
University of Jordan Electrical Engineering Department

Engineering School

Monday, April 11, 2016 Time: 15:00 to 16:30 (90 min)

Question	Q1	Q2	Q3	Q4	Q5	Total	Grade
Total Points	22	22	16	20	20	100	30
Student's Score	(0	9	5	18	20	62	18.6

Answer all the following 5 Questions clearly, fill in the blank your final answer, show details on the same sheet. Don't forget to label all plots and use the correct units per answer.

Question 1: [22-points] – (Multiple choice) Pick the most accurate answer for the following questions, and fill up the following table accordingly.

Q#	1	2	3	4	5_	6	_7	8	9	10	11
Ans.	C/	CX	ax	CV	d	a/	P	px	pX	CX	CV
1. A a3A _m		ver or up	per cutof b. 0.5 <i>A</i>		ncy, the v	oltage g ©0.7		20	Coff (d. 0	(SA_{mid})	104\$
2. T a. 1	`wo stage	es have d	ecibel vo b. 10	ltage ga	ins of 20	and 40 d	B. T <mark>he t</mark>	total <u>ordi</u>	nary vol d. 1	tage gain 000	
3. 7 a) 46 d		es have v	oltage ga b. 86 d		00 and 20	0. The to	otal <mark>deci</mark> dB	bel volta	ge gain i d. 1	s: 4 06 dB	46
t	ry? ease the o		b. Incre	***	emitter	€ Sho	of an an orten lea as possi		.d. In	these ware the crease the stance.	
a. 20	oltage ga	in is <u>86 </u>	dB, what b. 200	is the or	dinary vo	oltage ga c. 200	in at 20 00			2. If the 0,000	
	n a BJT a increases		the inpu K Supp increas	oly volta	ance of the	c. Bet	icreases a decrea	when: ises		ollector i	resistanc
a. Decre	ease		ce is oper	ease		c. Rei	nain the		d. E	qual zero)
8. It Decre			ing capac (b) Incre		pen, the a	c. Rei	voltage v nain the	vill: same	d. E	qual zero)
C	a Compacitors	mon-Em	itter stag between	ge is din the two	ect coup stages?		ın emitt	er follov		many	coupling
ı. 0			6,1			c. 2			d. 3		
	he main a power ra		e of CM b. Smal operation	l-signal		c. Sw	itching o	capability		ow powe	
	rcutoff	wiring ca	pacit <mark>anc</mark> b. Midb		effect or tage gain			ff	d. lı	nput resis	tance
- A	Kelly				1	-					

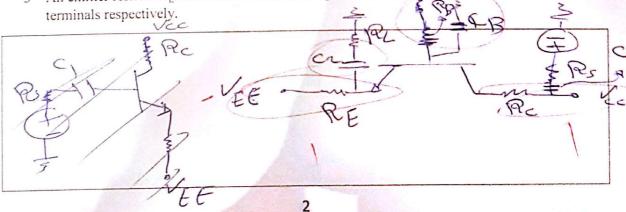
Question 2: [22-points]

A) [14-pts] In the table below, you are asked to compare between the Voltage Buffer Amplifier and the Current Buffer Amplifier as you learned in the course. In the following blanks, please fill up with a brief correct answer, for example:

 $R_i \rightarrow 0, R_o \rightarrow \infty, A_v = 1, A_i > 1, \dots$ etc.

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1						
	Current Buffer Amplifire	Voltage Buffer Amplifier				
Draw Equivalent two-port network	h-Parametrs Vi = hil, + hills Iz = hul, + hul					
Voltage gain	AUX1	AuxI				
Current gain	Ai XI	Ac >1				
Input impedance	Ri-Do	Pi. 700				
Output impedance	Ro > 0	Ro Jos				
Give example from MOSFET amplifier configuration	common Gate	Common Drain				

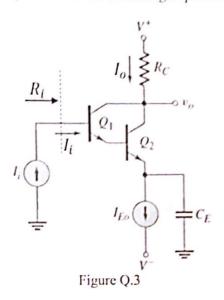
B) [8-pts]Using a BJT Transistor of npn type, sketch a schematic for a current buffer circuit comme which contains the following components:


1 Two DC voltage supplies: V_{CC} and V_{EE} .

2—The input voltage source V_s has internal resistance R_s which is coupled through C_1 capacitor to the input of the amplifier circuit.

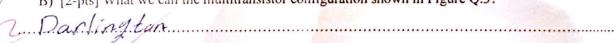
3- The output is couple through C_2 Capacitor to a load R_L

4- R_B is bypassed by capacitor C_B .

