i  a T i * 1
+  h ' ( T n  *  4 )  : 0

A.rl

Thus, the differential equation has been converted into an algebraic equation. Collecting
terms gives

-Ti t I Q + h' Lx2)Ti - Ti+r : h' L..r2Tn (22.16)

This equation can be written for each of the rr - I interior nodes of the rod. The first and
last nodes Ts and 7,, respectively, are specified by the boundary conditions. Therefore, the
problem reduces to solving n - 1 simultaneous linear algebraic equations for the n - I
unknowns.

Before providing an example, we should mention two nice features of Eq. (22.16).
First, observe that since the nodes are numbered consecutively, and since each equation
consists of a node (i) and its adjoining neighbors (i - I and i + 1), the resulting set ofl in-
ear algebraic equations will be tridiagonal. As such. they can be solved with the efficient
algorithms that are available for such systems (recall Sec. 9.4).

Ftrrtl.rer, inspection of the coefficients on the left-hand side of Eq. (22.16) indicates that
the system of linear equations will also be diagonally dominant. Hence, convergent solutions
can also be generated with iterative techniques l ike the Gauss-Seidel method (Sec. 12. l).

EXAMPLE 22.5 Fin i te-Di f ference Approximot ion of  Boundory-Volue Problems

Problem Stotement. Use the finite-difference approach to solve the same problem as in
Examples 22.1 and22.2.Use four interior nodes with a segment length of Lx : ) 111.

Solution. Employing the parameters in Example 22.1 and Ax:2m, we can write
Eq.(ZZ. | 6) fbr each of the rod's interior nodes. For example, for node l:

-To l2 .2Tr -  Tz :  40

Substituting the boundary condition It : 300 gives

2.271 -  Tz :340
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After writing Eq. (22.16) for the other interior nodes, the equations can be assembled irr
matrix form as

f 2 . 2  - r  0

l - 1  2 .2  - r

|  0  - r  2 .2
L0  0  -1

Notice that the matrix is both tridiagonal and dia-qonally dominant.
MATLAB can be used to senerate the solution:

4 0  4 4 r ) l  ' ;

T =
2 8 3 . 2 6 5 t )
2 8 3 . 1 8 5 3
2 9 9  . 1 4 r 6
3 3 6 . 2 4 6 2

Table 22.1 provides a comparison between the analytical solution (8q.22.1) and the
numerical solutions obtained with the shooting rnethod (Example 22.2) and the finite-
difference method (Example 22.5). Note that although there are some discrcpancies, the
numerical approaches agree reasonably well with the analytical solution. Further, the biggest
discrepancy occurs for the finite-difference method due to the coarse node spacing we used
in Example 22.5. Better agreement would occur if a f iner nodal spacing had been used.

TABTE 22. 1 Comporison of the exoct onolyticol solution for temperoture with the results

.:13:::-{"yl-f::k-:ns".::"ji stk*;"*- *
Anolyticol
Solution

Shooting
Method

: {it}:'lli

Finite
Difference

(._)
2
4
6
IJ
t 0

300
282 8634
282  5775
'299 AB43
335 74A4

4AO

300
2B2 BBB9
2 8 2  5 t  5 8
299  1254
J35 .77  )  B
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22.3.1 Derivotive Boundory Conditions

As mentioned in our discr,rssion of the shooting method, the fixed or Dirichlet boundan'
cornlition is but one of several types that are used in ensineering and science. A common
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A-r

FIGURE 22.9
A boundory node ot the left end of o heoied rod. To opproxirnole the derivotive ot the boundory
on imoginory node is locoted o drslonce Ax to the left of the rod's end.

altemative, called the Neumann boundary condition, is the case where the derivative is
given.

We can use the heated rod introduced earlier in this chapter to demonstrate how a de-
rivative boundary condition can be incorporated into the finite-difference approach:

d 2 T
0 :  _  + / r ' ( f \ - f )

d r '

However, in contrast to our previous discussions, we will prescribe a derivative boundary
condition at one end of the rod:

d T
. (0) : r:

dx

T (L) : 7,,

Thus, we have a derivative boundary condition at one end of the solution domain and a
fixed boundary condition at the other.

Just as in the previous section, the rod is divided into a series of nodes and a finite-
difference version of the differential equation (F,q.22.16) is applied to each interior node.
However. because its temperature is not specified, the node at the left end rnust also be in-
cluded. Fig.22.9 depicts the node (0) at the left edge of a heated plate for which the deriv-
ative boundary condition applies. Writing Eq. (22.16) for this node gives

-T r t (2 + h' L-r2)To * Tt : h' LxzTn \22 .11 )

Notice that an imaginary node (- I ) lying to the left of the rod's end is required for this
equation. Although this exterior point might seem to represent a difficulty, it actually
serves as the vehicle for incorporating the derivative boundary condition into the problem.
This is done by representing the first derivative in the x dimension at (0) by the centered
difference (Eq. 4.25):

Tr - T-t

2Lx

d T
dr

which can be solved for

d T
T - r : T t  - 2 A r ' ,

d r
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Now we have a formula for I-1 that actually reflects the impact of the derivative. It can be
substituted into Eq. (.22.11) ro give

(2 + h' Lx2)7, * 2Tt : h' LxlTo - ro-#

Consequently, we have incorporated the derivative into the balance.
A commot.t example of a derivative boundary condition is the situation where the end

of the rod is insulated. In this case, the derivative is set to zero. This conclusion follows di-
rectly from Fourier's law (Eq. 22.5), because insulating a boundary means that the heat
flux (and consequently the gradient) must be zero. The tbllowing example illustrates how
the solution is affected by such boundary conditions.

EXAMPLE 22.6 Incorporot ing Der ivot ive Boundory Condi t ions

Problem Stotemeni. Generate the finite-difference solution fbr a 10-m rod with
Lx :2 r l , h ' : 0 .05m t .Tn :200K ,  and  the  bounda ry  cond i t i ons :  4 j  : 0  and
Tt : 400 K' Note that the first condition means that the slope of the solution should ap-
proach zero at the rod's left encl. Aside from this ca.se, also generate the solution for
d T l d x :  - 2 0  a t - v : 0 .

