=

Steven £ Chapra

i

SECOND EDFTIOIN

flll' Engineers and SGIBIIIISIS

ParT ONE

CHAPTER 1

CONTENTS

About the Author iv
Preface xiii

Guided Tour xvii

Modeling, Computers, and Error Analysis 1

1.1 Motivation 1
1.2 Part Organization 2

CHAPTER 2

Mathematical Modeling, Numerical Methods,
and Problem Solving 4

1.1 A Simple Mathematical Model 5

1.2 Conservation Laws in Engineering and Science 12
1.3 Numerical Methods Covered in This Book 13
Problems 17

CHAPTER 3

MATLAB Fundamentals 20

2.1 The MATLAB Environment 21

2.2 Assignment 22

2.3 Mathematical Operations 27

2.4 Use of Builtin Functions 30

2.5 Graphics 33

2.6 Other Resources 36

2.7 Case Study: Exploratory Data Analysis 37
Problems 39

Programming with MATLAB 42

3.1 MFiles 43
3.2 InputQutput 47

vi

CONITENTS

CHAPTER 4

3.3 Structured Programming 51

3.4 Nesting and Indentation 63

3.5 Passing Functions to M-Files 66

3.6 Case Study: Bungee Jumper Velocity 71
Problems 75

PArT TWO

CHAPTER 5

Roundoff and Truncation Errors 79

4.1 Errors 80

4.2 Roundoff Errors 84

4.3 Truncation Errors 92

4.4 Total Numerical Error 103

4.5 Blunders, Model Errors, and Data Uncertainty
Problems 109

Roots and Optimization 111

2.1 Overview 111
2.2 Part Organization 112

108

CHAPTER 6

Roots: Bracketing Methods 114

5.1 Roofts in Engineering and Science 115

5.2 Graphical Methods 116

5.3 Bracketing Methods and Initial Guesses 117
5.4 Bisection 122

5.5 False Position 128

5.6 Case Study: Greenhouse Gases and Rainwater
Problems 135

132

Roots: Open Methods 139

6.1 Simple Fixed-Point lteration 140
6.2 Newtfon-Raphson 144

6.3 Secant Methods 149

6.4 MATLAB Function: fzero 151
6.5 Polynomials 154

6.6 Case Study: Pipe Friction 157
Problems 162

CONTENTS

vit

CHAPTER 7

PART THREE

CHAPTER 8

Optimization 166

7.1 Introduction and Background 167

7.2 One-Dimensional Optimization 170

7.3 Muttidimensional Optimization 179

7.4 Case Study: Equilibrium and Minimum Potential Energy 181
Problems 183

Linear Systems 189

3.1 Overview 189
3.2 Part Organization 191

CHAPTER 9

Linear Algebraic Equations and Matrices 193

8.1 Matrix Algebra Overview 194

8.2 Solving Llinear Algebraic Equations with MATLAB 203
8.3 Case Study: Currents and Voltages in Circuits 205
Problems 209

CHAPTER 10

Gauss Elimination 212

9.1 Solving Small Numbers of Equations 213
9.2 Naive Gauss Elimination 218

9.3 Pivoting 225

9.4 Tridiagonal Systems 227

9.5 Case Study: Model of a Heated Rod 229
Problems 233

LU Factorization 236

10.1 Overview of LU Factorization 237

10.2 Gauss Elimination as LU Factorization 238
10.3 Cholesky Factorization 244

10.4 MATLAB Left Division 246

Problems 247

viii

CONTENTS

CHAPTER 11

CHAPTER 12

Matrix Inverse and Condition 249

11.1 The Mafrix Inverse 249

11.2 Error Analysis and System Condition 253
11.3 Case Study: Indoor Air Pollution 258
Problems 261

PART FOUR

CHAPTER 13

Iterative Methods 264

12.1 Llinear Systems: Gauss-Seidel 264
12.2 Nonlinear Systems 270

12.3 Caose Study: Chemical Reactions 277
Problems 279

Curve Fitting 281

4.1 Overview 281
4.2 Part Organization 283

CHAPTER 14

Linear Regression 284

13.1 Statistics Review 286

13.2 Llinear Least-Squares Regression 292

13.3 Linearization of Nonlinear Relationships 300
13.4 Computer Applications 304

13.5 Case Study: Enzyme Kinetics 307

Problems 312

General Linear Least-Squares and Nonlinear Regression 316

14.1 Polynomial Regression 316

14.2 Multiple Linear Regression 320

14.3 General Linear Least Squares 322

14.4 QR Factorization and the Backslash Operator 325
14.5 Nonlinear Regression 326

14.6 Case Study: Fitting Sinusoids 328
Prahlems 332

CONTENTS ix
CHAPTER 15
Polynomial Interpolation 335

15.1 Introduction to Interpolation 336

15.2 Newton Interpolating Polynomial 339
15.3 lagrange Interpolating Polynomial 347
15.4 Inverse Interpolation 350

15.5 Extrapolation and Oscillations 357
Problems 355

CHAPTER 16
Splines and Piecewise Interpolation 359

16.1 Introduction fo Splines 359

16.2 Linear Splines 341

16.3 Quadratic Splines 365

16.4 Cubic Splines 368

16.5 Piecewise Interpolation in MATLAR 374
16.6 Multidimensional Interpolation 379
16.7 Case Study: Heat Transfer 382
Problems 38¢

PaART FIVE Integration and Differentiation 389

3.1 Overview 389
3.2 Part Organization 390

CHAPTER 17
Numerical Integration Formulas 392

17.1 Introduction and Background 393

17.2 Newton-Cotes Formulas 396

17.3 The Trapezoidal Rule 398

17.4 Simpson’s Rules 405

17.5 Higher-Order Newton-Cotes Formulas 471

17.6 Integration with Unequal Segments 412

17.7 Open Methods 416

17.8 Multiple Integrals 416

17.9 Case Study: Computing Work with Numerical Infegration 419
Problems 422

CHAPTER 18

Numerical Integration of Functions 426

18.1 Introduction 426
18.2 Romberq Integration 427

T ————

X CONTENTS

18.3 Gauss Quadrature 432

18.4 Adaptive Quadrature 439

18.5 Case Study: Root-Mean-Square Current 440
Problems 444

CHAPTER 19

Numerical Differentiation 448

19.1 Introduction and Background 449

19.2 High-Accuracy Differentiation Formulas 452

19.3 Richardson Extrapolation 455

19.4 Derivatives of Unequally Spaced Data 457

19.5 Derivatives and Integrals for Data with Errors 458
19.6 Partial Derivatives 459

19.7 Numerical Differentiation with MATLAR 460

19.8 Case Study: Visualizing Fields 465

Problems 467

Part Six Ordinary Differential Equations 473

6.1 Overview 473
6.2 Part Organization 477

CHAPTER 20

Initial-Value Problems 479

20.1 Overview 48]

20.2 Euler's Method 481

20.3 Improvements of Euler's Method 487

20.4 RungeKutta Methods 493

20.5 Systems of Equations 498

20.6 Case Study: Predatory-Prey Models and Chaos 504
Problems 509

CHAPTER 21

Adaptive Methods and Stiff Systems 514

21.1 Adaptive RungeKutta Methods 514

21.2 Multistep Methods 521

21.3 Stiffness 525

21.4 MATLAB Application: Bungee Jumper with Cord 531
21.5 Case Study: Pliny’s Intermittent Fountain 532
Problems 537

CONITENTS

xi

CHAPTER 22

Boundary-Value Problems 540

22.1 Introduction and Background 541
22.2 The Shooting Method 545

22.3 Finite-Difference Methods 552
Problems 559

APPENDIX A: EIGENVALUES 565

APPENDIX B: MATLAB BUILT-IN FUNCTIONS 576
APPENDIX C: MATLAB M-FILE FUNCTIONS 578
BIBLIOGRAPHY 579

INDEX 580

Modellng

and Error

MOTIVATION

] oblems are formulated so
Because digital computer

elieve that numencal methods
very engineer’s and Smentlst s

ndling large systems of equations, nonlineari-

compilcated geomemes that are not un-
' ¢ and science and that are
e analytically with stan-

—

2 PART 1 MODELING, COMPUTERS, AND ERROR ANALYSIS _

invariably have occasion to use commercially available prepackaged computer pro-
grams that involve numerical methods. The intelligent use of these programs is greatly
enhanced by an understanding of the basic theory underlying the methods. In the ab-
sence of such understanding, you will be left to treat such packages as “black boxes”
with little critical insight into their inner workings or the validity of the results they
produce.

3. Many problems cannot be approached using canned programs. If you are conversant
with numerical methods, and are adept at computer programming, you can design
your own programs to solve problems without having to buy or commission expensive
software.

4. Numerical methods are an efficient vehicle for learning to use computers. Because nu-
merical methods are expressly designed for computer implementation, they are ideal for
illustrating the computer’s powers and limitations. When you successfully implement
numerical methods on a computer, and then apply them to solve otherwise intractable
problems, you will be provided with a dramatic demonstration of how computers can
serve your professional development. At the same time, you will also learn to acknowl-
edge and control the errors of approximation that are part and parcel of large-scale
numerical calculations.

5. Numerical methods provide a vehicle for you to reinforce your understanding of math-
ematics. Because one function of numerical methods is to reduce higher mathematics
to basic arithmetic operations, they get at the “nuts and bolts” of some otherwise
obscure topics. Enhanced understanding and insight can result from this alternative
perspective.

With these reasons as motivation. we can now set out to understand how numerical
methods and digital computers work in tandem to generate reliable solutions to mathemat-
ical problems. The remainder of this book is devoted to this task.

1.2 PART ORGANIZATION

This book is divided into six parts. The latter five parts focus on the major areas of numer-
ical methods. Although it might be tempting to jump right into this material, Part One con-
sists of four chapters dealing with essential background material.

Chapter I provides a concrete example of how a numerical method can be employed
to solve a real problem. To do this, we develop a mathematical model of a free-falling
bungee jumper. The model, which is based on Newton’s second law, results in an ordinary
differential equation. After first using calculus to develop a closed-form solution, we then
show how a comparable solution can be generated with a simple numerical method. We
end the chapter with an overview of the major areas of numerical methods that we cover in
Parts Two through Six.

Chapters 2 and 3 provide an introduction to the MATLAB® software environment.
Chapter 2 deals with the standard way of operating MATLAB by entering commands one
at a time in the so-called calculator mode. This interactive mode provides a straightforward
means to orient you to the environment and illustrates how it is used for common opera-

1.2 PART ORGANIZATION 3

Chapter 3 shows how MATLAB’s programming mode provides a vehicle for assem-
bling individual commands into algorithms. Thus, our intent is to illustrate how MATLAB
serves as a convenient programming environment to develop your own software.

Chapter 4 deals with the important topic of error analysis, which must be understood
for the effective use of numerical methods. The first part of the chapter focuses on the
roundoff errors that result because digital computers cannot represent some quantities
exactly. The latter part addresses truncation errors that arise from using an approximation
in place of an exact mathematical procedure.

Mathematical Modeling,
Numerical Methods,
and Problem Solving

a CHAPTER OBJECTIVES

The primary objective of this chapter is to provide you with a concrete idea of what
numerical methods are and how they relate to engineering and scientific problem
solving. Specific objectives and topics covered are

® Learning how mathematical models can be formulated on the basis of scientific
principles to simulate the behavior of a simple physical system.

® Understanding how numerical methods afford a means to generate solutions in a
manner that can be implemented on a digital computer.

¢ Understanding the different types of conservation laws that lie beneath the models
used in the various engineering disciplines and appreciating the difference
between steady-state and dynamic solutions of these models.

® Learning about the different types of numerical methods we will cover in this
book.

YOU'VE GOT A PROBLEM

uppose that a bungee-jumping company hires you. You're given the task of predict-

ing the velocity of a jumper (Fig. 1.1) as a function of time during the free-fall part

of the jump. This information will be used as part of a larger analysis to determine the
length and required strength of the bungee cord for jumpers of different mass.

You know from your studies of physics that the acceleration should be equal to the ratio

of the force to the mass (Newton’s second law). Based on this insight and your knowledge

~ _ C

FIG!
Forc
free-
jumg

1.1 A SIMPLE MATHEMATICAL MODEL 5

Upward force
due to air
resistance

Downward
force due
to gravity

FIGURE 1.1

Forces acting on a
freealling bungee
jumper.

1.1

of fluid mechanics, you develop the following mathematical model for the rate of change
of velocity with respect to time,

dv €4~
_ = — —p~
dt & m

where v = vertical velocity (m/s). + = time (s), g = the acceleration due to gravity
(=9.81m/s*), ¢, = a second-order drag coefficient (kg/m), and m = the jumper’s
mass (kg).

Because this 1s a differential equation, you know that calculus might be used to obtain
an analytical or exact solution for v as a function of t. However, in the following pages, we
will illustrate an alternative solution approach. This will involve developing a computer-
oriented numerical or approximate solution.

Aside from showing you how the computer can be used to solve this particular prob-
lem, our more general objective will be to illustrate (a) what numerical methods are and
(b) how they figure in engineering and scientific problem solving. In so doing, we will also
show how mathematical models figure prominently in the way engineers and scientists use
numerical methods in their work.

A SIMPLE MATHEMATICAL MODEL

A mathematical model can be broadly defined as a formulation or equation that expresses
the essential features of a physical system or process in mathematical terms. In a very gen-
eral sense, it can be represented as a functional relationship of the form

Dependent _ ; (independent forcing) W

, . , parameters .
variable variables p * functions

where the dependent variable is a characteristic that usually reflects the behavior or state
of the system; the independent variables are usually dimensions, such as time and space,
along which the system’s behavior is being determined; the parameters are reflective of the
system’s properties or composition; and the forcing functions are external influences acting
upon it.

The actual mathematical expression of Eq. (1.1) can range from a simple algebraic
relarionship to large complicated sets of differential equations. For example, on the basis of
his observations, Newton formulated his second law of motion, which states that the time
rate of change of momentum of a body is equal to the resultant force acting on it. The math-
ematical expression, or model, of the second law is the well-known equation

F =ma (1.2)

where F is the net force acting on the body (N, or kg m/s*), m is the mass of the object (kg),
and a is its acceleration (m/s”).

MATHEMATICAL MODELING, NUMERICAL METHODS, AND PROBLEM SOLVING

The second law can be recast in the format of Eq. (1.1) by merely dividing both sides
by m to give

a=— (1.3)
1
where a is the dependent variable reflecting the system’s behavior, F is the forcing func-
tion, and /z is a parameter. Note that for this simple case there is no independent variable
because we are not yet predicting how acceleration varies in time or space.
Equation (1.3) has a number of characteristics that are typical of mathematical models
of the physical world.

* It describes a natural process or system in mathematical terms.

» TItrepresents an idealization and simplification of reality. That is. the model ignores neg-
ligible details of the natural process and focuses on its essential manifestations. Thus,
the second law does not include the effects of relativity that are of minimal importance
when applied to objects and forces that interact on or about the earth’s surface at veloc-
ities and on scales visible to humans.

» Finally, it yields reproducible results and, consequently, can be used for predictive pur-
poses. For example, if the force on an object and its mass are known, Eq. (1.3) can be
used to compute acceleration.

Because of its simple algebraic form, the solution of Eq. (1.2) was obtained easily.
However, other mathematical models of physical phenomena may be much more complex.
and either cannot be solved exactly or require more sophisticated mathematical techniques
than simple algebra for their solution. To illustrate a more complex model of this kind,
Newton’s second law can be used to determine the terminal velocity of a free-falling body
near the earth’s surface. Our falling body will be a bungee jumper (Fig. 1.1). For this case,
a model can be derived by expressing the acceleration as the time rate of change of the
velocity (dv/dt) and substituting it into Eq. (1.3) to yield

dv F L4

dt — m (14
where v is velocity (in meters per second). Thus, the rate of change of the velocity is equal
to the net force acting on the body normalized to its mass. If the net force is positive, the
object will accelerate. If it is negative, the object will decelerate. If the net force is zero, the
object’s velocity will remain at a constant level.

Next, we will express the net force in terms of measurable variables and parameters.
For a body falling within the vicinity of the earth, the net force is composed of two oppos-
ing forces: the downward pull of gravity Fp and the upward force of air resistance Fy
(Fig. 1.1):

F=Fp+ Fy (1.5)

If force in the downward direction is assigned a positive sign, the second law can be
used to formulate the force due to gravity as

Fp =mg (1.6)

where g is the acceleration due to gravity (9.81 m/s?).

1.1 A SIMPLE MATHEMATICAL MODEL 7

EXAMPLE 1.1

Air resistance can be formulated in a variety of ways. Knowledge from the science of
fluid mechanics suggests that a good first approximation would be to assume that it is pro-
portional to the square of the velocity,

Fo = —c,v? (1.7)

where ¢, is a proportionality constant called the drag coefficient (kg/m). Thus, the greater
the fall velocity, the greater the upward force due to air resistance. The parameter ¢, ac-
counts for properties of the falling object, such as shape or surface roughness, that affect air
resistance. For the present case, ¢, might be a function of the type of clothing or the orien-
tation used by the jumper during free fall.

The net force is the difference between the downward and upward force. Therefore,
Egs. (1.4) through (1.7) can be combined to yield

dv €4 5

R 1.8
dt § m (18

Equation (1.8) is a model that relates the acceleration of a falling object to the forces
acting on it. It is a differential equation because it is written in terms of the differential rate
of change (dv/dr) of the variable that we are interested in predicting. However, in contrast
to the solution of Newton’s second law in Eq. (1.3), the exact solution of Eq. (1.8) for the
velocity of the jumper cannot be obtained using simple algebraic manipulation. Rather,
more advanced techniques such as those of calculus must be applied to obtain an exact or
analytical solution. For example, if the jumper is initially at rest (v = 0 at + = 0), calculus
can be used to solve Eq. (1.8) for

v(t) = gﬂ[anh(gC,/t) (1.9)

Cq m

where tanh is the hyperbolic tangent that can be either computed directly' or via the more
elementary exponential function as in

et —e™t
tanh.\'zx—+—\, (1.10)
€ [

Note that Eq. (1.9) is cast in the general form of Eq. (1.1) where v(¢) is the dependent
variable. tis the independent variable, ¢; and m are parameters, and g is the forcing function.

Analytical Solution to the Bungee Jumper Problem

Problem Statement. A bungee jumper with a mass of 68.1 kg leaps from a stationary hot
air balloon. Use Eq. (1.9) to compute velocity for the first 12 s of free fall. Also determine
the terminal velocity that will be attained for an infinitely long cord (or alternatively, the
Jjumpmaster is having a particularly bad day!). Use a drag coefficient of 0.25 kg/m.

' MATLAB® allows direct calculation of the hyperbolic tangent via the built-in function tanh (x).

R e ——

8 MATHEMATICAL MODELING, NUMERICAL METHODS, AND PROBLEM SOLVING

Solution. Inserting the parameters into Eq. (1.9) yields

/9.81(68.1) /9.81(0.25)
=\ T —————1 | = 51.6938 . 7
v(r) 025 tanh(681 t) 51.6938 tanh(0.18977¢)

which can be used to compute

t, s v, mfs
0 0]
2 18.7292
4 33.11'8
6 42,0762
8 46.9575
10 49.4214
12 506175
o9 51.6938

According to the model, the jumper accelerates rapidly (Fig. 1.2). A velocity of
49.4214 m/s (about 110 mi/h) is attained after 10 s. Note also that after a sufficiently long

FIGURE 1.2
The analyfical solution for the bungee jumper problem as computed in Example 1.1. Velocity
increases with fime and asymptotically approaches o terminal velocity.

60 —
Terminal velocity

40 +—
:d
£
= ~

20 —

0 i | | |]
0 4 8 12

t 8

es————

1.1 A SIMPLE MATHEMATICAL MODEL 9

time, a constant velocity, called the terminal velocitv, of 51,6983 m/s (115.6 mi/h) is
reached. This velocity is constant because, eventually, the force of gravity will be in bal-
ance with the air resistance. Thus, the net force is zero and acceleration has ceased.

Equation (1.9) is called an analytical or closed-form solution because it exactly satis-
fies the original differential equation. Unfortunately, there are many mathematical models
that cannot be solved exactly. In many of these cases, the only alternative is to develop a
numerical solution that approximates the exact solution.

Numerical methods are those in which the mathematical problem is reformulated so it
can be solved by arithmetic operations. This can be illustrated for Eq. (1.8) by realizing that
the time rate of change of velocity can be approximated by (Fig. 1.3):

dv _ Av v(t) — o)
Sl A UES VALV (L11)
dt At i1 — 1

where Av and Ar are differences in velocity and time computed over finite intervals, v(7;)
is velocity at an initial time #;, and v(z;4+) is velocity at some later time ;. Note that
dv/dt = Av/At is approximate because Ar is finite. Remember from calculus that

dv I Av

— = l1m
dt At—0 At

Equation (1.11) represents the reverse process.

FIGURE 1.3

The use of a finite difference to approximate the first derivative of v with respect 1o t.

r U(f;*l) ______________________
|
I
True slope |
dv/dr :
Av < :
!
{
I
|
Approximate slope {
U(Ii)L‘“" Ay _ V) ~ ol i
! A Ly — 1 |
i I
I |
I |
! I
| I
I I
1 1
4 ligy !

At

s ——

10 MATHEMATICAL MODELING, NUMERICAL METHODS, AND PROBLEM SOLVING

Equation (1.11) is called a finite-difference approximation of the derivative at time ;.
1t can be substituted into Eqg. (1.8) to give

v(’i+l) - U(Zl’)

Cy
=g— v’
! — 1; m

(+1
This equation can then be rearranged to yield
Cd . 2
U([i+l):U(Ti)+[g‘EU(ti) j|([i+l - 1) (1.12)
Notice that the term in brackets is the right-hand side of the differential equation itself

[Eq. (1.8)]. That is, it provides a means to compute the rate of change or slope of v. Thus,
the equation can be rewritten as

(IU,‘
Ui :U,’+E'Af (l]’%)

where the nomenclature v; designates velocity at time 1; and Ar =1, — ;.

We can now see that the differential equation has been transformed into an equation that
can be used to determine the velocity algebraically at 7; .| using the slope and previous val-
ues of v and «. If you are given an initial value for velocity at some time #;, you can easily com-
pute velocity at a later time #; ;. This new value of velocity at 7;; | can in turn be employed to
extend the computation to velocity at #;,> and so on. Thus at any time along the way,

New value = old value + slope x step size

This approach is formally called Euler's method. We’ll discuss it in more detail when we
turn to ditferential equations later in this book.

EXAMPLE 1.2 Numerical Solution to the Bungee Jumper Problem

Problem Statement. Perform the same computation as in Example 1.1 but use Eq. (1.13)
to compute velocity with Euler’s method. Employ a step size of 2 s for the calculation.

Solution. At the start of the computation (#, = 0), the velocity of the jumper is zero.
Using this information and the parameter values from Example 1.1, Eq. (1.13) can be used
to compute velocity atry = 2 s:

0+]9.81 0.25 01| x 2 = 19.62 m/
Y — . — X = . S
' 68.1 e
For the next interval (from ¢ = 2 to 4 s), the computation is repeated, with the result

0.25 5
v=10.62 + [9,81 - 68—1(19.62)‘:‘ x 2 =36.4137 m/s

1.1 A SIMPLE MATHEMATICAL MODEL 11

60 —
Terminal velocity
Approximate,
40 — numerical solution
4
£
5 — -
Exact, analytical
solution
20
0 l] i |
0 4 8 12
t,s
FIGURE 1.4

Comparison of the numerical and analytical solutions for the bungee jumper problem

The calculation is continued in a similar fashion to obtain additional values:

f,s v, m/s
0 0
2 19.6200
4 36.4137
6 46,2983
8 50.1802
10 51.3123
12 51.6008
o0 51.6938

The results are plotted in Fig. 1.4 along with the exact solution. We can see that the nu-
merical method captures the essential features of the exact solution. However, because we
have employed straight-line segments to approximate a continuously curving function,
there is some discrepancy between the two results. One way to minimize such discrepan-
cies is to use a smaller step size. For example, applying Eq. (1.13) at 1-s intervals results in
a smaller error, as the straight-line segments track closer to the true solution. Using hand
calculations, the effort associated with using smaller and smaller step sizes would make
such numerical solutions impractical. However, with the aid of the computer, large num-
bers of calculations can be performed easily. Thus, you can accurately model the velocity
of the jumper without having to solve the differential equation exactly.

e i ——

12 MATHEMATICAL MODELING, NUMERICAL METHODS, AND PROBLEM SOLVING

As in Example 1.2, a computational price must be paid for a more accurate numerical
result. Each halving of the step size to attain more accuracy leads to a doubling of the num-
ber of computations. Thus, we see that there is a trade-off between accuracy and computa-
tional effort. Such trade-offs figure prominently in numerical methods and constitute an
important theme of this book.

1.2 CONSERVATION LAWS IN ENGINEERING AND SCIENCE

Aside from Newton’s second law. there are other major organizing principles in science
and engineering. Among the most important of these are the conservation laws. Although
they form the basis for a variety of complicated and powerful mathematical models, the
great conservation laws of science and engineering are conceptually easy to understand.
They all boil down to

Change = increases — decreases (1.14)

This is precisely the format that we employed when using Newton’s law to develop a force
balance for the bungee jumper [Eq. (1.8)].

Although simple, Eq. (1.14) embodies one of the most fundamental ways in which
conservation laws are used in engineering and science—that is, to predict changes
with respect to time. We will give it a special name—the time-variable (or transient)
computation.

Aside from predicting changes, another way in which conservation laws are applied is
for cases where change is nonexistent. If change is zero, Eq. (1.14) becomes

Change = 0 = increases — decreases
or
Increases = decreases (1.15)

Thus, if no change occurs, the increases and decreases must be in balance. This case, which
is also given a special name—the steady-state calculation-—has many applications in engi-
neering and science. For example, for steady-state incompressible fluid flow in pipes, the
flow into a junction must be balanced by flow going out, as in

Flow in = flow out
For the junction in Fig. 1.5, the balance can be used to compute that the flow out of the
fourth pipe must be 60.

For the bungee jumper, the steady-state condition would correspond to the case where
the net force was zero or [Eq. (1.8) with dv/dr = 0]

mg = cdu2 (1.16)

Thus, at steady state, the downward and upward forces are in balance and Eq. (1.16) can be
solved for the terminal velocity

gm
= —_—
Cd

Although Eqgs. (1.14) and (1.15) might appear trivially simple, they embody the two funda-
mental ways that conservation laws are employed in engineering and science. As such, they
will form an important part of our efforts in subsequent chapters to illustrate the connection
between numerical methods and engineering and science.

1.3 NUMERICAL METHODS COVERED IN THIS BOOK 13

1.3

Pipe 2
Flow in = 80

Pipe 1
Flow in = 100

Pipe 4
Flow out = ?

Pipe 3
Flow out = 120

FIGURE 1.5

A flow balance for steady incompressible fluid flow at the junction of pipes.

Table [.1 summarizes some models and associated conservation laws that figure promi-
nently in engineering. Many chemical engineering problems involve mass balances for
reactors. The mass balance is derived from the conservation of mass. it specifies that the
change of mass of a chemical in the reactor depends on the amount of mass flowing in
minus the mass flowing out.

Civil and mechanical engineers often focus on models developed from the conserva-
tion of momentum. For civil engineering, force balances are utilized to analyze structures
such as the simple truss in Table 1.1. The same principles are employed for the mechanical
engineering case studies to analyze the transient up-and-down motion or vibrations of an
automobile.

Finally, electrical engineering studies employ both current and energy balances to model -
electric circuits. The current balance, which results from the conservation of charge, 1s simi-
lar in spirit to the flow balance depicted in Fig. 1.5. Just as flow must balance at the junction
of pipes, electric current must balance at the junction of electric wires. The energy balance
specifies that the changes of voltage around any loop of the circuit must add up to zero.

We should note that there are many other branches of engineering beyond chemical, civil,
electrical, and mechanical. Many of these are related to the Big Four. For example, chemical
engineering skills are used extensively in areas such as environmental, petroleum, and bio-
medical engineering. Similarly, aerospace engineering has much in common with mechani-
cal engineering. We will endeavor to include examples from these areas in the coming pages.

NUMERICAL METHODS COVERED IN THIS BOOK

We chose Euler’s method for this introductory chapter because it is typical of many other
classes of numerical methods. In essence, most consist of recasting mathematical opera-
tions into the simple kind of algebraic and logical operations compatible with digital com-
puters. Figure 1.6 summarizes the major areas covered in this text.

14 MATHEMATICAL MODELING, NUMERICAL METHODS, AND PROBLEM SOLVING

TABLE 1.1 Devices and types of balances that are commonly used in the four major areas of engineering. For
each case, the conservation law on which the balance is based is specified.

Field Device

Organizing Principle

Mathematical Expression

Chemical
engineering

Civil
engineering
Structure
Mechanical Machine
engineering QD
& &

Electrical
engineering +

Circuit

Reactors

Conservation
of mass

Conservation
of momentum

Conservation
of momentum

Conservation
of charge

Conservation
of energy

Mass balance:

Input Output

Over a unit of time period
Amass = inputs — outputs

Force balance: +Fy

T

~Fy 4— @ —» +Iy

|

;FV
At each node
¥ horizontal forces (Fy) = 0
%, vertical forces (Fy) = 0

Force balance: Upward force
x=0
Downward force

‘fi;; = downward force — upward force

Current balance: +i, —»T—o —i;
For each node

m

Scurrent (i) =0 +i
iIRl
Voltage balance:
iZRZ ‘f
iBRS

Around each loop
3, emf's — 3 voltage drops for resistors
=0
S¢E~-3iR=0

1.3 NUMERICAL METHODS COVERED IN THIS BOOK 15

{a) Part 2: Roots and optimization flx)

Roots: Solve for x so that f{x) = 0
Roots

Optimization: Solve for x so that f'(x) = 0

X
Opti
{b) Part 3: Linear algebraic equations ptima
fix}
Given the a's and the &s, solve for the x's
axy tapx, =6 Tt oog R, Solution
ayxy + anx; = by i
, X
{c} Part 4: Curve fitting
flx) flx) Interpolation
®
[
Regression
X X
{d) Part 5: Integration and differentiation
y
Iintegration: Find the area under the curve
Differentiation: Find the slope of the curve
X
(e} Part 6: Differential equations y
Given Slope = f(1; y)
dy Ay
o= A ey ®
solve for y as a function of 1 5
Yiry = ¥ Tl)AL : At ;

FIGURE 1.6

Summary of the numerical methods covered in this book.

16

MATHEMATICAL MODELING, NUMERICAL METHODS, AND PROBLEM SOLVING

Part Two deals with two related topics: root finding and optimization. As depicted in
Fig. 1.6a, root location involves searching for the zeros of a function. In contrast, optimiza-
tion involves determining a value or values of an independent variable that correspond to a
“best” or optimal value of a function. Thus, as in Fig. 1.6a, optimization involves identify-
ing maxima and minima. Although somewhat different approaches are used, root location
and optimization both typically arise in design contexts.

Part Three is devoted to solving systems of simultaneous linear algebraic equations
(Fig. 1.6b). Such systems are similar in spirit to roots of equations in the sense that they are
concerned with values that satisfy equations. However, in contrast to satisfying a single
equation, a set of values is sought that simultaneously satisfies a set of linear algebraic
equations. Such equations arise in a variety of problem contexts and in all disciplines of en-
gineering and science. In particular, they originate in the mathematical modeling of large
systems of interconnected elements such as structures, electric circuits, and fluid networks.
However, they are also encountered in other areas of numerical methods such as curve fit-
ting and differential equations.

As an engineer or scientist. you will often have occasion to fit curves to data points. The
techniques developed for this purpose can be divided into two general categories: regression
and interpolation. As described in Part Four (Fig. 1.6¢), regression is employed where there
is a significant degree of error associated with the data. Experimental results are often of this
kind. For these situations, the strategy is to derive a single curve that represents the general
trend of the data without necessarily matching any individual points.

In contrast, interpolation is used where the objective is to determine intermediate val-
ues between relatively error-free data points. Such is usually the case for tabulated infor-
mation. The strategy in such cases is to fit a curve directly through the data points and use
the curve to predict the intermediate values.

As depicted in Fig. 1.6d, Part Five is devoted to integration and differentiation. A
physical interpretation of numerical integration is the determination of the area under a
curve. Integration has many applications in engineering and science, ranging from the de-
termination of the centroids of oddly shaped objects to the calculation of total quantities
based on sets of discrete measurements. In addition, numerical integration formulas play an
important role in the solution of differential equations. Part Five also covers methods for
numerical differentiation. As you know trom your study of calculus, this involves the de-
termination of a function’s slope or its raie of change.

Finally, Part Six focuses on the solution of ordinary differential equations (Fig. 1.6e).
Such equations are of great significance in all areas of engineering and science. This is be-
cause many physical laws are couched in terms of the rate of change of a quantity rather than
the magnitude of the quantity itself. Examples range from population-forecasting models
{rate of change of population) to the acceleration of a falling body (rate of change of velocity).
Two types of problems are addressed: initial-value and boundary-value problems.

PROBLEMS

17

PROBLEMS

L1 Use calculus to verify that Eq. (1.9) is a solution of
Eq. (1.8).
1.2 The following information is available for a bank

account:
Date Deposits Withdrawals Balance
571 1512.33
22013 327.26
6/
216.80 378.61
7/1
450,25 106.80
8/1
127.31 350.61
9/1

Use the conservation of cash to compute the balance on 6/1,
7/1.8/1, and 9/1. Show each step in the computation. Is this
a steady-state or a transient computation?
1.3 Repeat Example 1.2. Compute the velocity to t = 12 s,
with a step size of (a) 1 and (b) 0.5 s. Can you make any
statement regarding the errors of the calculation based on the
results?
1.4 Rather than the nonlinear relationship of Eq. (1.7), you
might choose to model the upward force on the bungee
jumper as a linear relationship:
Fy=—cv
where ¢’ = a first-order drag coefficient (kg/s).
(a) Using calculus, obtain the closed-torm solution for the
case where the jumper is initially at rest (v =0 atr = 0).
(by Repeat the numerical calculation in Example 1.2 with
the same initial condition and parameter values. Use a
value of 12.5 kg/s for ¢’.
L5 For the free-falling bungee jumper with linear drag
(Prob. 1.4), assume a first jumper is 70 kg and has a drag co-
efficient of 12 kg/s. If a second jumper has a drag coefficient
of 15 kg/s and a mass of 75 kg, how long will it take her to
reach the same velocity jumper 1 reached in 10 s?
1.6 For the free-falling bungee jumper with linear drag
(Prob. 1.4), compute the velocity of a free-falling parachutist
using Euler’s method for the case where m = 80 kg and ¢’ =
10 kg/s. Perform the calculation from ¢ = 0 to 20 s with a
step size of 1 s. Use an initial condition that the parachutist
has an upward velocity of 20 m/s at + = 0. At r = 10 s, as-
sume that the chute is instantaneously deployed so that the
drag coefficient jumps to 50 kg/s.

1.7 The amount of a uniformly distributed radioactive con-
taminant contained in a closed reactor is measured by its
concentration ¢ (becquerel/liter or Bg/L). The contaminant
decrcases at a decay rate proportional to its concentration;
that is

Decay rate = —kc¢

where £ is a constant with units of day™'. Therefore, accord-
ing to Eq. (1.14), a mass balance for the reactor can be
written as

dc
dt
change \ (decrease
(in mass) N (by decay>
(a) Use Euler’s method to solve this equation from ¢t = 0 to
I d with k = 0.2 d”'. Employ a step size of Ar = 0.1 d.
The concentration at r = 0 is 10 Bg/L.
(b) Plot the solution on a semilog graph (i.e., In ¢ versus 1)
and determine the slope. Interpret your results.
1.8 A storage tank (Fig. P1.8) contains a liquid at depth y
where y = 0 when the tank is half full. Liquid is withdrawn
at a constant flow rate Q to meet demands. The contents are

resupplied at a sinusoidal rate 3Q sin’(z). Equation (1.14)
can be written for this system as

= —kc¢

d(Ay
(d{” =3Qsin°()~ Q
h .
<C angem) = (inflow) - (outflow)
volume

y

FIGURE P1.8

18 MATHEMATICAL MODELING, NUMERICAL METHODS, AND PROBLEM SOLVING

or, since the surface area A is constant

dy Q0 o

P 3X sin“(t) — 3
Use Euler’s method to solve for the depth y from ¢ = 0 to
10 d with a step size of 0.5 d. The parameter values are A =
1200 m” and Q = 500 m*/d. Assume that the initial condition
isy=0.
1.9 For the same storage tank described in Prob. 1.8, sup-
pose that the outflow is not constant but rather depends on
the depth. For this case, the differential equation for depth
can be written as

a(l + "
A

dy Y
d

= 3Z5in%(1) —
1 A

Use Euler’s method to solve for the depth y from r = 0 to
10 d with a step size of 0.5 d. The parameter values are A =
1200 m?, @ = 500 m¥d, and & = 300. Assume that the ini-
tial condition is y = 0.

1.10 The volume flow rate through a pipe is given by O =
vA, where v is the average velocity and A is the cross-
sectional area. Use volume-continuity to solve for the required
area in pipe 3 of Fig. P1.10.

1.11 A group of 30 students attend a class in a room which
measures 10 m by 8 m by 3 m. Each student takes up about
0.075 m* and gives out about 80 W of heat (1 W =1 J/s).
Calculate the air temperature rise during the first 15 minutes
of the class if the room is completely sealed and insulated.
Assume the heat capacity C, for air is 0.718 kJ/(kg K). As-
sume air is an ideal gas at 20 °C and 101.325 kPa. Note that
the heat absorbed by the air Q is related to the mass of the air

Ouin = 40 m¥s Oy 0u = 20 M¥s

U out = 6 M/8
Ay =7

FIGURE P1.10

m the heat capacity, and the change in temperature by the
following relationship:

T
Q= m/ CodT =mCy(T> - TY)
T

1

The mass of air can be obtained from the ideal gas law:

PV — m
Mwt

where P is the gas pressure, V is the volume of the gas, Mwt
is the molecular weight of the gas (for air, 28.97 kg/kmol),
and R is the ideal gas constant [8.314 kPa m*/(kmol K)].
1.12 Figure P1.12 depicts the various ways in which an aver-
age man gains and loses water in one day. One liter is ingested
as food, and the body metabolically produces 0.3 liters. In
breathing air, the exchange is 0.05 liters while inhaling, and
0.4 liters while exhaling over a one-day period. The body will
also lose 0.2, 1.4, 0.2. and 0.35 liters through sweat, urine,
feces, and through the skin, respectively. To maintain steady
state, how much water must be drunk per day?

1.13 In our example of the free-falling parachutist, we as-
sumed that the acceleration due to gravity was a constant
value of 9.8 m/s*. Although this is a decent approximation
when we are examining falling objects near the surface of
the earth, the gravitational force decreases as we move
above sea level. A more general representation based on
Newton'’s inverse square law of gravitational attraction can
be written as

2

() = g(0) -
gx)—g()m

Skin
Urinet T f Feces
Food — - = Air
. BODY
Drink = S —> Sweat
Metabolism

FIGURE P1.12

PROBLEMS

19

where g(x) = gravitational acceleration at altitude x (in m)
measured upward from the earth’s surface (m/sz), 2(0) =
gravitational acceleration at the earth’s surface (= 9.8 m/s?),
and R = the earth’s radius (= 6.37 x 10° m).

(a) In a fashion similar to the derivation of Eq. (1.8), use a
force balance to derive a differential equation for veloc-
ity as a function of time that utilizes this more complete
representation of gravitation. However, for this deriva-
tion, assume that upward velocity is positive.

(b) For the case where drag is negligible, use the chain rule
to express the differential equation as a function of alti-
tude rather than time. Recall that the chain rule is

dv dvdx
dt ~ dxdt

(¢) Use calculus to obtain the closed form solution where
v=yyatx=0.

(d) Use Euler’s method to obtain a numerical solution from
x = 0to 100,000 m using a step of 10,000 m where the
initial velocity is 1400 m/s upward. Compare your result
with the analytical solution.

1.14 Suppose that a spherical droplet of liquid evaporates at

arate that is proportional to its surface area.

dv
— = —kA
dt

where V = volume (mm’), r = time (hr), k = the evaporation
rate (mm/hr), and A = surface area (mm-). Use Euler’s
method to compute the volume of the droplet from ¢ = 0 to
10 min using a step size of 0.25 min. Assume that k =
0.1 mm/min and that the droplet initially has a radius of 3 mm.
Assess the validity of your resulis by determining the radius

of your final computed volume and verifying that it is con-
sistent with the evaporation rate.
1.15 Newton's law of cooling says that the temperature of 2
body changes at a rate proportional to the difference between
its temperature and that of the surrounding medium (the am-
bient temperature).

7 k(T - T,)

i~ «
where T = the temperature of the body (°C), = time (min),
k = the proportionality constant (per minute), and 7, = the
ambient temperature (°C). Suppose that a cup of coffee orig-
inally has a temperature of 68 °C. Use Euler’s method to
compute the temperature from 7 = 0 to 10 min using a step
size of | minif 7, = 21 °C and k£ = 0.017/min.
1.16 Afluid is pumped into the network shown in Fig. P1.16.
IfQ,=06,0,=04,0,=02,and Q3 =0.3 m*/s, determine
the other flows.

' R C T S
i b
02 ‘ 04 ‘ 06 J' 07 {’
% | @& | G

—

FIGURE P1.16

20

MATLAB Fundamentals

K CHAPTER OBJECTIVES

The primary objective of this chapter is to provide an introduction and overview of
how MATLAB’s calculator mode is used to implement interactive computations.
Specific objectives and topics covered are

¢ Learning how real and complex numbers are assigned to variables

¢ Learning how vectors and matrices are assigned values using simple assignment,
the colon operator, and the 1 inspace and | ogspace functions.
Understanding the priority rules for constructing mathematical expressions.

® Gaining a general understanding of built-in functions and how you can learn more
about them with MATLAB’s Help facilities.

® Learning how to use vectors Lo create a simple line plot based on an equation.

YOU’'VE GOT A PROBLEM

n Chap. [, we used a force balance to determine the terminal velocity of a free-falling
object like a bungee jumper.

_
o \/ Cd

where v, = terminal velocity (m/s), ¢ = gravitational acceleration (m/s*), m = mass (kg),
and ¢, = a drag coefTicient (kg/m). Aside from predicting the terminal velocity, this equa-
tion can also be rearranged to compute the drag coefficient

mg
Cqg =

2
U

2.1

2.1 THE MATLAB ENVIRONMENT 21

TABLE 2.1 Data for the mass and associated terminal velocities of a number of jumpers.

m, kg 83.6 60.2 721 211 929 65.3 80.9
i v, m/s 53.4 48.5 50.9 55.7 54 47.7 511

Thus, if we measure the terminal velocity of a pumber of jumpers of known mass, this
equation provides a means to estimate the drag coefficient. The data in Table 2.1 were col-
lected for this purpose.

In this chapter, we will learn how MATLAB can be used to analyze such data. Beyond
showing how MATLAB can be employed to compute quantities like drag coefficients, we
will also itlustrate how its graphical capabilities provide additional insight into such analyses.

2.1 THE MATLAB ENVIRONMENT

MATLAB is a computer program that provides the user with a convenient environment for
performing many types of calculations. In particular, it provides a very nice tool to imple-
ment numerical methods.

The most common way to operate MATLAB is by entering commands one at a time in
the command window. In this chapter, we use this interactive or calculator mode to ntro-
duce you to common operations such as performing calculations and creating plots. In
Chap. 3, we show how such commands can be used to create MATLAB programs.

One further note. This chapter has been writlen as a hands-on exercise. That is, you
should read it while sitting in front of your compuler. The most efficient way to become
proficient is to actually imptement the commands on MATLAB as you proceed through the
following material.

MATLAB uses three primary windows:

o Command window. Used to enter commands and data.
e Graphics window. Used to display plots and graphs.
. Edit window. Used to create and edit M-files.

In this chapter, we will make use of the command and graphics windows. In Chap. 3 we
will use the edit window to create M-files.

After starting MATLAB, the command window will open with the command prompt
being displayed

The calculator mode of MATLAB operates in a sequential fashion as you type in com-
mands line by line. For each command, you geta result. Thus, you can think of it as oper-
ating like a very fancy calculator. For example. if you type in

-» 55 - 16
MATLAB will display the result’

ans =

39

{ MATLAB skips a linc between (ke label (cne -) and the aumber (39). Here, we omit such blank lines for
conciseness. You ¢uan control whether blank lines are included with the Lormat compact and format loosa
commands.

22

MATLAB FUNDAMENTALS

2.2

Notice that MATLAB has automatically assigned the answer to a variable, ans. Thus, you
could now use ans in a subsequent calculation:

>> ans + 11
with the result

ans =
50

MATLAB assigns the result to ans whenever you do not explicitly assign the calculation
to a variable of your own choosing.

ASSIGNMENT

Assignment refers to assigning values to variable names. This results in the storage of the
values in the memory location corresponding to the variable name.

2.2.1 Scalars

The assignment of values to scalar variables is similar to other computer languages.
Try typing

Echo printing is a characteristic of MATLAB. It can be suppressed by terminating the com-
mand line with the semicolon (;) character. Try typing

> A = 63

You can type several commands on the same line by separating them with commas or
semicolons. If you separate them with commas, they will be displayed, and if you use the
semicolon, they will not. For example,

>> a = 4,A = 6;x = 1; type

a = short

4 long

short e
long e
short g
long g

MATLAB treats names in a case-sensitive manner—that is, the name a is not the same
as the name 2. To illustrate this, enter

>> A

short eng
long eng

and then enter

>> A
bank

See how their values are distinct. They are distinct names.

2.2 ASSIGNMENT 23

We can assign complex values to variables, since MATLAB handles complex arith-
metic automatically. The unit imaginary number +/—1 is preassigned to the variable 1.
Consequently, a complex value can be assigned simply as in

>>» X = 2+1%*4

N o=
2.0000 + 4.00001

It should be noted that MATLLAB allows the symbol j to be used to represent the unit imag-
inary number for input. However, it always uses an i for display. For example,

>> X = 2+3*4

X =
2.0000 + 4.00001

There are several predefined variables. for example. pi.
>> pi

ans =
3.1416

Notice how MATLAB displays four decimal places. If you desire additional precision,
enter the following:

>> format long
Now when pi is entered the result is displayed to 15 significant figures:
>> pi

ans =
3.14159265358979

To return to the four decimal version, type
>> format short
The following is a summary of the format commands you will employ routinely in engi-

neering and scientific calculations. They all have the syntax: format type.

g

type Result Example

short Scaled fixed-point format with 5 digils 3.14716
long Scaled fixed-point format with 15 digits for double and 7 digits for single 3.14159265358979
short e Floatingpoint format with 5 digits 3.1416e+000
long e Floating-point format with 15 digits for double and 7 digits for single 3.141592653589793e+000
short g Best of fixed- or floating-point format with 5 digits 3.1416
long g Best of fixed- or floating-point format with 15 digits for double 3.14159265358979
and 7 digits for single
short eng Engineering format with at least 5 digits and a power that is a multiple of 3 3.1416e+000
long eng Engineering format with exactly 16 significant digits and a power 3.14159265358979e+000

that is a multiple of 3
bank Fixed dollars and cents 3.14

24

MATLAB FUNDAMENTALS

2.2.2 Arrays, Vectors and Matrices

An array is a collection of values that are represented by a single variable name. One-
dimensional arrays are called vectors and two-dimensional arrays are called matrices. The
scalars used in Section 2.2.1 are actually a matrix with one row and one column.

Brackets are used to enter arrays in the command mode. For example, a row vector can
be assigned as follows:

>>a = [1 2 3 45]

1 2 3 4 5
Note that this assignment overrides the previous assignment of & = 4.
In practice, row vectors are rarely used to solve mathematical problems. When we
speak of vectors, we usually refer to column vectors, which are more commonly used. A
column vector can be entered in several ways. Try them.

> b o= [2:;4;6;8;10]
or
4 ;
6;
8
10]
or. by transposing a row vector with the ' operator,
»>> b = [2 4 6 8 10 1
The result in all three cases will be

b =

Lo NS

1

[}

A matrix of values can be assigned as follows:

> A = [1L 23 ; 4% 6 ; 7 8 9]

—
[SaRNN)
O8]

~
axx

9

In addition, the Enter key (carriage return) can be used to separate the rows. For example,
in the following case, the Enter key would be struck after the 3, the 6 and the | to assign the
matrix:

=> A = [1 2 3
45 6
78 9|

I
A
\
1_9,
&
]

2.2 ASSIGNMENT 25

At any point in a session, a list of all current variables can be obtained by entering the
who command:

>> who

Your variables are:
A a ans D X

or, with more detail. enter the whos command:

>> whos
Narwe Size Bytes Class
A 3x3 72 double array
a 1x5 40 double array
ans Ix1 3 double array
b b1 40 double array
X 1x1 16 double array

(complex)
Grand total is 21 elements using 176 hytes

Note that subscript notation can be used to access an individual element of an array.
For example, the fourth element of the column vector b can be displayed as

=> b(4d)

ans

8
For an array, 2 (m, n) selects the clement in mth row and the nth column. For example,
== A(2,3)

ans -
6
There are several built-in functions that can be used to create matrices. For example,
the ones and zeros functions create vectors or matrices filled with ones and zeros,

respectively. Both have two arguments, the first for the number of rows and the second for
the number of columns. For example, to create a 2 x 3 matrix of zeros:

=% B = zeros(2,3)
B o=
0 0 0
0 0 0

Similarly, the ones function can be used to create a row vector of ones:
>> u = ones(l,3)

u =

2.2.3 The Colon Operator

The colon operator is a powerful tool for creating and manipulating arrays. If a colon is
used to separate two numbers, MATLAB generates the numbers between them using an

P — —

26

MATIAB FUNDAMENTALS

AR =

e - 2 S

increment of one:
>> t = 1:5

t =
1 2 3 4 5

If colons are used to separate three numbers, MATLAB generates the numbers between the
first and third numbers using an increment equal to the second number:

>»> t = 1:0.5:3

t =
1.0000 1.5000 2.0000 2.5000 3.0000

Note that negative increments can also be used
>> £ = 10:-1:5

t =
10 9 8 7 6 5

Aside from creating series of numbers, the colon can also be used as a wildcard to se-
lect the individual rows and columns of a matrix. When a colon is used in place of a spe-
cific subscript, the colon represents the entire row or column. For example, the second row
of the matrix A can be selected as in

>> A(2,:)
ans =
4 5 6
We can also use the colon notation to selectively extract a series of elements from
within an array. For example, based on the previous definition of the vector t:

>> £ (2:4)

9 8 7

Thus, the second through the fourth elements are returned.

2.2.4 The 1inspace and logspace Functions

The linspace and logspace functions provide other handy tools to generate vectors of
spaced points. The 1inspace function generates a row vector of equally spaced points. It
has the form

linspace(x1, x2, n)
which generates n points between x 1 and x2. For example
>> linspace(0,1,6)

ans =
0 (3.2000 0.4000 0.6000 0.8000 1.0000

If the n is omitted. the function automatically generates 100 points.
The 1ogspace function generates a row vector that is logarithmically equally spaced.
It has the form

logspace(x1, x2, n)

/)

WYY — afal
?:@Hfﬁ [g

2.3

2 Le- g s
zt gy z| £

2.3

whi
For

If n

Ope
com

Alsc

Res
ply

thes
ing

Th
as

2L

T

2.3 MATHEMATICAL OPERATIONS 27

2.3

which generates n logarithmically equally spaced points between decades 10* and 107,
For example,

>> logspace(-1,2,4)

ans =
0.1000 1.0000 10.0000 100.0000

If n is omitted, it automatically generates 50 points.

MATHEMATICAL OPERATIONS

Operations with scalar quantities are handled in a straightforward manner, similar to other
computer languages. The common operators, in order of priority, are

Exponentiation

~ Negation

x Multiplication and division
\ left division?

+ - Addition and subtraction

These operators will work in calculator fashion. Try
>> 2*pi

ans =
6.2832

Also, scalar real variables can be included:

>> vy = pl/4;
>> y ~ 2.45

ans =
0.5533

Results of calculations can be assigned to a variable, as in the next-to-last example, or sim-
ply displayed, as in the last example.

As with other computer calculation, the priority order can be overridden with paren-
theses. For example, because exponentiation has higher priority then negation, the follow-
ing result would be obtained:

>>y = -4 "~ 2

y =
-16

Thus, 4 is first squared and then negated. Parentheses can be used to override the priorities
as in

>> v = (-4} ~ 2

y:
16

? Left division applies to matrix algebra. It will be discussed in detail later in this book.

5 _

nt4d 4+ -

= -
=Y — = X - Sp S
2} L - e s\ 2p e 2

A =

z\ 3 b &

28 MATLAR FUNDAMENTALS

Calculations can also involve complex quantities. Here are some examples that use the
values of x (2 + 4i) and v (16) defined previously:

> 3 * %

ans =
6.0000 +12.00001

>» 1 / x

ans =
0.1000 - 0.20001

>> x 2

ans =
-12.0000 +16.00001

>> X + Y

ans =
18.0000 + 4.00001

The real power of MATLAB is illustrated in its ability to carry out vector-matrix
calculations. Although we will describe such calculations in detail in Chap. 8, it is worth
introducing some of those manipulations here.

The inner product of two vectors (dot product) can be calculated using the * operator,

and likewise, the outer product
>» b * a

ans
2 4 6 3 10
4 8 12 16 20
6 12 18 24 30
8 16 24 32 40
10 20 30 40 50

To further illustrate vector-matrix multiplication, first redefine a and ©:

>» a = [1 2 3];

v
W
o
i

(45 06]";

1
I
ﬁ—
|

—

2.3 MATHEMATICAL OPERATIONS 29

or
>> A * b
ans =
32
77
122

Matrices cannot be multiplied if the inner dimensions are unequal. Here is what happens
when the dimensions are not those required by the operations. Try

>> A * a
MATLAB automatically displays the error message:

??? Error using ==> mtimes
Inner matrix dimensions must agree.

Matrix-matrix multiplication is carried out in likewise fashion:

>> A ¥ A

ans =
30 36 42
66 81 96

102 126 150

Mixed operations with scalars are also possible:

>> A/pi

ans =
0.3183 0.6366 0.9549
1.2732 1.591% 1.9099
2.2282 2.5465 2.8648

We must always remember that MATLAB will apply the simple arithmetic operators
in vector-matrix fashion if possible. At times, you will want to carry out calculations item
by item in a matrix or vector. MATLAB provides for that too. For example,

s AN 2

ans =
30 36 472
66 81 96

102 126 150

results in matrix multiplication of A with itself.
What if you want to square each element of A? That can be done with

>> A .7~ 2

ans =
1 4 9
16 25 36
49 64 81

The . preceding the ~ operator signifies that the operation is to be carried out element by
element. The MATLAB manual calls these array operations. They are also often referred
to as element-by-element operations.

30 MATLAB FUNDAMENTALS

MATLAB contains a helpful shortcut for performing calculations that you’ve already
done. Press the up-arrow key. You should get back the last line you typed in.

>> A .M 2
Pressing Enter will perform the calculation again. But you can also edit this line. For
example, change it to the line below and then press Enter,

>> A .7 3

ans =
1 8 27
64 125 216
343 512 729

Using the up-arrow key, you can go back to any command that you entered. Press the up-
arrow until you get back the line

b * a
Alternatively, you can type b and press the up-arrow once and it will automatically bring

up the last command beginning with the letter b. The up-arrow shortcut is a quick way to
fix errors without having to retype the entire line.

2.4 USE OF BUILT-IN FUNCTIONS

MATLAB and its Toolboxes have a rich collection of buiit-in functions. You can use online
help to find out more about them. For example, if you want to learn about the 1o0g function,

type in

LOG Natural logarithm.
LOG{X) is the natural logarithm of the elements of X.
Complex results are produced 1f X is not positive.

See also LOG2, LOG1l0, EXP, LOGM.
For a list of all the elementary functions, type
>> help elfun

One of their important properties of MATLAB’s built-in functions is that they will op-
erate directly on vector and matrix quantities. For example, try

>> log (A)
ans =
0 0.6931 1.0986
1.3863 1.6094 1.7918
1.9459 2.0794 2.1972

and you will see that the natural logarithm function is applied in array style, element by
element, to the matrix &. Most functions, such as sqgrt, abs, sin, acos, tanh, and exp, op-
erate in array fashion. Certain functions, such as exponential and square root, have matrix
definitions also. MATLAB will evaluate the matrix version when the letter m is appended to

2.4 USE OF BUILTIN FUNCTIONS 31

the function name. Try

>> sgrtm(A)

ans =
0.4498 + 0.76231 0.5526 + 0.20681 0.6555 - 0.34871
1.0185 + 0.08421 1.2515 + 0.02281 1.4844 - 0.03851
1.5873 -~ 0.59401 1.9503 - 0.16111 2.3134 + 0.27171

There are several functions for rounding. For example, suppose that we enter a vector:
>> E = [-1.6 -1.5 -1.4 1.4 1.5 1.6];

The round function rounds the elements of E to the nearest integers:
>> round(E)

ans =
-2 -2 -1 1 2 2

The ceil (short tor ceiling) function rounds to the nearest integers toward infinity:
>> cell (E)

ans =
-1 -1 -1 2 2 2

The f1oor function rounds down to the nearest integers toward minus infinity:

>> floor (E)

-2 -2 -2 1 1 |

There are also functions that perform special actions on the elements of matrices and
arrays. For example, the sum function returns the sum of the elements:

>> F = [3 5 4 6 1];
>> sum(F)

ans =
19

In a similar way, it should be pretty obvious what’s happening with the following commands:
>> min(F) ,max (F),mean(F),prod(F),sort(F)

ans =

1

ans =

ans

ans =

AN S i g~

N

MATLAB FUNDAMENTALS

A common use of functions is to evaluate a formula for a series of arguments. Recall 2.5 G
that the velocity of a free-falling bungee jumper can be computed with [Eq. (1.9)]: ;/I-
ar:
v= (5 tanh(sed t) N
Cd m
.) . Th
where v is velocity (m/s), g is the acceleration due to gravity (9.81 m/s-), m is mass (kg), bo

¢, 1s the drag coefficient (kg/m), and ¢ is time (s).
Create a column vector t that contains values from 0 to 20 in steps of 2:

€
> t = [0:2:20]"
t o= 5
0
2 4
4
6 3
8
10 2
12
14
16 1
18
20
Check the number of items in the t array with the 1ength function:
Yo

>>» length(t)

ans =
11

Assign values to the parameters:
>» g = 9.81; m = 68.1; cd = 0.25;

MATLAB allows you to evaluate a formula such as v = f(r), where the formula is
computed for each value of the ¢ array, and the result is assigned to a corresponding posi-
tion in the v array. For our case,

>» v = sqgrt(g*m/cd) *tanh{sqrt {g*cd/m)*t)

v o=

0
18.7292
33.1118
42.0762
46.9575
49.4214
50.6175
51.1871
51.4560
51.5823
51.6416

ermn ~AF L

Vint

RIS S

S

2.5 GRAPHICS 33

2.5 GRAPHICS

MATLAB allows graphs to be created quickly and conveniently. For example, to create a
graph of the t and v arrays from the data above, enter

»» plot (6, V)
1NE grapn appears 1n e grapnics Winaow and can be printed or wansierred via me ciip-
’ board to other programs.

O 7T T T T T T

50— -

40t -

30— -

20— -

101 -

0 | |] | I | | | |
0 2 4 6 8 10 12 14 16 18 20

You can customize the graph a bit with commands such as the following:

»> title('Plot of v versus t')
»» xlabel ('Values of t')

> ylabel ('Valuecs of v')

> grid

Plot of v versus ¢

1S

50 - : —
—

30

Values of v

20

10

0 2 4 6 8 10 12 14 16 18 20
Values of ¢

A - = ﬁ /2/47” — k&

34

MATLAB FUNDAMENTALS

et

2|

dite - 2 A
-8B

TABLE 2.2 Specifiers for colors, symbols, and line types.

Colors Symbols Line Types
Blue b Point . Solid -
Green q Circle o Dotted :
Red T X-mark % Dashdot -.
Cyan c Plus + Dashed --
Magenta m Star *
Yellow v Square g
Black k Diamond a

Triangle{down) v

Triangle{up) 4

Triangle{left} <

Trianglelright) >

Pentagram D

Hexagram h

The plot command displays a solid line by default. If you want to plot each point with
a symbol, you can include a specifier enclosed in single quotes in the plot function.
Table 2.2 lists the available specifiers. For example, if you want to use open circles enter

>> plot (t, v, ‘o)

MATLAB allows you to display more than one data set on the same plot. For example,
if you want to connect each data marker with a straight line you could type

== plot (L, v, t, v, 'o')

It should be mentioned that, by default, previous plots are erased every time the plot
command is implemented. The hold on command holds the current plot and all axis prop-
erties so that additional graphing commands can be added to the existing plot. The hold
off command returns to the default mode. For example, if we had typed the following
commands, the final plot would only display symbols:

>> plot (t, v)

>> plot {(t, v, 'o')
In contrast, the following commands would result in both lines and symbols being
displayed:

>»> plot (t, w)

>» hold on

»>> plot (t, v, 'o")
>> hold off

In addition to ho14d, another handy function is subplot, which allows you to split the
graph window into subwindows or panes. It has the syntax

subplot (m, n, P}

This command breaks the graph window into an m-by-n matrix of small axes, and selects
the p-th axes for the current plot.

e —

5 _
Z)\ AL
< i A ;jx Wl

¢ 59|
AN S 2t &

2.5 GRAPHICS 35

We can demonstrate subplot by examining MATLAB’s capability to generate three-
dimensional plots. The simplest manifestation of this capability is the plot3 command
which has the syntax

plotld (x, y., Zz)

where X, y, and z are three vectors of the same length. The resultis a line in three-dimensional
space through the points whose coordinates are the elements of x, v, and z.

Plotting a helix provides a nice example to illustrate its utility. First, let’s graph a circle
with the two-dimensional plot function using the parametric representation: x = sin(r)
and y = cos(r). We employ the subplot command so we can subsequently add the three-di-
mensional plot.

>> £ = 0:p1/50:10*pi;

>» subplot(1,2,1);plot(sin{t),cos(t))

>> axls sqguare

>> title(' (a) ")

As in Fig. 2.1a, the result is a circle. Note that the circle would have been distorted if we
had not used the axis sgquare command.

FIGURE 2.1

A twopane plof of (a] a two-dimensional circle and (b) a three-dimensional helix.

(b)

36

MATLAB FUNDAMENTALS

2.6

Now, let’s add the helix to the graph’s right pane. To do this, we again employ a para-
metric representation: x = sin(f), y = cos(f), and z =

>> subplot(1,2,2);plot3(gsin(t),cosl(t),t);

>> title ("' (b)")

The result is shown in Fig. 2.1h. Can you visualize what’s going on? As time evolves,
the x and y coordinates sketch out the circumference of the circle in the x—y plane in the
same fashion as the two-dimensional plot. However, simultaneously, the curve rises verti-
cally as the z coordinate increases linearly with time. The net result is the characteristic
spring or spiral staircase shape of the helix.