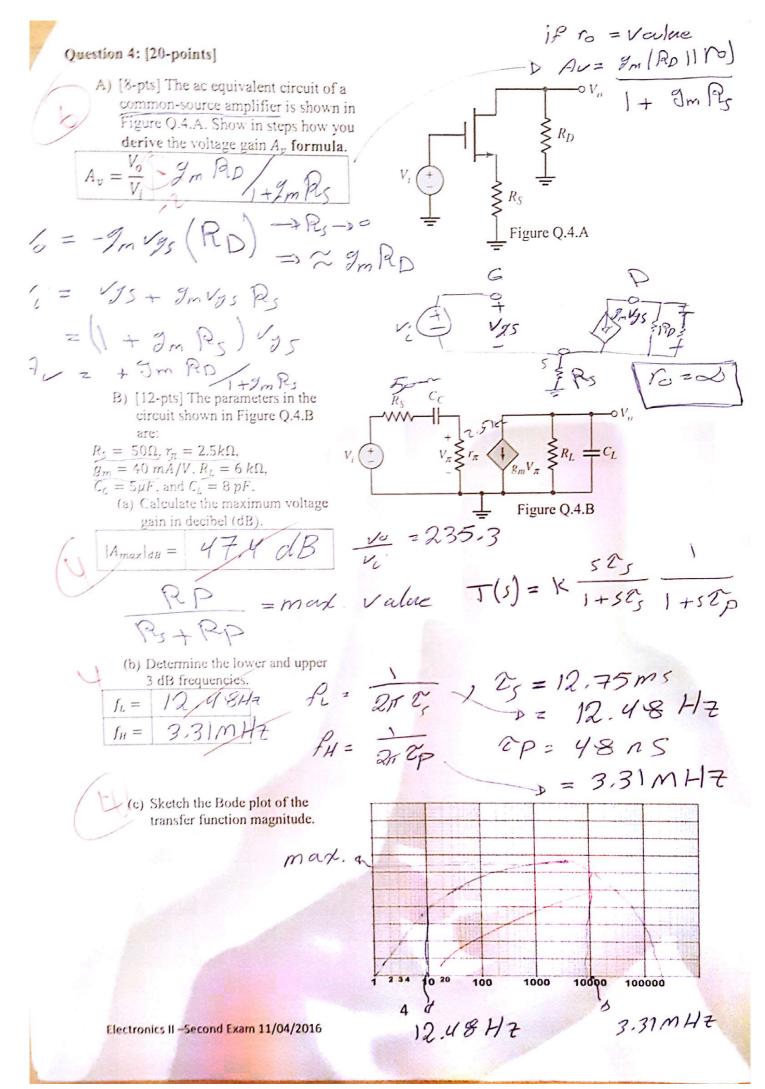

5- An emitter resistor R_E and a collector resistor R_C are connected to the emitter and collector terminals respectively.


Electronics II - Second Exam 11/04/2016

Question 3: [16-points]

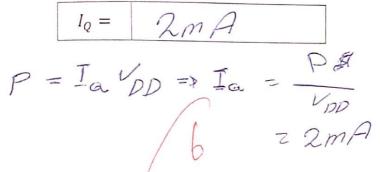

For the circuit shown in Figure Q.3. Answer the following 3 questions:

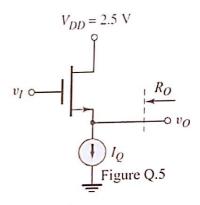
A) [8-pts] Draw the small-signal equivalent circuit for the circuit shown in Figure Q.3



B) [2-pts] What we call the multitransistor configuration shown in Figure Q.3?

C) [6-pts] For the transistor parameters: $\beta_1 = 100$, $\beta_2 = 120$, $V_{A1} = \infty$, $V_{A2} = \infty$, $V_{BE1} = V_{BE2} = 0.7V$, and $V_T = 0.026V$. Let $I_{E0} = 1mA$, calculate the input impedance R_I


$R_i =$		



Question 5: [20-points]

For the circuit in Figure Q.5, the parameters of the transistor are $V_{TN} = 0.6V$, $k'_n = 100\mu A/V^2$, and $\lambda = 0.02V^{-1}$.

· Answer the following two questions: A) [6-pts] The quiescent power dissipation in the circuit is to be limited to 5 mW, Determine I_Q .

1m = 3 / 1 - In

B) [14-pts] If the independent current source is set to $I_Q = 1mA$, determine W/L such that the

output resistance is needed to be
$$R_o = 0.5 \, k\Omega$$
.
*Hint: $R_o = \frac{1}{g_m} \parallel r_o, r_o = \left(\lambda \cdot I_{DQ}\right)^{-1}$ and $g_m = 2K_n \left(V_{GSQ} - V_{TN}\right) = 2\sqrt{K_n I_{DQ}}$

$$\frac{w}{L} = 19.602$$

$$Z_{m} = 2 \int_{-\infty}^{\infty} \frac{1}{2} \operatorname{Tet}$$

$$\int_{-\infty}^{\infty} \frac{1}{2} \operatorname{Tet}$$

$$\frac{1}{2m} + 60 = 500 = 500 = 100 =$$