Solufion. Equation (.22.1g) can be used to represent node 0 as

2 . 2 T 0 - 2 7 1  : 4 9

We can write Eq. (22.16) for the interior nodes. For example. fbr node l.

- T o * 2 . 2 T t - T z : 4 0

A similar approach can be used for the remaining interior nodes. The final system of equa-
tions can be assembled in matrix form as

These equations can be solved for

To :243.0218

Tr : 241.3306

Tz :261 .0991

Tt :281.0882

T+ :330 .4946

As displayed in Fig. 22. 10, the solution is flat at ,r : 0 due to rhe zero derivative condition
and then curves upward fo the fixed condition of I : '100 at x : 10.

(22.18)

|  /  |  - /  -
t ' ' -  -  |
l - r  2 . 2  - 1  

|
|  

- 1  2 .2  - r  
I

|  
- t  2 .2  _ r  

I
L  - 1  2 .2J lr tfit
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200d

FIGURE 22.1O
The solution of o second-order ODE wiih o derivotive boundorv condition ol one end ond o fixed
boundory condilion ol fhe other. Two coses ore shown reflecting different derivotive volues ot -r : O

For the case where the derivative &t,t : 0 is set to -20, the simultaneous equatibns are

To
T,
r l

T2
T3
T+

1 t  a

- l  2 . 2
- t

I

,, 1

I 1"{,ll- 1
.'t ^, I

1  ' ) a

which can be soived for

To : 328 '27 10

7r  :301 '0981

Tz:294'1448

Tt:306'0204

z r : 3 3 9 . 1 0 0 )  '

As in Fig. 22.10, the solution at x : 0 now curves downward due to the negative derivative
we imposed at the boundary.

22.3.2 Finife-Differcince Approoches for Nonlineqr ODEs

For nonlinear ODEs, the substitution of finite differences yields a system of nonlinear si-
multaneous equations. Thus, the most general approach to solving such problems is to use
root location methods for systems of equations such as the Newton-Raphson method de-
scribed in Sec. 12.2.2. Although this approach is certainly feasible, an adaptation of suc-
cessive substitution can sometimes provide a simpler alternative.

The heated rod with convection and radiation introduced in Example 22.4 provides a
nice vehicle for demonstrating this approach,

^  d : T  . ,  - .  t  . - t  - ,  .0  :  ; ;  +  h  ( I - -  f )  +  o  ( T ]  - 7 " )
d  v a



558 BOUNDARYVALUE PROBLEMS

We can convert this difTerential equation into algebraic form by writing it for a node i and
substituting Eq. tZZ.l5) for the seconcl derivarive:

o -
T 1  1 - 2 T i l T i a l

Ax2
+ h ' (Tn -  7 l )  +  o"  (71-  r : )

Collecting terms gives

-Ti-t I (2 + h'Lxz)Ti - Ti+) : lt '  Lx2Tn + o' tr2(r!. - r,a)

Notice that althou-sh there is a nonlinear term on the right-lrand side, t lre leti-hand side
is expressed in the form of a linear algebraic system that is diagonally dominant. If we as-
sume that the unknown nonlinear term on the right is eclual to its value from the previous
iteration, the equation can be solved for

,  _  / r ' A . r 2 r -  + o ' A r 2 ( {  - T , o ) - t T i  t l T i + t (22. t9)

As in the Gauss-Seidel method, we can use Eq. 122.19) to successively calculate the tem-
perature of each node and iterate until the process converges to an acceptable tolerance.
Although this approach will not work fbr all cases, it converges fbr many ODEs clerived
from physically based systents. Hence, it can sometimes prove useful fbr solvin-u problems
routinely encountered in engineering and science.

EXAMPLE 22.7 The Fin i te-Di f ference Merhod for  Nonl ineor  ODEs

Problem Stqtement. Use the finite-difl'erence approach to simulate the temperature of a
heated rod subject to both convcction ancl radiation:

o :+ + h, ( rn  _  r )  +  o , ,  e l  14)

whereo '  :  2 .1  x  lO -e  K -3 ln -2 ,  L  :  l 0m, l r ,  : 0 .05  m . ,  Z_  :  200K .  I ( 0 )  :  300K ,
and I ( l0) : 400 K. Use four interior nodes with a segment length of Ar : 2 m. Recall that
we solved tlre sanre problem with the shooting method in Example 22.4.

Solution. Using Eq. (22.11)) we can successively solve for the temperatures of the rod's
interior nodes. As with the standard Gauss-Seidel technique, the initial values of the
interior nodes are zero with the boundary nodes .set at the fixecl conclitions of I, : 300 and
Z. :400. The results for the first iteration are

0.05(2)2 200 + 2.7 x t}-e (2)2(2001 - 01) + 300 + 0T . -

T . :

2 + 0.05Q))
:159.2432

:91 .9614
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Finite dif ference

l 0  x . m

FIGURE 22.11
The f led circ es ore the resu t of using the finite difference method lo solve o nonlineor problem
The inegenero tedwi th theshoot ingmethod inExompe22.4 isshownforcompcr ison

0.05(2)2 200 + 2.1 x t \ -e '(2)2(2001 - 01) + 91.9614 + 0'r- -

T a *

:70.4161
2 + 0.05(D2

0.0-5(2)2 200 + 2.'/ x rc e' (2)2(2004 - 04) + 10.4461+ 400:226 .8104
2 + 0.0s(D2

The process can be continued until we converge on the final result:

Zo :  300

Tr :250'4827

Tz:236 '2962

Tt:215.7596

T', - 286.4921

I.  :400

These results are displayed in Fig. 22.11 along with the result generated in Example 22.4
with the shooting method.

PROBtEMS

22.1 A stcady-state hcat balance for a rod can bc rcpre-
scntcd as

| _ o . t 5 r : 0
a -\ '

Obtain a solut ion fbr a l0-m rod with 7(0):240 and
r(10) :  150 (a) analyt ical ly, (b) with the shooting method,
and (c) usin-e thc finitc-ditl'erence approach with Ax : l.