There are other features of graphics that are useful-—for example. plotting objects
instead of lines, families of curves plots, plotting on the complex plane, log-log or semilog
plots, three-dimensional mesh plots, and contour plots. As described next, a variety of re-
sources are available to learn about these as well as other MATLAB capabilities.

OTHER RESOURCES

The foregoing was designed to focus on those features of MATLAB that we will be using
in the remainder of this book. As such, it is obviously not a comprehensive overview of all
of MATLARB’s capabilities. If you are interested in learning more, you should consult one
of the excellent books devoted to MATLAB (e.g., Palm, 2005; Hanselman and Littlefield.
2005; and Moore, 2007).

Further, the package itsell includes an extensive Help facility that can be accessed by
clicking on the Help menu in the command window. This will provide you with a number
of different options for exploring and searching through MATLAB’s Help material. In ad-
dition, it provides access to a number of instructive demos.

As described in this chapter, help is also available in interactive mode by typing the
help command followed by the name of a command or function.

If you do not know the name, you can use the lookfor command to search the
MATLARB Help files for occurrences of text. For example, suppose that you want to find all
the commands and functions that relate to logarithms, you could enter

> lookfor logarithm

and MATLAB will display all references that include the word logarithm.

Finally. you can obtain help from The MathWorks. Inc., website at www.mathworks
.com. There you will find links to product information, newsgroups, books, and technical
support as well as a variety of other useful resources.

J gzt g

2.7 CASE STUDY 37

© EXPLORATORY DATA ANALYSIS

Background. Your textbooks are filled with formulas developed in the past by
renowned scientists and engineers. Although these are of great utility, engineers and scien-
tists often must supplement these relationships by collecting and analyzing their own data.
Sometimes this leads to a new formula. However, prior to arriving at a final predictive equa-
tion, we usually “play” with the data by performing calculations and developing plots. In
most cases, our intent is to gain insight into the patterns and mechanisms hidden in the data.

In this case study, we will illustrate how MATLAB facilitates such exploratory data
analysis. We will do this by estimating the drag coefficient of a free-falling human based
on Eq. (2.1) and the data from Table 2.1. However, beyond merely computing the drag
coefficient, we will use MATLAB’s graphical capabilities to discern patterns in the data.

Solution. The data from Table 2.1 along with gravitational acceleration can be entered as

= om=|83e 60.2 72,01 91.1 92.9 6.3 80.97;
= ovb={h3.4 4805 0.9 5507 54 4707 5101105
>nog=9 .81

The drag coefficients can then be computed with Eq. (2.1). Because we are performing
element-by-element operations on vectors, we must include periods prior to the operators:

socd=grm, vt L T2

cd o=
(SR B IR S I I 0.72730 0.288]1 DL2L2% DLE8TY DL 2039

We can now use some of MATLLAB’s built-in functions to generate some statistics for the
results:

o cdavg=mean (od), odmin=min {(cd), edmaxomav (od)

cdavyg =
0.285%4
sdmin =
yoou
dmax =
0.312%

Thus, the average value is 0.2854 with a range from 0.2511 to 0.3125 kg/m.

Now, let’s start to play with this data by using Eq. (2.1) to make a prediction of the
terminal velocity based on the average drag:

- vprod=sagrt{(g*m/odavyg)
vpred
B3L6005 ARLA897 A% IS 559805 0 56,5096 47,3774

5207338
Notice that we do not have to use periods prior to the operators in this formula? Do you
understand why?

We can plot these values versus the actual measured terminal velocities. We will also
superimpose a line indicating exact predictions (the 1:1 line) to help assess the results.

o
in}
d—-
o
I
<
By
N
{
L;(‘
)

38

MATLAB FUNDAMENTALS

continued

Plot of predicted versus measured terminal velocities

60 T T T I T T |
O
3 55— -
o
'},3, O
a SOL O -
45 L O | l L | | l
47 48 49 50 51 52 53 54 55 56
Measured
Plot of drag coefficient versus mass
035 , []]
o E
O ~
€ 03 o 9
T e O @) Q
58 ©
[&]
E g 0250 -
n O
9 g
0.2 | 1 [(1 |
60 65 70 75 80 85 90 95
Mass (kg)
FIGURE 2.2

Two plots created with MATLAB.

Because we are going to eventually generate a second plot, we employ the subplot
command:

- subplot(?,l,l);plot(vL,VprOd,'o',vt/vt)
xlabel {("meanured')
- ylabel ("praedicted!)
Ctitle('Plot of prodicted versus measured terminal

velocities')

As in the top plot of Fig. 2.2, because the predictions generally follow the 1:1 line, you
might initially conclude that the average drag coefficient yields decent results. However,
notice how the model tends to underpredict the low velocities and overpredict the high.
This suggests that rather than being constant, there might be a trend in the drag coefficients.
This can be seen by plotting the estimated drag coefficients versus mass:

- subplot(2,1,2);plot(m,cd, "0")

.oviabel ("mans (kg
viabel (rectimated drag coefficient (kg/m) ')
Litle('Plot of drag coefficient versus mass')

The resulting plot, which is the bottom graph in Fig. 2.2, suggests that rather than
being constant, the drag coefficient seems to be increasing as the mass of the jumper

PROBLE|

2.1 A simple electric ¢
pacitor, and an inductor
on the capacitor g(¢) as
as

q(t) = goe F/PH ¢

where t = time, go = tl
L = inductance, and ¢
generate a plot of this fi
go=12,R=50,L=":
2.2 The standard norm
bell-shaped curve that ¢

{ 2
zZ = —_—— -< /2
/@) \/ﬁe

Use MATLAB to ger
z = —4 to 4. Label th
scissa as z.

PROBLEMS 39

. contfinued

increases. Based on this result, you might conclude that your model needs to be improved.
At the least, it might motivate you to conduct further experiments with a larger number of
jumpers to confirm your preliminary finding.

In addition, the result might also stimulate you to go to the fluid mechanics literature and
learn more about the science of drag. If you did this, you would discover that the parameter
¢, is actually a lumped drag coefficient that along with the true drag includes other factors
such as the jumper’s frontal area and air density:

. CDpA
2
where C,) = a dimensionless drag coefficient, p = air density (kg/m*), and A = frontal
area (m?%), which is the area projected on a plane normal to the direction of the velocity.

Assuming that the densities were relatively constant during data collection (a pretty
good assumption if the jumpers all took off from the same height on the same day), Eq. (2.2)
suggests that heavier jumpers might have larger areas. This hypothesis could be substanti-
ated by measuring the frontal areas of individuals of varying masses.

C4 2.2)

PROBLEMS

2.1 A simple electric circuit consisting ol a resistor, a ca-
pacitor, and an inductor is depicted in Fig. P2.1. The charge
on the capacitor ¢(7) as a function of time can be computed

as
R/l cog (K Mf
LC 2L

where 1 = time, ¢o = the initial charge. R = the resistance,

4y = qoe-

flo=

scissa as 7.

2.3 Usethe Linspace function to create vectors identical to
the following created with colon notation:

@ t.==5:6:30

(b) »= 73:4

2.4 Use colon notation to create vectors identical to the
following created with the 1inspace function:

(@) v = linspace(-3,1,9)

(b) = linspace (8,0, 17)

2.5 If aforce F (N) is applied to compress a spring, its dis-
placement x (m) can often be modeled by Hooke's law:

L =inductance, and C = capacitance. Use MATLAB to F=kx
generate a plot of this function from 7 = 0 to 0.7, given that
G=12R=50,L=5and C= 107" —
2.2 The standard normal probability density function is a Switch 4-1-'
bell-shaped curve that can be represented as - _
Battery ——‘-’+ Vo +Capacitor % Inductor
L e T
V2r MY
Resistor
Use MATLAB to gencrate a plot of this function from
:=-4to 4. Label the ordinate as frequency and the ab- FIGURE P2.1
S

40 MATLAB FUNDAMENTALS

where & = the spring constant (N/m). The potential energy
stored in the spring U (J) can then be computed as

L,
U= 5]\'.’6"

Five springs are tested and the following data compiled:

F,N 1 12 15 Q 12
x, m 0.013 0.020 0.009 0010 0.012

Use MATLARB to store F and x as vectors and then compute
vectors of the spring constants and the potential energics.
Use the max function to determine the maximum potential
energy.

2.6 The density of freshwater can be computed as a function
of temperature with the following cubic equation:

p=35.5289 x 10797 — 8.5016 x 107977
+6.5622 x 107 T¢- + 0.99987

where p = density (g/cm?) and T¢ = temperature (°C). Use
MATLAB 1o generate a vector of temperatures ranging [rom
32 °Fto 82.4 °F using increments of 3.6 °F. Convert this vec-
tor to degrees Celsius and then compute a vector of densitics
based on the cubic tormula. Create a plot of p versus T
Recall that Te = 5/9(T¢ — 32).

2.7 Manning’s equation can be used to compute the velocity
of water in a rectangular open channel:

Vs (BH)2”

U=-—
n

B+2H

where U = velocity (m/s), $ = channel slope, n = roughness
coefficient, B = width (m), and H/ = depth (im). The follow-
ing data 1s available for five channels:

n s B H

0.035 0.0001 10 2
0.020 0.0002 8)
0.015 0.0010 19 1.5
0.030 0.0008 24 3
0.022 0.0003 15 2.5

Store these values in a matrix where each row represents one
of the channels and each column represents one of the param-
eters. Write a single-line MATLAB statement to compute a
column vector contatning the velocities based on the values
in the parameter matrix.

2.8 [t is general practice in engincering and science that
equations be plotted as lines and discrete data as symbols.
Here is some data for concentration (¢) versus time (f) for the
photodegradation of aqueous bromine:

{, min 10 20 30 40 50 60
¢, ppm 3.4 2.6 1.6 1.3 1.0

This data can be described by the following function:
¢ = 4 84 003

Use MATLAB to create a plot displaying both the data
(using square symbols) and the function (using a dotied
line). Plot the function for r = () to 75 min.

2.9 The semilogy function operates in an identical tashion
to the plot function except that a logarithmic (base-10)
scale 1s used for the v axis. Use this function to plot the
data and function as described tn Prob. 2.8. Explain the
results.

2.10 Here is some wind tunnel data for force (F) versus
velocity (v):

v,m/s 10 20 30 40 50 60 /0 80
F,N 25 70 380 550 610 1220 830 1450

This data can be described by the following function:
F =0.2741y"%

Use MATLAB to create a plot displaying both the data
(using diamond symbols) and the function (using a dotted
line). Plot the function for v = 0 10 90 m/s.

2.11 The loglog function operates in an identical fashion
to the plot function except that logarithmic scales are used
for both the x and y axes. Use this function to plot the data
and function as described in Prob. 2.10. Explain the results.
2.12 The Maclaurin series expansion for the sine is

e A

Sln.\’:)(-\?(ﬁ—gwﬁ_ka~

Use MATLAB to create a plot of the sine (solid line) along
with a plot of the series expansion (dashed line) up to and in-
cluding the term x7/7!. Use the built-in function factor-
ial in computing the series expansion. Make the range of
the abscissa from x = 0 to 37/2.

N d 4+ S -
—H z) 8

2!

) g

. A

ETRTCER Y
i

Pi

2.13 You contact the jur
Table 2.1 and measure
values, which are order
corresponding values in T

A, m? 0454 040) 0.

—

(a) If the air density is p
compute values of ti
Cp.

(b) Determine the averag
resulting values.

(¢) Develop a side-by-sid
C,, versus m (right sic
and titles on the plots

2.14 The following parai

that contracts exponentiall

x=¢Mginys
v=e"cost

=1

Use subplot to generat
(x,) in the top pane and
(x, ¥, 2) in the bottom pane
2.15 Exactly what will
MATLAB commands are 1
@) >> x = 2;

>> X N 3;

>>y = 8B - x

() >> g = 4:2:10;
>> 1 = [7 8 4; 3
>> sum(q) * r(2,

H
|
S

PROBLEMS

41

2.13 You contact the jumpers used to generate the data in
Table 2.1 and measure their frontal areas. The resulting
values, which are ordered in the same sequence as the
corresponding values in Table 2.1, are

A,m? 0454 0401 0453 0.485 0.532 0.474 0.486

(a) If the air density is p = 1.225 kg/m®, use MATLAB to
compute values of the dimensionless drag coefficient
Cp.

(b) Determine the average, minimum and maximum of the
resulting values.

(¢) Develop a side-by-side plot of A versus m (left side) and
C,, versus m (right side). Include descriptive axis labels
and titles on the plots.

2.14 The following parametric equations generatc a helix

that contracts exponentially as it evolves

x=e¢"sint
v=e"cost

=1

Use subplot to generate a two-dimensional line plot of
{x, v) in the top pane and a three-dimensional line plot of

(x, v, 7} in the bottom pane.
2.15 Exactly what will be displayed after the following
MATLAB commands are typed?
(a) >> X = 2
> X 73

>v oy o= - X

(b) >> q = 4:2:10;
>>1r =~ [7 8 4; 3 6 =-2];

>> sum(qg) * r(2, 3)

2.16 The trajectory of an object can be modeled as

y = ([an H(})X — ,)—gz‘—'xz + Yo
2v5c080

where v = height (m), 6, = initial angle (radians), x =
horizontal distance (m), g = gravitational acceleration
(= 9.81 m/s?), v, = initial velocity (m/s), and y, = initial
height. Use MATLAB to find the displacement for v, = 0
and v, = 30 m/s for initial angles ranging from 15 to 75° in
increments of 15°. Employ a range of horizontal distances
from x = 0 to 100 m in increments of 5 m. The results should
be assembled in an array where the first dimension (rows)
corresponds to the distances, and the second dimension
(columns) corresponds to the different initial angles. Use
this matrix to generate a single plot of the heights versus
horizontal distances for each of the initial angles. Employ a
legend to distinguish among the different cases, and scale
the plot so that the minimum height is zero using the axis
command.

2.17 The temperature dependence of chemical reactions can
be computed with the Arrhenius equation:

k = AU*E/(RT,,)

where k = reaction rate (s~'), A = the preexponential (or fre-
quency) factor, E = activation energy (J/mol), R = gas con-
stant [8.314 J/(mole - K)], and T, = absolute temperature
(K). A compound has £ =1 x 10° J/mol and A = 7 x 10'°.
Use MATLAB to generate values of reaction rates for tem-
peraturcs ranging {rom 273 10 333 K. Use subplot to gen-
erate a side-by-side graph of (a) k versus T, and (b) log,, &
versus 1/T . Employ the semilogy function to create (b).
Interpret your results.

1

3.1 M-FILES 43

3.1

EXAMPLE 3.1

We also learned that a numerical solution of this equation could be obtained with Euler’s
method:
dw

M+1=1H+”;;Al

This equation can be implemented repeatedly to compute velocity as a function of
time. However, to obtain good accuracy, many small steps must be taken. This would be
extremely laborious and time consuming to implement by hand. However, with the aid of
MATLAB, such calculations can be performed easily.

So our problem now is to figure out how to do this. This chapter will introduce you to
how MATLAB M-files can be used to obtain such solutions.

M-FILES

The most common way to operate MATLAB is by entering commands one at a time in the
command window. M-files provide an alternative way of performing operations that
greatly expand MATLAB’s problem-solving capabilities. An M-file contains a series of
statements that can be run all at once. Note that the nomenclature “M-file” comes from the
fact that such files are stored with a .m extension. M-files come in two flavors: script files
and function files.

3.1.1 Script Files

A script file 1s merely a series of MATLAB commands that are saved on a file. They are
useful for retaining a series of commands that you want to execute on more than one occa-
sion. The script can be executed by typing the file name in the command window or by
invoking the menu selections in the edit window: Debug, Run.

Script File

Problem Statement. Develop a script file to compute the velocity of the free-falling
bungee jumper.

Solution. Open the editor with the menu selection: File, New, M-file. Type in the follow-
ing statements to compute the velocity of the free-falling bungee jumper at a specific time
[recall Eq. (1.9)]:

g =9.81l; m=68.1; ¢t = 12; cd = 0.25;
v = sgqrt(g * m / cd) * tanh(sgrt{(g * cd / m) * t)

Save the file as scriptdemo.m. Return to the command window and type

>>gcriptdemo

The result will be displayed as

v =
50.6175

Thus, the script executes just as if you had typed each of its lines in the command window.

z g ozt g

44 PROGRAMMING WITH MATLAB

As a final step, determine the value of g by typing
>> g
g =

9.8100
So you can see that even though g was defined within the script. it retains its value back in
the command workspace. As we will see in the following section, this ts an important dis-
tinction between scripts and functions.
3.1.2 Function Files
Function files are M-files that start with the word funct ion. In contrast to script files, they
can accept input arguments and return outputs. Hence they are analogous to user-defined
functions in programming languages such as Fortran, Visual Basic or C.

The syntax for the function file can be represented generally as

function outvar = funcnamelarglist)

% helpcomments

statements

coutvar = value;
where outvar = the name of the output variable, funcname = the function’s name,
arglist = the function’s argument list (i.e., comma-delimited values that are passed into
the function), helpcomments = text that provides the user with information regarding the
function (these can be invoked by typing Help funcname in the command window), and
statements = MATLAB statements that compute the value that is assigned to outvar.

Beyond its role in describing the function, the first line of the helpcomments, called
the H1 line, is the line that is searched by the 1ookfor command (recall Sec. 2.6). Thus,
you should include key descriptive words related to the file on this line.

The M-file should be saved as funcname.m. The function can then be run by typing
funcname in the command window as itlustrated in the following example. Note that even
though MATLAB is case-sensitive, your computer’s operating system may not be.
Whereas MATLAB would treat function names like freefallvel and Frecrallvel as
two different variables, your operating system might not.

EXAMPLE 3.2 Function File

Problem Statement. As in Example 3.1, compute the velocity of the free-falling bungee
jumper, but now we will use a function file for the task.

Solution. Type the following statements in the file editor:

function v = freefallvel(t, m, cd)
freefallvel: bungee velocity with second-order drag
v=freefallvel (t,m,cd) computesg the free-fall velocity

of an object with second-order drag

@ o0

o

input:

=M
Hm - ’;_[\Y_L_(\%-a\bl

zy g 2 g

3.1 M-FILES 45

% t = time (sg)

% m = mass (kg)

% cd = second-order drag coefficient (kg/m)
% output:

% v = downward velocity {(m/s)

g = 9.81; % acceleration of gravity

v = sqgrt(g * m / cd)*tanh(sqgrt(g * cd / m) * t);

Save the file as freefallvel.m. To invoke the function, return to the command window
and type in

>> freefallvel(12,68.1,0.25)
The result will be displayed as

ans =
50.6175
One advantage of a function M-file is that it can be invoked repeatedly for different

argument values. Suppose that you wanted to compute the velocity of a 100-kg jumper
after 8 s:

>> freefallvel (8,100,0.25)

ans =
53.1878

To invoke the help comments type
>> help freefallvel
which results in the comments being displayed

freefallvel: bungee velocity with second-order drag
v=freefallvel (t,m,cd) computes the free-fall velocity
of an object with second-order drag

input :

t = time (s)

m = mass (kg)

cd = second-order drag coefficient (kg/m)
output:

v = downward velocity (m/s)

If at a later date, you forgot the name of this function, but remembered that it involved
bungee jumping, you could enter

>» lookfor bungee
and the following information would be displayed

freefall.m: % freefall: bungee velocity with second-order drag

Note that, at the end of the previous example, if we had typed

>> g

46

PROGRAMMING WITH MATLAB

the following message would have been displayed
??7? Undefined function or variable 'g'.

So even though g had a value of 9.81 within the M-file, it would not have a value in the
command workspace. As noted previously at the end of Example 3.1, this is an important
distinction between functions and scripts. The variables within a function are said to be
local and are erased after the function is executed. In contrast, the variables in a script
retain their existence after the script is executed.

Function M-files can return more than one result. In such cases, the variables contain-
ing the results are comma-delimited and enclosed in brackets. For example, the following
function, stats.m, computes the mean and the standard deviation of a vector:

function [mean, stdev] = stats(x)

n = length(x);

mean = sum(x)/n;

stdev = sgrt(sum{(x-mean).”2/(n-1)));

Here is an example of how it can be applied:

x>y:[8510 12 6 7.5 4],
>> [m,s] = stats(y)
m =
7.5000
S =
2.8137

Because script M-files have limited utility, function M-files will be our primary pro-
gramming tool for the remainder of this book. Hence, we will often refer to function
M-files as simply M-files.

3.1.3 Subfunctions

Functions can call other functions. Although such functions can exist as separate M-files,
they may also be contained in a single M-file. For example. the M-file in Example 3.2
(without comments) could have been split into two functions and saved as a single
M-file':

function v = freefallsubfunc(t, m, cd)

v = vel(t, m, cd);

end

function v = vel(t, m, cd)

g = 9.81;

v = sqgrt(g * m / cd)*tanh{sqrt{(g * cd / m) * t);
end

! Note that although end statements are optional in single-function M-files, we like to include them when
subtunctions are involved to highlight the boundaries between the main function and the subfunctions.

|
]
3.2 INPUT-OUTPUT 47 !
|

This M-file would be saved as freefallsubfunc.m. In such cases, the first function is
called the main or primary function. It is the only function that is accessible to the com-
mand window and other functions and scripts. All the other functions (in this case, vel) are
referred to as subfunctions.

A subfunction is only accessible to the main function and other subfunctions within
the M-file in which it resides. If we run freefallsubfunc from the command window,
the result is identical to Example 3.2:

»> freefallsubfunc(12,68.1,0.25)

ans =
50.6175

However, if we attempt to run the subfunction vel, an error message occurs:

>> vel (12,68.1,.25)
??? Undefined command/function 'vel'.

3.2 INPUT-OUTPUT

As in Section 3.1, information is passed into the function via the argument list and is out-
put via the function’s name. Two other functions provide ways to enter and display infor-
mation directly using the command window.

The i1put Function. This function allows you to prompt the user for values directly
from the command window. Its syntax is

n = input('promptstring')

The function displays the prompt string, waits for keyboard input, and then returns the
value from the keyboard. For example,

m = input({'Mass (kg): ')
When this line is executed, the user is prompted with the message
Mass (kg):

If the user enters a value, it would then be assigned to the variable m.
The input function can also return user input as a string. To do this, an 's' is ap-
pended to the function’s argument list. For example,

name = input ('Enter your name: ', 's')

H The «ti.:;, Function. This function provides a handy way to display a value. Its syntax is

digsp(value)

where value = the value yon would like to display. 1t can be a numeric constant or vari-
able, or a string message enclosed in hyphens. Its application is illustrated in the following
example.

AR - —’_ZJ/X/% - b &

48

PROGRAMMING WITH MATLAB

EXAMPLE 3.3

An Interactive M-File Function

Problem Statement. As in Example 3.2, compute the velocity of the free-falling bungee
jumper, but now use the input and disp functions for input/output.

Solution. Type the following statements in the file editor:

function freefalli
freefalli: interactive bungee velocity
freefalli interactive computation of the
free-fall velocity of an object
with second-order drag.

P oC o©

e

g = 9.81; % acceleration of gravity
m = input {'Mass (kg): ');

cd = input('Drag coefficient (kg/m): '};
t = input ('Time (s): ');

disp(' ')

disp('Velocity (m/s):")
displ{sgrt(g * m / cd)*tanh{sqgrt{g * cd / m) * t))

Save the file as freefalli.m. To invoke the function, return to the command window and
type

>» freefallil

Mass (kg): 68.1
Drag coefficient (kg/m): 0.25
Time (s): 12

Velocity {(m/s):
50.6175

The v ints Function. This function provides additional control over the display of
information. A simple representation of its syntax is

fporintf (' format', x, ...)

where Format is a string specifying how you want the value of the variable x to be dis-
played. The operation of this function is best illustrated by examples.

Asimple example would be to display a value along with a message. For instance, sup-
pose that the variable velocity has a value of 50.6175. To display the value using eight
digits with four digits to the right of the decimal point along with a message, the statement
along with the resulting output would be

>> fprintf('The velocity is %8.4f m/s\n', velocity)
The velocity is 50.6175 m/s

This example should make it clear how the format string works. MATLAB starts at
the left end of the string and displays the labels until it detects one of the symbols: ¢ or \.
In our example, it first encounters a % and recognizes that the following text is a format
code. As in Table 3.1, the format codes allow you to specify whether numeric values are

3.2 INPUT-OUTPUT 49

TABLE 3.1 Commonly used format and control codes employed
W|fh fhe fprmtf functlon

Format Code Descrlption

%a Integer format

%e Scientific format with lowercase e
%E Scientific format with uppercase £
%f Decimal format

%g The more compact of %e or $£
Control Code Description

\n Start new line

\t Tab

displayed in integer, decimal, or scientific format. After displaying the value of velocity,
MATLAB continues displaying the character information (in our case the units: m/s) until
it detects the symbol \. This tells MATLAB that the following text is a control code. As in
Table 3.1, the control codes provide a means to perform actions such as skipping to the
next line. If we had omitted the code \n in the previous example, the command prompt
would appear at the end of the label m/ s rather than on the next line as would typically be
desired.

The fprintf function can also be used to display several values per line with differ-
ent formats. For example,

»>> fprintf('%5d %$10.3f %8.5e\n',100,2*pi,pi);
100 6.283 3.1415%e+000

It can also be used to display vectors and matrices. Here is an M-file that enters two
sets of values as vectors. These vectors are then combined into a matrix, which is then dis-
played as a table with headings:

function fprintfdemo

x = [1 2 3 4 5];

y = [20.4 12.6 17.8 88.7 120.47;
[x:y]

fprintf (° X y\n');
fprintf ('%5d %10.3f\n"',2);

.

1

The result of running this M-file is

»> fprintfdemno

X y
1 20.400
2 12.600
3 17.800
4 88.700
5 120.400

50 PROGRAMMING WITH MATLAB
3.2.1 Creating and Accessing Files
MATLAB has the capability to both read and write data files. The simplest approach in-
volves a special type of binary file, called a MAT-file, which is expressly designed for
implementation within MATLAB. Such files are created and accessed with the save and
load commands.
The save command can be used to generate a MAT-file holding either the entire work-
space or a few selected variables. A simple representation of its syntax is
save filename varl var2 ... varn
This command creates a MAT-file named filename.mat that holds the variables var:
through varn. If the variables are omitted, all the workspace variables are saved. The 1oad
command can subsequently be used to retrieve the file:
load filename varl var2 ... varn
which retrieves the variables vari through varn from filename.mat. As was the case
with save, if the variables are omitted, all the variables are retrieved.
For example, suppose that you use Eq. (1.9) to generate velocities for a set of drag
coefficients:
>> g=9.81;m=80;t=5;
>> cd=[.25 .267 .245 .28 .273]"';
>> v=sqgrt{g*m ./cd).*tanh(sgrt(g*cd/m) *t);
You can then create a file holding the values of the drag coefficients and the velocities with
>> save veldrag v cd
To illustrate how the values can be retrieved at a later time, remove all variables from
the workspace with the clear command,
>> clear
At this point, if you tried to display the velocities you would get the result:
>> Vv
??? Undefined function or variable 'v'.
However, you can recover them by entering
>> load veldrag
Now, the velocities are available as can be verified by typing
>> who
Your variables are:
cd v
Although MAT-files are quite useful when working exclusively within the MATLAB
environment, a somewhat different approach is required when interfacing MATLAB with
other programs. In such cases, a simple approach is to create text files written in the widely
accessible ASCII format.
e — afol v
z A\ =
A . - 2y ——
_—JJ/—Z//JET—’? - Zp 2\ QJ\ >
gl Lpe —
<
<) & zh 3 2t &

3.3

Tl
e

3.3 STRUCTURED PROGRAMMING 51

3.3 STRUCTURED PROGRAMMING

ASCII files can be generated in MATLAB by appending -ascii to the save com- I
mand. In contrast to MAT-files where you might want to save the entire workspace, you :
would typically save a single rectangular matrix of values. For example,

>> A=[5 7 9 2;3 6 3 9];
>> gave simpmatrix.txt —ascii

In this case, the save command stores the values in A in 8-digit ASCII form. If you want
to store the numbers in double precision, just append —~ascii -double. In either case, the
file can be accessed by other programs such as spreadsheets or word processors. For
example, if you open this file with a text editor, you will see

5.0000000e+000 7.0000000e+000 9.0000000e+000 2.0000000e+000
3.0000000e+000 6.0000000e+000 3.0000000e+000 9.0000000e+000

Alternatively, you can read the values back into MATLAB with the 10ad command,
>> load simpmatrix.txt

Because simpmatrix.txt is not a MAT-file, MATLAB creates a double precision array
named after the i lename:

>> gimpmatrix

simpmatrix =
5 7 9 2

2 5] Q

Alternatively, you could use the 10ad command as a function and assign its values to a
variable as in
>> A = load(simpmatrix.txt)

The foregoing material covers but a small portion of MATLAB’s file management ca-
pabilities. For example, a handy import wizard can be invoked with the menu selections:
File, Import Data. As an exercise, you can demonstrate the import wizards convenience by
using it to open simpmatrix.txt. In addition, you can always consult help to learn more
about this and other features.

The simplest of all M-files perform instructions sequentially. That is, the program state-
ments are executed line by line starting at the top of the function and moving down to the
end. Because a strict sequence is highly limiting. all computer languages include state-
ments allowing programs to take nonsequential paths. These can be classified as

* Decisions (or Selection). The branching of flow based on a decision.
e Loops (or Repetition). The looping of flow to allow statements to be repeated.

3.3.1 Decisions

The it Structure. This structure allows you to execute a set of statements if a logical
condition is true. Its general syntax is

if condition
statements
end

5
g - afel — M

s .
% = 5 fpe- 9o

52 PROGRAMMING WITH MATLAB
where conditionis alogical expression that is either true or false. For example, here is a
simple M-file to evaluate whether a grade is passing:
function grader (grade)
% grader (grade) :
% determines whether grade is passing
% 1lnput:
% grade = numerical value of grade (0-100)
% output:
% displayed message
if grade >= 60
disp('passing grade')
end
The following illustrates the result
»>> grader (95.6)
passing grade
For cases where only one statement is executed, it is often convenient to implement
the if structure as a single line,
if grade » 60, disp('passing grade'), end
This structure is called a single-line if. For cases where more than one statement is imple-
mented, the multiline if structure is usually preferable because it is easier to read.
Error Function. A nice example of the utility of a single-Iine if is to employ it for rudi-
mentary error trapping. This involves using the error function which has the syntax,
error (msg)
When this function is encountered, it displays the text message msg and causes the M-file
to terminate and return to the command window.
An example of its use would be where we might want to terminate an M-file to avoid
a division by zero. The following M-file illustrates how this could be done:
function f = errortest (x)
if x == 0, errvor('zero value encountered'), end
f = 1/x;
If a nonzero argument is used, the division would be implemented successfully as in
>> errortest (10)
ans =
0.1000
However, for a zero argument, the function would terminate prior to the division and the
error message would be displayed in red typeface:
>> errortest (0)
??? Error using ==> errortest
zero value encountered
= afal i
pAl] 4\ /j/_.[‘
B Fr = = ==X S5
— 2 a5l zh e 2
o) L€
' <z 8 il
A R —

3.3 STRUCTURED PROGRAMMING 53

TABLE 3.2 Summary of relational operators in MATLAB.

Example Operator Relationship

X == 0 == Equal

unit ~= 'm’ ~= Not equal

a < 0 < Less than

s >t > Gredter than

3.9 <= a/3 <= Less than or equal fo

r »>= 0 > Creater than or equal fo

il

Logical Conditions. The simplest form of the condition is a single relational expres-
sion that compares two values as in

value. relation value,

where the values can be constants, variables, or expressions and the relation is one of
the relational operators listed in Table 3.2.

MATLAB also allows testing of more than one logical condition by employing logical
operators. We will emphasize the following:

* - (Not). Used to perform logical negation on an expression.
~expression

If the expression is true, the result is false. Conversely, if the expressionis false,
the result is true.
* & (And). Used to perform a logical conjunction on two expressions.

expression, & expression,
It both expressions evaluate to true, the result is true. If either or both expres-
sions evaluates to false, the result is false.
* | (Or). Used to perform a logical disjunction on two expressions.
expression, | expression,
If either or both expressions evaluate to true, the result is true.

Table 3.3 summarizes all possible outcomes for each of these operators. Just as for
arithmetic operations, there is a priority order for evaluating logical operations. These

TABLE 3.3 A truth table summarizing the possible outcomes for logical operators
employed in MATLAB. The order of priority of the operators is shown at
the top of the table.

Highest » Lowest
X y ~X x&y xly
7 T F T T
T F F F T
F T T F T
F F T F F

54 PROGRAMMING WITH MATLAB

are from highest to lowest: ~, & and {. In choosing between operators of equal priority,
MATLAB evaluates them from left to right. Finally, as with arithmetic operators, paren-
theses can be used to override the priority order.

Let’s investigate how the computer employs the priorities to evaluate a logical expres-
ston. Ifa = -1,b=2,x=1,and y = 'b’, evaluate whether the following is true or false:

a*b>06&b==2&x>71~(y > "'d")
To make it easier to evaluate, substitute the values for the variables:
-1 * 2 >0 & 2 ==2 &1 >71 ~(b" > "'d")

The first thing that MATLAB does is to evaluate any mathematical expressions. In this
example, there is only one: -1 * 2,

-2 >0 & 2 ==2&1>7 1 ~('b" > 'd")
Next, evaluate all the relational expressions

-2 >0 & 2 == 2 &1 >»>7 1 ~{'b'" » *d")
F & T & F |~ F

At this point, the logical operators are evaluated in priority order. Since the ~ has highest
priority, the last expression (~F) is evaluated first to give

F&T&F IT

The & operator is evaluated next. Since there are two, the left-to-right rule is applied and
the first expression (F & T) is evaluated:

F&F I T
The & again has highest priority
F i T

Finally, the [is evaluated as true. The entire process is depicted in Fig. 3.1.

The it...elao Structure. This structure allows you to execute a set of statements if
a logical condition is true and to execute a second set if the condition is faise. Its general
syntax is , EXAMPLE 3.4

if condition
statements,
else
statements,
end

The i1...claeit Structure. It often happens that the false option of an if. . .else
structure is another decision. This type of structure often occurs when we have more than
two options for a particular problem setting. For such cases, a special form of decision ¢
structure, the 1£. . .elseit has been developed. It has the general syntax

if condition,

statements, é
elseif condition,
statements, I

3.3 STRUCTURED PROGRAMMING 55

a*b>0 &b==2& x>717] ~(y > 'd")
1 l 1 l l Substitute constants
-1 *2 >0 &2==2¢& 1>7]| ~(b" > 'd")
Evaluate mathematical
expressions
-2 >0 &2 ==26& 1>7 /| ~('b" > 'd")
Evaluate relational
expressions
F & T & F | ~F
M_\,__J
T
k_____—..v__.__—l
F & F | Evaluate compound
N - = expressions
F | T
T
FIGURE 3.1

A stepby-step evaluation of a complex decision.

elseif condition;
statements,

else
statements,, .
end

EXAMPLE 3.4 i+ Structures
Problem Statement. For a scalar, the built-in MATLAB sign function returns the sign
of its argument (—1, 0, 1). Here’s a MATLAB session that illustrates how it works:
>> sign(25.6)

ans =
1

>> sign(-0.776)

ans =
-1

>> sign(0)

ans =
0

Develop an M-file to perform the same function.

56 PROGRAMMING WITH MATLAB

Solution. First, an if structure can be used to return 1 if the argument is positive:

function sgn = mysign(x)
% mysign(x) returns 1 if x is greater than zero.
if x > 0

sgn = 1;

end
This function can be run as
>> mysign(25.6)

ans =
1

Although the function handles positive numbers correctly, if it is run with a negative
or zero argument, nothing is displayed. To partially remedy this shortcoming, an
if...else structure can be used to display -1 if the condition is false:

function sgn = mysign(x)

% mysign(x) returns 1 if x is greater than zero.

% -1 1f x 1s less than or equal to zero.
i

0
Q
jn}
i
|
Ju

This function can be run as
>> mysign(-0.776)

ans =
-1

Although the positive and negative cases are now handled properly, -1 is erroneously
returned if a zero argument is used. An if . . .elseif structure can be used to incorporate
this final case:

function sgn = mysign(x)

% mysign{x) returns 1 if x 1s greater than zero.
% -1 1f x 1s less than zero.

% 0 1if x is equal to zero.

1

elseif x < 0
sgn -1;
else
sgn = 0;
end

The function now handies all possible cases. For example,
>> mysign(0)

ans =
0

o . = z | rs 47,__ _ &

3.3 STRUCTURED PROGRAMMING 57

The switch Structure. The switch structure is similar in spirit to the if...elseif
structure. However, rather than testing individual conditions, the branching is based on the
value of a single test expression. Depending on its value, different blocks of code are im-
plemented. In addition, an optional block is implemented if the expression takes on none of
the prescribed values. It has the general syntax

switch testexpression
case value,
statements,
case value,
statements,

otherwise
statements
end

otheorwise

As an example, here is function that displays a message depending on the value of the
string variable, grade.

grade = 'B';
switch grade
case 'A‘
disp('Excellent ')
case 'B'

disp{'Good")
case 'C!
disp('Mediocre")
case 'D'
disp('Whoops"')
case 'F!
disp('Would like fries with your order?"')
otherwlise
disp('Huh!")
end

When this code was executed, the message “Good” would be displayed.

Variable Argument List. MATLAB allows a variable number of arguments to be passed
to a function. This feature can come in handy for incorporating default values into your
functions. A default value is a number that is automatically assigned in the event that the
user does not pass it to a function,

As an example, recall that earlier in this chapter, we developed a function free-
fallvel, which had three arguments:

v = freefallvel(t,m,cd)

Although a user would obviously need to specify the time and mass, they might not have a
good idea of an appropriate drng coefficient. Therefore, it would be nice to have the pro-
gram supply a value if they omitted it from the argument list.

MATLAB has a function called nargin that provides the number of input arguments
supplied to a function by a user. It can be used in conjunction with decision structures like

—-
[T

PROGRAMMING WITH MATLAB

the if or switch constructs to incorporate default values as well as error messages into
your functions. The following code illustrates how this can be done for freefallivel:

function v = freefallvelt(t, m, cd)
freefallvel: bungee velocity with second-order drag
v=freefallvel (t,m,cd) computes the free-fall velocity
of an object with second-order drag.

o0 o

o

% input:

% t = time (s)

% m = mass (kg)

% cd = drag coefficient (default = 0.27 kg/m)
% output:

% v = downward velocity (m/s)

switch nargin
case O
error ('Must enter time and mass')

case 1
error ('Must enter mass')
case 2
cd = 0.27;
end
g = 9.81; % acceleration of gravity
v = sgrt{g * m / cd)*tanh{sart{g * cd / m) * t};

Notice how we have used a switch structure to either display error messages or set the
default, depending on the number of arguments passed by the user. Here is a command
window session showing the results:

>» freefallvel(12,68.1,0.25)

ans =
50.6175

>> freefallvel (12,68.1)

ans =
48.8747

>>»> freefallvel (12)

?2?7? Error using ==> freefallvel
Must enter mass

>> freefallvel ()

2?7 Error using =-=» freefallvel i
Must enter time and mass EXAMPLE 3.5

Note that nargin behaves a little differently when it is invoked in the command
window. In the command window, it must include a string argument specifying the func- |
tion and it returns the number of arguments in the function. For example,

>> nargin('freefallvel")

ans =
3

3.3 STRUCTURED PROGRAMMING 59

EXAMPLE 3.5

3.3.2 Loops

As the name implies, loops perform operations repetitively. There are two types of loops,
depending on how the repetitions are terminated. A for loop ends after a specified number
of repetitions. A whiIe loop ends on the basis of a logical condition.

The for. ..end Structure. A for loop repeats statements a specific number of times. Its
general syntax is

for index = start:step:finish
statements
end

The for loop operates as follows. The index is a variable that is set at an initial value,
start. The program then compares the index with a desired final value, finish. If the
index is less than or equal to the finish, the program executes the statements. When
it reaches the end line that marks the end of the loop, the index variable is increased by
the step and the program loops back up to the for statement. The process continues until
the index becomes greater than the £7nish value. At this point, the loop terminates as the
program skips down to the line immediately following the end statement.

Note that if an increment of 1 is desired (as is often the case), the step can be dropped.
For example,

disp (i
end

for 1 = 1:5
)

When this executes, MATLAB would display in succession, 1, 2, 3, 4, 5. In other
words, the default scepis 1.

The size of the step can be changed from the default of 1 to any other numeric value.
It does not have to be an integer, nor does it have to be positive. For example, step sizes of
0.2, -1, or -5, are all acceptable.

If a negative step is used, the loop will “countdown” in reverse. For such cases, the
loop’s logic is reversed. Thus, the finishis less than the start and the loop terminates
when the index is less than the finish. For example,

for j = 10:-1:1

disp(j)

end
When this executes, MATLAB would display the classic “countdown” sequence: 10, 9,
8, 7, 6, 5, 4, 3, 2, 1.

Using a ror Loop to Compute the Factorial

Problem Statement. Develop an M-file to compute the factorial.*

0t=1
I'=1
=1x2=2

? Note that MATLAB has a built-in function factorial that performs this computation.

60

PROGRAMMING WITH MATLAB

————

2!

31=1%x2x3=6
4'=1x2x3x4=24
S'T=1x2x3x4x5=120

Solution. A simple function to implement this calculation can be developed as

function fout = factor(n)
% factor(n):
Computes the product of all the integers from 1 to n.

l:n
*‘l.

‘

which can be run as
>> factor(5)

ans =
120

This loop will execute 5 times (from 1 to 5). At the end of the process, x will hold a value
of 5! (meaning 5 factorial or [X 2 x 3 x 4 x 5= 120).

Notice what happens if n = 0. For this case, the for loop would not execute, and we
would get the desired result, 0! = 1.

Vectorization. The for loop is easy to implement and understand. However, for
MATLARB, it is not necessarily the most efficient means to repeat statements a specific
number of times. Because of MATLAB’s ability to operate directly on arrays, vectorization
provides a much more efficient option. For example, the following for structure:

i = 0;
for t = 0:0.02:50
1= 1+ 1;
y (1) = cos(t);
end

can be represented in vectorized form as

T
y =

0:0.02:50;
cos{t);

It should be noted that for more complex code, it may not be obvious how to vectorize the
code. That said, wherever possible, vectorization is recommended.

Preallocation of Memory. MATLAB automatically increases the size of arrays every
time you add a new element. This can become time consuming when you perform actions
such as adding new values one at a time within a loop. For example, here is some code that

g

s = afol
W a4 A\ /’2—‘\,47/-——

& z\ 3 A=

f:

N
Si

3.3 STRUCTURED PROGRAMMING 61

2

sets value of elements of y depending on whether or not values of + are greater than one;

t = 0:.01:5;

for 1 = l:length(t)
1f t(i)=1
yviil) = 1/t(i);
else
y(iy = 1;
end
end

For this case, MATLAB must resize v every time a new value is determined. The follow-
ing code preallocates the proper amount of memory by using a vectorized statement to
assign ones to y prior to entering the loop.

£t = 0:,01:5;

Y = ones{size(t));

for 1 l:length(t)
L) >1

Thus, the array is only sized once. In addition, preallocation helps reduce memory frag-
mentation, which also enhances efficiency.

The while Structure. A while loop repeats as long as a logical condition is true. Its
general syntax is
while condition

sStatements
end

The statemencs between the while and the end are repeated as long as the conditionis
true. A simple example is

X = 8

while x > 0
X = x - 3;
disp(x)

end

When this code is run, the result is

The while. . . break Stucture. Although the while structure is extremely useful, the
fact that it always exits at the beginning of the structure on a false result is somewhat
constraining. For this reason, languages such as Fortran 90 and Visual Basic have special
structures that allow loop termination on a true condition anywhere in the loop. Although
such structures are currently not available in MATLAB, their functionality can be mimicked

5 _
— afal T
fife - A U om AEm A
4 z\ 8y 4 S

62

PROGRAMMING WITH MATLAB

by a special version of the while loop. The syntax of this version, called a while. ..
break Structure, can be written as

while (1)
statements
if condition, break, end
statements

end

where break terminates execution of the loop. Thus, a single line 1 f is used to exit the loop
if the condition tests true. Note that as shown, the break can be placed in the middle of the
loop (i.e., with statements before and after it). Such a structure is called a midtest loop.

If the problem required it, we could place the break at the very beginning to create a
pretest loop. An example is

while (1)
If x < 0, break, end
X = x - 5;

end

Notice how 5 is subtracted from x on each iteration. This represents a mechanism so that
the loop eventually terminates. Every decision loop must have such a mechanism. Other-
wise it would become a so-called infinite loop that would never stop.

Alternatively. we could also place the 1 f. . .break statement at the very end and cre-
ate a posttest loop,

while (1)

X = X - 5;

if x < 0, break, end
end

It should be clear that, in fact, all three structures are really the same. That is, depend-
ing on where we put the exit (beginning, middle, or end) dictates whether we have a pre-,
mid- or posttest. It is this simplicity that led the computer scientists who developed
Fortran 90 and Visual Basic to favor this structure over other forms of the decision loop
such as the conventional while structure.

The vause Command. There are often times when you might want a program to tem-
porarily halt. The command pause causes a procedure to stop and wait until any key is hit.
A nice example involves creating a sequence of plots that a user might want to leisurely
peruse before moving on to the next. The following code employs a for loop to create a
sequence of interesting plots that can be viewed in this manner:

for n = 3:10
mesh (magic(n))
pause

end

The pause can also be formulated as pause (n), in which case the procedure will halt
for n seconds. This feature can be demonstrated by implementing it in conjunction with
several other useful MATLAB functions. The beep command causes the computer to emit
a beep sound. Two other functions, tic and toc, work together to measure elapsed time.

EXAMPLE 3

12
s
ﬁ—.
!

3.4 NESTING AND INDENTATION 63

The tic command saves the current time that toc later employs to display the elapsed
time. The following code then confirms that pause (n) works as advertised complete with
sound effects:

tic

beep

pause (5)

beep

toc

When this code is run, the computer will beep. Five seconds later it will beep again and dis-
play the following message:

Elapsed time is 5.006306 seconds.

By the way, if you ever have the urge to use the command pause (inf), MATLAB will go
into an infinite loop. In such cases, you can return to the command prompt by typing
Ctrl+C or Ctrl+Break.

Although the foregoing examples might seem a tad frivolous, the commands can be
quite useful. For instance, tic and toc can be employed to identify the parts of an algo-
rithm that consume the most execution time. Further, the Ctrl4+C or Ctrl+Break key

combinations come in real handy in the event that you inadvertently create an infinite loop
in one of your M-files.

3.4 NESTING AND INDENTATION

We need to understand that structures can be “nested” within each other. Nesting refers to
placing structures within other structures. The following example illustrates the concept.

EXAMPLE 3.6 Nesting Structures
Problem Statement. The roots of a quadratic equation
fx)=ax>+bx +c

can be determined with the quadratic formula

~b £ VbT — dac

3 t 2a

. Develop a function to implement this formula given values of the coeffcients.

}:1 Solution. Top-down design provides a nice approach for designing an algorithm to com-
pute the roots. This involves developing the general structure without details and then
refining the algorithm. To start, we first recognize that depending on whether the parameter
a is zero, we will either have “special” cases (e.g., single roots or trivial values) or conven-
tional cases using the quadratic formula. This “big-picture” version can be programmed as
function quadroots{a, b, <)

% guadroots: roots of quadratic egquation

alt % quadroots(a,b,c): real and complex roots

th % of guadratic equation

nit % 1nput:

1€. % a = second-order coefficient

64

PROGRAMMING WITH MATLAB

A

% b = first-order coefficient
% c = zero-order coefficient
% output:
% rl = real part of first root
% il = imaginary part of first root
% r2 = real part of second root
% 12 = imaginary part of second root
if a == 0
%special cases
else
%¥quadratic formula
end

Next, we develop refined code to handle the “special” cases:

%$special cases

if b ~= 0
%$single root
rl = -c¢c / b

else

$trivial solution
error ('Trivial solution. Try again')
end
And we can develop refined code to handle the quadratic formula cases:

$quadratic formula
d=5b "2 - 4 * a* c;

if d »>= 0
greal roots
rl = (-b + sqgrt(d)) / (2 * a)
r2z = (-b - sqgrt{(d)) / (2 * a)
elsge
gcomplex roots
rl = -b / (2 * a)
1l = sgrtilabs(d)) / (2 * a)
r2 = rl
12 = -il
end

We can then merely substitute these blocks back into the simple “big-picture” frame-
work to give the final result:

function guadroots(a, b, <)
quadroots: roots of quadratic eguation
quadroots(a,b,c): real and complex roots
of gquadratic equation

o0 00 o o0

input:
% a = second-order coefficient
% b = first-order coefficient
% c = zero-order coefficient
% output:
% rl = real part of first root
% il = imaginary part of first root

1 _
yg - ajel T b
_may . B
\ zp e 2

z — 2 4>
-%Jﬂi Jﬁgﬁﬁ*,, B °t &

3.4 NESTING AND INDENTATION 65

oP

r
i

= real part of second root
= imaginary part of second root
= 0

oe

n oo

f a

[N

$special cases

if b ~= 0
$single root
rl = -¢c / b

else

$trivial solution
error('Trivial solution. Try again')
end

else

$quadratic formula

d=Db "2 -4 % 5 * C; %discriminant
if d >= 0

%real roots

rl = (~b + sqrc(d)) / (2 * a)

r2 = (-b - sgre(d)) / (2 * a)
else

%complex roots
rl = -b / (2 * a)

il = sgrt(abs(d)) / (2 * a)
r2 = ril
12 = -1i1
end
end

As highlighted by the shading, notice how indentation helps to make the underlying
logical structure clear. Also notice how “modular” the structures are. Here is a command
window session illustrating how the function performs:

>> quadroots (1,1, 1)

rl =
-0.5000
il =
0.8660
r2 =
-0.5000
i2 =
-0.8660

>> quadroots (1,5, 1)
rl =
-0.2087
-4.7913
>> quadroots (0,5, 1)

rl =
-0.2000

~—~—————————-—-——n-------------

1 _

— afal T
A T - S A
% zy g i

e —

2!

66 PROGRAMMING WITH MATLAB
>> quadroots (0,0,0)
??? Error using ==> quadroots
Trivial solution. Try again
3.5 PASSING FUNCTIONS TO M-FILES
Much of the remainder of the book involves developing functions to numerically evaluate
other functions. Although a customized function could be developed for every new equa-
tion we analyzed, a better alternative is to design a generic function and pass the particular
equation we wish to analyze as an argument. In the parlance of MATLAB, these functions
are given a special name: function functions. Before describing how they work, we will
first introduce anonymous functions, which provide a handy means to define simple user-
defined functions without developing a full-blown M-file.
3.5.1 Anonymous Functions
Anonymous functions allow you to create a simple function without creating an M-file.
They can be defined within the command window with the following syntax:
fhandle = @(arglist) expression
where rhandle = the function handle you can use to invoke the function, arglist = a
comma separated list of input arguments to be passed to the function, and expression =
any single valid MATLAB expression. For example,
>> fl1=@(x,y) X2 + v"2;
Once these functions are defined in the command window, they can be used just as other 1
functions: (
>> £1(3,4)
ans =
25 \
Aside from the variables in its argument list, an anonymous function can include vari- :
ables that exist in the workspace where it is created. For example, we could create an v
anonymous function f(x) = 4x7 as
>> a = 4; 4
>> b = 2;
>> f2=€@(x) a*x"b;
>> £2(3)
ans = 36 \"
Note that if subsequently we enter new values for a and b, the anonymous function i
does not change: i
>> a = 3; T
>> £2(3)
b
ans = 36 ; o
i
|
< = afal
z1 Z)\ gALL
;C{"?,L/‘;‘ - - X _ 9 5 |
— 2y & 5l £ I
e
zt
2 = z | /2/ 17 ‘ . g

3.5 PASSING FUNCTIONS TO M-FILES 67

Thus, the function handle holds a snapshot of the function at the time it was created. If we
want the variables to take on new values, we must recreate the function. For example, hav-
ing changed = to 3,

>> f2=@x a*x"b;
with the result

>> £2(3)

It should be noted that prior to MATLAB 7. inline functions performed the same
role as anonymous functions. For example, the anonymous function developed above, 1,
could be written as

>> fl=inline('x"2 + yv*2','x','yv');

Although they are being phased out in favor of unonymous function, some readers might be
using earlier versions. and so we thought it would be helpful to mention them. MATLAB
help can be consulted to learn more about their use and limitations.

3.5.2 Function Functions

Function functions are functions that operate on other functions which are passed to it as
input arguments. The function that is passed to the function function is referred to as the
passed function. A simple example is the built-in function fplot, which plots the graphs
of functions. A simple representation of its syntax is

fplot(fun, lims)

where fun is the function being plotted between the x-axis limits specified by 1ims =
[xmin xmax]. For this case, fun is the passed function. This function is “smart” in that it
automatically analyzes the function and decides how many values to use so that the plot
will exhibit all the function’s features.

Here is an example of how fplot can be used to plot the velocity of the free-falling
bungee jumper. The function can be created with an anonymous function:

>> vel=@(t)
sgrt(9.81*68.1/0.25)*tanh(sgrt(9.81*0.25/68.1)*t) ;

We can then generate a plot fromf=01to 12 as
>> fplot(vel, [0 12])

The result is displayed in Fig. 3.2.

Note that in the remainder of this book, we will have many occasions to use MATLAB’s
built-in function functions. As in the following example, we will also be developing our
own.

z\ 3 tt £

68 PROGRAMMING WITH MATLAB

60

50 — —

40 -

30]

20—]

10— -

FIGURE 3.2
A plot of velocity versus time generated with the fplot function.

Problem Statement. Develop an M-file function function to determine the average value
of a function over a range. Hlustrate its use for the bungee jumper velocity over the range
fromt=0t0 12 s: f

I .
v(t) = 5 tanh (&’—t>
Cy m

EXAMPLE 3.7 Building and Implementing a Function Function g
|
§

where ¢ =9.81, m = 68.1, and ¢, = 0.25.

Solution. The average value of the function can be computed with standard MATLAB
commands as

>» t=linspace(0,12);
>> v=sgrt(9.81*68.1/0.25)*tanh(sgrt(9.81*0.25/68.1)*t);

>> mean (v)

ans =
36.0870

Inspection of a plot of the function (Fig. 3.2) shows that this result is a reasonable estimate
of the curve’s average height.

g
m:
T
- z) 8% i1 NP

<!

3.5 PASSING FUNCTIONS TO M-FILES 69

A

We can write an M-file to perform the same computation:

function favg =
funcavg:

funcavg(a,b,n)
average function height

favg=funcavg(a,b,n): computes average value

o
% of function over a range
% input:

% a = lower bound of range

% b = upper bound of range

% n = number of intervals

% output:

% favg = average value of function

x = linspace(a,b,n);

y = func(x);

favg = mean(y) ;

end

function £ = func(t)
f=sgrt (9.81*68.1/0.25)*tanh{sqgrt(9.81*0.25/68.1)*t);
end

The main function first uses linspace to generate equally spaced x values across
the range. These values are then passed to a subfunction func in order to generate the cor-
responding y values. Finally, the average value is computed. The function can be run from

the command window as
>> funcavg (0,12,60)

ans =

36.0127

Now let’s rewrite the M-file so that rather than being specific to func, it evaluates a
nonspecific function name f that is passed in as an argument:

function favg =
funcavg:

funcavg (f,a,b,n)
average function height

oe

favg=funcavg(f,a,b,n): computes average value

of function over a range

% input:

% f = function to be evaluated

% a = lower bound of range

% b = upper bound of range

% n = number of intervals

% output:

% favg = average value of function

x = linspace(a,b,n);
y = £{x);
favg = mean(y);

Because we have removed the subfunction func, this version is truly generic. It can be run
from the command window as

>> vel=@(t)
sgrt(9.81*68.1/0.25)*tanh(sgrt(9.81*0.25/68.1)*t);
>> funcavg{vel,0,12,60)

1
W% - Aol
%

el Lpe — b
—ajj z\ 3y

wo =
‘.'Zj"ﬂg-—%bl
Y-

—

70 PROGRAMMING WITH MATLAB

ans =
36.0127

To demonstrate its generic nature, funcavg can easily be applied to another case by
merely passing it a different function. For example, it could be used to determine the aver-
age value of the built-in sin function between 0 and 27 as

>> funcavg(@sin, 0,2*pi, 180)

ans =
-6.3001e-017

Does this result make sense?

We can see that funcavg is now designed to evaluate any valid MATLAB expression.
We will do this on numerous occasions throughout the remainder of this text in a number of
contexts ranging from nonlinear equation solving to the solution of differential equations.

3.5.3 Passing Parameters

Recall from Chap. 1 that the terms in mathematical models can be divided into dependent
and independent variables, parameters, and forcing functions. For the bungee jumper
model, the velocity (v) is the dependent variable, time (¢) is the independent variable, the
mass (m) and drag coefficient (¢,) are parameters, and the gravitational constant (g) is the
forcing function. It is commonplace to investigate the behavior of such models by per-
forming a sensitivity analysis. This involves observing how the dependent variable changes
as the parameters and forcing functions are varied.

In Example 3.7, we developed a function function, funcavg, and used it to determine
the average value of the bungee jumper velocity for the case where the parameters were set
at m = 68.1 and ¢, = 0.25. Suppose that we wanted to analyze the same function, but with
different parameters. Of course, we could retype the function with new values for each
case, but it would be preferable to just change the parameters.

As we learned in Sec. 3.5.1, it is possible to incorporate parameters into anonymous
functions. For example, rather than “wiring” the numeric values, we could have done the
following:

>» m=68.1;cd=0.25;
>> vel=@(t) sqgrt(92.81*m/cd)*tanh(sgrt(9.81*cd/m)*t);
>> funcavg(vel,0,12,60)

ans =
36.0127

However, if we want the parameters to take on new values, we must recreate the anony-
mous function.

MATLAB offers a better alternative by adding the term varargin as the function
function’s last input argument. In addition, every time the passed function is invoked
within the function function, the term varargin{:} should be added to the end of its
argument list (note the curly brackets). Here is how both modifications can be implemented
for funcavg (omitting comments for conciseness):

zy 3 &

n
ed

ed

3.6 CASE STUDY 71

function favg = funcavg(f,a,b,n,varargin)

x = linspace({a,b,n);

v = f{x,varargin{:});

favg = mean(y);

When the passed function is defined, the actual parameters should be added at the end
of the argument list. If we used an anonymous function, this can be done as in

>> vel=@(t,m,cd) sqgrt(9.81*m/cd)*tanh(sgrt(9.81*cd/m)*t);

When all these changes have been made, analyzing different parameters becomes easy. To
implement the case where m = 68.1 and c, = 0.25, we could enter

>> funcavg(vel,0,12,60,68.1,0.25)

ans =
36.0127

An alternative case, say m = 100 and ¢, = 0.28, could be rapidly generated by merely
changing the arguments:

>> funcavg(vel,0,12,60,100,0.28)

ans =
38.9345

BUNGEE JUMPER VELOCITY

Background. In this section, we will use MATLAB to solve the free-falling bungee
Jjumper problem we posed at the beginning of this chapter. This involves obtaining a solu-
tion of

dv ¢4

dt & m

Recall that, given an initial condition for time and velocity, the problem involved iter-
atively solving the formula,

d Vi
dt
Now also remember that to attain good accuracy, we would employ small steps. Therefore,
we would probably want to apply the formula repeatedly to step out from our initial time

to attain the value at the final time. Consequently, an algorithm to solve the problem would
be based on a loop.

Vigt = U; + At

Solution. Suppose that we started the computation at ¢ = 0 and wanted to predict
velocity at £ = 12 s using a time step of At = 0.5 s. We would therefore need to apply the
iterative equation 24 times—that is,
12
n = —

=— =24
0.5

72 PROGRAMMING WITH MATLAB

continved

where n = the number of iterations of the loop. Because this result is exact (i.e., the ratio is
an integer), we can use a for loop as the basis for the algorithm. Here’s an M-file to do this
including a subfunction defining the differential equation:

+

unction vend = velocityl (dt, ti, tf, wvi)
velocityl: Euler solution for bungee velocity
vend = velocityl(dt, ti, tf, vi)
Euler method golution of bungee
jumper velocity

a0 o0 2°

o0

% input: :
% dt = time step (s) ;.
% tli = initial time (s) ;
% tf = final time (s) 3
% vi = initial value of dependent variable (m/g) :
% output: k-
% vend = velocity at tf (m/s) 3
t o= ti;

v o= Vi

n = (tf - ti) / dt;

for i = 1:n

dvdt = deriv(v);
v = v + dvdt * dt;
t = t + dt;

end

vend = v;

end

function dv = deriv(v)

dv = 9.81 - (0.25 / 68.1) * v"2; b
end 3

This function can be invoked from the command window with the result:
>»> velocityl(0.5%,0,12,0)

ans =
50.9259

Note that the true value obtained from the analytical solution is 50.6175 (Example 3.1).
We can then try a much smaller value of dt to obtain a more accurate numerical result:

>> velocityl(0.001,0,12,0)

ans = b

50.6181 3
Although this function is certainly simple to program, it is not foolproof. In partic-
ular, it will not work if the computation interval is not evenly divisible by the time step.
To cover such cases, a while . . . break loop can be substituted in place of the 3

shaded area (note that we have omitted the comments for conciseness):

g
in}
.d—-
I

AR = ._j\ /8/47._. _ il

3.6 CASE STUDY 73

continued

function vend = velocityZ({dv, ti, tf, vi)
£ = ti;

V:Vi;

h = dt;

while (1)

if £ + dt > tf, h = tf - t; end

dvdt = deriv(v);

v = v 4+ dvdt * h;

t = t + h;
if t >= tf, break, end
end
vend = v;
end
function dv = deriv{v)
dv = 9.81 - {(0.25% / 68.1) * v*2;
end

As soon as we enter the while loop, we use a single line if structure to test whether
adding t + dt will take us beyond the end of the interval. If not (which would usually be
the case at first), we do nothing. If so, we would shorten up the interval—that is, we set the
variable step h to the interval remaining: tf - t. By doing this, we guarantee that the last
step falls exactly on t £. After we implement this final step, the loop will terminate because
the condition t >= tf will test true.

Notice that before entering the loop, we assign the value of the time step dt to another
variable h. We create this dummy variable so that our routine does not change the given
value of dt if and when we shorten the time step. We do this in anticipation that we might
need to use the original value of dt somewhere else in the event that this code were inte-
grated within a larger program.

If we run this new version, the result will be the same as for the version based on the
for structure:

~> velocity2(0.5,0,12,0)

ans =
50.9259
Further, we can use a dt that is not evenly divisible into tf - ti:

»> velocity2(0.35,0,12,0)

ans =
50.8348

We should note that the algorithm is still not foolproof. For example, the user could
have mistakenly entered a st=p size greater than the calculation interval (e.g., tf - ti = 5

and dc = 20). Thus, you might want to include error traps in your code to catch such errors
and then allow the user to correct the mistake.

74

PROGRAMMING WITH MATLAB

¢ continued

As a final note, we should recognize that the foregoing code is not generic. That is, we
have designed it to solve the specific problem of the velocity of the bungee jumper. A more
generic version can be developed as

function yend = odesimp{dydt, dt, ti, tf, yi)
t = til; v = vi; h = dt;

while (1
it t + dt > tf, h = tf - t; end
y = vy + dydt(y) * h:
t =t + h;
if t »>= tf, breask, end
end
vend = y;

Notice how we have stripped out the parts of the algorithm that were specific to the
bungee example (including the subfunction defining the differential equation) while keep-
ing the essential features of the solution technique. We can then use this routine to solve the
bungee jumper example, by specifying the differential equation with an anonymous func-
tion and passing its function handle to cdesimp to generate the solution

Seodvdt @ (v) 98- (02568 1) v,
> odesimp (dvde, 0.5, 0,12,0)
ans =
50.9259

We could then analyze a different function without having to go in and modify the
M-file. For example, if y = 10 at s = 0, the differential equation dy/dt = —0.1y has the ana-
lytical solution y = 10e™%". Therefore, the solution at r = 5 would be y(5) = 10" =
6.0653. We can use odesimp to obtain the same result numerically as in

=» odesimp (@{y) -0.1*%y,0.005,0,5,10)

PROBL

3.1 The cosine funct
infinite series:

cosx =1—

Create an M-file to ir
putes and displays th
series is added. In o
sequence the values fc

cosx =1
x?
cosx =1 — —
2!
0S 1 x
CoOsSxy =1 — —
2‘.+

up to the order term o
ceding, compute and d

true — ser
Joerror = ——————

As a test case, employ
up to and including e
x'4/141.

3.2 An amount of mor
interest is compoundec
worth F yielded at an

determined from the fo

F=P+i)

Write an M-file that wi
vestment for each yea
function should include
rate i (as a decimal), an
future worth is to be ca
a table with headings a
gram for P = $100,00(
3.3 Economic formul:
payments for loans. Su
money £ and agree to
interest rate of i. The

ment A is

i1+ i)y
(T+im—1

)

lg
Fis
ﬁ.—
|

we
o1re

the
ep-
 the
1nc-

y the

- ana-
15y —

PROBLEMS

75

PROBLEMS

3.1 The cosine function can be evaluated by the following
infinite series:

x? Xt

cosx:l—a-i-—‘l—!*“-
Create an M-file to implement this formula so that it com-
putes and displays the values of cos x as each term in the
series s added. In other words, compute and display in
sequence the values for

cosx =1
.
X
cosy =1 — —
2!
| 42 . 4
cosx=1—— + —
2! 4!

up to the order term of your choosing. For each of the pre-
ceding, compute and display the percent relative error as

true — series approximation
Goerror =

x 100%
true

As a test case, employ the program to compute cos(1.5) for
up to and including eight terms—that is, up to the term
x4

3.2 An amount of money P is invested in an account where
nterest is compounded at the end of the period. The future
worth F yielded at an interest rate / after n periods may be
determined from the following formula:

F=P(l+i)

Write an M-file that will calculate the future worth of an in-
vestment for each year from 1 through #. The input to the
function should include the initial investment P, the interest
rate i (as a decimal), and the number of years n for which the
future worth is to be calculated. The output should consist of
atable with headings and columns for # and F. Run the pro-
gram for P = $100,000, i = 0.06, and n = 7 years.

3.3 Economic formulas are available to compute annual
payments for loans. Suppose that you borrow an amount of
money P and agree to repay it in # annual payments at an
interest rate of /. The formula to compute the annual pay-
ment A is

i(r+"

A=p—— T
(40" =1

Write an M-file to compute A. Test it with P = $55,000 and
an interest rate of 6.6% (i = 0.066). Compute results for n =
1,2, 3,4, and 5 and display the results as a table with head-
ings and columns for n and A.

3.4 The average daily temperature for an area can be ap-
proximated by the following function:

T = Tiean + (Tpeak — Timean) cOS{w (1 — fpcak))

where T, = the average annual temperature, 7., = the
peak temperature, w = the frequency of the annual variation

(=2m/365), and 1, = day of the peak temperature
(=205 d). Parameters for some U.S. towns are listed here:
City Tmenn (oc) Tpeuk (oc)

Miami, FL 221 2873
Yuma, AZ 231 33.6
Bismarck, ND 572 221
Seattle, WA 10.6 17.6
Boston, MA 10.7 22.9

Develop an M-file that computes the average temperature
between two days of the year for a particular city. Test it
for (a) January—February in Miami, FL (+ = 0 to 59) and
(b) July—August temperature in Boston, MA (1 = 180 to 242).
3.5 Figure P3.5 shows a cylindrical tank with a conical
base. If the liquid level 1s quite low, in the conical part, the
volume is simply the conical volume of liquid. 1f the liquid
level is midrange in the cylindrical part, the total volume of
liquid includes the filled conical part and the partially filled
cylindrical part.

Use decisional structures to write an M-file to compulte
the tank’s volume as a function of given valucs of R and d.
Design the function so that it returns the volume for all cases

FIGURE P3.5

-— X

76 PROGRAMMING WITH MATLAB

where the depth is less than 3R. Return an error message
(“Overtop”) if you overtop the tank—that is, d > 3R. Test it
with the following data:

Note that the tank’s radius is R.

3.6 Two distances are required to specify the location of a
point relative to an origin in two-dimensional space
(Fig. P3.6):

* The horizontal and vertical distances (x, y) in Cartesian
coordinates.
* The radius and angle (r, 6) in polar coordinates.

It is relatively straightforward to compute Cartesian coordi-
nates (x, v) on the basis of polar coordinatcs (r, ¢). The
reverse process is not so simple. The radius can be computed
by the following formula:

r=yxt+y?

It the coordinates he within the first and fourth coordi-

nates (i.e., x > 0), then a simple formula can be used to
compute 6:

6 = tan”’ (E)

yL

FOR DR

It v

FIGURE P3.6

J 'Y *7_._ B

The difficulty arises for the other cases. The following table
summarizes the possibilities:

x y [

<0 >0 tan”y/x} + 7
<0 <0 tfan~'v/x) —
<0 = g

=0 >0)2

=0 <0 —77/2
=0 =0 o

Write a well-structured M-file to calculate r and 6 as a func-
tion of x and y. Express the final results for 6 in degrees. Test
your program by evaluating the tollowing cases:

x y
! 0
1]
0 |
-1 1
—1 0]
-1 -1
0 0]
0] -1
| -1

3.7 Develop an M-file to determine polar coordinates as
described in Prob. 3.6. However, rather than designing the
function to evaluate a single case, pass vectors of x and y.
Have the function display the results as a table with columns
for x, y, r, and 6. Test the program for the cases outlined in
Prob. 3.6.

3.8 Develop an M-file function that is passed a numeric
grade from 0 to 100 and returns a letter grade according to
the scheme:

Letter Criteria

A Q0 < numeric grade < 100
B 80 < numeric grade < 90

C 70 < numeric grade < 80

D 60 < numeric grade < 70

F numeric grade < 60

3.9 Manning’s equation can be used to compute the velocity
of water in a rectangular open channel:

ﬁ(BH)2“

U= —f———
n \B+2H

!
f

i
3

where U = velocity (i
cocefficient, B = width
ing data is available fo

n
0.035 0.0
0.020 0.0
0.015 0.0
0.030 0.0
0.022 0.0

Write an M-file that co
channels. Enter these v
umn represents a param
nel. Have the M-file di
computed velocity in tal
column. Include headin
3.10 A simply suppor
Fig. P3.10. Using sing
along the beam can be ¢

i (x) = _5[0
vid) = 6 <X~

+75(x -7

By definition, the singt
follows:

(x—a
(x —a)" =

a) 0
Develop an M-file that
distance along the beam
the beam,

PROBLEMS

77

20 kips/ft

(

FIGURE P3.10

where U = velocity (m/s), S = channel slope, n = roughness
coefficient, B = width (m), and H = depth (m). The tollow-
ing data is available for five channels:

n S B H
0035 0.0001 10 2
0.020 0.0002 8 |
0015 0.0010 20 1.5
0030 0.000/ 24 3
0022 0.0003 15 2.5

Write an M-file that computes the velocity for each of these
channels. Enter these values into a matrix where cach col-
umn represents a parameter and each row represents a chan-
nel. Have the M-file display the input data along with the
computed velocity in tabular form where velocity is the fifth
column. Include headings on the table to label the columns.
310 A simply supported beam is loaded as shown in
Fig. P3.10. Using singularity functions, the displacement
along the beam can be expressed by the equation:

Uy (x) = %SH.X — 0t = e =5yt g(.x —8)°

5, 5T
+15(x =Y + z\ —238.25x

By definition, the singularity function can be expressed as
follows:

(x —a)"

0 when x <«

when x > «a
W—a)' =

Develop an M-file that creates a plot of displacement versus
distance along the beam, x. Note that x = 0 at the left end of
the beam.

311 The volume V of liquid in a hollow horizontal cylinder
of radius r and length L is related to the depth of the liquid
h by

5 —h
V= I:r' cos™! (———r) —(r —MV2rh — hz] L
r

Develop an M-file to create a plot of volume versus depth.
Test the program for r =2 mand L =5 m.
3.12 Develop a vectorized version of the following code:

tstart=0; tcend=20; ni-5;
t(l)=-tstart;
v{(1)=10 + S*cos{(2*pi*t(l)/(tend-tstart));
for i=2:ni+l

t(iy-t(l-1y+(tend -tatart)/ni;

vy =10 + 5*cos{(2*pi*t i)/

(tend tLstart));

ernd

3.13 The “divide and average™ method, an old-time method
for approximating the square root of any positive number ¢,
can be formulated as

X +a/x
Xr=—
2
Write a well-structured M-file function based on a

while...break loop structure to implement this algo-
rithm. Use proper indentation so that the structure is clear. At
each step estimate the error in your approximation as

Xpew = Xold
= |l

KXnew
Repeat the loop until ¢ is less than or equal to a specified
value. Design your program so that it returns both the result
and the error. Make sure that it can evaluate the square root
of numbers that are equal to and less than zero. For the latter
case, display the result as an imaginary number. For exam-
ple, the square root of —4 would return 2. Test your program
by evaluatinga =0, 2,4, and —9fore = 1 x 107+,

—

78 PROGRAMMING WITH MATLAB

3.14 Piecewise functions are sometimes useful when the re-
lationship between a dependent and an independent variable
cannot be adequately represented by a single equation. For
example, the velocity of a rocket might be described by

1112 — 5¢ 0<r<10

1100 — 5¢ 10<r<20

v(t) =4 50r + 2@t —20)> 20<r <30
1520¢ 02030 t > 30

0 otherwise

Develop an M-file function to compute v as a function of ¢.
Then, use this function to generate a plot of v versus ¢ for
t=—-5t050.

3.15 Develop an M-file function called rounder to round a
number x to a specified number of decimal digits, n. The first
line of the function should be set up as

function xr = rounder(x, n)

Test the program by rounding cach of the following to 2 dec-
imal digits: x = 467.9587, —467.9587, 0.125, 0.135, —0.125,
and —0.135.

3.16 Develop an M-file function to determine the elapsed
days in a year. The first linc of the function should be set
up as

function nd = days(mo, da, leap)

where mo = the month (1-12), da = the day (1-31), and
leap = (0 for non—leap year and 1 for leap year). Test it for
January 1, 1999, February 29, 2000, March 1, 2001, June 21,
2002, and December 31, 2004. Hint: A nice way to do this
combines the for and the switch structures.

3.17 Develop an M-file function to determine the elapsed
days in a year. The first line of the function should be set
up as

function nd = days(mo, da, vear)

where mo = the month (1-12), da = the day (1-31), and
vear = the year. Test it for January 1, 1999, February 29,
2000, March 1, 2001, June 21, 2002, and December 31, 2004.
3.18 Develop a function function M-file that returns the dif-
ference between the passed function’s maximum and mini-
mum value given a range of the independent variable. In
addition, have the function generate a plot of the function for
the range. Test it for the following cases:

(@) f(t) = 10e~"*sin(t — 4) from t = 0 to 6.

(b) f(x) = e>sin(1/x) from x = 0.01 to 0.2.

(¢) The built-in humps function from x = 0 to 3.

3.19 Modify the function function odesimp developed at
the end of Sec. 3.6 so that it can be passed the arguments of
the passed function. Test it for the following case:

>> dvdt=Q(v,m,cd) 9.81l-{(cd/m)*v"2;
>» odesimp (dvdt,0.5,0,12,0,68.1,0.25)

1), and
st it for
une 21,
do this

elapsed
i be set

31), and
nary 29,
1,2004.
 the dif-
1d mini-
able. In
ction for

loped at
ments of

Roundoff and Truncation Errors

(CHAPTER OBIJECTIVES

The primary objective of this chapter is to acquaint you with the major sources of

errors involved in numerical methods. Specific objectives and topics covered are

® Understanding the distinction between accuracy and precision.
Learning how to quantity error.
Learning how error estimates can be used to decide when to terminate an iterative
calculation.

® Understanding how roundoft errors occur because digital computers have a
limited ability to represent numbers.

¢ Understanding why floating-point numbers have limits on their range and
precision.

® Recognizing that truncation errors occur when exact mathematical formulations
are represented by approximations.

* Knowing how to usc the Taylor series to estimate truncation errors.

* Understanding how to write forward, backward, and centered finite-ditference
approximations of first and second derivatives.

* Recognizing that efforts to minimize truncation ercors can sometimes increase
roundoft errors.

YOU'VE GOT A PROBLEM

n Chap. 1, you developed a numerical model for the velocity of a bungee jumper. To
solve the problem with a computer, you had to approximate the derivative of velocity
with a finite difference.

dv _ Av v(iy) — ()

dr — At ot — 1

80

ROUNDOFF AND TRUNCATION ERRORS

4.1

Thus, the resulting solution is not exact—that is, it has error.

In addition, the computer you use to obtain the solution is also an imperfect tool. Be-
cause it is a digital device, the computer is limited in its ability to represent the magnitudes
and precision of numbers. Consequently, the machine itself yields results that contain error.

So both your mathematical approximation and your digital computer cause your re-
sulting model prediction to be uncertain. Your problem is: How do you deal with such un-
certainty? This chapter introduces you to some approaches and concepts that engineers and
scientists use to deal with this dilemma.

ERRORS

Engineers and scientists constantly find themselves having to accomplish objectives based
on uncertain information. Although perfection is a laudable goal, it is rarely if ever at-
tained. For example, despite the fact that the model developed from Newton’s second law
is an excellent approximation, it would never in practice exactly predict the jumper’s fall.
A variety of factors such as winds and slight variations in air resistance would result in de-
viations from the prediction. If these deviations are systematically high or low, then we
might need to develop a new model. However, if they are randomly distributed and tightly
grouped around the prediction, then the deviations might be considered negligible and the
model deemed adequate. Numerical approximations also introduce similar discrepancies
into the analysis.

This chapter covers basic topics related to the identification, quantification, and mini-
mization of these errors. General information concerned with the quantification of error is
reviewed in this section. This is followed by Sections 4.2 and 4.3, dealing with the two
major forms of numerical error: roundoff error (due to computer approximations) and trun-
cation error (due to mathematical approximations). We also describe how strategies to re-
duce truncation error sometimes increase roundoff. Finally, we briefly discuss errors not
directly connected with the numerical methods themselves. Thesc include blunders, model
errors, and data uncertainty.

4.1.1 Accuracy and Precision

The errors associated with both calculations and measurements can be characterized with
regard to their accuracy and precision. Accuracy refers to how closely a computed or mea-
sured value agrees with the true value. Precision refers to how closely individual computed
or measured values agree with cach other.

These concepts can be illustrated graphically using an analogy from target practice.
The bullet holes on each target in Fig. 4.1 can be thought of as the predictions of a numer-
ical technique, whereas the bull’s-eye represents the truth. Inaccuracy (also called bias) is
defined as systematic deviation from the truth. Thus, although the shots in Fig. 4.1c are
more tightly grouped than in Fig. 4.1q, the two cases are equally biased because they are
both centered on the upper left quadrant of the target. Imprecision (also called uncertainty),
on the other hand, refers to the magnitude of the scatter. Therefore, although Fig. 4.1b and
d are equally accurate (i.e., centered on the bull’s-eye), the latter is more precise because
the shots are tightly grouped.

th

ol. Be-
1tudes
n error.
our re-
ich un-
ers and

s based
:ver at-
nd law
:r's fall.
Itin de-
then we
1tightly
and the
pancies

1d mini-
“error is
the two
i I
s to re-
ors not
. model

ed with
Or mea-
mputed

ractice.

numer-
bias) 1s
1.1¢ are
they are
rtainty),
}.1b and
because

4.1 ERRORS 81

Increasing accuracy

o
2
&
3
a (a) (b)
D
£
W
3
(c) (d)
FIGURE 4.1

An example from marksmanship illusirating the concepts of accuracy and precision:
[a) inaccurate and imprecise, (bl accurate and imprecise, (c] inaccurate and precise,
and {d) accurate and precise.

Numertcal methods should be sutficiently accurate or unoiased [0 meet (e require-
ments of a particular problem. They also should be precise enough for adequate design.
In this book, we will use the collective term error to represent both the inaccuracy and
imprecision of our predictions.

4.1.2 Error Definitions

Numerical errors arise from the use of approximations to represent exact mathematical op-
erations and quantities. For such errors, the relationship between the exact. or true, result
and the approximation can be formulated as

True value = approximation + error @.1)

By rearranging Eq. (4.1), we find that the numerical error is equal to the discrepancy
between the truth and the approximation, as in

E, = true value — approximation (4.2

where E; is used to designate the exact value of the error. The subscript ¢ is included to des-
ignate that this is the “true” error. This is in contrast to other cases, as described shortly,
where an “approximate” estimate of the error must be employed. Note that the true error is
commonly expressed as an absolute value and referred to as the absolute error.

A shortcoming of this definition is that it takes no account of the order of magnitude of
the value under examination. For example, an error of a centimeter is much more significant

82

ROUNDOFF AND TRUNCATION ERRORS

if we are measuring a rivet than a bridge. One way to account for the magnitudes of the
quantities being evaluated is to normalize the error to the true value, as in

true value — approximation

True fractional relative error =
true value

The relative error can also be multiplied by {00% to express it as

true value — approximation
& =

100% 4.3)

true value

where &, designates the true percent relative error.

For example, suppose that you have the task of measuring the lengths of a bridge and
a rivet and come up with 9999 and 9 cm, respectively. If the true values are 10.000 and
10 cm, respectively, the error in both cases is 1 cm. However, their percent relative errors
can be computed using Eq. (4.3) as 0.01% and 10%, respectively. Thus, although both mea-
surements have an absolute error of 1 cm, the relative error for the rivet is much greater. We
would probably conclude that we have done an adequate job of measuring the bridge,
whereas our estimate for the rivet leaves something to be desired.

Notice that for Egs. (4.2) and (4.3), E and ¢ are subscripted with a f to signify that the
error is based on the true value. For the example of the rivet and the bridge, we were pro-
vided with this value. However, in actual situations such information is rarely available.
For numerical methods, the true value will only be known when we deal with functions that
can be solved analytically. Such will typically be the case when we investigate the theo-
retical behavior of a particular technique for simple systems. However, in real-world ap-
plications, we will obviously not know the true answer « priori. For these situations, an
alternative is to normalize the error using the best available estimate of the true value—that
is, to the approximatton itself, as in

approximate error
. UPPrOXIMAIE EITOT 330z, (44)

“ approximation

where the subscript @ signifies that the error is normalized to an approximate value. Note
also that for real-world applications, Eq. (4.2) cannot be used to calculate the error term in
the numerator of Eq. (4.4). One of the challenges of numerical methods is to determine
error estimates in the absence of knowledge regarding the true value. For example, certain
numerical methods use iteration to compute answers. In such cases, a present approxima-
tion is made on the basis of a previous approximation. This process is performed repeat-
edly, or iteratively, to successively compute (hopefully) better and better approximations.
For such cases, the error is often estimated as the difference between the previous and pre-
sent approximations. Thus, percent relative error is determined according to

resent approximation — previous approximation
~P Pl P PP 100% 45)

gll . N
present approximation

This and other approaches for expressing errors is elaborated on in subsequent chapters.

The signs of Egs. (4.2) through (4.5) may be either positive or negative. If the approx-
imation is greater than the true value (or the previous approximation is greater than the cur-
rent approximation), the error is negative; if the approximation is less than the true value,
the error is positive. Also, for Egs. (4.3) to (4.5), the denominator may be less than zero,

EXAMPLE 4.1

be

pe
to

Th
tol
aln

pro
can

Errc
Prol

ries.

Thu:
estin

0.5
with
term
fied
Solu
resul

Thus

tima

or fc

This

4.1 ERRORS 83

EXAMPLE 4.1

which can also lead to a negative error. Often, when performing computations, we may not
be concerned with the sign of the error but are interested in whether the absolute value of the
percent relative error is lower than a prespecified tolerance &;. Therefore, it is often useful
to employ the absolute value of Eq. (4.5). For such cases, the computation is repeated until

lea] < & (4.6)

This relationship is referred to as a stopping criterion. If it is satisfied, our result is assumed
to be within the prespecified acceptable level &;. Note that for the remainder of this text, we
almost always employ absolute values when using relative errors.

It is also convenient to relate these errors to the number of significant figures in the ap-
proximation. It can be shown (Scarborough, 1966) that if the following criterion is met, we
can be assured that the result is correct to at least n significant figures.

g = (0.5 x 10°™")% (4.7)

Error Estimates for lterative Methods

Problem Statement. In mathematics, functions can often be represented by infinite se-
ries. For example, the exponential function can be computed using
e"':I+x+£+£—|—---+£ (E4.1.1)
2 3! n!
Thus, as more terms are added in sequence, the approximation becomes a better and better
estimate of the true value of ¢'. Equation (E4.1.1) is called a Maclaurin series expansion.
Starting with the simplest version, ¢' = 1, add terms one at a4 time in order to estimate
¢, After each new term is added, compute the true and approximate percent relative errors
with Egs. (4.3) and (4.5), respectively. Note that the true value is ¢ = 1.648721 Add
terms until the absolute value of the approximate error estimate ¢, falls below a prespeci-
fied error criterion &, conforming to three significant figures.

Solution. First, Eq. (4.7) can be employed to determine the error criterion that ensures a
result that is correct to at least three significant figures:

gy = (0.5 x 10°7% = 0.05%

Thus, we will add terms to the series until ¢, falls below this level.
The first estimate is simply equal to Eq. (E4.1.1) with a single term. Thus, the first es-
timate is equal to 1. The second estimate is then generated by adding the second term as in

e =1+x
orforx =0.5
MV =14+05=15
This represents a true percent relative error of [Eq. (4.3)]

1.648721 — 1.5
1.648721

x 100% = 9.02%

.

84

ROUNDOFF AND TRUNCATION ERRORS

4.2

Equation (4.5) can be used to determine an approximate estimate of the error, as in

1.5-1
x 100% = 33.3%

Eq = ‘
Because g, is not less than the required value of ¢, we would continue the computation by
adding another term, x>/2!, and repeating the error calculations. The process is continued
until |&,| < &;. The entire computation can be summarized as

Terms Result &4 % €4 %
| 1 39.3
2 1.5 Q.02 33.3
3 1.625 1.44 7.69
4 1.645833333 0.175 1.27
5 1.648437500 0.0172 0.158
6 1.64869/917 0.00142 0.0158

Thus, after six terms are included, the approximate error falls below g, = 0.05%, and the
computation is terminated. However, notice that, rather than three significant figures, the
result is accurate to five! This is because, for this case, both Egs. (4.5) and (4.7) are con-
servative. That is, they ensure that the result is at least as good as they specify. Although,
this is not always the casc for Eq. (4.5), it is true most of the time.

ROUNDOFF ERRORS

Roundoff errors arise because digital computers cannot represent some quantities exactly.
They are important to engineering and scientific problem solving because they can lead to
erroneous results. In certain cases, they can actually lead to a calculation going unstable
and yielding obviously erroneous results. Such calculations are said to be ill-conditioned.
Worse still, they can lead to subtler discrepancies that are difficult to detect.

There are two major facets of roundoff errors involved in numerical calculations:

1. Digital computers have size and precision Iimits on their ability to represent numbers.
Certain numerical manipulations are highly sensitive to roundoff errors. This can re-
sult from both mathematical considerations as well as from the way in which comput-

ers perform arithmetic operations.

4.2.1 Computer Number Representation

Numerical roundofT errors are directly related to the manner in which numbers are stored
in a computer. The fundamental unit whereby information is represented is called a word.
This is an entity that consists of a string of binary digirs, or bits. Numbers are typically
stored in one or more words. To understand how this is accomplished, we must first review
some material related to number systems.

ele
or

po:

Inte
res
put
the

sent

The
inF

repr
mair

FIGL
The &

magr

4.2 ROUNDOFF ERRORS 85

A number system is merely a convention for representing quantities. Because we have
10 fingers and 10 toes, the number system that we are most familiar with is the decimal, or
base-10, number system. A base is the number used as the reference for constructing the
system. The base-10 system uses the 10 digits——0, 1, 2, 3,4, 5, 6, 7, 8, and 9—to represent
numbers. By themselves, these digits are satisfactory for counting from 0 to 9.

For larger quantities, combinations of these basic digits are used, with the position or
place value specifying the magnitude. The rightmost digit in a whole number represents a
number from O to 9. The second digit from the right represents a multiple of 10. The third
digit from the right represents a multiple of 100 and so on. For example, if we have the
number 8642.9, then we have eight groups of 1000, six groups of 100, four groups of 10,
two groups of 1, and nine groups of 0.1, or

Bx 10+ 6 x107)+ @ x 10"+ 2 x 1094+ (9 x 107" = 8642.9

This type of representation is called positional notation.

Now, because the decimal system is so familiar, it is not commonly realized that there
are alternatives. For example, if human beings happened to have eight fingers and toes we
would undoubtedly have developed an octal, or base-8, representation. In the same sense,
our friend the computer is like a two-fingered animal who is limited to two states—either
0 or 1. This relates to the fact that the primary logic units of digital computers are on/otf
electronic components. Hence, numbers on the computer are represented with a binary,
or base-2, system. Just as with the decimal system, quantities can be represented using
positional notation. For example, the binary number 101.1 is equivalent to (1 x 27) +
Ox2H+ (1 x2) + (1 x27")=44+0+140.5=5.5 in the decimal system.

Integer Representation. Now that we have reviewed how base-10 numbers can be rep-
resented in binary form, it is simple to conceive of how integers are represented on a com-
puter. The most straightforward approach, called the signed magnitude method, employs
the first bit of a word to indicate the sign, with a 0 for positive and a | for negative. The re-
maining bits arc used to store the number. For example, the integer value of 173 is repre-
sented in binary as 10101101:

(10101101), =27+ 25+ 27+ 27 + 2" = 128 + 32 + 8 + 4 + | = (173)
2 10

Therefore, the binary equivalent of — 173 would be stored on a 16-bit computer, as depicted
in Fig. 4.2.

If such a scheme is employed, there clearly is a limited range of integers that can be
represented. Again assuming a 16-bit word size, if one bit is used for the sign, the 15 re-
maining bits can represent binary integers from O to [HTTTTTITITTTL. The upper limit can

FIGURE 4.2
The binary representation of the decimal integer =173 on a 16-bit computer using the signed
magnitude method.

11]0{0]0({0}{0(0jO|1T]O0O|1]0|1]1T]0}1

T Magnitude

86

ROUNDOFF AND TRUNCATION ERRORS

EXAMPLE 4.2

be converted to a decimal integer, asin (1 x 2'*) + (1 x 2+ + (I x 2H+ (I x 29 =
32,767. Note that this value can be simply evaluated as 2'° — 1. Thus, a 16-bit computer
word can store decimal integers ranging from —32,767 to 32,767.

In addition, because zero is already defined as 0000000000000000, it is redundant
to use the number 1000000000000000 to define a “minus zero.” Therefore, it is conven-
tionally employed to represent an additional negative number: —32,768. and the range is
from —32.768 to 32,767. For an n-bit word, the range would be from —2" to 2" — [. Thus,
32-bit integers would range from —2,147,483,648 to +2,147,483,647.

Note that, although it provides a nice way to illustrate our point, the signed magnitude
method is not actually used to represent integers for conventional computers. A preferred
approach called the 2s complement technique directly incorporates the sign into the num-
ber’s magnitude rather than providing a separate bit to represent plus or minus. Regardless,
the range of numbers is still the same as for the signed magnitude method described above.

The foregoing serves to illustrate how all digital computers are limited in their capabil-
ity to represent integers. That is, numbers above or below the range cannot be represented.
A more serious limitation is encountered in the storage and manipulation of fractional quan-
tities as described next.

Floating-Point Representation. Fractional quantities are typically represented in com-
puters using floating-point format. In this approach, which is very much like scientific
notation, the number is expressed as

+5 x b°

where s = the significand, » = the base of the number system being used, and ¢ = the
exponent.

Prior to being expressed in this form, the number is normalized by moving the decimal
place over so that only one significant digit is to the left of the decimal point. This is done so
computer memory is not wasted on storing useless nonsignificant zeros. For example, a
value like 0.005678 could be represented in a wasteful manner as 0.005678 x 10°. How-
ever, normalization would yield 5.678 x 10~ which eliminates the useless zeroes.

Before describing the base-2 implementation used on computers, we will first explore
the fundamental implications of such floating-point representation. In particular, what are
the ramifications of the fact that in order to be stored in the computer, both the mantissa
and the exponent must be limited to a finite number of bits? As in the next example, a nice
way to do this is within the context of our more familiar base-10 decimal world.

Implications of Floating-Point Representation

Problem Statement. Suppose that we had a hypothetical base-10 computer with a 5-digit
word size. Assume that one digit is used for the sign, two for the exponent, and two for the
mantissa. For simplicity, assume that one of the exponent digits is used for its sign, leaving
a single digit for its magnitude.

Solution. A general representation of the number following normalization would be

S]d] .dz X IOS“{/“

—_— s A

Fl
The

flox

Ov

4.2 ROUNDOFF ERRORS 87

= where s, and s, = the signs, d, = the magnitude of the exponent, and &, and d, = the mag-

r ¢ nitude of the significand digits.

. Now, let’s play with this system. First, what is the largest possible positive quantity
nt ! that can be represented? Clearly, it would correspond to both signs being positive and all
n- ' magnitude digits set to the largest possible value in base-10, that is, 9:
llss Largest value = 4+9.9 x 10%°

i So the largest possible number would be a little less than 10 billion. Although this might
de . seem like a big number, it’s really not that big. For example, this computer would be inca-
ed . pable of representing & commonly used constant like Avogadro’s number (6.022 x 10%%).
m- In the same sense, the smallest possible positive number would be
32 Smallest value = +1.0 x 1077
31- Again, although this value might seem pretty small, you could not use it to represent a
ed. quantity like Planck’s constant (6.626 x 107 J .s).
an- Similar negative values could also be developed. The resulting ranges are displayed in

Fig. 4.3. Large positive and negative numbers that fall outside the range would cause an

. overflow error. In a similar sense, for very small quantities there is a “hole” at zero, and
>m- 1 very small quantities would usually be converted to zero.
tific Recognize that the exponent overwhelmingly determines these range limitations. For

example, if we increase the mantissa by one digit, the maximum value increases slightly to
9.99 x 10°. In contrast, a one-digit increase in the exponent raises the maximum by 90 orders

¢ of magnitude 10 9.9 x 0%

the “ When it comes to precision, however, the situation is reversed. Whereas the significand
plays a minor role in defining the range, it has a profound eftect on specitying the precision.

imal ! This is drzlimatica.lly i]lustrated for this e>_<amp]e where we have limited the significand to

ne so only 2 digits. As in Fig. 4.4, just as there is a “hole” at zero, there are also “holes” between

le, a values. e 5

Tow- For example, a simple rational n:lmber with a finite number of digits like 27" = 0.03 125

- would have tobe stored as 3.1 x 1077 or 0.031. Thus, a roundoff error is introduced. For this

. case, it represents a relative error of
plore
at are j 0.03125 — 0.031 0.008
ntissa 003125
a nice

FIGURE 4.3
. | The number line showing the possible ranges corresponding fo the hypothetical base-10
>-digit - floatingpoint scheme described in Example 4.2.
for the
caving Miniinum S)?H\eit Maxifﬁum
-9.9 x 10° -1.0x107% 10x107° 9.9 x 10°
be Overﬂow: —Jl Underflow : j'Overrow

L_b_v__J
“Hole” at zero

88

ROUNDOFF AND TRUNCATION ERRORS

0.01 0.1

L 1
1 1
1.1 1.2

[
| g |
0.98 0.99

FIGURE 4.4

A small portion of the number line corresponding to the hynathetical base-10 floating-point
scheme described in Example 4.2. The numbers indicate values that can be represented
exactly. All other quantities folling in the “holes” between these values would exhibit some
roundoff error.

o e

While we could store a number like 0.03125 exactly by expanding the digits of the
significand, quantities with infinite digits must always be approximated. For example, a
commonly used constant such as = (= 3.14159...) would have to be represented as 3.1 x 10°
or 3.1. For this case, it represented a relative error of

3.14159 - 3.1
3.14159

=0.0132

Although adding significand digits can improve the approximation, such quantities will
always have some roundoff error when stored in a computer.

Another more subtle effect of floating-point representation is tllustrated by Fig. 44.
Notice how the interval between numbers increases as we move between orders of mag-
nitude. For numbers with an exponent of —1 (that is, between 0.1 and 1), the spacing is
0.01. Once we cross over into the range from | to 10, the spacing increases to 0.1. This
means that the roundoff error of a number will be proportional to its magnitude. In addi-
tion, it means that the relative error will have an upper bound. For this example, the max-
imum relative error would be 0.05. This value is called the machine epsilon (or machine
precision).

As illustrated in Example 4.2, the fact that both the exponent and significand are finite
means that there are both range and precision limits on tloating-point representation. Now,
let us examine how floating-point quantities are actually represented in a real computer
using base-2 or binary numbers.

First, let’s look at normalization. Since binary numbers consist exclusively of 0s and
Is, a bonus occurs when they are normalized. That is, the bit to the left of the binary point
will always be one! This means that this leading bit does not have to be stored. Hence,
nonzero binary floating-point numbers can be expressed as

+(1 + f) x 2¢

where f = the mantissa (i.e., the fractional part of the significand). For example, if we nor-
malized the binary number 1101.1, the result would be 1.1011 x (2) Y or (1 4+0.1011) x 27,

4.2 ROUNDOFF ERRORS 89

Signed
exponent Mantissa
11 bits 52 bits
Sign
(1 bit)
FIGURE 4.5

The manner in which a floating-point number is stored in an 8-byte word in IEEE double-
precision formaf.

Thus, although the original number has five significant bits, we only have to store the four
fractional bits: 0.1011.

By default, MATLAB has adopted the /EEE double-precision format in which eight
bytes (64 bits) are used to represent floating-point numbers. As in Fig. 4.5, one bit is re-
served for the number’s sign. In a similar spirit to the way in which integers are stored, the
exponent and its sign are stored in 11 bits. Finally, 52 bits are set aside for the mantissa.
However. because of normalization, 53 significand bits can be stored.

Now, just as in Example 4.2, this means that the numbers will have a limited range and
precision. However, because the 1EEE format uses many more bits, the resulting number
system can be used for practical purposes.

Range. In a fashion similar to the way in which integers are stored, the 11 bits used for
the exponent translates into a range from — 1022 1o 1023. The largest positive number can
be represented in binary as

Largest value = + 1. 1111, [111 x 2H10

where the 52 bits in the mantissa are all 1. Since the significand is approximately 2 (it is ac-
tually 2 — 27°), the largest value is therefore 2'"* = 1.7977 x 10**. In a similar fashion,
the smallest positive number can be represented as

Smallest value = +1.0000. .. 0000 x 27"

This value can be translated into a base-10 value of 27" = 2.2251 x 107,

Precision. The 52 bits used for the mantissa correspond to about 15 to 16 base-10 digits.
Thus, 7 would be expressed as

»> format long
>> pl

ans =
3.14159265358979

1471

Note that the machine epsilon is 27> = 2.2204 x 107'°,

90

ROUNDOFF AND TRUNCATION ERRORS

MATLAB has a number of built-in functions related to its internal number representa-
tion. For example, the realmax function displays the largest positive real number:

1.797693134862316e+308

Numbers occurring in computations that exceed this value create an overflow. In MATLAB
they are set to infinity, inf. The realmin function displays the smallest positive real
number:

>> realmin

ans =
2.225073858507201e-308

Numbers that are smaller than this value create an underflow and, in MATLAB, are set to
zero. Finally, the eps function displays the machine epsilon:

>» eps

ans =
2.220446049250313e-015

4.2.2 Arithmetic Manipulations of Computer Numbers

Aside from the limitations of a computer’s number system, the actual arithmetic manipula-
tions involving these numbers can also result in roundoff error. To understand how this
occurs, let’s look at how the computer performs simple addition and subtraction.

Because of their familiarity, normalized base-10 numbers will be employed to illus-
trate the effect of roundoff errors on simple addition and subtraction. Other number bases
would behave in a similar fashion. To simplify the discussion, we will employ a hypothet-
ical decimal computer with a 4-digit mantissa and a 1-digit exponent.

When two floating-point numbers are added, the numbers are first expressed so that
they have the same exponents. For example, if we want to add 1.557 4 0.0434 1, the com-
puter would express the numbers as 0.1557 x 10! + 0.004341 x 10'. Then the mantissas
are added to give 0.160041 x 10'. Now, because this hypothetical computer only carries a
4-digit mantissa. the excess number of digits get chopped off and the result is 0.1600 x 10",
Notice how the last two digits of the second number (4 1) that were shifted to the right have
essentially been lost from the computation.

Subtraction is performed identically to addition except that the sign of the subtrahend
is reversed. For example, suppose that we are subtracting 26.86 from 36.41. That is,

0.3641 x 10°
—0.2686 x 107
0.0955 x 107

For this case the result must be normalized because the leading zero is unnecessary. So
we must shift the decimal one place to the right to give 0.9550 x 10" = 9.550. Notice that

4.2 ROUNDOFF ERRORS 91

the zero added to the end of the mantissa is not significant but is merely appended to fill the
empty space created by the shift. Even more dramatic results would be obtained when the
numbers are very close as in

0.7642 x 10°
—0.7641 x 10°

0.0001 x 10°

which would be converted to 0.1000 x 10° = 0.1000. Thus, for this case, three nonsignif-
icant zeros are appended.

The subtracting of two nearly equal numbers is called subtractive cancellation. It is
the classic example of how the manner in which computers handle mathematics can lead to
numerical problems. Other calculations that can cause problems include:

Large Computations. Certain methods require extremely large numbers of arithmetic
manipulations to arrive at their final results. In addition, these computations are often inter-
dependent. That is, the later calculations are dependent on the results of earlier ones. Con-
sequently, even though an individual roundoff error could be small, the cumulative effect
over the course of a large computation can be significant. A very simple case involves sum-
ming a round base-10 number that is not round in base-2. Suppose that the following M-file
is constructed:

function sout = sumdemo ()
s = 0;
for 1 = 1:10000
s = s + 0.0001;
end
sout = g;
When this function is executed, the result is

; >> format long

>> sumdemo

ans =

0.99999999999991

The format long command lets us see the 15 significant-digit representation used by

l MATLAB. You would expect that sum would be equal to I. However, although 0.0001 is a
nice round number in base-10, it cannot be expressed exactly in base-2. Thus, the sum
comes out to be slightly different than 1. We should note that MATLAB has features that
are designed to minimize such errors. For example, suppose that you form a vector as in

l >> format long
>> g = [0:0.0001:17;

For this case, rather than being equal to 0.99999999999991, the last entry will be exactly
one as verified by

>> s5(10001)

o] ans =
t 1

92

ROUNDOFF AND TRUNCATION ERRORS

4.3

Adding a large and o Small Number. Suppose we add a small number, 0.0010, to a
large number, 4000, using a hypothetical computer with the 4-digit mantissa and the 1-digit
exponent. After modifying the smaller number so that its exponent matches the larger,

0.4000 x 10°
0.0000001 x 10*

0.4000001 x 10*

which is chopped to 0.4000 x 10*. Thus, we might as well have not performed the addi-
tion! This type of error can occur in the computation of an infinite series. The initial terms
in such series are often relatively large in comparison with the later terms. Thus, after a few
terms have been added, we are in the situation of adding a small quantity to a large quan-
tity. One way to mitigate this type of error is to sum the series in reverse order. In this way,
each new term will be of comparable magnitude to the accumulated sum.

Smearing. Smearing occurs whenever the individual terms in a summation are larger
than the summation itself. One case where this occurs is in a series of mixed signs.

fnner Products. As should be clear from the last sections, some infinite series are partic-
ularly prone to roundoff error. Fortunately, the calculation of series is not one of the more
common operations in numerical methods. A tar more ubiquitous manipulation is the cal-
culation of inner products as in

n
E XiYi = X1y F02y2 4+ XV
i=]
This operation is very common, particularly in the solution of simultaneous linear algebraic
equations. Such summations are prone to roundoft error. Consequently, it is often desirable to
compute such summations in double precision as is done automatically in MATLAB.

TRUNCATION ERRORS

Truncation errors are those that result from using an approximation in place of an exact
mathematical procedure. For example, in Chap. | we approximated the derivative of veloc-
ity of a bungee jumper by a finite-difference equation ot the form [Eq. (1.11)]

dv ~ Av o v(ig) — v(t;) 48)

dt At Ly — 1
A truncation error was introduced into the numerical solution because the difference equa-
tion only approximates the true value of the derivative (recall Fig. 1.3). To gain insight into
the properties of such errors, we now turn to a mathematical formulation that is used widely
in numerical methods to express functions in an approximate fashion—the Taylor series.

4.3.1 The Taylor Series

Taylor’s theorem and its associated formula, the Taylor series, is of great value in the study
of numerical methods. [n essence, the Taylor theorem states that any smooth function can
be approximated as a polynomial. The Taylor series then provides a means to express this
idea mathematically in a form that can be used to come up with practical results.

fu

dc
re

po
ide
gu
wi
no

Th

fal

bex
ilai

fac
on
tiol

4.3 TRUNCATION ERRORS 93

fix)) Zero order
B flxq0) = flx)
n~~.,,_.~fi£st Order
1.0+ ~&C‘ .hh.’.' f(Xf+1):f(xi)+f'('\"')h
(A (S8
05 ‘® SO = fl) +)k + ——fz(f') W
Fflxiiq)
|
0 =0 Xppq =1 *
h
FIGURE 4.6

The approximation of f(x) = —0.1x* — 0.15x" — 0.5x* = 0.25x + 1.2 afx = 1 by
zero-order, firstorder, and second-order Taylor series expansions.

A useful way to gain insight into the Taylor series is to build it term by term. A good
problem context for this exercise is to predict a function value at one point in terms of the
function value and its derivatives at another point.

Suppose that you are blindfolded and taken to a location on the side of a hill facing
downslope (Fig. 4.6). We'll call your horizontal location x; and your vertical distance with
respect to the base of the hill f(x;). You are given the task of predicting the height at a
position x; 1, which is a distance /1 away trom you.

At first, you are placed on a platform that is completely horizontal so that you have no
idea that the hill is sloping down away from you. At this point, what would be your best
guess at the height at x;,? If you think about it (remember you have no idea whatsoever
what’s in front of you), the best guess would be the same height as where you’re standing
now! You could express this prediction mathematically as

iz = fx) 4.9)

This relationship, which is called the zero-order approximation, indicates that the value of
[at the new point is the same as the value at the old point. This result makes intuitive sense
because if v, and x; 4 are close to each other, it is likely that the new value is probably sim-
ilar to the old value.

Equation (4.9) provides a perfect estimate if the function being approximated is, in
fact, a constant. For our problem, you would be right only if you happened to be standing
on a perfectly flat plateau. However, if the function changes at all over the interval, addi-
tional terms of the Taylor series are required to provide a better estimate.

So now you are allowed to get off the platform and stand on the hill surface with one
leg positioned in front of you and the other behind. You immediately sense that the front

94

ROUNDOFF AND TRUNCATION ERRORS

foot is lower than the back foot. In fact, you're allowed to obtain a quantitative estimate of
the slope by measuring the difference in elevation and dividing it by the distance between
your feet.

With this additional information, you're clearly in a better position to predict the
height at f(x;y1). In essence, you use the slope estimate to project a straight line out t0
xi41. You can express this prediction mathematically by

Flic) = fla) + fxoh (4.10)

This is called a first-order approximarion because the additional first-order term consists of
a slope f'(x;) multiplied by h. the distance between x; and x;,. Thus, the expression is
now in the form of a straight line that is capable of predicting an increase or decrease of the
function between x; and x;.

Although Eq. (4.10) can predict a change, it is only exact for a straight-line, or linea;
trend. To get a better prediction, we need to add more terms to our equation. So now you
are allowed to stand on the hill surface and take two measurements. First, you measure the
slope behind you by keeping one foot planted at x; and moving the other one back a dis-
tance Ax. Let’s call this slope f;(x;). Then you measure the slope in front of you by keep-
ing one foot planted at x; and moving the other one forward Ax. Let’s call this slope
f;(x;). You immediately recognize that the slope behind is milder than the one in front
Clearly the drop in height is “accelerating” in front of you. Thus, the odds are that f(x;)is
even lower than your previous linear prediction.

As you might expect, you're now going to add a second-order term to your equation
and make it into a parabola. The Taylor series provides the correct way to do this as in

fN(Xi)hz

o (4.1

Fxig) = f) + ffaeph +

To make use of this formula, you need an estimate of the second derivative. You can use the
last two slopes you determined to estimate it as

FrGa) = fp(x)

Ax (4.12)

flxig) =
Thus, the second derivative is merely a derivative of a derivative; in this case, the rate of
change of the slope.

Before proceeding, let’s look carefully at Eq. (4.11). Recognize that all the values
subscripted i represent values that you have estimated. That is, they are numbers. Conse-
quently, the only unknowns are the values at the prediction position x; ;. Consequently, i
is a quadratic equation of the form

fh) = ah® +arh +ay

Thus, we can see that the second-order Taylor series approximates the function with a second-
order polynomial.

Clearly, we could keep adding more derivatives to capture more of the function’s cur-
vature. Thus, we arrive at the complete Taylor series expansion
f1o0) o fOD FAMED)

h+ +ot

2! 3 n! B Ry 41

flxisn) = fx) + f(xdh +

4.3

No
sig
acc

whe
and

app
ide:

non
SOi(
con
den
yiel

nn
€eno
req
Thi
som

fQx

con

errc
we |
ber

whe
The
this
ply
bas
wil
ter

of t
low
onl

4.3 TRUNCATION ERRORS 95

Note that because Eq. (4.13) is an infinite series, an equal sign replaces the approximate
sign that was used in Eqs. (4.9) through (4.11). A remainder term is also included to
account for all terms from n + 1 to infinity:

~(n+1)
— f__(_gl/q”“ (4.14)
(n+ H!

where the subscript n connotes that this is the remainder for the nth-order approximation
and & is a value of x that lies somewhcre between v; and x; ..

Thus, we can now see why the Taylor theorem states that any smooth function can be
approximated as a polynomial and that the Taylor series provides a means to express this
idea mathematically.

In general, the nth-order Taylor series expansion will be exact for an nth-order poly-
nomial. For other differentiable and continuous functions, such as exponentials and sinu-
soids, a finite number of terms will not yicld an exact estimate. Each additional term will
contribute some improvement, however slight, to the approximation. This behavior will be
demonstrated in Example 4.3. Only if an infinite number of terms are added will the serics
yield an exact result.

Although the foregoing is true, the practical value of Taylor scries expansions is that,
in most cases, the inclusion of only a few terms will result in an approximation that is close
enough to the true value for practical purposes. The assessment of how many terms are
required to get “close enough” is based on the remainder term of the expansion (Eq. 4.14).
This relationship has two major drawbacks. First. & is not known cxactly but merely lics
somewhere between x; and x;, . Second, to evaluate Eq. (4.14), we nced to determine the
(n + 1)th derivative of f(x). To do this, we need to know f(x). However, it we knew
f(x), there would be no need to perform the Taylor scries expansion in the present
context!

Despite this dilemma, Eq. (4.14) is still useful for gaining insight into truncation
errors. This is because we do have control over the term A in the equation. In other words,
we can choose how far away from v we want to evaluate f(x). and we can control the num-
ber of terms we include in the expansion. Consequently, Eq. (4.14) is usually expressed as

R, = OHh""")

where the nomenclature Q(4"™!) means that the truncation error is of the order of 4"+,

That is, the error is proportional to the step size /s raised to the (n + 1)th power. Although
this approximation implies nothing regarding the magnitude of the derivatives that multi-
ply A"*1 it is extremely useful in judging the comparative error of numerical methods
based on Taylor series expansions. For example, if the crror is O(h), halving the step size
will halve the error. On the other hand. if the error is O(h?), halving the step size will quar-
ter the error.

In general, we can usually assume that the truncation error is decreased by the addition
of terms to the Taylor series. [n many cases, it A is sufficiently small, the first- and other
lower-order terms usually account for a disproportionately high percent of the error. Thus,
only a few terms are required to obtain an adequate approximation. This property is illus-
trated by the following example.

96

ROUNDOFF AND TRUNCATION ERRORS

EXAMPLE 4.3

Approximation of a Function with a Taylor Series Expansion

Problem Statement. Use Taylor series expansions with n = 0 to 6 to approximate
f(x) = cos x at x;4; = /3 on the basis of the value of f(x) and its derivatives at
x; = /4. Note that this means that h = 7/3 —mj4=m/12

Solution. Our knowledge of the true function means that we can determine the correct
value f(mr/3) = 0.5. The zero-order approximation is [Eq. (4.9)]

f(i;.> = cos <§> = 0.707106781

which represents a percent relative error of

lO.S —0.707106781
& =

{ 100% = 41.4%
0.5

For the first-order approximation, we add the first derivative term where f'(x) = —sinx:

T\~ (7 r L AWE ¢ o
f(;) = cos (I) — sin <Z)(E> = 0.521980659

which has |¢,| = 4.40%. For the second-order approximation, we add the second deriva-
tive term where f”(x) = —cos x:

(TN big A4 T cos(m/4)y (= 2
flz)V=cost=)—sinl-NS)——5"\1) = 0.497754491
S 3 4 4 12 2 12

with || = 0.449%. Thus, the inclusion of additional terms results in an improved esti-
mate. The process can be continued and the results listed as in

Order n S™M(x) f(x/3) &,

0 cos x 0.707106781 41.4

1 —sin x 0 521986659 4.40

2 —COs ¥ 0.497754491 0.449

3 sin x 0499869147 2.62 % 1077
4 cos x 0.500007551 1.51 x 10
5 —sin x 0 500000304 6.08 x 107
6 —COs X 0.409990988 2.44 x 10°

Notice that the derivatives never go to zero as would be the case for a polynomial
Therefore, each additional term results in some improvement in the estimate. However,
also notice how most of the improvement comes with the initial terms. For this case, by the
time we have added the third-order term, the error is reduced to 0.026%, which means that
we have attained 99.974% of the true value. Consequently, although the addition of more
terms will reduce the error further, the improvement becomes negligible.

w

si

te

er
S€

It
sit

Al
an
ca
ap

ba

FI¢

-

4.3 TRUNCATION ERRORS 97

4.3.2 The Remainder for the Taylor Series Expansion

Before demonstrating how the Taylor series is actually used to estimate numerical errors,

we must explain why we included the argument & in Eq. (4.14). To do this, we will use a
simple, visually based explanation.

Suppose that we truncated the Taylor series expansion [Eq. (4.13)] after the zero-order
term to yield

fip) E fx)

A visual depiction of this zero-order prediction is shown in Fig. 4.7. The remainder, or
error, of this prediction, which is also shown in the illustration, consists of the infinite
series of terms that were truncated

frx) o, %)
T h 4+ 3 h

Ry = f'(x)h + +--
It is obviously inconvenient to deal with the remainder in this infinite series format. One
simplification might be to truncate the remainder itself, as in

Ro = f(x;)h 4.15)

Although, as stated in the previous section, lower-order derivatives usually account for a
greater share of the remainder than the higher-order terms, this result is still inexact be-
cause of the neglected second- and higher-order terms. This “inexactness” is implied by the
approximate equality symbol (=) employed in Eq. (4.15).

An alternative simplification that transforms the approximation into an equivalence is
based on a graphical insight. As in Fig. 4.8, the derivative mean-value theorem states that

FIGURE 4.7

Graphical depiction of o zerc-order Taylor series prediction and remainder.

fix)

98

ROUNDOFF AND TRUNCATION ERRORS

flx)

Slope = f'(¢)

FIGURE 4.8

Graphical depiction of the derivative mean-value thecrem.

if a function f(x) and its first derivative are continuous over an interval from x; to v, , then
there exists at least one point on the function that has a slope, designated by f/(&), thatis
parallel to the line joining f{x,) and f(x,,). The parameter & marks the x value where this
slope occurs (Fig. 4.8). A physical illustration of this theorem is that, if you travel between
two points with an average velocity, there will be at least one moment during the course of
the trip when you will be moving at that average velocity.

By invoking this theorem, it is simple to realize that, as illustrated in Fig. 4.8, the slope
/(&) is equal to the rise R, divided by the run h, or

y Ry
f(E)=—
h

which can be rearranged to give

Ro = f'(§)h

Thus, we have derived the zero-order version of Eq. (4.14). The higher-order versions
are merely a logical extension of the reasoning used to derive Eq. (4.16). The first-order

(4.16)

version is

R = S8 o @1
2!

For this case, the value of & conforms to the x value corresponding to the second derivative

that makes Eq. (4.17) exact. Similar higher-order versions can be developed from Eq. (4.14)

4.3.3 Using the Taylor Series to Estimate Truncation Errors

Although the Taylor series will be extremely useful in estimating truncation errors through
out this book, it may not be clear to you how the expansion can actually be applied to

Eq

Thy
the
we
tior

or

Thu
tion
shot
expe

4.3

Equ
ence

or

wher:
matic
and {

4.3 TRUNCATION ERRORS 99

numerical methods. In fact, we have already done so in our example of the bungee jumper.
Recall that the objective of both Examples 1.1 and 1.2 was to predict velocity as a function
of time. That is, we were interested in determining v(¢). As specified by Eq. (4.13), v(z)
can be expanded in a Taylor series:

’ l'”(ti) 2
v(tiv)) = v(@) + v ()0 —6) + —2‘_(ti+l)"+t R,

Now let us truncate the series after the first derivative term:
V(i) = v() V) i — 1) + Ry (4.18)
Equation (4.18) can be solved for

v(te) —ul) R

I3
v (ti) - t ! 1 !
i+1 T i+1 4
e’ (4.19)
First-order Truncation
approximation error

The first part of Eq. (4.19) is exactly the same relationship that was used to approximate
the derivative in Example 1.2 [Eq. (1.11)]. However, because of the Taylor series approach,
we have now obtained an estimate of the truncation error associated with this approxima-
tion of the derivative. Using Eqs. (4.14) and (4.19) yields

R, U”(E)(r')
iy —t 2! e
or
R
= Otigr — 1})
liy) — &

Thus, the estimate of the derivative [Eq. (1.11) or the first part of Eq. (4.19)] has a trunca-
tion error of order ;| — ;. In other words, the error of our derivative approximation
should be proportional to the step size. Consequently, if we halve the step size, we would
expect to halve the error of the derivative.

4.3.4 Numerical Differentiation

Equation (4.19) is given a formal label in numerical methods—it is called a finite differ-
ence. It can be represented generally as
_ S = fl)

— + 0(X,'+| — X,‘) (4.20)
Xi+l — X

f/ (X,‘)

or

flx) = f—(ﬁl)h;f(x—’) + O(h) @21

where £ is called the step size—that is, the length of the interval over which the approxi-
mation is made, x; | — x;. It is termed a “forward” difference because it utilizes data at i
and 7 + 1 to estimate the derivative (Fig. 4.9q).

100 ROUNDOFF AND TRUNCATION ERRORS
—_

Sx)

Sflx)
Tr

wh

Cer
mat

flx} to yi

whic

or

f
.
:
)
!
f
| !
Xi~1 i1

{c)

Noti

FIGURE 4.9 appr
Graphical depiction of (o) forward, {b} backward, and (¢} centered finite-difference the [
the ¢

approximations of the first derivative.
warc

tral ¢

4.3 TRUNCATION ERRORS 101

This forward difference is but one of many that can be developed from the Taylor
series to approximate derivatives numerically. For example, backward and centered differ-
ence approximations of the first derivative can be developed in a fashion similar to the
derivation of Eq. (4.19). The former utilizes values at x;_; and x; (Fig. 4.9b), whereas
the latter uses values that are equally spaced around the point at which the derivative is
estimated (Fig. 4.9¢). More accurate approximations of the first derivative can be developed
by including higher-order terms of the Taylor series. Finally, all the foregoing versions can
also be developed for second, third, and higher derivatives. The following sections provide
brief summaries illustrating how some of these cases are derived.

Backward Difference Approximation of the First Derivative. The Taylor series can be

expanded backward to calculate a previous value on the basis of a present value, as in

17 ()
2!

Sz = fl) = f(x)h + - (4.22)

Truncating this equation after the first derivative and rearranging yields

P = S x) _hf(xi~l) @23)

where the error is O(h). See Fig. 4.9 for a graphical representation.

Centered Difference Approximation of the First Derivative. A third way to approxi-
mate the first derivative is to subtract Eq. (4.22) from the forward Taylor series expansion:

Sxiv) = f)+ fxi)h + f_z(;“;)hz . o)
to yield
(3¢
S = [0 + 21 (xh + / ('x’)h‘ +-..

3!
which can be solved for

S — flz) _ P00

h2
2h 6 *

fl) =
or

Sip) — flaiz)

—Oh* 425
7 (h7) (4.25)

f/(xi) -

Equation (4.25) is a centered finite difference representation of the first derivative,
Notice that the truncation error is of the order of 4% in contrast to the forward and backward
approximations that were of the order of 4. Consequently, the Taylor series analysis yields
the practical information that the centered difference is a more accurate representation of
the derivative (Fig. 4.9¢). For example, if we halve the step size using a forward or back-
ward difference, we would approximately halve the truncation error, whereas for the cen-
tral difference, the error would be quartered.

102 ROUNDOFF AND TRUNCATION ERRORS

EXAMPLE 4.4 Finite-Difference Approximations of Derivatives |

Problem Statement. Use forward and backward difference approximations of O(h) and !
a centered difference approximation of O(h?) to estimate the first derivative of i

fx) = —0.1x* = 0.15x" = 0.5x* = 0.25x + 1.2 -

at x = 0.5 using a step size h = 0.5. Repeat the computation using & = 0.25. Note that the l
derivative can be calculated directly as

f(x) = —0.4x" —0.45x* — 1.0x — 0.25

and can be used to compute the true value as £'(0.5) = —0.9125.

Solution. For h = 0.5, the function can be employed to determine
x5y =0 Sl =12
x; =05 f(x;) =0.925
xipp=1.0 flxip) =02
These values can be used to compute the forward difference [Eq. (4.21)),
0.2-0.925

f10.5) = —os - —1.45 le,] = 58.9%
the backward difference [Eq. (4.23)].
y . 0925-1.2
f'(0.5) = 05 = —0.55 le,) = 39.7%

and the centered difference [Eq. (4.25)],

L 02-12 ,
08— = -1.0 le;| = 9.6%
1.0
For h = 0.25,
X =025 flxi_) =1.10351563
X = 0.5 f(X,' =0.925

xip =0.75 f(xiyr) = 0.63632813
which can be used to compute the forward difference,

_ 0.63632813 - 0.925

1105 = 035 = —1.155 e, = 26.5%

the backward difference,

_0.925 — 1.10351563

0.5 = 025 =-0.714 l&;| = 21.7%

and the centered difference,

. 0.63632813 — 1.10351563
£(0.5) = x

= —0.934 le\ =2.4%

4.4 TOTAL NUMERICAL ERROR 103

4.4

For both step sizes, the centered difference approximation is more accurate than for-
ward or backward differences. Also, as predicted by the Taylor series analysis, halving the
step size approximately halves the error of the backward and forward differences and quar-
ters the error of the centered difference.

Finite-Difference Approximations of Higher Derivatives. Besides first derivatives, the

Taylor series expansion can be used to derive numerical estimates of higher derivatives. To

do this, we write a forward Taylor series expansion for f(x;;2) in terms of f(x;):

S
2!

Equation (4.24) can be multiplied by 2 and subtracted from Eq. (4.26) to give

Fxip2) = £O) + f(x)2h) + (h)* +--- (4.26)

Sxi2) = 2f () = — f(x) + £ (x)h* + -+

which can be solved for
S i) = 2f () + [()
h?
This relationship is called the second forward finite difference. Similar manipulations can
be employed to derive a backward version
() = 2f () + flxi2)
flxi)y=2f ™ N+ / n

+ O (4.27)

_f//(-[l) =

) = O(h)

and a centered version
S i) =21 (x) + f(xi)
h?
As was the casc with the first-derivative approximations, the centered case is more accurate.
Notice also that the centercd version can be alternatively cxpressed as
Slig) = S) = o)
h h
h
Thus, just as the second derivative is a derivative of a derivative, the second finite differ-
ence approximation is a difference of two first finite differences [recall Eq. (4.12)].

S = + O

f//(/\/i) =

TOTAL NUMERICAL ERROR

The rotal numerical error is the summation of the truncation and roundoff errors. In general,
the only way to minimize roundoff errors is to increase the number of significant figures
of the computer. Further, we have noted that roundoft error may increase due to subtractive
cancellation or due to an increase in the number of computations in an analysis. In contrast,
Example 4.4 demonstrated that the truncation error can be reduced by decreasing the step
size. Because a decrease in step size can lead to subtractive cancellation or to an increase in
computations, the truncation errors are decreased as the roundoff errors are increased.