22.2 Repeat Prob. 22.1 but with the right end insulated and
the left end tempcrature flxed at 240.
22.3 Use the shooting method to solve

, t  ,

\ .  I  v  -  l l

d \ -  a  Y

with the boundary condit ions .r.(0) :  5 and,-v(20) :  8.
22.4 Solve Prob. 22.3 with the finite-difl'crence approach
using Ar :  2.
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22.5 The tbllowing nonlinear difl'erential equation was

solved in Examples 22.4 and 22.'7 .

n: 
o*4 

+ h'(T* -  D + o'  (Tl  Tl) (P22.5)

Such equations arc sometimes linearized to obtain an ap-
proximate solution. This is done by employing a flrst-order
Taylor serics cxpansion to linearizc thc quartic term in the
equation as

o ' 7 1  :  o ' T a  +  4 o ' T 3 C  - T )

where 7 is a base tcmpcrature about which the tcrm is lin-
earized. Substi tutc this relat ionship inlo Eq. (P22.5), and
thcn solve the resulting lincar cquation with the finite-
difl'erence approach. Employ 7 : .r00. Ar : I m. and the
paramctcrs fiom Exarnple 22.21 to obtain your solution. Plot
your results along with those obtaincd fbr the nonlinear
versions in Exarnples 22.4 and 22.1 .
22.6 Dcvelop an M-file to implernent the shooting me(hod
for a linear second-order ODE. Tcst the program by dupli-
cating Examplc 22.2.
22.7 Dcvelop an M-file 1o irnplement the flnite-differencc
approach fbr solving a linear sccond-order ODE with
Dir ichlet boundary condit ions. Test i t  by dupl icat ing Exam-
ple 22.5.
22.8 An insulated heated rod with a unifolm hcat source can
be mode lcd  w i th  the  Pu i t to t t  (u t t ( t t i ( tL '

( l -  I

-  :  . l ( r )u.x-

Given a hcat source /(,1 ) : 25 "Clm2 and the boundary con-
d i t ions  7( - t  :0 )  : ,10 'C and f  ( , t  :  10)  :200 ' 'C .  so lve
fbr the temperature distribution with (a) the shooting mcthod
and (b) the finite-difI'crcnce method (A-r : 2).
22.9 Repeat Prob. 22.8, but fbr the following spatially vary-
ing  heat  source :  . l  { r  1  :  0 .  l2 . r r  2 .412 -  12 . r .
22.10 The temperaturc distribution in a tapered conical
cool ing f in (Fig. P22.10) is descl ibed by thc fbl lowing dif ' -
f-erential eouaiion. which has been nondimcnsionalized:

0 - u

,t.t
whcrc a : temperature (0 < a < l) .  .r :  axial distancc
(0 <,r < l) .  and p is a nondimensional parameter that de-
scribcs the heat transf-er and gcomctrv:

N L

T
rJ

U' -  2 , , , ]
where /z : a heat transfer cocfficicnt, k: thermal conduc-
tivity, L : the length or height of thc cone, and m - the slopc

a, , .  
uk:  1 l  =

FIGURE P22.IO

of the cone wall. Thc equation has the boundary conditions:

u ( , r : 0 ) :  Q  a ( , r :  l ) :  l

Solvc this equation for the tcmperature distribution using
finite-diff'erence methods. Usc second-order accurate finite-
diff'crencc fbrmulas for the derivatives. Write a computer
program to obtain thc solution and plot temperature versus

axial distance fbr various values of p : I 0. 20, 50, and 100.
22.11 Compound A diffuses through a 4-cm-long tube and
reacts as it diffr.rses. The equation governing diffusion with
rcaction is

J ) A
D  -  k A : 0

ax '

At one end of the tube (,1 : 0), there is a large source of .4
that results in a fixed concentration of 0.1 M. At the other
end of the tubc thcre is a material that quickly absorbs any A,
making the conccntrat ion 0 M. I f  D : 1.5 x 10-6 cm2/s and
ft : 5 x l0-o s I, what is thc concentration ofA as a func-
tion of distance in the tube')
22.12 The tbllowing diffcrcntial equation describes the
stcady-state concentration of a substance that reacts with
first-ordcr kinetics in an axially dispersed plug-flow reactor
(Fig.P22.12):

t a t
( 1 " (  A (

D _ _ U _ _ k t . : O
drr d,r

where 1) : the dispersion coefficient 1m2/hr), c : concen-
tration (mol/L), ,r : distance (m), U: the velocity (m/hr),

.(:)(# P,):
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FIGURE P22.12
An oxiolly dlspersed plug flow reoctor

and t : the reaction rate (/hr). The boundary conditions can
be formr-rlatcd as

t lc
Ucin  *  Uc( . r  :  0 )  -  D- ( r  :  0 )

dc- ( r : / _ ) : 0
d I

where.in :  the concentrat ion in the inf]ow (mol/L), l  :  the
iength of the reactor (m). Thcse are callcd Dant'kverts
boundun'conditions.

Use the tinite-difl-erence approach to solve tbr concen-
trat ion as a function of distance given the tbl lowing parame-
rers: D: 5000 mr/hr, U : 100 rn/hr. l i  :2/hr. |  :  t00 rn,
nnd c'n :  100 mol/L. Employ centered f lni te-dif fbrence
approximations with A.r :  l0 rr to obtain your solut ions.
Compale your numerical rcsults with the analyt ical solut ion:

u c in

where

tU  -  DX t ) ) . \ e ) : t -  \U  D ) . ) L .e )  t l

,  l L , t ' " : L /  ' '  -  ) , r r ' ) ' t  r ' i  ,

22,13 A series of first-ordcr, liquid-phase reactions create a
desirable product (B) and an undcsirablc byproduct (C):

n\s5c
I f  the reactions take place in an axial ly dispcrsed plug-f lr>w
reactor (Fig. P22.)2). .stead),-sIare nrass balance.s can bc
used to dcvelol'r the following sL-cond-ordel'ODEs:

t ) 1

t l - L ' ,  a l ( ,

D  -  U ;  l 1 r ' . , : ( )
d- t '  d - t

c / l r ' r  d r ' ^
D  -  U - - J  l r r ' , ,  - ( - r i , - 0

a x '  d x

t l - a .  t l t
D  -  - U - - - -  |  { 1 r 1 , - 9

d t -  ( l x

Usc thc finite-difference approach to solvc fbr the concen-
tration of cach reactant as a tirnction of clistance given: D :
0 .  I  m 2 / n r i n ,  U :  I  m / r n i n ,  t r  : 3 / r n i n ,  k r :  l l m i n ,  L :
0.5 m. c,,  ' , ,  :  l0 rnol/L. Enrploy centered f ini te-di l tcrence
approximirtions with z\-r : 0.05 m to obtain your solutious
and assume Danckwerts boundary condit ions as described in
Prob. 22. 12. Also, computr- the sum o1'the reactants as a
tunction of distance. Do your results make sensc' 'J
22.14 Ahiol l lnr with a thickness L, (crn). grows on the sur-
face of a sol id {Fig. P22.14). After traversing a di l lusion
layer of thickness | (cm), a chemical compound A diffuscs
into thc biof l l rn where i t  is subjcct to an irrevcrsible f irst-
ordcr reaction that converts it to a product B.