104 ROUNDOFF AND TRUNCATION ERRORS

Point of
diminishing
returns

Log error

Log step size ‘

FIGURE 4.10

A grophical depiction of the tiade-off between roundoff and fruncation error that sometimes

comes info play in the course of a numerical method. The point of diminishing returns is :
shown, where roundoff error begins to negate the benefits of step-size reduction. é
t
Therefore, we are faced by the following dilemma: The strategy for decreasing one
component of the total error leads to an increase of the other component. In a computation,
we could conceivably decrease the step size to minimize truncation errors only to discover
that in doing so, the roundoff error begins to dominate the solution and the total error
grows! Thus, our remedy becomes our problem (Fig. 4.10). One challenge that we face is
to determine an appropriate step size for a particular computation. We would like to choose
a large step size to decrease the amount of calculations and roundoff errors without incur-
ring the penalty of a large truncation error. If the total error is as shown in Fig. 4.10, the
challenge is to identify the point of diminishing returns where roundoff error begins to EXAMPLE 4.5 R
negate the benefits of step-size reduction. P
When using MATLAB, such situations are relatively uncommon because of its 15-to 16- ¢
digit precision. Nevertheless, they sometimes do occur and suggest a sort of “numerical un-
certainty principle” that places an absolute limit on the accuracy that may be obtained using
certain computerized numerical methods. We explore such a case in the following section. P
b
4.4.1 Error Analysis of Numerical Differentiation R
As described in Sec. 4.3.4, a centered difference approximation of the first derivative can
be written as (Eq. 4.25) S
I¢
, fxie) = fi) [P,
Al 2h e ! :
(4.28) £
True Finite-difference Truncation d
value approximation error E
Thus, if the two function values in the numerator of the finite-ditference approximation D
E

have no roundoff error, the only error is due to truncation.

4.4 TOTAL NUMERICAL ERROR 105

EXAMPLE 4.5

However, because we are using digital computers, the function values do include
roundoff error as in

fin = flxi-) +ei
Fiv) = Flxis) + e

where the f’s are the rounded function values and the e’s are the associated roundoff
errors. Substituting these values into Eq. (4.28) gives

Fxie) — fxio) + iyl —€i-1 f(‘“(,f)hz

f) = 2h 2h 6
True Finite-difference Roundoff Truncation
value approximation error error

We can see that the total error of the finite-difference approximation consists of a roundoff
error that increases with step size and a truncation error that decreases with step size.

Assuming that the absolute value of each component of the roundoff error has an
upper bound of ¢, the maximum possible value of the difference ¢,, | — e, will be 2¢. Further,
assume that the third derivative has a maximum absolute value of M. An upper bound on
the absolute value of the total error can therefore be represented as

Flxie) — fxio)
2h

hM

fx)— 6

Total error =

(4.29)

Nl%

An optimal step size can be determined by differentiating Eq. (4.29), setting the result
equal to zero and solving for
. 3e

Ropt = m (4.30)

Roundoff and Truncation Errors in Numerical Differentiation

Problem Statement. In Example 4.4, we used a centered difference approximation of
O(1?) to estimate the first derivative of the following function at x = 0.5,

f(x) = —0.1x* —0.15x* = 0.5x* = 0.25x + 1.2

Perform the same computation starting with 2 = 1. Then progressively divide the step size
by a factor of 10 to demonstrate how roundoff becomes dominant as the step size is reduced.
Relate your results to Eq. (4.30). Recall that the true value of the derivative is —0.9125.

Solution. We can develop the following M-file to perform the computations and plot the
results. Notice that we pass both the function and its analytical derivative as arguments:

function diffex(func,dfunc,x,n)

format long

dftrue=dfunc (x) ;

h=1;
H(1)
D(1)= func(x+h) func(x-h}))/{(2*h);
E(l)=abs{(dftrue-D(1));

106

ROUNDOFF AND TRUNCATION ERRORS

for i=2:n
h=h,/10;
H(1)=h;
D(i)y=(func(x+h)-func(x-h))/(2*h);
E(i)=abs(dftrue-D(1i)) ;
end
L=[H" D" E']";
fprincf (¢ step size finite difference truce errori\n’);

fprintf ('%14.10f %16.14f %$16.13f\n"',L);
loglog(H,E),xlabel ('Step Size'),ylabel ('Error')
title{'Plot of Error Versus Step Size!')

format short

The M-file can then be run using the following commands:

> f1=6@(x) LA xNA-0.015%x 0 3-0.5*x"2-0.25*x+1.2;
> df =@ (x) *;.4*X 2-0.45*x"2-x-0.25%;
s diffeox(tff,af,0.5%,11)

step size finite diﬂferenco true error
1.0000000000 1.2 >75()') 000000 0.3500000000000
0.1000000000 0.916000 000000 0.003%000000000

)350000000

10(
00003500000

0.0100000000 70.“7123530 OO()OOU 0.0t
0.0010000000 ~0.91250035000001 0.00
0

0.0001000000 -0.2125000034998% 0.000000003199%4
0.0000100000 -0.91250000003318 0.0000000000332
(J.OO&()10000 -0.91250000000542 [).OU(O 00000054
0.0000001000 -0.91249995045031 0.0000000005497
0.0000000)O -0.91250000333609 0.0000000033361
().O(J()(0001 -0.91250001998944 0.0000000199894
0.0000000¢ ~0.91250007550059 0.0000000755006

As depicted in Fig. 4.1 1, the results are as expected. At first, roundoft is minimal and the
estimate is dominated by truncation error. Hence, as in Eq. (4.29). the total error drops by 2
factor of 100 each time we divide the step by 10. However, starting at & = 0.0001, we see
roundoft error begin to creep in and crode the rate at which the error diminishes. A minimum
error is reached at 7 = 10 . Beyond this point. the error increases as roundoff dominates.

Because we are dealing with an easily ditfercntiable function, we can also investigate
whether these results are consistent with Eq. (4.30). First, we can estimate M by evaluating
the function’s third derivative as

M = | fP(0.5)] = |-2.4(0.5) — 0.9] = 2.1

Because MATLAB has a precision of about 15 to 16 base-10 digits, a rough estimate of the
upper bound on roundofT would be about & = 0.5 x 1071%, Substituting these values into
Eq. (4.30) gives

3(0.5 x 10719
2.]

=43 x 107°

4.‘
Fo
Th

apy
mu

pro
eng

gra
equ
you
pos

4.4 TOTAL NUMERICAL ERROR 107

FIGURE 4.11

Plot of error versus step size
100 l I

1072

1074

1076

Error

10~8

10-—10

10~ 12 | |] |
10710 1078 1076 1074 1072 100
Step size

4.4.2 Control of Numerical Errors

d the For most practical cases, we do not know the exact error associated with numerical methods.
by a The exception, of course, is when we know the exact solution, which makes our numerical
e see approximations unnecessary. Therefore, for most engineering and scientific applications we
imum must settle for some estimate of the error in our calculations.

lt?& There are no systematic and general approaches to evaluating numerical errors for all
tigate

¢ problems. In many cases error estimates are based on the experience and judgment of the
uating engineer or scientist.

Although error analysis is to a certain extent an art, there are several practical pro-
gramming guidelines we can suggest. First and foremost, avoid subtracting two nearly
equal numbers. Loss of significance almost always occurs when this is done. Sometimes

»of the you can rearrange or reformulate the problem to avoid subtractive cancellation. If this is not
es into possible, you may want to use extended-precision arithmetic. Furthermore, when adding
and subtracting numbers. it is best to sort the numbers and work with the smallest numbers
first. This avoids loss of significance.

Beyond these computational hints, one can attempt to predict total numerical errors
using theoretical formulations. The Taylor series is our primary tool for analysis of such
errors. Prediction of total numerical error is very complicated for even moderately sized prob-
lems and tends to be pessimistic. Therefore, it is usually attempted for only small-scale tasks.

108

ROUNDOFF AND TRUNCATION ERRORS

4.5

The tendency is to push forward with the numerical computations and try to estimate
the accuracy of your results. This can sometimes be done by seeing if the results satisfy
some condition or equation as a check. Or it may be possible to substitute the results back
into the original equation to check that it is actually satisfied.

Finally you should be prepared to perform numerical experiments to increase your
awareness of computational errors and possible ill-conditioned problems. Such experi-
ments may involve repeating the computations with a different step size or method and
comparing the results. We may employ sensitivity analysis to see how our solution changes
when we change model parameters or input values. We may want to try different numeri-
cal algorithms that have different theoretical foundations, are based on different computa-
tional strategies, or have different convergence properties and stability characteristics.

When the results of numerical computations are extremely critical and may involve
loss of human life or have severe economic ramifications, it is appropriate to take special
precautions. This may involve the use of two or more independent groups to solve the same
problem so that their results can be compared.

The roles of errors will be a topic of concern and analysis in all sections of this book.
We will leave these investigations to specific sections.

BLUNDERS, MODEL ERRORS, AND DATA UNCERTAINTY

Although the following sources of error are not dircctly connected with most of the nu-
merical methods in this book, they can sometimes have great impact on the success of a
modeling effort. Thus, they must afways be kept in mind when applying numerical tech-
niques in the context of real-world problems.

4.5.1 Blunders

We are all familiar with gross errors, or blunders. In the early years of computers, erroneous
numerical results could sometimes be attributed to malfunctions of the computer itself.
Today. this source of error is highly unlikely, and most blunders must be attributed to human
impertection.

Blunders can occur at any stage of the mathematical modeling process and can con-
tribute to all the other components of error. They can be avoided only by sound knowledge
of fundamental principles and by the care with which you approach and design your solu-
tion to a problem.

Blunders are usually disregarded in discussions of numerical methods. This is no doubt
due to the fact that, try as we may, mistakes are to a certain extent unavoidable. However, we
believe that there are a number of ways in which their occurrence can be minimized. In par-
ticular, the good programming habits that were outlined in Chap. 3 are extremely usetul for
mitigating programming blunders. In addition. there arc usually simple ways to check
whether a particular numerical method is working properly. Throughout this book, we dis-
cuss ways to check the results of numerical calculations.

4.5.2 Model Errors

Model errors relate to bias that can be ascribed to incomplete mathematical models. An ex-
ample of a negligible mode! error is the fact that Newton’s second law does not account for
relativistic effects. This does not detract from the adequacy of the solution in Example 1.1

PR

be
ju

a8
ca
ca
W(

4,
Er
al
n;
fie
the
hit
est
if

ch
ist
lox
As
the

me
of
e
1h

PROBLEM

4.1 Convert the followir
1011001 and 110.00101.
4.2 Convert the followir
71563 and 3.14.

4.3 For computers. the
thought of as the smalles
gives a number greater th
ey can be developed as

Step I: Sete = [

Step2: If' 1 + ¢ is less th
Otherwise go to §

Step3:e =¢/2

Step 4: Return to Step 2

StepS5:e =2x¢

) —

PROBLEMS 109

because these errors are minimal on the time and space scales associated with the bungee
jumper problem.

However, suppose that air resistance is not proportional to the square of the fall velocity,
as in Eq. (1.7), but is related to velocity and other factors in a different way. If such were the
case, both the analytical and numerical solutions obtained in Chap. 1 would be erroneous be-
cause of model error. You should be cognizant of this type of error and realize that, if you are
working with a poorly conceived model, no numerical method will provide adequate results.

4.5.3 Data Uncertainty

Errors sometimes enter into an analysis because of uncertainty in the physical data on which
a model is based. For instance, suppose we wanted to test the bungee jumper model by hav-
ing an individual make repeated jumps and then measuring his or her velocity after a speci-
fied time interval. Uncertainty would undoubtedly be associated with these measurements, as
the parachutist would fall faster during some jumps than during others. These crrors can ex-
hibit both inaccuracy and imprecision. If our instruments consistently underestimate or over-
estimate the velocity, we are dealing with an inaccurate, or biased, device. On the other hand,
it the measurements are randomly high and low, we arc dealing with a question of precision.

Measurement errors can be quantified by summarizing the data with one or more well-
chosen statistics that convey as much information as possible regarding specific character-
istics of the data. These descriptive statistics are most often selected to represent (1) the
location of the center of the distribution of the data and (2) the degree of spread of the data.
As such, they provide a measure of the bias and imprecision, respectively. We will return to
the topic of characterizing data uncertainty when we discuss regression in Part Four.

Although you must be cognizant of blunders, model errors, and uncertain data, the nu-
merical methods used for building models can be studied, for the most part, independently
of these errors. Therefore, for most of this book, we will assume that we have not made gross
errors, we have a sound model, and we are dealing with error-free measurements. Under
these conditions, we can study numerical errors without complicating factors.

PROBLEMS

1 Convert the following base-2 numbers o base 10: Write your own M-file based on this algorithm to determine
011001 and 110.00101. the machine epsilon. Validate the result by comparing it with
Convert the following buse-8 numbers o base 10 the value computed with the built-in function cp:.

1563 and 3.14.

4.4 In a fashion similar to Prob. 4.3, develop your own

For computers, the machine epsilon & can also be M-file to determine the smallest positive real number used in
ght of as the smallest number that when added to one MATLAB. Base your algorithm on the notion that your com-
fes a number greater than 1. An algorithm based on this — puter will be unable to reliably distinguish between zero and

can be developed as a quantity that is smaller than this number. Note that the

result you obtain will differ from the value computed with

Sep l: Sete = 1. realtmin, Challenge question: Investigate the results by

Step2: If 1 + £ is tess than or equal 1o 1, then go to Step 5. taking the base-2 logarithm of the number generated by your
Otherwise go to Step 3. code and those obtained with realimin.

Step3:e = ¢/2 4.5 Although it is not commonly uscd, MATLAB allows

p4: Return to Step 2 numbers to be expressed in single precision. Each value

piie=2xe

is stored in 4 bytes with 1 bit for the sign, 23 bits for the

110

ROUNDOFF AND TRUNCATION ERRORS

mantissa, and 8 bits for the signed exponent. Determine the
smallest and largest positive floating-point numbers as well
as the machine epsilon for single precision representation.
Note that the exponcnts range from —126 to 127.

4.6 For the hypothetical base-10 computer in Example 4.2,
prove that the machine epsilon is 0.05.

4.7 The derivative of f(x) = 1/(1 — 3x)?is given by

6x
(1 — 3x2)2

Do you expect to have difticultics evaluating this function
at x = 0.5777 Try it using 3- and 4-digit arithmetic with
chopping.

4.8 (a) Evaluate the polynomial

v=x'=7¢ +8:r-035

at x = 1.37. Use 3-digit arithmetic-with chopping. Evaluate
the percent relative crror.
(b) Repeat (a) but express v as

y=(x—Tx +8x —0.35

Evaluate the error and compare with part (a).

4.9 The following infinite series can be used to approxi-

mate ¢

R
e‘:(+‘\'+£+£+~-+i
2 3! n!

(a) Prove that this Maclaurin series expansion is a special
case of the Taylor series expansion (Eq. 4.13) with x; =
Oand h = x.

(b) Use the Taylor series (o estimate f(x) = ¢ " atx,,, = |
for x; = 0.2. Employ the zero-, first-, sccond-, and third-
order versions and compute the &) for cach case.

4.10 The Maclaurin series expansion for cos x is

Starting with the simplest version, cos x = 1, add terms one
al a time 1o estimate cos(r/3). After cach new term is added,
compute the true and approximate percent relative crrors.
Use your pocket calculator or MATLAB to determine the
truc valuc. Add terms until the absolute value of the approx-
imate crror estimate falls below an error criterion conform-
ing to two significant figures.

4.11 Perform the same computation as in Prob. 4.10, but
use the Maclaurin series expansion for the sin x to estimate
sin(rr/3).

4.12 Use zero- through third-order Taylor series expansions
to predict f(3) for

f(x)=25¢" — 6x> + 7x — 88

using a base point at x = . Compute the true percent relative
error &, for each approximation.

4.13 Prove that Eq. (4.11) is exact for all values of x if f(x) =
ax’ + bx + c.
4.14 Use zero- through fourth-order Taylor serics expansions
to predict f(2) for f(x) = In x using a base point at x = .
Compute the true percent relative error ¢, for each approxi-
mation. Discuss the meaning of the results.
4.15 Use forward and backward difference approximations
of O(h) and a centered difference approximation of Q() 10
cstimate the first derivative of the function examined in
Prob. 4.12. Evaluate the derivative at x = 2 using a step size
of h = 0.2. Compare your results with the true value of the
derivative. Interpret your results on the basis of the remain-
der term of the Taylor series expansion.
4.16 Use a centered difference approximation of O(r*) 1o
estimate the second derivative of the function examined in
Prob. 4.12. Perform the evaluation at x = 2 using step sizes
of h =0.25 and 0.125. Compare your cstimates with the true
value of the second derivative. Interpret your results on the
basis of the remainder term of the Taylor series expansion.
4.17 1f |x] < I itis known that

I =1da 4+t
.

Repeat Prob. 4.10 for this series for.x = 0.1,
4.18 To calculate a planet’s space coordinates, we have 1o
solve the function

flxy=x—1-05smx

Let the base point be « = x; = 7 /2 on the interval [0, 7].
Determine the highest-order Taylor series expansion result-
ing in a maximum error of 0.015 on the specified interval
The error 1s equal to the absolute value of the difference
between the given function and the specific Taylor series
cxpansion. (Hint: Solve graphically.)

4.19 Consider the function f(x) = x* — 2x + 4 on the inter-
val [—2, 2] with A = 0.25. Use the forward, backward, and
centered finite difference approximations for the first and
sccond derivatives so as to graphically illustrate which ap-
proximation is most accurate. Graph all three first-derivative
finite difference approximations along with the theoretical,
and do the same for the second derivative as well.

4.20 Derive Eq. (4.30).

4.21 Repeat Example 4.5, but for f(x) = cos(x) at x = /6.
4.22 Repeat Example 4.5, but for the forward divided dif-
ference (Eq. 4.21).

2.1

Roots and Optimization

OVERVIEW

f(x)zax2+bx+c=0

The values calculated with Eq. (PT2.1) are called the “roots” of Eq. (PT2.2). They repre}" : f
sent the values of x that make Eq. (PT2.2) equal to zero. For this reason, roots are some-
times called the zeros of the equation. B

Years ago, you learned to use the quadratic formula

~b £ /b? — 4dac
I=—

(PT2.1)

Although the quadratic formula is handy for solv-
ing Eq. (PT2.2), there are miany other functions for
which the root cannot be determined so easily. Before © .-
the advent of digital computers, there were a number of ; o

ways to'solve for the roots of such equations. For some‘“
cases; the roots could be obtained by directmethods, as

with Eq. (PT2.1). Although there were equations like
this that could be solved directly, there were, many
more that could not. In such instances, the only: alter-

native is an approximate solution technique.

One method to obtain an approximate solution is
to plot the function and determine where it crosses the
x axis. This point, which represents the x value for
which f(x) = 0, is the root. Although graphical meth-
ods are useful for obtaining rough estimates of roots,
they are limited because of their lack of precision. An
alternative approach is to use trial and error. This
“technique” consists of guessing a value of x and eval-
uating whether f(x) is zero. If not (as is almost always
the case), another guess is made, and f(x) is again eval-

a guess results in an f(x) that is close to zero.

uated to-determine whether the new value provides a
bettere ¢ of the root. The process is repeated until

111

112

PART 2 ROOTS AND OPTIMIZATION

2.2

fx)=0
f) 0 <0

S =0

Maximum

Root

Minimum () >0

FIGURE PT2.1

A funciion of a single variable illusirating the difference between roots and oplima.

Such haphazard methods are obviously inefficient and inadequate for the requirements
of engineering practice. Numerical methods represent alternatives that are also approxi-
mate but employ systematic strategies to home in on the true root. As elaborated in the
following pages, the combination of these systematic methods and computers makes the
solution of most applied roots-of-equations problems a simple and efficient task.

Besides roots, another feature of functions of interest to engineers and scientists are its
minimum and maximum values. The determination of such optimal values is referred to as
optimization. As you learned in calculus, such solutions can be obtained analytically by de-
termining the value at which the function is flat; that is, where its derivative is zero. Although
such analytical solutions are sometimes feasible, most practical optimization problems re-
quire numerical, computer solutions. From a numerical standpoint, such numerical opti-
mization methods are similar in spirit to the root location methods we just discussed. That is,
both involve guessing and searching for a location on a function. The fundamental difference
between the two types of problems is illustrated in Figure PT2.1. Root location involves
searching for the location where the function equals zero. In contrast, optimization involves
searching for the function’s extreme points.

PART ORGANIZATION

The first two chapters in this part are devoted to root location. Chapter 5 focuses on brack-
eting methods for finding roots. These methods start with guesses that bracket, or contain,
the root and then systematically reduce the width of the bracket. Two specific methods are
covered: bisection and false position. Graphical methods are used to provide visual insight
into the techniques. Error formulations are developed to help you determine how much
computational effort is required to estimate the root to a prespecitied level of precision.

Chapter 6 covers open methods. These methods also involve systematic trial-and-error
iterations but do not require that the initial guesses bracket the root. We will discover that
these methods are usually more computationally efficient than bracketing methods but that
they do not always work. We illustrate several open methods including the fixed-point
iteration, Newton-Raphson, and secant methods.

2.2 PART ORGANIZATION 113

Following the description of these individual open methods, we then discuss a hybrid
approach called Brent's root-finding method that exhibits the reliability of the bracketing
methods while exploiting the speed of the open methods. As such, it forms the basis for
MATLAB’s root-finding function, fzero. After illustrating how fzero can be used for en-
gineering and scientific problems solving, Chap. 6 ends with a brief discussion of special
methods devoted to finding the roots of polynomials. In particular, we describe MATLAB’s
excellent built-in capabilities for this task.

Chapter 7 deals with optimization. First, we describe two bracketing methods, golden-
section search and parabolic interpolation, for finding the optima of a function of a single
variable. Then, we discuss a robust, hybrid approach that combines golden-section search
and quadratic interpolation. This approach, which again is attributed to Brent, forms the
basis for MATLAB’s one-dimensional root-finding function:fminbnd. After describing
and illustrating fminbnd, the last part of the chapter provides a brief description of opti-
mization of multidimensional functions. The emphasis is on describing and illustrating the
use of MATLAB's capability in this area: the fminsearch function. Finally, the chapter
ends with an example of how MATLAB can be employed to solve optimization problems
in engineering and science.

Roots: Bracketing Methods

4 CHAPTER OBJECTIVES

The primary objective of this chapter is to acquaint you with bracketing methods for
finding the root of a single nonlinear equation. Specific objectives and topics covered are

¢ Understanding what roots problems arc and where they occur in engineering and
science.

Knowing how to determine a root graphically.

Understanding the incremental search method and its shortcomings.

Knowing how to solve a roots problem with the bisection method.

Knowing how to estimate the error of bisection and why it differs {rom error
estimates for other types of root location algorithms.

* Understanding false position and how it differs from bisection.

YOU’VE GOT A PROBLEM

edical studies have established that a bungee jumper’s chances of sustaining a
significant vertebrae injury increase significantly if the free-fall velocity exceeds
36 m/s after 4 s of free fall. Your boss at the bungee-jumping company wants you
to determine the mass at which this criterion is excceded given a drag coefficient of
0.25 kg/m.
You know from your previous studies that the following analytical solution can be
used to predict fall velocity as a function of time:

T Cq
v(r)y = £ Ianh(g /t) (5.1)

Cy n

Try as you might, you cannot manipulate this equation to explicitly solve for m—that is,
you cannot isolate the mass on the left side of the equation.

Fundamental
Principle

ra
tic
pe

pe
an
ca

TABLE 5.1 Fundamer

De
Ve

Heat balance
Mass balance

Force balance
Energy balance
Newton’s laws of

maotion
Kirchhoff's laws

Ter
Cc
of

Mc
of |
Ch
pol
Ac
orl

Cu

5.1 ROOTS IN ENGINEERING AND SCIENCE 115

An alternative way of looking at the problem involves subtracting v(#) from both sides
to give a new function:

fim) = tanh(£) —v(?) (5.2)
V ¢y m

Now we can see that the answer to the problem is the value of m that makes the function
equal to zero. Hence, we call this a “roots” problem. This chapter will introduce you to how
the computer is used as a tool to obtain such solutions,

5.1 ROOTS IN ENGINEERING AND SCIENCE

Although they arise in other problem contexts, roots of equations frequently occur in the
area of design. Table 5.1 lists a number of fundamental principles that are routinely used in
design work. As introduced in Chap. 1, mathematical equations or models derived from
these principles are employed to predict dependent variables as a function of independent
variables, forcing functions, and parameiers. Not that in each case, he dependent vart-
ables reflect the state or performance of the system, whereas the parameters represent its
properties or composition.

An exam\)\e of %uch a mode\ is the equation for the bungee | 3umper s velocity. If the pa-

G e ’.4_'.\ N Pl

— LT - . RN . S

R PR N *“ LELTTRL DTN U ONIT Nan LT L

NN NIRRT \“"' RS ,_"f‘"?;..\‘ S . [
parameters. That is, it is 1solated on one ude of the equal sign.

However, as posed at the start of the chapter, suppose that we had to determine the
mass for a jumper with a given drag coefficient to attain a prescribed velocity in a set time
period. Although Egq. (5.1) provides a mathematical representation of the interrelationship
among the model variables and parameters, it cannot be solved explicitly for mass. In such

cases, /1 is said to be implicit.

ABLE 5.1 Fundamental principles used in design problems.
Dependent Independent
Variable Variable Parameters
tbalance iemperaiure Time ana posifion Tnermc: prOpEnties Cf Marena., §,S/em gecmer,
5s balance Concenlralion or quantity Time and position Chemical behavior of material, mass transfer,
of mass system geomelry
force balance Magnitude and direction Time and position Striength of material, structural properties, systern
potential energy geometry
ewlon's laws of Acceleration, velocity, Time and position Mass of material, system geometry, dissipative
fion or location parameters
chhoff's laws Currents and vollages Time Electrical properties [resistance, capaciiance,

inductance)

116

ROOTS: BRACKETING METHODS

5.2

EXAMPLE 5.1

This represents a real dilemma, because many design problems involve specifying the
properties or composition of a system (as represented by its parameters) to ensure that it
performs in a desired manner (as represented by its variables). Thus, these problems often
require the determination of implicit parameters.

The solution to the dilemma is provided by numerical methods for roots of equations.
To solve the problem using numerical methods, it is conventional to reexpress Eq. (5.1) by
subtracting the dependent variable v from both sides of the equation to give Eq. (5.2). The
value of m that makes f(m) = 0 is, thercfore, the root of the equation. This value also rep-
resents the mass that solves the design problem.

The following pages deal with a variety ot numerical and graphical methods for deter-
mining roots of relationships such as Eq. (5.2). These techniques can be applied to many
other problems confronted routinely in enginecring and science.

GRAPHICAL METHODS

A simple method for obtaining an estimate of the root of the equation f(x) = 0 is to make
a plot of the function and observe where it crosses the x axis. This point, which represents
the v value for which f(x) = 0, provides a rough approximation of the root.

The Graphical Approach

Problem Statement. Use the graphical approach to determine the mass of the bungee
jumper with a drag coefficient ol 0.25 kg/m to have a velocity of 36 m/s after 4 s of free
fall. Note: The acceleration of gravity is 9.81 m/s™,

Solution. The lollowing MATLAB session sets up a plot of Eq. (5.2) versus mass:

wxood o= 0.2 g = 9.81; v 36; L o= 1;
s=omp o= lingspace (L0,200);
[= sgrt(g*mp/cd) . *Lanh(sgrt (gred. /mp) *t) —v;

plot (mp, fp),grid

Root

] 1
50 100 150 200

5.3

5.3

pro
cal ¢

>

ans

whi
par;

ari:

wh

Ho
ma

un
me
ab:
pic
ev
o
ar
ha

5.3 BRACKETING METHODS AND INITIAL GUESSES 117

5.3

The function crosses the m axis between 140 and 150 kg. Visual inspection of the plot
provides a rough estimate of the root of 145 kg (about 320 1b). The validity of the graphi-
cal estimate can be checked by substituting it into Eq. (5.2) to yield

>> sgrt{g*1l45/cd)*tanh(sgrt (g*cd/145)*t) -v

ans =
0.0456

which is close to zero. It can also be checked by substituting it into Eq. (5.1) along with the
parameter values from this example to give

>»> gqri(g*lds/cd)*tanh(sgrt (g*cd/145) *t)

ans =
36.0456

which is close to the desired fall velocity of 36 m/s.

Graphical techniques are of limited practical value because they are not very precise.
However, graphical methods can be utilized to obtain rough estimates of roots. These esti-
mates can be employed as starting guesses for numerical methods discussed in this chapter.

Aside from providing rough estimates of the root, graphical interpretations are useful for
understanding the properties of the functions and anticipating the pitfalls of the numerical
methods. For example, Fig. 5.1 shows a number of ways in which roots can occur (or be
absent) in an interval prescribed by a lower bound x; and an upper bound x,,. Figure 5.1 de-
picts the case where a single root is bracketed by negative and positive values ot f (x). How-
ever, Fig. 5.1d, where [(x;) and [(x,) are also on opposite sides of the x axis, shows three
roots occurring within the interval. In general, if f(x;) and f(x,) have opposite signs, there
are an odd number of roots in the interval. As indicated by Fig. 5. lc¢ and ¢, if f (x;) and f(x,)
have the same sign, there are either no roots or an even number of roots between the values.

Although these generalizations are usually true, there are cases where they do not hold.
For example, functions that are tangential to the x axis (Fig. 5.2a) and discontinuous func-
tions (Fig. 5.2b) can violate these principles. An example of a function that is tangential to
the axis is the cubic equation f(x) = (x — 2)(x — 2)(x — 4). Notice that x = 2 makes two
terms in this polynomial cqual to zero. Mathematically, x = 2 is called a multiple root.
Although they are beyond the scope of this book, there are special techniques that are
expressly designed to locate multiple roots (Chapra and Canale, 2002).

The existence of cases of the type depicted in Fig. 5.2 makes it difficult to develop fool-
proof computer algorithms guaranteed to locate all the roots in an interval. However, when
used in conjunction with graphical approaches, the methods described in the following sec-
tions are extremely useful for solving many problems confronted routinely by engincers,
scientists, and applied mathematicians.

BRACKETING METHODS AND INITIAL GUESSES

If you had a roots problem in the days beforc computing, you’d often be told to use “trial and
error” to come up with the root. That is, you’d repeatedly make guesses until the function
was sufficiently close to zero. The process was greatly facilitated by the advent of software

118 ROOTS: BRACKETING METHODS

Jx)

Jix)

P

fx)

(b)

fx)

o fx)
flx)

FIGURE 5.1 FIGURE 5.2

Mlustration of o number of general ways that a root may llustration of some exceptions lo the general cases
occur in an inferval prescriged by a lower bound x; and depicted in Fig. 5.1. {a} Multiple roots that accur when
an upper bound x, . Parts [} and (¢} indicate that if both the function is tangential fo the x axis. For this case,

f () and f(x,) have the some sign, either there will although the end points are of oppaesite signs, there are
be no roots or there will be an even number of roots an even number of axis interceptions for the interval.
within the interval. Parts (b) and (d) indicate that if the {b) Discontinuous functions where end points of opposite
function has different signs at the end points, there will sign brackef an even number of roots. Special strategies
be an odd number of roots in the interval. are required for defermining the roots for these cases.

N

ire

site
jies

5.3 BRACKETING METHODS AND INITIAL GUESSES 119

tools such as spreadsheets. By allowing you to make many guesses rapidly, such tools can
actually make the trial-and-error approach attractive for some problems.

But, for many other problems, it is preferable to have methods that come up with the
correct answer automatically. Interestingly, as with trial and error, these approaches require
an initial “guess” to get started. Then they systematically home in on the root in an itera-
tive fashion.

The two major classes of methods available are distinguished by the type of initial
guess. They are

* Bracketing methods. As the name implies, these are based on two initial guesses that
“bracket” the root—that is, are on either side of the root.

* Open methods. These methods can involve one or more initial guesses, but there is no
need for them to bracket the root.

For well-posed problems, the bracketing methods always work but converge slowly
(i.e., they typically take more iterations to home in on the answer). In contrast, the open
methods do not always work (i.e., they can diverge), but when they do they usually con-
verge quicker.

In both cases, initial guesses are required. These may naturally arise from the physical
context you are analyzing. However, in other cases, good initial guesses may not be obvi-
ous. In such cases, automated approaches to obtain guesses would be useful. The following
section describes one such approach, the incremental search.

5.3.1 Incremental Search

When applying the graphical technique in Example 5.1, you observed that f (x) changed
sign on opposite sides of the root. In general, if f(x) is real and continuous in the interval
from x; to x, and f(x;) and f(x,) have opposite signs, that is,

f('ﬁ)f(-xu) <0 (5.3)

then there is at least one real root between x; and x,,.

Incremental search methods capitalize on this observation by locating an interval
where the function changes sign. A potential problem with an incremental search is the
choice of the increment length. If the length is too small, the search can be very time con-
suming. On the other hand, if the length is too great, there is a possibility that closely
spaced roots might be missed (Fig. 5.3). The problem is compounded by the possible exis-
tence of multiple roots.

An M-file can be developed' that implements an incremental search to locate the roots
of a function func within the range from xmin to xmax (Fig. 5.4). An optional argument
ns allows the user to specify the number of intervals within the range. If ns is omitted, it
is automatically set to 50. A for loop is used to step through each interval. In the event that
a sign change occurs, the upper and lower bounds are stored in an array xb.

" This function is a modified version of an M-file originally presented by Recktenwald (2000).

~

fx)

EXAMPLE 5.2 |

FIGURE 5.3
Cases where roots could be missed because the incremental length of the search procedure is |
too large. Note that the last root on the right is multiple and would be missed regardless of the
increment length.

unction xb = incsearch(func, xmin, xmax,ns)
incsearch: incremental search root locator
xb = incsearch{func,xmin, xmax,ns) :

finds brackets of x that contain sign changes
of a function on an interval

input :

func = name of function

xmin, xmax = endpoints of interval

ns = number of subintervals (default = 50)
output:

xb(k,1) is the lower bound of the kth sign change
xb(k,2) is the upper bound of the kth sign change
If no bracketg found, xb = [].

dC A a0 OR IO ¢ O¢ W ¢ o0 o0 o Hh

if nargin < 4, ns = 50; end %if ns blank set to 50

% Incremental search

% = linspace (xmin, xmax,ns);
f = func(x);
nk = 0; xb = [); %xb ig¢ null unless sign change detected
for k = l:length{x)-1
if sign(f(k)) ~= sign(f(k+1)) %check for sign change
nb = nb + 1;
xb(nb,1) = x(Kk);
xb(nk,2) = x(k+1);
end
end
if isempty (xb) $display that no brackets were found

disp('no brackets found')
disp(‘check interval or increase ns')

else
disp('number of brackets:') %$display number of brackets
disp(nb)
end
FIGURE 5.4
An Mile to implement an incremental search.
120 *

5.3 BRACKETING METHODS AND INITIAL GUESSES 121

EXAMPLE 5.2

Incremental Search

Problem Statement. Use the M-file incsearch (Fig. 5.4) to identify brackets within the
interval [3, 6] for the function:

f(x) = sin(10x) + cos(3x) (5.4)

Solution. The MATLAB session using the default number of intervals (50) is

>> incscarch(@x gsin(l10*x)+cos(3*x),3,6)
number of possible rootsg:

5
ans =
3.2449 3.3061
3.3061 3.3673
3.7347 3.7959
4.6531 4.7143
5.6327 5.6939

A plot of Eq. (5.4) along with the root locations is shown here.

Although five sign changes are detected, because the subintervals are too wide, the func-
tion misses possible roots at x = 4.25 and 5.2. These possible roots look like they might be
double roots. However, by using the zoom in tool, it is clear that each represents two real
roots that are very close together. The function can be run again with more subintervals
with the result that all nine sign changes arc located

>» incsearch(@x sin(10*x)+cos(3*x),3,6,100)

number of possible rootg:
9

ans =
3.2424 3.2727
3.3636 3.3939

54

122 ROOTS: BRACKETING METHODS

3.7273 3.7576

1.2121 4.2424

4.2424 4.2727

4.6970 4.7273

5.1515 5.1818

5.1818 5.2121

5.6667 5.6970

2 T T
The foregoing example illustrates that brute-force methods such as incremental search
are not foolproot. You would be wise to supplement such automatic techniques with any
other information that provides insight into the location of the roots. Such information can
be found by plotting the function and through understanding the physical problem from
which the equation originated.
5.4 BISECTION
The bhisection method is a variation of the incremental search method in which the interval
is always divided in half. If a function changes sign over an interval, the function value at
the midpoint is evaluated. The location of the root is then determined as lying within the
subinterval where the sign change occurs. The subinterval then becomes the interval for
the next iteration. The process is repeated until the root is known to the required precision,
A graphical depiction of the method is provided in Fig. 5.5. The following example goes
through the actual computations involved in the method.
EXAMPLE 5.3 The Bisection Method
Problem Statement. Use bisection to solve the same problem approached graphically in
Example 5.1.
Solution. The first step in bisection is to guess two values of the unknown (in the present
problem. yn) that give values for f(sn) with different signs. From the graphical solution in
 —

FIC

fror

Ex

plc
let
Th

lat

Ne¢

the
20

W

5.4 BISECTION 123

Sfm)
2 b
50 100 150
0 m
Root
_2 -
— 4 e
_6 I
X X, X,
First iteration = ©- —]
Second iteration p———o
l X X, Xy
Third iteration b—e—
l x’ ‘xr x“
Fourth iteration —&—]
FIGURE 5.5

A graphical depiciion of the bisection method. This plot corresponds to the first four iterations
from Example 5.3.

Example 5.1, we can see that the function changes sign between values of 50 and 200. The
plot obviously suggests better initial guesses, say 140 and 150, but for illustrative purposcs
let’s assume we don’t have the benefit of the plot and have made conservative guesses.
Thercefore, the initial estimate of the root x, lies at the midpoint of the interval
50+ 200
Xy = ——— = 125
2

Note that the exact value of the root is 142.7376. This means that the value of 125 calcu-
lated here has a true percent relative error of

142.7376 — 125
| 1427376

e = x 100% = 12.43%

Next we compute the product of the function value at the lower bound and at the midpoint:

F(50) £(125) = —4.579(—0.409) = | 871

which is greater than zero, and hence no sign change occurs between the lower bound and
the midpoint. Consequently, the root must be located in the upper interval between 125 and
200. Therefore, we create a new interval by redetining the lower bound as 125.

124

ROOTS: BRACKETING METHODS

EXAMPLE 5.4

At this point, the new interval extends from x; = 125 to x, = 200. A revised root esti-
mate can then be calculated as

125 4200

N =

which represents a true percent error of |&;| = 13.85%. The process can be repeated to ob-
tain refined estimates. For example,

f125) f(162.5) = —0.409(0.359) = —0.147

= 1625

Therefore, the root is now in the lower interval between 125 and 162.5. The upper bound
is redefined as 162.5, and the root estimate for the third iteration is calculated as

125 +162.5
=5

Xy = 143.75
which represents a percent relative error of &, = 0.709%. The method can be repeated until
the result is accurate enough to satisfy your needs.

We ended Example 5.3 with the statement that the method could be continued to obtain
arefined estimate of the root. We must now develop an objective criterion for deciding when
to terminate the method.

An initial suggestion might be to end the calculation when the error falls below some
prespecified level. For instance, in Example 5.3, the true relative error dropped from 12.43
10 0.709% during the course of the computation. We might decide that we should terminate
when the error drops below. say, 0.5%. This strategy is flawed because the error estimates
in the example were based on knowledge of the true root of the function. This would not be
the case in an actual situation because there would be no point in using the method if we
alrcady knew the root.

Therefore, we require an error estimate that is not contingent on foreknowledge of the
root. One way to do this is by estimating an approximate percent relative error as in [recall
Eq. (4.5)]

snew o Lold

[£4] = i—— ! {1()()% (
.y,(’l-)\‘\v

N
n

where y"™" is the root for the present iteration and x" is the root from the previous itera-

tion, When ¢, becomes less than a prespecified stopping criterion &,, the computation is
terminated.

Error Estimates for Bisection

Problem Statement. Continue Example 5.3 until the approximate error falls below a
stopping criterion of &, = 0.5%. Use Eq. (5.5) to compute the errors.

Solution. The results of the first two iterations for Example 5.3 were 125 and 162.5. Sub-
stituting these values into Eq. (5.5) yields
162.5 — 125
|Fu‘ = |7 1,5 =
I

100% = 23.08%
162.5

£ ™

)

f

te

to

or

FI
En

of

| o PP Y

Fig
exh

h

5.4 BISECTION 125

- Recall that the true percent relative error for the root estimate of 162.5 was 13.85%. There-
fore, |¢,| is greater than |, |. This behavior is manifested for the other iterations:
Iteration X, X, X, le,| (%) le] (%)
-] 50 200 125 12.43
2 125 200 162.5 23.08 13.85
3 125 162.5 143.75 13.04 0.71
4 125 143.75 134.375 6.98 5.86
d 5 134.375 143.75 139.0625 3.37 2.58
6 139.0625 143.75 141.4063 1.66 0.93
7 141.4063 143.75 142.5781 0.82 0.11
8 142.5781 143.75 143.164] 0.41 0.30
il Thus after eight iterations |&,| finally falls below &; = 0.5%, and the computation can be
‘ terminated.
These results are summarized in Fig. 5.6. The “ragged” nature of the true error is due
_ to the fact that, for bisection, the true root can lie anywhere within the bracketing interval.
n The true and approximate errors are far apart when the interval happens to be centered
n on the true root. They are close when the true root falls at either end of the interval.
e
3 FIGURE 5.6
) Errors for the bisection method. True and approximate errors are ploted versus the number
te of iterations.
es
be
ve 100 |~
he Approximate error, le,|
all 5
$ 10 —
2
) 75
€
ra- 3
" s 1
is a
0.1
v a 0
Iterations
1b-
Although the approximate error does not provide an exact estimate of the true error,
Fig. 5.6 suggests that |¢,| captures the general downward trend of |, |. In addition, the plot
exhibits the extremely attractive characteristic that || is always greater than |g,|. Thus,

126

ROOTS: BRACKETING METHODS

when |e,| falls below ¢, the computation could be terminated with confidence that the root
is known to be at least as accurate as the prespecified acceptable level.

While it is dangerous to draw general conclusions from a single example, it can be
demonstrated that |g,] will always be greater than |g,| for bisection. This is due to the fact
that each time an approximate root is located using bisection as x, = (x; + x,,)/2, we know
that the true root lies somewhere within an interval of Ax = x,, — x,. Therefore, the root
must lie within £Ax /2 of our estimate. For instance, when Example 5.4 was terminated,
we could make the definitive statement that

143.7500 — 142.5781
x, = 143.1641 + 0 5 2 = [43.1641 £ 0.5859

In essence, Eq. (5.5) provides an upper bound on the true error. For this bound to be
exceeded, the true root would have to fall outside the bracketing interval, which by defini-
tion could never occur for bisection. Other root-locating techniques do not always behave
as nicely. Although bisection is generally slower than other methods, the neatness of its
error analysis is a positive feature that makes it attractive for certain engineering and
scientific applications.

Another benefit of the bisection method is that the number of iterations required to at-
tain an absolute error can be computed a priori—that is, before starting the computation.
This can be seen by recognizing that before starting the technique, the absolute error is

Ef,) = xf: — x,“ = Ax"
where the superscript designates the iteration. Hence, before starting the method we are at
the “zero iteration.” After the first iteration, the error becomes
A x.(J
2

Because each succeeding iteration halves the error, a general formula relating the error and
the number of iterations » is

Ax?
2;1
If E, 4 is the desired error, this equation can be solved for’

log(A—x‘()/Elul) 1 <A/\~0
= ——— = |
log 2 o\ By

Let’s test the formula. For Example 5.4, the initial interval was A.xy = 200 — 50 = 150.
After eight iterations, the absolute error was

_[143.7500 — 142.578 1]
a 2
We can substitute these values into Eq. (5.6) to give

n =10g,(150/0.5859) = 8

I
Eu'_

o0
Eu -

(5.6

= 0.5859

? MATLAB provides the 1042 function to evaluate the base-2 logarithm direcily. If the pocket calculator or
computer language you are using does not include the base-2 logarithm as an intrinsic function, this equation
shows a handy way to compute it. In general, log,(x) = log(x)/log(b).

5.4 BISECTION 127

Thus, if we knew beforehand that an error of less than 0.5859 was acceptable, the formula
tells us that eight iterations would yield the desired result.

Although we have emphasized the use of relative errors for obvious reasons, there will
be cases where (usually through knowledge of the problem context) you will be able to
specify an absolute error. For these cases, bisection along with Eq. (5.6) can provide a use-
ful root location algorithm.

5.4.1 MATLAB M-file: bisect

An M-file to implement bisection is displayed in Fig. 5.7. It is passed the function (func)
along with lower (x1) and upper (xu) guesses. In addition, an optional stopping criterion (es)

FIGURE 5.7
An Mile to implement the bisection method.

function [root,ea,iter]l=bisect (func,xl,xu,es, maxit,varargin)

% bisect: root location zeroes
% [root,ea,iter]l=bisect {(func,xl,xu,es, maxit,pl,p2,...):
% uses bisection method to find the root of func
% input:
% func = name of function
% x1, xu = lower and upper guesses
% es = desired relative error (default = 0.0001%)
% maxit = maximum allowable iterations (default = 50)
% pl,p2,... = additional parameters used by func
% output:
% root = real root
% ea = approximate relative error (%)
% iter = number of iterations
if nargin<3,error('at least 3 input arguments required'),end
test = func(xl,varargin{:})*func{xu,varargin{:});
1if test>0,error{'no sign change'),end
if nargin<4lisempty{esg), es=0.0001;end
if nargin<bligsempty {(maxit), maxit=50;end
iter = 0; xr = x1;
while (1)
xrold = xr;
xr = (x1 + xu)/2;
iter = iter + 1;
if xr ~= 0,ea = abs((xr - xrold)/xr) * 100;end
test = func(xl,varargin{:})*funci(xr,varargin{:});
if rtest < O
XU = XT;
elseif test > 0
xl = xr;
else
ea = 0;
end
if ea <= eg | iter »= maxit,break,end
end
root = Xr;

128

ROOTS: BRACKETING METHODS

5.5

and maximum iterations (maxit) can be entered. The function first checks whether there
are sufficient arguments and if the initial guesses bracket a sign change. If not, an error
message is displayed and the function is terminated. It also assigns default values if maxit
and es are not supplied. Then a while.. .break loop is employed to implement the
bisection algorithm until the approximate error falls below es or the iterations exceed
maxit.

We can employ this function to solve the problem posed at the beginning of the chapter.
Recall that you need to determine the mass at which a bungee jumper’s free-fall velocity
exceeds 36 m/s after 4 s of free fall given a drag coefficient of 0.25 kg/m. Thus, you have to
find the root of

9.81 9.81(0.25
fim) = " anh 2202) s
0.25 m

In Example 5.1 we generated a plot of this function versus mass and estimated that the root
fell between 140 and 150 kg. The bisect function from Fig. 5.7 can be used to determine
the root as

>> fm=@{(m) sgrt(9.81*m/0.25)*tanh(sgrtL{(9.81*0.25/m)*4)-36;
>> [mass ea lter]=bisect (fm,40,200)
mass =
142.7377
ea =

5.3450e-005
iter =
21

Thus, a result of m = 142.7377 kg is obtained after 21 iterations with an approximate rela-
tive error of &, = 0.00005345%. We can substitute the root back into the {unction to verify
that it yields a value close to zero:

>» fm(mass)

ans =
4.6089e-007

FALSE POSITION

False position (also called the linear interpolation method) is another well-known bracket-
ing method. It is very similar to bisection with the exception that it uses a different strategy
to come up with its new root estimate. Rather than bisecting the interval, it locates the root
by joining f(x;) and f(x,) with a straight line (Fig. 5.8). The intersection of this line with
the x axis represents an improved estimate of the root. Thus, the shape of the function in-
fluences the new root estimate. Using similar triangles, the intersection of the straight line
with the x axis can be estimated as (see Chapra and Canale, 2002, for details),

f ()C“) (X[- X“)

- = . .7
f (Xl) - f (,’C,,)

Xy = Xy

EXAMPLE 5.5

Fl(
Fal

ple
Sig
1S |
bis
The
Pre

cal

So

Fir

wh

Sex

5.5 FALSE POSITION 129

root
1ine

rela-
erify

EXAMPLE 5.5

cket-
ategy
> root
- with
on in-
it line

5.7

Sx)

FIGURE 5.8

False position.

This is the false-position jormula. The value of x, computed with Eq. (5.7) then re-

sign as f(x,). In this way the values of x; and x,, always bracket the true root. The process
is repeated until the root is estimated adequately. The algorithm is identical to the one for
bisection (Fig. 5.7) with the cxception that Eq. (5.7) is used.

The False-Position Method

Problem Statement. Use false position 1o solve the same problem approached graphi-
cally and with bisection in Examples 5.1 and 5.3.

Solution. As in Example 5.3, initiatc the computation with guesses of x; = 50 and
x, = 200.

First iteration:
x; =50 f(x) = —4.579387
x, = 200 flx,) = 0.860291

0.860291(50 — 200)
X =200 — = 176.2773
—4.579387 — 0.860291

which has a true relative error of 23.5%.

Second iteration:
f(xy) f(x,) = —2.592732

130 ROOTS: BRACKETING METHODS

Therefore, the root lies in the first subinterval, and x, becomes the upper limit for the next
iteration, x, = 176.2773.
x; =50 f(x;) = —4.579387
x, = 176.2773 fx,) =0.566174
0.566174(50 — 176.2773)
x, = 176.2773 — = 162.3828
—4.579387 — 0.566174

which has true and approximate relative errors of 13.76% and 8.56%, respectively. Addi-
tional iterations can be performed to refine the estimates of the root.

Although false position often performs better than bisection, there are other cases
where it does not. As in the following example, there are certain cases where bisection
yields superior results.

EXAMPLE 5.6 A Case Where Bisection Is Preferable to False Position
Problem Statement. Use bisection and false position to locate the root of
‘/'(.\/) — XH) —1

between x = 0 and 1.3.

Solution. Using bisection, the results can be summarized as

Iteration X, X, X, e, (%) &, (%)
] 0 1.3 0.65 100.0 35
2 0.05 1.3 0.975 33.3 2.5
3 0.975 1.3 1.1375 14.3 138
4 0.975 11375 1.05625 77 5.6
5 0.975 1.05625 1.015625 4.0 1.6

Thus, after five iterations, the true error is reduced to less than 2%. For false position, a
very different outcome is obtained:

Iteration X; X, X, &, (%) &, (%)
| 0 1.3 0.09430 Q0.6
2 0.09430 1.3 0.18176 48.1 81.8
3 0.18176 1.3 0.26287 30.9 737
4 0.26287 1.3 0.33811 22.3 66.2
5 0.33811 1.3 0.40788 171 502

After five iterations, the true error has only been reduced to about 59%. Insight into
these results can be gained by examining a plot of the function. As in Fig. 5.9, the curve
violates the premise on which false position was based—that is, it f(x;) is much closer to

5.5 FALSE POSITION 131

he next
. Addi-
I cases
section
& (%) FIGURE 5.9
35 Plot of f(x) = x""— 1, illustrating slow convergence of the false-position method.
2.5
13.8
5.6 zero than £ (x,), then the root is closer to x; than to x, (recall Fig. 5.8). Because of the shape
16 of the present function, the opposite is true.
iion. The foregoing example illustrates that blanket generalizations regarding root-location
methods are usually not possible. Although a method such as false position is often supe-
s — rior to bisection, there are invariably cases that violate this general conclusion. Therefore,
& (%) in addition to using Eq. (5.5), the results should always be checked by substituting the root
Q0.6 estimate into the original equation and determining whether the result is close to zero.
81.8 The example also illustrates a major weakness of the false-position method: its one-
73.7 sidedness. That is, as iterations are proceeding, one of the bracketing points will tend to
?gg stay fixed. This can lead to poor convergence, particularly for functions with significant
’ curvature. Possible remedies for this shortcoming are available elsewhere (Chapra and
- Canale, 2002).
ght into
e curve
loser to

132

ROOTS: BRACKETING METHODS

GREENHOUSE GASES AND RAINWATER

Background. 1t is well documented that the atmospheric levels of several so-called |
“greenhouse” gases have been increasing over the past 50 years. For example, Fig. 5.10
shows data for the partial pressure of carbon dioxide (CO,) collected at Mauna Loa, Hawaii
from 1958 through 2003. The trend in the data can be nicely fit with a quadratic polynomial,’

Pco, = 0.011825(t — 1980.5)% + 1.356975(t — 1980.5) + 339

where pco, = CO; partial pressure (ppm). The data indicate that levels have increased a
little over 19% over the period from 315 to 376 ppm. 4
One question that we can address is how this trend is affecting the pH of rainwater.
Outside of urban and industrial areas, it is well documented that carbon dioxide is the pri-
mary determinant of the pH of the rain. pH is the measure of the activity of hydrogen ions |
and, therefore, its acidity or alkalinity. For dilute aqueous solutions, it can be computed as |

pH = —log,o[H"] (58)

where [H*] is the molar concentration of hydrogen ions,
The following five equations govern the chemistry of rainwater:

H™[HCO;
K| = 10"[———][-——3—] (59)
Ky pco.
~ (]

370 |- /

350 |- /
Pco, -
{(ppm) -

330

310—-llll|llllllllllllllllllllllllJ

1950 1960 1970 1980 1990 2000 2010

FIGURE 5.10
Average onnual partial pressures of aimospheric carbon dioxide ([ppm) measured ot Mauna log,
Hawaii.

* In Part Four, we will leamn how to determine such polynomials.

S

is

5.6 CASE STUDY 133

continued
H+ O—'Z
K, = B ICO:] (5.10)
[HCO;]
K, = [H"][OH"] (5.11)
K 2 _— —
cr = —SEE% 4 [HCO7] + [C0;7) (5.12)
0 = [HCO3] + 2[CO;?] + [OH™] — [HY) (5.13)

where Ky = Henry’s constant, and K, K;, and K, are equilibrium coefficients. The five
unknowns are ¢y = total inorganic carbon, [HCO; | = bicarbonate, [CO3 2] = carbonate,
[H*] = hydrogen ion, and [OH~] = hydroxyl ion. Notice how the partial pressure of CO,
shows up in Eqgs. (5.9) and (5.12).

Use these equations to compute the pH of rainwater given that Ky =
10714 K, =107%3 K, = 107193 and K,, = 10~'%. Compare the results in 1958 when
the pco, was 315 and in 2003 when it was 375 ppm. When selecting a numerical method
for your computation, consider the following:

* You know with certainty that the pH of rain in pristine areas always falls between 2
and 12.
e You also know that pH can only be measured to two places of decimal precision.

Solution. There are a variety of ways to solve this system of five equations. One way
is to eliminate unknowns by combining them to produce a single function that only de-
pends on [H']. To do this, first solve Egs. (5.9) and (5.10) for

[HCO;] = Ky Pco, (5.14)

I
10°[H™]
K>[HCOY]
[H*]
Substitute Eq. (5.14) into (5.15)

[CO;% = (5.15)

[CO?) = H)(’_[H_I]_ Ky pco, (5.16)
Equations (5.14) and (5.16) can be substituted along with Eq. (5.11) into Eq. (5.13) to give
al Kupco, +2——K—KH] DCo 'ﬂ - [H™] (5.17)

T 10°(H7) 10°[H*)? T H

Although it might not be immediately apparent, this result is a third-order polynomial in
[H*]. Thus, its root can be used to compute the pH of the rainwater.

Now we must decide which numerical method to employ to obtain the solution. There
are two reasons why bisection would be a good choice. First, the fact that the pH always
falls within the range from 2 to 12, provides us with two good initial guesses. Second, be-
cause the pH can only be measured to two decimal places of precision, we will be satisfied

134 ROOTS: BRACKETING METHODS

5.6 LD

~ continved

with an absolute error of E, 4 = £0.005. Remember that given an initial bracket and the
desired error, we can compute the number of iteration a priori. Substituting the present val-
ues into Eq. (5.6) gives

duw=17-2

Eleven iterations of bisection will produce the desired precision.
Before implementing bisection, we must first express Eq. (5.17) as a function. Be-
cause it is relatively complicated, we will store it as an M-file:

fanct ton = Epllhipil, oo

Fol= Hoag S T PG b we T 11

Fali 0" =1 046

10 -t

[S B O BN O S N B R T D B el A D B G BT SRl) B O R B P G AR DR O I R I R

We can then use the M-file from Fig. 5.7 to obtain the solution. Notice how we have
set the value of the desired relative error (g, = 1 x 107%) ata very low level so that theit-
eration limit (maxit) is reached first so that exactly 11 iterations are implemented

R T S o R S B R TR R R IV RTE RTINS I LI B BN P ¢
pali ! |] A\ (

PROBLEI

Thus, the pH is computed as 5.6279 with a relative error of 0.0868%. We can be confident
that the rounded result of 5.63 is correct to two decimal places. This can be verified by per- L
. , . 5.1 Use bisection to de
forming another run with more iterations. For example, setting maxit to 50 yields
, so that an 65-kg bungee

NI R R N D U ST FRTEE 4.5 s of free tall. Note: T!
‘ Start with initial guesse
il , ate until the approximat
SbAUA ‘ 5.2 Develop your own |
; ion to Fig. 5.7. Howev
v eshe sy ‘ iterations and Eq. (5.5)
(EE - criterion. Make sure to 1
oh next highest integer. Tes
For 2003, the result is using E, 4 = 0.0001.
5.3 Repeat Prob. S.1, t
PH2003 e T ter [ebhineo b G, 2, v e, L, B0 obtain your solution.
5.4 Develop an M-file
by solving Prob. 5.1.

PROBLEMS 135

continued

Interestingly, the results indicate that the 19% rise in atmospheric CO; levels has pro-
duced only a 0.67% drop in pH. Although this is certainly true, remember that the pH
represents a logarithmic scale as defined by Eq. (5.8). Consequently, a unit drop in pH rep-
resents a 10-fold increase in the hydrogen ion. The concentration can be computed as
[H] = 107PH and its percent change can be calculated as.

((1T07"=-pH2003-10"-pH1958) /107-pHL958)*100

ans

9.0930

Therefore, the hydrogen ion concentration has increased about 9%.

There is quite a lot of controversy related to the meaning of the greenhouse gas trends.
Most of this debate focuses on whether the increases are contributing to global warming.
However, regardless of the ultimate implications, it is sobering to realize that something as
large as our atmosphere has changed so much over a relatively short time period. This case
study illustrates how numerical methods and MATLAB can be employed to analyze and in-
terpret such trends. Over the coming years, engineers and scientists can hopefully use such
tools to gain increased understanding of such phenomena and help rationalize the debate
over their ramifications.

PROBLEMS

81 Use bisection to determine the drag cocfficient needed 5.5 A beam is loaded as shown in Fig. P5.5. Use the bisec-
wothat an 65-kg bungee jumper has a velocity of 35 m/s after tion method (o solve for the position inside the beam where
45sof free fall. Note: The acceleration of gravity is9.81 m/s®. there is no moment.

$tart with initial guesses of vy = 0.2 and x, = 0.3 and iter-

aeuntil the approximate relative error falls below 2%,

52 Develop your own M-file for biscction in a similar fash- 100 lo/ft 100 1b
jn to Fig. 5.7. However, rather than using the maximum

irations and Eq. (5.5), employ Eq. (5.6) as your stopping /
iterion. Make sure to round the result of Eq. (5.6) up to the

iext highest integer. Test your function by solving Prob. 5.1 77%7 77%7
wing £, » = 0.0001.

B3 Repeat Prob. 5.1, but usc the false-position method to i ¥ y ¥ : 4 —2—
phiain your solution.

B4 Develop an M-file for the false-position method. Test it FIGURE P5.5
by solving Prob. S.1.

136 ROOTS: BRACKETING METHODS

5.6 (a) Determine the roots of f(x)=—14-20x+
19x% — 3x7 graphically. In addition, determine the first root
of the function with (b} bisection and (c) false position. For
(b) and (c) use initial guesses of x; = ~1 and x, = 0 and a
stopping criterion of 1%.

5.7 Locate the first nontrivial root of sin(x) = 17 where xis
in radians. Use a graphical technique and biscction with the
initial interval from 0.5 to 1. Perform the computation until
£, 18 less than g, = 2%.

5.8 Determine the positive real root of nx*) =0.7 (a)
graphically, (b) using three iterations of the bisection
method, with initial guesses of x; = 0.5 and x, = 2, and
(¢) using three iterations of the false-position method, with
the same initial guesses as in (b).

5.9 The saturation concentration of dissolved oxygen in
freshwater can be calculated with the equation

1.575701 x 10°
Inoy = —13934411 4 2200

6.642308 x 107 1.243800 x 10"
N 7] * T;
8.621949 x 10!
- T

where o,y = the saturation concentration of dissolved oxy-
gen m freshwater at 1 atm (img L™Y: and T, = absolute
temperature (K). Remember that 7, = T + 273.15. where
T = temperature (°C). According to this equation, saturation
decreases with increasing temperature. For typical natural
waltcers in temperate climates, the equation can be used to de-
termine that oxygen concentration ranges from 14.621 mg/L
at0°Cto6.413 mg/L at 40 °C. Given a value ol oxygen con-
centration, this formula and the biscction method can be
used to solve for temperature in °C.

(a) If the initial gucsses are set as 0 and 40 °C, how many
biscction iterations would be required to determine tem-
perature to an absolute error of 0.05 °C?

tb) Based on (), develop and test a bisection M-file function
to determine T as a function of a given oxygen concen-
tration. Test your function for oy =8, 10and 12 mg/L.
Check your results.

5.10 Water is flowing in a trapezoidal channel at a rate of

Q = 20 m¥s. The critical depth v tor such a channel must

satisfy the equation

i
0=1- Qvl}
g A}

where g = 9.81 m/s’, A. = the cross-sectional area (M),

and B = the width of the channel at the surface (m). For this

case, the width and the cross-scctional area can be related to
depth y by

B=3+y

and
5

2
=13y ha
A, v+

Solve for the critical depth using (a) the graphical method,
(b) bisection. and (c¢) false position. For (b) and (c) use
initial guesses of 4y = 0.5 and x,, = 2.5, and iterate until the
approximate error fails below 1% or the number of iterations
exceeds 10. Discuss your results.
5.11 The Michaelis-Menten model describes the kinetics of
enzyme mediated reactions:

dS S

Pr
where S = substrate concentration (moles/L), v,, = maxi-
mum uptake rate (moles/L/d), and &, = the hall-saturation
constant, which is the substrate level at which uptake is half
ol the maximum [moles/L]. If the initial substrate level a

= 0 1s Sy, this differential equation can be solved for

S=38)— vl + Kk ln(S[)/S)
Develop an M-file to generate a plot of S versus 7 for the
case where Sy = 10 moles/L, v, = 0.5 moles/L/Ad, and

ky = 2 moles/L.

5.12 Areversible chemical reaction
- .
2A+B C
«—
can be characterized by the equilibrium relationship

e

K =

ey
where the nomenclature ¢; represents the concentration of
constituent i. Suppose that we define a variable v as repre
senting the number of moles of C that are produced. Conser-
vation of mass can be used to reformulate the equilibrium
relationship as

K — (Coy+)
(Co0 = 2X)2(ho = X)

where the subscript 0 designates the initial concentration

of each constituent. It K = 0.016, ¢, = 42, ¢, = 28, and

¢, =4, determine the value of x.