Steady-statc mass balances can be used to derive the
fbllowing ordinary diltbrcntial equations for cornpound A:

tl) c,,
D  + : 0  0 < r < L

u r '

,  1 ) .
D r ! - f r c . , , : 0

u r '
l .  < x  <  L l  L t

,\:#( -'/;-#)
where l) : the diftusion coefficient in the diffusion layer :
0.8 cm /d, D1 : ths ditTusion coetTicient in the biof i lm :
0.611 cmr/d, and A : thc flrst-ordcr late for the conversion ol
A to B :0. l /d. The tbl lowing boundaly condit ions hold:

(rt : (tt l) at -f : 0

L l .  ,- - r : 0  a t s = L - L t
tlx

where r ' , ,e :  the concentrat ion of A in the bulk l iquid :
100 rnol/L. Lr.se thc' finitc-difl-erencc nrethod fo cornp.rte thc
steady-state distribution of A fiom .r : 0 to L * Lr. where
f, : 0.008 cm and L, = 0.001 cm. Employ centered finite
dit lerences with A.r :  0.001 crn.
22.15 A cable is hanging f iom two supports at A and B
(Fig. P22. I5). The cable is loaded with a distr ibuted load
whose magnitude varies with -r as

,t, -,t,(, f ' *.'" (#)l
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where ur,, : 450 N/m. The slope of the cable (d,y ldx) : 0 ar
.r :  0, which is the lowest point tbr the cable. I t  is also the
point where the tension in the cable is a minimum of 7,, .  The
dif l-erential equation which governs the cable is

1 )

1 l -  v

u x -

Solve this equation using a numerical method and plot the
shape of the cable (,r versus,t). For the numerical solution,
the value of I,, is unknown, so the solution must use an iter-
ative technique, sirnilar to the shooting method, to converge
on a correct value ol ft, fbr various values o1'I,,.

; ['.,'"(#)]

U

FIGURE P22.14
A biofilm growing on o so id surfoce

Sol id
su rface

22.16 The basic difl'erential equation of the elastic curve for
a simply supported, unifbrmly loaded beam (Fig. P22.16) is
given as

){1 -  I '  u 'L - \  l | -T
F I :  -

d r ) 2 2

where E : the modulus of elasticity, and 1: the moment of
incrtia. The boundary conditions are .y(0) :.r(l) = 0. Solve
lbr the def'lection of thc beam using (a) the finite-difference
approach (A-r : 0.6 m) and (b) thc shooting method. The
f-ollowing parameter values apply: E : 200 GPa, 1 =

30,000 cma, ur : 15 kN/m, and L : 3 m. Compare your

h t =  1 5  m

= w,,11 + sin (nxl2l

)

I ' r = 6 0 m

FIGURE P22.15
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FIGURE P22.16

numcrical results to the analyt ical solut ion:

u,L,t ' l  u,,r4 u,Llr
'  l zEr  24Er  24Et

22.17 ln Prob. 22.I 6, the basic dif ferential equation of the
clastic curve for a unifbrmly loaded beam was fblmulated as

tl2 t'
F I :

d -)(-

Note that the right-hand side represents the mornent as a
function of r. An equivalent approach can be fbrmulated in
terms of the fburth dcrivative of deflection as

da t'
EI . :  -  _u,

ar -

For this formulation. four boundary conditions are required.
For the sr.rpports shown in Fig. P22.16, the condit ions are

Conf in ing  bed

FIGURE P22.18
A, .  , ' n . nn f i ned  o r  " oh reo l i c "  < r cu i f e r

qr"-

that thc end displacenrents are zcro. r'{0) :1,(L) : 0, and that
the end moments are zero, ),"(0) :  )-" (L) :0. Solvc for the
detlection of the beam using thc finite-ditference approach
(Al :  0.6 m). The fol lowing parameter values apply: E :

200 GPa, 1: 30.000 crra, ur :  15 kN/rn, and L: 3 m. Com-
pare your numerical results with the anall,tical solr,rtion
g iven in  Prob.22 . l6 .
22.l l l  Under a nunlber of sirnpl i tying assumptions, the
steady-state height of the \.r ,atcr table in a onc-dimensional.
unconflned groundwater aquif'er (Fig. P22.18) can be mod-
eled with the fbl lowing second-order ODE:

-  ( l -  l l
K l t - + N : 0

( I X -

where x :  distance (m), K: hydraul ic conductivi ty (m/d),
/r : height of the water table (rn), /r : the average height of
the water table (rn), and N: inf i l t rat ion rate (m/d).

Solvc fbr the height of the water tablc for x : 0 to
1000 m * 'here  f t (O) :  l0  m and / t (1000) :5  m.  Use lhc
following parameters fbr the calculation: K : I m/d and
N : 0.0001 m/d. Set the average hcight of the watcr lable as
the avelage of the boLrndary condit ions. Obtain youl solut ion
with (a) the shooting mcthod and (b) the finite-difference
mcthod (A,r:  I00 m).
22.19 In Prob.22.18. a l inearized groundwatcr model was
used to simulate the height of the water table fbr an uncon-
fined aquitcr. A more realistic result can bc obtained by
usins thc fbl lowins nonlinear ODE:

+ N : 0

tLt Lx u't2

1 a

* (r,'#)

+++
tr

Water table
l n f  i l

+
at ion

I

Ground surface

:-:---
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where x : distance (m), K : hydraulic conductivity (m/d),
ft : height of the water table (m), and N : infiltration rate
(m/d). Solve for the height of the water table for the same
case as  in  Prob.22 .  18 .  That  i s ,  so lve  f romx:0  to  1000 m
with ft(0) :  l0 m, f t(1000) :  5 m, K: I  m/d, and N :

0.0001 m/d. Obtain your solution with (a) the shooting
method and (b) the finite-difference method (Ar: 100 m).
22.20 Just as Fourier's law and the heat balance can be em-
ployed to characterize temperature distribution, analogous
relationships are available to model field problems in other
areas ofengineering. For example, electrical engineers use a
similar approach when modeling electrostatic fields. Under
a number of simplifying assumptions, an analog of Fourier's
law can be represented in one-dimensional form as

d v
D :  - t -

dx

where D is called the electric flux density vector, s : permit-
tivity of the material, and V : electrostatic potential. Simi-
larly, a Poisson equation (see Prob. 22.8) for electrostatic

fields can be represented in one dimension as

d2v  Pu
d x '  €

where pu : charge density. Use the finite-difference tech-
nique with Lx : 2 to determine V for a wire where V(0) =

1000, Y(20) :  0, e :  2, L:20, and pu : 30.
22.21 Suppose that the position of a falling object is gov-
erned by the following differential equation:

1 1  '

d ' x  c  d x
_ _ L _ _ _ , ' - i l

t  I  I  r  6  
- v

a t '  t n  d t

where c : a first-order drag coefficient : 12.5 kg/s, rz =

mass : 70 kg, and g : gravitational acceleration : 9.81 mA2.
Use the shooting method to solve this equation for the
boundary conditions:

r (0 )  :  O
. t ( 1 2 ) : 5 0 0



APPENDIX A
EIGENVALUES

Eigenvalue, or characteristic-value, problems are a special class of problems that are
common in engineering and scientific problem contexts involving vibrations and elasticity.
In addition, they are used in a wide variety of other areas including the solution of linear
differential equations and statistics.

Before describing numerical methods for solving such problems, we will present some
general background information. This includes discussion of both the mathematics and the
engineering and scientific significance of eigenvalues.

A.l Morhemoticol Bockground

Chapters 8 through 12 dealt with methods for solving sets of linear algebraic equations of
the general form

[A ] { r }  :  { b }

Such systems are called nonhontogeneoas because of the presence of the vector { b } on the
right-hand side of the equality. If the equations comprising such a system are linearly
independent (i.e., have a nonzero determinant), they will have a unique solution. In other
words, there is one set of x values that will make the equations balance.

In contrast, a homogeneorrs linear algebraic system has the general form

l A l { . t }  : 0

Although nontrivial solutions (i.e., solutions other than all x's:0) of such systems are
possible. they are generally not unique. Rather, the simultaneous equations establish rela-
tionships among the .r's that can be satisfied by various combinations of values.

Eigenvalue problems associated with engineering are typically of the general form

( a 1 1  - ) " ) x 1  |  a n x t * ' . ' *  a l n x u : 0

{ t y x 1  I  ( a 2 2 -  } , ) r 2  + . . . +  a 2 r F u : 0

Iq , 1 . 1  I  
- T - nr3x l  *  .  - .  -+  (e , , , ,  - ,1 , )x , ,  -  0
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where )' is an unknown parameter called the eigenvalue, or characteristic value. A solution
{,r} tbr such a system is referred to as an eigenvector. The above set of equations may also
be expressed concisely as

l t a t - ^ t I ] ] { x }  :o ( A . l )

The solution of Eq. (A.l) hinges on determining.l.. One way to accomplish this is
based on the fact that the determinant of the matrix ltal 

* ),[1]] must equal zero for non-
trivial solutions to be possible. Expanding the determinant yields a polynomial in )". which
is called the characteristic' pol ,-nomial.The roots of this polynornial are the solutions for
the eigenvalues. An example of rhis approach, called the poll,yorrro, methocl, will be pro-
vided in Section A.3. Before describing the method, we will first describe how eisenvalues
ar ise in  engineer ing and sc ience.

A.2 Physicol Bockground

The mass-spring system in Fig. A.lo is a simple context to i l lustrate how eigenvalues occur
in physical ploblem settings. It also will help to illustrate some of the mathernatical con-
cepts introduced in Section A. l.

?l sintplity the analysis, assume that each rnass has no external or damping fbrces act-
ing on it. ln addition, assume that each spring has the same natural length / and the same
spring constant t. Finally. assume that the displacernent of each spring is rneasuled relative
to its own local coordinate system with an origin at the spring's equilibrium position
(Fig. A. la). Under these assumprions, Newton's second law can be employed to develop a
force balance lbr each mass:

d - X r
m r - , i - - k r r  1 k ( x :  - - l  1 . 1

FIGURE A.I
Posit ioning lhe mosses owoy from eqi, i l ibr ium creotes forces in the sprinos lhoi on rereose ieod
to osci l lct ions of lhe nrosses. The posit ions of the mosses con be referenled fo locoJ coordinotes
wi ih  o r ig ins  o t  the i r  respec t ive  equ i l ib r ium pos i f ions

0 0 0 - l  t t t t  
f  0 0 0 - l  n t 2  

| - _ r  0 0 0
7 f - - - 7 t  ? T - , 7 f



APPENDIX A EIGENVALUES 567

and

' t )  - 'u  . \ l
t n :  - : - k ( . r : - 1 1 ) - ( r 3

d t -

where ,t; is the displacement of mass i away from its equil ibrium position (Fig. A.lb). By
collecting terms, these equations can be expressed as

d - r ' .

nr t '4 -  f t (-2.r1 *.r ;1 :  g
d t -

t )
0 - - X 1

n 1 : - - -  - f t ( r t - 2 x ; ) : g
-  . t r :

From vibration theory, it is known that solutions to Eq. (A.2) can take the form

xi : Xi sin(a.rr)

where X; : the amplitude of the vibration of mass i and a: the frequency of the vibra-
tion, which is equal to

2n

7,,

where {, is the period. From Eq. (A.3) it follows that

x'i : -Xia2 sin(a' 't)

Equations (A.3) and (A.5) can be substituted into Eq. (A.2),
terms, can be expressed as

(4.2a)

(A.2b)

(A.3)

(#--')", -
- !-x, . (# - ,')x, : o

k- X z - 0
m 1

(A.4)

(A.5)

which. after collection of

(A.6ru)

(A.6b)

Comparison of Eq. (4'.6) with Eq. (A. l) indicates that at this point, the solution has
been reduced to an eigenvalue problem. That is, we can determine values of the eigenvalue
ol2 Ihat satisfy the equations. For a two-degree-of-freedom system such as Fig. A.l, there
will be two such values. Each of these eigenvalues establishes a unique relationship
between the unknowns X called an eigenvector. Section A.3 describes a simple approach to
determine both the eigenvalues and eigenvectors. lt also illustrates the physical signifi-
cance of these quantities fbr the mass-spring system.