(a) Obtain the solution graphically.

(b) On the basis of (a), solve for the root with initial guesses
of x, = O und x, = 20 to e, = 0.5%. Choose cither bisec-
tion or false position to obtain your solution. Justify
your choice.

FIGURE P5.13

5.13 Figure P5.134 shows
early increasing distributed
ing elastic curve is (see Fig

wo 5

T oErL "V T2

Use bisection to determine
(that is, the value of x where
value into Eq. (P5.13) to det
deflection. Use the followin
putation: L = 600 ¢m, £ =
and w, = 2.5 kN/cm.

5.14 You buy a $25,000 i
down at $5.500 per year fc
you paying? The formula t
payments A, number of yea

_ p_iaiy

40—

5.15 Many ficlds of enginer
estimates. For example, trai
it necessary to determine s
trends of a city and adjacer
urban area is declining with

P, (1) = Pu.max("»kul + F

PROBLEMS

137

Wo
L
@
1
b (x=L.y=0)
‘ (x=0,y=0) N
M x
(b)
FIGURE P5.13

S13 Figure P5.13a shows a uniform beam subject to a lin-
arly increasing distributed load. The equation for the result-
ing elastic curve is (see Fig. P5.130)

U

5 2.3 4
y= St Ly
VA v

(P5.13)

Use bisection to determine the point of maximum deflection
(that is, the value of x where dv/dx = 0). Then substitute this
velue into Eq. (PS.13) to determine the value of the maximum
deflection. Usc the following parameter values in your com-
mtation: L = 600 cm, £ = 50.000 kN/em®, [= 30.000 cm,
md w, = 2.5 KN/em.

14 You buy a $25.000 picce of equipment for nothing
down at $5.500 per year for 6 years. What interest tate are
you paying? The formula relating present worth P, annual
pyments A. number of years n, and interest rate 7 is

i+
(L+0" =1

515 Many fields of enginecring require accurate population
estimates. For example, transportation engineers might find
it necessary to determine separately the population growth
nds of a city and adjacent suburb. The population of the
an area is declining with time according to

—kyt
P(t) = P auxe + Pimin

while the suburban population is growing, as in

PS(,) — P\.I]lilX -
1+ [Pomax/Po — 1]e=™'
where P, . k. P, .o Po. and k, = empirically derived pa-

rameters. Determine the time and corresponding values of
P (1) and P (1) when the suburbs are 209 larger than the city.
The paramcter values are P, .. = 75,000, k, = 0.045/yr,
P, win = 100,000 people, P, ... = 300,000 people, P, =
10.000 people, and &, = 0.08/yr. To obtain your solutions,
usc (a) graphical, and (b) false-position methods.

5.16 The resistivity p of doped silicon is based on the
charge ¢ on an clectron, the electron density n, and the elec-
tron mobility s¢. The electron density is given in terms of
the doping density N and the intrinsic carrier density n,. The
electron mobility is described by the temperature 7, the ref-
crence temperature 7, and the reference mobility . The
cquations required to compute the resistivity are

!

m

n =

where

| N T
n=-{N+ /N + 4n,~) and p1 = r)
2 Ty

Determine N, given 7, = 300 K, 7 = 1000 K, uy =
1350 cm™ (V) Lg=1.7x 107" Con, = 6.21 x 10°em™,
and a desired p = 6.5 x 10° Vs em/C. Use (a) bisection and
(b) the ftalse position method.

5.7 Atotal charge Q is uniformly distributed around a ring-
shaped conductor with radius a. A charge ¢ is located at a
distance x from the center of the ring (Fig. P5.17). The force

—242

exerted on the charge by the ring is given by
| gQx

dmey (X2 + @)V’

where e, = 8.85 x 10 12 CHY(N m?). Find the distance x where
the foree is 1.25 N if g and Q are 2 x 107° C for a ring with a
radius of 0.9 m.

4q

¢
FIGURE P5.17

138 ROOTS: BRACKETING METHODS

5.18 For fluid flow in pipes, friction is described by a di-
mensionless number. the Fanning friction facror f. The Fan-
ning friction factor is dependent on a number of parameters
related to the size of the pipe and the fluid, which can
all be represented by another dimensionless quantity, the
Revnolds number Re. A formula that predicts f given Re is
the von Karman equation:

\/LT = 4log,, (Reﬁ) —04

Typical values tor the Reynolds number for turbulent flow
are 10,000 to 500,000 and for the Fanning friction factor are
0.001 to 0.01. Develop a function that uses bisection to solve
for f given a user-supplied value of Re between 2,500 and
1,000,000. Design the function so that it ensures that the ab-
solute error in the result is £, , < 0.000005.

5.19 Mechanical engincers, as well as most other engineers,
use thermodynamics extensively in their work. The following
polynomial can be used to relate the zero-pressure specific

heat of dry air ¢, kl/(kg K) to temperature (K):

2

cp = 0.99403 + 1.671 x 10T +9.7215 % 10772
—9.5838 x 10777 +1.9520 x 107147

Determine the temperature that corresponds to a specific heat
of 1.1 kJ/(kg K).

5.20 The upward velocity of a rocket can be computed by
the following formula:

ny
v=uln

—— — ,Qr
g — ¢t

where v = upward velocity, u = the velocity at which fuel is
expelied relative to the rocket. m, = the initial mass of the
rocket attime 1 = 0, ¢ = the fuel consumption rate, and g =the
downward acceleration of gravity (assumed constant =
9.81 m/s). If w = 2000 m/s, m, = 150,000 kg, and ¢ =
2700 kg/s, compute the time at which v = 750 m/s. (Hint:¢
is somewhere between 10 and 50 8.) Determine your result so
that it is within 1% of the true value. Cheek your answer.

Th
the

Roots: Open Methods

4 CHAPTER OBJECTIVES \

The primary objective of this chapter is to acquaint you with open methods for finding
the root of a single nonlinear equation. Specific objectives and topics covered are

* Recognizing the difference between bracketing and open methods for root
location.

® Understanding the fixed-point iteration method and how you can cvaluate its
convergence characteristics.

[]

Knowing how to solve a roots problem with the Newton-Raphson method and
appreciating the concept of quadratic convergence.

®* Knowing how to implement both the secant and the modified secant methods.
Knowing how to use MATLAB’s fzero function to estimate roots.

Learning how to manipulate and determine the roots of polynomials with
MATLAB.

_ /

or the bracketing methods in Chap. 5, the root is located within an interval prescribed

by a lower and an upper bound. Repeated application of these methods always results

in closer estimates of the true value of the root. Such methods are said to be conver-
gent because they move closer to the truth as the computation progresses (Fig. 6.1a).

In contrast, the open methods described in this chapter require only a single starting
value or two starting values that do not necessarily bracket the root. As such, they some-
times diverge or move away from the true root as the computation progresses (Fig. 6.15).
However, when the open methods converge (Fig. 6.1¢) they usually do so much more
quickly than the bracketing methods. We will begin our discussion of open techniques with
a simple approach that is useful for illustrating their general form and also for demonstrat-
ing the concept of convergence.

139

140

ROOTS: OPEN METHODS

6.1

f fx0)

L L
X X, X
(@ (b}
X Xy flxo
F———
~"-I 'XU
F—e—
Xy Xy
j*—
XX,

o]

FIGURE 6.1
Craphical depiction of the fundamental difference between the (a) bracketing and (b} and (¢

open methods for root location. In {a), which is bisection, the roct is constrained within the inter
val prescribed by x; and x,,. In confrast, for the open method depicted in (b} and (c], which is
NewltonRaphson, a formula is used to project from x; to x; 4 in an iterative fashion. Thus the
method can either (b diverge or {c} converge rapidly, depending on the shape of the function
and the value of the initial guess.

SIMPLE FIXED-POINT ITERATION

As just mentioned, open methods employ a formula to predict the root. Such a formula can
be developed for simple fixed-point iteration (or, as it is also called, one-point iteration or
successive substitution) by rearranging the function f(x) = 0 so that x is on the left-hand

side of the equation:

x = g(x) (6.1
This transformation can be accomplished either by algebraic manipulation or by simply
adding x to both sides of the original equation.

The utility of Eq. (6.1) is that it provides a tormula to predict a new value of x asa
function of an old value of x. Thus, given an initial guess at the root x;, Eq. (6.1) canbe
used to compute a new estimate ., as expressed by the iterative formula

(62

Xiy1 = g(x;)

EXAMPLE 6.1

§
i
i
i
;
i

{

i

C

-

Tt

an

6.1 SIMPLE FIXED-POINT ITERATION 141

EXAMPLE 6.1

As with many other iterative formulas in this book, the approximate error for this equation
can be determined using the error estimator:

Xigl — X
Eq =

100% (6.3)

Xig1

Simple Fixed-Point lteration

Problem Statement. Use simple fixed-point iteration to locate the root of f(x) = e ™ — x.
Solution. The function can be separated directly and expressed in the form of Eq. (6.2) as
Xipg =

Starting with an initial guess of xy = 0, this iterative equation can be applied to compute:

i Xx; leql, % led, % teli/1e)iy
6] 0.0000 100.000

| 1.0000 100.000 76.322 0.763
2 0.3679 171.828 35.135 0.460
3 0.6922 46.854 22.050 0.628
4 0.5005 38.309 11.755 0.533
5 0.6062 1/.447 6.894 0.586
6 0.5454 11157 3.835 0.556
7 0.5796 5.903 2,199 0.573
8 0.5601 3.481 1.239 0.564
Q 0.5711 1.931 0.705 0.569
10 0.5649 1.109 0.399 0.566

Thus, each iteration brings the estimate closer to the true value of the root: 0.56714329.

Notice that the true percent relative error for each iteration of Example 6.1 is roughly
proportional (by a factor of about 0.5 to 0.6) to the error from the previous iteration. This
property, called linear convergence, is characteristic of fixed-point iteration.

Aside from the “rate” of convergence, we must comment at this point about the “pos-
sibility” of convergence. The concepts of convergence and divergence can be depicted
graphically. Recall that in Section 5.2, we graphed a function to visualize its structure and
behavior. Such an approach is employed in Fig. 6.2« for the function f(x) = ¢ " — x. An
alternative graphical approach is to separate the equation into two component parts, as in

SHix)y = falx)
Then the two equations

yi = filx) (6.4)
and

y2 = falx) (6.5)

142

ROOTS: OPEN METHODS

f)

fxy=e¢""*—x

Root

(a)
f0

FIGURE 6.2
Two aliernative graphical methods for determining the root of f(x)=e ¥ —x. |a) Root at the
poinf where it crosses the x axis: (b} roof at the intersection of the component functions.

can be plotted scparately (Fig. 6.2b). The x values corresponding to the intersections of
these functions represent the roots of f(x) = 0.

The two-curve method can now be used to illustrate the convergence and divergence
of fixed-point iteration. First, Eq. (6.1) can be reexpressed as a pair of equations yj =x
and y» = g(x). These two equations can then be plotted separately. As was the case with
Egs. (6.4) and (6.5), the roots of f(x) = 0 correspond to the abscissa value at the intersec-
tion of the two curves. The function y; = x and four different shapes for y» = g(x) ate
plotted in Fig. 6.3.

For the first case (Fig. 6.3a), the initial guess of xq is used to determine the corresponding
point on the y; curve [xg, g(xo)]. The point [x;, x1] is located by moving left horizontally to
the y; curve. These movements are equivalent to the first iteration of the fixed-point method:

x1 = g(xp)
Thus, in both the equation and in the plot, a starting value of x¢ is used to obtain an est-
mate of x,. The next iteration consists of moving to [xy, g(x,)] and then to [x2, x2]. This

6.1

FIG
Gra
itera
0sCi

iter:

root
Fig.

Cha
port
sloy

6.1 SIMPLE FIXED-POINT ITERATION 143

¥ y
- ¥y =X
=X
¥, = gx) \
-~ ¥, = g(x)
I
Lo
I
Lo
|
L
X, X Xo X Xo x
(a) (b}
v y
v, = g(x) v, = gx)
v =x
v =x
Xy X Xy X
(c} (d)

FIGURE 6.3

Graphical depiction of (a] and {b) convergence and (c] and [d] divergence of simple fixed-point
iteration. Graphs (a) and {c} are called monotone pattems whereas (b] and (c] are called
oscillating or spiral patterns. Note that convergence occurs when [g'(x)] <1.

iteration is equivalent to the equation
X = g(x)

The solution in Fig. 6.3a is convergent because the estimates of x move closer to the
root with each iteration. The same is true for Fig. 6.3b. However, this is not the case for
Fig. 6.3¢ and d, where the iterations diverge from the root.

A theoretical derivation can be used to gain insight into the process. As described in
Chapra and Canale (2002), it can be shown that the error for any iteration is linearly pro-
portional to the error from the previous iteration multiplied by the absolute value of the
slope of g:

Eiyi =g (§)E,

144

ROOTS: OPEN METHODS

6.2

EXAMPLE 6.2

Consequently, if |g’) < 1, the errors decrease with each iteration. For |g'| > 1 the errors
grow. Notice also that if the derivative is positive, the errors will be positive, and hence the
errors will have the same sign (Fig. 6.3a and ¢). If the derivative is negative, the errors will
change sign on each iteration (Fig. 6.3b and d).

NEWTON-RAPHSON

Perhaps the most widely used of all root-locating formulas is the Newton-Raphson method
(Fig. 6.4). If the initial guess at the root is x;, a tangent can be extended from the point
[x;, f(x;}]. The point where this tangent crosses the x axis usually represents an improved
estimate of the root.

The Newton-Raphson method can be derived on the basis of this geometrical inter-
pretation. As in Fig. 6.4, the first derivative at x is equivalent to the slope:

fxi)—=0

Xi = Xigl

fx) =

which can be rearranged to yield
. S (xp)
S (xi)

which is called the Newton-Raphson formula.

Xipl = X;

Newton-Raphson Method

Problem Statement. Use the Newton-Raphson method to estimate the root of f(x) =
¢~ — x employing an initial guess of xg = 0.

Solution. The first derivative of the function can be evaluated as
Sy =—¢ =1

which can be substituted along with the original function into Eq. (6.6) to give

el — x;
Nip1r =X — 7‘\——1
PR

Starting with an initial guess of xy = 0, this iterative equation can be applied to compute

{ X; l&l, %

0 0 100

] 0.500000000 1.8

2 0.566311003 0.147

3 0.567143165 0.0000220
4 0.567143290 <108

Thus, the approach rapidly converges on the true root. Notice that the true percent relative
error at each iteration decreases much faster than it does in simple fixed-point iteration
(compare with Example 6.1).

| ~ 7\ "

I

EXAMPLE 6.3 A

6.2 NEWTON-RAPHSON 145

EXAMPLE 6.3

fo

Slope = f'(x))

f(/\,) —————————————————

Sy =0

FIGURE 6.4
Graphical depiction of the Newton-Raphson method. A tangent fo the function of x; [that is,
10 is extrapolated down fo the x axis to provide an estimate of the root at x4 1.

As with other root-location methods, Eq. (6.3) can be used as a termination criterion.
In addition, a theoretical analysis (Chapra and Canale, 2002) provides insight regarding the
rate of convergence as expressed by
74/‘”()“;') E:

E i = :
i+l 2‘/'/(.)(’4) [

(6.7

Thus, the error should be roughly proportional to the square of the previous error. In other
words, the number of significant figures of accuracy approximately doubles with each
iteration. This behavior is called quadratic convergence and is one of the major reasons for
the popularity of the method.

Although the Newton-Raphson method is often very efficient, there are situations
where it performs poorly. A special case—multiple roots—is discussed elsewhere (Chapra
and Canale, 2002). However, cven when dealing with simple roots, difficulties can also
arise, as in the following example.

A Slowly Converging Function with Newton-Raphson

Problem Statement. Determine the positive root of f(x) = x'" — 1 using the Newton-
Raphson method and an initial guess of x = 0.5.

Solution. The Newton-Raphson formula for this case is

0

N . A
-M+1*-M*Txg
A

which can be used to compute

146 ROOTS: OPEN METHODS

i X, le |, %
0 0.5

| 51.65 99.032
2 46.485 1111

3 41.8365 Tt
4 37.65285 1111
40 1.002316 2.130
41 1.000024 0.229
42 1 0.002

Thus, after the first poor prediction, the technique is converging on the true root of 1, but
at a very slow rate.

Why does this happen? As shown in Fig. 6.5, a simple plot of the first few iterations is
helpful in providing insight. Notice how the first guess is in a region where the slope is near
zero. Thus, the first iteration flings the solution far away from the initial guess to a new
value (x = 51.65) where f(x) has an extremely high value. The solution then plods along
for over 40 iterations until converging on the root with adequate accuracy.

FIGURE 6.5

Graphical depiction of the NewtonRaphson method for a case with slow convergence. The
insel shows how a nearzero slope initially shoots the solution far from the root. Thereafter,
the solution very slowly converges on the root.

S
2E +17 —
1E + 17+
Fi
0 % Fc

Aside from slow convergence due to the nature of the function, other difficulties can
arise, as illustrated in Fig. 6.6. For example, Fig. 6.6a depicts the case where an inflection

' -»“'Ti

6.2 NEWTON-RAPHSON 147

fx)

(a)

fx

fx) |
:
. /\ . %\

N
(c)
Jx)
|
|
! T
! |
! i
Xy X x
(d)
FIGURE 6.6

Four cases where the Newton-Raphson method exhibits poor convergence.

148

ROQTS: OPEN METHODS

EXAMPLE 6.4

point (i.e., f'(x) = 0) occurs in the vicinity of a root. Notice that iterations beginning at x
progressively diverge from the root. Fig. 6.6) illustrates the tendency of the Newton-Raphson
technique to oscillate around a local maximum or minimum. Such oscillations may persist, or,
as in Fig. 6.6b, a near-zero slope is reached whereupon the solution is sent far from the area of
interest. Figure 6.6¢ shows how an initial guess that is close to one root can jump to a location
several roots away. This tendency to move away from the area of interest is due to the fact that
near-zero slopes are encountered. Obviously, a zero slope [f'(x) = 0] is a real disaster be-
cause it causes division by zero in the Newton-Raphson formula [Eq. (6.6)]. As in Fig. 6.64,
it means that the solution shoots off horizontally and never hits the x axis.

Thus, there is no general convergence criterion for Newton-Raphson. Its convergence
depends on the nature of the function and on the accuracy of the initial guess. The only
remedy is to have an initial guess that is “sufficiently” close to the root. And for some func-
tions, no guess will work! Good guesses are usually predicated on knowledge of the phys-
ical problem setting or on devices such as graphs that provide insight into the behavior of
the solution. It also suggests that good computer software should be designed to recognize
slow convergence or divergence.

6.2.1 MATLAB M-file: newtraph

An algorithm for the Newton-Raphson method can be easily developed (Fig. 6.7). Note that
the program must have access to the function (func) and its first derivative (dfunc). These
can be simply accomplished by the inclusion of user-defined functions to compute these
quantities. Alternatively. as in the algorithm in Fig. 6.7, they can be passed to the function
as arguments.

After the M-file is entered and saved, it can be invoked to solve for root. For example,
for the simple function x? — 9. the root can be determined as in

»>» newtraph(é(x) »"2-9,d(x} 2*x,5)

ans

Newton-Raphson Bungee Jumper Problem

Problem Statement. Use the M-file function from Fig. 6.7 to determine the mass of the
bungee jumper with a drag coefficient of 0.25 kg/m to have a velocity of 36 m/s after 4 s of
free fall. The acceleration of gravity is 9.81 m/s”.

Solution. The function to be evaluated is

fun) = £ tanh(ﬁr) — (1) (E6.4.1)

Cy m

To apply the Newton-Raphson method, the derivative of this function must be evali-
ated with respect to the unknown, m:

1 1 7 " J 2 2
df(m) _ /8 tanh(&;) — ; tscch“(&1>

dm 2V mey m m m

6.3 SECANT METHODS 149

6.3

function {[root,ea,iter]=newtraph(func,dfunc,xr,es,maxit,varargin)
newtraph: Newton-Raphson root location zeroces
{root,ea,iter]=newtraph(func,dfunc,xr,es, maxit,pl,p2,...):
uses Newton-Raphson method to find the root of func

¢ oo

90

% input:

% func = name of function

% dfunc = name of derivative of function

% xr = initial guess

% es = desired relative error (default = 0.0001%)

% maxit = maximum allowable iterations (default = 50)
% pl,p2,... = additional parameters used by function
% output:

% root = real root

% ea = approximate relative error (%)

% iter = number of iterations

if nargin<3,error('at least 3 input arguments reqguired'),end

if nargin<d4|isempty(es),es=0.0001;end
if nargin<5lisempty (maxit),maxit=50;end
iter = 0
while (1)
xrold = xr;
xr = xr - func(xr)/dfunc(xr);
iter = iter + 1;
if xr ~= 0, ea = abs{(xr - xrold)/xr) * 100; end
if ea <= es | iter >= maxit, break, end
end
root = xr;

FIGURE 6.7

An Mdile to implement the NewtonRaphson method

We should mention that although this derivative is not difficult 1o evaluate in principle, it
involves a bit of concentration and effort o arrive at the final result.

The two formulas can now be used in conjunction with the function newtraph to
evaluate the root:
>» Yy = @m sqgrt(9.81*m/0.25%)*tanh(sqrt(9.81*0.25/m)*4)-36;
>> dy = €@m 1/2%*sqrt(9.81/(m*0.25))*tanh((9.81*0.25/m)

C1/2y*4) -9.81/(2%m) *scech(sgqrt (9.81*0.25/m)*4) "2 ;

>> newtraph(y,dy,140,0.00001)

ans

SECANT METHODS

As in Example 6.4, a potential problem in implementing the Newton-Raphson method is
the evaluation of the derivative. Although this is not inconvenient for polynomials and
many other functions, there are certain functions whose derivatives may be difficult or

e — <

150 ROOTS: OPEN METHODS
inconvenient to evaluate. For these cases, the derivative can be approximated by a back-
ward finite divided difference:
P = S i) — .I,P(Xz)
Xiol — X
This approximation can be substituted into Eq. (6.6) to yield the following iterative
equation:
iNXi—] — X
tiey =y — LG~) ©3)
fxio) = fx)
Equation (6.8) is the formula for the secant method. Notice that the approach requires two
initial estimates of x. However, because f(x) is not required to change signs between the
estimates, it 1s not classified as a bracketing method.
Rather than using two arbitrary values to estimate the derivative, an alternative ap-
proach involves a fractional perturbation of the independent variable to estimate f”(x),
’ ~ f‘(’xi + Sxi) . (xl')
frx) = 4 m
SX,'
where 6 = a small perturbation fraction. This approximation can be substituted into
Eq. (6.6) to yield the following iterative equation:
Sx; f(x;)
Xig1 = X; — - (6.9)
- flx 4+ 68x) — f(x)
We call this the modified secant method. As in the following example, it provides a nice
means to attain the efficiency of Newton-Raphson without having to compute derivatives,
EXAMPLE 6.5 Modified Secant Method

Problem Statement. Use the modified secant method to determine the mass of the
bungee jumper with a drag coefficient of 0.25 kg/m to have a velocity of 36 m/s after 4 s of
free fall. Note: The acceleration of gravity is 9.81 m/s%. Use an initial guess of 50 kg anda
value of 107° for the perturbation fraction.
Solution. Inserting the parameters into Eq. (6.9) yields
First iteration:

xo =50 S (xo) = —4.57938708

Xo + 6xg = 50.00005 f(xg + Sxg) = —4.579381118

107°(50)(—4.57938708)
—4.579381118 — (—4.57938708)

= 88.39931([e,| = 38.1%; |e,| = 43.4%)

)C|:50

Se

Th

SWi
Eq.
eve
der

a si
alw,
chay
nifi
rese
meti

6.4 MATLAB FUNCTION: fzero 151

6.4

Second iteration:
x) + 6x; = 88.39940 flx) +d6x1) = —1.692203516

1076(88.39931)(—1.69220771
v = 88.39931 — (88.39931)(—1.69220771)
—~1.692203516 — (—1.69220771)

124.08970(¢;| = 13.1%; |e,| = 28.76%)

The calculation can be continued to yield

i x; &l % &1, %
0 50.0000 64.971

] 88.3993 38.069 43.438

y) 124.0897 13.064 28.762

3 140.5417 1.538 11.706

4 142 7072 0.021 1517

5 1427376 41 x 107 0.021

6 142 7376 3.4 x 10" 40 x 10°¢

The choice of a proper value for § is not automatic. If § is too small, the method can be
swamped by round-off error caused by subtractive cancellation in the denominator of
Eq. (6.9). If it is too big, the technique can become inefficient und even divergent. How-
ever, if chosen correctly, it provides a nice alternative for cases where evaluating the
derivative is difficult and developing two initial guesses is inconvenient.

Further, in its most general sense, a univariate function is merely an entity that returns
a single value in return for values sent to it. Perceived in this sense, functions are not
always simple formulas like the one-line equations solved in the preceding examples in this
chapter. For example, a function might consist of many lines of code that could take a sig-
nificant amount of execution time to evaluate. In some cases, the function might even rep-
resent an independent computer program. For such cases, the secant and modified secant
methods are valuable.

MATLAB FUNCTION: fzero

The methods we have described to this point are either reliable but slow (bracketing) or fast
but possibly unreliable (open). The MATLAB fzero function provides the best qualities
of both. The fzero function is designed to find the real root of a single equation. A simple
representation of its syntax is

fzero(function, x0)

where function is the name of the function being evaluated, and x0 is the initial guess.
Note that two guesses that bracket the root can be passed as a vector:

fzero(function, [x0 x1))

where x0 and x1 are guesses that bracket a sign change.

152

ROOTS: OPEN METHODS

Here is a simple MATLAB session that solves for the root of a simple quadratic: x* — 9.
Clearly two roots exist at —3 and 3. To find the negative root:

If we want to find the positive root, use a guess that is near it:

>> x = fzero(d@(x) x"2-9,4)

If we put in an initial guess of zero, it finds the negative root

>>» x = fcero(@(x) x°2-9,0)

-3
If we wanted to ensure that we found the positive root, we could enter two guesses as in

s> w o= fzero(@(x) x72-9,[0 47)

3
Also, if a sign change does not occur between the two guesses, an error message is displayed
>»> x = fzero(@(x) x°2-9,[-4 471)

?77 Brror using ==» l[zero
The function values at the interval endpoints must
differ in sign.

The Fzero function is a combination of the reliable bisection method with two faster
algorithms: the secant method and inverse quadratic interpolation. Inverse quadratic inter-
polation is similar in spirit to the secant method. As in Fig. 6.8¢, the secant method is based
on computing a straight line that goes through two guesses. The intersection of this straight
line with the x axis represents the new root estimate. The inverse quadratic interpolation
uses a similar strategy but is based on computing a quadratic equation (i.e., a parabola) that
goes through three points (Fig. 6.8b).

The fzero function works as follows. If a single initial guess is passed, it first per-
forms a search to identify a sign change. This search differs from the incremental search
described in Section 5.3.1, in that the search starts at the single initial guess and then takes
increasingly bigger steps in both the positive and negative directions until a sign change is
detected.

Thereafter, the fast methods (secant and inverse quadratic interpolation) are used un-
less an unacceptable result occurs (e.g., the root estimate falls outside the bracket). If a bad
result happens, bisection is implemented until an acceptable root is obtained with one of

EXAMPLE 6.6

ok
us

et
th:

Pre

It

prc

6.4 MATLAB FUNCTION: fzero 153

EXAMPLE 6.6

S §i63) j
X
(a) (b}
FIGURE 6.8

Comparison of (g} the secant method and (b} inverse quadratic interpolation. Note thal the
approach in (b} is colled “inverse” because the quadratic function is written in y rather than in x.

the fast methods. As might be expected, bisection typically dominates at first but as the root
is approached, the technique shifts to the faster methods.
A more complete representation of the Fzero syntax can be written as

[x,fx] = frzero(function,x0,options,pl,p2,...)

where [xr, £x] = a vector containing the root x and the function evaluated at the root £x,
options is a data structure created by the opt imset function, and p1, p2... are any
parameters that the function requires. Note that if you desire to pass in parameters but not
use the options, pass an empty vector [] in its place.

The opt imset function has the syntax

options = optlmsel ('par,',val,, 'par.,',val.,, ...)

where the parameter par. has the value val .. A complete listing of all the possible param-
eters can be obtained by merely entering opt imset at the command prompt. The parameters
that are commonly used with the fzero function are

display: Whensetto 'iter' displays a detailed record of all the iterations.

tolx: A positive scalar that sets a termination tolerance on x.

Thei‘\W(>Ond<wM o Functions

Problem Statement. Recall that in Example 6.3, we found the positive root of f(x) =
x'9 — 1 using the Newton-Raphson method with an initial guess of 0.5. Solve the same
problem with opt imset and fzero.

Solution. An interactive MATLAB session can be implemented as follows:

>> options = optimset ('disgsplay', 'iter');
>> [x,fx] = fzero(@(x) x*10-1,0.5,options)

154

ROOTS: OPEN METHODS

6.5

Func-count X f(x) Procedure
1 0.5 -0.999023 initial
2 0.485858 -0.999267 search
3 0.514142 -0.998709 search
4 0.48 -0.999351 gsearch
5 0.52 -0.998554 search
6 0.471716 -0.999454 search
23 0.952548 -0.385007 search
24 -0.14 -1 search
25 1.14 2.70722 gearch

Looking for a zero 1in the interval [-0.14, 1.14]

26 0.205272 -1 interpolation
27 0.672636 -0.981042 bisection

28 0.906318 -0.626056 bisection

29 1.0231¢ 0.257278 bisection

30 0.989128 -0.103551 interpolation
31 0.998894 -0.0110017 interpolation
32 1.00001 7.68385e-005 interpolation
33 1 -3.83061e-007 interpolation
34 1 -1.3245e-011 interpolation
35 1 0 interpolation

Zero found in the interval: [-0.14, 1.147.

Thus, after 25 iterations of searching, fzero finds a sign change. It then uses interpo-
lation and bisection until it gets close enough to the root so that interpolation takes over and
rapidly converges on the root.

Suppose that we would like to use a less stringent tolerance. We can use the opt imset
function to set a low maximum tolerance and a less accurate estimate of the root results:

>»> options = optimset ('tolx', le-3);
>» [x,fx) = fzero(@(x) x~10-1,0.5,o0ptions)
X =
1.0009
fx =
0.0090
POLYNOMIALS
Polynomials are a special type of nonlinear algebraic equation of the general form
fn (3() - (l]-\'” + a2xnkl + -+ 61”71,\’2 + anx + Ayt (610)

no

va
el
we

the

erty
the
M¢s
tior
foll

6.5 POLYNOMIALS 155

where # is the order of the polynomial, and the a’s are constant coefficients. In many (but
not all) cases, the coefficients will be real. For such cases, the roots can be real and/or com-
plex. In general, an nth order polynomial will have n roots.

Polynomials have many applications in engineering and science. For example, they
are used extensively in curve fitting. However, one of their most interesting and power-
ful applications is in characterizing dynamic systems—-and, in particular, linear systems.
Examples include reactors, mechanical devices, structures, and electrical circuits.

6.5.1 MATLAB Function: roots

If you are dealing with a problem where you must determine a single real root of a poly-
nomial, the techniques such as bisection and the Newton-Raphson method can have utility.
However, in many cases, engineers desire to determine all the roots, both real and complex.
Unfortunately, simple techniques like bisection and Newton-Raphson are not available for
determining all the roots of higher-order polynomials. However, MATLAB has an excel-
lent built-in capability, the roots function, for this task.

The roots function has the syntax,

x = roots(c)

where x is a column vector containing the roots and ¢ is a row vector containing the poly-
nomial’s coefficients.

So how does the roots function work? MATLAB is very good at finding the eigen-
values of a matrix. Consequently, the approach is to recast the root evaluation task as an
eigenvalue problem. Because we will be describing eigenvalue problems later in the book,
we will merely provide an overview here.

Suppose we have a polynomial

a,x5 + agx4 + (13x3 + a4)c2 +asx +ag =0 6.11)
Dividing by @; and rearranging yields

an as Ay ds ag
D N R e A g (6.12)
aj aj aj ay (23]
A special matrix can be constructed by using the coetficients from the right-hand side as
the first row and with 1’s and 0’s written for the other rows as shown:

—az/(l[—a3/a1 —614/611 —a5/a] —a(,/al
1 0 0 0 0
0 1 0 0 0 (6.13)
0 0 1 0 0
0 0 0] 0

Equation (6.13) is called the polynomial’s companion matrix. It has the useful prop-
erty that its eigenvalues are the roots of the polynomial. Thus, the algorithm underlying
the roots function consists of merely setting up the companion matrix and then using
MATLAB’s powerful eigenvalue evaluation function to determine the roots. Its applica-
tion, along with some other related polynomial manipulation functions, are described in the
following example.

156 ROOTS: OPEN METHODS
We should note that roots has an inverse function called poly, which when passed
the values of the roots. will return the polynomial’s coefficients. Its syntax is
c = poly (1)
where r is a column vector containing the roots and ¢ is a row vector containing the poly-
nomial’s coefficients.
EXAMPLE 6.7 Using MATLAB to Manipulate Polynomials and Determine Their Roots

Problem Statement. Use the following equation to explore how MATLAB can be em-
ployed to manipulate polynomials:

fi(x) = x7 =353+ 2.75x +2.125x2 — 3.875x + 1.25 (E6.7.1)

Note that this polynomial has three real roots: 0.5, —1.0, and 2; and one pair of complex
roots: 1 £ 0.5,

Solution. Polynomials are entered into MATLAB by storing the coefficients as a row
vector. For example, entering the following line stores the coefficients in the vector a:

»> a = |1 =3.5 2.75 2.125 -3.875 1.25];

We can then proceed to manipulate the polynomial. For example we can evaluate it at
x =1, by typing

> polyval (a,1l)

with the result, 1(1)> — 3.5(1)* + 2.75(1)% + 2.125(1)* — 3.875(1) + 1.25 = —0.25:

ans =
-0.2500

We can create a quadratic polynomial that has roots corresponding to two of the
original roots of Eq. (E6.7.1): 0.5 and —1. This quadratic is (x —0.5)(x + 1) = x4
0.5x — 0.5. It can be entered into MATLAB as the vector b:

1.0000 0.5000 -0.5000
Note that the poly function can be used to perform the same task as in
>> b = poly([0.5% -11)

b =
1.0000 0.5000 -0.5000

We can divide this polynomial into the original polynomial by

»> [g,r] = deconvi(a,b)

with the result being a quotieat (a third-order polynomial.) and a remainder {(r)
q =

1.0000 -4.0000 5.2500 -2.5000

0 0 0 g 0 0

Bac
man
of Tic
rang

calle
cala

6.6 CASE STUDY 157

Because the polynomial is a perfect divisor, the remainder polynomial has zero coeffi-
cients. Now, the roots of the quotient polynomial can be determined as

»>» X = roots(q)

with the expected result that the remaining roots of the original polynomial Eq. (E6.7.1) are
found:

kS

.0000
.0000 + 0.50001
.0000 - 0.50001

O

—

We can now multiply ¢ by b to come up with the original polynomial:
>> a = convi(g,b)

(SR

s - 7 AN il 1 N 2
1.0000 ~3.5000 207500 2.12%0 -3,

fav]
[%2]
[aw]
—

[\
2]
D
[l

We can then determine all the roots of the original polynomial by

x = roots{a)

2.0000
-1.0000
1.0000 + 0.50001
1.0000 - 0.50001
0.5000

Finally, we can return to the original polynomial again by using the poly function:
>woa = pory(x)

a =
1.0000 -3.5000 2.7500 2.1250 -3.8750 1.2500

Background. Determining fluid flow through pipes and tubes has great relevance in
many areas of engineering and science. In engineering, typical applications include the flow
of liquids and gases through pipelines and cooling systems. Scientists are interested in topics
ranging from flow in blood vessels to nutrient transmission through a plant’s vascular system.

The resistance to flow in such conduits is parameterized by a dimensionless number
called the friction factor. For turbulent flow, the Colebrook equation provides a means to
calculate the friction factor:

1 £ 2.51

0 (6.14)

158

ROOTS: OPEN METHODS

continued

where ¢ = the roughness (m), D = diameter (m), and Re = the Reynolds number:

pVD
u

Re =

where p = the fluid’s density (kg/m®), V = its velocity (m/s), and p = dynamic viscosity
(N - s/m%). In addition to appearing in Eq. (6.14), the Reynolds number also serves as the
criterion for whether flow is turbulent (Re > 4000).

In this case study, we will illustrate how the numerical methods covered in this part of
the book can be employed to determine f for air flow through a smooth, thin tube. For this
case, the parameters are p = 1.23 kg/m*, ;1 = 1.79 x 10°N - s/m%, D = 0.005 m, V = 40 m/s
and ¢ = 0.0015 mm. Note that friction factors range from about 0.008 to 0.08. In addition,
an explicit formulation called the Swamee-Jain equation provides an approximate estimate:

1.325
(o 5.74) 2
3.7D Re0?

Solution. The Reynolds number can be computed as

f= (6.15)

_ pVD 1.23(40)0.005

R -
=L 179 x 105

= 13,743

This value along with the other parameters can be substituted into Eq. (6.14) to give

0.0000015 2.51)

!
)= — +201
8(f) +20 0g(3.7(o.005) MRERZENG;

JF

Before determining the root, it is advisable to plot the function to estimate initial
guesses and to anticipate possible difficulties. This can be done easily with MATLAB:

vho DU 3 smus L7900 005 ;=000 0085 /1000;

RO ROV ED /g

oy Ry D s) r 2R T ol U e AL D e 0B (e agrt {(E)))
fplot {a, [0.00% 0,080, grid,xiabei ("), yvlubet (ta(f)")

As in Fig. 6.9, the root is located at about 0.03.

Because we are supplied initial guesses (x, = 0.008 and x, = 0.08), either of the brack-
eting methods from Chap. 5 could be used. For example, the bisect function developed
in Fig. 5.7 gives a value of f = 0.0289678 with a percent relative error of error of 5.926 x
107 in 22 iterations. False position yields a result of similar precision in 26 iterations.
Thus, although they produce the correct result, they are somewhat inefficient. This would
not be important for a single application, but could become prohibitive if many evaluations
were made.

Hi
di

he

of
1S
/s

te:

ial

ck-

uld

ms J

6.6 CASE STUDY 159

continued

E-N
]
'
'
'
'
'
R
'
'
'
'
'
'
——— o o
'
'
'
'
i
(
e —m =
'
i
'
1
'
3
P
v
[
'
(
'

'
SR
'
|
1
'

'

‘

[R
|
h
i
'

'

l
1

3_| S T | T o T T
S 2l N P S S
= | : : : :
T R e R
Opr------ re N ERREEE R 1mee- HREEEE
U S A Lo - TR TR B
2T Poooe SRR ERREE T—— 7mee
5L I | i i i 1
001 002 003 004 005 006 007 008
f
FIGURE 6.9

We could try to attain improved performance by turning to an open method. Because
Eq. (6.14) is relatively straightforward to differentiate, the Newton-Raphson method is a
good candidate. For example, using an initial guess at the lower end of the range (x, =
0.008), the newt raph function developed in Fig. 6.7 converges quickly:

clopew) S ooy Rl RS SR

LA e 000G

However, when the initial guess is set at the upper end of the range (x, = 0.08), the routine
diverges,

e trerienewt taph (g, dag, UL08)

Mol Mok

As can be seen by inspecting Fig. 6.9, this occurs because the function’s slope at the initial
guess causes the first iteration to jump to a negative value. Further runs demonstrate that
for this case, convergence only occurs when the initial guess is below about 0.066.

160

ROOTS: OPEN METHODS

continued

So we can see that although the Newton-Raphson is very efficient, it requires good
initial guesses. For the Colebrook equation, a good strategy might be to employ the
Swamee-Jain equation (Eq. 6.15) to provide the initial guess as in

fag=1.30%/loae/(3.7*D)+5.74/Re”0.9) "2

8J
U.02003009/1 1165

[T ea Pl snewt raphila, dag, £Sd)

D.02896781017144

BT 018924722000600-010

Aside from our homemade functions, we can also use MATLAB’s built-in fzero
function. However, just as with the Newton-Raphson method, divergence also occurs when
fzero function is used with a single guess. However, in this case, guesses at the lower end
of the range cause problems. For example,

frerolg,U.008)

Pxiting {zoro: abort ina search {or an interval contalning a sign
change pecanse complex function value encountered

during zeavch.
(Function value at =0.0028 1ia -4.92028-20.24231.)
Check tunct ton or Lry again with o different starting value.
AN

NN

If the iterations are displayed using optimset (recall Example 6.6), it is revealed that a
negative value occurs during the search phase before a sign change is detected and the rou-
tine aborts. However, for single initial guesses above about 0.016, the routine works nicely.
For example, for the guess of 0.08 that caused problems for Newton-Raphson, fzero does
just fine:

D.02896761017144

As afinal note, let’s see whether convergence is possible for simple fixed-point iteration.
The easiest and most straightforward version involves solving for the first fin Eq. (6.14):

0.25
o (5 + 251 \\?
8\37D T RevT.

(6.16)

fivi =

—_—

€D ™h " e e

o

n

t

6.6 CASE STUDY 161

Y =x
—n— Yo =g(x)
0] i |
0 0.02 0.04 0.06 0.08 «x

FIGURE 6.10

The two-curve display of this function depicted indicates a surprising result (Fig. 6.10).
Recall that fixed-point iteration converges when the y, curve has a relatively flat slope (i.e.,
Ig"(€)} < 1). As indicated by Fig. 6.10, the fact that the y, curve is quite flat in the range
from f= 0.008 to 0.08 means that not only does fixed-point iteration converge, but it con-
verges fairly rapidly! In fact, for initial guesses anywhere between 0.008 and 0.08, fixed-
point iteration yields predictions with percent relative errors less than 0.008% in six or
fewer iterations! Thus, this simple approach that requires only one guess and no derivative
estimates performs really well for this particular case.

The take-home message from this case study is that even great, professionally devel-
oped software like MATLAB is not always foolproof. Further, there is usually no single
method that works best for all problems. Sophisticated users understand the strengths and
weaknesses of the available numerical techniques. In addition, they understand enough of
the underlying theory so that they can effectively deal with situations where a method
breaks down.

162 ROOTS: OPEN METHODS

PROBLEMS

6.1 Employ fixed-point iteration to locate the root of

F) = 2sin(y/x) - x

Use an initial guess of xp = 0.5 and iterate until £, < 0.01%.

6.2 Use (a) fixed-point iteration and (b) the Newton-

Raphson method to determine a root of f(x) = —x° +

1.8x + 2.5 using xg = 5. Perform the computation until g,

1s less than g, = 0.05%. Also check your final answer.

6.3 Determine the highest real root of f(x) = 0.95x%—

5947+ 109y ~ 6

(a) Graphically.

(b) Using the Newton-Raphson method (three iterations,
X = 35)

(¢) Using the secant method (three iterations, xj_ = 2.5
and v; = 3.9).

(d) Using the modified secant method (three iterations,
x =356 =0.01I).

(¢) Determine all the roots with MATLAB.

6.4 Dctermine positive root of

gsin(yye ' ~ I

(a) Graphically.

(bj Using the Newton-Raphson method (three iterations,
x = 0.3).

(¢) Using the secant method (three iterations, x;. = 0.5
and v, = 0.4,

(d) Using the modified sccant method (five iterations,
v =03.8=0.01).

6.5 Use (a) the Newton-Raphson method and (b) the modi-

fied secant method (5 = 0.05) to determine arootof f(x) =

27— 16,050 +88.75x — 192037557 4 116.35¢ +31.6875

using an initial guess of & = 0.5825 and &, = 0.01%.

the lowest)y =

Explain your results.

6.6 Dcvelop an M-file for the secant method. Along with
the two initial guesses, pass the function as an argument.
Test it by solving Prob. 6.3.

6.7 Develop an M-file for the modified secant method.
Along with the initial guess and the perturbation fraction,
pass the function as an argument. Test it by solving Prob. 6.3.
6.8 Difterentiate Eq. (E6.4.1) 10 get Bq. (E6.4.2).

6.9 Employ the Newton-Raphson method to determine a
real root for f(x) = —| + 6x — 4x” +0.5x", using an ini-
tial guess of (@) 4.5, and (b) 4.43. Discuss and use graphical
and analytical methods to explain any peculiarities in your

results.
6.10 The “divide and average” method, an old-time method
for approximating the square root of any positive number «,
can be formulated as
X4 a/x
Nt T Ty

Prove that this formula is based on the Newton-Raphson
algorithm.

6.11 (a) Apply the Newton-Raphson method to the function
f(x) = tanh(x> = 9) to evaluate its known real root a
x = 3. Use an initial guess of xy = 3.2 and take a minimum
of three iterations. (b) Did the method exhibit convergence
onto its real root? Sketch the plot with the results for each
iteration labeled.

6.12 The polynomial f{x) = 0.0074x* — 0.284x" +
3.355x— 12.183x -+ 5 has a real root between 15 and 20.
Apply the Newton-Raphson method to this function using as
initial guess of xp = 16.15. Explain your results.

6.13 In a chemical engincering process, water vapor (H;0)
is heated to sufficiently high temperatures that a significant
portion of the water dissociates. or splits apart. to form oxy-
gen (Oa) and hydrogen (Ha):

H O = Ha + $0;
If it is assumed that this is the only reaction involved, the
mole fraction x of HO that dissociates can be represented by
X 2
2+x

K = (P6.13.1)

I —x
where K is the reaction’s equilibrium constant and p is the
total pressure of the mixture. If p, = 3.5 atmand K = 0.04,
determine the value of .« that satisties Eq. (P6.13.1).

6.14 The Redlich-Kwong equation of state is given by

RT 7
v=b v+ VT
where R = the universal gas constant |= 0.518 kl/(kg K},
7 = absolute temperature (K), p = absolute pressure (KPa),
and v = the volume of a kg of gas (m¥/kg). The parameters
a and b are calculated by

p=

h = ().()866RL

e ,)(.
where p. = 4580 kPa and 7, = 191 K. As a chemical engi-
neer, you are asked to determine the amount of methane fuel
that can be held in a 3-m* tank at a temperature of —50°C
with a pressure of 65,000 kPa. Use a root locating method of
your choice to calculate v and then determine the mass of

methane contained in the tank.
6.15 The volume of liquid V in a hollow honzontal cylinder
of radius rand length L is related to the depth of the liquid by

o (2N o
V =1r-cos (r—hy2rh—h?|L
-

. . 1
Determine /1 given r=2m, L =35 m®, and V=85m".

Fl

6.16 A catenary cable i
points not in the san
Fig. P6.16a, it is subje:
weight. Thus, its weigh
length along the cable u
section AB is depicted in
the tension forces at the ¢
cal force balances, the fol
of the cable can be derive

Calculus can be employ
height of the cable y as a

T4 (w)
y = — cosh| —x
w T4

(a) Use a numerical me
parameter T4 given
and yy = 6, such that
x =50.

(b) Develop aplotof y v

6.17 An oscillating curre

by I = 9e™" cos(271), w

values of ¢ such that / =

6.18 Figure P6.18 shows

tor, and a capacitor in par

to express the impedance

PROBLEMS

163

FIGURE P6.16

(b)

the cable can be derived.

&y o I+ dy .

dX2 B TA dx

ulus can be employed to solve this equation for the
ight of the cable y as a function of distance x:

TA < w) T,\
y=—cosh| —x } + vy — —
w T4 w

Use a numerical method to calculate a value for the
parameter 74 given values for the parameters w = 12
and ¥y = 6, such that the cable has a height of y = 15 at
1=50.

Develop a plot of y versus x for x = —50 to 100.

7 Anoscillating current in an electric circuit is described
I=9%""cos(2rt). where ¢ is in seconds. Determine all
sof ¢ such that / = 3.

Figure P6.18 shows a circuit with a resistor, an induc-

and a capacitor in parallel. Kirchhoff's rules can be used

ss the impedance of the system as

16 A catenary cable is one which is hung between two
points not in the same vertical line. As depicted in
Fg. P6.16a. it is subject to no loads other than its own
weight. Thus, its weight acts as a uniform load per unit R
kngth along the cable w (N/m). A free-body diagram of a ‘)7

section AB is depicted in Fig. P6.165h, where T4 and Ty are
the tension forces at the end. Based on horizontal and verti-
alforce balances, the following differential cquation model

FIGURE P6.18

where Z = impedance (§2). and w is the angular frequency.
find the w that resuits in an impedance or 75 €2 using the
fzero function with initial guesses of 1 and 1000 for the
following parameters: R = 225Q,C = 0.6 x 107° F, and
L=05H.

6.19 Real mechanical systems may involve the deflection
of nonlinear springs. In Fig. P6.19, a block of mass m is

(al (6)

FIGURE P6.19

|
l
]

164 ROOTS: OPEN METHODS
v
/”—ﬁ\\\\ R
s T,
vy .~ \\\ -
G, N
o @1, N

FIGURE P6.20

released a distance 4 above a nonlincar spring. The resis-
tance force F of the spring is given by

F = —(kid + kod™"?)
Conscrvation of energy can be used to show that
_ 2]\'2(15/2
-5
Solve for d, given the following parameter values: k| =
50,000 g/s>, ko = 40 g/(s> m), m =90 g. g = 9.81 m/s?,
and i = 0.45 m.
6.20 Aerospacc engineers somctimes compute the trajec-
tories of projectiles such as rockets. A related problem deals
with the trajectory of a thrown ball. The trajectory of a ball
thrown by a right tielder is defined by the (x, y) coordinates
as displayed in Fig. P6.20. The trajectory can be modeled as

g

207 cos? by

0

| IS
+ E/q(/‘ —mgd — mgh

y = (tanfy)x — X4y

Find the appropriate initial angle 6, if vy = 20 m/s, and the
distance to the catcher is 35 m. Note that the throw leaves the
right ficlder’s hand at an elevation of 2 m and the catcher
receives itat 1 m.

6.21 You arc designing a spherical tank (Fig. P6.21) to hold
water for a small village in a developing country. The vol-
ume of liquid it can hold can be computed as

y = PR

’;
where V = volume [m’], h = depth of water in tank {m], and
R = the tank radius [m].

If R = 3 m, what depth must the tank be filled to so that
it holds 30 m?? Use three iterations of the most efficient
numerical method possible to determine your answer. Deter-
mine the approximate relative error after each iteration.
Also, provide justification for your choice of method. Extra

FIGURE P6.21

information: (a) For bracketing methods, initial guesses of 0
and R will bracket a single root for this example. (b) For
open methods, an initial guess of R will always converge.
6.22 Perform the identical MATLAB operations as those
in Example 6.7 to manipulate and find all the roots of the
polynomial

SO =0+Da+3) - Dl =D =7
6.23 In control systems analysis, transfer functions a
developed that mathematically relate the dynamics of a sys:
tem'’s input to its output. A transfer function for a robotic
positioning system is given by
C(s) s 412557 +50.55 + 66

Gls) = —2 -
)= N T S 1957 1 1222 1 396y 1 192

where G(s) = system gain, C(s) = system output, N(s) =
system input, and s = Laplace transform complex frequency.
Use MATLAB to find the roots of the numerator and de-
nominator and factor thesc into the form

Gls) = (s +a)s+a)ls +az)
T (s b)(s + ha)(s + b3)(s + by)

where a; and b; = the roots of the numerator and denoming
tor, respectively.
6.24 The Manning equation can be written for a rectangula
open channel as

Q _ \/E(BH)S/,"
(B +2H)W?

where Q = flow (m/s), § = slope (m/m), H = depth (m),
and n = the Manning roughness coefficient. Develop ¢

P

fixed-point iteration sch
given Q = 5, S = 0.0002
your scheme converges f
equal to zero.

6.25 See if you can devel
the friction factor basec
described in Sec. 6.6. You
result for Reynolds numbe
€/ D ranging from 0.0000
6.26 Use the Newton-Ra

flx) =e 014 —x

Employ initial guesses of (
results.
6.27 Given

S(x) = —=2x%—1.5;

Use a root location technic
this function. Perform iter:
tive error falls below 5%.

PROBLEMS

165

fixed-point iteration scheme to solve this equation for H
given 0 = 5, 5 = 0.0002. B = 20, and #» = 0.03. Prove that
your scheme converges for all initial guesses greater than or
equal to zero.

625 Seeif you can develop a foolproof function to compute
the friction factor based on the Colebrook equation as
described in Sec. 6.6. Your function should return a precise
result for Reynolds number ranging from 4000 to 107 and for
¢/D ranging from 0.00001 to 0.05.

626 Use the Newton-Raphson method to find the root of

f(x) — E“()'S'\ (4 _ X) -2

Employ initial guesses of (a) 2, (b) 6, and (¢) 8. Explain your
results.
627 Given

f)=—=2x— 1.5x* + 10x +2

Use a root location technique to determine the maximum of
this function. Perform iterations until the approximate rela-
tive error falls below 5%. If you usc a bracketing method,

use initial guesses of x; = 0 and x, = 1. If you use the
Newton-Raphson or the modified secant method, use an ini-
tial guess of x; = 1. If you use the secant method, use initial
guesses of x;_| = 0 and x; = |. Assuming that conver-
gence is not an issue, choose the technique that is best suited
to this problem. Justify your choice.
6.28 You must determine the root of the following easily
differentiable function:

"3 =5 5x
Pick the best numerical technique, justify your choice, and
then use that technique to determine the root. Note that it is
known that for positive initial guesses, all techniques except
fixed-point iteration will cventually converge. Perform iter-
ations until the approximate relative error falls below 2%. If
you use a bracketing method, use initial guesses of x; = 0
and x,, = 2. If you use the Newton-Raphson or the modified
secant method, use an initial guess of x; = 0.7. If you use
the secant method, use initial guesses of x;_) =0 and
X = 2.

Optimization

ﬁ

The primary objective of the present chapter is to introduce you to how optimization
can be used to determine minima and maxima of both one-dimensional and
multidimensional functions. Specific objectives and topics covered are

CHAPTER OBJECTIVES

Understanding why and where optimization occurs in engineering and scientific
problem solving.

Recognizing the difference between one-dimensional and multidimensional
optimization.

Distinguishing between global and local optima.

Knowing how to recast a maximization problem so that it can be solved with a
minimizing algorithm.

Being able to define the golden ratio and understand why it makes one-
dimensional optimization efficient.

Locating the optimum of a single-variable function with the golden-section search.
Locating the optimum of a single-variable function with parabolic interpolation.
Knowing how to apply the fminbnd function to determine the minimum of a
one-dimensional function.

Being able to develop MATLAB contour and surface plots to visualize two-
dimensional functions.

Knowing how to apply the fminsearch function to determine the minimum of a
multidimensional function.

YOU’'VE GOT A PROBLEM

166

n object like a bungee jumper can be projected upward at a specified velocity. If#
is subject to linear drag, its altitude as a function of time can be computed as

m m . m
t=a 4= (u0+—g) (1= teimny _ 8,)
-

C C

7.1

e

C

7.1 INTRODUCTION AND BACKGROUND 167

zm 200

—~

Maximum
elevation

100

-100

FIGURE 7.1

Elevation as a function of time for an object inifiall, projected upward with an initiol velocity

where 7 = altitude (im) above the earth’s surface (detined as 2 = 0). 7o = the initial altitude
(m), m = mass (kg), ¢ = a lincar drag coefficient (kg/s), vy = initial velocity (im/s), and 1 =
time (s). Note that for this formulution. positive velocity is considered to be in the upward
direction. Given the following parameter values: ¢ = 9.81 m/s?, zy = 100 m. vy = 55 m/s,
m = 80 kg, and ¢ = 15 kg/s, Eq. (7.1) can be used to calculate the jumper’s altitude. As
displayed in Fig. 7.1, the jumper rises to a peak elevation of about 190 m at about 1 = 4 5.

Suppose that you are given the job of determining the exact time of the peak clevation.
The determination of such extreme values is relerred to as optimization. This chapter will
introduce you to how the computer 1s used to make such determinations.

7.1 INTRODUCTION AND BACKGROUND

In the most general sense, optimization is the process of creating something that is as
effective as possible. As engincers, we must continuously design devices and products that
perform tasks in an cfficient fashion for the least cost. Thus, engineers are always con-
{ronting optimization problems that attempt to balance performance and limitations. in
addition, scientists have interest in optimal phenomena ranging from the peak clevation of
projectiles to the mintmum free cnergy.

From a mathematical perspective. optimization deals with finding the maxima and
minima of a function that depends on one or more variables. The goal 1s to determine the
values of the variables that yield maxima or minima for the function. These can then be
substituted back into the function to compute its optimal values.

Although these solutions can sometimes be obtained analytically, most practical
optimization problems require numerical, computer solutions. From a numerical stand-
point, optimization is similar in spirit to the root location methods we just covered in
Chaps. 5 and 6. That is. both involve guessing and searching for a point on a function. The
fundamental difference between the two types ol problems is illustrated in Fig. 7.2. Root
location involves searching for the location where the function equals zero. In contrast,
optimization involves searching for the function’s extreme points.

168 OPTIMIZATION
Sl=0 ;
f P9 <0 Maximum
0
Minimum f(x) >0
FIGURE 7.2
A function of a single variable illustrating the difference between roots and oplima.

As can be seen in Fig. 7.2, the optimums are the points where the curve is flat. In math-
ematical terms, this corresponds to the x value where the derivative f/(x) is equal to zer.
Additionally, the second derivative, f”(x), indicates whether the optimum is a minimum ot
a maximum: if f7(x) < 0, the point is a maximum; if f”(x) > 0, the point is a minimum,

Now, understanding the relationship between roots and optima would suggest a possis
ble strategy for finding the latter. That is, you can differentiate the function and locate the
root (that is, the zero) of the new function. In fact, some optimization methods do just this
by solving the root problem: f'(x) = 0.

EXAMPLE 7.1 Determining the Optimum Analytically by Root Location
Problem Statement. Determine the time and magnitude of the peak elevation based on
Eq. (7.1). Use the following parameter values for your calculation: ¢ =9.81 m/s}
zo = 100 m, vy = 55 m/s, m = 80 kg, and ¢ = 15 kg/s.
Solution. Equation (7.1) can be differentiated to give
dz _ mg .
T o pgertermi 28 (g gy (ET.L)
di ¢
Note that because v = dz/dt, this is actually the equation for the velocity. The maximum
elevation occurs at the value of ¢ that drives this equation to zero. Thus, the problem
amounts to determining the root. For this case, this can be accomplished by setting the de-
rivative to zero and solving Eq. (E7.1.1) analytically for
m vy
t="1In (1 + ~—")
¢ mg
Substituting the parameters gives
80 15(55
t=—1In(1l _1>63) = 3.831665s
15 80(9.81)
T ——

S¢

Tt
thy

sal
as

of

prc
sea
me

FIC
{a)
equ
figu
the

min

7.1 INTRODUCTION AND BACKGROUND 169

This value along with the parameters can then be substituted into Eq. (7.1) to compute the
maximum elevation as

80 (. 80081 R0(9 81
2=100+ (50+ %) (1 = s/ 3I60) —%(3.83166) = 192.8609 m

We can verify that the result is a maximum by differentiating Eq. (E7.1.1) to obtain the
second derivative

2 &

il_h-zz = *;voe*("/’”” —ge~l/mt = _9 8| SEZ
The fact that the second derivative is negative tells us that we have a maximum. Further,
the result makes physical sense since the acceleration should be solely equal to the force of
gravity at the maximum when the vertical velocity (and hence drag) is zero.

Although an analytical solution was possible for this case, we could have obtained the
same result using the root location methods described in Chaps. 5 and 6. This will be left
as a homework exercise.

Although it is certainly possible to approach optimization as a roots problem, a variety
of direct numerical optimization methods are available. These methods are available for both
one-dimensional and multidimensional problems. As the name implies, one-dimensional
problems involve functions that depend on a single dependent variable. As in Fig. 7.34, the
search then consists of climbing or descending one-dimensional peaks and valleys. Multidi-
mensional problems involve functions that depend on two or more dependent variables.

FIGURE 7.3

[a} One-dimensional optimization. This figure also illustrates how minimization of f(x) is
equivalent to the maximization of — f(x). (b} Two-dimensional optimization. Note that this
figure can be taken to represent either o maximization (contours increase in elevation up to
the maximum like a mountain) or a minimization [contours decrease in elevation down to the
minimum like a valley).

S(x)

y Optimum f(x*, y*)
floy

X*\J Minimum f(x) Y= a
: Maximum ~f(x) *

f(x)

170

OPTIMIZATION

7.2

In the same spirit, a two-dimensional optimization can again be visualized as searching out
peaks and valleys (Fig. 7.35). However, just as in real hiking, we are not constrained to walk
a single direction; instead the topography is examined to efficiently reach the goal.

Finally, the process of finding a maximum versus finding a minimum is essentially
identical because the same value x* both minimizes f(x) and maximizes — f (x). This
equivalence is illustrated graphically for a one-dimensional function in Fig. 7.3a.

In the next section, we will describe some of the more common approaches for one-
dimensional optimization. Then we will provide a brief description of how MATLAB can
be employed to determine optima for multidimensional functions.

ONE-DIMENSIONAL OPTIMIZATION

This section will describe techniques to find the minimum or maximum of a function of a
single variable f(x). A useful image in this regard i1s the one-dimensional “roller
coaster—like function depicted in Fig. 7.4. Recall from Chaps. 5 and 6 that root location
was complicated by the fact that several roots can occur for a single function. Similarly,
both local and global optima can occur in optimization.

A global optimum represents the very best solution. A local optimum, though not the
very best. is better than its immediate neighbors. Cases that inciude local optima are called
multimodal. In such cases, we will almost always be interested in finding the global optimum
In addition, we must be concerned about mistaking a local result for the global optimum.

Just as in root location, optimization in one dimension can be divided into bracketing
and open methods. As described in the next section, the golden-section search is an example
of a bracketing method that is very similar in spirit to the bisection method for root location
This is followed by a somewhat more sophisticated bracketing approach—parabolic inter-
polation. We will then show how these two methods are combined and implemented with
MATLAB’s fminbnd function.

FIGURE 7.4

A function that asymptotically approaches zero at plus and minus oc and has two maximum ond
two minimum points in the vicinity of the origin. The two poinls to the right are local oplima,
whereas the two to the left are global.

Sfx)
Local
Global /maximum
maximum
X
vLocal
Global minimum
minimum

smaller

the

Pr
of

the
lett
role
Euc
whe

Mul

wher

’
In ad
provi
termi;

T
roots |
guess
tween
The r¢

Xy

——

FIGUR
Euclid’s

ratio of

7.2 ONE-DIMENSIONAL OPTIMIZATION 171

7.2.1 Golden-Section Search

In many cultures, certain numbers are ascribed magical qualities. For example, we in the West
are all familiar with “lucky 7" and “Friday the 13th.” Beyond such superstitious quantities,
there are several well-known numbers that have such interesting and powerful mathematical
properties that they could truly be called “magical.” The most common of these are the ratio
of a circle’s circumference to its diameter 7 and the base of the natural logarithm e.

Although not as widely known, the golden ratio should surely be included in the pan-
theon of remarkable numbers. This quantity, which is typically represented by the Greek
letter ¢ (pronounced: fee), was originally defined by Euclid (ca. 300 BCE) because of its
role in the construction of the pentagram or five-pointed star. As depicted in Fig. 7.5,
Euclid’s definition reads: “A straight line is said to have been cut in extreme and mean ratio
when, as the whole line is to the greater segment, so is the greater to the lesser.”

The actual value of the golden ratio can be derived by expressing Euclid’s definition as

H+6 £ 3.2)
6 '
Multiplying by £,/¢5 and collecting terms yields
¢ —¢p—1=0 (7.3)

where ¢ = £,/¢,. The positive root of this equation is the golden ratio;

1+ 5

2

= 1.61803398874989. .. (7.4)

The golden ratio has long been considered aesthetically pleasing in Western cultures.
In addition, it arises in a variety of other contexts including biology. For our purposes, it
provides the basis for the golden-section search, a simple, general-purpose method for de-
termining the optimum of a single-variable function.

The golden-section search is similar in spirit to the bisection approach for locating
roots in Chap. 5. Recall that bisection hinged on defining an interval, specified by a lower
guess (x,) and an upper guess (x,) that bracketed a single root. The presence of a root be-
tween these bounds was veritied by determining that f(x)) and f(v,) had different signs.
The root was then estimated as the midpoint of this interval:

N (7.5)

2

X, =

FIGURE 7.5

Fuclid's definition of the golden ratio is based on dividing a line into two segments so that the
ratio of the whole line to the larger segment is equal 1o the rotio of the larger segment to the
smaller segment. This ratio is called the golden ratio.

@ {2

1'.

172

OPTIMIZATION

The final step in a bisection iteration involved determining a new smaller bracket. This was
done by replacing whichever of the bounds x, or x, had a function value with the same sign
as f(x,). A key advantage of this approach was that the new value x, replaced one of the old
bounds.

Now suppose that instead of a root, we were interested in determining the minimum of
a one-dimensional tunction. As with bisection, we can start by defining an interval that
contains a single answer. That is, the interval should contain a single minimum, and hence
is called unimodal. We can adopt the same nomenclature as for bisection, where .x, andx,
defined the lower and upper bounds, respectively, of such an interval. However, in contrast
to bisection, we need a new strategy for finding a minimum within the interval. Rather than
using a single intermediate value (which is sufficient to detect a sign change, and hencea
zero), we would need two intermediate function values to detect whether a minimum
occurred.

The key to making this approach etficient is the wise choice of the intermediate points
As in bisection, the goal is to minimize function evaluations hy replacing old values with
new values. For bisection, this was accomplished by choosing the midpoint. For the
golden-section search, the two intermediate points are chosen according to the golden
ratio:

Yy =x +d (76

X =ux, —d (17
where

d = (‘b — 1)(~xll - -\'/) (78]

The tunction is evaluated at these two interior points, Two results can occur:

1. If,asinFig. 7.6a, f(x)) < f(x2), thenf(x)) is the minimum, and the domain of x tothe
left of x,, from «x; to x,, can be eliminated because it does not contain the minimum, For
this case, x, becomes the new x, for the next round.

2. If f(x2) < fx;), thenf(x,)is the minimum and the domain of x to the right of x,, from
x, to x, would be eliminated. For this case, x, becomes the new x, for the next round

Now, here is the real benefit from the use of the golden ratio. Because the original 1,
and x, were chosen using the golden ratio, we do not have to recalculate all the function
values for the next iteration. For example, for the case illustrated in Fig. 7.6, the old x, be-
comes the new x,. This means that we alrcady have the value for the new f(x,), sinceitis
the same as the function value at the old .x,.

To complete the algorithm, we need only determine the new x,. This is done with
Eq. (7.6) with d computed with Eq. (7.8) based on the new values of x, and x,. A similar
approach would be used for the alternate case where the optimum fell in the left subinterval
For this case, the new x, would be computed with Eq. (7.7).

As the iterations are repeated, the interval containing the extremum is reduced rapidly.
In fact, each round the interval is reduced by a factor of ¢ — 1 (about 61.8%). That means
that after 10 rounds, the interval is shrunk to about 0.618'"" or 0.008 or 0.8% of its initid
length. After 20 rounds, it is about 0.0066%. This is not quite as good as the reduction
achieved with bisection (50%), but this is a harder problem.

EXAMPLE 7.2

FIGt
{a) TH
acco
encol

Golc
Prob

withi

Solu

6)
7

8)

7.2 ONE-DIMENSIONAL OPTIMIZATION

173

EXAMPLE 7.2

f
Eliminate
‘"’"": Minimum
i
!]
! i
; i
|
! I
: | |ox
X d—"X
X+—d Ky
(a)
! ;
I]
I |
0 od Ol

FIGURE 7.6

fa) The initial step of the golden-section search algorithm involves choosing two interior points
according to the golden ratio. [b) The second step involves defining a new interval that
encompasses the optimum.

Golden-Section Search
Problem Statement. Use the golden-section search to find the minimum of

X) = — — an)c
10 !

within the interval from x, = 0 to x, = 4.

Solution. First, the golden ratio is used to create the two interior points:

d =0.61803(4 — 0) =2.4721
x; =0+42.4721 =2.4721
xo =4 —2.4721 = 1.5279

174 OPTIMIZATION
The function can be evaluated at the interior points:
1.5279°)
flx) = o 2sin(1.5279) = —1.7647
247212 .
flx) = EETI 2sin(2.4721) = —0.6300
Because f(x;) < f(x)), our best estimate of the minimum at this point is that it is
located at .x = 1.5279 with a value of f(x) = —1.7647. In addition, we also know that the
minimum is in the interval defined by x,, x,, and .v,. Thus, for the next iteration. the lower
bound remains ., = 0, and x, becomes the upper bound, that is, x, = 2.4721. In addition,
the former .x, value becomes the new x,, that is, x, = 1.5279. In addition, we do not have to
recalculate f(x;), it was determined on the previous iteration as F(1.5279) = —1.7641.
All that remains is to use Eqgs. (7.8) and (7.7) to compute the new value of d and Xy
d =0.61803(2.4721 — 0) = 1.5279
X = 24721 ~ 1.5279 = 0.9443
The function evaluation at x, is £(0.9943) = —1.5310. Since this value is less than the
function value at x, the minimum is f(1.5279) = —1.7647, and it is in the interval pre-
scribed by x,, x;, and x,. The process can be repeated, with the results tabuiated here:
i X, fxp) X3 flxy) X, Slx) Xy fx,) d
1 o) 0] 1.5279 —1.7647 2.4721 -~0.6300 4.0000 3.1136 2477
2 0 0 0.9443 -1.5310 1.5279 ~1.7647 2.4721 -0.6300 1.527§
3 0.2443 1.5310 1.5279 -1.7647 1.8885 —1.5432 2.4721 —-0.6300 0.9443
4 0.9443 1.5310 1.3050 —-1.7595 1.5279 —~1.7647 1.8885 —1.5432 0.5836
5 1.3050 1.7595 1.5279 —1.7647 1.6656 —-1.7136 1.8885 —1.5432 0.3607
6 1.3050 1.7595 1.4427 —-1.7755 1.5279 —1.7647 1.6656 -1.7136 0.2229
7 1.3050 1.7595 1.3901 —1.7742 1.4427 ~1.7755 1.5279 —1.7647 0.1378
8 1.3901 1./742 1.4427 -1.7755 1.4752 ~1.7732 1.5279 - 17647 0.0851

Note that the current minimum is highlighted for cvery iteration. After the eighth
iteration, the minimum occurs at x = 1.4427 with a function valuc of —1.7755. Thus, the
result is converging on the true value of —1.7757 at x = 1.4276.

Recall that for bisection (Sec. 5.4), an exact upper bound for the error can be calcy-
lated at each iteration. Using similar reasoning, an upper bound for golden-section search
can be derived as follows: Once an iteration is complete, the optimum will either fall in one
of two intervals. If the optimum function value is at x,, it will be in the lower interval (s,
Ya..xp). If optimum function value is at x,, it will be in the upper interval (x,. x,. x,). Because
the interior points are symmetrical, either case can be used to define the error.

or
es

or
the

Th

Fig
api

No
Co

gol

nur

7.2 ONE-DIMENSIONAL OPTIMIZATION 175

Looking at the upper interval (x,, x,, x,). if the true value were at the far left, the max-
imum distance from the estimate would be
Ax, = x; — X2
X+ (@ = D —x) —x + (0 — Dlxy —x1)
= —) + 20 — Dixy, —x)
= (2¢ = I (xy —x1)

or 0.2361 (x, — x)). If the true value were at the far right, the maximum distance from the
estimate would be
Axp = X, — X
=x,—x — (@ —D(x, —x;)
= (x, —x1) — (¢ — D{(x, —x7)
=2 -, —x7)

or 0.3820 (x, — .x,). Therefore, this case would represent the maximum error. This result can

then be normalized to the optimal value for that iteration x, to yield

Xy — Xy

o= (2 —) x 100% (7.9)

Xopt

This estimate provides a basis for terminating the iterations.

An M-file function for the golden-section search for minimization is presented in
Fig. 7.7. The function returns the location of the minimum, the value of the function, the
approximate error, and the number of iterations.

The M-file can be used to solve the problem from Example 7.1.

> o g=9.81;v0=55;m=80;c¢c=19%;20=100;
>» =0 ({t) - (zU0+m/c*(vO+m*g/c)*(l-exp(-c/m*t))-m*g/c*t);
»>> |~xmin, fmin,ea, iterl=goldmin(z,0,8)

Xxmin =

3.8317
fmin
-192.8609
ea =

6.93560-005

Notice how because this is a maximization, we have entered the negative of Eq. (7.1).
Consequently, fmin corresponds to a maximum height of 192.8609.

You may be wondering why we have stressed the reduced function evaluations of the
golden-section search. Of course, for solving a single optimization, the speed savings
would be negligible. However, there are two important contexts where minimizing the
number of function evaluations can be important. These are

1. Many evaluations. There are cases where the golden-section search algorithm may be a
part of a much larger calculation. In such cases. it may be called many times. Therefore,
keeping function evaluations to a minimum could pay great dividends for such cases.

176

OPTIMIZATION

function [x,fx,ea,iterl=goldmin{f,xl,x%xu,es,maxit,varargin)

oP 99 g0 AP 0 ¢ o° of

input:
f = name of function
»1, xu = lower and upper guesses
es = desired relative error {(default

maxit = maximum allowable iterations

goldmin: minimization golden section search
[x,fx,ea,iter]=goldmin{f,x1l,xu,es, maxit,pl,p2,...):
uges golden section search to find the minimum of f

0.0001%)
defaultc =

% pl,p2,... = additional parameters used by f
% ocutput:

% X = location of minimum

% fx = minimum function value

% ea = approximate relative error (%)

% iter = number of iterations

50)

if nargin<3,error('at least 3 input arguments required'),end
if nargin<4|isempty(es), es=0.0001;end

if nargin«<5lisempty{maxit), maxit=50;end
phi=(l+sqgrt(5))/2;

iter=0;
while (1}

d = (phi-1)*{(xu - xl);

x1 = x1 + d;
x2 = xu - d;

if f{xl,varargin{:}) <

xopt = x1;

x1l = x2;
else

xopt = xX2;

xu o= x1;
end
iter=iter+1l;
if xopt~=0, ea
if ea <= es

end

= (2

f(x2,varargin{:})

phi) * abs{{(xu - x1) / xopt)

iter »= maxit,break,end

x=xopt; fx=1f (xopt,varargin{:});

FIGURE 7.7

*

100;end

4n AMile 10 determing the minimum of @ function with the aolden-section search.

2. Time-consuming evaluation. For pedagogical reasons, we use simple functionsi
most of our examples. You should understand that a function can be very comple
and time-consuming to evaluate. For example, optimization can be used to estima
the parameters of a model consisting of a system of differential equations. For such
cases, the “function” involves time-consuming model integration. Any method tha

minimizes such evaluations would be advantageous.

EXAMPLE 7.3

Pa
pr

Co
ca
SO
tic

Sc

7.2 ONE-DIMENSIONAL OPTIMIZATION 177

Parabolic
approximation
of maximum

True maximum

f@) T True function \
AN

Parabolic
function

'
|
i
'
1
'
'
'
'
'
L

X X Xy X3 X

FIGURE 7.8

Graphical depiction of parabolic interpolation.

7.2.2 Parabolic Interpolation

Parabolic interpolation takes advantage of the fact that a second-order polynomial often
provides a good approximation to the shape of f(x) near an optimum (Fig. 7.8).

Justas there is only one straight line connecting two points, there is only one parabola
connecting three points. Thus, if we have three points that Jointly bracket an optimum. we
can fit a parabola to the points. Then we can differentiate it, set the result equal to zero, and
solve for an estimate of the optimal x. It can be shown through some algebraic manipula-
tions that the result is

oo =) /() = fO)] — (o= 5 [f () = fl)]

Xy = X7 - - - - (7.10)
2 =) [f) = fla)] = (2= x3) [f(x2) — S|

where x,, x,, and x, are the initial guesses, and v, is the value of x that corresponds to the
optimum value of the parabolic {it to the guesses.

EXAMPLE 7.3 Parabolic Interpolation

Problem Statement. Use parabolic interpolation to approximate the minimum of

N

Sl = % — 2sinx

with mitial guesses of x; = 0,0, = 1, and x, = 4.

Solution. The function values at the three guesses can be evaluated:

=0 fep=0
Xy =1 Sl = —1.5829
X =4 f(xy) = 3.1136

178

OPTIMIZATION

7.3

and substituted into Eq. (7.10) to give

1002115829 - 3.1136) — (1 - 4)[-1.5829 - 0)
N TS0~ 15829 - 3.1136] — (1 —4)[~1.5829— 0]

which has a function value of f(1.5055) = —1.7691.

Next, a strategy similar to the golden-section search can be employed to determine
which point should be discarded. Because the function value for the new point is lower
than for the intermediate point (x,) and the new x value is to the right of the intermediate
point, the lower guess (x,) is discarded. Therefore, for the next iteration:

x, =1 Slx,) =—1.5829
X, = 1.5055 Sy = —1.7691
X, =4 Slx) =3.1136

which can be substituted into Eq. (7.10) to give

| 5055 1 (1.5055 — 1)2[—1.7691 — 3.1136] — (1.5055 — 4)2 [—1.7691 — (—1.5829)]
R 2 (1.5055 — 1) [—1.7691 — 3.1136] — (1.5055 — 4) [— 1.769] — (—1.5829)]

I

X4

1.4903

li

which has a function value of f(1.4903) = —1.7714. The process can be repeated, with the
results tabulated here:

A

i Xy fxy) X3 Sflxy) X3 Sflxy) Xy fix)

I 0.0000 0.0000 1.0000 —-1.5829 4.0000 31136 1.5055 -1.7691
2 1.0000 —1.5829 1.5055 —1.7691 4.0000 31136 14903 17714
3 1.0000 =1.5829 1.4903 17714 15055 17691 14256 -1775
4 1.0000 —1.5829 14256 =17757 14903 17714 14266 -1779
S5 14256 17757 1.4266 17757 14903 17714 1.4275 -1775

Thus, within five iterations, the result is converging rapidly on the true value of —1.7757
atx = 1.4276.

7.2.3 MATLAB Function: fminbnd

Recall that in Sec. 6.4 we described the built-in MATLAB function fzero. This function
combined several root-finding methods into a single algorithm that balanced reliability
with efficiency.

The fminbnd function provides a similar approach for one-dimensional minimiza
tion. It combines the slow. dependable golden-section search with the faster, but possibly
unreliable, parabolic interpolation. It first attempts parabolic interpolation and keeps ap-
plying it as long as acceptable results are obtained. If not, it uses the golden-section search
to get matters in hand.

whe
func

Exa;

we C

Thu
itera

Asid
func
a rol
valle
a har

7.3 MULTIDIMENSIONAL OPTIMIZATION 179

7.3

A simple expression of its syntax is
[xmin, fval] = fminbnd(function,xl,x2)

where x and fval are the location and value of the minimum, function is the name of the
function being evaluated, and x1 and x2 are the bounds of the interval being searched.

Here is a simple MATLAB session that uses fminbnd to solve the problem from
Example 7.1.

>> g=9.81;v0=55;m=80;c=15;20=100;
>> z=@(t) -(zO0+m/c*(vl+m*g/c)*(l-exp(-c/m*t))-m*g/c*t);
>> [x,f]=fminbnd(z,0, 8)

K =

3.8317
f =
-192.8609

As with fzero, optional parameters can be specified using opt imset. For example,
we can display calculation details:

>> options = optimset ('display’', 'iter'};
>> fminbnd(z,0,8,optiong)

Func-count X f(x) Procedure
1 3.05573 -189.759 initial
2 4.94427 -187.19 golden
3 1.88854 -171.871 golden
4 3.87544 -192.851 parabolic
5 3.85836 -192.857 parabolic
6 3.83332 -192.861 parabolic
7 3.83162 -192.861 parabolic
8 3.83166 -192.861 parabolic
9 3.83169 -192.861 parabolic

Optimization terminated:
the current x satisfies the termination criteria using
OPTIONS.TolX of 1.000000e-004

ans

3.8317

W

Thus, after three iterations, the method switches from golden to parabolic, and after eight
iterations, the minimum is determined to a tolerance of 0.0001.

MULTIDIMENSIONAL OPTIMIZATION

Aside from one-dimensional functions, optimization also deals with multidimensional
functions. Recall from Fig. 7.3q that our visual image of a one-dimensional search was like
a roller coaster. For two-dimensional cases, the image becomes that of mountains and
valleys (Fig. 7.3b). As in the following example, MATLAB’s graphic capabilities provide
a handy means to visualize such functions.

180 OPTIMIZATION 7.4

EXAMPLE 7.4 Visualizing a Two-Dimensional Function

nun
Problem Statement. Use MATLAB’s graphical capabilities to display the following on
function and visually estimate its minimum in the range -2 < x; <0and 0 < xp <3 gra
flxox) =24 x —xz~+—2x,2 + 2x1x2 +x§ uati
fun
Solution. The following script generates contour and mesh plots of the function:
7.

x=1inspace(-2,0,40);y=1linspace(0,3,40};
[X,¥Y) = meshgrid(x,v); Stal
Z=2+X=-Y+2* X, "2+2*X.*Y+Y .2,

mui
subplot {(1,2,1); dire
cs=contour{X,Y,2);clabel(cg); han
xlabel (*x_1');ylabel ('x_2"');
title('({a) Contour plot');grid;
subplot (1,2,2); whe
B 7).
LUTOuLLL(X,Y{Z), the
zmin=Ffloor{min (7)) ;
zmax=ceil (max{2));

the

xlabel ('~x_1");vlabel ("x_2'");zlabel ("f(x_1,%_2)");
title (' (b) Mesh plot');

As displayed in Fig. 7.9, both plots indicate that function has a minimum value of about
Sflx,, x,) =0to 1 located at about x, = —1 and x, = L.5.

FIGURE 7.9

{a} Contour and (b} mesh plots of a two-dimensional function.

(a) Contour plot (b} Mesh plot

[o2]

)
W.\

A

)
i
A
w o
WO

W
A
) ’M 0‘0“‘0

e
~ A0 .
o OANOBA N
Sa RGN
<

. 2

(b)

7.4 CASE STUDY 181

Techniques for multidimensional unconstrained optimization can be classified in a
namber of ways. For purposes of the present discussion, we will divide them depending
on whether they require derivative evaluation. Those that require derivatives are called
gradient, or descent (or ascent), methods. The approaches that do not require derivative eval-
uation are called nongradient, or direct, methods. As described next, the built-in MATLAB
function fminsearch is a direct method.

7.3.1 MATLAB Function: tminsearch

Standard MATLAB has a function fminsearch that can be used to determine the mini-
mum of a multidimensional function. It is based on the Nelder-Mead method, which is a
direct-search method that uses only function values (does not require derivatives) and
handles non-smooth objective functions. A simple expression of its syntax is

[xmin, fval]l] = fminsearch(function,xl,x2)

where xminand fval are the location and value of the minimum, function is the name of
the function being evaluated, and x7 and x2 are the bounds of the interval being searched.

Here is a simple MATLAB session that uses frninsearch to determine minimum for
the function we just graphed in Example 7.4:

> f=@(x) 2+x{1)-~x(2)+2*x (1) "2+2*x (1) *x(2)+x(2)"2;

>> [x,fvall=fminsecarch({(f, [-0.5,0.5])

X =

-1.0000 1.5000
fval =

0.7500

EQUILIBRIUM AND MINIMUM POTENTIAL ENERGY

Background. As in Fig. 7.10«, an unloaded spring can be attached to a wall mount.
When a horizontal force is applied, the spring stretches. The displacement is related to the
force by Hookes law, F = kx. The potential energy of the deformed state consists of the dif-
ference between the strain energy of the spring and the work done by the force:

PE(x) = 0.5kx”> — Fx (7.11)

FIGURE 7.10
{a) An unloaded spring attached to a wall mount. {b} Application of a horizontal force siretches
the spring where the relationship between force and displacement is described by Hooke's law.

k

’
'
! X
v
e

(b}

%

182 OPTIMIZATION PR

continued - CASE STUDY

Equation (7.11) defines a parabola. Since the potential energy will be at a mini] Sa
equilibrinm, the solution for displacement can be viewed as a one-dimensional of
tion problem. Because this equation is so easy to differentiate, we can solve for ti§
placement as x = F/k. For example, if k = 2 N/cm and F = 5 N, x = SN/(2
2.5 cm. 4

A more interesting two-dimensional case is shown in Fig. 7.11. In this systemy
are two degrees of freedom in that the system can move both horizontally and vert§

In the same way that we approached the one-dimensional system, the equilibrium ¢ The
mations are the values of x, and x, that minimize the potential energy:
2
PE(xy, x7) = 0.5k, (,/x{l + (Ly — x2)? — La>
2
+ 0.5k, (,/Xlz + (L +X2)2 - Lb) — Fixy — FBx;
A Thu
If the parameters are k, = 9 Nfem, k, = 2 N/fem, L, = 10 ¢cm, L, = 10 em, F| =2, loca
F,= 4N, use MATLAB to solve for the displacements and the potential energy.
PROBLEMS

FIGURE 7.11
A twospring system: (o) unloaded and (b] loaded.

j erform three iterations
emine the root of Eq.
pm Example 7.1 along
en the formula

) = —x2 +8x ~ 12
ptermine the maximum
or this function analytic
that Eq. (7.10) yi
Bial guesses of x; = 0,
ponsider the following f

fx) = 3+ 6x + 5x2 +3

8 the minimum by findi

action. Use bisection v
1.
ven

—1.5x5+2x% +]

e function.
) tical methods to
e for all values of x.

PROBLEMS

183

.. continued

Solution.

W=F1*x(1)+F2*x(2);
p=PEa+PEb-W;

PEb=0.5*kb* {sgrt (x (1)

An M-file can be developed to hold the potential energy function:

function p=PE(x,ka,kb,La,Lb,F1,F2)
PEa=0.5*ka* (sqrt (x (1) "2+ (La-x(2))"2)-La)" 2;
2+ (Lb+x(2))7°2)-Lb) "2,

The solution can be obtained with the fminsearch function:

»» Ra=9;kb=2;La=10;Lb=10;11=2;F2

1

e
4;

>» [x,f]l=fminsearch(&PE, [~-0.5,0.51,1[],ka,kb,La,Lb,Fl,¥F2)

X =

1.2769

Thus, at equilibrium, the potential energy is —9.6422 N-cm. The connecting point is
located 4.9523 cm to the right and 1.2759 c¢cm above its original position.

PROBLEMS

[l Perform three iterations of the Newton-Raphson method

determine the root of Eq. (E7.1.1). Use the parameter val-

s from Example 7.1 along with an initial guess of 1 = 3 s.
Given the formula

f)= Xt 4+ 8 — 12

Determine the maximum and the corresponding value of

xforthis function analytically (i.e., using differentiation).
) Verify that Eq. (7.10) yields the same results based on
initial guesses of v; = 0,.x, = 2. and v, = 6.
3 Consider the following function:

foy=346x +5x7 +3x% + 4x?

caie the minimum by finding the root of the derivative of
function. Use bisection with initial guesses of x;, = -2
ir, = 1.

L]

Given
fy=—15x% + 2% 4 12

Plot the function.
Use analytical methods to prove that the function is con-
aave for all values of x.

(¢) Differentiate the function and then use a root-location
method 1o solve for the maximum f(x) and the corre-
sponding value of x.

7.5 Solve for the value of x that maximizes f(x) in Prob. 7.4

using the golden-section search. Employ initial guesses of

x;=0and x, = 2, and perform three iterations.

7.6 Repeat Prob. 7.5, except use parabolic interpolation.

Employ initial guesses of x; = 0, x, = 1. and x; = 2, and per-

form three iterations.

7.7 Employ the following methods to find the maximum of

o) =4dx — 1.8x7 +12x° — 0.3x*

(a) Golden-section search (x, =-2,x, =4, ¢, = 1%).

(b) Parabotic interpolation (v, = 1.75, x, = 2, xy = 2.5,
iterations = 5).

7.8 Consider the following function:

foo =x*+ 20" + 8x% 4 5x

Use analytical and graphical methods 1o show the function
has a minimum for some value of x in the range
-2 <x < 1.

184 OPTIMIZATION

7.9 Employ the following methods to find the minimum of

the function from Prob. 7.8:

(a) Golden-section search (x, = =2, x,= 1, &,=1%).

(b) Parabolic interpolation (v, = -2, x, = —1, x; = |,
iterations = 5).

7.10 Consider the following function:

, 3
flx)y=2x+ T

Perform 10 iterations of parabolic interpofation to locate
the minimum. Comment on the convergence of your results
(r, =0.1.x,=05x;,=5)

7.11 Develop an M-file that is expressly designed to locate
a maximum with the golden-section search. In other words,
set if up so that it directly finds the maximum rather than
finding the minimum of —f(x). The subroutine should have
the following features:

» Iterate until the relative error fulls below a stopping cri-
terion or exceeds a maximum number of iterations.
* Return both the optimal x and f(x).

Test your program with the same problem as Example 7.1.
7.12 Develop an M-file to locate o minimum with the
golden-section search. Rather than using the maximum itera-
tions and Eq. (7.9) as the stopping criteria, determine the
number of iterations needed to attain a desired tolerance. Test
your function by solving Example 7.2 using £, , = 0.0001.
7.13 Develop an M-file to implement parabolic interpola-
tion to locate a minimum. The subroutine should have the
following features:

e Base it ontwo initial guesses, and have the program gen-
crate the third initial value at the midpoint of the interval.

» Check whether the guesses bracket a maximum. U not,
the subroutine should not implemient the algorithm, but
should return an error message.

e [Iterate until the relative error falls below a stopping cri-
terion or exceeds a maximum number of iterations.

¢ Return both the optimal x and f(x).

Test your program with the same problem as Example 7.3.
7.14 Pressure measurements are taken at certain points
behind an airfoil over time. The data best fits the curve
v==06cos.x — [.53sinx fromx = 0 to 6 s. Use four iterations
of the golden-search method to find the minimum pressure.
Setx, = 2 and x, = 4.

7.15 The trajectory of a ball can be computed with

8

S
————x" + Yo
2l B
2v; cos? by

v = (tanfy)x —

where v = the height (m), 6, = the initial angle (radians),
v, = the initial velocity (m/s), ¢ = the gravitational

constant = 9.81 m/s*, and v, = the initial height (m). Use the
golden-section search to determine the maximum height
given y, = I m. vy, = 25 m/s, and 6, = 50°. Iterate until the
approximate error falls below &, = 1% using initial guesses
of x, = 0 and x, = 60 m.

7.16 The detlection of a uniform beam subject to a linearly
increasing distributed load can be computed as

L Wy
Y E0EIL

Given that L = 600 cm, £ = 50,000 kN/cm®, I = 30,000 cm’,
and w,, = 2.5 kN/cm, determine the point of maximum de-
flection (a) graphically, (b) using the golden-section search
unti! the approximate error falls below &; = 1% with initial

(;x5 +2L%% — L4,x‘)

guesses of x, =0 and x, = L.

7.17 A object with a mass of 100 kg is projected upward
from the surface of the earth at a velocity of 50 m/s. If the
object is subject to linear drag (¢ = 15 kg/s), use the golden-
section scarch to determine the maximum height the object
attains.

7.18 The normal distribution is a bell-shaped curve defined by

Use the golden-section search to determine the location of
the inflection point of this curve for positive x.

7.19 Usc the tminsearch function to determine the
minimum of

Flx, vy =2y7 = 2.25xy — 175y 4+ 1557

7.20 Use the fminscarch function to determine the
maximum of

4

fxoy)y =4x +2v + a7 =2t 4 2xy =3y

7.21 Given the following function:
S vy =—-8x + X 12y 4 4v> = 2xv

Determine the minimum (&) graphically. (b) numerically
with the twinsearch function, and (¢) substitute the result
of (b) back into the function to determine the minimum
Jlxow.
7.22 The specific growth rate of a yeast that produces a
antibiotic is a lunction of the food concentration ¢:

2¢
T 4408+ 240203

&

As depicted in Fig. P7.22, growth goes to zero at very low
concentrations duc to food limitation. It also goes to zeroa
high concentrations due to toxicity effects. Find the valueof
¢ at which growth is a maximum.

P

FIGURE P7.22
e specific growth rate o
antibiotic versus the food

7.23 A compound A wil]
tank reactor. The product B
separation unit. Unreacted
process engineer has found
1s a function of the convers
will result in the lowest cos
constant,

Cost = C (\lﬁ_
(1= x4)?

7.24. A finite-element mode
loading and moments (Fig.

f(X,y) :5)«2—-5_,\’»4_2

where x = end displacement
values of x and y that minimi:
7:25 The Streeter-Phelps mo,
dissolved OXygen concentratii
charge of sewage (Fig. P7.25
kyL,

Oy — ——L720 (o

k(i + k.v — /\'”

FIGURE P7.24

A cantilever beam.

1t
C

ly

e-
ch
1al

wrd
he
n-
ect

of

the

the

-ally
2sult
num

'S an

low
ro at
1e of

PROBLEMS

185

) A5 T T S U NS S N S

0 5 10
¢ {(mg/L)

FIGURE P7.22
The specific growth rate of a yeast that produces an
anibiotic versus the food concentration.

FIGURE P7.25

A dissolved oxygen “sag” below o point dischorge of
sewage info a river.

123 A compound A will be converted into B in a stirred
tank reactor. The product B and unreacted A are purified in a
separation unit. Unreacted A is recycled to the reactor. A
process engineer has found that the initial cost of the system
isa function of the conversion x,. Find the conversion that
will result in the lowest cost system. C is a proportionality
constant.

| 0.6] ~ 0.6
Cost=C || —— 6 —
* [((l ‘-‘(.4)2> * <XA) :,

14 Afinite-element model of a cantilever beam subject to
kading and moments (Fig. P7.24) is given by optimizing

fley) =557 = Sxy + 25y —x — 1.5y

where x = end displacement and y = end moment. Find the

wlues of x and v that minimize f(x, v).

125 The Streeter-Phelps model can be used to compute the

disolved oxygen concentration in a river below a point dis-
ge of sewage (Fig. P7.25),

where 0 = dissolved oxygen concentration (mg/L), o, =
oxygen saturation concentration (mg/L), 1 = travel time (d),
L, = biochemical oxygen demand (BOD) concentration at
the mixing point (mg/L), k, = rate of decomposition of
BOD (d™"). k, = rate of settling of BOD (d™"), k, = reaeration
rate (d '), and S, = sediment oxygen demand (mg/L/d).

As indicated in Fig. P7.25, Eq. (P7.25) produces an
oxygen “sag’ that reaches a critical minimum level o, some
travel time r. below the point discharge. This point is called
“critical” because it represents the Jocation where biota that
depend on oxygen (like fish) would be the most stressed.
Determine the critical travel time and concentration, given
the following values:

o, = 10mg/lL

k,=005d"

k,=0.1d"
L,=50mg/L

k,=0.6d"
S, =1 mg/L/d

7.26 The two-dimensional distribution of pollutant concen-
tration in a channel can be described by

clx,v) =794 0.13x +0.21y — 0.05x°

o kgL, (e bt — o therhon) —0.016y7 — 0.007xy
kit ky = ko (P7.25) Determine the exact location of the peak concentration given
_S_h“ —phty the function and the knowledge that the peak lies within the
£ ovdnds — (0~ ~ {Uand U ~ v ~ 2.
7.27 Atotal charge Q is uniformly distributed around a ring-
x <haped conductor with radinsg o A charea g 3 laeamad a o
AUEEN Qistance X 1Tomm e center oi e ning (kig. P7.27). The torce
B v exerted on the charge by the ring is piven by
‘) . i gQux
F = matitar”
o0 (7 +a”)
HGURE P7.24 where ¢, = 8.85 x 1072 CHNm), ¢ =0 =2 x 107 C,

and « = 0.9 m. Determine the distance x where the force is a
maximum.

Acontilever beam.

186 OPTIMIZATION PR(

o D
l 20,000 —
X Q
q - Minimum
10,000 —~
0 L .
Lift /FHC'[IOH
| | | L
0
FIGURE P7.27 0 400 800 1,200 v

FIGURE P7.31
Two frictionless masses cor

7.28 The torque transmitted to an induction motor is a func- i ! !
linear elastic springs.

tion of the slip between the rotation of the stator field and the
rotor speed s, where slip is defined as

FIGURE P7.29
Plot of drag versus velocity for an airfoil.

n—ng

§ = —
h The combination of the two factors leads to a minimun

where n = revolutions per second of rotating stator speed drag.

and n, = rotor speed. Kirchhott’s laws can be used to show (a) If o = 0.6 and W = 16,000, determine the minimum

that the torque (cxpressed in dimensionless form) and slip

7.31 In a similar fashion
Sec. 7.4, develop the potent
tem depicted in Fig. P7.3].
plots in MATLAB. Minimiz
to determine the equilibrium
the forcing function F = 10(
 and k, = 15 N/m.

7.32 As an agricultural engi
'zoidal open channel to carry
' Determine the optimal dime

drag and the velocity at which it occurs.
arc related by (b} In addition, devclop a sensitivity analysis to determine
155(1 —) how this optimum varics in response to a range of

= — 1?2 1 —
09452 35+ 4 W = 12,000 -lo 20,000 w¥th o ‘()-.6. B

7.30 Roller bearings are subject to fatigue failure causedby
Figure P7.28 shows this function. Use a numerical method jarge contact loads # (Fig. P7.30). The problem of find
to determine the slip at which the maximum torque occurs. the location of the maximum stress along the x axis can
7.29 The total drag on an airfoil can be estimated by

shown to be equivalent to maximizing the function:

, 095 FW?
D=00loV 4+ = =
a 1%

Friction Lift
where D = drag, o = ratio of air density between the tlight
altitude and sea level, W = weight. and V = velocity. As seen
in Fig. P7.29, the two factors contributing fo drag are af-
fected differently as velocity increases. Whereas friction

0.4 — 0.4
f(.)():———Jr = — V1 +x2 (1— >+x
X2

Find the x that maximizes f(x).

perimeter for a cross-sectiona
dimensions universal?

- 7.33 Use the function fmins
of the shortest ladder that rez
- fence to the building’s wall (|
where h =d =4 m.

7.34 The length of the lon;
the corner depicted in Fig.

V1 I+ x2

drag increases with velocity, the drag due to lift decreases.

T 1
4 g ’ w -
sk - v
) |
1 4
0 AN R N SO SO NS SR S MO N
0 2 4 6 8 10 s 23 3

FIGURE P7.32
FIGURE P7.28

Torque fransmitted fo an inductor as a function of slip.

FIGURE P7.30

Roller bearings.

Um

um

ine
of

PROBLEMS

187

RGURE P7.31
o fiicionless masses connected to a wall by a pair of
incar elasfic springs.

31 In a similar fashion to the case study described in
Sec. 7.4 develop the potential energy function for the sys-
pm depicted in Fig. P7.31. Develop contour and surface
ots in MATLAB. Minimize the potential energy function
D determine the equilibrium displacements x; and x, given
he forcing function £ = 100 N and the parameters k, = 20
pd k, = 15 N/m,

032 As an agricultural engineer, you must design a trape-
idal open channel 1o carry irrigation water (Fig. P7.32).
Determine the optimal dimensions to minimize the wetted
imeter for a cross-sectional area of 50 m>. Are the relative
mensions universal?

P33 Use the function tmirisearch to determine the length
the shortest ladder that reaches from the ground over the
pace (0 the building’s wall (Fig. P7.33). Test it for the case
here = d = 4 m.

134 The length of the longest ladder that can negotiate
e comer depicted in Fig. P7.34 can be determined by

u

URE P7.32

FIGURE P7.33

A ladder leaning against a fence and just touching a wall.

computing the value of & that minimizes the following
function:

W 10
L) = — +

sinf sin(r —a — 0)

For the case where w, = w; = 2 m, use a numerical method
described in this chapter (including MATLAB’s built-in
capabilities) to develop a plot of L versus a range of «’s from
45 to 135°.

FIGURE P7.34

A ladder negotiating a comer formed by two hallways.

Linear Systems

3.1 OVERVIEW

What Are Linear Algebraic Equations?

In Part Two, we determined the value x that satisfied a single equation, f(x) = 0. N. ow, we

deal with the case of determining the values Xy X500, x that simultaneously satisfy a set
“of equations:
Sy, X ix) =0

Bl X, x) =0

fn(xl, Xy v v ,xn) :O '

Such systems are either linear or nonlinear. In Part’
Three, we deal with linear algebraic equations that
are of the general form

allxl“f"'auxz +odayx, = b
DX+ anxy + -+ ay,x, = by .
(PT3.1)

Anr X1 Faxy + -0 4 A X = b,

where the a’s are constant coefficients, the b’s are con-
stants, the x’s are unknowns, and 7 is the number of
equations. All other algebraic equations are nonlinear.

Linear Algebraic Equations in
Engineering and Science

Many of the fundamental equations of engineering
and science are based on conservation laws. Some fa-
miliar quantities that conform to such laws are mass,
energy, and momentum: In mathematical terms, these
principles lead t6 balancebt continuity equations that
relate system behavior as represented by the levels or

189

190

PART 3 LINEAR SYSTEMS

Feed

Feed

FIGURE PT3.1

Two types of sysiems that can be modeled using linear algebraic equations: (a lumped variable
system that involves coupled finite components and (6] distributed variable system that involves
a continuum.

response of the quantity being modeled to the properties or characteristics of the system
and the external stimuli or forcing functions acting on the system.

As an example, the principle of mass conservation can be used to formulate a model
for a series of chemical reactors (Fig. PT3.1a). For this case, the quantity being modeled is
the mass of the chemical in each reactor. The system properties are the reaction character-
istics of the chemical and the reactors’ sizes and flow rates. The forcing functions are the
feed rates of the chemical into the system.

When we studied roots of equations, you saw how single-component systems result in
a single equation that can be solved using root-location techniques. Multicomponent sys-
tems result in a coupled set of mathematical equations that must be solved simultaneously.
The equations are coupled because the individual parts of the system are influenced by other
parts. For example, in Fig. PT3.1a, reactor 4 receives chemical inputs from reactors 2 and 3.
Consequently, its response is dependent on the quantity of chemical in these other reactors.

When these dependencies are expressed mathematically, the resulting equations are
often of the linear algebraic form of Eq. (PT3.1). The x’s are usually measures of the magni-
tudes of the responses of the individual components. Using Fig. PT3.1a as an example, x,
might quantify the amount of chemical mass in the first reactor, x; might quantify the amount
in the second. and so forth. The a’s typically represent the properties and characteristics that
bear on the interactions between components. For instance, the a’s for Fig. PT3. 1a might be
reflective of the flow rates of mass between the reactors. Finally. the b’s usually represent the
forcing functions acting on the system, such as the feed rate.

Multicomponent problems of these types arise from both lumped (macro-) or distsib-
uted (micvo-) variable mathematical models. Lumped variable problems involve coupled

3.2 PART ORGANIZATION 191

3.2

finite components. Examples include trusses, reactors, and electric circuits. The three
bungee jumpers at the beginning of Chap. 8 are a lumped system.

Conversely, distributed variable problems attempt to describe the spatial detail of
systems on a continuous or semicontinuous basis. The distribution of chemicals along the
length of an elongated, rectangular reactor (Fig. PT3.15) is an example of a continuous
variable model. Differential equations derived from conservation laws specify the distrib-
ution of the dependent variable for such systems. These differential equations can be
solved numerically by converting them to an equivalent system of simultaneous algebraic
equations.

The solution of such sets of equations represents a major application area for the meth-
ods in the following chapters. These equations are coupled because the variables at one loca-
tion are dependent on the variables in adjoining regions. For example, the concentration at
the middle of the reactor in Fig. PT3.1b is a function of the concentration in adjoining
regions. Similar examples could be developed for the spatial distribution of temperature,
momentum, or electricity.

Aside from physical systems. simultaneous linear algebraic equations also arise in a
variety of mathematical problem contexts. These result when mathematical functions are
required to satisfy several conditions simultaneously. Each condition results in an equation
that contains known coefficients and unknown variables. The techniques discussed in this
part can be used to solve for the unknowns when the equations are linear and algebraic.
Some widely used numerical techniques that employ simultaneous equations are regres-
sion analysis and spline interpolation.

PART ORGANIZATION

Due to its importance in formulating and solving linear algebraic equations, Chap. 8§ pro-
vides a brief overview of matrix algebra. Aside from covering the rudiments of matrix
representation and manipulation, the chapter also describes how matrices are handled in
MATLAB.

Chapter 9 is devoted to the most fundamental technique for solving linear algebraic
systems: Gauss elimination. Before launching into a detailed discussion of this technique,
a preliminary section deals with simple methods for solving small systems. These ap-
proaches are presented to provide you with visual insight and because one of the methods—
the elimination of unknowns—represents the basis for Gauss elimination.

After this preliminary material, “naive” Gauss elimination is discussed. We start with
this “stripped-down” version because it allows the fundamental technique to be elaborated
on without complicating details. Then, in subsequent sections, we discuss potential prob-
lems of the naive approach and present a number of modifications to minimize and cir-
cumvent these problems. The focus of this discussion will be the process of switching
rows, or partial pivoting. The chapter ends with a brief description of efficient methods for
solving tridiagonal matrices.

Chapter 10 illustrates how Gauss elimination can be formulated as an LU factorization.
Such solution techniques are valuable for cases where many right-hand-side vectors need
to be evaluated. The chapter ends with a brief outline of how MATLAB solves linear
systems.

192

PART 3 LINEAR SYSTEMS

Chapter 11 starts with a description of how LU factorization can be employed to effi-
ciently calculate the matrix inverse, which has tremendous utility in analyzing stimulus-
response relationships of physical systems. The remainder of the chapter is devoted to the
important concept of matrix condition. The condition number is introduced as a measure of
the roundoff errors that can result when solving ill-conditioned matrices.

Chapter 12 deals with iterative solution techniques, which are similar in spirit to the
approximate methods for roots of equations discussed in Chap. 6. That is. they involve guess-
ing a solution and then iterating to obtain a refined estimate. The emphasis is on the Gauss-
Seidel method, although a description is provided of an alternative approach, the Jacobi
method. The chapter ends with a brief description of how nonlinear simultaneous equations
can be solved.

effi-
ulus-
0 the

oo Linear Algebraic Equations
s e and Matrices

uess-
AuUss-
1cobi
tions

K CHAPTER OBJECTIVES

The primary objective of this chapter is to acquaint you with linear algebraic equations
and their relationship to matrices and matrix algebra. Specific objectives and topics
covered are

Understanding matrix notation.
Being able to identify the following types of matrices: identity, diagonal,
symmetric, triangular, and tridiagonal.

* Knowing how to perform matrix multiplication and being able to assess when it is
feasible.

®* Knowing how to represent a system of linear algebraic equations in matrix form.
® Knowing how to solve linear algebraic equations with left division and matrix
inversion in MATLAB.

YOU'NE GOT A PRORBLEM

uppose that three jumpers are connected by bungee cords. Figure 8.1a shows them

being held in place vertically so that each cord is fully extended but unstretched. We

can define three distances. x;. v>. and ;. as measured downward from each of their
unstretched positions. Atter they are released. gravity takes hold and the jumpers will even-
tually come to the equilibrium positions shown in Fig. 8.1b.

Suppose that you are asked to compute the displacement of each of the jumpers. If we
assume that each cord behaves as a linear spring and follows Hooke’s law, free-body dia-
grams can be developed for each jumper as depicted in Fig. 8.2.

Using Newton’s second law, a steady-state force balance can be written for each jumper:

mig +ka(xa—xy) —kix; =0
mag + ka(xy — x2) —ko(xa —x1) =0
m3g —ka(xz —x2) =0

194

LINEAR ALGEBRAIC EQUATIONS AND MATRICES

{a) Unstretched (b) Stretched mg k(xy—) mag kil — xy)

FIGURE 8.1

k‘Xl kz(xz - x])

1

FIGURE 8.2

Three individuals connected by bungee cords. Free-body diagrams.

8.1

where m; = the mass of jumper i (kg), k; = the spring constant for cord j (N/m), x; = the
displacement of jumper i measured downward from the equilibrium position (m), and g =
gravitational acceleration (9.81 m/s?). Collecting terms gives

tky + k2)x, — kyx» =mg
—kax) + (ky + k3)xa — kaxy = mog (8.1)

—k3xo + k3xz = msg
Thus, the problem reduces to solving a system of three simultaneous equations for
the three unknown displacements. Because we have used a linear law for the cords, these

equations are linear algebraic equations. Chapters 8 through 12 will introduce you to how
MATLAB is used to solve such systems of equations.

MATRIX ALGEBRA OVERVIEW

Knowledge of matrices is essential for understanding the solution of linear algebraic equa-
tions. The following sections outline how matrices provide a concise way to represent and
manipnlate linear aleebraic equations

8.1 MATRIX ALGEBRA OVERVIEW 195

Column 3

|

apy ays [F e a,

Gy an ay, | +— Row 2

(Al =

A (%) A3 e Ay J

FIGURE 8.3

A maitrix.

8.1.1 Matrix Notation

A matrix consists of a rectangular array of elements represented by a single symbol. As
depicted in Fig. 8.3, [A] is the shorthand notation for the matrix and a;; designates an indi-
vidual element of the matrix.

A horizontal set of elements is called a row and a vertical set is called a column. The
first subscript i always designates the number of the row in which the element lies. The sec-
ond subscript j designates the column. For example, element a3 is in row 2 and column 3.

The matrix in Fig. 8.3 has m rows and n columns and is said to have a dimension of
m by n (or m x n). It is referred to as an m by n matrix.

Matrices with row dimension m = 1, such as

bl=1[br by -+ byl

are called row vectors. Note that for simplicity, the first subscript of each element is
dropped. Also, it should be mentioned that there are times when it is desirable to employ a
special shorthand notation to distinguish a row matrix from other types of matrices. One
way to accomplish this is to employ special open-topped brackets, as in | 5] .
Matrices with column dimension n = 1, such as
Ci
(%)

[cl=] - (8.2)
C"I

are referred to as column vectors. For simplicity, the second subscript is dropped. As with the
row vector, there are occasions when it is desirable to employ a special shorthand notation
to distinguish a column matrix from other types of matrices. One way to accomplish this is
to employ special brackets, as in {c}.

!'In addition to special brackets, we will use case to distinguish between vectors (lowercase) and matrices
(uppercase).

196

LINEAR ALGEBRAIC EQUATIONS AND MATRICES

Matrices where m = n are called square matrices. For example. a 3 x 3 matrix is

dir dip an
A} = az) axy axn
azy ds as

The diagonal consisting of the elements a;1, as,, and a3z is termed the principal or main
diagonal of the matrix.

Square matrices are particularly important when solving sets of simultaneous linear
equations. For such systems, the number of equations (corresponding to rows) and the
number of unknowns (corresponding to columns) must be equal for a unique solution to be
possible. Consequently, square matrices of coefficients are encountered when dealing with
such systems.

There are a number of special forms of square matrices that are important and should
be noted:

A symmetric matrix is one where the rows equal the columns—that is, g; ; = aj; forall
i’s and j’s. For example,

(A] =

BN —

1
3
7

o0~ N

isa3 x 3 symmetric matrix.
A diagonal matrix is a square matrix where all elements off the main diagonal are
equal to zero, as in

ap
[A] = an)
ass

Note that where large blocks of elements are zero, they are left blank.
An identity matrix is a diagonal matrix where all elements on the main diagonal are
equal to 1, as in

1
[A] = 1
1

The symbol [/] is used to denote the identity matrix. The identity matrix has properties sim-
ilar to unity. That is,

(All] = {7TIA] = [A]
An upper triangular matrix is one where all the elements below the main diagonal are

Zero, as in

ayy dapp aps
[A] = azy axn
a33

8.1 MATRIX ALGEBRA OVERVIEW 197

A lower triangular matrix is one where all elements above the main diagonal are zero,
as in
ail
(Al=|ay an
as dx as3

A banded matrix has all elements equal to zero, with the exception of a band centered
on the main diagonal:

apy ap
azy dpy 4
aszy d3y dszg
asy dag

(A] =

The preceding matrix has a bandwidth of 3 and is given a special name—the tridiagonal
matrix.

8.1.2 Matrix Operating Rules

Now that we have specified what we mean by a matrix, we can define some operating rules
that govern its use. Two m by n matrices are equal if, and only if, every element in the first
is equal to every element in the second—that is, [A] = [B] if a;; = b;; for all i and j.

Addition of two matrices, say, [A] and [B], is accomplished by adding corresponding
terms in each matrix. The elements of the resulting matrix [C] are computed as

¢ij = dij + b
fori=1,2,....mand j=1,2,..., n. Similarly, the subtraction of two matrices. say,
[E] minus [F], is obtained by subtracting corresponding terms, as in

dij = eij = fij
fori =1,2,...,mand j = 1,2, ..., n. It follows directly from the preceding definitions

that addition and subtraction can be performed only between matrices having the same
dimensions.
Both addition and subtraction are commutative:

[Al+[B] ={B] +[A]
and associative:
([A]+[BD) +[C]l=[A] + ([B]+ [CD

The multiplication of a matrix [A} by a scalar g is obtained by multiplying every ele-
ment of [A] by g. For example, for a3 x 3 matrix:

gdy g4z 843
[D] = glAl = | gan gaxn gas;

Ol [0 8 BN [v 72)

198

LINEAR ALGEBRAIC EQUATIONS AND MATRICES

5 9
[A]mxn [B]n)(l = [C]mxl
7 2 l J
Interior dimensions
are equal,
multiplication
is possible
3 1 —_— 3XBE+1XT =22
8 6 -
Exterior dimensions define
0 4 the dimensions of the result
FIGURE 8.4 FIGURE 8.5
Visual depiction of how the rows and columns line up in Matrix multiplication can be performed only if

matrix multiplication.

the inner dimensions are equal.

The product of two matrices is represented as [C'] = [A][B], where the elements of [C]
are defined as

H
Cij = Zaikbkj (83)
=1

where n = the column dimension of [A] and the row dimension of [B]. That is, the ¢;; ele-
ment is obtained by adding the product of individual elements from the ith row of the first
matrix, in this case [A], by the jth column of the second matrix [B]. Figure 8.4 depicts how
the rows and columns line up in matrix multiplication.

According to this definition, matrix multiplication can be performed only if the first
matrix has as many columns as the number of rows in the second matrix. Thus, if [A] is an
m by n matrix, [B] could be an n by / matrix. For this case, the resulting [C] matrix would
have the dimension of m by (. However, if {B] were an m by [matrix, the muitiplication
could not be performed. Figure 8.5 provides an easy way to check whether two matrices
can be multiplied.

If the dimensions of the matrices are suitable, matrix multiplication is associative:

((AIBD[CT = [AI([BIICD
and distributive:
[AICBY + [CD = [AI[B] + [AJ[C]
or
([A] +[BDIC] = [AICT + [BI[C]
However, multiplication is not generally commustative:
(Al[B] # [BI[A])

That ic tha arder of mnltinlication 1< ymportant

8.1 MATRIX ALGEBRA OVERVIEW 199

Although multiplication is possible, matrix division is not a defined operation. How-
ever, if a matrix [A} is square and nonsingular, there is another matrix [A]™", called the
inverse of [A], for which

[AI[A]! = [A] '[A] =[]

Thus, the multiplication of a matrix by the inverse is analogous to division, in the sense that
a number divided by itself is equal to 1. That is, multiplication of a matrix by its inverse
leads to the identity matrix.

The inverse of a 2 x 2 matrix can be represented simply by

[A]—l: 1 an —daj2
apax —apdz | —d1 an

Similar formulas for higher-dimensional matrices are much more involved. Chapter 11 will
deal with techniques for using numerical methods and the computer to calculate the inverse
for such systems.

Two other matrix manipulations that will have utility in our discussion are the trans-
pose and the augmentation of a matrix. The rranspose of a matrix involves transforming its
rows into columns and its columns into rows. For example, for the 3 x 3 matrix:

ap diz a3
[A] = ary dx
asz) a4z dis

the transpose, designated [A], is defined as

dyy a4z

T
[A) =|a» axn axn
apy dz dsz

In other words, the element a;; of the transpose is equal to the a;; element of the original
matrix.
The transpose has a variety of functions in matrix algebra. One simple advantage is
that it allows a column vector to be written as a row, and vice versa. For example, if
9
{c)=13a
Ci
then

Iy =l o o)

In addition, the transpose has numerous mathematical applications.

The final matrix manipulation that will have utility in our discussion is augmentation.
A matrix is augmented by the addition of a column (or columns) to the original matrix. For
example, suppose we have a 3 x 3 matrix of coefficients. We might wish to augment this
matrix [A] with a 3 x 3 identity matrix to yield a 3-by-6-dimensional matrix:

ay) dyy dn ’ 1 00
azy axy an (0 1 0
azy Aazy 4z 0 0 1

200 LINEAR ALGEBRAIC EQUATIONS AND MATRICES
Such an expression has utility when we must perform a set of identical operations on the
rows of two matrices. Thus, we can perform the operations on the single augmented matrix
rather than on the two individual matrices.
EXAMPLE 8.1 MATLAB Matrix Manipulations

Problem Statement. The following example illustrates how a variety of matrix manipu-
lations are implemented with MATLAB. It is best approached as a hands-on exercise on the
computer.

Solution. Create a3 x 3 matrix:

>> A = [1 5 6;7 4 2;-3 6 7]

.
%]
<1 N oy

ans =
1 7 -
5 4 6
6 2

>> X = [8 6 97;
>> vy = [-5 8 17;
>> z = [4 8 27;

Then we can combine these to form the matrix:

>> B = [x; y; z]
B =
8 6 9
-5 8 1
4 8 2

(el

11 15
12 3

no

8.1 MATRIX ALGEBRA OVERVIEW 201

Further, we can subtract [B] from [C] to arrive back at [A]:

>> C = C-B

C =
1 5 6
7 4 2
-3 6 7

Because their inner dimensions are equal, {A] and [B] can be multiplied

>> A*B
ans =
7 94 26
44 90 71
-26 86 -7

Note that [A] and [B] can also be multiplied on an element-by-element basis by including
a period with the multiplication operator as in

>> A.*B
ans =
8 30 54
~-35 32 2
-12 48 14

A2 x 3 matrix can be set up

>> D = [1 4 3;5 8 1];

If [A] is multiplied times [D], an error message will occur
>> A*D

??? Error using ==> *
Inner matrix dimensions must agree.

However, if we reverse the order of multiplication so that the inner dimensions match,
matrix multiplication works

>> D*A

ans =
20 39 35
58 63 53

The matrix inverse can be computed with the inv function:

>> ATl = 1nv{(A)

AT =
0.2462 0.0154 -0.2154
-0.8462 0.3846 0.6154

0.8308 -0.3231 -0.4769

202

LINEAR ALGEBRAIC EQUATIONS AND MATRICES

To test that this is the correct result, the inverse can be multiplied by the original matrix to
give the identity matrix:

>> A*AT

ans =
1.0000 -0.0000 -0.0000
0.0000 1.0000 -0.0000
0.0000 ~-0.0000 1.0000

The eye function can be used to generate an identity matrix:

>> T = evell)

I =
1 0 0
0 1 0
0 0 1

Finally, matrices can be augmented simply as in

>> Aug = [A 1]

Aug =
1 6 1 0 0
7 4 z 0 1
-3 7 0 0 1

Note that the dimensions of a matrix can be determined by the s1i ze function:

>> [n,m] = size(Aug)
n =

3
m =

6

8.1.3 Representing Linear Algebraic Equations in Matrix Form
It should be clear that matrices provide a concise notation for representing simultaneous
linear equations. For example, a 3 x 3 set of linear equations,
anxy +apx; + dixs = b
ax1x| + anx: + anxy = b (84)
azxy +anx: +ayxs = by
can be expressed as

[Alfx} = {D) 33

8.2 SOLVING LINEAR ALGEBRAIC EQUATIONS WITH MATLAB 203

8.2

where [A] is the matrix of coefficients:

ay dp dps
[Al=|ay a»n ax
asz; dszn as

{b} is the column vector of constants:
W) =16y by by

and {x} is the column vector of unknowns:
W =lx x xl

Recall the definition of matrix multiplication [Eq. (8.3)] to convince yourself that
Eqgs. (8.4) and (8.5) are equivalent. Also, realize that Eq. (8.5) is a valid matrix multiplica-
tion because the number of columns n of the first matrix [A] is equal to the number of rows
n of the second matrix {x}.

This part of the book is devoted to solving Eq. (8.5) for {x}. A formal way to obtain a
solution using matrix algebra is to multiply each side of the equation by the inverse of [A]
to yield

[AI7[Alx) = [A]7'{b}
Because [A]7'[A] equals the identity matrix, the equation becomes
{x} =[A1""{b) (8.6)

Therefore, the equation has been solved for {x}. This is another example of how the inverse
plays a role in matrix algebra that is similar to division. It should be noted that this is not a
very efficient way to solve a system of equations. Thus, other approaches are employed in
numerical algorithms. However, as discussed in Section 11.1.2, the matrix inverse itself
has great value in the engineering analyses of such systems.

It should be noted that systems with more equations (rows) than unknowns (columns),
m > n, are said to be overdetermined. A typical example is least-squares regression where
an equation with n coefficients is fit to /m data points (x, y). Conversely, systems with less
equations than unknowns, m < n, are said to be underdetermined. A typical example of
underdetermined systems is numerical optimization.

SOLVING LINEAR ALGEBRAIC EQUATIONS WITH MATLAB

MATLAB provides two direct ways to solve systems of linear algebraic equations. The most
efficient way is to employ the backslash, or “left-division,” operator as in

>> x = A\D
The second is to use matrix inversion:

>> X = 1nv(A)*Db

204 LINEAR ALGEBRAIC EQUATIONS AND MATRICES

As stated at the end of Section 8.1.3, the matrix inverse solution is less efficient than using
the backslash. Both options are illustrated in the following example.

EXAMPLE 8.2 Solving the Bungee Jumper Problem with MATLAB

Problem Statement. Use MATLARB to solve the bungee jumper problem described at the
beginning of this chapter. The parameters for the problem are

Spring Constant Unstretched Cord
Jumper Mass (kg) (N/m) Length (m)
Top (1) 60 50 20
Middle {2) 70 100 20
Bottom (3) 80 50 20

Solution. Substituting these parameter values into Eq. (8.1) gives

150 —100 0] |x 588.6
—100 150 —50 | yx2¢ = 16867
0 =50 50] xs3 784.8

Start up MATLAB and enter the coefficient matrix and the right-hand-side vector:

>> K = [150 -100 0;-100 150 -50;0 -50 50]
K =
150 -100 0
-100 150 -50
0 -50 50
>> mg = [588.6; 686.7; 784.8]
mg =
588.6000
686.7000
784.8000

Employing left division yields

>> x = K\mg

X =
41.2020
55.9170
71.6130

Alternatively, multiplying the inverse of the coefficient matrix by the right-hand-side vec-
tor eives the same result:

8.3 CASE STUDY 205

>> X = 1inv(K)*mg 0 — 7T,
X = 1 ;
41.2020 B)
55.9170
71.6130
Because the jumpers were connected by 20-m cords, their initial oG
positions relative to the platform is ;
>> xi = [20;40;60]; - © 0
Thus, their final positions can be calculated as 80
>> xf = x+xi
xf = - S
61.2020
95.9170
131.6130 1201~ |
The results, which are displayed in Fig. 8.6, make sense. ©
The first cord is extended the longest because it has a lower @ ()
a

spring constant and is subject to the most weight (all three
jumpers). Notice that the second and third cords are extended FIGURE 8.6

about the same amount. Because it is subject to the weight of two Positions of three

Jumpers, one might expect the second cord to be extended longer individuals connected

than the third. However, because it is stiffer (i.e., it has a higher by bungee cords.

spring constant), it stretches less than expected based on the la] Unstretched and
(b) stretched.

weight it carries.

CURRENTS AND VOLTAGES IN CIRCUITS

Background. Recall that in Chap. 1 (Table 1.1), we summarized some models and as-
sociated conservation laws that figure prominently in engineering. As in Fig. 8.7, each
model represents a system of interacting elements. Consequently, steady-state balances de-
rived from the conservation laws yield systems of simultaneous equations. In many cases,
such systems are linear and hence can be expressed in matrix form. The present case study
focuses on one such application: circuit analysis.

A common problem in electrical engineering involves determining the currents and
voltages at various locations in resistor circuits. These problems are solved using Kirch-
hoff'’s current and voltage rules. The current (or point) rule states that the algebraic sum of
all currents entering a node must be zero (Fig. 8.8a), or

Zi =0 8.7

where all current entering the node is considered positive in sign. The current rule is an
application of the principle of conservation of charge (recall Table 1.1).

206 LINEAR ALGEBRAIC EQUATIONS AND MATRICES

continued

Reactors
2 Structure
k t i
{a) Chemical engineering (b) Civil engineering 1 .
B
(a)
Machine
+ .
Lo ko —
iy
Circuit (b)
(c) Electrical engineering (d) Mechanical engineering
FIGURE 8.8
FIGURE 8.7 Schematic representations
Engineering systems which, at steady state, can be modeled with linear algebraic of (a) Kirchhoff's current rule
equations. and (b} Ohm’s law.