A.3 The Polynomiol Merhod

As stated at the end of Section A.1, the polynomictl nrcthod consists of expanding the
determinant to generate the characteristic polynomial. The roots of this polynomial are the
solutions for the eigenvalues. The following example illustrates how it can be used to
determine both the eigenvalues and eigenvectors for the mass-sprinq system (Fie. A.1).
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EXAMPLE A. l  The Polynomiol  Method

I Problem Stotement. Evaluate the eigenvalues ancl the eigenvectors of Eq. (A.6) for the
i case where rl | : tt12: 40 kg and li : 200 N/m.

Solution. Substituting the parameter values into Eq. (A.6) yields

( f 0  @ 2 ) x t -  5 X z

- 5 X 1  * ( 1 0 - r r . , r ; X 2

The determinant of this system is

( r ' ) t  -  2oo2 +75 :  o

which can be solved by the quadratic formula for o,f : l-5 ancl -5 s 2. Therefore, the fre-
quencies for the vibrations of the masses are .D : 3.873 s I and 2.236 s-t, respectively.
These values can be used to determine the periods fbr the vibrations with Eq. (A.4). For the
first mode" Tp : 1.62 s. and fbr the second, 7,, :2.81 s.

As stated in Section A.l, a unique set of values cannot be clbtained for the unknown
amplitudes X. However, their ratios can be specified by substituting the eigenvalues back

FIGURE A.2
The pr inc ipo l  modes o f  v lb ro t lon  o f  two equo l  mosses  connected  by  th ree  iden l i co l  spr  ngs

between f ixed wolls

T _

1 . 6 2

2.81

- 0

- o

(a) First mode (b) Second mode
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into the equations. For example. for the flrst mode (ro2 : l5 s 2):

( 1 0 - 1 5 ) x r  -  - 5 X 2 : g
- 5 X r  *  ( 1 0  -  1 5 ) X 2  : 0

Thus .weconc lude tha tX l  - -X2 . l nas in r i l a r f ash ion fb r thesecondmode( r , . , 1  : 5s - r ) .

Xr : Xt. These relationships are the eigenvectors.
This example provides valuable information regarding the behavior of the systent in

Fig. A.L Aside from its period, we know that if the system is vibrating in the first mode,
the eigenvector tells us that the amplitucle of the second mass wil l be equal but of opposite
sign to the amplitude of the first. As in Fig. A.2a, the masses vibrate apart and then together
indefinitely.

In the second mode, the eigenvector specifies that the two mersses have equal ampli-
tudes at all t imes. Thus, as in Fig. 4.2b, they vibrate back and forth in unison. We should
note that the configuration of the amplitudes provides guidance on how to set their initial
values to attain pure motion in either of the two modes. Any other configurntion will lead
to superposition of t lre rrodes.

We should recognize that MATLAB has built- in functions to facil i tate the polynomial
method. For Exarnpie A.l, the poly function can be used to generate the characteristic
polynontial as in

> >  A  =  t 1 0  - 5 ; - 5  I O ) ;
- _ . - >  p  =  p o t \ , ( A )

r  - 2 0  7 a

Then, the roots function can be employed to compute the eigenvalues:

> >  r o o t s  ( p )

u t t  
t = ,

5

A.4 The Power Merhod

The power method is an iterative approach that can be employed to determine the largest
or dominant eig,envctlue. With slight modification, it can also be employed fo determine the
smallest value. It has the additional benefit that the corlesponding ei-eenvector is obtained
as a by-product of the method.

To implement the power method, the system being analyzed is expressed in the form

[A l { . r }  :  ) " { r ) (4.7)

As illustrated by the following example, Eq. (A.7) forms the basis fbr an iterative solr.rtion
technique that eventually yields the highest eigenvalue and its associated eigenvector.
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EXAMPLE A.2 Power Method for Highest Eigenvolue

Problem Stotement. Using the same approach as in Section A.2, we can derive the fol-
lowing homogeneous set of equations for a three mass-four spring system between two

: 0

t,̂  X , :o
m )

fr,, (* - ')x,: o

If all the masses m : I kg and all the spring constants k : 20 N/m, the system can be
expressed in the matrix format of Eq. (A. 1) as

[ 4 0  
- 2 0  0  I

|  
- 2 0  4 0  - 2 0  

|  
-  r l i  l : 0

L  0  - 2 0  4 0 )

where the eigenvalue ). is the square of the angular fiequency c,r2. Employ the power
method to determine the highest eigenvalue and its associated eigenvector.

Solution. The system is first written in the lbrm of Eq. (A.7):

f ixed walls:

( ' *  _- ' )x ,  -  r  r .
\ l n r  /  h t t

k  / 2 k  , \- - -  v  -  ( l?1r  . ' ) r ,  -

40Xr  -20X2 :  ) , X t

- 2 0 X 1 + 4 0 X 2 - 2 0 X 2 : ) " X z

-20x2 - l40Xt  :  ) 'Xs

At this point, we can make initial values of the X's and use the lefrhand side to compute an
eigenvalue and eigenvector. A good first choice is to assume that all the X's on the left-hand
side of the equation are equal to one:

4 0 ( 1 )  -  2 0 ( l )  : 2 0

- 2 0 ( 1 ) + 4 0 ( l ) - 2 0 ( 1 ) : 0

- 2 0 ( l )  - l 4 0 ( l )  : 2 0

Next, the right-hand side is normalized by 20 to make the largest element equal to one:

[ 20 ]  [ t l
{  0 l : 20 {01
lzo l  l r l

Thus, the normalization factor is our first estimate of the eigenvalue (20) and the cone-
sponding eigenvector is I I 0 I .l 

r . This iteration can be expressed concisely in matrix

,'1'l {i}:ll{}:"{il
form as

[ 40 -20

| 
-20 40

I n a n



APPENDIX A EIGENVALUES 571

The next  i terat ion consis ls  of  mul t ip ly ing lhe matr ix  by I 0  1 l z  t o g i v e

[1l' jl, -n] l?]:
detenrine the error estimate:

1 4 0 - l 0 l' r , , , : l  
^  l x l f ) 0 7 :

I +r,

The process can then be repeated

Tltird iterutiott:

[ 40  
-20  0 l l l

|  - 2 0  4 0  - l ( l  I  I  - l

L;" -; r;ll

[1$ :;;n] { i,, }:
FiJth iteratiort:

[ 4 0  
- 2 0  0 l ] - 0 . 1 1 4 2 e

t - 2 0  4 0  - t 0 t {  |
L o  _20  +o l [_ .0 .1142s

where le,, | : 2.08c/c .

-1ll:-'

60
-80
60

-0.75
I

-0.75
-  _RO

rl:l : "

I
- l

1

Therefore. the eieenvalue estimate for the second iteration is 40. which can be emploved to

where le,, | : l50c/o (which is high because of the sign change).

Fourtlt iteratiou:

'or'.;troo'"nul

where lc,, | : 2147o (wlrich is high because of the sign change).

:llfii'i^ 1 
-0.70833

:68 .57141  I
t -0.70833

Thus, the eigenvarlue is convergir.rg. Afier several more iterations, it stabilizes on a
value of 68.28421 with a corresponding eigenvector of | -0.707 107 I -0.101 lU )r .

Note that there are some instances where the power method will converge to the
second-largest eigenvalue instead of to the largest. James. Snrith, and Wolford ( 1985) pro-
vide an i l lustration of such a case. Other special cases are discussed in Fadeev and Fadeeva
( l  963) .

In addition, there are sometimes cases where we are interested in determining the
smallest eigenvalue. This can be done by applying the power method to the matrix inverse
of [Al. For this case, the power method wil l converge on the largest value of l/ l- in other
words, the smallest value of i. An application to find the smallest eigenvalire wil l be left as
a problem exercise.
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Finally, after finding the largest eigenvalue, it is possible to deternine the next highest
by replacing the original matrix by one that includes only the remaining eigenvalues. The
process of removing the largest known eigenvalue is called deflation.

We shouid mention that aithough the power method can be used to iocate intermediate
values, better methods are available for cases where we need to determine all the eigenval-
ues as described in Section A.5. Thus, the power method is primarily used when we want
to locate the largest or the smallest eigenvalue.

A.5 MATLAB Function: ers

As might be expected, MATLAB has powerful and robust capabilities for evaluating eigen-
values and eigenvectors. The function e:ig, which is used for this purpose, can be used to
generate a vector of the eigenvalues as in

-  e  e l g t ' 4 t

where e is a vector containing the eigenvalues of a square matrix a. Alternatively. it can be
invoked as

where Dis a diagonal rnatrix of the eigenvalues and I'is a full matrix whose columns are
the corresponding eigenvectors.

EXAMPLE A.3 Use of  MATLAB to Determine Eigenvolues ond Eigenvectors

Problem Stotement. Use MAILAB to determine all the eigenvalues and eigenvectors
for the system described in Example A.2.

Solution. Recall that the n.ratrix to be analyzed is

[ 40  
-20  0  I

| 
-20 40 -20 

|
L 0 -20 40 _.1

The matrix can be entered as

> >  A  =  1 4 0  - 2 0  O ; - 2 A  4 A  - 2 A ; 0  2 0  4 a l ;

If we just desire the eigenvalues we can enter

r  e  =  e i q ( A l

e =

I I  . 1  I 5 1

4 0 .  O O O O

6 8 . 2 , 8 4 3

Notice that the highest eigenvalue (68.2843) is consistent with the value previously deter-
mined with the power method in Example A.2.
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If we want both the eigenvalues and eigenvectors, we can enter

0 . 7 4 1 1  - 0 . 5 0 0 0
- 0 . 0 0 0 0  4 . 1 0 7 r

0 . 7 0 ? 1  - 0 . 5 0 0 0

C1 -

L I . 1  I 5 1  0  0
0  4 0 . 0 0 0 0  0
0  0  6 8 . 2 8 4 3

Again, although the results are scaled differently. the eigenvector conesponding to the
highest eigenvalue [-0.5 0.707 I -0.5]7 is consistent with the value previously
deterrn ined wi th the power mcthod in Example A.2:  |  -0 .707 107 |  -0.107 107 ) '  .

, . . EIGENVALUES AND EARTHAUAKES

Bockground. Engineers and scientists use mass-spring models to gain insight into the
dynamics of structures under the influence of disturbances such as earthquakes. Figure A.3
shows such a representation for a three-story building. Each floor mass is represented by
nt,, and each floor stiffness is represented by ft, for i : 1 to 3.

For this case, the analysis is limited to horizontal motion of the structure as it is sub-
jected to horizontal base motion due to earthquakes. Using the same approach as developed
in Section A.2. dvnamic force balances can be developed for this svstem as

0 . 5 0 0 0
a . 7 a l I
0 . 5 0 0 0

/ t .  I  t .  \

{ ^ '  
- ^ t  - r l . l x , -

\  l r r  /
t .

___: Xt I
m z

K2

* t

/ k z * k z  ' \
l - - u t , l
\ tTlt /

x2

L -
X 2 -

mZ

L
^ 3

* ,

- n

X : : 0

*,*(h-oi)x.:o

where X, represents horizontal floor translations (rn), and @,, is the natura[ or rcsonant,

frequency (r'adians/s). The resonant fiequency can be expressed in Hertz (cycles/s) by
dividing itby 21r radians/cycle.

Use MATLAB to determine the eigenvalues and eigenvectors for this system. Graph-
ically represent the modes of vibration for the structure by displaying the amplitudes ver-
sus height for each of the eigenvectors. Normalize the amplitudes so that the translation of
rhe third floor is one.
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cont inued

lar : 8,000 kg

t , -

t , -

t . -

| .....- U U U - . . - - ]

rh : 10,000 kg

l *-  uuu  - - l

'|1r : 12.000 kg

[*-

1,800 kN/m

2,400 kN/m

3.000 kN/m

FIGURE A.3

Solution. The parameters can be substituted into the force balances to give

(+so - . | , ) x r -  2oox2  -o

-240Xt+  (420 - rT )X ,  -  180x , :  s
225X2+(225-u ' l ) x . : g

A MAILAB session can be conducted to evaluate the eigenvalues and eigenvectors as

> >  A =  f  4 5 0  - 2 l l C  0 ;  - ? . 4 0  4 2 i )  1 8 C ; 0  - 2 2 5  2 2 5 1  ;
' > : >  

l v ,  c l r . - c i q  ( ; r )

0 . 5 ! l l ! r  - L r . 6 l 4 i 1  0 . 2 9 1 1
O . r l 0 ' i  - 0 . 3 5 0 6  0 . 5 7 2 5
0 . _ 1  4 1 1  0 . 5 8 9 0  0 . 1 6 5 4

c i =
i r q 3 . ! 9 8 2  0  0

0  1 3 9 . 4 t ' i 9  0
{ t  0  5 6 . 9 2 3 9

Therefore, the eigenvalues are 698.6, 339.5, and 56.92, and the resonant frequencies in

Hz are

: >  L / : r - s . i r t  { c i - i a q ( d ) )  ' i  2 i p i

4 . 2 t 6 5  2 . 9 3 2 4  1 . 2 0 0 8

The corresponding eigenvectors are (normalizing so that the amplitude for the third floor

is one)

{lt:'#:} {-3.33il; }
0.38008e 10.746eee 

I
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continued

Mode 1
la \ :1 ' 'OOU^r ,

FIGUR.E A.4

- 1  0  1

Mode 2
(aL :  2 .9 t rO r r ,

- 1  0  1

Mode 3
ko,, = 4.2066 Hzl

A graph can be made showing the three modes (Fig. A.4). Note that we have ordered them

fiom the lowest to the highest natural frequency as is customary in structural engineering.

Natural frequencies and mode shapes are characteristics of structures in terms of their

tendencies to resonate at these frequencies. The frequency content of an eafihquake typically

has the most energy between 0 to 20 Hz and is influenced by the earthquake magnitude, the

epicentral distance, and other factors. Rather than a single frequency, they contain a spec-

trum of all frequencies with varying amplitudes. Buildings are more receptive to vibration at

their lower modes of vibrations due to their simpler deformed shapes and requiring less

strain energy to deform in the lower modes. When these amplitudes coincide with the nat-

ural frequencies of buildings, large dynamic responses are induced creating large stresses

and strains in the structure's beams, columns, and foundations. Based on analyses like the

one in this case study, structural engineers can more wisely design buildings to withstand

earthquakes with a good factor of safety.
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p o l y f  i , r ,  3 0 1 , 3 2 5 ,

P o f y \ / a l .  1 5 6 ,  3 0 7 ,
p r o d , 3 l

q u a d , 4 3 9

q r L a d i , 4 3 9

qu i r re r ,4 ( t5

r e a t m a x , 9 0

r e a l m i n , 9 0

r o o t s ,  1 5 5 , 5 6 9

ror-rncl, 3 |

save,  50

s e m r i o g y , 4 0

s e t , 3 8 5

s i g n , 5 5
s i n , 3 0
size,202
s o r t , 3 l
s p 1 r n e , 3 7 4
sq r t ,  30
s q r t m , 3 l
s r d , 2 9 0
S U r r p  L  O t !  - 1 4

surn, 3 1, 246
s u r f c , 1 8 0
tan,  30
l -anh,  7

r r c ,62
r r -  o  1 1

t o c , 6 2

t r a p z , 4 l 4 , 4 2 2

t r i p l e q u a d , 4 l S
' " ,a r .290

vararqJ in ,  T0

who, 25

whos,  25

) 4 1 4 D e 1 ,  - 1 J

y l a b e l ,  3 3
z e r o s , 2 5

: l a b e 1 . 1 8 0

339
339
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MATLAB M.FILE FUNCTIONS

M-file Nome Descripfion Poge

b r s e c L
euLode
GaussNa i ve
t , a l l s s P r v o r

G a u s s S e i d e l
go ld r rL i n

incse.rr - . :h

1  rn reg r
n - r f  c n i i n a

NewL rnt
nerrtmu f t
newtraph
rk4  sys
romberg
Tabl  eLo. ik
a r a p
r rapuneLl
T r i d i a g

Root locol ion wi th b isect ion
nlegrol ion of  o s ing e ordinory d l f ferent io equotLon wi lh Euler 's  method
So ving l inecr syslems wi lh Gouss e iminol ion w fhoul  p ivolrng
Soving inecr sysiems wi th Gouss e minal ion wi th port io l  p ivot ing
Solv ing ineor syslems wi th th--  Gouss-Seidel  method
Minlmum of  one-din,ensictnoi  funct ion wi th golden-sect ion seorch
Root ocot ion r ,v i lh on incremenic i  seorch
Interpolo l ron wi th the Logronge po ynomiol
l i  r q  o  I ' o  g \ l  l i r e  r r ' r '  I ' r : o l e g  - - , i o r

Cub i c  sp  i ne  w i t h  nc l u r c l  end  cond i t i ons
nlerpolot ion wi th the Newion polynomiol
Rool  ocol ion for  non ineor systems o[  equoirons
Root locolion with lhe Ner,r,ion-Rophson method
Integrc l ion ol  system ol  ODEs wl th 4th order RK method
Integroi ion of  o [uncl ion v" , i lh  Romberg in legrot ion
Toble ookup wi th l ineor interpoJot ion
lniegrolion cl c funclicn \\,rth lhe .')rlposit6 i16pa1616Jo 1ul-.
Integrof ion of  uneqr ispcced dcrtc wi th the i ropezoidc ru le
Solv ing l r id icgoncl  l inecrr  systems

1 2 7
486
2 2 2
227
269
1 7 6
t 2 c
349
306
3 8 3
346
276
149
542
432
364
404
4 1 3
'2')9
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