The voltage (or loop) rule specifies that the algebraic sum of the potential differences
(that is, voltage changes) in any loop must equal zero. For a resistor circuit, this is |
expressed as

Zs-ZiRzo 89)

where & is the emf (electromotive force) of the voltage sources, and R is the resistance of
any resistors on the loop. Note that the second term derives from Ohm’s law (Fig. 8.8b), |
which states that the voltage drop across an ideal resistor is equal to the product of the
current and the resistance. Kirchhoff’s voltage rule is an expression of the conservation of
energy.

Solution. Application of these rules results in systems of simultaneous linear algebraic
equations because the various loops within a circuit are interconnected. For example, con-
sider the circuit shown in Fig. 8.9. The currents associated with this circuit are unknown
both in magnitude and direction. This presents no great difficulty because one simply
assumes a direction for each current. If the resultant solution from Kirchhoff’s laws is
negative, then the assumed direction was incorrect. For example, Fig. 8.10 shows some
assumed currents.

8.3 CASE STUDY 207

continved

R=5Q 9
MWV OV, =200V
3 2 1
VWW— VW O
R=100Q — e
i3 12
% f i43 i;4 % 1 i52 i(ﬁ
NN OV, =0V e —
4 r=150 5 gRr=200 8 WA— W0
4 5 6
FIGURE 8.9
A resistor circuit to be solved using simultaneous FIGURE 8.10
linear algebraic equations. Assumed current directions.

Given these assumptions, Kirchhoff’s current rule is applied at each node to yield

i +isp +inn=0
igs — sy —isa =0
i3 —i3p =0

isqg —igz =0
Application of the voltage rule to each of the two loops gives

igs — is2 —is4 = 0
—Is4Rsq — i43R43 - inR3y +i52R50 =0
—igsRes — i52Rs2 +i12R12 —200 =0

or, substituting the resistances from Fig. 8.9 and bringing constants to the right-hand side,

~15is4 — Sisy — 10i32 + 10isp = 0
—20i65 — 10is2 + Sijp = 200

Therefore, the problem amounts to solving six equations with six unknown currents. These
equations can be expressed in matrix form as

11 1 0 0 0 i 0
0 -1 0 1 -1 o0 iss 0
0o 0 -1 0 0 1 in| _J o
0 0 0 o0 1 —1{)is|[1o
0 10 =10 0 —15 =5]is 0
5 -10 0 -20 0 O i3 200

208 LINEAR ALGEBRAIC EQUATIONS AND MATRICES

Although impractical to solve by hand, this system is easily handled by MATLAB, 8.1 Gi
The solution is , comm
the ori;
5> 2=[{111000 82 A
0 -101 -120
00-1001 (A]
00001 -1
0 10 -10 0 -15 -5
5 -10 0 -20 0 01};
>> b=[{0 0 0 0 0 200]"; {C}
>> current=A\b
current = (E]
6.1538
-4.6154
-1.5385 [F]
-6.1538
i 1 o i 2 Z Answe
el (a) WI
Thus, with proper interpretation of the signs of the result, the circuit currents and volt4 Eb)) I\Sf]
ages are as shown in Fig. 8.11. The advantages of using MATLAB for problems of this ¢ f
should be evident. @) Plé
(1
FIGURE 8.11 (4

The solution for currents and voltages obtained using MATLAB.

V = 153.85 V= 169.23
W VWA O V = 200

V= 146.156 M V= 123.08

PROBLEMS 209

PROBLEMS

8.1 Given a square matrix [A], writc a single line MATLAB (7) [B] x [A] ®) (D) 9)[A] x {C}
mmand that will create a new matrix {Aug] that consists of r 5 -
e original matrix [A] augmented by an identity matrix [/]. AOUIx 18] ADE) x [£] A e > (¢}

Anumber of matrices are defined as 8.3 Write the following set of equations in matrix form:
47 437 50 = Sxy — 7x,
A={1 2 Bl={1 2 7
4. E =
5 6 20 4 o+ Tx34+30=0
3 X ~7X3 :4O—~3x2+5x1
=16 [D] = {9 403 __6] Use MATLAB to solve for the unknowns. In addition, use it
1 2 =175 to compute the transpose and the inverse of the coefficient
| 5 3 matrix.
8.4 Three matrices are defined as
[El=17 2 3
4 0 6 6 -
4 0 2 =2
301 (Al=| 12 8 [B]:[OS Z:I[CJ:[5]J
m:{] ; J 1Gl=17 6 4] 5 4 : B

Answer the following questions regarding these matrices: (a) Perform all possible multiplications that can be com-
) What are the dimensions of the matrices? puted between pairs of these matrices.

) Identify the square, column, and row matrices. {b) Justify why the remaining pairs cannot be multiplied.

£} What are the values of the elements: apy. by, dyy. €55, (€) Use the results of (a) to illustrate why the order of mul-
fingi? tiplication is important.

d) Perform the following operations: 8.5 Five reactors linked by pipes are shown in Fig. P8.5.

The rate of mass flow through each pipe is computed as the

(DIE] + (8] (2 IAl+ [F] (3)[B] = [E] product of flow (Q) and concentration (c). At steady state,

47 x [B] (5) [A] x [B] ©) {C)7 the mass flow into and out of each reactor must be equal.

Jo.

Co3 = 20

FIGURE P8.5

210 LINEAR ALGEBRAIC EQUATIONS AND MATRICES

For example, for the first reactor, a mass balance can be
written as

Qoicor + Q3103 = Qiscy + Q1201

Write mass balances for the remaining reactors in Fig. P8.5
and express the equations in matrix form. Then use MATLAB
to solve for the concentrations in each reactor.

8.6 An important problem in structural engineering is that of
finding the forces in a statically determinate truss (Fig. P8.6).
This type of structure can be described as a system of coupled
linear algebraic equations derived from force balances. The
sum of the forces in both horizontal and vertical directions
must be zero at each node, because the system is at rest.
Therefore, for node 1:

> Fy =0=—F cos30° + F3cos60° + Fi

Y Fy =0=—F sin30" — F3sin60° + Fi,
for node 2:

ZFH =0=F + Fyc0830° + Fo;, + H

> Fy=0=Fsin30°+ F, + V2

for node 3:
Z Fy=0=—F— F3c0860° + F3
Z Fy =0 = F3sin60° + Fa, + V3

where F;, is the external horizontal force applied to node i
(where a positive force is from left to right) and £ is the ex-
ternal vertical force applied to node i (where a positive force
is upward). Thus, in this problem, the 1000-1b downward
force on node 1 corresponds to F; , = —1000. For this case,
all other F, ’s and F,,’s are zero. Express this set of linear

1000 tb

FIGURE P8.6

FIGURE P8.7

algebraic equations in matrix form and then use MATLAB
to solve for the unknowns.

8.7 Consider the three mass-four spring system in Fig. P8.7.
Determining the equations of motion from X F, = ma, for
each mass using its free-body diagram results in the follow-
ing differential equations:

. <k1+k2) (kz)
Xy + Xpt—{— | x2 =
my m

k ky+k k
-552*<—2)X1+<2+ 3>X2—<—‘3‘)X3=0

143 ns my

k ks +k
j3v(_3>x2+(3+4)x3:0

ms ns

where k; = k, = 10 N/m, k, = k; = 30 N/m, and m; =m,=
m, =1 kg. The three equations can be written in matrix form:

0 = {Acceleration vector}
+ [k/m matrix]{displacement vector x}

At a specific time where x; = 0.05 m, x, = 0.04 m, and x; =
0.03 m, this forms a tridiagonal matrix. Use MATLAB to
solve for the acceleration of each mass.

8.8 Solve

SR EEE

8.9 Perform the same computation as in Example 8.2, but
use five parachutists with the following characteristics:

Spring Unstretched

Mass Constant Cord
Jumper (kg) (N/m) Length (m)
] 55 80 10
2 75 50 10
3 60 70 10
4 75 100 10
5 Q0 20 10

8.10 TI
identica
the bott
2.5kg,
displace
8.11 Pc
the circ
8.12 P«
the circ
8.13 D
two ma
[Z] is n
multipl;
the proy
8.14 D
the tran
plemen

PROBLEMS

211

0 Three masses are suspended vertically by a series of
ntical springs where mass 1 is at the top and mass 3 is at
bottom. If g = 9.81 m/s?, m; = 2 kg, m, = 3 kg, m; =
kg, and the &'s = 10 kg/s?, use MATLARB to solve for the
placements x.

11 Perform the same computation as in Sec. 8.3, but for
circuit in Fig. P8.11.

12 Perform the same computation as in Sec. 8.3, but for
circuit in Fig. P8.12.

13 Develop, debug, and test your own M-file to multiply
omatrices—that is, [X] = [Y][Z], where [Y] is m by n and
isnby p. Employ for. . .end loops to implement the
tiplication and include error traps to flag bad cases. Test
program using the matrices from Prob. 8.4.

4 Develop, debug, and test your own M-file to generate
transpose of a matrix. Employ for. . .end loops to im-
ment the transpose. Test it on the matrices from Prob. 8.4.

—Q V, = 150 volts

FIGURE P8.11

O V, = 0 volts
6 6

O V, = 10 volts

FIGURE P8.12

R=89§)0 =100
R=15Q R=5(Q
W

O V; = 150 volts
6

Gauss Elimination

f CHAPTER OBJECTIVES

The primary objective of this chapter is to describe the Gauss elimination algorithm
for solving linear algebraic equations. Specific objectives and topics covered are

* Knowing how to solve small sets of linear equations with the graphical method
and Cramer’s rule.

® Understanding how to implement forward elimination and back substitution as in
Gauss elimination.

® Understanding how to count flops to evaluate the efficiency of an algorithm.

® Understanding the concepts of singularity and ill-condition.

® Understanding how partial pivoting is implemented and how it differs from
complete pivoting.

® Recognizing how the banded structure of a tridiagonal system can be exploited

to obtain extremely efficient solutions.

t the end of Chap. 8, we stated that MATLAB provides two simple and direct
methods for solving systems of linear algebraic equations: left-division,

>> x = A\b
and matrix inversion,
>> x = 1inv (A)*b

Chapters 9 and 10 provide background on how such solutions are obtained. This ma-
terial is included to provide insight into how MATLAB operates. In addition, it is intended
to show how you can build your own solution algorithms in computational environments
that do not have MATLAB’s built-in capabilities.

9.1 SOLVING SMALL NUMBERS OF EQUATIONS 213

9.1

The technique described in this chapter is called Gauss elimination because it involves
combining equations to eliminate unknowns. Although it is one of the earliest methods for
solving simultaneous equations, it remains among the most important algorithms in use
today and is the basis for linear equation solving on many popular software packages in-
cluding MATLAB.

SOLVING SMALL NUMBERS OF EQUATIONS

Before proceeding to Gauss elimination, we will describe several methods that are appro-
priate for solving small (n < 3) sets of simultaneous equations and that do not require a
computer. These are the graphical method, Cramer’s rule, and the elimination of unknowns.

9.1.1 The Graphical Method

A graphical solution is obtainable for two linear equations by plotting them on Cartesian
coordinates with one axis corresponding to x; and the other to x». Because the equations
are linear, each equation will plot as a straight line. For example, suppose that we have the
tollowing equations:

3x; +2xv =18

—Xx| + 2.’(2 =2

If we assume that 1) 1> the abscissa, swe can solve cach of these equations for xo:

X2 = ——Exl +9

1
X =§.X1+l

(]

The equations are now in the form of straight lines—that is. x; = (slope) x; + inter-
cept. When these equations are graphed, the values of x, and x; at the intersection of the
lines represent the solution (Fig. 9.1). For this case, the solution is x; = 4 and x; = 3.

For three simultaneous equations. each equation would be represented by a plane in a
three-dimensional coordinate system. The point where the three planes intersect would rep-
resent the solution. Beyond three equations, graphical methods break down and, conse-
quently, have little practical value for solving simultaneous equations. However, they are
useful in visualizing properties of the solutions.

For example. Fig. 9.2 depicts three cases that can pose problems when solving sets of
linear equations. Fig. 9.2a shows the case where the two equations represent parallel lines.
For such situations, there is no solution because the lines never cross. Figure 9.2b depicts
the case where the two lines are coincident. For such situations there is an infinite number
of solutions. Both types of systems are said to be singular.

In addition, systems that are very close to being singular (Fig. 9.2¢) can also cause
problems. These systems are said to be ill-conditioned. Graphically, this corresponds to the
fact that it 1s difficult to identify the exact point at which the lines intersect. lll-conditioned
systems will also pose problems when they are encountered during the numerical solution
of linear equations. This is because they will be extremely sensitive to roundoff error.

214 GAUSS ELIMINATION

X2

Solution: x; = 4;x, = 3

FIGURE 9.1

Graphical solufion of @ set of two simulianeous linear algebraic equations. The intersection of the
lines represents the solution.

Xy Xy X

(a) (b) ()

FIGURE 9.2
Graphical depiction of siniu\or and ilkcondifioned systems: [a) no solution, b infinite solutions, and
(¢} il-conditioned system where the slopes are so close that the point of intersection is difficult to detect visually.

9.1.2 Determinants and Cramer’s Rule

Cramer’s rule is another solution technique that is best suited to small numbers of equa-
tions. Before describing this method, we will briefly review the concept of the determinant,
which is used to implement Cramer’s rule. In addition, the determinant has relevance to the
evaluation of the ill-conditioning of a matrix.

9.1 SOLVING SMALL NUMBERS OF EQUATIONS 215

EXAMPLE ©.1

Determinants. The determinant can be illustrated for a set of three equations:
[Al{x} = {b}
where [A] is the coefficient matrix
app dpp dis
[Al=|ay an ax
as) 4y ass

The determinant of this system is formed from the coefficients of [A] and is represented as

ay dpi2 a3

D= |ay axn ax

a3 4z 433

Although the determinant D and the coefficient matrix [A] are composed of the same
elements, they are completely different mathematical concepts. That is why they are dis-
tinguished visually by using brackets to enclose the matrix and straight lines to enclose the
determinant. In contrast to a matrix, the determinant is a single number. For example, the
value of the determinant for two simultaneous equations

a ayn
D= 11 12

a2 axp
is calculated by

D = ayja»n — apan
For the third-order case, the determinant can be computed as

azp ans

asa

az an
asy

a anr»
D:a” 21 22

- -+ di3 9.1)

azy as;

where the 2 by 2 determinants are called minors.

Determinants

Problem Statement. Compute values for the determinants of the systems represented in
Figs. 9.1 and 9.2.

Solution. For Fig. 9.1:

3 2
D = 1 9 =32)-2(-1) =8
For Fig. 9.2a:
p=|77 |2 Ly =12 =0
L T) 2)
For Fig. 9.2b:
-1 1
D=|"2 =—=2)=-1(=) =0
-1 2 2

216 GAUSS ELIMINATION

For Fig. 9.2¢:

In the foregoing example, the singular systems had zero determinants. Additionally,
the results suggest that the system that is almost singular (Fig. 9.2¢) has a determinant that
is close to zero. These ideas will be pursued further in our subsequent discussion of ill
conditioning in Chap. 11.

Cramer’s Rule. This rule states that each unknown in a system of linear algebraic equa-
tions may be expressed as a fraction of two determinants with denominator D and with the
numerator obtained from D by replacing the column of coefficients of the unknown in
question by the constants by, bz, ..., b,. For example, for three equations, x, would b
computed as

by app anp|
by ax» axn

by ax as
D

X| =

EXAMPLE 9.2 Cramer’s Rule

Problem Statement. Use Cramer’s rule to solve
0.3x1 +0.52x+ x3=—-0.01
0.5x + X3+ 1.9x3 = 0.67
0.1x; +0.3 x, +0.5x3 = —0.44

Solution. The determinant D can be evaluated as [Eq. (9.1)]:

1.9 05 1.9 05 1
—_ _ 9 _
D=0303 0579201 0.5’“‘0.1 0.3‘_ 0.0022
The solution can be calculated as
~001 052 1|
067 1 19
—044 03 05| 003278 ,
,\'1 = :—149
20.0022 ~0.0022
03 —0.01 1
05 067 1.9
01 —044 05| 0.0649
X = = = -295
2 ~0.0022 —0.0022
03 052 —00l
05 1 067
_ —0.04356
G100 03 —044] _ _log

—0.0022 T —0.0022

9.1 SOLVING SMALL NUMBERS OF EQUATIONS 217

The det Function. The determinant can be computed directly in MATLAB with the det
function. For example, using the system from the previous example:

>> A=[0.3 0.52 1;0.5 1 1.9;0.1 0.3 0.57;
>> D=det (A)

D =
-0.0022

Cramer’s rule can be applied to compute x, as in

>> A(:,1)=[-0.01;0.67;-0.44]
A =
-0.0100 0.5200 1.0000
0.6700 1.0000 1.9000
~0.4400 0.3000 0.5000

>> xl=det (A)/D

x1 = éi
-14.9000

For more than three equations, Cramer’s rule becomes impractical because, as the
number of equations increases, the determinants are time consuming to evaluate by hand
(or by computer). Consequently, more efficient alternatives are used. Some of these alter-
natives are based on the last noncomputer solution technique covered in Section 9.1.3—the
elimination of unknowns.

9.1.3 Elimination of Unknowns

The elimination of unknowns by combining equations is an algebraic approach that can be
illustrated for a set of two equations:

anxi +appxy = b 9.2)

ar X1 +anx; =by 9.3)

The basic strategy is to multiply the equations by constants so that one of the unknowns
will be eliminated when the two equations are combined. The result is a single equation
that can be solved for the remaining unknown. This value can then be substituted into either
of the original equations to compute the other variable.

For example, Eq. (9.2) might be multiplied by a»| and Eq. (9.3) by a;; to give

az a1 x| + axia;pxs = ax by 9.4)
ayanxy +ayanx; = anb; (9.5)

Subtracting Eq. (9.4) from Eq. (9.5) will, therefore, eliminate the x; term from the equa-
tions to yield

ajanxy — axanxy = a;by — ax by

which can be solved for

_anby —anb PN

218

GAUSS ELIMINATION

9.2

Equation (9.6) can then be substituted into Eq. (9.2), which can be solved for
anby — dab;
X = ——— 9.7
djdny — dz1dy;

Notice that Egs. (9.6) and (9.7) follow directly from Cramer’s rule:

b] ay;

12
. by an) anb; — apbh
1 - =
ayy dp apydayn —dndp
dr ax
an by
axy by ayby — anb,
Xy = =
ay dp aydzy — ddy
a2y A

The elimination of unknowns can be extended to systems with more than two or thre¢
equations. However, the numerous calculations that are required for larger systems make
the method extremely tedious to implement by hand. However, as described in Section 9.2,
the technique can be formalized and readily programmed for the computer.

NAIVE GAUSS ELIMINATION

In Section 9.1.3, the elimination of unknowns was used to solve a pair of simultaneous
equations. The procedure consisted of two steps (Fig. 9.3):

1. The equations were manipulated to eliminate one of the unknowns from the equations.
The result of this elimination step was that we had one equation with one unknown.

2. Consequently, this equation could be solved directly and the result back-substituted into
one of the original equations to solve for the remaining unknown.

This basic approach can be extended to large sets of equations by developing a system-
atic scheme or algorithm to eliminate unknowns and to back-substitute. Gauss elimination
is the most basic of these schemes.

This section includes the systematic techniques for forward elimination and back sub-
stitution that comprise Gauss elimination. Although these techniques are ideally suited for
implementation on computers, some modifications will be required to obtain a reliable
algorithm. In particular, the computer program must avoid division by zero. The tollow-
ing method is called “naive” Gauss elimination because it does not avoid this problem.
Section 9.3 will deal with the additional features required for an effective computer
program.

The approach is designed to solve a general set of n equations:

anxy +apxa+apnx;+ -+ ayx, = b (9.84}

a1 x| + anxs + anx3y + -+ apx, = b (9.83b)

oA YAr Faxr oo v, = b

1Yy

(0 8¢y

9.2 NAIVE GAUSS ELIMINATION 219

ay ap ag b
ay apn 4y) b
day dyp dxp 5 by
; (a) Forward
elimination
ay ap ag b
ay ay) b
ay i
Xy = b/a"y
{b) Back

% = by — ahxs)fu J’substitution

%y = by = apxy — apn)/ay

FIGURE 9.3
The two phases of Gauss elimination: {a] forward elimination and (b} back substitution.

As was the case with the solution of two equations, the technique for n equations consists
of two phases: elimination of unknowns and solution through back substitution.

Forward Elimination of Unknowns. The first phase is designed to reduce the set of
equations to an upper triangular system (Fig. 9.3a). The initial step will be to eliminate the
first unknown x; from the second through the nth equations. To do this, multiply Eq. (9.84a)
by a1 /ay; to give
azy azy azy any
axxy + —apx + —apxz+ -+ —ax, = —b (9.9)
an ap| an ari
Now this equation can be subtracted from Eq. (9.8b) to give

az| asy azy
ap — —ap)+ -+ | ay — —ay,)x, = by — —b
ayy aj) ay|

or
’ I '
AyyXa + -+ F a5, Xy = by

where the prime indicates that the elements have been changed from their original values.

The procedure is then repeated for the remaining equations. For instance, Eq. (9.8a)
can be multiplied by a3, /a;; and the result subtracted from the third equation. Repeating
the procedure for the remaining equations results in the following modified system:

anxy +apxy +anxy+ -+ ax, = by (9.10a)

Aoy - doxa et xr = b (0 106

220

GAUSS ELIMINATION

Xy + dipXs + -+ ay,x, = bl (9.10¢)

’
nn

apyxa + apaxy + -+ an,x, = b, (9.104)

For the foregoing steps, Eq. (9.8a) is called the pivor equation and a; is called the
pivot element. Note that the process of multiplying the first row by a2 /a;; is equivalentto
dividing it by a;; and multiplying it by a;;. Sometimes the division operation is referred to
as normalization. We make this distinction because a zero pivot element can interfere with
normalization by causing a division by zero. We will return to this important issue after we
complete our description of naive Gauss elimination.

The next step is to eliminate x, from Eq. (9.10c¢) through (9.10d). To do this, multi
ply Eq. (9.10b) by a3, /a5, and subtract the result from Eq. (9.10¢). Perform a similar
elimination for the remaining equations to yield

aj Xy 4+ apnx) -+ a|3xy + - +a1nx,l = bl
/ [’ ’

39X + A33X3 + - - - + ay, X, = b,

1 14 tH

AyX3 + -+ as,x, = by

a;1/3x3 +ot a;/z/nx’l - bl/l/
where the double prime indicates that the elements have been modified twice.

The procedure can be continued using the remaining pivot equations. The final ma-
nipulation in the sequence is to use the (n — 1)th equation to eliminate the x,,_, term from
the nth equation. At this point, the system will have been transformed to an upper triangu-

lar system:
ayxy +anxs +apxy + -+ apX, = by (9.11)
ayXy + apxs + - +ayx, = by 9118
ayyxy + o+ ay,x, = bl 9.11¢)

X, = b ©.11d)

n

(n—1)

HR

a

Back Substitution. Equation (9.11d) can now be solved for x,:

(n—1)
bn

(n—1)
al?ﬂ

(9.13)

Xn =

This result can be back-substituted into the (n — I)th equation to solve for x,_;. The pro-
cedure, which is repeated to evaluate the remaining x’s, can be represented by the follow-
ing formula:

H

(i—1) (i—1)
b; — Z a;; X

J=it forimn—1n—2 1 91

EX

9.2 NAIVE GAUSS ELIMINATION 221

EXAMPLE 9.3

Naive Gauss Elimination

Problem Statement. Use Gauss elimination to solve

3x; — 0.1x, —0.2x3 = 7.85 (E9.3.1)
0.1x; + 7x,—03x3 =—19.3 (E9.3.2)
03x; —02x + 10x3= 714 (E9.3.3)

Solution. The first part of the procedure is forward elimination. Muitiply Eq. (E9.3.1)
by 0.1/3 and subtract the result from Eq. (E9.3.2) to give

7.00333x7 — 0.293333x3 = —19.5617

Then multiply Eq. (E9.3.1) by 0.3/3 and subtract it from Eq. (E9.3.3). After these opera-
tions, the set of equations is

3x) — 0.1x, — 02x3= 7.85 (E9.3.4)
7.00333x, — 0.293333x3 = —19.5617 (E9.3.5)
— 0.190000x; + 10.0200x3 = 70.6150 (E9.3.6)

To complete the forward elimination, x, must be removed from Eq. (E9.3.6). To accom-
plish this, multiply Eq. (E9.3.5) by —0.190000/7.00333 and subtract the result from
Eq. (E9.3.6). This eliminates x» from the third equation and reduces the system to an upper
triangular form, as in

3x)— 0.1x, — 02x3= 7.85 (E9.3.7)
7.00333x; — 0.293333x3 = —19.5617 (E9.3.8)
10.0120x3; = 70.0843 (E9.3.9)

We can now solve these equations by back substitution. First, Eq. (E9.3.9) can be
solved for
_ 70.0843
~10.0120
This result can be back-substituted into Eq. (E9.3.8), which can then be solved for

—19.56 .293333(7.0
o = 17 +0.29 (7.00003) 5 50000
7.00333

Finally, x3 = 7.00003 and x, = —2.50000 can be substituted back into Eq. (E9.3.7), which
can be solved for

_ 7.85+0.1(—2.50000) + 0.2(7.00003)

X3 = 7.00003

X = 3.00000
3
Although there is a slight round-off error, the results are very close to the exact solution of
x; =3, x; = =2.5, and x3 = 7. This can be verified by substituting the results into the

original equation set:
33 = 0.1(=2.5) — 0.2(7.00003) = 7.84999 = 7.85
0.1(3) + 7(=2.5) — 0.3(7.00003) = —19.30000 = —19.3
0.3(3) ~ 0.2(=2.5) + 10(7.00003) = 71.4003 = 71 .4

222

GAUSS EUMINATION

function x = GaussNaive (A,Db)
GaussNaive: naive Causs elimination

oe

% x = GaussNaive(A,b): Gauss elimination without pivoting.
% input:

% A = coefficient matrix

% b = right hand side vector

% output:

% x = solution vector

[m,n] = size(d);

if m~=n, error('Matrix A must be square'); end

nb = n+l;

Aug = [A bl;
% forward elimination

for k¥ = 1:n-1
for 1 = k+l:n
factor = Aug(i,k)/Aug(k,k);
Aug (i, k:nb) = Aug(i,k:nb)-factor*Aug(k,k:nb);
end
end

% back substitution

X = zeros(n,l);
x(n) = Aug(n,nb)/Aug(n,n);
f01 1 = n-1:-1:1
x(i) = (Augi{i,nb)-Aug(i,i+1l:n)*x(i+1l:n))/Aug(i,i):
end
FIGURE 9.4

An MHile to implement naive Gauss elimination.

9.2.1 MATLAB M-file: caussNaive

An M-file that implements naive Gauss elimination is listed in Fig. 9.4. Notice that the
coefficient matrix A and the right-hand-side vector b are combined in the augmented ma-
trix Aug. Thus, the operations are performed on Aug rather than separately on & and b.

Two nested loops provide a concise representation of the forward elimination step. An
outer loop moves down the matrix from one pivot row to the next. The inner loop moves
below the pivot row to each of the subsequent rows where elimination is to take place.
Finally, the actual elimination is represented by a single line that takes advantage of
MATLAB?’s ability to perform matrix operations.

The back-substitution step follows directly from Egs. (9.12) and (9.13). Again,
MATLARB’s ability to perform matrix operations allows Eq. (9.13) to be programmed asa
single line.

9.2.2 Operation Counting

The execution time of Gauss elimination depends on the amount of ﬂoatmg pomtoperanom

VO i R S N RS IR DL Y o Y. I

9.2 NAIVE GAUSS ELIMINATION 223

Therefore, totaling up these operations provides insight into which parts of the algorithm are
most time consuming and how computation time increases as the system gets larger.
Before analyzing naive Gauss elimination, we will first define some quantities that
facilitate operation counting:
m m m m m
docfy=cy [0 Y gD =) fi)+) g) (9.14ab)
i=1 i=1 i=1 i=1 i=1

1 m

Zl:l+1+1+m+1:m Zl:m—k—l—l (9.14¢,d)
i=t i=k

L mm+1) m?
Zz:1+2+3—}—~--+m:f:7+0(m) (9.14¢)
i=1

L s mm+1D)Q2m+ 1 . m?

D=2 4w =

i=1
where O (m") means “terms of order m" and lower.”

Now let us examine the naive Gauss elimination algorithm (Fig. 9.4) in detail. We will
first count the flops in the elimination stage. On the first pass through the outer loop, k = 1.
Therefore, the limits on the inner loop are from i = 2 to n. According to Eq. (9.14d), this
means that the number of iterations of the inner loop will be

G 3 + O(m”) (9.14f)

Zl:n—2+1:n-1 (9.15)

For every one of these iterations, there is one division to calculate the factor. The next line
then performs a multiplication and a subtraction for each column element from 2 to nb.
Because nb = n + 1, going from 2 to nb results in n multiplications and n subtractions.
Together with the single division, this amounts to # + | multiplications/divisions and n
addition/subtractions for every iteration of the inner loop. The total for the first pass
through the outer loop is therefore (n — 1)(n 4+ 1) multiplication/divisions and (n — 1)(n)
addition/subtractions.

Similar reasoning can be used to estimate the flops for the subsequent iterations of the
outer loop. These can be summarized as

Outer Loop Inner Loop Addition/Subtraction Multiplication/Division
k i Flops Flops
1 2.n (n — 1n) fn~1n+ 1)
2 3, n fn— 2)n— 1) ln — 2){n)
k k+ 1, n n—kn+1 -k n—Kn+2 -k
n—1 n, n (12) (TH3)

Therefore, the total addition/subtraction flops for elimination can be computed as
n—1 n—1

N1l =Snm+1 —kOn+ 1+ k2 (9.16)

224

GAUSS ELIMINATION

or

n—1 n—1 n—

1
n+ DY T—Qn+ DY k+ Y K ©.17)
k=1 k=1

k=1
Applying some of the relationships from Eq. (9.14) yields

r N 3

[;13 + O] — [n3 +O0mH+ %113 + O(nZ)J = %— + Om) 9.18)
A similar analysis for the multiplication/division flops yields
[n3 + 0(172)] — [n3 + O]+ _%173 + O(nz)— = 2—3 + 0D (9.19)
L - d
Summing these results gives
%ﬁ + 0(n?) 9.20)

Thus, the total number of flops is equal to 21 /3 plus an additional component pro-
portional to terms of order n* and lower. The result is written in this way because as n gets
large, the O (n°) and lower terms become negligible. We are therefore justified in conclud-
ing that for large n, the effort involved in forward elimination converges on 21 /3.

Because only a single loop is used, back substitution is much simpler to evaluate. The
number of addition/subtraction flops is equal to n(n — 1)/2. Because of the extra division
prior to the loop, the number of multiplication/division flops is n(n + 1)/2. These can be
added to arrive at a total of

n’ + 0wn) ©9.21)
Thus, the total effort in naive Gauss elimination can be represented as

3 R 3
asnincreases 2N

3 +0m?) + n’ + 0(n) =212 KR +0mn? (9.2
— e
Forward Back
elimination substitution

Two usetul general conclusions can be drawn from this analysis:

1. As the system gets larger, the computation time increases greatly. As in Table 9.1, the
amount of flops increases nearly three orders of magnitude for every order of magni-
tude increase in the number of equations.

TABLE 9.1 Number of flops for naive Gauss elimination.

Back Total Percent Due

n Elimination Substitution Flops 2n*/3 to Elimination
10 705 100 805 667 87.58%
100 671550 10000 681550 666667 Q8.53%

1000 6.67 x 10° 1 x 10° 6.68 x 10° 6.67 x 108 99.85%

EXA

9.3 PIVOTING 225

9.3

EXAMPLE 9.4

2. Most of the effort is incurred in the elimination step. Thus, efforts to make the method
more efficient should probably focus on this step.

PIVOTING

The primary reason that the foregoing technique is called “naive” is that during both the
elimination and the back-substitution phases, it is possible that a division by zero can
occur. For example, if we use naive Gauss elimination to solve

2xv-+3x3= 8
dx) 4+ 6x3 +7x3 = =3
2x; —3x+6x3= 5

the normalization of the first row would involve division by a;; = 0. Problems may also
arise when the pivot element is close, rather than exactly equal, to zero because if the mag-
nitude of the pivot element is small compared to the other elements, then round-off errors
can be introduced.

Therefore, before each row is normalized, it is advantageous to determine the coefficient
with the largest absolute value in the column below the pivot element. The rows can then be
switched so that the largest element is the pivot element. This is called partial pivoting.

If columns as well as rows are searched for the largest element and then switched, the
procedure is called complete pivoting. Complete pivoting is rarely used because switching
columns changes the order of the x’s and, consequently, adds significant and usually un-
justified complexity to the computer program.

The following example illustrates the advantages of partial pivoting. Aside from
avoiding division by zero, pivoting also minimizes round-off error. As such, it also serves
as a partial remedy for ill-conditioning.

Partial Pivoting

Problem Statement. Use Gauss elimination to solve

0.0003x; + 3.0000x, = 2.0001
1.0000x, 4 1.0000x>» = 1.0000

Note that in this form the first pivot element, a,, = 0.0003, is very close to zero. Then re-
peat the computation, but partial pivot by reversing the order of the equations. The exact
solution is x; = 1/3 and x, = 2/3.

Solution. Multiplying the first equation by 1/(0.0003) yields
x1 + 10,000x; = 6667

which can be used to eliminate x; from the second equation:
—9999x, = —6666

which can be solved for x; = 2/3. This result can be substituted back into the first equa-
tion to evaluate x| :
~ 20001 —3(2/3)

= E9.4.1
& 0.0003 (E9.4.1)

226

GAUSS ELIMINATION

Due to subtractive cancellation, the result is very sensitive to the number of significant
figures carried in the computation:

Absolute Value of

Significant Percent Relative
Figures X, X, Error for x,
3 0.667 -3.33 1099
4 0.6667 0.0000 100
5 0.66667 0.30000 10
o} 0.666667 0.330000 1
7 0.6666667 0.3330000 0.1

Note how the solution for x, is highly dependent on the number of significant figures. This
is because in Eq. (E9.4.1), we are subtracting two almost-equal numbers.

On the other hand, if the equations are solved in reverse order, the row with the larger
pivot element is normalized. The equations are

1.0000x; + 1.0000x, = 1.0000

0.0003x; + 3.0000x>» = 2.0001
Elimination and substitution again yields x» = 2/3. For different numbers of significant
figures, x, can be computed from the first equation, as in
_1=@2/3)
I
This case is much less sensitive to the number of significant figures in the computation:

X1

Absolute Value of

Significant Percent Relative
Figures x, X Error for x,
3 0.667 0.333 0.1
4 0.6667 0.3333 0.01
5 0.66667 0.33333 0.001
6 0.666667 0.333333 0.0001
7 0.6666667 0.3333333 0.0000

Thus, a pivot strategy is much more satisfactory.

9.3.1 MATLAB M-file: causspivot

An M-file that implements Gauss elimination with partial pivoting is listed in Fig. 9.5.1t
is identical to the M-file for naive Gauss elimination presented previously in Section 9.2.1
with the exception of the bold portion that implements partial pivoting.

Notice how the built-in MATLAB function max is used to determine the largest avail
able coefficient in the column below the pivot element. The max function has the syntax

[y,1] = max(x)

Rl . 1 L T D S T S T RS

9.4 TRIDIAGONAL SYSTEMS 227

function x = GausgPivot(A,Db)
GaussPivot: Gauss elimination pivoting

oe

% ¥ = GaussPivot (A,b): Gauss elimination with pivoting.
% input:

% A = coefficient matrix

% b = right hand side vector

% output:

% x = solution vector

[m,n]l=size(A);
if m~=n, error{'Matrix A must be sguare'); end
nb=n+1;
Aug=[{A b]l;
% forward elimination
for k = 1:n-1
% partial pivoting
{big,i)l=max(abs{Aug(k:n,k)));
ipr=i+k-1;
if ipr~=k
Aug([k,ipr], :)=aug((ipr,k],:};
end
for i = k+l:n
factor=Aug(i,k)/Aug(k,k);
Aug (i, k:nb)=Aug(i,k:nb)-factor*Aug(k,k:nb);
end
end
% back substitution
x=zeros(n,1);
x(n)=Aug(n,nb) /Aug(n,n);
for i = n-1:-1:1
x{1)={Aug(i,nb)-2aug(i,i+l:n)y*x(i+1:n))/Aug(i,i);
end

FIGURE 9.5

An Mile to implement the Gauss elimination with partial piveting.

9.4 TRIDIAGONAL SYSTEMS

Certain matrices have a particular structure that can be exploited to develop efficient solu-
tion schemes. For example, a banded matrix is a square matrix that has all elements equal
to zero, with the exception of a band centered on the main diagonal.

A tridiagonal system has a bandwidth of 3 and can be expressed generally as

rfio& T x T
e fL & X2)

es fi & X3 r3

=97 (9.23)

€n-—-1 fh—] 8n—1 | Xn—1 Fn—1

228

GAUSS ELIMINATION

EXAMPLE 9.5

Notice that we have changed our notation for the coefficients from a’s and b’s to €’s, fs,
g’s, and r's. This was done to avoid storing large numbers of useless zeros in the square me-
trix of a’s. This space-saving modification is advantageous because the resulting algorithm
requires less computer memory.

An algorithm to solve such systems can be directly patterned after Gauss elimination—
that is, using forward elimination and back substitution. However, because most of the
matrix elements are already zero, much less effort is expended than for a full matrix. This
efficiency is illustrated in the following example.

Solution of a Tridiagonal System

Problem Statement. Solve the following tridiagonal system:

204 —1 x| 40.8
1 204 -1 ol] 08
—1 204 -1 |)xs["] 08

—1 2041 Uy 200.8

Solution. As with Gauss elimination, the first step involves transforming the matrix to
upper triangular form. This is done by multiplying the first equation by the factor e;/f] au
subtracting the result from the second equation. This creates a zero in place of e; and trans- §
forms the other coefficients to new values,

2 -1
fa=f2- e__gl =204 — —(-1)=1.550
1

1 2.04
(] o ~1 _
Fp =¥y — ?1—11 =0.8— m(408) =208

Notice that g, is unmodified because the element above it in the first row is zero.
After performing a similar calculation for the third and fourth rows, the system is trans-
formed to the upper triangular form

204 -1 X 40.8
1.550 -1 x| 20.8
1.395 -1 x|] 14.221
1.323 X4 210.996
Now back substitution can be applied to generate the final solution:
- 210.996
xy= 2= = 159.480
Ja 1.323
3 — g3X 14.221 — (—1)159.480
Xy = B8 1 = 124.538
bE 1.395
'y — 20.800 — (—1)124.538
ny =280 D = 93.778
2 1.550
— 40.800 — (—1)93.778
=g H030- (D = 65.970

f 2.040

9.5 CASE STUDY 229

function x = Tridiagl(e,f,g,r)

% Tridiag: Tridiagonal equation solver banded system
% x = Tridiagl(e,f,g,r): Tridiagonal system solver.
% input:

% e = gubdiagonal vector

% f = diagonal vector

% g = superdiagonal vector

% r = right hand side vector

% output:

% x = solution vector

n=length(f);
% forward elimination
for kK = 2:n
factor = e(k)/f(k-1);
f(k) = f£(k) - factor*g(k-1);
r(k) = r{(k) - factor*r(k-1);
end
% back substitution
x(n) = r{n)/f£(n);
for k = n-1:-1:1
x(k) = (r(k)-g(k)*x(k+1))/£(k);
end

FIGURE 9.6
An Mdile to solve a tridiagonal system.

9.4.1 MATLAB M-file: Tridiag

An M-file that solves a tridiagonal system of equations is listed in Fig. 9.6. Note that the
algorithm does not include partial pivoting. Although pivoting is sometimes required, most
tridiagonal systems routinely solved in engineering and science do not require pivoting.

Recall that the computational effort for Gauss elimination was proportional to n>.
Because of its sparseness, the effort involved in solving tridiagonal systems is proportional
to n. Consequently, the algorithm in Fig. 9.6 executes much, much faster than Gauss elim-
ination, particularly for large systems.

MODEL OF A HEATED ROD

Background. Linear algebraic equations can arise when modeling distributed sys-
tems. For example, Fig. 9.7 shows a long, thin rod positioned between two walls that are
held at constant temperatures. Heat flows through the rod as well as between the rod and
the surrounding air. For the steady-state case, a differential equation based on heat conser-
vation can be written for such a system as

2

a7
5 W (T —=T) =0 (9.24)

230 GAUSS ELIMINATION

. continued

FIGURE 9.7
A noninsulated uniform rod positioned between two walls of constant but different temperature.
The finite-difference representation employs four interior nodes.

where T = temperature (°C), x = distance along the rod (m), #’ = a heat transfer coefficient i
between the rod and the surrounding air (m~?), and T, = the air temperature (°C).

Given values for the parameters, forcing functions, and boundary conditions, calculus |
can be used to develop an analytical solution. For example, if #/ = 0.01, T, = 20, T(0) =
40, and T(10) = 200, the solution is

T = 73.4523¢%'F — 53.4523¢701% .20 (9.25)

Although it provided a solution here, calculus does not work for all such problems. In
such instances, numerical methods provide a valuable alternative. In this case study, we]
will use finite differences to transform this differential equation into a tridiagonal system
of linear algebraic equations which can be readily solved using the numerical methods de- |
scribed in this chapter.

Solution. Equation (9.24) can be transformed into a set of linear algebraic equations by
conceptualizing the rod as consisting of a series of nodes. For example, the rod in Fig. 9.7
is divided into six equispaced nodes. Since the rod has a length of 10, the spacing between 1
nodes is Ax = 2.

Calculus was necessary to solve Eq. (9.24) because it includes a second derivative.
As we learned in Sec. 4.3 .4, finite-difference approximations provide a means to transform
derivatives into algebraic form. For example, the second derivative at each node can be
approximated as 1

a*T Ty -2+ T,
dx? Ax?

where T, designates the temperature at node i. This approximation can be substituted into
Eq. (9.24) to give

T — 2T+ T, 4

A 2

+h (T, - T) =0

9.5 CASE STUDY 231

. continved

Collecting terms and substituting the parameters gives

~Ti_y +2.04T; — T,y = 0.8 (9.26)

Thus, Eq. (9.24) has been transformed from a differential equation into an algebraic equa-
tion. Equation (9.26) can now be applied to each of the interior nodes:

— Ty +2.04T, = T» = 0.8
— T, 4204 — T; = 0.8
— T, +2.04T; — Ty = 0.8
~ T3 +2.04T; — Ts = 0.8

(9.27)

The values of the fixed end temperatures, T, = 40 and T = 200, can be substituted and
moved to the right-hand side. The results are four equations with four unknowns expressed
in matrix form as

2.04 -1 0 0 T 40.8

-1 204 -1 0 | _) 08
0 -1 204 -1 | 08 (9.28)
0 0 -1 2.04 T4 200.8

So our original differential equation has been converted into an equivalent system of
linear algebraic equations. Consequently, we can use the techniques described in this chap-
ter to solve for the temperatures. For example, using MATLAB

>> A=[{2.04 -1 0 O

-1 2.04 -1 0

0 -1 2.04 -1

00 -1 2.047;

>> pb={40.8 0.8 0.8 200.8]";
>> T=(A\b)"

T =
65.9698 93.7785 124.5382 159.4795

A plot can also be developed comparing these results with the analytical solution obtained
with Eq. (9.25),

>> T={4dd T 200} ;
>>» x=[0:2:10];
>> Xanal=[{0:107];

>> TT=@(x) 73.4523*exp(0.1*xanal)-53.4523*%exp ...
(-0.1*xanal)+20;

> Tanal=TT (xanal);

>>» plot{x,T,'o',xanal, Tanal)

As in Fig. 9.8, the numerical results are quite close to those obtained with calculus.

232 GAUSS ELIMINATION

continued —
9.1]
Analytical (line) and numerical (points) solutions th? I
220 T T T T T | T] (Fig.
9.2 1
200 4
180
Chec
160 equal
9.3 (
140
& 120
100 (@) tsl
80 (b) C
T
60 (c) C
94 (
404
| ! 1 1 | 1 ! i 1
20 0 1 2 3 4 5 6 7 8 9 10
X
(a) C
FIGURE 9.8 (b) U
A plot of temperature versus distance along a heated rod. Both analytical {line) and numerical (© U
[points) solutions are displayed. i
) S
tc
In addition to being a linear system, notice that Eq. (9.28) is also tridiagonal. We can 9.5 G
use an efficient solution scheme like the M-file in Fig. 9.6 to obtain the solution: C
>> e=[0 -1 ~1 -17; 1.(
>> £=[2.04 2.04 2.04 2.041; @ So
>> g={-1 -1 -1 0}; (b) Co
>> r={40.8 0.8 0.8 200.81; (¢) On
>> Tridiag(e,f,g,x) reg
ans = (d) Sol
65.9698 93.7785 124.5382 159.4795 O 1501
; nt
The system is tridiagonal because each node depends only on its adjacent nodg 9.6 Gi-
Because we numbered the nodes sequentially, the resulting equations are tridiagonal. Sus 1
cases often occur when solving differential equations based on conservation laws. _
(a) Sol

cor.

PROBLEMS

233

PROBLEMS

3.1 Determine the number of total flops as a function of
te number of equations n for the tridiagonal algorithm
18.9.9).

2 Use the graphical method to solve

dr) ~ 8xa = —24
X+6yv= 34
Check your results by substituting them back into the

equations.
33 Given the system of equations

-Llx 4+ 10x; = 120
2+ 1740 = 174

@ Solve graphically and check your results by substituting

them back into the equations.

) On the basis of the graphical solution, what do you expect
regarding the condition of the system?

t) Compute the determinant.

%4 Given the system of equations

- 3.\'3 + 7X3 =2
N+2xn— x3=3
Sxp — 2% =2

(@) Compute the determinant.

{b) Use Cramer’s rule to solve for the x’s.

{6) Use Gauss elimination with partial pivoting to solve for
the xs.

d) Substitute your results back into the original equations
to check your solution.

5 Given the equations

0.5X1 - X =- 9.5
1.02x; — 2x; = —18.8

@) Solve graphically.
{) Compute the determinani.
{©) On the basis of (a) and (b), what would you expect

regarding the system’s condition?
{#) Solve by the elimination of unknowns.
(&) Solve again, but with @, modified slightly to 0.52.

Interpret your results,
36 Given the equations

10x; +2x — x3= 27
-3x) —6xy + 2v3 = —61.5
X+ x2+5¢=-21.5

(a} Solve by naive Gauss elimination. Show all steps of the
computation.

(b) Substitute your results into the original equations to
check your answers.
9.7 Given the cquations

2x1 — ()Xz — X3y = —38
=3x;— x2+7x3=-34
—8x; + xp —2x3 = -20

(a) Solve by Gauss climination with partial pivoting. Show
all steps of the computation.

(b) Substitute your results into the original equations to
check your answers.

9.8 Perform the same calculations as in Example 9.5, but for

the tridiagonal system:

0.8 -04 Xy 41
-04 08 -04 =125
-04 0.8 X3 105

9.9 Figure P9.9 shows three reactors linked by pipes. As
indicated, the rate of transfer of chemicals through each
pipe is equal to a flow rate (Q, with units of cubic meters
per second) multiplied by the concentration of the reactor
from which the flow originates (¢, with units of milligrams
per cubic meter). If the system is at a steady state, the trans-
fer into each reactor will balance the transfer out. Develop
mass-balance equations for the reactors and solve the
threc simultancous linear algebraic equations for their
concentrations.

200 mg/s

04, =120
QO3 =40
Q1 = 90
0, = 60
0, =30

FIGURE P9.9

Three reactors linked by pipes. The rate of mass transfer
through each pipe is equal to the product of flow @ and
concentration ¢ of the reactor from which the flow
originates.

234 GAUSS ELIMINATION

9.10 A civil engineer involved in construction requires
4800, 5800, and 5700 m® of sand, fine gravel, and coarse
gravel, respectively, for a building project. There are three
pits from which these materials can be obtaincd. The com-
position of these pits is

Sand Fine Gravel Coarse Gravel

% % %
Pit] 55 30 15
Pit2 25 45 30
Pit3 25 20 55

How many cubic meters must be hauled from each pit in
order to meet the engineer’s needs?

9.11 Anclectrical engineer supervises the production of three
types of clectrical components. Three kinds of material—
metal. plastic, and rubber—are required for production. The
amounts needed to produce each component are

Metal (g/ Plastic (g/ Rubber (g/
Component component} component) component)

1 15 0.36 1.0
2 17 .40 1.2
3 19 0.55 1.5

If totals of 3.89, 0.095, and 0.282 kg of metal, plastic, and
rubber, respectively, arc available cach day, how many com-
ponents can be produced per day?

9.12 As described in Sec. 9.3, linear algebraic equations can
arise in the solution of differential equations. For example,

the following differential equation results from a steady-state
mass balance for a chemical in a one-dimensional canal:
d%c de
0=D— -U-— —k¢
dx? dx

where ¢ = concentration, 1 = time, x = distance, D = diffu-
sion coetficient. U = fluid velocity, and k& = a first-order
decay rate. Convert this differential equation to an equiva-
lent system of simultaneous algebraic equations. Given D =
2, U=1,k=02, c(()) = 80 and c(10) = 20, solve these
equations from x = 0 to 10 and develop a plot of concentra-
tion versus distance.

9.13 A stage extraction process is depicted in Fig. P9.13.In
such systems, a stream containing a weight traction v, ofa
chemical enters from the left at a mass flow rate of F,
Simultaneously, a solvent carrying a weight fraction x; of
the same chemical enters from the right at a flow rate of F,.
Thus, for stage i, a mass balance can be represented as

Fryvioo+ P = Fiye + Py (P9.13a)

At each stage. an equilibrium is assumed to be established
between y; and x; as in

X

K=— (P9.13h)
Yi

where K is called a distribution coefficient. Equation (P9.13b)

can be solved for x; and substituted into Eq. (P9.13a) to yield

s Fyo
Yi—1 — 1 + EK v + F}K) Yi+1 = 0 (P913L)

It F, = 500 kg/h, y,, = 0.1, F, = 1000 kg/h, x,, = 0, and
K = 4, determine the values of v, and x,, if a five-stage
reactor is uscd. Note that Eq. (P9.13¢) must be modified to
account for the inflow weight fractions when applied to the

first and last stages.

Xou N N X

1 2)
——-| > > ->
Yin ¥i ¥2 Yi-1

FIGURE P9.13

A stage exiraction process.

Kiva K- Xy Xin
- g o= ~—
see n—1 n
> — — —
M Yn—2 Yn—1 Yout

FIGUR

9.14 A
viscous
pipe sex
mechan
flows ir
to obtai
Q; -
Q; -
30,
Q| =
Q3 =
Q5 =
915 A

followi
BC, AL

74k

FIGUI

PROBLEMS

g 0, Qs

9 1N O 0,

FIGURE P9.14

9.14 Aperistaitic pump delivers a unit flow (Q,) of a highly
viscous fluid. The network is depicted in Fig. P9.14. Every
ipe section has the same length and diameter. The mass and
echanical energy balance can be simplified to obtain the
ows in every pipe. Solve the following system of equations
obtain the flow in every stream.

0,+20,-20,=0

0s+2Q, —20,=0

30.-20,=0

Q=0+ 0,

%=0,+0s

] &=0.+0,

15 A truss is loaded as shown in Fig. P9.15. Using the

ollowing set of equations, solve for the 10 unknowns. AB,
C.AD.BD, CD. DE, CE,A. A, and E .

24 kN
B
T4 KN s C
4m
A E
3m D 3m %

IGURE P9.15

235
A +AD=0 =24—-CD — (4/5CE =0
A, +AB =0 —AD+ DE — (3/5)BD =0

744 BC + (3/5)BD =0
—~AB —(4/5)BD =0
—BC + (3/5)CE =0

CD+ (4/5)BD =0
—DE - (3/5)CE =0
E, + (4/5CE =0

9.16 A pentadiagonal system with a bandwidth of five can
be expressed generally as

AT]
e [& h

dy ex fi g hj

dnfl €n—1 fnml En—1
L dy €n fn .
X1 r
X2 r
X3 r3
X =
Xn—1 Tn—1
Xn In

Develop an M-file to efficiently solve such systems without
pivoting in a similar fashion to the algorithm used for tridiag-
onal matrices in Sec. 9.4.1. Test it for the following case:

8§ =2 —1 0 07 (x 5
2 9 —4 1 0 |]lx 2
-1 =3 7 -1 =21t t=1
0 -4 -2 12 —5|]x |
0 0 =7 =3 15 Lxs 5

LU Factorization

4 CHAPTER OBJECTIVES

The primary objective of this chapter is to acquaint you with LU factorization'.
Specific objectives and topics covered are

® Understanding that LU factorization involves decomposing the coetficient matrix
into two triangular matrices that can then be used to efficiently evaluate different
right-hand-side vectors.

* Knowing how to express Gauss elimination as an LU factorization.

* Given an LU factorization, knowing how to evaluate multiple right-hand-side
vectors.

® Recognizing that Cholesky’s method provides an efficient way to decompose a
symmetric matrix and that the resuiting triangular matrix and its transpose can be
used to evaluate right-hand-side vectors efficiently.

® Understanding in general terms what happens when MATLAB’s backslash

operator is used to solve linear systems.

s described in Chap. 9, Gauss elimination is designed to solve systems of linear
algebraic equations:

[Al{x} = {b} (10)

Although it certainly represents a sound way to solve such systems, it becomes inefficient
when solving equations with the same coefficients [A], but with different right-hand-side
constants {b}.

“In the parlance of numerical methods, the terms “factorization™ and “decomposition” are synonymous. To be
consistent with the MATLAB documentation, we have chosen to employ the terminology LU factorization for
the subiect of this chapter. Note that LU decompaosition is very commonly used to describe the same approach.

10.1 OVERVIEW OF LU FACTORIZATION 237

10.1

Recall that Gauss elimination involves two steps: forward elimination and back sub-

the bulk of the computational effort. This is particularly true for large systems of equations.
LU factorization methods separate the time-consuming elimination of the matrix [A]
from the manipulations of the right-hand side {b}. Thus, once [A] has been “factored” or
“decomposed,” multiple right-hand-side vectors can be evaluated in an efficient manner.
Interestingly. Gauss elimination itself can be expressed as an LU factorization. Before
showing how this can be done. let us first provide a mathematical overview of the factor-
ization strategy.

OVERVIEW OF LU FACTORIZATION

Just as was the case with Gauss elimination. LU factorization requires pivoting to avoid
division by zero. However, to simplify the following description, we will omit pivoting. In
addition, the following explanation is limited to a set of three simultaneous equations. The
results can be directly extended to n-dimensional systems.

Equation (10.1) can be rearranged to give

[Alfx} — (b} =0 (10.2)

Suppose that Eq. (10.2) could be expressed as an upper triangular system. For example, for
a3 x 3 system:

g i w3 (X d,
[0 u» 1133:l {Xp_ } = [dz } (10.3)
0 0 33 X3 ({3

Recognize that this is similar to the manipulation that occurs in the first step of Gauss
elimination. That is, elimination is used to reduce the system to upper triangular form.
Equation (10.3) can also be expressed in matrix notation and rearranged to give

[Ulx}—{d} =0 (10.4)
Now assume that there is a lower diagonal matrix with 1’s on the diagonal,
1 0O 0
[L] = ,:/3, 1 O:I (10.5)
Iy 1 1

that has the property that when Eq. (10.4) is premultiplied by it, Eq. (10.2) is the resul.
That is,

(LU x} = {d}} = [Al{x} — (b} (10.6)
If this equation holds, it follows from the rules for matrix multiplication that

[LIU] = [A] (10.7)
and

[L)d} = {b} (10.8)

238

LU FACTORIZATION

10.2

Al {x} = {p}

(a) Factorization /l

[l (1l
(Ll {d} = {»}
\ﬁ—/
l (b) Forward
{}
¥ J + Substitution
Ul {x} = {d}
gy—J
i {c) Back
{x}

FIGURE 10.1

The steps in [U factorization.

A two-step strategy (see Fig. 10.1) for obtaining solutions can be based on Egs. (10.3),
(10.7), and (10.8):

1. LU factorization step. [A] is factored or “decomposed” into lower [L] and upper [U]
triangular matrices.

2. Substitution step. {L] and [U] are used to determine a solution {x} for a right-hand side
{b}. This step itself consists of two steps. First, Eq. (10.8) is used to generate an inter-
mediate vector {d} by forward substitution. Then, the result is substituted into Eq. (10.3)
which can be solved by back substitution for {x}.

Now let us show how Gauss elimination can be implemented in this way.

GAUSS ELIMINATION AS LU FACTORIZATION

Although it might appear at face value to be unrelated to LU factorization, Gauss elimina-
tion can be used to decompose [A] into [L] and [U]. This can be easily seen for (U], which
is a direct product of the forward elimination. Recall that the forward-elimination step is
intended to reduce the original coefficient matrix [A] to the form

ap dip dig

(Ul=]| 0 ay a (109)
0 0 ag

which is in the desired upper triangular format.

10.2 GAUSS ELIMINATION AS LU FACTORIZATION 239

Though it might not be as apparent, the matrix [L] is also produced during the step.
This can be readily illustrated for a three-equation system,

ayp diz a3 X1 by
ax ax» ax X2 ¢ =1b
ay ayp axd lx; b3

The first step in Gauss elimination is to multiply row 1 by the factor [recall Eq. (9.9)]

ay|
21 =
ag

and subtract the result from the second row to eliminate a,,. Similarly, row 1 is multi-
plied by
asi
fi=—

ay

and the result subtracted from the third row to eliminate a-,. The final step is to multiply
the modified second row by

fo=22
a4
and subtract the result from the third row to eliminate a;,.

Now suppose that we merely perform all these manipulations on the matrix [A].
Clearly, if we do not want to change the equations, we also have to do the same to the right-
hand side {b}. But there is absolutely no reason that we have to perform the manipulations
simultaneously. Thus, we could save the f’s and manipulate {} later.

Where do we store the tactors f,,, f;;, and f3,7 Recall that the whole idea behind the
elimination was to create zeros in a,,, a,, and a,,. Thus, we can store f,, in a,, f3, in ay),
and f5, in a,,. After elimination, the [A] matrix can therefore be written as

day dip a3
o oay aj (10.10)
fir [adh

This matrix, in fact, represents an efficient storage of the LU factorization of |A],
[A] — [L][U] (10.11)
where

ayn diz a3

Wl=| 0 a5 ax (10.12)
0 0 a
and
1 0 0
[L] = |:f21 1 0} (10.13)
e frn o1

The following example confirms that [A] = [L][U].

240

LU FACTORIZATION

EXAMPLE 10.1

LU Factorization with Gauss Elimination

Problem Statement. Derive an LU factorization based on the Gauss elimination per-

formed previously in Example 9.3.

Solution. In Example 9.3, we used Gauss elimination to solve a set of linear algebraic
equations that had the following coefficient matrix:

3 —01 -02
[A] = {0.1 7 —0.3:|
03 —-02 10
After forward elimination, the following upper triangular matrix was obtained:
3 —01 -0.2
(U]l = |:O 7.00333 —0.293333:‘
0 0 10.0120

The factors employed to obtain the upper triangular matrix can be assembled into a lower
triangular matrix. The elements ay; and a3, were eliminated by using the factors

X 0.1 0.3
= 5 = 0.0333333 fu= = = 0.1000000

and the element a3, was eliminated by using the factor

—019 40271300
7.00333 ~ }

fr=

Thus, the lower triangular matrix is

1 0 0
[L]= |:0.0333333 1 O:l
0.100000 —0.0271300 1

Consequently, the LU factorization is

1 0 0 3 —0.1 -02
[A] = [L][U] = {0.0333333 1 Ojl I:O 7.00333 —0.293333
0.100000 —0.0271300 1 0 0 10.0120
This result can be verified by performing the multiplication of [L][U] to give
3 -0.1 =02
[LIIU] = [0.0999999 7 —0.3 :|
0.3 —0.2 9.99996

where the minor discrepancies are due to roundoff.

After the matrix is decomposed, a solution can be generated for a particular right-hand-
side vector {b}. This is done in two steps. First, a forward-substitution step is executed by
solving Eq. (10.8) for {d}. It is important to recognize that this merely amounts to perform-
ing the elimination manipulations on {b}. Thus, at the end of this step, the right-hand side

EXAN

10.2 GAUSS ELIMINATION AS (U FACTORIZATION 241

EXAMPLE 10.2

will be in the same state that it would have been had we performed forward manipulation
on [A] and {b} simultaneously.
The forward-substitution step can be represented concisely as

The second step then merely amounts to implementing back substitution to solve
Eq. (10.3). Again, it is important to recognize that this is identical to the back-substitution
phase of conventional Gauss elimination [compare with Egs. (9.12) and (9.13)}:

Xy = dn/ann
n
di = 3 uijx

j=it]

Xp = fori=n—-1,n-2...,1

Uij
The Substitution Steps
Problem Statement. Complete the problem initiated in Example 10.1 by generating the

final solution with forward and back substitution.

Solution. As just stated, the intent of forward substitution is to impose the elimination
manipulations that we had formerly applied to [A] on the right-hand-side vector {b}. Recall
that the system being solved is

3 -0.1 =02 b 7.85
,:0.1 7 ~0.3:|[x3}=[—19.3l
03 —-02 10 X3 71.4

and that the forward-elimination phase of conventional Gauss elimination resulted in

3 -0l —0.2 X 7.85
[:0 7.00333 —0.293333J [xz } = { —19.5617
0 0 10.0120 70.0843

X3

The forward-substitution phase is implemented by applying Eq. (10.8):

1 0 0 d, 7.85
[0‘0333333 1 O} {dg } = { —19.3
0.100000 —0.0271300 1 d3 71.4
or multiplying out the left-hand side:
d, = 7.85
0.0333333d, + d> =-193
0.100000d, - 0.0271300d, + d; = 71.4

We can solve the first equation for d, = 7.85, which can be substituted into the second
equation to solve for

dr = —19.3 — 0.0333333(7.85) = —19.5617

242 LU FACTORIZATION

Both d, and d, can be substituted into the third equation to give
dy =714 —0.1(7.85) + 0.02713(—19.5617) = 70.0843

Thus,

7.85
{d} = { —19.5617]
70.0843

This result can then be substituted into Eq. (10.3), [U){x} = {d}:

3 —=0.1 -0.2 X 7.85
{0 7.00333 —04293333:1 [,rz I = [—19.5617}
0 0 16.0120 X3 70.0843

which can be solved by back substitution (see Example 9.3 for details) for the final solution;

3
{d}:{ —2.5 }
7.00003

The LU factorization algorithm requires the same total flops as for Gauss elimination.
The only difference is that a little less effort is expended in the factorization phase since the
operations are not applied to the right-hand side. Conversely, the substitution phase takesa
little more effort.

10.2.1 MATLAB Function: 1u
MATLARB has a built-in function 1u that generates the LU factorization. It has the general
syntax:

[L,U] = lu(x)

where L and U are the lower triangular and upper triangular matrices, respectively, derived
from the LU factorization of the matrix x. Note that this function uses partial pivoting to
avoid division by zero. The following example shows how it can be employed to generate
both the factorization and a solution for the same problem that was solved in Exam-
ples 10.1 and 10.2.

EXAMPLE 10.3 LU Factorization with MATLAB

Problem Statement. Use MATLAB to compute the LU factorization and find the
solution for the same linear system analyzed in Examples 10.1 and 10.2:

3 —01 -0.2 X 7.85
[0.1 7 ~O.3—’{x2]=l~l9.3]
n3I 09 10 X2 714

10.2 GAUSS ELIMINATION AS LU FACTORIZATION 243

Solution. The coefficient matrix and the right-hand-side vector can be entered in stan-
dard fashion as

[Ne)

>> A = [3 -.1 -.2;.1 7 -.3;.3 -.
>> b = [7.85; -19.3; 71.47;

10]);

Next, the LU factorization can be computed with

>> [L,U] = 1u(h)

L =
1.0000 0 0
0.0333 1.0000 0
0.1000 -0.0271 1.0000
U =
3.0000 -0.1000 -0.2000
0 7.0033 -0.2933
0 0 10.0120

This is the same result that we obtained by hand in Example 10.1. We can test that it is cor-
rect by computing the original matrix as

>> L*U

ans =
3.0000 -0.100 -0.2000
0.1000 7.0000 -0.3000
0.3000 -0.2000 10.0000

To generate the solution, we first compute
>> d = L\b
d =
7.8500
-19.5617
70.0843

And then use this result to compute the solution

>> x = U\d

3.0000
-2.5000
7.0000

These results conform to those obtained by hand in Example 10.2.

244

LU FACTORIZATION

10.3

EXAMPLE 10.4

CHOLESKY FACTORIZATION

Recall from Chap. 8 that a symmetric matrix is one where a;; = a;; for all i and j. In other
words, [A] = |A]". Such systems occur commonly in both mathematical and engineering/
science problem contexts.

Special solution techniques are available for such systems. They offer computational
advantages because only half the storage is needed and only half the computation time is
required for their solution.

One of the most popular approaches involves Cholesky factorization (also called
Cholesky decomposition). This algorithm is based on the fact that a symmetric matrix can
be decomposed. as in

[A] = [(U'|U] (10.14)

That is. the resulting triangular factors are the transpose of each other.
The terms of Eq. (10.14) can be multiplied out and set equal to each other. The factor-
ization can be generated efficiently by recurrence relations. For the ith row:

i—1

ai; — Z“/Za (10.15)

k=1

Uij =

i—1
ajj — le;\,'bl/\rj
wy = —= forj=i+1,....n (10.16)
! Wi

Cholesky Factorization

Problem Statement. Compute the Cholesky factorization for the symmetric matrix
6 15 55
[A]:|:15 55 225}
55 225 979
Solution. For the first row (i = 1), Eq. (10.15) is employed to compute
upy = Jayn = V6 = 2.44949

Then. Eq. (10.16) can be used to determine

ain 15

Up = —= = =6.123724
Uy 2.44949
a 55

w3 = 2 = — 22.45366
Uy 2.44949

For the second row (i = 2):

U = \Jan — ul, = /55 — (6.123724)? = 4.1833

EXAM

10.3 CHOLESKY FACTORIZATION 245

EXAMPLE 10.5

ax — iy 225 — 6.123724(22.45366)
U N 4.1833

= 20.9165

Uz =

For the third row (i = 3):

U3y = \Jass — w3 — uly = /979 — (22.45366)% — (20.9165)2 = 6.110101

Thus, the Cholesky factorization yields

;244949 6123724 22453667
U] = L 4.1833 20.9165
6.110101

The validity of this factorization can be verified by substituting it and its transpose into
Eq. (10.14) to see if their product yields the original matrix [A]. This is left for an exercise.

After obtaining the factorization, it can be used to determine a solution for a right-
hand-side vector {b} in a manner similar to LU factorization. First, an intermediate vector
{d} is created by solving

(U1 {d} = (b} (10.17)
Then, the final solution can be obtained by solving

[UNx} = {d} (10.18)

10.3.1 MATLAB Function: chol

MATLARB has a built-in function chol that generates the Cholesky factorization. It has the
general syntax,

U = chol(X)

where Uis an upper triangular matrix so that o' * = x. The following example shows how
it can be employed to generate both the factorization and a solution for the same matrix that
we looked at in the previous example.

Cholesky Factorization with MATLAB

Problem Statement. Use MATLAB to compute the Cholesky factorization for the same
matrix we analyzed in Example 10.4.

6 15 55
[A] = |: 15 55 225:|
55 225 979

Also obtain a solution for a right-hand-side vector that is the sum of the rows of [A]. Note
that for this case, the answer will be a vector of ones.

246

LU FACTORIZATION

10.4

Solution. The matrix is entered in standard fashion as

>> A = [6 15 55; 15 55 225; 55 225 9797 ;

A right-hand-side vector that is the sum of the rows of [A] can be generated as

>> b o= [sum{A(l,:)); sum(A(2,:)); sum{(A(3,:
b =
76
295
1259

Next, the Cholesky factorization can be computed with

»>»> U = chol (A)

U =
2.4495 6.1237 22.4537

0 4.,1833 20.9165

0 0 6.1101

We can test that this is correct by computing the original matrix as

>> U'*U

ans =
6.0000 15.0000 55.0000
15.0000 55.0000 225.0000
55.0000 225.0000 979.0000

To generate the solution, we first compute
>> d = A'\b
a =
31.0269
25.0998
6.1101

And then use this result to compute the solution

>> X = A\y

1.0000
1.0000
1.0000

MATLAB LEFT DIVISION

We previously introduced left division without any explanation of how it works. Now that
we have some background on matrix solution techniques, we can provide a simplified

e feomr AL tte vev sty e

10.1 Dete
of equatio
tion, and (
version of
10.2 Use
Eqgs. (10.7
10.3 Use
system ace

IOX| -
_311 -
x1 4

Then, mul
mine that |
104 Use.
Prob. 10.3
the system

by =

10.5 Solv.
factorizatis

2x1-
—3)(] -

PROBLEMS 247

When we implement left division with the backslash operator, MATLAB invokes a
highly sophisticated algorithm to obtain a solution. In essence, MATLAB examines the
structure of the coefficient matrix and then implements an optimal method to obtain the
solution. Although the details of the algorithm are beyond our scope, a simplified overview
can be outlined.

First, MATLAB checks to see whether [A] is in a format where a solution can be
obtained without full Gauss elimination. These include systems that are (a) sparse and
banded, (b) triangular (or easily transformed into triangular form), or (¢) symmetric. If any
of these cases are detected, the solution is obtained with the efficient techniques that are
available for such systems. Some of the techniques include banded solvers, back and for-
ward substitution, and Cholesky factorization.

If none of these simplified solutions are possible and the matrix is square,” a general
triangular factorization is computed by Gauss elimination with partial pivoting and the
solution obtained with substitution.

21t should be noted that in the event that [A] is not square, a least-squares solution is obtained with an approach

called QR factorization.

PROBLEMS

10.1 Determine the total flops as a function of the number
fequations n for the (a) factorization, (b) forward substitu-
ion, and (¢) back substitution phases of the LU factorization
ersion of Gauss elimination.

10.2 Use the rules of matrix multiplication to prove that
5. (10.7) and (10.8) follow from Eq. (10.6).

0.3 Use naive Gauss elimination to factor the following
stem according to the description in Section 10.2:

0% 4+2x — x3= 27
=3x — 6x; +2x3 = —61.5
X1+ x2+5x3=-215

en, multiply the resulting {L] and [U] matrices to deter-
ine that {A] is produced.

04 Use LU factorization to solve the system of equations in
b. 10.3. Show all the steps in the computation. Also solve
system for an alternative right-hand-side vector

mr=112 18 —6]

05 Solve the following system of equations using LU
torization with partial pivoting:

2X1 —6X2 — X3 = —38
3%~ x2+Tx3 = =34
Ry L vaA — DVye — 00

10.6 Develop your own M-file to determine the LU factoriza-
tion of a square matrix without partial pivoting. That is, de-
velop a function that is passed the square matrix and returns
the triangular matrices [L] and [U]. Test your function by
using it to solve the system in Prob. 10.3. Confirm that your
function is working properly by verifying that [L][U] = [A]
and by using the built-in function Iu.

10.7 Confirm the validity of the Cholesky factorization of
Example 10.4 by substituting the results into Eq. (10.14) to
verify that the product of [U]” and [U] yields [A].

10.8 (a) Perform a Cholesky factorization of the following
symmetric system by hand:

8 20 15 Xy 50
20 80 50 Xy ¢ =4 250
15 50 60 X3 100

(b) Verify your hand calculation with the built-in chol
function. (¢) Employ the results of the factorization [U] to
determine the solution for the right-hand-side vector.

10.9 Develop your own M-file to determine the Cholesky
factorization of a symmetric matrix without pivoting. That
is, develop a function that is passed the symmetric matrix
and returns the matrix [U]. Test your function by using it to
solve the system in Prob. 10.8 and use the built-in function
~hol to confirm that vour function is workine properlyv.

248 LU FACTORIZATION

10.10 Solve the following set of equations with LU factor-
ization:

3xp = 2x0+ x3=-—10
2x) +6x2 —4x3 = 44

—~xp — 2x) + 5x3 = =26

10.11 (a) Determine the LU factorization without pivoting
by hand for the following matrix and check your results by
vahdating that [L}[U] = [A).

8 2 1
37 2
2 39

(b) Employ the result of (a) to compute the determinant.
(c) Repeat (a) and (b) using MATLAB.

10.12 Use the following LU factorization to (a) compute
the determinant and (b) solve [A]{x} = {b} with {b}T =
[—10 44 -26].

1
[Al=[LI{U]=| 0.6667 1
—0.3333 —-0.3636 1

3 -2 1
x 7.3333 —4.6667
3.6364

10.13 Use Cholesky factorization to determine [U] so that

P
Al=wl'wl=| -1 2 -1
0 -1 2

10.14 Compute the Cholesky factorization of

9 0
[Al=10 2
0

o

0
0
4

<

Do your results make sense in terms of Egs. (10.15) and
(10.16)?

11.1

Matrix Inverse and Condition

4 CHAPTER OBJECTIVES

The primary objective of this chapter is to show how to compute the matrix inverse
and to illustrate how it can be used to analyze complex linear systems that occur in
engineering and science. In addition, a method to assess a matrix solution’s sensitivity
to roundoff error is described. Specific objectives and topics covered are

®* Knowing how to determine the matrix inverse in an efficient manner based on LU
factorization.

¢ Understanding how the matrix inverse can be used to assess stimulus-response
characteristics of engineering systems.
Understanding the meaning of matrix and vector norms and how they are computed.
Knowing how to use norms to compute the matrix condition number.
Understanding how the magnitude of the condition number can be used to

estimate the precision of solutions of linear algebraic equations.

THE MATRIX INVERSE

In our discussion of matrix operations (Section 8.1.2), we introduced the notion that if a
matrix [A] is square, there is another matrix [A]~', called the inverse of [A], for which

[AI[AT™! = [A]'[A] = []] (11.1)

Now we will focus on how the inverse can be computed numerically. Then we will explore
how it can be used for engineering analysis.

11.1.1 Calculating the Inverse

The inverse can be computed in a column-by-column fashion by generating solutions with
unit vectors as the right-hand-side constants. For example, if the right-hand-side constant

250

MATRIX INVERSE AND CONDITION

EXAMPLE 11.1

has a 1 in the first position and zeros elsewhere,

i
{b} = {0} (112
0

the resulting solution will be the first column of the matrix inverse. Similarly, if a unit vec-
tor with a 1 at the second row is used

0
{b} = { 1 } (113
0

the result will be the second column of the matrix inverse.

The best way to implement such a calculation is with LU factorization. Recall that one
of the great strengths of LU factorization is that it provides a very efficient means to evalu-
ate multiple right-hand-side vectors. Thus, it is ideal for evaluating the multiple unit vectors
needed to compute the inverse.

Matrix Inversion

Problem Statement. Employ LU factorization to determine the matrix inverse for the
system from Example 10.1:
3 —01 -02
[A]= 0.1 7 —-0.3

03 -02 10
Recall that the factorization resulted in the following lower and upper triangular matrices:
3 =01 -0.2 1 0 0
(U]=10 7.00333 —0.293333 [L]= | 0.0333333 1 0
0 0 10.0120 0.100000 —0.0271300 1

Solution. The first column of the matrix inverse can be determined by performing the
forward-substitution solution procedure with a unit vector (with 1 in the first row) as the
right-hand-side vector. Thus, the lower triangular system can be set up as (recall Eq. [10.8))

1 0 0 d; 1
0.0333333 1 0 =10
0.100000 —0.0271300 1 d; 0

and solved with forward substitution for {d}7 = [1 —0.03333 —0.1009]. This vector
can then be used as the right-hand side of the upper triangular system (recall Eq. [10.3])

3 =0l -0.2 X1 1
0 7.00333 —0.293333 X2 ¢ =3 —0.03333
0 0 10.0120 X3 —0.1009

which can be solved by back substitution for {x}7 =]0.33249 —0.00518 —0.01008}
which is the first column of the matrix inverse:

033249 0 0
[A]7' =] —0.00518 0 0

—ON1IOHKRk OY 0O

11.1 THE MATRIX INVERSE 251

To determine the second column, Eq. (10.8) is formulated as

1 0 0 d 0
0.0333333 1 0 d ¢ =11
0.100000 —0.0271300 1 d3 0

This can be solved for {d}, and the results are used with Eq. (10.3) to determine x)7 =
[0.004944 0.142903 0.00271/, which is the second column of the matrix inverse:

0.33249 0.004944 0
(AT7' = | —0.00518 0.142903 0
~0.01008 0.002710 0

Finally, the same procedures can be implemented with {b}" =10 0 1] to solve for
{x}7 = [0.006798 0.004183 0.09988], which is the final column of the matrix inverse:

0.33249 0.004944 0.006798
[A]7' =] —0.00518 0.142903 0.004183
—0.01008 0.002710 0.099880

The validity of this result can be checked by verifying that [Al[A]™' = [1].

11.1.2 Stimulus-Response Computations

As discussed in PT 3.1, many of the linear systems of equations arising in engineering and
science are derived from conservation laws. The mathematical expression of these laws
is some form of balance equation to ensure that a particular property—mass, force, heat,
momentum, electrostatic potential—is conserved. For a force balance on a structure, the
properties might be horizontal or vertical components of the forces acting on each node of
the structure. For a mass balance, the properties might be the mass in each reactor of a
chemical process. Other fields of engineering and science would yield similar examples.

A single balance equation can be written for each part of the system, resulting in a set
of equations defining the behavior of the property for the entire system. These equations
are interrelated, or coupled, in that each equation may include one or more of the variables
from the other equations. For many cases, these systems are linear and, therefore, of the
exact form dealt with in this chapter:

[Al{x} = {b} (11.4)

Now, for balance equations, the terms of Eq. (11.4) have a definite physical interpre-
tation. For example, the elements of {x} are the levels of the property being balanced for
each part of the system. In a force balance of a structure, they represent the horizontal and
vertical forces in each member. For the mass balance, they are the mass of chemical in each
reactor. In either case, they represent the system’s state or response, which we are trying to
determine.

The right-hand-side vector {b} contains those elements of the balance that are inde-
pendent of behavior of the system—that is, they are constants. In many problems, they
represent the forcing functions or external stimuli that drive the system.

252

MATRIX INVERSE AND CONDITION

EXAMPLE 11.2

Finally, the matrix of coefficients [A] usually contains the parameters that express
how the parts of the system inferact or are coupled. Consequently, Eq. (11.4) might be
reexpressed as

[Interactions]{response} = {stimuli}

As we know from previous chapters, there are a variety of ways to solve Eq. (114).
However, using the matrix inverse yields a particularly interesting result. The formal solu-
tion can be expressed as

{xf=1A1"b)
or (recalling our definition of matrix multiplication from Section 8.1.2)
Xy = a]]Ib] +ay) by +a;ibs
Xy = a;]lbl + a;z'bz + az}' b;
xy = ay'by + ap'br + ay'hs

Thus, we tind that the inverted matrix itself, aside from providing a solution, has ex-
tremely useful properties. That is, each of its elements represents the response of a single
part of the system to a unit stimulus of any other part of the system.

Notice that these formulations are linear and, therefore, superposition and proportion-
ality hold. Superposition means that if a system is subject to several different stimuli (the
b’s), the responses can be computed individually and the results summed to obtain a total
respouse. Proportionality means that multiplying the stimuli by a quantity results in the re-
sponse to those stimuli being multiplied by the same quantity. Thus, the coefficiental‘l1 is
a proportionality constant that gives the value of x| due to a unit level of ;. This resultis
independent of the effects of b, and b3 on x;, which are reflected in the coefficients
al}’ and al}’, respectively. Therefore, we can draw the general conclusion that the element
a,-;‘ of the inverted matrix represents the value of x; due to a unit quantity of b,.

Using the example of the structure, element a,;‘ of the matrix inverse would represent
the force in member i due to a unit external force at node j. Even for small systems, such
behavior of individual stimulus-response interactions would not be intuitively obvious. As
such, the matrix inverse provides a powerful technique for understanding the interrelation-
ships of component parts of complicated systems.

Analyzing the Bungee Jumper Problem

Problem Statement. At the beginning of Chap. 8, we set up a problem involving three
individuals suspended vertically connected by bungee cords. We derived a system of linear
algebraic equations based on force balances for each jumper,

150 —100 O Xy 588.6
—-100 150 =50 Xz ¢ =1 686.7
0 -50 50 X3 784.8

In Example 8.2, we used MATLAB to solve this system for the vertical positions of the
jumpers (the x’s). In the present example, use MATLAB to compute the matrix inverse and

11.2 ERROR ANALYSIS AND SYSTEM CONDITION 253

11.2

Solution. Start up MATLAB and enter the coefficient matrix:
>> K = [150 -100 0;-100 150 -50;0 -50 507];

The inverse can then be computed as

>> KI = 1nv(K)

KI =
0.0200 0.0200 0.0200
0.0200 0.0300 0.0300
0.0200 0.0300 0.0500

Each element of the inverse, kl;l of the inverted matrix represents the vertical change
in position (in meters) of jumper / due to a unit change in force (in Newtons) applied to
jumper j.

First, observe that the numbers in the first column (;j = 1) indicate that the position of
all three jumpers would increase by 0.02 m if the force on the first jumper was increased
by 1 N. This makes sense, because the additional force would only elongate the first cord
by that amount.

In contrast, the numbers in the second column (j = 2) indicate that applying a force
of 1 N to the second jumper would move the first jumper down by 0.02 m, but the second
and third by 0.03 m. The 0.02-m elongation of the first jumper makes sense because the
first cord is subject to an extra 1 N regardless of whether the force is applied to the first or
second jumper. However, for the second jumper the elongation is now 0.03 m because
along with the first cord, the second cord also elongates due to the additional force. And of
course, the third jumper shows the identical translation as the second jumper as there is no
additional force on the third cord that connects them.

As expected, the third column (j = 3) indicates that applying a force of 1 N to the
third jumper results in the first and second jumpers moving the same distances as occurred
when the force was applied to the second jumper. However, now because of the additional
elongation of the third cord, the third jumper is moved farther downward.

Superposition and proportionality can be demonstrated by using the inverse to deter-
mine how much farther the third jumper would move downward if additional forces of 10,
50, and 20 N were applied to the first, second, and third jumpers, respectively. This can be
done simply by using the appropriate elements of the third row of the inverse to compute,

Axs = k3 AF) + k3 AF> + k3! AF; = 0.02(10) + 0.03(50) + 0.05(20) = 2.7 m

ERROR ANALYSIS AND SYSTEM CONDITION

Aside from its engineering and scientific applications, the inverse also provides a means to
discern whether systems are ill-conditioned. Three direct methods can be devised for this

purpose:
1. Scale the matrix of coefficients [A] so that the largest element in each row is 1. Invert

the scaled matrix and if there are elements of [A]™' that are several orders of magni-
t1itde oreater than one it 1¢ likelv that the cvucter 1c (1l randitinnad

254

MATRIX INVERSE AND CONDITION

2. Multiply the inverse by the original coefficient matrix and assess whether the results
close to the identity matrix. If not, it indicates ill-conditioning.

3. Invert the inverted matrix and assess whether the result is sufficiently close to the orig-
inal coefficient matrix. If not, it again indicates that the system is ill-conditioned.

Although these methods can indicate ill-conditioning, it would be preferable to obtain
a single number that could serve as an indicator of the problem. Attempts to formulate sich
a matrix condition number are based on the mathematical concept of the norm.

11.2.1 Vector and Matrix Norms

A norm is a real-valued function that provides a measure of the size or “length” of mult-
component mathematical entities such as vectors and matrices.

A simple example is a vector in three-dimensional Euclidean space (Fig. 11.1) that can
be represented as

LFi=la b c]

whete a, b, and ¢ are the distances along the x, y, and z axes, respectively. The length of
this vector—that is, the distance from the coordinate (0, 0, 0) to (a, b, ¢)—can be simply
computed as

IFll, = Va2 + b + 2

where the nomenclature || F}j, indicates that this Jength is referred to as the Euclidean nom
of [F].

Similarly, for an n-dimensional vector { X | = [x;, x; --- xn], a Euclidean norm
would be computed as

n
X1, = \J >
i=1

FIGURE 11.1

Grophical depiction of a vector in Euclidean space.

o

80

11.2 ERROR ANALYSIS AND SYSTEM CONDITION 255

The concept can be extended further to a matrix [A], as in

n n
1Al :\JZZ“?J (IL.5)
i=1 j=|
which is given a special name—the Frobenius norm. As with the other vector norms, it
provides a single value to quantify the “size” of [A].

It should be noted that there are alternatives to the Euclidean and Frobenius norms. For
vectors, there are alternatives called p norms that can be represented generally by

" 1/p
X1, = (Z xl-|">

i=1
We can see that the Euclidean norm and the 2 norm, | X ||, are identical for vectors.
Other important examples are (p = 1)

1
X0 = 1|
=1
which represents the norm as the sum of the absolute values of the elements. Another is the
maximum-magnitude or uniform-vector norm (p = o0),

XNl = max |x;]
l<i=<n

which defines the norm as the element with the largest absolute value.
Using a similar approach, norms can be developed for matrices. For example,

n
1Al = max > "la|
| <j<n =

That is, a summation of the absolute values of the coefficients is performed for each col-
umn, and the largest of these summations is taken as the norm. This is called the column-
Sum norm.

A similar determination can be made for the rows, resulting in a uniform-matrix or
FOW-SUm ROTm:

n
1Al = max > " fay]
l=i<n p

It should be noted that, in contrast to vectors, the 2 norm and the Frobenius norm for
a matrix are not the same. Whereas the Frobenius norm || A||; can be easily determined by
Eq. (11.5), the matrix 2 norm ||A||, is calculated as

“A “2 - (Hmux) 12

where y,,.. is the largest eigenvalue of [A]'[A]. In Appendix A, we will learn more about
eigenvalues. For the time being, the important point is that the [|All,. or spectral norm, is
the minimum norm and, therefore. provides the tightest measure of size (Ortega, 1972).

11.2.2 Matrix Condition Number

Now that we have introduced the concept of the norm, we can use it to define
CondlAl = Al - 1A~

256

MATRIX INVERSE AND CONDITION

EXAMPLE 11.3

where Cond[A] is called the matrix condition number. Note that for a matrix [A], this
number will be greater than or equal to 1. It can be shown (Ralston and Rabinowitz, 1978;
Gerald and Wheatley, 1989) that

IAX < Cond[A] IAA]
X Al
That is, the relative error of the norm of the computed solution can be as large as the rela-
tive error of the norm of the coefficients of [A] multiplied by the condition number. For ex-
ample, if the coefficients of [A] are known to ¢-digit precision (i.e., rounding errors are on
the order of 107") and Cond[A] = 107, the solution [X] may be valid to only r — ¢ digits
(rounding errors =~ 10°77),

Matrix Condition Evaluation

Problem Statement. The Hilbert matrix, which is notoriously ill-conditioned, can be repre-
sented generally as

o= B

= -
e B— W)

1 I
n+1 n+2 2n—1

= -

Use the row-sum norm to estimate the matrix condition number for the 3 x 3 Hilbert matrix;

[A] =

Bl W— 10—
Dl i Gafm

Solution. First, the matrix can be normalized so that the maximum element in each rowis [:

i1

bs 3
2

(Al=|1 3 1

3 3

1 3 5

Summing each of the rows gives 1.833, 2.1667, and 2.35. Thus, the third row has the
largest sum and the row-sum norni is

3 3
IIAHoo:1+Z+—=2.35

5
The inverse of the scaled matrix can be computed as
9 —-18 10
[A)'=]-36 9 —60
30 -90 60

Note that the elements of this matrix are larger than the original matrix. This is also re-
flected in its row-sum norm, which is computed as

EXAM

11.2 ERROR ANALYSIS AND SYSTEM CONDITION 257

EXAMPLE 11.4

Thus. the condition number can be calculated as
Cond{A] = 2.35(192) = 451.2

The fact that the condition number is much greater than unity suggests that the system
is ill-conditioned. The extent of the ill-conditioning can be quantified by calculating ¢ = log
451.2 = 2.65. Hence, the last three significant digits of the solution could exhibit rounding
errors, Note that such estimates almost always overpredict the actual error. However, they
are useful in alerting you to the possibility that roundoff errors may be significant.

11.2.3 Norms and Condition Number in MATLAB

MATLAB has built-in functions to compute both norms and condition numbers:
>> norm (X, p)

and
>> cond({X,p)

where x is the vector or matrix and p designates the type of norm or condition number (1, 2,
inf, or ' fro'). Note that the cond function is equivalent to

>> norm(X,p) * norm(inv(X),p)

Also, note that if p 1s omitted, it is automatically set to 2.

Matrix Condition Evaluation with MATLAB
Problem Statement. Use MATLAB to evaluate both the norms and condition numbers
for the scaled Hilbert matrix previously analyzed in Example 11.3:
1
[Al=1]1
1

Bl WIS Rf—
LAY b= W —

(a) As in Example 11.3, first compute the row-sum versions (p = inf). (b) Also compute
the Frobenius (p = * fro ') and the spectral (p = 2) condition numbers.

Solution: (a) First, enter the matrix:

>> A = [1 1/2 1/3;1 2/3 1/2;1 3/4 3/51;

Then, the row-sum norm and condition number can be computed as

>> norm(A,inf)

ans =
2.3500

>> cond (A, inf)

ANsS =

258

MATRIX INVERSE AND CONDITION

These results correspond to those that were calculated by hand in Example 11.3.

(b) The condition numbers based on the Frobenius and spectral norms are

>> cond (A, "fro')

ans =
368.0866

>> cond(A)

ans =
366.3503

INDOOR AIR POLLUTION

Background. As the name implies, indoor air pollution deals with air contamination
in enclosed spaces such as homes, offices, and work areas. Suppose that you are studying
the ventilation system for Bubba’s Gas "N Guzzle, a truck-stop restaurant located adjacent |
to an eight-lane freeway.
As depicted in Fig. 11.2, the restaurant serving area consists of two rooms for smokers {
and kids and one elongated room. Room 1 and section 3 have sources of carbon monoxide
from smokers and a faulty grill, respectively. In addition, rooms | and 2 gain carbon
monoxide from air intakes that unfortunately are positioned alongside the freeway.

FIGURE 11.2

Overhead view of rooms in a restaurant. The ane-way arrows represent volumetric airflows,
whereas the twoway arrows represent diffusive mixing. The smoEer and grill loads add carbon
monoxide mass o the system but negligible airflow.

Q, = 150 m3/hrt Q, =100 m¥%hry
(|
Q, = 50 m%hr 2 25 mhr .
¢, = 2 mg/m3 (Kids’ section)
£
£
o
- 3 w
Q,=200m7hr| ; 25 m/hr .
¢, = 2 mg/m? 3

{Smoking section)

Smoker 10ad g
{1000 mg/hr)

————

11.3 CASE STUDY 259

continued

Write steady-state mass balances for each room and solve the resulting linear alge-
braic equations for the concentration of carbon monoxide in each room. In addition, gen-
erate the matrix inverse and use it to analyze how the various sources affect the kids’
room. For example, determine what percent of the carbon monoxide in the kids’ section is
due to (1) the smokers, (2) the grill, and (3) the intake vents. In addition, compute the im-
provement in the kids’ section concentration if the carbon monoxide load is decreased by
banning smoking and fixing the grill. Finally, analyze how the concentration in the kids’
area would change if a screen is constructed so that the mixing between areas 2 and 4 is
decreased to 5 m’/hr.

Solution, Steady-state mass balances can be written for each room. For example, the
balance for the smoking section (room 1) is

0= W%moker + Qaca - Qacl + E13(C3 - Cl)
(Load) + (Inflow) — (Outflow) + (Mixing)

Similar balances can be written for the other rooms:
0= Qpcp +(Qu — Qua)ca — Occr + Erglcs — ¢2)
0= Wgin + Qucr + Ena(cr — ¢3) + Exnfcs — ¢3) — Qucs
0= Qucs+ Esslcs — ca) + Exg(er — ¢4) = Qucy

Substituting the parameters yields the final system of equation:

25 0 25 0 ¢ 1400

0 175 0 —125])c | | 100

—225 0 275 =50 {)e T] 2000
0 —25 -250 275 1l 0

MATLAB can be used to generate the solution. First, we can compute the inverse.
Note that we use the “short g” format in order to obtain five significant digits of precision:

>> format short g
>> A=[225 0 -25 0
0 175 0 -125

-225 0 275 =50

0 -25 -250 2757 ;
>> AT=inv (A)

AT =
0.0049962 1.5326e-005 0.00055172 0.00010728
0.0034483 0.0062069 0.0034483 0.0034483
0.0049655 0.00013793 0.0049655 0.00096552
N NNAOCYTE N NNANEACAA O NNAR2274 N NNARDTHA

260 MATRIX INVERSE AND CONDITION

continued

The solution can then be generated as

>> b=[1400 100 2000 0]"';

>> c=AIl*Db

Cc =
8.0996
12.345
16.897
16.483

Thus, we get the surprising result that the smoking section has the lowest carbon
monoxide levels! The highest concentrations occur in rooms 3 and 4 with section 2 having
an intermediate level. These results take place because (a) carbon monoxide is conserva-
tive and (b) the only air exhausts are out of sections 2 and 4 (Q, and Q). Room 3 is so bad
because not only does it get the load from the faulty grill, but it also receives the effluent
from room 1. :

Although the foregoing is interesting, the real power of linear systems comes from
using the elements of the matrix inverse to understand how the parts of the system interact.
For example, the elements of the matrix inverse can be used to determine the percent of the |
carbon monoxide in the kids’ section due to each source:

The smokers:

€2 smokers = @5 Wemokers = 0.0034483(1000) = 3.4483

3.4483
Posmokers = m x 100% = 27.93%
The grill:
Co.grill = ay; Wern = 0.0034483(2000) = 6.897
6.897
%grill = 1—2% x 100% = 55.87%

The intakes:

o intakes = 51 QuCu + ax,' Qpey = 0.0034483(200)2 + 0.0062069(50)2
= 1.37931 + 0.62069 = 2

2
Pogriny = 3345 x 100% = 16.20%

The faulty grill is clearly the most significant source.

The inverse can also be employed to determine the impact of proposed remedies such
as banning smoking and fixing the grill. Because the model is linear, superposition holds
and the results can be determined individually and summed:

Acy = a5} AWgmoker + a3 AWy = 0.0034483(—1000) 4 0.0034483(—2000)
= —3.4483 — 6.8966 = —10.345

PROBLEMS 261

.36

continued

Note that the same computation would be made in MATLAB as
>> AL(2,1)*{(-1000)+AT(2,3)*(-2000)

ans =
-10.345

Implementing both remedies would reduce the concentration by 10.345 mg/m®. The result
would bring the kids’ room concentration to 12.345 — 10.345 = 2 mg/m®. This makes
sense, because in the absence of the smoker and grill loads, the only sources are the air in-
takes which are at 2 mg/m°.

Because all the foregoing calculations involved changing the forcing functions, it was
not necessary to recompute the solution. However, if the mixing between the kids” area and
zone 4 is decreased, the matrix is changed

225 0 =25 0 1 1400
0 155 0 -105 c | _) 100
-225 0 275 =50 cs | T] 2000
0 -5 =250 255 C4 0

The results for this case involve a new solution. Using MATLAB, the result is

el 8.1084
e | | 12.0800
e [T] 16.9760
e 16.8800

Therefore, this remedy would only improve the kids’ area concentration by a paltry
0.265 mg/m’>.

apivoting strategy.

PROBLEMS
1 Determine the matrix inverse for the following system: 11.2 Determine the matrix inverse for the following system:
0+ 26— x3= 27 —8x| + x3—2x3 = —20
=35 = 6x3 4+ 243 = —61.5 2x) —6x; — x3 =38
n+ x4 5x;=-21.5 —3x; — x5+ Tx3 = —34

eck your results by verifying that [A][A1™! = [/]. Donot 11.3 The following system of equations 1s designed to

determine concentrations (the ¢’s in g/m*) in a series of

262 MATRIX INVERSE AND CONDITION

coupled reactors as a function of the amount of mass input to
cach reactor (the right-hand sides in g/day):

15¢) — 3¢2 — ¢3 = 3800
=3¢ + 18cy — 6¢3 = 1200
—d¢p — 2+ 1203 = 2350

(a) Determine the matrix inverse.

(b) Use the inverse to determine the solution.

(c) Determine how much the rate of mass input to reactor 3
must be increased to induce a 10 g/m’ rise in the con-
centration of reactor 1.

(d) How much wili the concentration in reactor 3 be re-
duced if the rate of mass input to reactors [and 2 is
reduced by 500 and 250 g/day, respectively?

11.4 Determine the matrix inverse for the system described

in Prob. 8.5. Use the matrix inverse to determine the

concentration in reactor 5 if the inflow concentrations are

changed to ¢y; = 20 and ¢z = 50.

11.5 Dectermine the matrix inverse for the system described

in Prob. 8.6. Use the matrix inversc to determine the force in

the three members (Fi. F» and F3) if the vertical load at
node 1 is doubled to F;,, = —2000 1b and a horizontal load

of I3, = =500 Ib is applied to node 3.

1.6 Dctermine ||Ally. |All;. and)| Al for

8 2 —10
[Al=] -9 1 3
15 -1 6

Before determining the norms, scale the matrix by making
the maximum element in each row equal to one.

11.7 Determine the Frobenius and row-sum norms for the
systems in Probs. 11.2 and 11.3.

11.8 Use MATLAB to determine the spectral condition num-
ber for the following system. Do not normalize the system:

1 4 9 16 25
4 9 16 25 36
9 16 25 36 49
16 25 36 49 64
25 36 49 64 81

Compute the condition number based on the row-sum norm.
11.9 Besides the Hilbert matrix. there are other matrices
that are inherently ill-conditioned. One such case is the
Vandermonde matrix, which has the following form:

X]2 x|
2

X x|l
]

XYy oxy |

(a) Determine the condition number based on the row-sum

norm for the case where x; =4, x, =2, andx; =7.
(b) Usc MATLAB to compute the spectral and Frobenius

condition numbers.
11.10 Use MATLAB to determine the spectral condition
number for a 10-dimcnsional Hilbert matrix. How many dig-
its of precision are expected to be lost due to ill-conditioning!
Determine the solution for this system for the case where ach
element of the right-hand-side vector {b} consists of the sum-
mation of the coefficients in its row. In other words, solve for
the case where all the unknowns should be exactly one. Com-
pare the resulting errors with those cxpected based on the
condition number.
11.11 Repeat Prob. 11.10, but for the case of a siv
dimensional Vandermonde matrix (see Prob. 11.9) wher
xi=4 x=2,x3=7.x4=10,x5 = 3. and xq = 5.
11.12 The Lower Colorado River consists of a series of four
reservoirs as shown in Fig. P11.12.

Mass balances can be written for each reservoir, and
the following set of simultancous linear algebraic equations
results:

13.422 0 0 0
—13422 12252 0 0
0 —12.252 12.377 0
0 0 —12.377 11.797
c 750.5
« 2 _ 300
3 102
Ca 30

where the right-hand-side vector consists of the foadings of

chloride to each of the four lakes and ¢|. ¢,, ¢;, and ¢, =the

resulting chloride concentrations for Lakes Powell, Mead,

Mohave, and Havasu, respectively.

(a) Use the matrix inverse to solve for the concentrations in
each of the four lakes.

(b) How much must the loading to Lake Powell be reduced
for the chloride concentration of Lake Havasu to be 75!

(c) Using the column-sum norm, compute the condition
number and how many suspect digits would be gener-
ated by solving this system.

11.13 (a) Determine the matrix inverse and condition num-

ber for the following matrix:

L I o)

1 3
4 6
7 8 9

(b) Rcpeat (a) but chanse a.- slichtlv to 9.1,

11.14 Po
unique (¥
Such pols

f&x)=rp

where thi
way for «
algebraic
the coeft

PROBLEMS

263

Upper
Colorado
River

Lake
Powell

FIGURE P11.12
The Lower Colorado River.

Lake
Havasu

.14 Polynomial interpolation consists of determining the
ique (n — 1)th-order polynomial that fits n data points.
uch polynomials have the general form,

W= px™ + pox™ Tl pa_ix + Py (P11.14)

here the p’s are constant coefficients. A straightforward
ay for computing the coefficients is to generate n linear
gebraic equations that we can solve simultaneously for
e coefficients. Suppose that we want to determine the

coefficients of the fourth-order polynomial f(x) = px* +
X + px* + px + ps that passes through the following five
points: (200, 0.746), (250, 0.675), (300, 0.616), (400, 0.525),
and (500, 0.457). Each of these pairs can be substituted into
Eq. (P11.14) to yield a system of five equations with five
unknowns (the p’s). Use this approach to solve for the coef-
ficients. In addition, determine and interpret the condition
number.

121

lterative Methods

4 CHAPTER OBIJECTIVES

The primary objective of this chapter is to acquaint you with iterative methods for
solving simultaneous equations. Specific objectives and topics covered are

Understanding the difference between the Gauss-Seidel and Jacobi methods.
Knowing how to assess diagonal dominance and knowing what it means.
Recognizing how relaxation can be used to improve the convergence of iterative
methods.

® Understanding how to solve systems of nonlinear equations with successive

substitution and Newton-Raphson.

terative or approximate methods provide an alternative to the elimination methods

described to this point. Such approaches are similar to the techniques we developedto

obtain the roots of a single equation in Chaps. 5 and 6. Those approaches consisted of
guessing a value and then using a systematic method to obtain a refined estimate of the
root. Because the present part of the book deals with a similar problem—obtaining the val
ues that simultaneously satisfy a set of equations—we might suspect that such approximate -
methods could be useful in this context. In this chapter, we will present approaches for
solving both linear and nonlinear simultaneous equations.

LINEAR SYSTEMS: GAUSS-SEIDEL

The Gauss-Seidel method is the most commonly used iterative method for solving linear
algebraic equations. Assume that we are given a set of n equations:

[AHx} = {b}

Suppose that for conciseness we limit ourselves to a3 x 3 set of equations. If the diagond
elements are all nonzero, the first equation can be solved for x;, the second for x», and the

EXAMI

12.1 LINEAR SYSTEMS: GAUSS-SEIDEL 265

third for x; to yield

j—1 j=1
C by —apx!iT —a;x
= 2 343 (12.1a)
ary
j i—1
i b? _(b]xj — azng
x) = ——2 23 (12.1h)
az
i b1 —aﬂxj —awxf
of = 2N T Anh (12.1¢)

asj

where j and j — 1 are the present and previous iterations.

To start the solution process, initial guesses must be made for the x’s. A simple ap-
proach is to assume that they are all zero. These zeros can be substituted into Eq. (12.1a),
which can be used to calculate a new value for x| = b;/a;;. Then we substitute this new
value of x; along with the previous guess of zero for xz into Eq. (12.15) to compute a new
value for x;. The process is repeated for Eq. (12.1¢) to calculate a new estimate for x3. Then
we return to the first equation and repeat the entire procedure until our solution converges
closely enough to the true values. Convergence can be checked using the criterion that for
all 7,

x) =

i i

Eui = x 100% < g (12.2)

X

XAMPLE 12.1 Gauss-Seidel Method
Problem Statement. Use the Gauss-Seidel method to obtain the solution for

3X1 - O.IXQ — 0.2)(3 = 17.85
Olx;+ 7x,—03x3=-193
0.3x; —0.2x; + 10x3 71.4

Il

Note that the solution is {x}7 = [3 —25 7].

Solution. First, solve each of the equations for its unknown on the diagonal:

N 7.85 + O.IXQ + 0.2)(3

X) = 3 (E12.1.1)
~19.3 = 0.1x; + 0.3x;

X = 7 (E12.1.2)
71.4 —0.3x;, +0.2x,

X3 = 0 (E12.1.3)

By assuming that x; and x;3 are zero, Eq. (E12.1.1) can be used to compute

_ 7.85+0.1(0) + 0.2(0)

3 = 2.616667

X

266

ITERATIVE METHODS

This value, along with the assumed value of x3 = 0, can be substituted into Eq. (E121)
to calculate
~19.3 — 0.1(2.616667) + 0.3(0)

Xy = = —2.794524
7

The first iteration is completed by substituting the calculated values for x; and x; it
Eq. (E12.1.3) to yield

714 - 0.3(2.616667) + 0.2(—2.794524)

X3 = = 7.005610
10

For the second iteration, the same process is repeated to compute

_1.85+ 0.1(—2.794524) + 0.2(7.005610)

X1 = 2.990557
3
~19.3 — 0.1(2.9905 .3(7.00
o= 0.1(2.9905357) + 0.3(7.005610) 5499625
7
71.4 — 0.3(2.990557) + 0.2(—2.499625
X3 = (1()) +0.%) = 7.000291

The method is, therefore, converging on the true solution. Additional iterations could be;
applied to improve the answers. However, in an actual problem, we would not know the:
true answer a priori. Consequently, Eq. (12.2) provides a means to estimate the error. For

example, for xi:

2.990557 — 2.616667
Eal = x 100% = 12.5%

2.990557

For x, and x3, the error estimates are &,2 = 11.8% and &,3 = 0.076%. Note that, as w&
the case when determining roots of a single equation, formulations such as Eq. (12.2) ust-
ally provide a conservative appraisal of convergence. Thus, when they are met, they ensure
that the result is known to at least the tolerance specified by ;.

As each new x value is computed for the Gauss-Seidel method, it is immediately used
in the next equation to determine another x value. Thus, if the solution is converging, te
best available estimates will be employed. An alternative approach, called Jacobi iteration,
utilizes a somewhat different tactic. Rather than using the latest available x’s, this tech
nique uses Eq. (12.1) to compute a set of new x’s on the basis of a set of old x’s. Thus, s
new values are generated, they are not immediately used but rather are retained for the ned
iteration.

The difference between the Gauss-Seidel method and Jacobi iteration is depicted in
Fig. 12.1. Although there are certain cases where the Jacobi method is useful, Gauss-Seidel’s
utilization of the best available estimates usually makes it the method of preference.

12.1 LUNEAR SYSTEMS: GAUSS-SEIDEL 267

First iteration

x, = (b, — a;px, — apxs)/ay, = (b, — ayxy ~ a3x)/ay,

Xy = by — @y %) ~ ayX3)/dx; L[(by — azx, — apxs)/ay

X3 = (by = ayx — ayX2)/as, = (by = a3 x —) az,

* Second iteration

AL
N
x; = by — apx; — apsxa)/ay 5 =1(b) —apxy — apx)/ay
X = (by — ayx) — apxy)/ay Xy = (by — ay X, — Ayxy)/ay
|
g = (by = ayx; — apt)/as x5 = (by = agx; = G3p%5)/dzs
(a) (b)

FIGURE 12.1
Graphical depiction of the difference between {a} the GaussSeidel and (b} the Jacobi iterative
methods for solving simultaneous linear clgebraic equations.

12.1.1 Convergence and Diagonal Dominance

Note that the Gauss-Seidel method is similar in spirit to the technique of simple fixed-point
iteration that was used in Section 6.1 to solve for the roots of a single equation. Recall that
simple fixed-point iteration was sometimes nonconvergent. That is, as the iterations pro-
gressed, the answer moved farther and farther from the correct result.

Although the Gauss-Seidel method can also diverge, because it is designed for linear
systems, its ability to converge is much more predictable than for fixed-point iteration of
nonlinear equations. It can be shown that if the following condition holds, Gauss-Seidel
will converge:

H3
jaiil > > |aif] (12.3)

J=1
J#

That is, the absolute value of the diagonal coefficient in each of the equations must be
Jarger than the sum of the absolute values of the other coefficients in the equation. Such
systems are said to be diagonally dominant. This criterion is sufficient but not necessary
for convergence. That is, although the method may sometimes work if Eq. (12.3) is not
met, convergence is guaranteed if the condition is satisfied. Fortunately, many engineer-
ing and scientific problems of practical importance fulfill this requirement. Therefore,
Gauss-Seidel represents a feasible approach to solve many problems in engineering and
science.

268

ITERATIVE METHODS

12.1.2 MATLAB M-file: caussseidel

Before developing an algorithm, let us first recast Gauss-Seidel in a form that is com-
patible with MATLAB’s ability to perform matrix operations. This is done by expressing
Eq. (12.1) as

. b an a3
xlllcw — _ x;ld = b x;)ld
apy apy aiy
b’) any , a3
Xlzlc‘\\ e Nt xr]\ew _ - x(;ld
ap a» dx
. by ay asxn
x;ew _ 22 _ = x?ew W™ chu
ass ass asj

Notice that the solution can be expressed concisely in matrix form as

{x} = {d} ~ [C]{x} (124
where
by/ay
{d} = { b2/axn
by/asz
and
r 0 ap/an ais/an
[Cl=| ax/ax 0 az/an
Lazi/ays axn/fas 0

An M-file to implement Eq. (12.4) is listed in Fig. 12.2.

12.1.3 Relaxation

Relaxation represents a slight modification of the Gauss-Seidel method that is designed to
enhance convergence. After each new value of x is computed using Eq. (12.1), that value is
modified by a weighted average of the results of the previous and the present iterations:

Xincw _ }\x[pev» +(1 —)\)x;ﬂd (12.5)

where X is a weighting factor that is assigned a value between 0 and 2.

If A =1, (1 — &) is equal to 0 and the result is unmodified. However, if A is setata
value between 0 and 1, the result is a weighted average of the present and the previous re-
sults. This type of modification is called underrelaxarion. It is typically employed to make
a nonconvergent system converge or to hasten convergence by dampening out oscillations.

For values of A from 1 to 2, extra weight is placed on the present value. In this in-
stance, there is an implicit assumption that the new value is moving in the correct direction
toward the true solution but at too slow a rate. Thus, the added weight of X is intended to
improve the estimate by pushing it closer to the truth. Hence, this type of modification,
which is called overrelaxation, is designed to accelerate the convergence of an already con-
vergent system. The approach is also called successive overrelaxation, or SOR.

12.1 LINEAR SYSTEMS: GAUSS-SEIDEL 269

function x = Gauss3eidel (A,b,es,maxit)

% GaussSeidel: Gauss Seidel method

% % = GaussSeidel (A,b): Gauss Seidel without relaxation
% 1input:

% A = coefficient matrix

% b = right hand side vector

% es = stop criterion (default = 0.00001%)

% maxit = max iterations (default = 50)

% output:

% x = solution vector

if nargin<?2,error{'at least 2 input arguments required'),end

if nargin<dlisenmpty{maxit),maxit=50;end

if nargin<3|isempty{es),es=0.00001;end

[m,n] = size(A);

if m~=n, error('Matrix A must be square'); end

C = A;

for i = 1:n
C(i,i) =
x(i) = 0;

end

X = x';

for i = 1:n
Cli,Y:r) = C(i,1l:n)/A(i,1);

0;

end

iter = iter+1l;

if max{eaj<=-es
end

iter >= maxit, break, end

1

N

FIGURE 12.2
MATLAB Mdile 1o implement Gauss-Seidel.

¥y

ik

IR,

F™

The choice of a proper value for X is highly problem-specific and is often determined
empirically. For a single solution of a set of equations it is often unnecessary. However, if
the system under study is to be solved repeatedly, the efficiency introduced by a wise
choice of A can be extremely important. Good examples are the very large systems of linear
algebraic equations that can occur when solving partial differential equations in a variety of
engineering and scientific problem contexts.

270 ITERATIVE METHODS

12.2 NONLINEAR SYSTEMS EXAM

The following is a set of two simultaneous nonlinear equations with two unknowns:

x,2 + xy1x2 = 10 (12.60)
X2 +3x1x3 =57 (1268

In contrast to linear systems which plot as straight lines (recall Fig. 9.1), these equations
plot as curves on an x, versus x; graph. As in Fig. 12.3, the solution is the intersection of

the curves.
Just as we did when we determined roots for single nonlinear equations, such systems

of equations can be expressed generally as

Sl xa,) = 0 (121

fulx1 Xae .o xy) =0

Therefore, the solution are the values of the x’s that make the equations equal to zero.

12.2.1 Successive Substitution

A simple approach for solving Eq. (12.7) is to use the same strategy that was employed for
fixed-point iteration and the Gauss-Seidel method. That is, each one of the nonlinear equz
tions can be solved for one of the unknowns. These equations can then be implemented
iteratively to compute new values which (hopefully) will converge on the solutions. This
approach, which is called successive substitution, is illustrated in the following exampk,

FIGURE 12.3

Graphical depiction of the solution of two simultaneous nonlinear equations.

X2

8_

=10

Solution

41— x; + 3x43 = 57 ¥ =21x=3

12.2 NONLINEAR SYSTEMS 271

EXAMPLE 12.2 Successive Substitution for a Nonlinear System

Problem Statement. Use successive substitution to determine the roots of Eq. (12.6).
Note that a correct pair of roots is x; = 2 and Xy = 3. Initiate the computation with guesses
of x; = 1.5 and x, = 3.5.

Solution. Equation (12.6a) can be solved for

10 — xl2 ,
xX; = (E12.2.1)
X2
and Eq. (12.6b) can be solved for
Xy =57 = 3x,x3 (E12.2.2)
On the basis of the initial guesses, Eq. (E12.2.1) can be used to determine a new value
of xy:
10 — (1.5)?
X; = H- Ay =2.21429

3.5

This result and the initial value of x, = 3.5 can be substituted into Eq. (E12.2.2) to deter-
mine a new value of x:

Xy =57 —3(2.21429)(3.5)* = —24.37516

Thus, the approach seems to be diverging. This behavior is even more pronounced on the
second iteration:

10 — (2.21429)2
= T _(.20910
—24.37516

Y2 =57 — 3(—0.20910)(—24.37516)% = 429.709

Obviously, the approach is deteriorating.
Now we will repeat the computation but with the original equations set up in a differ-
ent format. For example, an alternative solution of Eq. (12.6q) is

X = +/ 10 — Xi1X2

and of Eq. (12.6b) is

57 — X2
Xo =
- 3X|

Now the results are more satisfactory:

X1 =+4/10—-1.5(3.5) =2.17945

[57-35
h= L7205 e6051
2=V 32.17945)

272

ITERATIVE METHODS

x; = /10 — 2.17945(2.86051) = 1.94053

57— 286051 _ oo
Xy = —_—— T 3,
: 3(1.94053)

Thus, the approach is converging on the true values of x; = 2 and x; = 3.

The previous example illustrates the most serious shortcoming of successive
substitution—that is, convergence often depends on the manner in which the equations are
formulated. Additionally, even in those instances where convergence is possible, diver-
gence can occur if the initial guesses are insufficiently close to the true solution. These
criteria are so restrictive that fixed-point iteration has limited utility for solving nonlinear
systems.

12.2.2 Newton-Raphson

Just as fixed-point iteration can be used to solve systems of nonlinear equations, other open
root location methods such as the Newton-Raphson method can be used for the same pur-
pose. Recall that the Newton-Raphson method was predicated on employing the derivative
(i.e., the slope) of a function to estimate its intercept with the axis of the independent
variable—that is, the root. In Chap. 6. we used a graphical derivation to compute this esti-
mate. An alternative is to derive it from a first-order Taylor series expansion:

Fxin) = flx) + i —x) f(x) (128

where x; is the initial guess at the root and x;; is the point at which the slope intercepts the
x axis. At this intercept, f(x;41) by definition equals zero and Eq. (12.8) can be rearranged
to yield
)

F(xi)
which is the single-equation form of the Newton-Raphson method.

The multiequation form is derived in an identical fashion. However, a multivariable

Taylor series must be used to account for the fact that more than one independent variable
contributes to the determination of the root. For the two-variable case, a first-order Taylor
series can be written for each nonlinear equation as

Xit] = X; (129)

0f1.i f1

Srivn = fii + X — M,/)—‘f]' + (X241 — f\’z.i)——fl (12.10a)
()X[8x2
0f2.i 0f2.i

Privt = foi + K — x0)—— + (241 — X2,)—— (12.105)
ox) dx2

Just as for the single-equation version, the root estimate corresponds to the values of x; and
xp, where f1 ;.1 and fa;) equal zero. For this situation, Eq. (12.10) can be rearranged to give

of1,i af1,: ofi.i of1.i
—Jlxl.i+1 + —fi‘~xz.i+1 =~ f1.i +)61,ii + X2 / (12.11g)
ox; ax; 0x, 9xy
02, 0f2. 9f2. 0f2.i
Tff"ﬂ,iﬂ + sz X241 = —Jfai + X1 Aff + X2, in (12.114)

EXAN

12.2 NONLINEAR SYSTEMS 273

EXAMPLE 12.3

Because all values subscripted with i’s are known (they correspond to the latest guess or ap-
proximation), the only unknowns are x; ;41 and xp ;4. Thus, Eq. (12.11) is a set of two
linear equations with two unknowns. Consequently, algebraic manipulations (e.g.,
Cramer’s rule) can be employed to solve for
afZ i afl i
fl i f2 i
Xii+l = X1,0 — (12.12a)
0f1.i 3f2,l B 3f1,z 8f2,1

dx; 0xa dxy 0x

fua Tt 2

X2,i41 = X2, — (12.12b)
v T ~ afl,, 8fz,,

ox, dxa 0xp 0x;

The denominator of each of these equations is formally referred to as the determinant of the
Jacobian of the system.

Equation (12.12) is the two-equation version of the Newton-Raphson method. As in
the following example, it can be employed iteratively to home in on the roots of two simul-
taneous equations.

Newton-Raphson for a Nonlinear System
Problem Statement. Use the multiple-equation Newton-Raphson method to determine

roots of Eq. (12.6). Initiate the computation with guesses of x; = 1.5 and x» = 3.5.

Solution. First compute the partial derivatives and evaluate them at the initial guesses of
xand y:

9 9
/1.0 =2x) + x5 = 2(1.5) +3.5=6.5 fi0 =x =15

axl 8x2

d 9

f20 _ 3x2 = 3(3.5)% = 36.75 920 _ 1 4 6xyxs = 14 6(1.5)(3.5) = 32.5
8x1 3)(2

Thus, the determinant of the Jacobian for the first iteration is
6.5(32.5) — 1.5(36.75) = 156.125
The values of the functions can be evaluated at the initial guesses as
fio=(1.5%4+153.5) - 10=-25
fro =3.5+3(1.5)(3.5)% — 57 = 1.625
These values can be substituted into Eq. (12.12) to give
—2.5(32.5) — 1.625(1.5)

15) 2.03603
xi=15 156.125
1.625(6.5) — (=2.5)(36.75
Xy =35— (6.3 — (=2.9)B0.75) _ , ¢4358
156.125

Thus, the results are converging to the true values of x; = 2 and x, = 3. The computation
can be repeated until an acceptable accuracy is obtained.

274

ITERATIVE METHODS

When the multiequation Newton-Raphson works, it exhibits the same speedy quadratic
convergence as the single-equation version. However, just as with successive substitution,
it can diverge if the initial guesses are not sufficiently close to the true roots. Whereas
graphical methods could be employed to derive good guesses for the single-equation case,
no such simple procedure is available for the multiequation version. Although there are
some advanced approaches for obtaining acceptable first estimates, often the initial guesses
must be obtained on the basis of trial and error and knowledge of the physical system being
modeled.

The two-equation Newton-Raphson approach can be generalized to solve n simulta-
neous equations. To do this, Eq. (12.11) can be written for the kth equation as

Ofki Ofk.i 0fk.i O fki Ofk.i
fu X141+ ¢ Xoipr o+ ’an.iﬁ—l = —fri +xl.i,___l +X2.i'—'
8x1 (3)(2 8x,l ()JL] 8}63
v
oot e (1213
dxy

where the first subscript k represents the equation or unknown and the second subscript de-
notes whether the value or function in question is at the present value (i) or at the next value
(i + 1). Notice that the only unknowns in Eq. (12.13) are the x; ;1 terms on the left-hand
side. All other quantities are located at the present value (/) and, thus, are known at any
iteration. Consequently, the set of equations generally represented by Eq. (12.13) (i.e., with
k=1,2,...,n) constitutes a set of linear simultaneous equations that can be solved
numerically by the elimination methods elaborated in previous chapters.
Matrix notation can be employed to express Eq. (12.13) concisely as

[V Hxia} = ={f1 + [V} (124

where the partial derivatives evaluated at i are written as the Jacobian matrix consisting of
the partial derivatives:

afl.[afl,i afL[T
Tf)x_l x> 0x,
Bfhi i A
[J]1={ 9x 0x> ox, (12.15)
af;u' 8fn.i afn,i

The initial and final values are expressed in vector form as
e}’ =L xi o X

and
frien)’ = 1xr X2 o Xeisr

Finally, the function values at i can be expressed as

Y =LA fi o fuil

12.2 NONLINEAR SYSTEMS 275

Equation (12.14) can be solved using a technique such as Gauss elimination. This
process can be repeated iteratively to obtain refined estimates in a fashion similar to the
two-equation case in Example 12.3.

Insight into the solution can be obtained by solving Eq. (12.14) with matrix inversion.
Recall that the single-equation version of the Newton-Raphson method is

Xipl = X~ fx) (12.16)
f%xﬂ
If Eq. (12.14) is solved by multiplying it by the inverse of the Jacobian, the result is
(it} = fa) = 1171 (1217)

Comparison of Eqs. (12.16) and (12.17) clearly illustrates the parallels between the two
equations, In essence, the Jacobian is analogous to the derivative of a multivartate function.
Such matrix calculations can be implemented very efficiently in MATLAB. We can
illustrate this by using MATLAB to duplicate the calculations from Example 12.3. After
defining the initial guesses, we can compute the Jacobian and the function values as

>» x=[1.5;32.5];
>> J=[2*x (1) +x(2) x(1);3*x(2)72 l+6*x(1)*x(2)]

J =
6.5000 1.5000
36.7500 32.5000

>> =[x (1)"2+x (1) *x(2)-10;x(2)+3*x(1)*x(2)"2-57]

f =
-2.5000
1.6250

Then, we can implement Eq. (12.17) to yield the improved estimates
>» xN=x-J\f

X =
2.0360
2.8439

Although we could continue the iterations in the command mode, a nicer aiternative is
to express the algorithm as an M-file. As in Figure 12.4, this routine is passed an M-file that
computes the function values and the Jacobian at a given value of x. It then calls this func-
tion and implements Eq. (12.17) in an iterative fashion. The routine iterates until an upper
limit of iterations (maxit) or a specified percent relative error (es) is reached.

We should note that there are two shortcomings to the foregoing approach. First,
Eq. (12.15) is sometimes inconvenient to evaluate. Therefore, variations of the Newton-
Raphson approach have been developed to circumvent this dilemma. As might be ex-
pected, most are based on using finite-difference approximations for the partial derivatives
that comprise [J]. The second shortcoming of the multiequation Newton-Raphson method
1s that excellent initial guesses are usually required to ensure convergence. Because these
are sometimes difficult or inconvenient to obtain. alternative approaches that are slower

276 ITERATIVE METHODS

function [x,f,ea,iter}=newtmult {func, x0, es, maxit,varargin)
newtmult: Newton-Raphson root zeroes nonlinear systems
{x,f,ea,iterl=newtmult (func,x0,es,maxit,pl,p2,...):
uses the Newton-Raphson method to find the roots of
a system of nonlinear equations

o0 0P

o0 op

% input:

% func = name of function that returns f and J

% %0 = initial guess

% es = desired percent relative error (default = 0.0001%)

% maxit = maximum allowable iterations (default = 50)

% pl,p2,... = additional parameters used by function
output:

o0 0@

x = vector of roots

f = vector of functions evaluated at roots
ca = approximate percent relative error (%)
iter = number of iterations

o0 oo

o

if nargin<2,error('at least 2 input arguments reguired'),end
if nargin<3|isempty (es),es=0.0001;end
if nargin<4|isempty(maxit),maxit=50;end
iter = 0;
x=x0;
while (1)
[J,fl=func(x,varargin{:});
dx=J\f;
x=X-dx;
iter = iter + 1;
ea=100*max (abs (dx./x)) ;
if iter>=maxit|ea<=es, break, end
end

s A A a1,

FIGURE 12.4
MATIAB Miile to implement NewtonRaphson method for nonlinear systems of equations.

than Newton-Raphson but which have better convergence behavior have been developed.
One approach is to reformulate the nonlinear system as a single function:

n
Fx) =Y 1fitx.x. . ox))
i=1
where fi(xy, x2, ..., x,) is the ith member of the original system of Eq. (12.7). The values
of x that minimize this function also represent the solution of the nonlinear system. There-
fore, nonlinear optimization techniques can be employed to obtain solutions.

12.3 CASE STUDY 277

CHEMICAL REACTIONS

Background. Nonlinear systems of equations occur frequently in the characterization
of chemical reactions, For example, the following chemical reactions take place in a closed
system:

-—

2A+B<~—C (12.18)
—_

A+D_cC (12.19)

At equilibrium, they can be characterized by

K, = f“ (12.20)
C;Ch

Ky = < (1221
CaCq

where the nomenclature c, represents the concentration of constituent i. If x, and X, are the
number of moles of C that are produced due to the first and second reactions, respectively,
formulate the equilibrium relationships as a pair of two simultaneous nonlinear equations.
K =4 x 107, K, =3.7 x 1072, ¢, , = 50, Cpo =20, ¢, =5, and ¢, = 10, employ the
Newton-Raphson method to solve these equations,

Solution. Using the stoichiometry of Egs. (12.18) and (12.19), the concentrations of
each constituent can be represented in terms of xy and x, as

Ca = Cap — 2X1 — X3 (12.22)
Cp = Cp g — X} (12.23)
Ce = Ceo+ X1 + X3 (12.29)
Cqd = Cq0 — X2 (12.25)

where the subscript 0 designates